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Preface

Cybersecurity is the protection of information systems, both hardware and soft-
ware, from the theft, unauthorized access, and disclosure, as well as intentional or 
accidental harm. It protects all segments pertaining to the Internet, from networks 
themselves to the information transmitted over the network and stored in data-
bases, to various applications, and to devices that control equipment operations 
via network connections. With the emergence of new advanced technologies such 
as cloud, mobile computing, fog computing, and the Internet of Things (IoT), the 
Internet has become and will be more ubiquitous. While this ubiquity makes our 
lives easier, it creates unprecedented challenges for cybersecurity. Nowadays it seems 
that not a day goes by without a new story on the topic of cybersecurity, either a 
security incident on information leakage, or an abuse of an emerging technology 
such as autonomous car hacking, or the software we have been using for years is 
now deemed to be dangerous because of the newly found security vulnerabilities.

So, why can’t these cyberattacks be stopped? Well, the answer is very com-
plicated, partially because of the dependency on legacy systems, human errors, 
or simply not paying attention to security aspects. In addition, the changing and 
increasing complex threat landscape makes traditional cybersecurity mechanisms 
inadequate and ineffective. Big data is further making the situation worse, and pres-
ents additional challenges to cybersecurity. For an example, the IoT will generate a 
staggering 400 zettabytes (ZB) of data a year by 2018, according to a report from 
Cisco. Self-driving cars will soon create significantly more data than people— 
3 billion people’s worth of data, according to Intel. The averagely driven car will 
churn out 4000 GB of data per day, and that is just for one hour of driving a day.

Big data analytics, as an emerging analytical technology, offers the capability 
to collect, store, process, and visualize BIG data; therefore, applying big data ana-
lytics in cybersecurity becomes critical and a new trend. By exploiting data from 
the networks and computers, analysts can discover useful information from data 
using analytic techniques and processes. Then the decision makers can make more 
informative decisions by taking advantage of the analysis, including what actions 
need to be performed, and improvement recommendations to policies, guidelines, 
procedures, tools, and other aspects of the network processes.
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This book provides a comprehensive coverage of a wide range of complementary 
topics in cybersecurity. The topics include but are not limited to network forensics, 
threat analysis, vulnerability assessment, visualization, and cyber training. In addi-
tion, emerging security domains such as the IoT, cloud computing, fog computing, 
mobile computing, and the cyber-social networks are studied. The target audience of 
this book includes both starters and more experienced security professionals. Readers 
with data analytics but no cybersecurity or IT experience, or readers with cybersecu-
rity but no data analytics experience will hopefully find the book informative.

The book consists of 14 chapters, organized into three parts, namely 
“Applying Big Data into Different Cybersecurity Aspects,” “Big Data in Emerging 
Cybersecurity Domains,” and “Tools and Datasets for Cybersecurity.” The first part 
includes Chapters 1–7, focusing on how big data analytics can be used in differ-
ent cybersecurity aspects. The second part includes Chapters 8–12, discussing big 
data challenges and solutions in emerging cybersecurity domains, and the last part, 
Chapters 13 and 14, present the tools and datasets for cybersecurity research. The 
authors are experts in their respective domains, and are from academia, govern-
ment labs, and the industry.

Chapter 1, “The Power of Big Data in Cybersecurity,” is written by Song Luo, 
Malek Ben Salem, from Accenture Technology Labs, and Yan Zhai from E8 Security 
Inc. This chapter introduces big data analytics and highlights the needs and impor-
tance of applying big data analytics in cybersecurity to fight against the evolving 
threat landscape. It also describes the typical usage of big data security analytics 
including its solution domains, architecture, typical use cases, and the challenges. 
Big data analytics, as an emerging analytical technology, offers the capability to 
collect, store, process, and visualize big data, which are so large or complex that 
traditional data processing applications are inadequate to deal with. Cybersecurity, 
at the same time, is experiencing the big data challenge due to the rapidly grow-
ing complexity of networks (e.g., virtualization, smart devices, wireless connections, 
Internet of Things, etc.) and increasing sophisticated threats (e.g., malware, multi-
stage, advanced persistent threats [APTs], etc.). Accordingly, this chapter discusses 
how big data analytics technology brings in its advantages, and applying big data 
analytics in cybersecurity is essential to cope with emerging threats.

Chapter 2, “Big Data Analytics for Network Forensics,” is written by scien-
tists Yi Cheng, Tung Thanh Nguyen, Hui Zeng, and Julia Deng from Intelligent 
Automation, Inc. Network forensics plays a key role in network management and 
cybersecurity analysis. Recently, it is facing the new challenge of big data. Big 
data analytics has shown its promise of unearthing important insights from large 
amounts of data that were previously impossible to find, which attracts the atten-
tion of researchers in network forensics, and a number of efforts have been initiated. 
This chapter provides an overview on how to apply big data technologies into net-
work forensics. It first describes the terms and process of network forensics, presents 
current practice and their limitations, and then discusses design considerations and 
some experiences of applying big data analysis for network forensics.
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Chapter 3, “Dynamic Analytics-Driven Assessment of Vulnerabilities and 
Exploitation,” is written by U.S. Army Research Lab scientists Hasan Cam 
and Akhilomen Oniha, and MIT Lincoln Laboratory scientists Magnus Ljungberg 
and Alexia Schulz. This chapter presents vulnerability assessment, one of the essential 
cybersecurity functions and requirements, and highlights how big data analytics could 
potentially leverage vulnerability assessment and causality analysis of vulnerability 
exploitation in the detection of intrusion and vulnerabilities so that cyber analysts can 
investigate alerts and vulnerabilities more effectively and faster. The authors present 
novel models and data analytics approaches to dynamically building and analyzing 
relationships, dependencies, and causality reasoning among the detected vulner-
abilities, intrusion detection alerts, and measurements. This chapter also describes a 
detailed description of building an exemplary scalable data analytics system to imple-
ment the proposed model and approaches by enriching, tagging, and indexing the 
data of all observations and measurements, vulnerabilities, detection, and monitoring.

Chapter 4, “Root Cause Analysis for Cybersecurity,” is written by Amin 
Kharraz and Professor Engin Kirda of Northwestern University. Recent years have 
seen the rise of many classes of cyber attacks ranging from ransomware to advanced 
persistent threats (APTs), which pose severe risks to companies and enterprises. 
While static detection and signature-based tools are still useful in detecting already 
observed threats, they lag behind in detecting such sophisticated attacks where 
adversaries are adaptable and can evade defenses. This chapter intends to explain 
how to analyze the nature of current multidimensional attacks, and how to identify 
the root causes of such security incidents. The chapter also elaborates on how to 
incorporate the acquired intelligence to minimize the impact of complex threats 
and perform rapid incident response.

Chapter 5, “Data Visualization for Cyber Security,” is written by Professor Lane 
Harrison of Worcester Polytechnic Institute. This chapter is motivated by the fact 
that data visualization is an indispensable means for analysis and communication, 
particularly in cyber security. Promising techniques and systems for cyber data 
visualization have emerged in the past decade, with applications ranging from 
threat and vulnerability analysis to forensics and network traffic monitoring. In this 
chapter, the author revisits several of these milestones. Beyond recounting the past, 
however, the author uncovers and illustrates the emerging themes in new and ongo-
ing cyber data visualization research. The need for principled approaches toward 
combining the strengths of the human perceptual system is also explored with 
analytical techniques like anomaly detection, for example, as well as the increas-
ingly urgent challenge of combatting suboptimal visualization designs—designs 
that waste both analyst time and organization resources.

Chapter 6, “Cybersecurity Training,” is written by cognitive psychologist Bob 
Pokorny of Intelligent Automation, Inc. This chapter presents training approaches 
incorporating principles that are not commonly incorporated into training pro-
grams, but should be applied when constructing training for cybersecurity. It 
should help you understand that training is more than (1) providing information 
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that the organization expects staff to apply; (2) assuming that new cybersecurity 
staff who recently received degrees or certificates in cybersecurity will know what is 
required; or (3) requiring cybersecurity personnel to read about new threats.

Chapter 7, “Machine Unlearning: Repairing Learning Models in Adversarial 
Environments,” is written by Professor Yinzhi Cao of Lehigh University. Motivated 
by the fact that today’s systems produce a rapidly exploding amount of data, and 
the data further derives more data, this forms a complex data propagation network 
that we call the data’s lineage. There are many reasons that users want systems to 
forget certain data including its lineage for privacy, security, and usability reasons. 
In this chapter, the author introduces a new concept machine unlearning, or simply 
unlearning, capable of forgetting certain data and their lineages in learning models 
completely and quickly. The chapter presents a general, efficient unlearning approach 
by transforming learning algorithms used by a system into a summation form.

Chapter 8, “Big Data Analytics for Mobile App Security,” is written by 
Professor Doina Caragea of Kansas State University, and Professor Xinming Ou of 
the University of South Florida. This chapter describes mobile app security analysis, 
one of the new emerging cybersecurity issues with rapidly increasing requirements 
introduced by the predominant use of mobile devices in people’s daily lives, and dis-
cusses how big data techniques such as machine learning (ML) can be leveraged for 
analyzing mobile applications such as Android for security problems, in particular 
malware detection. This chapter also demonstrates the impact of some challenges 
on some existing machine learning-based approaches, and is particularly written to 
encourage the practice of employing a better evaluation strategy and better designs 
of future machine learning-based approaches for Android malware detection.

Chapter 9, “Security, Privacy, and Trust in Cloud Computing,” is written by 
Ruiwen Li, Songjie Cai, and Professor Yuhong Liu Ruiwen Li, and Songjie Cai of 
Santa Clara University, and Professor Yan (Lindsay) Sun of the University of Rhode 
Island. Cloud computing is revolutionizing the cyberspace by enabling conve-
nient, on-demand network access to a large shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, and services) that can be rap-
idly provisioned and released. While cloud computing is gaining popularity, diverse 
security, privacy, and trust issues are emerging, which hinders the rapid adoption of 
this new computing paradigm. This chapter introduces important concepts, mod-
els, key technologies, and unique characteristics of cloud computing, which helps 
readers better understand the fundamental reasons for current security, privacy, and 
trust issues in cloud computing. Furthermore, critical security, privacy and trust 
challenges, and the corresponding state-of-the-art solutions are categorized and dis-
cussed in detail, and followed by future research directions.

Chapter 10, “Cybersecurity in Internet of Things (IoT),” is written by Wenlin Han 
and Professor Yang Xiao of the University of Alabama. This chapter introduces the 
IoT as one of the most rapidly expanding cybersecurity domains, and presents the 
big data challenges faced by IoT, as well as various security requirements and issues 
in IoT. IoT is a giant network containing various applications and systems with 



Preface ◾ xi

heterogeneous devices, data sources, protocols, data formats, and so on. Thus, the 
data in IoT is extremely heterogeneous and big, and this poses heterogeneous big data 
security and management problems. This chapter describes current solutions and also 
outlines how big data analytics can address security issues in IoT when facing big data.

Chapter 11, “Big Data Analytics for Security in Fog Computing,” is written by 
Shanhe Yi and Professor Qun Li of the College of William and Mary. Fog comput-
ing is a new computing paradigm that can provide elastic resources at the edge of 
the Internet to enable many new applications and services. This chapter discusses 
how big data analytics can come out of the cloud and into the fog, and how security 
problems in fog computing can be solved using big data analytics. The chapter also 
discusses the challenges and potential solutions of each problem and highlights 
some opportunities by surveying existing work in fog computing.

Chapter 12, “Analyzing Deviant Socio-Technical Behaviors using Social 
Network Analysis and Cyber Forensics-Based Methodologies,” is written by Samer 
Al-khateeb, Muhammad Hussain, and Professor Nitin Agarwal of the University 
of Arkansas at Little Rock. In today’s information technology age, our thinking 
and behaviors are highly influenced by what we see online. However, misinfor-
mation is rampant. Deviant groups use social media (e.g., Facebook) to coordi-
nate cyber campaigns to achieve strategic goals, influence mass thinking, and steer 
behaviors or perspectives about an event. The chapter employs computational social 
network analysis and cyber forensics informed methodologies to study information 
competitors who seek to take the initiative and the strategic message away from the 
main event in order to further their own agenda (via misleading, deception, etc.).

Chapter 13, “Security Tools for Cybersecurity,” is written by Matthew Matchen 
of Braxton-Grant Technologies. This chapter takes a purely practical approach to 
cybersecurity. When people are prepared to apply cybersecurity ideas and theory to 
practical applications in the real world, they equip themselves with tools to better 
enable the successful outcome of their efforts. However, choosing the right tools 
has always been a challenge. The focus of this chapter is to identify functional areas 
in which cybersecurity tools are available and to list examples in each area to dem-
onstrate how tools are better suited to provide insight in one area over the other.

Chapter 14, “Data and Research Initiatives for Cybersecurity,” is written by the 
editors of this book. We have been motivated by the fact that big data based cyber-
security analytics is a data-centric approach. Its ultimate goal is to utilize available 
technology solutions to make sense of the wealth of relevant cyber data and turn-
ing it into actionable insights that can be used to improve the current practices 
of network operators and administrators. Hence, this chapter aims at introducing 
relevant data sources for cybersecurity analysis, such as benchmark datasets for 
cybersecurity evaluation and testing, and certain research repositories where real 
world cybersecurity datasets, tools, models, and methodologies can be found to 
support research and development among cybersecurity researchers. In addition, 
some insights are added for the future directions on data sharing for big data based 
cybersecurity analysis.
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This chapter introduces big data analytics and highlights the needs and importance 
of applying big data analytics in cybersecurity to fight against the evolving threat 
landscape. It also describes the typical usage of big data security analytics including 
its solution domains, architecture, typical use cases, and the challenges. Big data 
analytics, as an emerging analytical technology, offers the capability to collect, 
store, process, and visualize big data, which are so large or complex that traditional 
data processing applications are inadequate to deal with them. Cybersecurity, at 
the same time, is experiencing the big data challenge due to the rapidly growing 
complexity of networks (e.g., virtualization, smart devices, wireless connections, 
Internet of Things, etc.) and increasing sophisticated threats (e.g., malware, multi-
stage, advanced persistent threats [APTs], etc.). Accordingly, traditional cybersecu-
rity tools become ineffective and inadequate in addressing these challenges and big 
data analytics technology brings in its advantages, and applying big data analytics 
in cybersecurity becomes critical and a new trend.

1.1  Introduction to Big Data Analytics
1.1.1  What Is Big Data Analytics?

Big data is a term applied to data sets whose size or type is beyond the ability 
of traditional relational databases to capture, manage, and process. As formally 
defined by Gartner [1], “Big data is high-volume, high-velocity and/or high-variety 
information assets that demand cost-effective, innovative forms of information pro-
cessing that enable enhanced insight, decision making, and process automation.” 
The characteristics of big data are often referred to as 3Vs: Volume, Velocity, and 
Variety. Big data analytics refers to the use of advanced analytic techniques on big 
data to uncover hidden patterns, unknown correlations, market trends, customer 
preferences and other useful business information. Advanced analytics techniques 
include text analytics, machine learning, predictive analytics, data mining, statis-
tics, natural language processing, and so on. Analyzing big data allows analysts, 
researchers, and business users to make better and faster decisions using data that 
was previously inaccessible or unusable.

1.1.2  Differences between Traditional 
Analytics and Big Data Analytics

There is a big difference between big data analytics and handling a large amount 
of data in a traditional manner. While a traditional data warehouse mainly focuses 
more on structured data relying on relational databases, and may not be able to han-
dle semistructured and unstructured data well, big data analytics offers key advan-
tages of processing unstructured data using a nonrelational database. Furthermore, 
data warehouses may not be able to handle the processing demands posed by sets 
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of big data that need to be updated frequently or even continually. Big data analyt-
ics is able to deal with them well by applying distributed storage and distributed 
in-memory processing.

1.1.2.1  Distributed Storage

“Volume” is the first “V” of Gartner’s definition of big data. One key feature of big 
data is that it usually relies on distributed storage systems because the data is 
so massive (often at the petabyte or higher level) that it is impossible for a single 
node to store or process it. Big data also requires the storage system to scale up with 
future growth. Hyperscale computing environments, used by major big data com-
panies such as Google, Facebook, and Apple, satisfy big data’s storage requirements 
by constructing from a vast number of commodity servers with direct-attached 
storage (DAS).

Many big data practitioners build their hyberscale computing environments 
using Hadoop [2] clusters. Initiated by Google, Apache Hadoop is an open-source 
software framework for distributed storage and distributed processing of very large 
data sets on computer clusters built from commodity hardware. There are two key 
components in Hadoop:

 ◾ HDFS (Hadoop distributed file system): a distributed file system that stores 
data across multiple nodes

 ◾ MapReduce: a programming model that processes data in parallel across 
multiple nodes

Under MapReduce, queries are split and distributed across parallel nodes and 
processed in parallel (the Map step). The results are then gathered and delivered (the 
Reduce step). This approach takes advantage of data locality—nodes manipulating 
the data they have access to—to allow the dataset to be processed faster and more 
efficiently than it would be in conventional supercomputer architecture [3].

1.1.2.2  Support for Unstructured Data

Unstructured data is heterogeneous and variable in nature and comes in many for-
mats, including text, document, image, video, and more. The following lists a few 
sources that generate unstructured data:

 ◾ Email and other forms of electronic communication
 ◾ Web-based content, including click streams and social media-related content
 ◾ Digitized audio and video
 ◾ Machine-generated data (RFID, GPS, sensor-generated data, log files, etc.) 

and the Internet of Things
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Unstructured data is growing faster than structured data. According to a 2011 
IDC study [4], it will account for 90% of all data created in the next decade. 
As a new, relatively untapped source of insight, unstructured data analytics can 
reveal important interrelationships that were previously difficult or impossible to 
determine.

However, relational database and technologies derived from it (e.g., data ware-
houses) cannot manage unstructured and semi-unstructured data well at large scale 
because the data lacks predefined schema. To handle the variety and complexity of 
unstructured data, databases are shifting from relational to nonrelational. NoSQL 
databases are broadly used in big data practice because they support dynamic 
schema design, offering the potential for increased flexibility, scalability, and cus-
tomization compared to relational databases. They are designed with “big data” 
needs in mind and usually support distributed processing very well.

1.1.2.3  Fast Data Processing

Big data is not just big, it is also fast. Big data is sometimes created by a large num-
ber of constant streams, which typically send in the data records simultaneously, 
and in small sizes (order of kilobytes). Streaming data includes a wide variety of 
data such as click-stream data, financial transaction data, log files generated by 
mobile or web applications, sensor data from Internet of Things (IoT) devices, in-
game player activity, and telemetry from connected devices. The benefit of big data 
analytics is limited if it cannot act on data as it arrives. Big data analytics has to 
consider velocity as well as volume and variety, which is a key difference between 
big data and a traditional data warehouse. The data warehouse, by contract, is usu-
ally more capable of analyzing historical data.

This streaming data needs to be processed sequentially and incrementally on 
a record-by-record basis or over sliding time windows, and used for a wide variety 
of analytics including correlations, aggregations, filtering, and sampling. Big data 
technology unlocks the value in fast data processing with new tools and meth-
odologies. For example, Apache Storm [5] and Apache Kafka [6] are two popu-
lar stream processing systems. Originally developed by the engineering team at 
Twitter, Storm can reliably process unbounded streams of data at rates of millions 
of messages per second. Kafka, developed by the engineering team at LinkedIn, 
is a high- throughput distributed message queue system. Both streaming systems 
address the need of delivering fast data.

Neither traditional relational databases nor NoSQL databases are capable 
enough to process fast data. Traditional relational database is limited in perfor-
mance, and NoSQL systems lack support for safe online transactions. However, 
in-memory NewSQL solutions can satisfy the needs for both performance and 
transactional complexity. NewSQL is a class of modern relational database man-
agement systems that seek to provide the same scalable performance of NoSQL 
systems for online transaction processing (OLTP) read-write workloads while still 
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maintaining the ACID (Atomicity, Consistency, Isolation, Durability) guarantees 
of a traditional database system [7]. Some NewSQL systems are built with shared-
nothing clustering. Workload is distributed among cluster nodes for performance. 
Data is replicated among cluster nodes for safety and availability. New nodes can 
be transparently added to the cluster in order to handle increasing workloads. The 
NewSQL systems provide both high performance and scalability in online trans-
actional processes.

1.1.3  Big Data Ecosystem

There are many big data technologies and products available in the market, and the 
whole big data ecosystem can be divided generally into three categories: infrastruc-
ture, analytics, and applications, as shown in Figure 1.1.

 ◾ Infrastructure
  Infrastructure is the fundamental part of the big data technology. It stores, 

processes, and sometimes analyzes data. As discussed earlier, big data infra-
structure is capable of handling both structured and unstructured data at 
large volumes and fast speed. It supports a vast variety of data, and makes it 
possible to run applications on systems with thousands of nodes, potentially 

Big data landscape 2016 (version 3.0)
Infrastructure Analytics Applications

Cross-infrastructure/analytics

Open source

Data sources and APIs Incubators and schools

Last updated 3/23/2016  Matt Turck (@mattturck), Jim Hao (@jimrhao), and FirstMark Capital (@firstmarkcap)

Figure 1.1 Big data landscape.
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involving thousands of terabytes of data. Key infrastructural technologies 
include Hadoop, NoSQL, and massively parallel processing (MPP) databases.

 ◾ Analytics
  Analytical tools are designed with data analysis capabilities on the big 

data infrastructure. Some infrastructural technologies also incorporate data 
analysis, but specifically designed analytical tools are more common. Big data 
analytical tools can be further classified into the following sub-categories [8]:

 1. Analytics platforms: Integrate and analyze data to uncover new insights, 
and help companies make better-informed decisions. There is a particular 
focus on this field on latency, and delivering insights to end users in the 
timeliest manner possible.

 2. Visualization platforms: Specifically designed—as the name might 
 suggest—for visualizing data; taking the raw data and presenting it in 
complex, multidimensional visual formats to illuminate the information.

 3. Business intelligence (BI) platforms: Used for integrating and analyzing 
data specifically for businesses. BI platforms analyze data from multiple 
sources to deliver services such as business intelligence reports, dash-
boards, and visualizations

 4. Machine learning: Also falls under this category, but is dissimilar to the 
others. Whereas the analytics platforms input processed data and out-
put analytics or dashboards or visualizations to end users, the input of 
machine learning is data where the algorithm “learns from,” and the out-
put depends on the use case. One of the most famous examples is IBM’s 
super computer Watson, which has “learned” to scan vast amounts of 
information to find specific answers, and can comb through 200 million 
pages of structured and unstructured data in minutes.

 ◾ Application
  Big data applications are built on big data infrastructure and analytical 

tools to deliver optimized insight to end-users by analyzing business specific 
data. For example, one type of application is to analyze customer online 
behavior for retail companies, to have effective marketing campaigns, and 
increase customer retention. Another example is fraud detection for finan-
cial companies. Big data analytics helps companies identify irregular patterns 
within account accesses and transactions. While the big data infrastructure 
and analytical tools have become more mature recently, big data applications 
start receiving more attention.

1.2  The Need for Big Data Analytics in Cybersecurity
While big data analytics has been continuously studied and applied into differ-
ent business sectors, cybersecurity, at the same time, is experiencing the big data 
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challenge due to the rapidly growing complexity of networks (e.g., virtualization, 
smart devices, wireless connections, IoT, etc.) and increasingly sophisticated threats 
(e.g., malware, multistage, APTs, etc.). It has been commonly believed that cyberse-
curity is one of the top (if not the most) critical areas where big data can be a barrier 
to understanding the true threat landscape.

1.2.1  Limitations of Traditional Security Mechanisms

The changing and increasing complex threat landscape makes traditional cyber-
security mechanisms inadequate and ineffective in protecting organizations and 
ensuring the continuity of their business in digital and connected context.

Many traditional security approaches, such as network-level and host-level 
firewalls, have typically focused on preventing attacks. They take perimeter-based 
defense techniques mimicking physical security approaches, which focus primarily 
on preventing access from the outside and on defense along the perimeter. More 
defense layers can be added around the most valuable assets in the network in 
order to implement a defense-in-depth strategy. However, as attacks become more 
advanced and sophisticated, organizations can no longer assume that they are 
exposed to external threats only, nor can they assume that their defense layers can 
effectively prevent all potential intrusions. Cyber defense efforts need to shift focus 
from prevention to attack detection and mitigation. Traditional prevention-based 
security approaches would then constitute only one piece of a much broader secu-
rity strategy that includes detection methods and potentially automated incident 
response and recovery processes.

Traditional intrusion and malware detection solutions rely on known signa-
tures and patterns to detect threats. They are facing the challenge of detecting new 
and never-before-seen attacks. More advanced detection techniques are seeking to 
effectively distinguish normal and abnormal situations, behaviors, and activities, 
either at the network traffic level or at the host activity level or at the user behavior 
level. Abnormal behaviors can further be used as the indicator of malicious activity 
for detecting never-before-seen attacks. A 2014 report from the security firm Enex 
TestLab [9] indicated that malware generation outpaced security advancements 
during the second half of 2014 to the point that in some of its monthly e-Threats 
automated malware tests, solutions from major security vendors were not able to 
detect any of the malware they were tested against.

Security information and event management (SIEM) solutions provide real-
time monitoring and correlation of security events as well as log management 
and aggregation capabilities. By their very nature, these tools are used to confirm 
a suspected breach rather than proactively detecting it. More advanced security 
approaches are needed to monitor the behaviors of networks, systems, applications, 
and users in order to detect early signs of a breach before cyber attackers can cause 
any damages.
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1.2.2  The Evolving Threat Landscape Requires 
New Security Approaches

New technologies, such as virtualization technologies, smartphones, IoT devices, 
and their accelerated pace of change are driving major security challenges for orga-
nizations. Similarly, the huge scale of organizations’ software operations is add-
ing to the complexity that cyber defenders have to deal with. Furthermore, the 
expanded attack surface and the increasingly sophisticated threat landscape pose 
the most significant challenges to traditional cyber security tools.

For example, the rapid growth of IoT connects a huge number of vulnerable 
devices to the Internet, therefore exponentially expands the attack surface for 
hackers. The IDC study of worldwide IoT market predicts that the installed base 
of IoT endpoints will grow from 9.7 billion in 2014 to more than 25.6 billion 
in 2019, hitting 30 billion in 2020 [10]. However, the fast growth of IoT also 
exponentially expands the attack surface for hackers. A recent study released by 
Hewlett Packard [11] showed that 70% of IoT devices contain serious vulnerabili-
ties. The scale of IoT and the expanded attack surface make traditional network-
based security controls unmanageable and unable to secure all communications 
generated by the connected devices. The convergence of information technology 
and operations technology driven by the IoT further complicates the task of net-
work administrators.

As another example, advanced persistent threat (APT) has become a serious 
threat to business, but traditional detection methods are not effective defending 
against it. APT is characterized by being “advanced” in terms of using sophisticated 
malware to explore system vulnerabilities and being “persistent” in terms of using 
an external command and control system to continuously monitor and extract data 
from a specific target. Traditional security is not effective on APT because

 ◾ APT often uses zero-day vulnerabilities to compromise the target. Traditional 
signature-based defense does not work on those attacks.

 ◾ Malware used by APT usually initiates communication to the command and 
control server from inside, which makes perimeter-based defense ineffective.

 ◾ APT communications are often encrypted using SSL tunnels, which makes 
traditional IDS/firewall unable to inspect its contents.

 ◾ APT attacks usually hide in the network for a long time and operate in stealth 
mode. Traditional security, which lacks the ability to retain and correlate 
events from different sources over a long time, is not capable enough to detect 
them.

In short, new cybersecurity challenges make traditional security mechanisms 
less effective in many cases, especially when big data is involved.
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1.2.3  Big Data Analytics Offers New 
Opportunities to Cybersecurity

Big data analytics offers the opportunity to collect, store, and process enormous 
cybersecurity data. This means that security analytics is no longer limited to ana-
lyzing alerts and logs generated by firewalls, proxy servers, IDSs, and web applica-
tion firewalls (WAFs). Instead, security analysts can analyze a range of new datasets 
in a long time period that gives them more visibility into what’s happening on their 
network. For example, they can analyze network flows and full packet captures for 
network traffic monitoring. They can use communication data (including email, 
voice, and social networking activity), user identity context data, as well as web 
application logs and file access logs for advanced user behavior analytics.

Furthermore, business process data, threat intelligence, and configuration 
information of the assets on the network can be used together for risk assessments. 
Malware information and external threat feeds (including blacklists and watch-
lists), GeoIP data, and system and audit trails may help with cyber investigations. 
The aggregation and correlation of these various types of data provides more con-
text information that helps broaden situational awareness, minimize cyber risk, and 
improve incident response. New use cases are enabled through big data’s capabili-
ties to perform comprehensive analyses through distributed processing and with 
affordable storage and computational resources.

1.3  Applying Big Data Analytics in Cybersecurity
1.3.1  The Category of Current Solutions

Existing efforts of applying big data analytics into cybersecurity can be grouped 
into the following three major categories [12]:

 ◾ Enhance the accuracy and intelligence of existing security systems.
  Security analytics solutions in this category use ready-to-use analytics to 

make existing systems more intelligent and less noisy so that the most egre-
gious events are highlighted and prioritized in queues, while alert volume 
is reduced. The big data aspect of this solution domain comes in a more 
advanced phase of deployment, where data and alerts from separate systems, 
e.g., data loss prevention (DLP), SIEM, identity and access management 
(IAM), or endpoint protection platform (EPP), are enriched with contextual 
information, combined and correlated using canned analytics. This gives an 
enterprise a more intelligent and holistic view of the security events in its 
organization.
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 ◾ Combine data and correlated activities using custom or ad hoc analytics.
  Enterprises use big data analytics solutions or services to integrate internal and 

external data, structured as well as unstructured, and apply their own customized 
or ad hoc analytics against these big data sets to find security or fraud events.

 ◾ External cyber threat and fraud intelligence.
  Security analytics solutions apply big data analytics to external data on 

threats and bad actors, and, in some cases, combine external data with other 
relevant data sources, like supply chains, vendor ranking, and social media. 
Most vendors of these solutions also create and support communities of 
interest where threat intelligence and analytics are shared across customers. 
Vendors in this category actively find malicious activities and threats from 
the Internet, turn this information into actionable data such as IP addresses 
of known bad servers or malware signatures, and share with their customers.

1.3.2  Big Data Security Analytics Architecture

In general, a big data security analytics platform should have five core components 
as shown in Figure 1.2.

 ◾ A basic data storage platform to support long-term log data retention and 
batch processing jobs. There are a few offerings in the market that skip this 
layer and use a single NoSQL database to support all the data retention, 
investigation access, and analytics. However, considering all the available 
open-source applications in the Hadoop ecosystem, a Hadoop-based plat-
form still gives a more economical, reliable, and flexible data solution for 
larger data sets.

 ◾ A data access layer with fast query response performance to support inves-
tigation queries and drill-downs. Because the data access inside Hadoop 
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Figure 1.2 Big data security analytics architecture.
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is batch-based, this layer is necessary to support analysts’ investiga-
tions. This layer can be either a stand-alone massive parallel database 
(MPD) such as Vertica [13] and GreenPlum [14], and/or a NoSQL database 
like Solr [15], Cassandra [16], and Elasticsearch [17], and/or some integrated 
offerings such as Impala [18] and Spark [19] directly from popular Hadoop 
distributions.

 ◾ A data consumption layer to receive data from various data sources, either 
from the log sources directly, or through log concentrators such as syslog-ng, 
flow collectors, and SIEM tools.

 ◾ An integration layer that is composed of a collection of APIs to integrate with 
other security operational tools such as SIEM, eGRC, and ticketing systems. 
At the same time, a good API layer not only supports integration with other 
solutions, but also provides flexibility and cleaner design to internal analyti-
cal modules. As we expect that the amount of requirements and complexity 
of analytics will have tremendous growth in the next few years, API-based 
analytics-as-a-service architecture is highly recommended.

 ◾ In addition to the above four parts, an optional data presentation layer to 
allow users to consume the analytical results more efficiently and effectively. 
This usually means one or more visualization platforms to visualize both the 
high dimensional data and the relation graphs.

 ◾ Security analytics services and applications can be built on top of the integra-
tion layer and/or the data presentation layer, depending on if visualization is 
necessary to the user applications.

1.3.3  Use Cases

A use case is a set of solutions to solve a specific business challenge. It is important 
to understand that the challenge/requirement comes first, and then we engineer 
the solutions. When talking about cyber security analytics use cases, a common 
mistake is to start with the available data and think about what can be done with 
the data. Instead, an organization should start with the problems (threats) before 
looking up data, and then design a solution with the available data.

In the following we describe three use cases for big data security solutions: data 
retention/access, context enrichment, and anomaly detection. The first two cases 
are more straightforward and relatively easy to implement and measure. Hence, 
we are going to spend more time discussing the anomaly detection use case. But it 
should be noted that, in practice, the first two may probably generate better return 
on investments (ROI) for most organizations.

1.3.3.1  Data Retention/Access

By nature, the number 1 requirement a big data solution fulfills is data availability. 
The Hadoop-based architecture enables the storage of a large volume of data with 
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high availability, and makes them relatively easy to access (compared to the tapes). 
Mapping into security operations, a basic requirement is that analysts need to access 
the security data and information for their daily operations. This includes provid-
ing managed access to raw logs and extracted metadata, advanced data filtering and 
query access, and visualization interfaces.

In practice, there are many factors to consider in requirements. Keep in mind 
that the Hadoop system does not provide the best query-response time. There are 
many other database systems that can be leveraged to provide faster query perfor-
mance and serve as a data cache for analysts. However, there is additional cost, 
scalability concerns, and sometimes accuracy trade-offs to be considered with those 
systems.

The best way to approach this design problem is to start with the bare minimum 
requirements on data accesses and retention:

 ◾ What is the minimum retention period for various types of data?
 ◾ What is the minimum requirement on the query performance?
 ◾ How complex will the queries be?

From there, we will ask further questions such as: What’s the preferred reten-
tion period for various data in the fast access platform? Is learning a new query 
language an option or are we stuck with SQL? After we identified the requirements, 
we can then survey the technology market to find the technology solution that can 
support those requirements, and design the proper architecture for the initiative.

1.3.3.2  Context Enrichment

Because the big data platform possesses so many different kinds of data from a 
vast number of sources, it is of great value to use heterogeneous data to enrich each 
other to provide additional contexts. The goal of such enrichments is to preload 
the security relevant data automatically so that analysts do not need to check those 
enriching data sources manually. Below are some examples of such enrichments:

 1. Enriching IP-based data (e.g., firewall logs and net flows) with workstation 
host names from DHCP logs.

 2. Enriching host-based data with user identities from IAM logs (e.g., Active 
Directory).

 3. Enriching account-based data with human resource contexts (e.g., job roles, 
team members, supervisors).

 4. Enriching proxy logs with the metadata of emails containing the links accessed.
 5. Enriching internal network flow data with processes/services information 

from endpoint data.
 6. Enriching internal findings with external threat intelligence (e.g., virustotal).
 7. Enriching alert findings with historical similar alerts and their depositions.
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Practitioners should note that the key performance constraint of data enrich-
ment solutions is the underlying data parsing and linking jobs. Because this type 
of solution involves close interactions with human analysts, it is ideal to have a low 
latency here.

1.3.3.3  Anomaly Detection

Anomaly detection is a technology to detect malicious behaviors by comparing the 
current activities with learned “normal” profiles of the activities and entities, which 
can be user accounts, hosts, networks, or applications. As an intrusion detection 
technology, anomaly detection has been proposed and studied for over two decades, 
but it is still notorious for its low accuracy. Specifically, although it is capable of 
detecting some novel attack behaviors, it tends to give excessive amounts of false 
positives, which renders the technology impractical. However, now enterprises are 
revisiting the idea of implementing anomaly detection technologies as part of their 
security monitoring measures for two reasons:

 ◾ The threat of advanced persistent attacks (APT) has become significant to 
many organizations. Traditional signature-based monitoring is not effective 
against such attacks.

 ◾ The advance in big data technology enables organizations to profile entity 
behaviors over large volumes of data, long periods of time, and with high 
dimensions in modeling behaviors. This can greatly improve the accuracy of 
anomaly detection.

There are many possibilities when it comes to anomaly detection use cases. 
Based on the origin and target of the threats, anomaly detection use cases can be 
roughly grouped into the following categories:

 1. External access anomalies, e.g., browsing activity monitoring.
 2. Remote access anomalies, e.g., VPN access monitoring.
 3. Lateral movement anomalies, e.g., internal resource access monitoring.
 4. Endpoint anomalies, e.g., data at rest monitoring.
 5. External-facing (web) service anomalies, e.g., early warning of Denial of 

Service (DoS) attacks.
 6. Data movement anomalies, e.g., internal sensitive data tracking and data 

exfiltration.

An actual use case may be a combination of the aforementioned cases. For 
example, a model built to monitor the beaconing behaviors with user’s web brows-
ing activities may be combined with endpoint anomalies together to form a mal-
ware monitoring use case. An internal lateral movement model may be combined 
with a data exfiltration model to establish a data loss prevention monitoring case.



16 ◾ Big Data Analytics in Cybersecurity

To establish those cases, data scientists need to first work with business 
owners to identify the control gaps where analytics needs to fill in, then work 
with engineers to identify the available data to build the models. When consid-
ering available data sets, one should always keep in mind that there are some 
great resources publicly available on the Internet, like geo-IP data that can 
be used to track remote access’ source locations, whois info [20] and various 
threat intelligence data that can be cross-referenced to evaluate a remote site’s 
credibility.

Here we briefly discuss two examples to showcase the key components of build-
ing an anomaly detection use case.

1.3.3.3.1  Example 1: Remote VPN Access Monitoring

 1. Threat Scenario
 a. An unauthorized party stole (or is given) a user’s credential to log onto 

company VPN remotely to get into company’s internal network.
 b. Two users sharing the same VPN credential, which violates company’s 

remote access policy.
 2. Control Gaps: Currently, the only control over VPN is users’ credentials. 

Once a user passes the authentication, there is no additional control.
 3. Data Sources: VPN logs, user’s office badging data, and Geo-IP data.
 4. Data Exploration
 a. VPN logs contain timestamps, user ID, external source IP address, and 

the DHCP address assigned to the VPN connection.
 b. Badging data contains timestamps, employee ID, and the action (badging 

in and out).
 c. Geo-IP data here is a free MaxMind dataset—for more accuracy, a com-

mercial dataset can also be used here. Further investigation shows that 
such dataset is reported to have an approximately 5% chance of being 
more than 1000 miles off from the actual location.

 5. Features: External IP addresses are converted into geo-locations with the geo-
IP data; VPN user IDs are mapped into the actual employee IDs.

 6. Detection Model
 a. Measure the distance between user’s last two accesses (e.g., badge-off 

office location and VPN logon, or between two VPN logons).
 b. Measure the elapsed time between those events.
 c. Derive the minimum travel speed of the user between the two accesses.
 d. Compare that to a pre-established max travel speed threshold (e.g., 

400 miles/hour), and see if it exceeds that threshold.



The Power of Big Data in Cybersecurity ◾ 17

 7. Additional Improvements to the Model
 a. Inherent errors with geo-IP data: Such errors usually happen with large 

nationwide ISPs, especially with mobile connections. A whois check and 
whitelist from a training session usually minimizes such errors.

 b. For corporations with travel portals, which provides users’ business travel 
agendas, such data can provide additional detection opportunities/
accuracies.

1.3.3.3.2  Example 2: Abnormal Sensitive Data Gathering

 1. Threat Scenario: A malicious insider or compromised account gathers sensi-
tive data in preparation for exfiltration.

 2. Control Gaps
  Although the enterprise does have a DLP solution deployed on endpoints 

and in the network, the coverage of the DLP is not complete. The most sig-
nificant gaps are that the host DLP does not track the system level dependen-
cies and hence has no control over transformed (compressed, encrypted) files. 
The network DLP is only deployed over email, http, and ftp channels. The 
inspection is not adequate for other protocols such as SSL or sftp. Hence, 
a behavior-based analytical model would be a great mitigation control here.

 3. Data Sources: SQL audit log for customer info DB, internal netflows, inven-
tory of file shares containing sensitive data.

 4. Data Exploration
 a. SQL audit log contains a lot of noise yet provides great details on the 

queries and number of records returned.
 b. Internal NetfLow shows source/destination IP addresses, ports, and upload/

download volumes.
 c. File share inventory is updated on a daily basis by a custom-built data 

scanner. It identifies the host name, IP address, share name of the file 
shares, the sensitivity of the data content, and the level of security con-
trols over the share (publicly accessible or shared to specific users/groups).

 5. Features
 a. Daily (potentially) sensitive data download volume—by accumulating 

the download volume through port 445 (windows fileshare) and 1433 
(SQL) from fileshares/DBs hosting sensitive data.

 b. Number of sensitive data records downloaded—identified directly from 
SQL audit log.

 6. Model: Profile users’ daily sensitive data download volume and detect signifi-
cant spikes with time series model.
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 7. Additional Improvements to the Model
 a. Identifying each user’s peers based on their team/group/supervisor data 

can help identify the context of sensitive data usage of the peer group, 
which can be used to improve detection accuracy. That is, if a user’s peer 
group is seen to download a lot of sensitive data on a regular basis, a spike 
on one user who happens to not use the data much is not as concerning 
as for a member whose group does not use sensitive data at all.

 b. Can be correlated with data exfiltration anomalies such as suspicious 
uploads to file sharing sites/uncategorized sites.

 c. Can be correlated with malware anomalies such as C2 beaconing 
behavior.

 d. Can be correlated with remote access anomalies as well.

1.4  Challenges to Big Data Analytics for Cybersecurity
Big data analytics, as a key enabling technology, brings its power into the cyberse-
curity domain. The best practices in industry and government have demonstrated, 
when used in a proper way, big data analytics will greatly enhance an organization’s 
cybersecurity capability that is not feasible with traditional security mechanisms. 
While it is worth noting that applying big data analytics in the cybersecurity domain 
is still in its infancy stage, and facing some unique challenges that many data scien-
tists from more “traditional” cybersecurity fields or other big data domains may not 
be aware of. In the following, we list these challenges and discuss how they affect the 
design and implementation of cybersecurity solutions using big data. They can also 
be considered as potential future directions of big data analytics for cybersecurity.

 1. Lack of labeled data
  The way big data works is to learn from data and tell stories with data. 

However, the quantity of labeled data and quality of normal data can both 
pose big challenges to security analytics. The goal of doing cybersecurity ana-
lytics is to detect attacks, breaches, and compromises. However, such inci-
dents are usually scarce for individual organizations. Even though there are 
a few government and commercial platforms for organizations to share intel-
ligence about attacks and breaches, there is usually not enough details in the 
shared data. Except for a few very special problems (e.g., malware analysis), 
there is very limited labeled data for cybersecurity. In such a situation, tra-
ditional supervised learning techniques are not applicable. The learning will 
rely heavily on unsupervised learning and heuristics.

 2. Data quality
  Among all the data available for cybersecurity analytics, an important 

type of data source is the alerts from various security tools such as IDS/
IPS, firewalls, and proxies. Unfortunately, such security alert data is usually 
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saturated with false alerts and missing detections on real attacks. New sig-
natures and rules can also add significant hiccups to the alert streams. Such 
situations, together with false positives and negatives, should all be taken into 
consideration of analytics programs.

 3. High complexity
  The complexity of large enterprise IT environments is usually extremely 

high. A typical such environment can involve hundreds of logical/physical 
zones, thousands of applications, tens of thousands of users, and hun-
dreds of thousands of servers and workstations. The various activities, 
accesses, and connections happening among such a large collection of 
entities can be extremely complex. Because security threats take place all 
over, properly modeling and reducing such a high-dimensional problem 
is very difficult.

 4. Dynamic environment
  The modern IT environments are highly dynamic and constantly chang-

ing. Models that work for one organization may not apply to another organi-
zation, or the same organization six months later. It is important to recognize 
this dynamic nature of IT environments in the analytics projects, and plan 
plenty of flexibility in analytics solutions in advance.

 5. Keeping up with the evolving technologies
  Big data is a fast evolving technology field. New improvements or ground-

breaking technologies are being developed every week. How to keep up with 
this technology revolution and make correct decisions on technology adop-
tions can be a million dollar question. This requires deep understanding of  
both data technologies and business requirements.

 6. Operation
  Analytics is only one of the functions of big data cybersecurity programs. 

Usually, the program also needs to provide data retention and data accesses 
for security analysts and investigators. Hence, there will be a lot of opera-
tional requirements in data availability, promptness, accuracy, query perfor-
mance, workflow integration, access control, and even disaster recovery for 
the data platform, data management, and the analytics models.

 7. Privacy
  The era of big data raises the concern on privacy to a new level. By combin-

ing a vast number of data sources, analysts can gain unprecedented insight 
on user or customer behaviors. How to protect and control the exposure of 
user privacy while providing necessary information for cybersecurity opera-
tions is not a trivial problem. Data encryption, data masking, and access 
control technologies need to be carefully designed and integrated to achieve 
the proper protection according to an organization’s requirements.

 8. Regulation and compliance
  Big data also poses new challenges for organizations to meet regulation 

and compliance requirements. The challenges are mostly on the classification 



20 ◾ Big Data Analytics in Cybersecurity

and protection of the data because combining multiple data sources could 
reveal additional hidden information that may be subject to higher classifica-
tion. Due to this reason, in some highly regulated situations, it is difficult to 
apply big data analytics.

 9. Data encryption
  We enjoy the benefit of having a lot of data and extracting useful informa-

tion from it. But benefits come with responsibilities. Gathering and retaining 
data will impose the responsibility of protecting the data. In many situations, 
data needs to be encrypted during transfer and storage. However, when mul-
tiplied by the large volume of big data, this can mean significant performance 
and management overhead.

 10. Disproportionate cost of false negative
  In traditional big data fields such as web advertising, the cost of false nega-

tives is usually at an acceptable level and comparable to the cost of false posi-
tives. For example, losing a potential buyer will not cause much impact to a 
company’s profit. However, in cybersecurity, the cost of a false negative is dis-
proportionately high. Missing one attack will potentially lead to catastrophic 
loss and damage.

 11. Intelligent adversaries
  Another unique challenge of cybersecurity analytics is that the subjects of 

investigation are usually not static “things.” Big data cybersecurity deals with 
highly intelligent human opponents who will deliberately avoid detection 
and change strategies if they are aware of detection. It requires cybersecurity 
analytics to quickly adapt to new security threats and context, and adequately 
adjust its goals and procedures as needed.
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Network forensics plays a key role in network management and cyber security 
analysis. Recently, it is facing the new challenge of big data. Big data analytics has 
shown its promise of unearthing important insights from large amounts of data 
that were previously impossible to find, which attracts the attention of researchers 
in network forensics, and a number of efforts have been initiated. This chapter 
provides an overview on how to apply big data technologies into network foren-
sics. It first describes the terms and process of network forensics, presents current 
practice and their limitations, and then discusses design considerations and some 
experiences of applying big data analysis for network forensics.

2.1  Introduction to Network Forensics
Digital forensics [1–4] commonly refers to the investigation of situations where 
there is  computer-based (digital) or electronic evidence of a crime or suspicious 
behavior, but the crime or behavior may be of any type, quite possibly not otherwise 
involving computers. Network forensics [3,5–10], as one of its sub-branches, fol-
lows the same principles, but deals with network-based digital evidence. Network 
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forensics is also closely associated with computer forensics (also known as cyber 
forensics). Traditionally, computer forensics has been associated with data on a com-
puter’s storage media, while network forensics has been associated with data passing 
through a network. With the rapid growth of the Internet, the scope of the two 
disciplines has expanded and has become more intertwined. Network forensics is 
leading to investigations of various data from both computer systems and networks 
in order to get a more accurate estimate of problems and make more informative 
decisions, and cyber forensics also goes beyond traditional computer systems and 
covers new emerging networking and computing paradigms, like mobile comput-
ing, Internet of Things (IoTs), social technical networks.

Generally speaking, network forensics is defined as the capture, recording, and 
analysis of network data in order to discover the source of security attacks or other 
problem incidents [8]. The essential part of network forensics is data from the net-
works and computers, and the objective is to discover useful information from data 
using analytic techniques and processes. Accordingly, network forensics sometimes 
simply refers to network data analysis, by emphasizing the data science aspect and 
weakening the necessary actions for preserving the integrity of data and evidences 
[3,8,9]. This chapter also follows the same principle, and uses network forensics and 
network analysis interchangeably.

Network forensics is critical to support security analysis as well as network man-
agement. For security analysis, it provides network- and system-level cyber data track-
ing, collection, processing, and analysis to support a set of security analysis needs, 
such as vulnerability assessment, intrusion/anomaly detection, risk analysis, informa-
tion leakage, data theft, damage assessment, impact mitigation, and cyber situational 
awareness. For network management, it provides analytical information needed to 
help network operators or administrators better understand the status of an intended 
network, and quickly identify potential issues (e.g., faults, attacks, etc.) related to 
network/devices/services. By supporting configuration management, performance 
management, fault management, and security management, it ensures that the net-
work itself does not become a bottleneck for network services and user applications.

Network forensics has been extensively studied over the last decade, and a sig-
nificant number of techniques and tools have been developed. Recently, network 
forensics is facing the new challenge of big data. A typical enterprise network can 
generate terabytes of relevant data each day, including traffic packets, system logs 
and events, as well as other related data such as security alerts or reports that are 
generated by third-party network monitors or management tools. Network foren-
sics is moving forward and updating the tools and techniques by taking advantage 
of vast amounts of data. Big data analytics has shown its promise of unearthing 
important insights from the sheer amount of data that were previously impossible to 
find; hence, it attracts the attention of researchers in network forensics and initiates 
a number of research and development efforts. However, for the moment, big data 
tools are immature and big data based network forensics is still in its early stage.
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2.2  Network Forensics: Terms and Process
2.2.1  Terms

There are a couple of different but closely related terms. Sometimes these terms are 
used interchangeably in literature and also cause confusion.

 ◾ Network Security versus Network Forensics
  Network security is to secure down systems. It is most often concerned 

with monitoring, protecting, and defending networks from threats, such as 
illegal access, misuse, attackers, data theft, and malware outbreaks. Network 
forensics is to figure out exactly what happened when the network security 
failed. It is the process of investigating all possible evidence after an attack or 
crime has taken place [1]. While this means the two focus on different stages 
of network breaches (“before” and “after”) with overlapping tasks (e.g., net-
work monitoring) using its own methodology, both frequently operate from 
a shared knowledge and experience base. It is also worth noting that network 
security is commonly used as a much broader term, referring to almost any 
issues related to the network in public writing. In that sense, network foren-
sics belongs to a part of network security.

 ◾ Network Forensics versus Anomaly Detection
  Network forensics uses a variety of analytic methods to understand and 

discover what happened in the network, what and who is the cause of net-
work events, and potential suggestions to fix the issue. Anomaly detection 
refers to the process of pinpointing the anomalies in the network, so an ana-
lyst or network administrator can link these anomalies (also known as alerts) 
with other evidence for further analysis. It can be easily seen that anomaly 
detection is a part of network forensics, and its output alerts are commonly 
used as important inputs for network forensics.

2.2.2  Network Forensics Process

Network forensics is usually performed in the following four phases: data collec-
tion, data examination, data analysis, and visualization and reporting, as shown in 
Figure 2.1.

Data collection Data
examination Data analysis Visualization

and reporting

Figure 2.1 Cyber forensic process.
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2.2.2.1  Phase 1: Data Collection

The first step in the forensic process is to identify potential sources of data and 
acquire data from them. During collection, data related to a specific network event 
is identified, captured, time stamped, labeled, and recorded.

2.2.2.2  Phase 2: Data Examination

After data has been collected, data examination examines the data, which includes 
assessing, identifying, extracting the relevant pieces of information from the col-
lected data, and then performing a series of preprocessing (e.g., data enrichment, 
metadata generation, aggregation, etc.) to prepare data for analysis.

2.2.2.3  Phase 3: Data Analysis

Once the relevant information has been extracted, data analysis applies a selected 
set of methodical approaches to study the data. This step usually involves correlat-
ing data among multiple sources. For instance, the output of a network intrusion 
detection system (IDS) (e.g., Snort) may link a detected event to a specific host with 
an IP address. The system logs of the particular host may further link the event to 
a specific user account or a specific application. By correlating the data collected 
from IDS and system logs, data analysis may provide more useful information to 
understand the event better.

2.2.2.4  Phase 4: Visualization and Reporting

The final phase involves presenting and reporting the data, extracted information, 
and analysis results to end users (e.g., network operators, analysts, and/or admin-
istrators) using visual display and documents (e.g., email alerts, messages, reports, 
etc.). The results of the analysis may also include the actions performed, what other 
actions need to be performed, and improvement recommendations to policies, 
guidelines, procedures, tools, and other aspects of the forensic process.

Along with these steps, the cyber forensic process transforms raw data into evi-
dence and presents it to network operators, analysts, and/or administrators to help 
them better understand the network and quickly identify and respond to various 
network issues.

2.3  Network Forensics: Current Practice
2.3.1  Data Sources for Network Forensics

Network forensics usually looks at a variety of data sources from different network 
layers in order to discover the source of security attacks or other problem incidents. 
Typical data types used in network forensics are listed as follows:
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 ◾ Full Packet Capture (PCAP): Capture and record all network packets in full, 
including both header and payload. It usually takes up a lot of space. For exam-
ple, a full packet capture of a saturated 1 Gbps link will yield 6TB for one day.

 ◾ Flow data: Records of conversations on the network. It only stores the packet 
header information such as time, duration, number of packets, total bytes, 
source IP, destination IP, and so on, but no payload. It usually saves a lot of 
space, compared with full packet capture; it is good for understanding how 
data flows in the network quickly, but also loses the packet details. NetFlow 
was developed by Cisco and is widely used for flow data collection and analy-
sis. Information collected by NetFlow includes source and destination device 
and port, timestamps, number of bytes in the traffic flow, type of service 
data, and routing information. Other flow data are also available for network 
monitoring and forensics, such as sFlow [11], SNMP [12], and local traffic 
flow information collected by packet sniffers (e.g., snoop [13], tcpdump [14], 
and Wireshark [15]).

 ◾ Logs: A log file is a text file that contains a record of all actions, such as user 
access or data manipulation, that have been done on a computer, a website, 
or a program during a period of time, to serve as an audit trail or security 
measure [16]. Log files often contain messages about the system, including 
the kernel, services, and applications running on it. There are different log 
files for different information. For example, web servers maintain log files for 
every request made to the server. With the help of log file analysis tools, one 
can get a good idea of where visitors are coming from, how often they return, 
and how they navigate through a site. Through log files, system administra-
tors can easily determine the websites that users accessed, know details about 
sending and receiving e-mails, downloading history, and so on.

 ◾ Alerts: An intrusion detection system (IDS) is designed to monitor all 
inbound and outbound network traffic or activity to identify suspicious pat-
terns that may indicate a network attack, e.g., attempting to break into or 
compromise a system [17]. When an IDS identifies suspicious activities, alerts 
will be generated to provide timely information about the identified security 
issues, vulnerabilities, or exploits. An IDS specifically looks for suspicious 
activity and events that might be the result of a virus, worm, or hacker. This 
is done by looking for known intrusion signatures or attack signatures that 
characterize different worms or viruses and by tracking general variances 
which differ from regular system activity. The IDS is able to provide notifica-
tion of only known attacks.

2.3.2  Most Popular Network Forensic Tools

There are many tools that can support network forensic analysis, from commercial 
or open-source communities. Some of the common network forensic analysis tools 
are listed as follows.
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2.3.2.1  Packet Capture Tools

 ◾ Tcpdump [14]: A common packet analyzer that uses the libpcap library for 
low-level network sniffers. Tcpdump captures the TCP/IP and other pack-
ets being transmitted or received over a network. It works on Unix-like and 
other operating systems (OSs), such as Solaris, BSD, Mac OS X, HP-UX, and 
AIX. The port of tcpdump for Windows is WinDump, which uses the port 
of libcap (called WinPcap). Tcpdump runs on a standard command line and 
outputs to a common text file for further analysis. It uses a standard libpcap 
library as an application programming interface to capture the packets in 
the user level. Although all packet sniffers can examine the traffic in real-
time, the processing overhead is also higher, so it might cause the packet 
to drop. As a result, it is recommended to output raw packets and do some 
analysis later. Due to the performance concern, tcpdump functions only as a 
traffic-capturing tool. It just captures the packets and saves them in a raw file. 
However, due to the peculiarity of tcpdump, there are many analysis tools 
built for it. For example, tcpdump2ascii [18] is a Perl script used to convert 
the output from tcpdump raw file to ASCII format. tcpshow [19] is a utility 
to print raw tcpdump output file in human readable form. tcptrace [20] is a 
free powerful analysis tool for tcpdump, which can produce different types of 
output, such as elapsed time, bytes/segments sent/received, round trip times, 
window advertisements, and throughput.

 ◾ Wireshark [15]: As a free packet sniffer, Wireshark provides a user-friendly 
interface with sorting and filtering features. Wireshark supports capturing 
packets from a live network and a saved capture file. The capture file format is 
libpcap format, just like that in tcpdump. Wireshark supports various kinds 
of operating systems, such as Linux, Solaris, FreeBSD, NetBSD, OpenBSD, 
Mac OS X, other Unix-like systems, and Windows. It can also assemble all 
the packets in a TCP conversation and show the ASCII (or EBCDIC, or 
hex) data in that conversation. Packet capturing is performed with the pcap 
library. Wireshark is a popular interactive network packet capture and pro-
tocol analysis tool, and can be used for network troubleshooting, analysis, 
and protocol development. It can provide in-depth inspection of hundreds of 
protocols and run on most existing platforms.

 ◾ TShark [21]: A network protocol analyzer that can capture packet data from a 
live network, or read packets from a previously saved capture file, either print-
ing a decoded form of those packets to the standard output or writing the 
packets to a file. Similarly as tcpdump, TShark’s native capture file format is 
the pcap format. Without any options set, TShark works much like tcpdump. 
It uses the pcap library to capture traffic from the first available network 
interface and displays a summary line on stdout for each received packet. 
TShark can detect, read, and write the same capture files that are supported 
by Wireshark. The input file doesn’t need a specific filename extension; the 
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file format and an optional gzip compression will be automatically detected. 
Compressed file support uses (and therefore requires) the zlib library. If the 
zlib library is not present, TShark will compile, but will be unable to read 
compressed files.

 ◾ RSA Netwitness [22]: A network monitoring system that uses log data to 
detect and prevent cyber threats. RSA Netwitness comes in three parts: 
a Concentrator (a Linux-based network appliance), Decoder (a configurable 
network-recording appliance), and Investigator (an interactive threat analysis 
application). It can capture the packets traveling through the network over 
wired and wireless interfaces, generate an organized report for the users, and 
allow the user to implement the packets for risk assessment.

2.3.2.2  Flow Capture and Analysis Tools

 ◾ NetFlow [23]: An industry standard for traffic monitoring, supported by 
Cisco IOS, NXOS, Juniper routers, Enterasys Switches, and many others. 
NetFlow data can help analysts to understand who, what, when, where, 
and how the network traffic is flowing. NetFlow-based analyzers include 
Cisco IOS NetFlow [24], Ntop or ntopng [25], SolarWinds NetFlow Traffic 
Analyzer [26], and so on.

 ◾ Cisco IOS NetFlow-based analyzer [24]: A web-based bandwidth moni-
toring tool that uses Cisco NetFlow technology. It offers extensive support 
for monitoring Cisco-based environments such as routers, switches, WLCs, 
and Firewall in performing network traffic monitoring and security analyt-
ics. Specifically, it can provide traffic monitoring, network bandwidth moni-
toring, network troubleshooting, capacity planning, IP SLA monitoring, 
threshold-based alerting, application performance optimization, application 
performance optimization, and so on.

 ◾ SolarWinds NetFlow Traffic Analyzer [26]: An open source NetFlow 
analyzer that can monitor the network traffic by capturing flow data 
including NetFlow, J-Flow, IPFIX, and sFlow. It can identify the users, 
applications, or protocols that consume the most network bandwidth, map 
the traffic arriving/ originated from designated ports, IPs, and protocols, 
perform class-based quality of service (CBQoS) monitoring, enable users 
to quickly drill-down into traffic on specific network elements, generate 
network traffic reports, and facilitate investigation of fault, performance, 
and configuration issues.

 ◾ Ntop or ntopng [25]: One of the most popular open source traffic analyz-
ers, it is a web-based tool that can provide packet capture, traffic record-
ing, network probe, and traffic analysis. Ntopng supports sFlow and 
IPFIX for flow-based analysis. It streams the flow data, provides high-
speed web-based traffic analysis, and stores persistent traffic statistics in 
RRD format.
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2.3.2.3  Intrusion Detection System

 ◾ Snort [27]: A free and open source network intrusion detection system (IDS), 
which has the ability to perform real-time traffic analysis and packet logging 
on Internet Protocol (IP) networks. Snort can perform protocol analysis, con-
tent searching, and matching. It can also be used to detect probes or attacks, 
such as OS fingerprinting attempts, common gateway interface, buffer over-
flows, server message block probes, and stealth port scans. Essentially, Snort 
can be configured in three main modes: sniffer, packet logger, and network 
intrusion detection. In sniffer mode, it can read network packets and display 
them on the console. In packet logger mode, it can log packets to the disk. 
In intrusion detection mode, it can monitor network traffic and analyze it 
against a rule set defined by the user. Snort can perform a specific action 
based on what has been identified.

 ◾ Bro [28]: An open source Unix-based network monitoring framework that 
can be used to build a network level IDS. Bro can also be used for collecting 
network measurements, conducting forensic investigations, traffic baselining, 
and more. Bro has been compared to tcpdump, Snort, netflow, and Perl (or 
any other scripting language) all in one. It is released under the BSD license. 
Bro can be conceptualized in two layers: (1) Bro Event Engine, which ana-
lyzes live or recorded network traffic or trace files to generate neutral events, 
and (2) Bro Policy Scripts, which analyze events to create action policies. Bro 
Event Engine generates events when “something” happens, triggered by the 
Bro process or something taking place on the network. Events are handled 
within Bro policy scripts. Bro uses common ports and dynamic protocol 
detection (signatures and behavioral analysis) to make a best guess at inter-
preting network protocols. Bro produces NetFlow-like output and application 
event information, and can read in data from external files such as blacklists.

 ◾ OSSEC [29]: A free, open source, host-based intrusion detection system 
(HIDS) that performs log analysis, integrity checking, Windows regis-
try monitoring, rootkit detection, time-based alerting, and active response. 
OSSEC provides intrusion detection for most OSs, including Linux, 
OpenBSD, FreeBSD, OS X, Solaris, and Windows. OSSEC has a centralized, 
cross-platform architecture allowing multiple systems to be easily monitored 
and managed. OSSEC delivers alerts and logs to a centralized server where 
analysis and notification can occur even if the host system is taken offline or 
compromised. Another advantage of OSSEC’s architecture is the ability to 
centrally manage agents from a single server. The installation of OSSEC is 
extremely light. As the installer is under 1 MB and the majority of analysis 
actually occurs on the server, very little CPU is consumed by OSSEC on the 
host. OSSEC also has the ability to send OS logs to the server for analysis 
and storage, which is particularly helpful on Windows machines that have no 
native or cross-platform logging mechanisms.



32 ◾ Big Data Analytics in Cybersecurity

2.3.2.4  Network Monitoring and Management Tools

Over the last few decades, commercial tools have been developed for network traf-
fic monitoring and analysis, including, but not limited to, Orion NPM portfolio 
[30] and Netcordia NetMRI [31]. Open-source tools are also available, such as 
OpenNMS [32], GNetWatch [33], GroundWork [34], and Nagios [35].

 ◾ Orion NPM [30] continuously monitors a network through ICMP, SNMP, 
and Syslog communication data. It stores gathered information in an SQL 
database and provides a user-friendly web console to view network status.

 ◾ Netcordia NetMRI [31] automates network change and configuration 
management (NCCM) by analyzing network configuration, syslog/events 
collected through SNMP and ICMP protocols, to provide daily actionable 
issues.

 ◾ OpenNMS [32] is an open-source enterprise network management platform, 
scaling to thousands of managed nodes from a single instance, to provide 
service availability management, performance data collection, event manage-
ment and deduplication, and flexible notifications.

 ◾ GNetWatch [33] is an open source Java application that offers real-time 
graphical monitoring and analysis of network performance, using traffic 
generators and SNMP probes. It can monitor events (e.g., throughput) 
that change, for instance, every second and the user can see a dynamic 
graphical window.

 ◾ GroundWork [34] combines several open-source projects such as Nagios 
[35], Nmap, Sendpage, and MySQL, with custom dashboards in one software 
package, for monitoring Linux, Unix, and Windows platforms or devices.

 ◾ Nagios [35] is a powerful network monitoring tool that provides alerting, 
event handling, and reporting for critical systems, applications, and services. 
The Nagios Core contains the core monitoring engine and a basic web UI. 
On top of the Nagios Core, plugins are available or can be implemented 
to monitor services, applications, and performance metrics, as well as add-
ons for data visualization, graphs, load distribution, and MySQL database 
support.

Besides the above tools for general traffic monitoring and analysis, many other 
tools are also designed specifically for network security analysis, using knowledge- 
or signature-based IDSs, or behavior-based anomaly detection technologies [36]. 
The former approaches mainly use signatures of well-known exploits and intrusions 
to identify attack traffic or activities [37], while the latter approaches [38] mainly 
compare current activities with predefined models of normal behaviors, and flag 
deviants as anomalies.

For instance, Gu, Zhang, and Lee [39] introduce an efficient anomaly detec-
tion method to identify centralized botnet command and control (C&C) channels, 
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based on their spatial-temporal correlation. Binkley and Singh [40] and Goebel and 
Holz [41] combine an internet relay chat (IRC) mesh detection component with a 
TCP scan detection heuristic. Goebel and Holz [41] rely on IRC nickname match-
ing to identify anomalies. Karasaridis, Rexroad, and Hoeflin [42] detect botnet 
controllers by flow aggregation and feature analysis. Livadas et al. [43], Strayer 
et al. [44], and Porras, Saidi, and Yegneswaran [45] utilize supervised machine 
learning to classify network packets in order to identify the C&C traffic of IRC-
based botnets. Porras et al. [45] try to detect Storm bot by constructing its dialogue 
lifecycle model and identifying the traffic that matches this model. The BotMiner 
system classifies malware based on both malware activity patterns and C&C pat-
terns [46]. TAMD detects infected hosts by finding those hosts that share com-
mon and unusual network communications [47]. Bailey et al. [48] use packet-level 
inspection, depending on network-based information, for protocol- and structure-
independent botnet detection.

Machine-learning approaches are also developed for network security analysis 
[43,49]. For example, Bayesian network classifiers are used to distinguish between 
non-IRC traffic, botnet IRC traffic, and non-botnet IRC traffic [43]. Gianvecchio 
et al. [49] use an entropy classifier and a machine-learning classifier to detect chat 
bots. Statistical traffic anomaly detection techniques are also developed to identify 
botnet-like activities. For example, the exPose system uses statistical rule-mining 
techniques to extract significant communication patterns and identify temporally 
correlated flows such as worms [50]. Threshold random walk uses hypothesis test-
ing to identify port scanners and Internet worms [51].

2.3.2.5  Limitations of Traditional Technologies

Note that current performance visibility obtained from existing network mea-
surement or monitoring tools is only a fraction of what should be in today’s 
networks. While there are many network monitoring and analysis tools from 
different vendors trying to address this need, existing tools have the following 
limitations:

 ◾ Most of them provide basic network performance monitoring and simple 
analysis, such as bandwidth usage, network throughput, and traffic catego-
ries, and leave complex network issues open or untouched.

 ◾ Typically associated with one specific type of network measurement tool/
dataset. For example, SolarWinds NetFlow Traffic Analyzer takes the input 
from NetFlow and performs NetFlow-based traffic analysis. Little effort has 
been put into supporting the integration of multiple sources and types of 
measurement data for a better and higher level of data analysis.

 ◾ Although current tools and services are able to identify the existence of some 
failures and anomalies/attacks, detailed understanding and pinpointing the 
root cause of the failures/anomalies/attacks still remains an open problem.
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 ◾ A large volume of network data are generated in real time, but only a small 
fraction of collected data (about 5%) is ever examined or analyzed, due to the 
lack of automated detection and analysis tools.

These critical issues impair network operators’ ability to accurately and quickly 
gain understanding of network status and effectively maintain the network, result-
ing in increased cost and less effective network operations. In addition, for large-
scale enterprise networks, traditional security analysis mechanisms are not efficient. 
For example, they cannot effectively detect distributed attacks (e.g., distributed 
denial of services), advanced persistent threats (APTs), malwares (e.g., worms, bot-
nets), or zero-day attacks due to lack of efficient methods to process the large vol-
ume of data in a timely manner.

2.4  Applying Big Data Analysis for Network Forensics
Most traditional systems are deployed on a single server, which is not scalable. The 
main issue is that it cannot meet the extremely high demand of users in both pro-
cessing power and data storage. For example, based on a report in 2011 [52], Google 
was running approximately 900,000 servers. There is simply no single server solu-
tion that can store and analyze the network data collected from them. Even in mid-
size companies, with the decreasing cost of the computing devices, the network 
normally has several hundred nodes.

Besides scalability, there are many reasons that make big data solutions viable 
such as high availability, reliability, resistant to failure, and so on. With a single 
server solution, it essentially has a single point of failure. The service will be inter-
rupted during maintenance, failure, or updating processes. The availability and 
ability to handle large datasets can be solved by developing and deploying the 
system in an HPC (distributed) environment. However, such a solution is not 
cost-effective (due to high CAPEX) and scalable. Big data solutions are essentially 
distributed services or systems deployed in a cloud environment. Thanks to the 
virtualization and distributed technologies in the cloud, the aforementioned issues 
can be addressed. But it comes with a price, too. First, as big data based solutions 
are new to most existing users, it takes time for them to learn, adapt, and use these 
new tools. In addition, the big data is still in its early and rapid developing stages, 
and a large number of software tools are available. It becomes very challenging 
for users to identify which tools are best suited for their situations/needs. Second, 
with big data, one simply needs more resources to store and process it. The data 
cannot be accommodated by a single server as in traditional situations anymore. 
Normally, when referring to big data, it implies a distributed system that presents 
its own challenges like synchronization, fault-tolerance, naming, data locality, 
and so on.
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2.4.1  Available Big Data Software Tools

Big data analytics is important because it provides unprecedented opportunity to 
understand business, as well as to advance science/discovery and research. In our 
context (network forensics), the system can learn from or analyze the rich set of 
history data and try to prevent similar future attacks, raise reliable alerts (low false 
positives and false negatives) in (near) real-time. The large network dataset can also 
enable administrators to find/analyze the root cause of a failure. In general, there 
are many available software tools (not the network forensic analytics) to work with 
big data ranging from the programming model to resource manager to program-
ming framework and applications. Some examples of such software and categories 
are listed as follows:

2.4.1.1  Programming Model: MapReduce [53]

MapReduce is a programming model and an associated implementation for process-
ing and generating large data sets with a parallel, distributed algorithm on a cluster. A 
MapReduce program is composed of a Map and a Reduce method. The Map method 
performs filtering and sorting, and the Reduce method performs a summary opera-
tion. The MapReduce system orchestrates the processing by marshaling the distrib-
uted servers, running the various tasks in parallel, managing all communications and 
data transfers between the various parts of the system, and providing for redundancy 
and fault tolerance. MapReduce libraries have been written in many programming 
languages, with different levels of optimization. A popular open-source implementa-
tion that has support for distributed shuffles is part of Apache Hadoop.

2.4.1.2  Compute Engine: Spark [54], Hadoop [55]

Apache Spark is an open-source big data processing framework built around 
speed, ease of use, and sophisticated analytics. Compared to other big data and 
MapReduce technologies, such as Hadoop and Storm, Spark has several advan-
tages. For example, it gives a comprehensive, unified framework to manage big data 
processing requirements with a variety of data sets and data sources. Spark enables 
applications in Hadoop clusters to run up to 100 times faster in memory and 10 
times faster even when running on disk. Spark lets users quickly write applications 
in Java, Scala, or Python.

Apache Hadoop [55] is an open-source software framework used for distrib-
uted storage and processing of very large data sets. It consists of computer clusters 
built from commodity hardware. All the modules in Hadoop are designed with 
a fundamental assumption that hardware failures are a common occurrence and 
should be automatically handled by the framework. The core of Hadoop con-
sists of a storage part, known as Hadoop Distributed File System (HDFS), and a 
MapReduce processing part. Hadoop splits files into large blocks and distributes 
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them across nodes in a cluster. It then transfers packaged code into nodes to pro-
cess the data in parallel. This approach takes advantage of data locality and allows 
the dataset to be processed faster and more efficiently than conventional super-
computer architecture.

2.4.1.3  Resource Manager: Yarn [56], Mesos [57]

Apache Hadoop Yarn is a cluster management technology. Yarn is one of the 
key features in the second-generation Hadoop 2 version of the Apache Software 
Foundation’s open-source distributed processing framework. Originally described 
by Apache as a redesigned resource manager, Yarn is now characterized as a large-
scale, distributed operating system for big data applications.

Apache Mesos [57] is an open-source cluster manager that was developed to 
provide efficient resource isolation and sharing across distributed applications 
or frameworks. It enables resource sharing in a fine-grained manner, improving 
cluster utilization. Mesos has been adopted by several large software companies, 
including Twitter, Airbnb, and Apple.

2.4.1.4  Stream Processing: Storm [58], Spark 
Streaming [54], Apache Flink [59], Beam [60]

Storm is a distributed stream processing computation framework. It uses custom 
created “spouts” and “bolts” to define information sources and manipulations 
to allow batch, distributed processing of streaming data [58]. A Storm applica-
tion is designed as a “topology” in the shape of a directed acyclic graph (DAG) 
with spouts and bolts acting as the graph vertices. Edges on the graph are named 
streams and direct data from one node to another. This topology acts as a data 
transformation pipeline.

Spark Streaming [54] leverages Spark Core’s fast scheduling capability to per-
form streaming analytics. It ingests data in mini-batches and performs resilient dis-
tributed dataset (RDD) transformations on those mini-batches of data. This design 
enables the same set of application code written for batch analytics to be used in 
streaming analytics, thus facilitating easy implementation of lambda architecture.

Apache Flink [59] is a community-driven open-source framework for distrib-
uted big data analytics, like Hadoop and Spark. The core of Flink is a distributed 
streaming dataflow engine written in Java and Scala. It aims to bridge the gap 
between MapReduce-like systems and shared-nothing parallel database systems.

Apache Beam [60] is an open-source unified programming model to define 
and execute data processing pipelines, including ETL, batch and stream (continu-
ous) processing. Beam Pipelines are defined using one of the provided SDKs and 
executed in one of Beam’s supported runners (distributed processing back-ends) 
including Apache Flink, Apache Spark, and Google Cloud Dataflow.
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2.4.1.5  Real-Time In-Memory Processing: 
Apache Ignite [61], Hazelcast [62]

Apache Ignite is a high-performance, integrated and distributed in-memory plat-
form for computing and transacting on large-scale data sets in real-time, orders 
of magnitude faster than possible with traditional disk-based or flash-based tech-
nologies [61]. In addition to Spark and Hadoop, Ignite integrates with a variety 
of other technologies and products. It is intended to simplify coupling of Apache 
Ignite and other technologies, used in your applications or services, in order to 
either perform a transition to Apache Ignite smoothly or to boost an existing 
solution by plugging Ignite into it.

Hazelcast [62] is an open-source in-memory data grid based on Java. In a 
Hazelcast grid, data is evenly distributed among the nodes of a computer cluster, 
allowing for horizontal scaling of processing and available storage. Backups are also 
distributed among nodes to protect against failure of any single node. Hazelcast 
provides central, predictable scaling of applications through in-memory access to 
the frequently used data and across an elastically scalable data grid. These tech-
niques reduce the query load on databases and improve speed.

2.4.1.6  Fast SQL Analytics (OLAP): Apache Drill [63], Kylin [64]

Apache Drill is an open-source software framework that supports data-intensive 
distributed applications for interactive analysis of large-scale datasets [63]. Drill 
is able to scale to 10,000 servers or more and is able to process petabytes of data 
and trillions of records in seconds. Drill supports a variety of NoSQL databases 
and file systems, such as HBase, MongoDB, HDFS, MapR-FS, and local files. A 
single query can join data from multiple datastores. Drill’s datastore-aware opti-
mizer automatically restructures a query plan to leverage the datastore’s internal 
processing capabilities. In addition, Drill supports data locality, so it is a good idea 
to colocate Drill and the datastore on the same nodes.

Apache Kylin [64] is an open-source distributed analytics engine designed to 
provide an SQL interface and multidimensional analysis (OLAP) on Hadoop sup-
porting extremely large datasets. Originally developed by eBay, Apache Kylin is 
now a project of the Apache Software Foundation.

2.4.1.7  NOSQL (Non-Relational) Databases: 
HBase [65], Accumulo [66], MongoDB [67], 
Cassandra [68], Voldmort [69]

HBase is an open-source, non-relational, distributed database modeled after 
Google’s BigTable [65]. It provides a fault-tolerant way of storing large quantities of 
sparse data. HBase features compression, in-memory operation, and Bloom filters 
on a per-column basis. HBase is a column-oriented key-value data store and has 
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been idolized widely because of its lineage with Hadoop and HDFS. HBase runs 
on top of HDFS and is well-suited for faster read and write operations on large 
datasets with high throughput and low input/output latency.

Apache Accumulo [66] is a computer software project that developed a sorted, 
distributed key/value store based on the BigTable technology. It is a system built on 
top of Apache Hadoop, Apache ZooKeeper, and Apache Thrift. Written in Java, 
Accumulo has cell-level access labels and server-side programming mechanisms. 
Accumulo is one of the most popular NoSQL wide column stores according to the 
DB-Engines ranking, like Apache Cassandra and Hbase.

MongoDB [67] is a free and open-source cross-platform document-oriented 
database program. Classified as a NoSQL database program, MongoDB uses 
JSON-like documents with schemas. MongoDB is developed by MongoDB, Inc. 
and is free and open-source, published under a combination of the GNU Affero 
General Public License and the Apache License. Apache Cassandra [68] is a free 
and open-source distributed database management system designed to handle large 
amounts of data across many commodity servers, providing high availability with 
no single point of failure.

Cassandra offers robust support for clusters spanning multiple datacenters, 
with asynchronous masterless replication allowing low latency operations for all 
clients. Cassandra places a high value on performance and can achieve the highest 
throughput for the maximum number of nodes with the price of high write and 
read latencies.

Voldemort [69] is a distributed data store that is designed as a key-value store 
used by LinkedIn for high-scalability storage. It is neither an object database, nor 
a relational database. It does not try to satisfy arbitrary relations and the atomicity, 
consistency, isolation, and durability (ACID) properties, but rather is a big, distrib-
uted, fault-tolerant, persistent hash table. Compared with Voldemort, Cassandra, 
and Hbase, Voldemort has the lowest latency.

2.4.1.8  NOSQL Query Engine: Pheonix [70], Pig [71]

Apache Phoenix is an open-source, massively parallel, relational database engine 
supporting OLTP for Hadoop using Apache HBase as its backing store [70]. It 
provides a JDBC driver that hides the intricacies of the NoSQL store enabling 
users to create, delete, and alter SQL tables, views, indexes, and sequences; insert 
and delete rows singly and in bulk; and query data through SQL. Phoenix com-
piles queries and other statements into native NoSQL store APIs rather than 
using MapReduce enabling the building of low latency applications on top of 
NoSQL stores.

Apache Pig [71] is a high-level platform for creating programs that run on 
Apache Hadoop. The language for this platform is called Pig Latin. Pig can execute 
its Hadoop jobs in MapReduce, Apache Tez, or Apache Spark. Pig Latin abstracts 
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the programming from the Java MapReduce idiom into a notation that makes 
MapReduce programming high level, similar to that of SQL for RDBMSs. Pig 
Latin can be extended using user defined functions (UDFs), which the user can 
write in Java, Python, JavaScript, Ruby, or Groovy, and then call directly from the 
language.

2.4.2  Design Considerations

In this section we provide ideas on how to select big data software tools suitable 
for a particular user’s needs, or what should be considered when users want to 
design a new system. There are many decisions and selections that a big data 
adopter has to make before developing a beneficial application. Choosing open-
source or proprietary solutions is such a popular example decision. In the open-
source case, the pros are that it is free and can be adapted easily to user-specific 
cases by modifying the source-code directly. The cons are that open-source 
software often lacks support and is not well-documented. In the proprietary 
case, although the software is well supported, the user may have concerns about 
the cost and vendor lock-in.

Another important consideration is the high barrier to adopt new related 
technologies. For example, the system architect has to know many available 
technologies, the key differences among them (which tools are designed or used 
for which case), and keep updating it to make the right decision for designing 
the architecture for their software. In addition, many tools use not very popular 
languages such as Scala (Spark) and Clojure (Storm), making code modification 
more challenging.

To shed some light in this decision-making process, we will compare charac-
teristics of top specific NoSQL databases and big data computing frameworks in 
terms of current popularity and derive decision diagrams to guide the selection of 
which database/computing framework to use. These two categories (database and 
computing) were selected to guide the design because they are key components of 
almost any big data based solutions.

2.4.2.1  NOSQL Databases

2.4.2.1.1  HBase/Accumulo

HBase and Accumulo are both column-oriented and schema-less databases [72,73]. 
They share similar architecture and are both best at handling multiple row queries 
and row scans. HBase and Accumulo support range query so if you want querying 
information based on ranges (e.g., finding all items in a particular price range), 
these databases may be your solution. In addition, Accumulo and HBase are built 
on top of HDFS. Therefore, they can be natively integrated into an existing Hadoop 
cluster.
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Accumulo is far more scalable than MongoDB, and even HBase and 
Cassandra [74]. It is the only NoSQL database with cell-level security capabili-
ties which allow a user to see different values as appropriate based on the row. 
Accumulo also has another unique feature called Iterator which is a prevailing 
server-side programming mechanism that enables a variety of real-time aggrega-
tions and analytics.

2.4.2.1.2  Cassandra

Cassandra is another column-oriented database that consistently outperforms pop-
ular NoSQL alternatives [75,76]. However, the high performance can be achieved 
only if the way the data will be queried is known clearly in advance at the database 
designing stage. When properly designed, Cassandra could be the fastest database 
in terms of the performance of write operations because it is carefully designed to 
effectively store the data on disk. As a result, it would be the correct choice for a 
database with a high volume of writes. For example, one can use Cassandra to store 
log data because it has a high volume of writes.

If the data is too big for MongoDB, Cassandra can be an excellent option. Besides 
performance, it can also support multi-datacenter replication which allows the system 
to survive regional outages. Although not originally designed to run natively on your 
Hadoop cluster, recently Cassandra has been integrated with MapReduce, Pig, and 
Hive. However, it does not have fine-grained security controls.

2.4.2.1.3  MongoDB

MongoDB is different from the previous databases because it is document- 
oriented. A relational column-oriented database may not be the best choice when 
the data fields to be stored vary between the different elements because there 
would be a lot of empty columns. Although it is not necessarily bad to have many 
empty columns, MongoDB provides a method to store only the necessary fields 
for the document. For example, this design would fit interview/ questionnaire 
data where, depending on the answer of the current question (e.g., male/female), 
certain fields may become required (pregnant?) or which follow-up questions 
should be asked.

MongoDB is such a good easy-to-use document store that is widely selected as a 
replacement candidate for a SQL database due to its schema-less feature (like other 
NoSQL databases). However, it cannot scale to very large datasets (approximately 
more than 100 TB), does not work with your Hadoop cluster natively, and has just 
recently had fine-grained security controls [73,77].

The characteristic differences between MongoDB, Cassandra, HBase, and 
Accumulo are summarized in the decision diagram shown in Figure 2.2. It is note-
worthy that by “data not too big,” we mean the size of the dataset is less than 100 TB.
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2.4.2.2  Computing Frameworks

Unlike the NoSQL database, fortunately there are not many options for big data 
computing framework. Basically, there are two types of big data processing: batch 
processing and real-time processing.

2.4.2.2.1  Batch Processing

Batch processing often deals with an extremely large, bounded (a finite collection 
of data), and persistent (stored in permanent storage) dataset. The result is returned 
when the computation is complete (normally after a while). Batch processing is 
suitable for applications that need access to a whole set of records. The state of the 
dataset should be maintained for the duration of the computation. Batch process-
ing systems are also well-suited for tasks that require very large volumes of data 
because they are developed with large quantities in mind. Therefore, they are often 
used with persistent historical data.

The trade-off for the ability of handling extremely large datasets is a longer 
computation time, which makes batch processing inappropriate for applications 
requiring a fast response.
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Figure 2.2 The decision diagram for big data storage.
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2.4.2.2.2  Stream Processing

Stream processing systems often deal with “unbounded” datasets. The total amount 
of data is unknown and unlimited. Different from the batch paradigm, instead of 
being processed together as a whole, each individual data item is executed as it 
enters the system. Processing is typically event-based and running forever until 
explicitly stopped. Results should be available shortly after the new data arrival 
because the data size is often small. Stream processing systems only execute one 
(strict stream processing) or very few (micro-batch processing) data items at a time, 
with minimal or no state being maintained between computations.

The stream processing model is well-suited for near real-time analytics, server 
or application error logging, and other time-based metrics where it is critical to 
respond to changes or spikes. It is also a good fit with data where trends over time 
are of interest. Hadoop with MapReduce is considered as a batch processing com-
puting framework. It is suitable for back-end processing (data mining, data ware-
house) on large datasets. Apache Storm or Samza belong to the real-time processing 
category. Apache Spark [54] or Flink can be thought of as hybrid types because they 
can mimic the real-time processing with their micro-batch processing. Figure 2.3 
shows the decision diagram for a big data computing framework.

2.4.3  State-of-the-Art Big Data Based 
Cyber Analysis Solutions

2.4.3.1  Cisco OpenSOC [78,79]

OpenSOC is an open-source development project that is dedicated to provid-
ing an extensible and scalable advanced security analytics tool. It provides a big 
data security analytics framework designed to consume and monitor network 
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Figure 2.3 The decision diagram for a big data computing framework.
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traffic and machine exhaust data of a data center. OpenSOC is designed to be 
extensible and work at a massive scale. The framework provides the following 
capabilities:

 ◾ Extensible enrichment framework for any telemetry stream
 ◾ Anomaly detection and real-time rules-based alerts for any telemetry stream
 ◾ Hadoop-backed storage for telemetry stream with a customizable retention 

time
 ◾ Automated real-time indexing for telemetry streams backed by Elasticsearch
 ◾ Telemetry correlation and SQL query capability for data stored in Hadoop 

backed by Hive
 ◾ ODBC/JDBC compatibility and integration with existing analytics tools

OpenSOC is designed to scale up to consume millions of messages per sec-
ond, enrich them, run them through anomaly detection algorithms, and issue real-
time alerts. As shown in Figure 2.4, OpenSOC integrates numerous elements of 
the Hadoop ecosystem such as Storm, Kafka, and Elasticsearch. OpenSOC and 
provides a scalable platform incorporating capabilities such as full-packet capture 
indexing, storage, data enrichment, stream processing, batch processing, real-time 
search, and telemetry aggregation.

2.4.3.2  Sqrrl Enterprise [80]

Developed by Sqrrl Data, Inc., Sqrrl Enterprise aims to provide a security analytics 
solution for detecting and responding to advanced cyber threats. It lets organiza-
tions pinpoint and react to unusual activity by automatically uncovering hidden 
connections in the data. It also gives analysts a way to visually investigate these con-
nections, so that they can understand the surrounding contexts and take actions. 
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Figure 2.4 OpenSOC features. (From http://www.slideshare.net/JamesSirota 
/cisco-opensoc.)
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Sqrrl is built on big data technologies, including Hadoop, link analysis, machine 
learning, data-centric security, and advanced visualization.

Sqrrl is built to streamline the hunting experience as a powerful threat hunting 
platform. Figure 2.5 shows the threat hunting loop of Sqrrl. Security analysts may 
have the domain knowledge to hunt, but not the advanced data science skill sets to 
directly manipulate and filter big data. Making sense of big data is not an easy task, 
so advanced analytic techniques are critical. Sqrrl ingests huge quantities of dispa-
rate datasets, and visualizes that data dynamically through a powerfully linked data 
analysis technique, which makes exploring the data contextual and intuitive. As an 
optimal hunting platform, Sqrrl enables a hunter to filter and prioritize big data 
while iteratively asking the data questions and exploring the relationships in the 
data. Sqrrl provides the scalability, visualization, and analytics that help analysts 
track down advanced threats via more advanced hunting techniques, turning data 
gatherers into data hunters. With Sqrrl, users can detect and respond to advanced 
data breaches, insider threats, and other hard-to-detect attacks.

In Sqrrl, hunting is an iterative process that is carried out in a loop to continu-
ously look for adversaries hidden in vast datasets [80], and begins with a hypothesis. 
Sqrrl’s threat hunting framework defines three types of hypotheses:

 ◾ Intelligence-Driven: Created from threat intelligence reports, threat intel-
ligence feeds, malware analysis, and vulnerability scans.

 ◾ Situational-Awareness Driven: Crown jewel analysis, enterprise risk assess-
ments, company- or employee-level trends.

 ◾ Analytics-Driven: Machine-learning and user and entity behavior analytics, 
used to develop aggregated risk scores that can also serve as hunting hypotheses.
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Figure 2.5 Sqrrl cyber threat hunting process. (From Sqrrl: Cyber Threat Hunting. 
https://sqrrl.com/solutions/cyber-threat-hunting/.)
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The outcomes of hunting trips will be stored and used to enrich automated 
detection systems and analytics, as well as to form the foundation of future hunts. 
For big data analysis, an enterprise needs to store as much data as possible, such 
as flow data, proxy logs, host authentication attempts, IDS alerts, and even non-
security focused information. In order to make sense of big data, advanced analytic 
techniques are critical. Sqrrl can ingest huge quantities of disparate datasets, and 
visualize that data dynamically through a powerfully linked data analysis capabil-
ity to make exploring the data contextual and intuitive.

2.5  Our Experiences
In this section, we present our experiences in building a big data based network 
forensic solution, named Cerberus. Cerberus aims to help network operators and 
security analysts to better understand the network and discover issues and threats 
faster with less time and effort. It takes network data as input from a variety of data 
collectors (deployed at different network levels), interprets network performance 
and status, conducts analysis to detect and identify potential cybersecurity issues 
(e.g., attacks, anomalies, localizations, reasons), and presents analysis results to the 
network operators through the graphic interface. It supports both real-time and 
batch processing of data, and handles queries on history data and near real-time 
detection/statistics.

2.5.1  Software Architecture

The software architecture of Cerberus consists of big data storage, batch and 
streaming processing, web services, messaging, visualization, and user interface/
analytics dashboard, as illustrated in Figure 2.6.

 ◾ Message Queue: Message Queue is responsible for efficiently transmitting 
network data into the cloud-based processing engine.

 ◾ Stream Processing: A stream processing engine is used to preprocess the data 
(i.e., convert the data format and dump data back to the database) or per-
form complex stream processing (e.g., event detection or certain real-time 
processing).

 ◾ Big Data Database/Storage: A database or storage is used to save the prepro-
cessed data.

 ◾ Web Services API: A web services API is responsible for interacting with the 
backend system and providing data to the dashboard.

 ◾ Application Data Database/Storage: A database store is used by the user 
interface to store system data necessary for the web front-end application.

 ◾ User Interface: A user interface is provided to support user friendly visualiza-
tion of analytics data.
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As discussed earlier, there are many decisions and selections we need to make 
for such a system. For each component, a particular supportive tool has been cho-
sen to fulfill the design considerations and requirements:

 ◾ Message Queue: Apache Kafka [81] is chosen to support the message 
queue. Apache Kafka is a distributed messaging system, which supports 
high throughput and performs automatic load balancing.

 ◾ Stream Processing: Both Apache Storm [58] and Spark [54] are used to 
provide the distributed stream processing engine (aka a framework) for the 
system.

 ◾ Big Data Database/Storage: Apache Accumulo [66] is used as the backend 
database. Apache Accumulo is a distributed database management system 
implemented over Hadoop and Hadoop Distributed File System (HDFS). 
Apache Accumulo supports table-based databases and provides query inter-
face over the tables.

 ◾ Web Services API: Spring Boot [82] is used on Apache Tomcat 7 [83] to 
provide an interface to the backed analytics data. Spring Boot is a way to get 
a spring framework application started faster with fewer configurations up 
front. It provides access to the features and components users need without 
forcing additional baggage. The Spring framework has a large user commu-
nity with many avenues for support, and fits the need for real-time applica-
tion using Accumulo.
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Figure 2.6 Illustrative software architecture of a cloud-based solution.
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 ◾ Application Data Database/Storage: The web application framework that 
provides UI features requires an SQL data store for its runtime processing. 
PostgreSQL is used for this purpose [84].

 ◾ User Interface: The web application framework called Grails [85] is used for 
the user interface also known as the “Analytics Dashboard.”

2.5.2  Services Components

2.5.2.1  Data Processing Using Accumulo

Accumulo provides a set of flexible processing capabilities for a third party 
to develop additional data processing algorithms. Combining Accumulo with 
Hadoop [55] or other distributed processing frameworks, Accumulo can be fur-
ther extended to process complex data processing algorithms. In this architec-
ture, all persistent data (including network data) are stored in Accumulo. Hence, 
Accumulo plays a key role in our system design and implementation. Specifically, 
since we designed our system so that most of the analysis will be run at the 
server side to be able to support thin clients, we have developed many utility 
“iterators” in Accumulo to query data and boosting the analysis performance. 
The rowID of a table is designed carefully so that the data is distributed evenly 
among Accumulo hosts. This will leverage the aggregated bandwidth and paral-
lelism to improve the query performance.

2.5.2.2  Log Service (Message System) Using Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the 
functionality of a messaging system, but with a unique design. Kafka maintains 
feeds of messages in categories called topics. The processes that publish messages to 
a Kafka topic are producers. The processes that subscribe to topics and process the 
feed of published messages are called consumers. So, at a high level, producers send 
messages over the network to the Kafka cluster which in turn serves them up to 
consumers. Kafka is simply used as a buffer in our system between the sensors (pro-
ducer) and data processing and analysis (consumer). Queuing systems are generally 
used to balance the data processing capacity and the data generating rate.

2.5.2.3  Stream Processing Engine Using Storm

Storm is only a real-time processing engine. Its users need to create jobs/ topologies 
and submit them to the Storm framework to be executed. A Storm topology is 
similar to a MapReduce batch job. The difference is that a MapReduce batch 
job eventually finishes while a Storm topology runs forever. In this illustrative 
system, our team developed a Storm topology (consisting of a Kafka spout and an 
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Accumulo bolt) to process the data from Kafka and then feed them into Accumulo. 
Specifically, our storm topology can detect near-real-time anomalies and gener-
ate alerts for different types of network events and attacks. It can also connect to 
other data inputs, e.g., IDS, OpenVAS, http logs, to get as much information as 
possible to feed in the correlation engine to detect a variety of cyber threats and 
attacks.

2.5.3  Key Features

The key features of Cerberus include:

 ◾ Integration of multiple data sources for better and real-time cyber situa-
tion awareness. Cerberus supports the integration across different types of 
data at select points in the network, such as measurement data from network 
monitoring tools (e.g., NetFlow, sFlow), security alerts and logs from existing 
IDS (e.g., Snort), http/DNS logs on critical servers, SIEM data, and network 
configurations.

 ◾ Targeting complex network issues: Cerberus is targeting complex network 
issues. It not only identifies failures, but also pinpoints the root cause of the 
failures. To support that, it applies a scalable graph-based root-cause analy-
sis, whose computation complexity is roughly linear to the total number of 
faults and symptoms, and hence achieves better scalability and computation 
efficiency.

 ◾ Detecting stealthy and sophisticated attacks: Cerberus is able to detect vari-
ous types of security events from different data sources, and also correlate 
them to identify and understand more stealthy and sophisticated attacks.

 ◾ Big data processing: It uses the most advanced big data technologies to 
achieve scalable data storage and processing, including Kafka, Storm, Spark, 
Accumulo, Spring Boot, SQL/noSQL, and Grails.

2.6  Summary
This chapter provides an overview on how to apply big data technologies into net-
work forensics, as network forensics plays a key role in today’s enterprise network 
monitoring, management, and security analysis. Big data analytics has shown its 
promise of unearthing important insights from large amounts of data, and hence 
attracts attention from researchers and network analysts. In this chapter, we pro-
vided a brief introduction to network forensics, terms and processes, current solu-
tions, and their limitations. We also discussed how to apply big data analysis for 
network forensics, and shared our experiences in building a big data based network 
forensics solution.
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This chapter presents vulnerability assessment, one of the essential cybersecurity 
functions and requirements, and highlights how big data analytics could potentially 
leverage vulnerability assessment and causality analysis of vulnerability exploitation 
in the detection of intrusion and vulnerabilities so that cyber analysts can investi-
gate alerts and vulnerabilities more effectively and faster. Vulnerability assessment 
has become a critical national need in support of mission operations by realistically 
assessing attacker access to existing vulnerabilities and improving the ability of mis-
sion leaders and planners to triage which system vulnerabilities present the highest 
risk to mission assurance. As the vulnerabilities and attack surface of assets grow 
in complexity and size, threat and malware also grow more pervasive, and cyber 
sensors generate more data to be analyzed. A holistic cybersecurity approach is thus 
necessary considering not only observation and detection of all events of attackers, 
intrusions, and vulnerabilities, but also analysis of their interactions, causality, and 
temporal and spatial orderings in real time.

In order to accurately assess exploit likelihood and impact of vulnerability 
exploitations in a cybersecurity environment, the interactions and causality rea-
soning of cybersecurity events and assets need to be analyzed in-depth with their 
context-specific services and parameters. However, it seems extremely difficult, 
if not impossible, to have all the required knowledge of cybersecurity events and 
activities within a network for assessing its cyber risk in real-time, primarily due 
to uncertainties or unexplained patterns of network traffic, incomplete or noisy 
attack measurements and observations, and insufficient information about vulner-
abilities and cyber assets. Therefore, it is highly desirable to enhance and extract 
the quality information of all available cybersecurity data in order to maximize 
its utility.

This chapter presents novel models and data analytics approaches to dynami-
cally building and analyzing relationships, dependencies, and causality reasoning 
among the detected vulnerabilities, intrusion detection alerts, and measure-
ments. The resultant analysis leads to the detection of zero-day vulnerabilities 
and stealthy malware activities. In addition, it provides a more accurate dynamic 
risk assessment due to the available quantitative and qualitative knowledge on 
vulnerabilities and exploit likelihood. This chapter also describes a detailed 
description of building an exemplary scalable data analytics system to imple-
ment the proposed model and approaches by enriching, tagging, and indexing 
the data of all observations and measurements, vulnerabilities, detection, and 
monitoring.
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3.1  Introduction
3.1.1  The Need and Challenges

Most sectors providing the underpinnings of modern society have come to criti-
cally rely on computers and computer networks to function properly. These sec-
tors include public health, finance and banking, business and retail, media and 
telecommunications, and national defense, along with more fundamental critical 
infrastructure such as electrical power, water utilities, and food distribution. Our 
deep reliance on these sectors makes them particularly attractive targets for attacks 
[1]. Adversaries can leverage computer or network vulnerabilities to interfere with 
the proper functioning of American society [2–6].

Trusted networks are used by the Department of Defense (DoD), law enforce-
ment and the intelligence community (LE/IC), as well as countless business and 
industrial enterprises (BIE) to provide access to critical information and services 
that are vital to accomplishing their respective missions. Collectively, we will 
refer to the DoD, LE/IC, and BIE as the trusted network user base (TNUB). 
Vulnerabilities on these trusted networks confer opportunity to adversaries of the 
TNUB to interfere with mission execution. Adversaries can leverage vulnerabili-
ties to gain unauthorized access to the trusted network or to prevent authorized 
users from having access, either of which can negatively impact the missions of the 
TNUB. The motivation of adversaries to exploit vulnerabilities on a trusted net-
work can be classified broadly according to five major categories: (1) Espionage and 
intelligence gathering, (2) denial of service, (3) data corruption and misinforma-
tion, (4) kinetic and cyber-physical effects, and (5) hijack of asset control. A specific 
vulnerability may enable one or more of these classes of adversary operations. The 
extent to which an adversary can leverage the vulnerability to interfere with mission 
success depends on (1) which of these five categories the vulnerability may enable 
and (2) the extent to which mission execution can withstand adversary activity in 
each category. Therefore, the inherent risk presented by a vulnerability is specific to 
each mission that is impacted.

A critical national need in support of TNUB missions is to augment the cur-
rent capabilities of vulnerability assessment tools to realistically assess attacker 
access to existing vulnerabilities and to improve the ability of mission leaders and 
planners to triage which system vulnerabilities present the highest risk to mission 
assurance. This requires a dynamic approach to vulnerability assessment rather 
than a static approach because the attacker posture and vulnerability access as 
well as the way the trusted network is being leveraged to accomplish the mis-
sion are both subject to significant variability in time [1,7]. The inherent chal-
lenge to filling this national need is that the available data are constrained to a 
limited number of observable vantage points: vulnerabilities are collected at the 
host locations, and observations of network traffic are limited to a small number 
of centralized tap locations, whereas the non-local problem of the attacker access 
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depends more globally on the network topology. It will be necessary to estimate 
the vulnerability and resulting mission risk on the basis of incomplete informa-
tion, gathered from myriad sensor types deployed at strategic locations. There are 
several enabling technologies that will be critical for satisfying this national need, 
none of which is currently deployed or exists. First is technology to dynamically 
infer network topology and the interconnection of hosts. Second is the ability to 
use this information, in conjunction with existing scans and other observations 
such as network traffic capture, to assess the severity of a vulnerability in terms 
of its specific impact to a particular mission or set of missions. To this end, tech-
nology will also be needed to assess which assets each mission is leveraging as a 
function of time.

As the vulnerabilities and attack surface of assets grow in complexity and size, 
threats and malware also grow more pervasive, cyber sensors generate more data to 
be analyzed. Intrusions are often obfuscated to the extent that its traces and fin-
gerprints are hidden within different types of data (e.g., intrusion detection system 
[IDS] alerts, firewall logs, reconnaissance scans, network traffic patterns, and other 
computer monitoring data) that are involved with a wide range of assets and time 
points. However, even a small organization’s security operation center may end up 
dealing with an increasingly huge volume of daily data.

3.1.2  The Objective and Approach of This Chapter

Given the time constraints, service level agreements, and computational and stor-
age resource constraints in the analysis of such data, we aim at first identifying 
and extracting high-quality data products describing cyber events from the raw 
data. The analysis and assessment of these high-quality data products can be per-
formed more quickly and dynamically by requiring a smaller amount of time and 
computational resources. We address the questions of (1) how the raw data size of 
cyber events can be reduced significantly at close to real time and (2) what effective 
methods can be used to detect and analyze the noisy data of intrusion and vulner-
ability detections and exploitations. To this end, we undertake a holistic approach 
of considering the size and analysis of intrusion data, together with the analysis 
of vulnerability data and exploitations, by investigating how the cyber events and 
processes of intrusions and vulnerabilities are detected, cross-correlated, analyzed, 
and assessed.

In answering the two questions above, we present why data analytics, machine 
learning, and temporal causality analysis are considered essential components, and 
we show how they interactively function in very important roles. High-quality data 
products can be extracted from raw cyber data by pinpointing the specific assets 
and time instances involved with intrusions. We suggest using temporal causality 
analysis of main cyber sensor observations and events including intrusion alerts, 
vulnerabilities, attacker activities, firewall and HBSS log data, and network traffic. 
Our premise is that if we know what vulnerabilities exist in the system and how 
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these vulnerabilities can be exploited by intrusion, then we can develop a causal-
ity analysis diagram for cyber events, vulnerabilities, intrusions, and observations 
of attacker activities. This causality analysis narrows down the cyber data to be 
searched and analyzed, leading to a significant reduction in size and scope from the 
raw cyber data. This results in faster data analysis, less computational resources, and 
potentially more accurate results. This chapter presents how data analytics could 
potentially leverage vulnerability assessment and causality analysis of vulnerability 
exploitation in the detection of intrusion and vulnerabilities so that cyber analysts 
can investigate alerts and vulnerabilities more effectively and faster.

The remainder of this chapter is organized as follows. Section 3.2 provides 
background information on vulnerability assessment, attribution, and exploitation, 
along with a use case. Section 3.3 presents the state-of-the-art vulnerability assess-
ment tools, data sources, and analytics. Section 3.4 first provides comparison of 
some security information and event management (SIEM) tools and then presents 
our temporal and causality analysis to enhance the analysis and management of 
vulnerabilities, exploitations, and intrusion alerts. Concluding remarks are made 
in Section 3.5.

3.2  Vulnerability Assessment, Attribution, 
and Exploitation

This section presents basic background information on vulnerability assessment, 
scoring, and attributes and then discusses a use case on the identification of attribu-
tion and exploitation within a cyber analytics environment.

3.2.1  Vulnerability Assessment

In general, vulnerability refers to any weakness of information technology, assets, 
or cyber-physical or control systems that could be exploited to launch an attack by 
an adversary. Vulnerability identification, detection, and assessment are essential to 
cybersecurity, particularly risk assessment. Any combination of security penetra-
tion tests and auditing, ethical hacking, and vulnerability scanners may be used to 
detect vulnerabilities at various processing layers of information, communication, 
and operations of a system within a cybersecurity environment. Once vulnerabili-
ties are identified, they are ranked with respect to severity and risk score. This helps 
determine the order in which the prioritized vulnerabilities are put through the 
patching or recovery process to mitigate system risk, while maintaining system 
functionality at an acceptable level. To develop a reasonable assessment for a vulner-
ability, its meaningful attributes should be determined and quantified dynamically 
by considering system and environmental conditions, as well as its relationship with 
other relevant vulnerabilities in the space and time domain.
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The minimal software attributes of a vulnerability can be listed as authen-
tication, access complexity, and access vector. The minimal impact factors that 
need to be taken into consideration in case of vulnerability exploitation are confi-
dentiality impact, integrity impact, and availability impact. In general, an attack 
(e.g., a denial of service attack) can exploit a vulnerability at various network lay-
ers, including the physical layer (e.g., wireless jamming attack), the MAC layer 
(e.g., an attack forging address resolution protocol), the network and transport 
layers  (e.g., an attack degrading the routing and delivery of information), and the 
application layer (e.g., an attack making intensive requests to overwhelm com-
puter resources). A dynamic accurate assessment of detection capability, exploit 
likelihood, and exploitation impact associated with a vulnerability assists network 
defenders and decision makers in improving the assessment of situational aware-
ness and risk of a system. Our approach to achieving such accurate assessment is 
to determine dynamically not only individual vulnerability attributes and charac-
teristics, but also dependencies, interactions, and probabilistic correlations among 
vulnerabilities, and then to harness the power of big data analytics to determine 
correlations and temporal causality among vulnerabilities and cyber events. The 
vulnerability dependencies and correlations of assets can provide cues about the 
severity of their attack surface.

Given that zero-day vulnerabilities and exploits always exist, it is critical to 
have timely detection and control of vulnerabilities and attacks, along with timely 
recovery and patching of vulnerabilities. For controlling and limiting damage of 
vulnerability exploitations as well as providing mission assurance, the basic tasks 
include determining the following: criticality of assets (to a dynamically evolving 
mission landscape), infection and exploitation status of assets, the movement and 
propagation paths of exploits, exploitation likelihood, impact and spread of attacks, 
recognition of adversary strategies and activities, and mission assurance require-
ments. The common objective of all these tasks at a high level can be expressed 
as providing real-time detection, containment, and control of vulnerabilities and 
attacks over a cybersecurity environment that ideally supports at least the follow-
ing five features: (1) use of end-to-end visibility and observability tools across an 
enterprise network system; (2) understanding the context and correlation of data, 
user, and adversary activities; (3) performing real-time analysis; (4) implementing 
an in-depth defense by monitoring networks and detecting compromised assets 
and attacker activities; and (5) reducing damage and dwell time of the attacker 
within the network [2]. The adverse impact of vulnerability exploitations should 
be minimized by controlling their spread and maintaining mission assurance of 
systems and operations.

The minimal software attributes of a vulnerability can be listed as authentica-
tion, access complexity, and access vector, as stated in the Common Vulnerability 
Scoring System (CVSS) [8–11]. CVSS indicates that the minimal impact factors 
to consider in case of a vulnerability exploitation are confidentiality impact, integ-
rity impact, and availability impact. Although vulnerability scoring in CVSS and 
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similar types of systems is carefully designed using expert knowledge, they are still 
inherently ad hoc in nature and possibly assign scores incorrectly to some vulner-
abilities. Therefore, it is highly desirable that security evaluation of both individual 
and collective assets is conducted objectively and systematically [7]. CVSS provides 
a score for each new software vulnerability discovered that prioritizes the impor-
tance of the vulnerability. However, the existing methods and by-default standards 
such as CVSS do not take into consideration varying conditions in time, environ-
mental factors, and collective behaviors of vulnerabilities and attack impacts, nor 
does it make unrealistic assumptions about cyber vulnerabilities, exploits, observa-
tions, and their models.

In the current CVSS, the base score is a function of access vector, access com-
plexity, authentication, confidentiality impact, integrity impact, and availability 
impact, where only atomic attack (i.e., single-stage attack) is considered, and no 
damage on assets is included. In [7], we introduced both theoretical and experi-
mental methods to enhance the assessment of vulnerabilities and vulnerability 
exploitations, starting initially with CVSS scores and Bayesian network of vulner-
ability dependencies, and then using Markov models for identifying the most prob-
able exploited vulnerabilities.

One shortfall with vulnerability assessments as they exist today is that the level 
of criticality of the vulnerability is associated only with the vulnerability itself, but 
not with the exposure of that vulnerability to an attacker. A technological mecha-
nism that could help address this shortfall is to cross-correlate the existence of a 
vulnerability with the occurrence of known signatures of adversary behavior. These 
signatures could be event logs on a system, or specific combinations of event logs 
that occur within a given timeframe, or they could be based on traffic patterns 
such as a sudden increase in outbound volume of data. The co-occurrence of the 
vulnerability with anomalies in system logs or traffic patterns is an indication that 
the criticality assessment of the vulnerability should be escalated. Furthermore, if 
the vulnerable host is buried deep inside several layers of security apparatus, it is 
important to be able to trace the traffic as it crosses through the various proxies and 
firewalls all the way to an attacker on the Internet, in order to assess the risk to the 
programs or missions being supported by the vulnerable host.

There are many shared challenges in traffic attribution and in discovering co-
occurrence of vulnerability and system or traffic anomalies. The relevant data are 
often difficult to identify because the different tiers in the security apparatus collect 
disparate data from separate locations. Often there is minimal overlap in assets 
between separate datasets, and even datasets that include shared events and assets 
but are generated on different hosts can suffer arbitrary timing differences and 
latencies between associated observations. Network address translation further 
complicates valid cross-correlation by obfuscating the true start and endpoints of 
flow records.

Surmounting these challenges to improve vulnerability assessment requires a 
centralized data store, coupled with a process that aggregates data streams from 
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multiple sensors, normalizes the data across the different sources to allow pivoting 
from data collected in one location to data collected in another, and labels the data 
with appropriate knowledge engineering to provide analysts ready access to the data 
coupled with discoverable knowledge about the provenance and contents of the 
data. Centralization of different data streams would enable automatable analytics 
to simultaneously process data collected in multiple locations.

Developing improved vulnerability assessment apparatus is likely to be an itera-
tive process in which an analyst explores various correlations and patterns in the 
data, forms a hypothesis, tests the hypothesis by querying the data, develops a more 
robust signature for the attack mode under investigation, and automates the asso-
ciation of that attack mode with a known vulnerability using the signature and the 
data available in the data store. An example of a portion of this process, leveraging 
the Scalable Cyber Analytic Processing Environment (SCAPE) technology [6], is 
carried out at the U.S. Army Research Laboratory.

3.2.2  Use Case: Identification and Attribution 
of Vulnerability Exploitation

A computer network defense service provider (CNDSP) is an accredited organi-
zation responsible for delivering protection, detection, response, and sustainment 
services to its subscribers [12]. Such an organization typically assembles large data-
sets consisting of IDS alerts, firewall logs, reconnaissance scans, network traffic 
patterns, and other computer monitoring data. In this particular example, such 
CNDSP-collected data have been stored in an Accumulo database, which has been 
made available to an analyst for data exploration purposes via the SCAPE (formerly 
known as LLCySA [6]). This is illustrated as a big data cyber analytic system archi-
tecture in Figure 3.1.
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Figure 3.1 A big data cyber analytics framework. (From S.M. Sawyer, T.H. Yu, 
M.L. Hubbell, and B.D. O’Gwynn. Lincoln Laboratory Journal, 20(2), 67–76, 2014.)
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The SCAPE environment provides knowledge engineering that allows an ana-
lyst to access the data without detailed a priori technical expertise regarding where 
data have been collected, which sensors have been deployed, or knowledge of the 
data storage format and schema. In this particular example, the goal is to identify 
an attack deep inside the DoD network and trace the net flows back to an attacker 
on the Internet. Host intrusion data are used to provide the initial tip. SCAPE is 
used to conduct an interactive investigation, pivoting between different relevant 
data sources to develop a hypothesis and confirm illicit activity. A simple aggregat-
ing analytic identifies a subset of hosts with the highest number of Host Intrusion 
Protection System (HIPS) alerts. Using SCAPE, the analyst pivots to the associ-
ated NetFlow data communicating with these hosts and identifies a suspicious flow 
revealing a late-night surge of server message block (SMB) activity for one of these 
Internet protocols (IPs). This process is depicted on the right-hand side of Figure 3.2, 
which also shows a plot of NetFlow activity associated with this time period. 
Comparison with the previous several days of traffic suggests that the volume of 
data exchange on December 11 is potentially atypical for the host in question.

The SCAPE environment provides an easy-access interface to multiple cyber 
data sources, allowing an analyst to quickly pivot from host intrusion protection 
events to NetFlow. The correlation of HIPS alerts with suspicious flow activity may 
imply that the assessment of the associated vulnerability should be escalated to a 
higher level of priority.

Closer inspection of the HIPS data on the host uncovered evidence in this time 
period of a possible SMB brute force attempt. The next step in this investigation 
would be to aggregate network address translation logs from the various firewall 
and proxy devices that intervene between this host and the remote host on the open 
Internet. Doing so would allow the analyst to determine the destination of the large 
outflux of data.

An analysis of this type could be used to improve an existing assessment of 
the vulnerability associated with this host, and others like it. Having discovered the 
specific signatures associated with a breach of this type, the co-occurrence of the 
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existing vulnerability with significant HIPS activity or with significant changes in 
network traffic could be used to escalate the associated severity of the vulnerability, 
indicating that a higher priority should be designated to this host, because of indi-
cations of potential exposure to an adversarial entity.

3.3  State-of-the-Art Vulnerability Assessment Tools, 
Data Sources, and Analytics

3.3.1  Vulnerability Assessment Tools

Vulnerability is thought to be the intersection of three elements: a system suscepti-
bility or flaw, attacker access to the flaw, and attacker capability to exploit the flaw 
[3]. Many vulnerability assessment tools exist, both in industry and within the 
TNUB, to detect the presence of such flaws. The tools typically leverage extensive 
databases of known software vulnerabilities and itemize the observed malware and 
other attacks that leverage each vulnerability to assess its severity. Network-based 
scanners perform credentialed or uncredentialed scans of endpoint hosts to enu-
merate open ports, identify which software is installed, and detect missing patches. 
Web application and database scanners check for flaws in data validation and other 
mechanisms for command injection or information leakage. Host-based scanners 
look for known problems, such as viruses, or faulty operating system configurations 
to identify security gaps. Collectively, these tools exhibit a weakness; the scan can 
identify a system flaw or susceptibility, and a database can estimate the attacker 
capability to exploit the flaw, but none of the tools is equipped to quantify the 
extent to which an attacker can access a flaw. The fundamental reason driving this 
weakness is that all current vulnerability assessment processes are inherently local 
to each host. Assessing attacker access to a flaw is inherently a non-local problem 
that involves not only the vulnerabilities on a given system, but also the vulner-
abilities of systems that are connected to it on the network.

3.3.2  Data Sources, Assessment, and Parsing Methods

Identifying data sources for use in vulnerability assessment and exploitation is a 
straightforward proposition. There are literally hundreds, if not thousands, of secu-
rity tools and information technology systems that generate data useful for enhanc-
ing or enriching an organization’s situational awareness posture and providing 
content pertinent to a vulnerability assessment and exploitation exercise. However, 
the challenge is not in finding the data sources but rather adopting approaches or 
tools that aggregate and correlate the data in a meaningful manner.

To illustrate this point, let us walk through a hypothetical data collection 
exercise in preparation for a vulnerability assessment. For the sake of simplicity, 
consider three data sources in this example, although there could be dozens of 
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data sources in an actual assessment. The first data source is Nessus, which is an 
industry-recognized vulnerability assessment scanning tool. Nessus is developed 
and maintained commercially by Tenable Network Security and provides a variety 
of features, including the following: network vulnerability scanning, application 
vulnerability scanning, device compliance assessment, and network host discovery.* 
The second data source is McAfee ePolicy Orchestrator (ePO), which is an 
industry-recognized, host-based security tool. The ePO is developed and main-
tained commercially by Intel Security and provides many features, including the 
following: host intrusion prevention, policy auditing, and anti-malware.† The third 
data source is Snort,‡ which is an open-source network intrusion detection and 
intrusion prevention tool. Martin Roesch developed Snort for public use and dis-
semination in 1998. Snort is freely available for download, and there are hundreds 
of thousands of community members that use, maintain, and contribute to the 
tool. Snort provides intrusion detection and prevention capabilities by means of 
network traffic analysis and packet capture.

These example tools all independently provide some degree of situational aware-
ness. A naive approach toward vulnerability assessment would be to consider the 
output from each tool in isolation. So, Nessus output would be used for application 
vulnerability assessment, McAfee ePO would be used for host policy compliance 
assessment, and Snort would be used for exploitation detection and assessment. 
Although this approach may be straightforward to understand and easy to imple-
ment, there is no correlation occurring between the different data sources, leaving 
the potential for major holes in the analysis of vulnerability exploitation process.

As an illustrative example, imagine a scenario where a Snort subject matter expert 
named Samantha is providing intrusion detection analysis services to a small orga-
nization. During her shift, Samantha receives two alerts identifying unauthorized 
remote access attempts on two separate network segments: Alpha and Beta. Without 
consulting any additional information sources, how would Samantha assess which 
alert to investigate first? The alerts are identical (i.e., triggered by the same intru-
sion detection signature), so there is no clear way to gauge which subnet should be 
prioritized. Samantha could assess the alerts in a sequential manner based upon the 
time of notification and investigate subnet Alpha first. However, what if the software 
patches for the assets in subnet Alpha are all current, whereas in subnet Beta they 
are months old? Snort cannot detect this, but a vulnerability scanner such as Nessus 
can. Moreover, what if the assets in subnet Beta have not received updated anti-virus 
signatures in weeks, but subnet Alpha received the latest definitions the previous 
night. Again, Snort does not have visibility, but a host-based security system such 
as McAfee ePO does. Furthermore, what if the alerts have a causal relationship? 
Insights provided by other tools could establish such relationships and provide the 

* http://www.tenable.com/products/nessus-vulnerability-scanner.
† http://www.mcafee.com/us/products/epolicy-orchestrator.aspx.
‡ https://www.snort.org/.

http://www.tenable.com
http://www.mcafee.com
https://www.snort.org
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analyst with means to detect future attacks. The failure to establish even the most 
basic of associations between the various tools and data sources ultimately increases 
the risk of more vulnerability exploitations on Samantha’s watch.

An improved approach is the analyst-to-analyst or ad hoc correlation of tools 
and sources. Some refer to this as the “swivel-chair” approach because it involves an 
analyst turning in her chair in order to request assistance from a colleague operat-
ing a different tool. The swivel-chair approach mitigates some of the concerns in 
our hypothetical scenario by Samantha engaging with her team of colleagues. The 
swivel-chair approach is an improvement over relying on a tool in isolation because 
diverse data increase the probability of making better-informed decisions. However, 
this approach suffers from its own drawbacks: namely, timeliness of information 
gathered and consistency of analysis. What questions will Samantha ask of her col-
leagues? Will her colleagues interpret her questions correctly? Will her colleagues 
be able to provide her with relevant responses within the same temporal domain 
as the alerts she is investigating? How long will it take for Samantha to receive 
responses from her colleagues? More importantly, if Samantha and her colleagues 
miss something critical, there is no digital record of the swivel-chair exchange, and 
no way to track which observations led the team to the direction they ultimately 
took in the investigation. Human fatigue may also play a role in increasing the 
risk of errors. In addition, different levels of education and experience will yield 
different analysis methodologies. As a result, manual or ad hoc correlation of data 
sources is also problematic and may not yield consistent and comprehensive results.

A more formal and analytic approach to vulnerability analysis may improve 
reliability and produce actionable results. This approach stages the various data 
sets to support a variety of interfaces and visual representations of the data. This 
approach also ensures that relationships established between the various data sets 
are stable with consistent and unique key values. The approach is also the basis for 
data analytics. Data analytics includes a conceptual data modeling process that 
needs to be applied to the various data sources. This process helps the understand-
ing of underlying attributes of the individual datasets and the current schema of 
the individual datasets. The common attributes across the datasets serve to establish 
relationships between the data sources. In our example, all three data sources share 
IP address information. When modeling these data, keying on the IP address 
would be one method to allow for a comparison of the elements across the data 
sources. In addition, during the data modeling process, a common taxonomy or 
data dictionary for the data elements of interest should be established. The data 
dictionary is an important tool to establish proper relationships between entities 
in the different data sources. All three data sources have multiple references to IP 
addresses in their schema. McAfee ePO references IP in multiple ways, includ-
ing the following: AnalyzerIPv4, SourceIPv4, TargetIPv4, and IPAddress. Nessus 
has several references, including the following: IPS, Host IP, Scanner IP, and IP. 
Snort also has several references, including the following: IPv4, IP Source, and IP 
Destination. Without a taxonomy defining the various IP elements across the data 
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sources, establishing a relationship using McAfee SourceIPv4 and Snort IPv4 may 
yield incorrect results. Indeed, even though they are both IPv4 addresses, they do 
not necessarily represent the same node.

Once the data modeling process is complete, the data elements identified in 
the modeling phase need to be extracted and stored in a common data format. 
This phase consists of developing parsers to extract, transform, and load (ETL) the 
data. Multiple parsers may be required for each data source in order to account 
for different input formats. In our example, each of our tools has various output 
formats, including the following: XML, JSON, CSV, CEF, and PCAP. The pars-
ing process involves extracting the data attributes of interest, tagging the attributes 
with metadata and taxonomic details, and outputting the data in a common format 
for efficient querying. In addition, unlike the swivel-chair approach, the analytics 
approach automates the majority of the steps after modeling the data. Automation 
ensures a consistent stream of correlated data is available to support a vulnerabil-
ity event and affords a decision maker more time to take an appropriate course of 
action. In our example, all three tools have application programming interfaces 
(APIs) that allow for the programmatic extraction of data, in order to be used 
in other applications. Automating this approach would be as straightforward as 
reviewing the respective API documentation for each tool and writing scripts in 
order to extract the attributes of interest. The APIs generally support high-level pro-
gramming languages (i.e., Python, Java, Perl, etc.). In addition, many of these soft-
ware manufacturers and support communities already have preconfigured scripts 
that can be tweaked to fit most purposes.

3.4  Secure Management of Cyber Events Involved 
with Vulnerability and Exploitation

This section first describes the basics and comparison of three well-known SIEM 
tools. Then, to enhance the dynamic analysis and management of cyber events, we 
present the basic idea and method behind temporal causality analysis by addressing 
the structured query language (SQL) injection attack.

3.4.1  Comparison of Current SIEM Tools

SIEM tools are designed to correlate a variety of log events in order to enhance an 
organization’s situational awareness. SIEM tools accomplish this by collecting log 
events from multiple data sources and across numerous hosts, leveraging a vari-
ety of analytical methods to establish relationships between disparate events, and, 
finally, providing security analysts a central console for managing and visualizing 
events in a unified manner.

Each SIEM product has features that set it apart from competing products; 
however, at a minimum, each SIEM must provide three basic capabilities: namely, 
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a mechanism for data ingestion, a mechanism for event correlation/analysis, and a 
mechanism for reporting and visualization. Many SIEMs go further and offer addi-
tional capabilities such as native integration with common log and event generating 
tools, providing threat intelligence feeds, enhanced logging via deployable agents, 
and automatable response capabilities. SIEM tools are a critical part of every indus-
try due to the sheer volume and velocity of events that organizations generate on a 
daily basis. It is literally impossible for a security analyst to review pages upon pages 
of log events from dozens of sources and expect to pinpoint threats and vulner-
abilities with any reasonable degree of accuracy or timeliness. The usage of SIEM 
tools is not exclusive to activities in the vulnerability assessment or cybersecurity 
domain; however, these activities greatly benefit from the use of SIEMs for two 
major reasons:

 1. First, SIEMs can detect anomalous events obfuscated by large volumes of 
benign traffic. By correlating events from a variety of sources, it becomes 
increasingly difficult for an attacker to hide actions that would not occur dur-
ing “normal” business operations. Individual events in operating system logs, 
application logs, firewall logs, and directory service logs may seem innocu-
ous, but through the lens of a SIEM, relationships that were once invisible 
become transparent. For example, take the following four events: (1) user 
downloads an email attachment on her workstation, (2) workstation makes 
domain name system (DNS) requests to several unknown domains, (3) work-
station attempts the installation of an unsigned executable, (4) workstation 
experiences a spike in outbound network traffic over transition control pro-
tocol (TCP) port 443. Collected from different logging systems and assessed 
independently, these events may or may not raise red flags. However, upon 
correlation and investigation as one unified event in multiple stages, this 
activity could be deemed highly anomalous, potentially malicious, and war-
rant further investigation.

 2. Second, SIEMs can enhance the efficacy of incident-handling practices. 
By automating the correlation and aggregation of cyber events, providing 
reports and descriptive statistics, and, in some instances, supporting auto-
mated responses, SIEMs can be thought of as a virtual incident response 
team that helps a security analyst prioritize what is noise or benign and what 
is suspicious or malicious. SIEMs use a variety of statistical and analytical 
methods to transform and relate events over long periods of time. For exam-
ple, a low and slow data exfiltration event is difficult to detect because it 
occurs over an extended period of time (i.e., weeks, months, or longer), and 
only a small fraction of a target file is transferred during each session. A web 
log entry documenting a 10 MB http transfer to a public web server on any 
given day is uninteresting and quite common. On the other hand, a SIEM 
that correlates six months’ worth of web logs and discovers a 10 MB http 
transfer each day to the same web server is quite interesting and suspicious!
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In this section, we discuss three SIEM tools: one open source, one traditional, 
and one non-traditional. We broadly focus on their strengths and weaknesses in 
five major areas: cost of adoption, correlation capabilities, compatibility with com-
mon logging sources, threat intelligence capabilities, and scalability. We did not 
include visualization capabilities as one of the criteria of comparison because the 
topic is highly subjective. Figure 3.3 summarizes our findings.

3.4.1.1  Open Source SIEM Tools

AlienVault Open Source Security Information and Event Management (OSSIM) is 
a community supported open source SIEM tool and the “lite” version of AlienVault’s 
commercial SIEM: Unified Security Management (USM) [13–15]. The OSSIM 
project began in 2003 in Madrid, Spain, and it became the basis of the Alien Vault 
Company founded in 2007. Of the three tools presented in this chapter, OSSIM 
is the only one that is free to download and use without restriction. However, the 
cost of adoption is not free. Using and supporting OSSIM requires time and effort 
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in reviewing documentation, posting questions on online forums, and research-
ing functionality. OSSIM has an online threat intelligence portal called the Open 
Threat Exchange (OTX) that gathers daily threat events with indicators of compro-
mise, referred to as pulses [15]. The portal is configured in a publish–subscribe fash-
ion, so anyone in the community can publish pulses, and anyone in the community 
can subscribe to specific publishers and feeds of interest. Threat intelligence is an 
important but often understated aspect of the vulnerability assessment process. It is 
a critical component because these indicators act as a supplement for threats, and an 
organization should be on the watch for these indicators. For example, most threat 
intelligence services (including OTX) host a list of known bad IPs. This list can be 
used by a SIEM as a watch list, and any traffic originating or destined for one of 
these bad domains should immediately be flagged as suspicious.

OSSIM can natively parse and ingest a variety of common logging sources, 
including the following: Apache, IIS, OpenVAS, OSSEC, Nagios, Nessus, NMAP, 
Ntop, Snare, Snort, and Syslog. OSSIM leverages regular expressions to parse data, 
which allows for a custom parser to be written and extend its support to any data 
source that outputs in a text format. In addition, OSSIM comes equipped with a 
host IDS that can be deployed as an agent for collecting system and log events if no 
preferred collection tools are present in a given environment [13].

OSSIM performs correlation by relating events in a sequential and temporal 
fashion. OSSIM comes packaged with a handful of built-in directives for common 
cyber events such as brute-force attacks, DOS attacks, enumeration, fingerprinting 
scans, and so on. Beyond the handful of preconfigured templates, OSSIMs have a 
correlation engine that allows for the creation of custom directives. Figure 3.4 illus-
trates a logical sequence of events that could be built as a custom correlation directive 
in OSSIM to uncover a potential brute-force attack [14]. At each level, an alert can 
be sent to the appropriate parties indicating a potential threat. Furthermore, time 
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can be introduced as an additional attribute of interest, so that if the failed logins 
are occurring at a particular frequency, a different alert or severity level can be 
triggered.

OSSIM is not an enterprise class SIEM and cannot scale beyond one host or 
server. If there is a need for a large deployment, OSSIM’s commercial counter-
part USM provides support for horizontal scaling (adding more servers instead of 
buying bigger servers) and may be a better choice. OSSIM is the least expensive 
USM license [13] that includes hundreds of professionally developed correlation 
directives and forensic logging capabilities not included in the open source version. 
OSSIM does not support integration with big data technologies such as Hadoop, 
nor does it natively support exporting of events to external relational databases. 
OSSIM supports basic authentication or integration into directory services such as 
LDAP or Active Directory. More information about OSSIM and a free download 
of its SIEM software (ISO format) can be found on its website [16].

3.4.1.2  Traditional SIEM Tool

ArcSight has been developing SIEM tools since 2000 and is one of the oldest play-
ers in the market. In 2010, Hewlett Packard (HP) acquired ArcSight USD [17] and 
extended its portfolio of services to include enterprise cybersecurity. Today, HP 
ArcSight Enterprise Security Management (ESM) [18–24] is arguably the most 
heavily adopted SIEM tool by commercial and government organizations alike. 
ESM takes a modular approach toward SIEM. The standalone configuration of 
ESM excels in the three basic requirements of a SIEM tool (i.e., ingest, correlation, 
and visualization). Additional features such as central log management and threat 
intelligence can be subscribed to and deployed separately, to further enhance the 
capabilities of ESM. The cost of the ESM software and professional support is not 
clear, and it appears to fluctuate based upon the deployment configuration, number 
of data sources, and volume of ingest.

ESM has hundreds of built-in features all configurable from the ESM graphi-
cal user interface. If configured properly, these built-in features can substantially 
increase the resolution of an incident handler and decrease its time of response. 
Some of the features include the following: (1) data enrichment with user, asset, 
or key-terrain information; (2) prioritization and normalization of events [5]; 
(3) “near-real time” correlation of data and threat intelligence; (4) data forensics 
and historical and trending analysis; (5) a vast library of predefined security 
use cases, compliance automation, and reporting tools, which are designed to 
minimize time spent on creating compliance content and custom reports; and 
(6) workflow automation, which generates alerts and escalates events based on 
elapsed time [18].

ESM is feature rich and, as a result, there is a steep learning curve. As seen from 
Figure 3.5, the ESM console is loaded with options, and it is arguably the least user-
friendly interface. ESM protects its user console and data with authentication and 
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authorization via directory service (e.g., LDAP, Active Directory) integration and 
role-based access control.

For threat intelligence, ESM takes a standards-based approach and can receive 
feeds in the STIX or TAXII formats [25,26]. STIX stands for Structured Threat 
Information eXpression and TAXII stands for Trusted Automated eXchange of 
Indicator Information. Both standards are part of cybersecurity information shar-
ing efforts led by the Department of Homeland Security. A list of threat intelli-
gence providers that support STIX and TAXII can be found at https://stixproject 
.github.io/supporters/. In addition, HP provides a community intelligence portal 
“HP Threat Central” that hosts private security forums, threat databases, and ano-
nymized indicators of compromise (IOC) [22].

Out-of-the-box, the ESM smart-connector natively supports the parsing, 
ingestion, and conversion of hundreds of industry-recognized technologies into 
ArcSight’s Common Event Format standard. Some technology examples include 
the following: operating systems (Microsoft, Apple, Redhat Enterprise Linux, 
Oracle Solaris), anti-malware tools (Kaspersky, McAfee, Symantec, Trend Micro), 
application security (Bit-9, RSA, McAfee), network devices (Cisco, Juniper), and 
cloud (Amazon Web Service) [21].

In the event that the smart-connector does not support a particular feed, a 
custom feed can be written using the ESM flex-connector. The flex-connector 
framework is a software development kit (SDK) that enables the creation of a 
smart-connector tailored to the specific event data format [19].

ESM performs log correlation via the proprietary HP ArcSight’s Correlation 
Optimized Retention and Retrieval (CORR) engine. The CORR engine is a flat 
file system optimized for read performance. According to the ArcSight team, it is 
5 times more efficient at event correlation and 10 times more efficient at data stor-
age [20] than the previous SQL-based correlation engine.

Figure 3.5 ArcSight ESM 6.8 console.

https://stixproject.github.io
https://stixproject.github.io
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ESM has rule-based, statistical, or algorithmic correlation, as well as other 
methods that include relating different events to each other and events to contextual 
data. In addition, ESM has hundreds of preconfigured rules for advanced correla-
tion and with the integration of threat intelligence sources, the correlation engine 
can quickly identify IOC [21]. A few example rules that are available out-of-the-box 
include the following: top attackers and internal targets, top infected systems, top 
alert sources and destinations, bandwidth usage trends, and login activity trends 
[22]. More information about HP ArcSight ESM can be found on its website [18].

3.4.1.3  Non-Traditional SIEM Tool

In 2002, Eric Swan and Rob Das [27–30] founded Splunk on the premise that 
it would serve as the Google (i.e., search engine) for enterprise log data. Splunk 
satisfies the basic requirements of a SIEM (i.e., data ingest, correlation, and visu-
alization), but it is not a traditional SIEM. Traditional SIEMs often have a fixed 
schema of attributes that can be correlated against one another. Data are ingested 
and bucketed into those attributes and then correlation rules are applied to estab-
lish relationships and insights. Splunk was designed in a more flexible manner to 
ingest any type of log data, automatically index it, and extract searchable events. If 
Splunk’s automatic indexing is off base, manual user intervention can be taken to 
tweak the indexing for a specific data source/type. Once the data are indexed and 
searchable, Splunk offers a variety of methods to interact with the data, including 
methods that support enterprise security use cases. Splunk initially offers its prod-
uct for free via a 500 MB/day data-indexing license. However, 500 MB/day can 
quickly be consumed in minutes when multiple sources are being indexed. Splunk’s 
cost model is based on the volume of raw and uncompressed data indexed per day. 
Similar to ESM and OSSIM, Splunk protects its user console and data stores with 
authentication and authorization via directory service integration and role-based 
access control.

Splunk includes an application for enterprise security [28] that supports inges-
tion of external threat feeds for correlation with log events. Splunk itself does not 
offer any threat intelligence feeds or host a threat intelligence portal. It relies on 
external feeds and can support both open source as well as subscription-based mod-
els. External threat intelligence feeds can be thought of as an additional data source 
that Splunk can automatically ingest, index, and create searchable events.

Splunk does not rely on predefined correlation rules. Splunk’s approach toward 
event correlation is to provide the end user with a powerful search processing lan-
guage (SPL) and present him or her with a unified, indexed, and searchable data-
base of events. SPL is designed to transform statistical correlation methods into 
queries across the unified search database [29]. This pool of indexed data can also 
be searched in a manual fashion, and events can be correlated on the basis of time of 
occurrence or attribute of interest. Splunk can also perform automatic correlations 
based upon event attributes with similar values. An added advantage Splunk has 
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over some of its competition is that if an export is available, Splunk can ingest and 
correlate events processed by other SIEM tools.

Splunk is highly scalable as illustrated in Figure 3.6 [30]. Depending upon the 
use case, all of the Splunk roles can run on a single host or run distributed across 
hundreds of hosts.

More information about Splunk and a 60-day free trial download of the 
Enterprise version of its software can be found on its website [31].

There are various documented reports that quantify the return on investment 
that SIEMs tools provide. HP commissioned one such investigation where they 
identified millions in time and monetary savings across a variety of organizations 
[24]. The majority of the savings appear to be the result of SIEMs tools transform-
ing assessment work from a large team of analysts to a handful of specialists. For 
many industries, SIEM tools are the current answer to the question of how to 
enhance situational awareness and look at vulnerabilities from a holistic perspec-
tive. Unfortunately, many SIEM tools, including the three discussed in this chap-
ter, suffer from drawbacks, resulting in a false sense of security.

The majority of SIEM tools such as OSSIM and ArcSight ESM rely heavily on 
rule-based correlation. As a result, these systems require frequent tuning in order to 
account for false positives and false negatives. As the volume of data increases, so do 
the false positives. As correlation rules are tuned to account for false positives, the 
number of false negatives increases. This is a known and often poorly addressed fact 
of SIEM and standalone security tools alike. Splunk’s approach is a bit better than 
the traditional SIEM tool because it doesn’t focus on predefined correlation rules. 
Giving the end user a language (e.g., SPL) with which to interact with the data is 
a step in the right direction. However, this approach is limited by how creative an 
analyst’s queries are and how well the language can transform an analyst inquiry 
into queries across the data.

SIEM tools cook the data (e.g., preprocessing and normalizing) using a variety 
of methods that primarily support their predefined correlation capabilities. This 
approach works well to detect and mitigate known threats, but unknown threats 

Raw data
Searches

Search results

Search headsIndexers
Forwarders

Figure 3.6 Splunk three-tier architecture.
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are still a problem. Again, Splunk’s approach is somewhat better in that it attempts 
to automatically index and make all the data searchable. The question is, however, 
how accurate is their automatic indexing? It is also convenient that Splunk’s cost 
model is based upon volume of indexing.

Horizontal scaling for SIEM tools only slightly mitigates bandwidth and stor-
age constraints. If there is a spike in volume or velocity of log data for a given orga-
nization, adding more nodes to enhance a SIEM tool’s capacity and performance 
only works until the next spike occurs, not to mention the challenges of using 
SIEM tools in a decentralized model. For instance, if an enterprise is geographically 
dispersed between two continents, how will the logs from one site be transferred 
to the other site in order to be processed by a SIEM tool in a timely fashion? The 
answer is they will not be transferred. Each site will likely have its own SIEM tool 
infrastructure on premises with some mechanism to cross-correlate the data. This 
is not a trivial proposition. Some SIEM tool manufacturers have started offering 
“cloud”-based models to better support this use case, but it is not yet clear whether 
this approach is beneficial.

3.4.2  Temporal Causality Analysis for Enhancing 
Management of Cyber Events

This subsection introduces a novel temporal causality analysis for cyber events clas-
sified into five processes: namely, attacker, vulnerability detection and protection, 
intrusion detection, agility, and risk assessment. This temporal causality analysis 
differs from the current SIEM tools in that it provides vector-time, vulnerability-
centric causality pairing graphs, and context-specific vulnerability-centric causality 
pairing graphs of events including agility and risk actions, which can also provide 
cues for the detection of zero-day vulnerabilities and attacks. With the help of 
timestamps of events, the vector-time concept that is imported from distributed 
systems [32] allows analysts to investigate the events in a temporal domain, even if 
time synchronization is not available among the hosts of a cybersecurity environ-
ment. In addition, this causality analysis can incorporate the human factor from 
the perspectives of user, defender, and adversary, although it is not included in this 
section due to space constraints.

To protect against malware detection and spread control are essential to main-
taining the functionality or mission assurance of a system. The success of the pro-
tective measures depends on a number of factors, including the accuracy of IDS, 
the system’s resilience against attacks, the strength of vulnerability patching and 
recovery, the level of situational awareness, and the correlation of sensor observa-
tions and measurements. It is highly desirable to perform real-time data analytics 
of cyber events, observations, and sensor measurements to discover interactions and 
characteristics of cyber events. In stealthy malware, the adversary aims to make the 
malware invisible and undetected to a cyber-defensive mechanism over a target net-
work. To achieve this, the adversary gathers information on the state of defensive 
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mechanisms. In addition, the adversary may choose to obfuscate the real intent by 
performing misleading activities and operations.

The causal interpretation of networks is essential to understand how events and 
entities trigger each other, thereby indicating their causalities. Causal models help 
determine how the sequence of events or entities trigger each other. There can be 
numerous latent variables within a system that are not observable. Although it may 
be tolerable to not model some latent variables in answering probabilistic queries, 
it is highly desirable for causality analysis to identify latent variables when correla-
tions between them represent causal relationships. In general, correlations between 
any set of variables may form a set of both causal and non-causal relationships. A 
causal model can be represented as a directed acyclic graph over random variables, 
where the value of each random variable is computed as a stochastic function of the 
values of its parents [33]. In [4], the triggering relations in causality reasoning about 
network events are addressed by comparing rule- and learning-based methods on 
network data of stealthy malware activities.

Our overall goal is not only to detect vulnerabilities and exploit but also to miti-
gate the adverse impact of vulnerability exploitations. Indeed, it is highly desirable 
that the adverse impact of vulnerability exploitations does not lead to an unaccept-
able level in mission assurance. This may be achieved by using the approaches of both 
reactive mitigations and proactive mitigations. Therefore, in addition to considering 
the cyber events of attacker, vulnerability detection/protection, and intrusion detec-
tion, we also consider the cyber events of agility and risk assessment. So, we consider 
five cyber processes in the temporal causality analysis of cyber events, where an event 
denotes any observable occurrence of an activity or action in a system or network. An 
event may have physical attributes (e.g., network topology, frequency of event occur-
rences over a period), meta-data attributes (e.g., IP addresses, port addresses, time-
stamps, control or user data types, TCP, or UDP), event interaction attributes (e.g., 
vector time, where the sequence of past values of vector-time indicate the interaction 
of causal events of different processes; lag time of event responses), or cross-layer attri-
butes of OSI models (e.g., application type, file type, protocol type). In Figures 3.7 
through 3.9, directed edges between events of different processes indicate causality, 
whereas undirected edges indicate that events exhibit temporal order but are not nec-
essarily causal. To keep track of interactions between five cyber processes, we use the 
vector-time concept in distributed system events. Vector time characterizes causality 
and temporal order such that the kth entry of a vector time that corresponds to pro-
cess Pk is incremented by one each time an event occurs in process Pk. Whenever an 
event of Pk receives the vector time of another process’ event, the vector time entries of 
Pk’s event are aggregated with the vector time entries of the other process.

As an example, let us consider an SQL injection attack that takes advantage of 
the ability of influencing SQL queries formed and submitted to a backend database 
by an application such as a web application using inputs received from potentially 
untrusted sources [13]. Figure 3.7 shows that the attacker activities can be classified 
into at least seven categories, labeled as a1 to a7, corresponding to (a1) performing 
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reconnaissance, (a2) exploiting vulnerabilities of (a3) the webserver and (a4) the 
database server, (a5) delivering malware to escalate privileges, (a6) installing a back-
door on system, and (a7) stealing data. Some of these attacker events involved events 
of other cyber processes. For instance, network-based IDS and/or host-based IDS 
may detect some of these attacker events and generate alerts; some vulnerabilities 
may get exploited and then recovered; agility events may help avoid or mitigate 
impact of attacks, with the help of risk assessment events; and the tasks prioritiza-
tion of vulnerability and intrusion detection processes can be strengthened with 
the guidance of risk assessment events. The causality between different processes in 
Figure 3.7 is illustrated by directed edges.

Once the causality edges and the vector-times of events are established as shown 
in Figure 3.7, time intervals with predefined durations can be designated so that all 
causal and temporal edges of each time interval can be studied in-depth. Figure 3.8 
illustrates how all those directed edges that are involved with vulnerability v4 can 
form causal pairs. However, some temporal edges can also be causal, and, therefore, 
the next step is to find out which temporal edges are causal (see Figure 3.9). Then, all 
causal edges are used to form the so-called vulnerability-centric pairing graph (VCP), 
as shown in Figure 3.9. The cyber data corresponding to the interactions of the VCP 
edges can represent the quality data of its time interval. These quality data are stored 
properly in the database so that they can be extracted easily and instantaneously by 
database queries formed by cyber analysts. Hence, big data of cyber events can be 
reduced to a smaller size of the aggregated quality data of temporal causal events.
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Figure 3.7 Causality edges of cyber events for an SQL use case. Attacking process 
events (a1: reconnaissance; a2: use SQL injection to exploit v2 of webserver; a3: use 
SQL injection to exploit v3 of database server; a4: deliver malware and tools to 
escalate privileges; a5: install a backdoor on system by exploiting v4; a6: exfiltration 
of system credentials; a7: theft of data); vulnerability process events (v1, v2: web 
server; v3: database server; v4: backdoor); intrusion detection process events (d1, d2, 
d3, d4, d5); agility events (g1, g2, g3, g4, g5); and risk assessment events (r1, r2, r3, r4, r5).
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3.5  Summary and Future Directions
Computer systems and networks have become so essential to the functioning of 
modern society that they have become a primary target for adversaries, for ide-
ological or nationalistic purposes as an element of modern day warfare, as well 
as for individual personal or financial gain. Trusted networks are penetrated and 
exploited to commit espionage and intelligence gathering, perpetrate a denial of 
service, corrupt data or disseminate misinformation, achieve kinetic or cyber-physical 
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Figure 3.9 Causality edges of SQL cyber events with the VCP graph.
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where vulnerability v4 is found to be exploited.
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effects, and potentially hijack control of valuable assets. In each vulnerable sec-
tor of society, it is essential to prioritize mission essential functions by conducting 
dependency and risk analysis of network assets, engineering robust and resilient 
architectures, and identifying the optimal network locations to monitor and swiftly 
detect compromise of key computer assets.

Many industry and open source tools exist to collect, aggregate, summarize, 
and organize data collected from hosts and at strategic network locations. Antivirus 
software and vulnerability scanning tools can systematically search hosts for signa-
tures of malicious code or security flaws in benign code. Intrusion detection and 
prevention systems can generate alerts that indicate unusual or suspicious activity 
on computers in the trusted network. The difficulty with these tools is that they 
generate far too many alerts and indicators, many of which do not truly have secu-
rity implications. Although an SIEM can be used to assemble, organize, and query 
the data, and help analysts to cope with the large data volumes being generated, 
existing methods to prioritize the alerts and indicators suffer from various problems 
and could be improved.

We submit that detecting and comprehending actual threats that exist on 
the network requires a more dynamic approach. We suggest that correlations 
between various signatures on a host and indicators of potential exposure to an 
adversarial entity that may exist in the traffic passing to and from the host might 
be used to escalate the priority of a known vulnerability. The difficulty is in the 
sheer volume of signatures and traffic to be processed; it is not a tractable prob-
lem for a human being to perform a correlation analysis on each and every set of 
indicators. We propose certain methods for identifying events of interest, sum-
marizing them, and storing them properly in a database so that cyber analysts 
can query them easily and instantaneously. Such methods could be combined 
with SIEM data architectures to provide a more seamless integration with exist-
ing methodologies.

The challenge of detecting, assessing, and mitigating vulnerabilities and intru-
sions necessitates collecting, correlating, and analyzing cyber vulnerability and 
intrusion data in real-time because cybersecurity situations evolve rapidly and get 
complicated with incomplete information and uncertainties. However, current 
cybersecurity tools and methods have limited capability extensibility and scal-
ability to deal with such complicated situations and big data in real-time. In this 
chapter, we first presented the basics of vulnerability assessment, data sources and 
tools, and main components of big data analytics. We then provided a use case 
on identification and attribution of vulnerability exploitations. Temporal causality 
analysis of cyber events is described to determine the quality data needed for the 
analysis of vulnerabilities and exploitation by determining the temporal interac-
tions and causality of various types of cyber events, including attacker activities, 
vulnerability detection and protection, and intrusion alerts. This analysis may also 
assist detecting zero-day vulnerabilities and exploitations whenever the known 
vulnerabilities and exploits do not provide sufficient reasoning for explaining 
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the suspicious interactions and uncertainties among the observed interactions of 
attacker activity, vulnerability, and intrusion alerts. For future research, we suggest 
that this detection process of zero-day vulnerability and attack be enhanced further 
by incorporating outlier detection capability into cyber data analytics and causality 
analysis. To have a better management of cyber events, it would be desirable to add 
interventions [33] on the values of causality parameters so that the values are not 
just observed but are also manipulated. In order for cyber analysts to benefit from 
these scalable data analytics and causality analyses, they should have the capabil-
ity of forming accurate queries and receiving fast responses by the analytics-driven 
processing environment of cybersecurity.
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The cybersecurity landscape is evolving constantly. High-profile breaches in large 
enterprise networks [1–5] have demonstrated serious challenges for organizations and 
entities. These attacks are increasingly getting more complex, and usually tend to stay 
low profile while targeting critical data including intellectual property and financial 
assets. For this reason, they often go undetected for several months, and leave the 
enterprise networks unprotected during this period. Recent threat reports published 
by major security companies have also acknowledged the fact that the cyber-crime 
scene is becoming increasingly more organized, and more consolidated [6,7].

4.1  Introduction
On the other end of the spectrum, victims of such attacks are pressured to disclose 
who is behind the attack once the attack is detected [8]. Consequently, security 
analysts are often asked to attribute attacks to a specific threat actor in the early 
stages of the investigation, a point where they should start to gather evidence of 
the compromise. Clearly, this approach does not result in a systematic approach to 
identifying the underlying root causes of the attacks, and rigorously investigating 
root causes of the attack phenomena.

Over the past few years, big data analytics for security, data mining, and 
machine learning techniques have been proposed [9–16] to tackle this shortcom-
ing by providing insights about an attack based on large-scale datasets. These 
techniques are often designed to automatically identify suspicious actions, extract 
knowledge from raw network data, and provide insightful results from a large num-
ber of logs generated every day. These research efforts cover a wide range of topics 
in security data mining from improving alert classification or intrusion detection 
capabilities [10,11,13,15] to automatically reporting infected machines within an 
enterprise network [9,16,17].

The main focus of this chapter is to elaborate on techniques to perform attack 
attribution which can assist security analysts to analyze security incidents more 
effectively, identify security breaches, and determine root causes of attack phenom-
ena. More specifically, these techniques can potentially help cybersecurity analysts 
to gain deeper insights about an attack such as characterizing the malicious behav-
ior inside the enterprise or getting insights into their global behavior. That is, the 
aim is to try to answer questions such as: how long do attacks stay active, what 
is their average size, their spatial distribution, how do they evolve over time with 
respect to their origins, or the type of malicious activities they perform?

The rest of this chapter is structured as follows. Section 4.2 explains the funda-
mentals of root cause analysis and the definition. Section 4.3 introduces a generic 
model to perform casual analysis of security threats. In Section 4.4, two case stud-
ies are provided, and finally, the chapter is concluded in Section 4.5.
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4.2  Root Cause Analysis and Attack Attribution
In the field of threat intelligence, root cause analysis is a collection of procedures for 
identifying the causes of an attack, and effectively attributing new attack events. This 
potentially allows a security analyst to get a better understanding of the observed 
attacks, and also to characterize emerging threats from a global viewpoint. For 
example, from the defense perspective, it is useful to know who is really behind an 
observed attack, i.e., how many organizations are responsible for them? Where do 
they originate from? What are the emerging strategies used in cyber-crime?

This chapter primarily focuses on large-scale attacks which could be launched 
by criminal organizations or profit-oriented underground campaigns rather than 
tracing back a single attack to an ordinary hacker that penetrated an organization. 
The chapter also provides insights on effective methods that have been practiced 
recently in real-world scenarios which can help security analysts to determine the 
root causes of global attack phenomena (which usually involves a large number 
of sources), and to easily derive their modus operandi. These phenomena can be 
observed through different means such as honeypots, intrusion detection systems 
(IDSs), sandboxes, or malware collecting systems.

Unsurprisingly, such attacks are often largely distributed on the Internet, and their 
lifetime can vary from only a few days to several months depending on the nature of 
the attacks. This makes the attribution of distinct events having the same root phe-
nomenon a challenging task, since several attack characteristics may evolve over time.

The generic approach described in this chapter allows security analysts to identify 
and characterize large-scale security events on the Internet based on network traces 
collected with easily deployable sensors. In most cases, it is assumed that security 
events can be observed with well-placed distributed sensors that collect logs. Examples 
of typical attack events that are considered in this chapter can range from malware 
families through code injection attacks to rogue software campaigns, which aim at 
deploying numerous malicious websites in order to host and sell rogue software.

4.3  The Causal Analysis of Security Threats
This section elaborates on general challenges to perform root cause analysis for 
large-scale security events, and then explains in more detail the tools and tech-
niques to systematically perform a comprehensive analysis on security incidents.

4.3.1  Challenges in Detecting Security Incidents

There are several challenges that need to be addressed to accurately identify 
security incidents in enterprise networks and characterize their root causes. For 
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example, the volume of events logged by various systems inside the enterprise net-
works usually results in a major challenge in log analysis and detection of security 
incidents. For example, performing efficient analysis and also timely detection of 
critical threats requires reliable data-reduction algorithms to maintain security-
relevant information in the logs [16]. This step is often challenging because we 
need to retain the communication characteristics of internal hosts and external 
services. Furthermore, most current attacks tend to stay low profile, and easily 
blend in with millions of legitimate events. Given enormous volumes of logs every 
day, discovering meaningful security incidents is quite challenging considering 
the gaps between the raw logs collected by the monitoring systems and the insight-
ful information that security analysts require to identify suspicious behaviors. 
Like other data mining applications, the features to extract meaningful informa-
tion from the data should be carefully selected to achieve low false positive cases 
given the large datasets. Finally, a major challenge in detecting security threats is 
that limited ground truth is available for enterprise infections since the only way 
they are identified is when they are detected and blocked (by anti-virus, intrusion 
detection tools, or blacklists), making the evaluation of the proposed techniques 
quite challenging.

4.3.2  Root Cause Analysis for Security Data Mining

Over the past few years, a considerable research effort has been devoted to applying 
data mining techniques to security-related problems. However, a significant part 
of this effort has been exclusively focused on improving the efficiency of intru-
sion detection systems rather than on providing new fundamental insights into the 
nature of attacks, or their underlying root causes [18,19]. A comprehensive survey 
of data mining techniques applied to intrusion detection can be found in [20,21]. 
These techniques are designed to improve alert classification or intrusion detection 
capabilities, or construct more accurate detection models by automatically generat-
ing new rules (e.g., using an inductive rule generation mechanism).

The objective here is not only to identify attack events occurring at a larger 
scale, but also to understand their root causes, and get insights into the modus ope-
randi of attackers. This allows security analysts to systematically discover patterns 
from a given dataset with limited knowledge of the security event under scrutiny. 
To achieve this goal, the underlying analytical methods must be sufficiently generic 
so that they can be applied to virtually any type of dataset comprising security 
events (e.g., attack events observed by honeypots, network attack events, IDS alerts, 
malware samples, spam messages, etc.).

In order to discover new insights about the nature of attacks and their underly-
ing root causes, we explain a generic model to address this issue in a systematic way. 
In this model, the datasets contain malicious activities from different sources (high 
and low-interaction honeypots, malware samples, honeyclients, etc.). The model 
employs unsupervised data mining techniques to discover a priori unknown attack 
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patterns, and gain insights into their global behavior. It also leverages multi-criteria 
decision analysis (MCDA) [22] to attributing attacks based on the output of the 
clustering process.

In fact, this framework consists of the following three main components:

 1. Feature selection for security events: To perform the security analysis and 
extract meaningful patterns from a given dataset, the security analyst should 
introduce a set of relevant features to be applied on the dataset. Each security 
event in the dataset is characterized by a set of selected features (i.e., feature 
vectors), denoted by F= {Fk} where k = 1, …, n.

 2. Graph-based clustering: To measure pairwise similarity, an undirected edge-
weighted graph can be created with respect to every feature Fk. As an addi-
tional step, a graph analysis can be performed on a single feature basis to 
identify strongly connected components within each graph. This graph analy-
sis allows the security analyst to extract the structure of the dataset and the 
relationship among different groups of security events with regard to a specific 
feature.

 3. Multi-criteria aggregation: This step leverages different weighted graphs using 
an aggregation function that models the expected behavior of the security event 
under scrutiny.

In the following, we briefly explain each component in more detail.

4.3.2.1  Feature Selection for Security Events

Similar to other data mining applications, one of the first steps to perform an analy-
sis on large datasets is to select features that may reveal interesting patterns. More 
specifically, the feature selection is the process of identifying the most effective 
subset of features to employ in the clustering process, and construct well-separated 
clusters.

More formally, we have the dataset D composed of t objects, which are usually 
defined as security events. We define a feature set F made of n different features Fk, 
k = 1, …, n, that can be extracted for each event ei from D where i = 1, …, t. Let us 
denote xi

k( )  as the feature vector extracted for the event ei using the feature set Fk. 
In fact, x Ri

k d( ) ∈  is a d-dimensional vector of real values, i.e.:
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Here, d is the dimension of the feature vector of the feature Fk. We can then 
group all feature vectors defined for the given feature Fk as X X Xk k

t
k( ) ( ) ( ), , .= …{ }

To summarize, a security analyst needs to define three parameters: t is the num-
ber of security events, n is the number of attack features, and d is the dimensionality 
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of the feature vector. The security analyst could employ any possible feature in 
order to discover insightful patterns from a given dataset, and that may be useful 
for the root cause analysis. Depending on the type of dataset and the attack being 
studied, the analyst may include features such as network-related features such as 
IP addresses considering different subnets, DNS queries or WHOIS information 
of the contacting domain names, malware payload analysis (e.g., MD5, PE header, 
and behavioral features through dynamic analysis), timing information of security 
incidents, or other application-specific features (e.g., embedded URIs and from-
domains used in spam messages).

4.3.2.2  Graph-Based Clustering

A clustering process refers to the task of unsupervised classification by which 
unlabeled patterns are grouped into clusters based on a similarity measure. A 
valid cluster results in discovering interesting patterns from the given dataset 
without prior knowledge on the phenomena being studied. For attack attribu-
tion purposes, the extracted patterns from the constructed clusters allow secu-
rity analysts to analyze the underlying causes that may have created the security 
events. These clusters also allow constructing a data abstraction level that pro-
vides a compact representation of each cluster containing all attack patterns being 
grouped in that particular cluster.

Unsurprisingly, clustering real-world datasets can be a difficult task since the 
clustering process is mostly a data-driven process, and different clustering methods 
will quite probably yield different results using the same dataset. Thus, the pro-
posed framework should not be limited to a given clustering algorithm. The only 
requirement that a security analyst should consider is to use a graph-based repre-
sentation (i.e., edge-weighted graphs) in which all pairwise distances are calculated 
ahead of time for every attack feature.

The analyst could use any classical clustering algorithm, such as K-means, hier-
archical clustering (single or complete-linkage) [23], or connected components to 
perform the analysis. One approach is to leverage a graph-theoretic model [24] that 
allows extracting dominant sets from a graph by simply formulating the problem as 
a continuous optimization problem. Once the edge-weighted graphs for different 
attack features become available, they can be combined using MCDA aggregation 
functions that model the behavior of the attack under the analysis.

For each attack feature Fk, an edge-weighted graph Gk is generated in which the 
vertices (or nodes) are mapped to the feature vectors Xi

k( ) ,  and the edges reflect the 
similarity between data objects regarding the considered feature. The undirected 
edge-weighted graph for a given feature Fk can be represented by:

 G V Ek k k k= ( , , )ω

where Vk is the vertex set, Ek is the edge set, and ωk is a positive weight function.
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The technique proposed by Pavan and Pelillo [25] iteratively finds dominant 
sets in an edge-weighted graph, and then removes them from the graph until all 
vertices have been clustered, or once a given stopping criterion is met, which could 
give eventually an incomplete partition as output. We refer the interested reader to 
[26] for a more detailed discussion and an objective comparison of various cluster-
ing algorithms against dominant sets.

4.3.2.2.1  Distance Measures

Most clustering techniques use distance metrics to group objects into clusters. In 
fact, distance measures are used to calculate the dissimilarity between two patterns 
based on the given feature space. As mentioned earlier, the security analyst could 
employ any technique to perform the clustering task. However, in order to generate 
compact clusters, it is crucial to check whether the specified measure suits the intrin-
sic data structure. For example, one of the commonly used distance measures is the 
Euclidean distance [27]. However, the authors in [28] demonstrated that Euclidean 
metrics only work well when the dataset contains compact or isolated clusters. 
Furthermore, they can be completely inefficient with high-dimensional data due to 
the exponential increase in the volume of the dataset. In fact, several previous works 
have shown that in a high-dimensional space, the concept of proximity, distance, or 
nearest neighbor may not even be qualitatively meaningful when relying on com-
monly used metrics such as Lk norms—especially in data mining applications [29].

There are other similarity measures that can be employed to cluster attack pat-
terns. For example, another common similarity measure is the sample correlation 
between observations treated as sequences of values. The sample correlation reflects 
the strength of the linear dependence between two real-valued vectors. For exam-
ple, a correlation value of 1 implies a perfect linear relationship between the two 
vectors. The interpretation of a correlation value depends on the context. However, 
a value between 0.5 and 1 is usually considered an indication of a strong depen-
dence between observations.

To assess the quality and consistency of the clustering results, several cluster 
validity indices have been proposed. In [30], the authors review validity indices 
that are particularly appropriate for evaluating graph clustered structures. These 
techniques are based on different definitions of inter- and intra-cluster connectivity. 
To assess the quality of the experimental results presented in this model, we will 
mainly focus on the graph compactness, which is a quite effective validity index. 
We refer the interested reader to [26,30] for more information on the other cluster 
validity indices.

4.3.2.3  MCDA-Based Attack Attribution

As mentioned earlier, a security analyst can benefit from graph-based clustering 
to extract informative patterns from a set of security events. If the graph-based 
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clustering is repeated for different attack features, a set of clusters for each attack 
feature can be extracted which provides interesting viewpoints on the underlying 
phenomena.

An attack attribution problem can be represented as an application of MCDA 
in which the criteria of concern are given by the distance values during the graph-
based clustering for each attack feature. That is, the distance values between two 
security events are used to decide whether they are likely due to the same root 
phenomenon. A representative MCDA attack is depicted in Figure 4.1.

In an MCDA problem, a global score is calculated for each alternative (deci-
sion) by using a well-defined aggregation method that models the preferences of 
the decision-maker or a set of constraints. In fact, the aggregation process is a form 
of averaging function, like a simple weighted means (e.g., simple additive weight-
ing, weighted product method, analytical hierarchy process [31]), or the ordered 
weighted average (OWA) [32,33], and Choquet or Sugeno integrals [33]. The OWA 
[32] as aggregation function provides more flexibility on how to model more com-
plex relationships among criteria. Moreover, one should not assume that events 
observed by different sensors are always independent.

The power of such an aggregation function lies in the fact that different combina-
tions of criteria may apply to each pair of events. Furthermore, the decision-maker does 
not need to specify in advance which criteria (or features) must be satisfied to link two 
events to the same phenomenon.

4.4  Case Studies
In this section, we provide two case studies proposed with regard to the generic 
model presented in Section 4.3. The case studies demonstrate how applying data 
mining techniques allows the identification of an attack event, and assists security 
analysts to perform root cause analysis.

Multi-criteria
aggregation

Event

Feature
selection

Analyst

Figure 4.1 A generic attack attribution method which aggregates multiple weighted 
graphs into a combined graph using an MCDA approach.
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4.4.1  Attack Attribution via Multi-Criteria Decision Making

This case study shows a set of techniques to perform a behavioral analysis of bot-
nets. The case study is based on a research paper [17] that employs a combination of 
a knowledge discovery technique and a fuzzy inference system. The authors show 
that by applying this method on attack traces, it is possible to identify large-scale 
attack phenomena with a high degree of confidence.

Attack events. The dataset used in this research is network attack traces collected 
from honeypots across 20 different countries from 18 different class A-subnets. The 
assumption here is that any network connection established with a remote IP can 
be safely considered as malicious since honeypots are deployed for the sole purpose 
of being compromised. Consequently, as a first step, each remote IP observed on 
honeypots is attributed to an attack cluster according to its network characteristics, 
such as the number of IP addresses targeted on the sensor, the number of packets 
and bytes sent to each IP, the attack duration, the average inter-arrival time between 
packets, the port sequence being targeted, and the packet payload. Therefore, all IP 
sources belonging to a given attack cluster with similar network traces on a given 
sensor can be considered as having the same attack profile. Consequently, an attack 
event in this context refers to a subset of IP sources having the same attack profile 
on a given sensor, and whose suspicious activity has been observed within a specific 
time window.

4.4.1.1  Defining Attack Characteristics

To provide meaningful patterns and extract knowledge from the attack events, a 
set of attack characteristics should be defined. In this context, attack characteristics 
are defined as follows:

The attack origin. One of the first questions that arises is that, based on the 
given dataset, what is the origin of the observed attacks? The geographical location 
of attack activities can be used to identify attack activities that have specific distri-
bution in terms of originating countries. For example, the IP network blocks can 
provide an interesting insight about the attack. In fact, IP subnets can give a good 
indication of compromised machines involved in an attack event. Consequently, 
for each attack event, a feature vector is created to represent the distribution of 
originating countries, or of IP addresses grouped by Class A-subnet.

Targets of the attack. During an attack event, an attacker attempts to check all 
the active services on the sensors, and find vulnerable services to exploit. To iden-
tify the potential targets of an attack, each source of the attack is associated with a 
complete sequence of ports that it has targeted on a sensor for the duration of the 
attack session. To look whether there is a relationship between the attack events and 
the types of services on deployed sensors, the attack events that occurred within 
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the same time window should be grouped together, and then each group of attack 
events should be used to create the feature vector representing how many sensors 
have been targeted.

Attack capabilities. Another interesting characteristic is to find out what a source 
of an attack is capable of doing on the target during the course of the attack. For exam-
ple, examining the specific commands that a bot issues during an attack session can 
provide important insights on the capabilities that a bot may possess. The logs can be 
used to look for similarities between the sequences of actions that sources of attack 
events perform during an attack session.

Common characteristics. It is also reasonable to expect if two distinct attack 
events have a high percentage of IP addresses in common, then the probability that 
those two events are somehow related to the same global phenomenon increases.

4.4.1.2  Extracting Cliques of Attackers

As described in Section 4.3, for the clustering task, after selecting features, a similar-
ity measure between pairs of patterns is defined in order to effectively group similar 
patterns. The similarity measure is a simple unsupervised graph to formulate the 
problem. In fact, the vertices of the graph are the patterns of all attack events. 
The edges express the similarity relationships between those vertices by calculating 
the distance metrics based on the square root of the Jensen–Shannon divergence 
[33]. The clustering is performed by extracting maximal cliques from the graph that 
is defined as an induced sub-graph in which the vertices are fully connected and 
it is not contained within any other clique. As mentioned in Section 4.3, to per-
form this unsupervised clustering, the dominant sets approach [25] was used which 
proved to be an effective method for finding maximal-weighted cliques. We refer 
the interested reader to [34,35] for a more detailed description of this clique-based 
clustering technique applied to this case study.

4.4.1.3  Multi-Criteria Decision Making

One of the objectives of this work is to reconstruct sequences of attack events that 
can be attributed to the same root phenomenon. This allows one to classify incom-
ing attack events into either known attacks or a new attack. The intuition here is 
that two consecutive attack events should have the same root causes if and only 
if they share at least two different attack characteristics out of the complete set of 
criteria (see Section 4.4.2). The reason is that current types of attacks are highly 
dynamic, and the distribution of the attack events changes rapidly (i.e., a botmas-
ter employs new bots and old bots [infected machines] become clean over time). 
Therefore, two consecutive attack events from the same botnet must not necessarily 
have all their attributes in common.

In order to decide whether two attack events are related, attack events should 
have a certain degree of relatedness. In this case study, the decision-making process 
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that determines if attack events have the same root causes is based on a fuzzy infer-
ence system (FIS). More specifically, the knowledge obtained from the extrac-
tion of cliques is used to build the fuzzy rules that describe the behavior of each 
phenomenon. To detect a new attack, the characteristics of the new attack events 
are provided as input to the fuzzy inference systems which model the identified 
phenomena.

The multi-criteria inference method was applied to the set of attack traces 
obtained with the Leurre.com honeynet for over 640 days. The dataset was collected 
by 36 platforms located in 20 different countries and belonging to 18 different class 
A-subnets [17]. During this period, 32 global phenomena were identified and 348 
attack events were attributed to a large-scale phenomenon. The method was also 
capable of characterizing the behaviors of the identified phenomena. For example, 
the largest botnet that attacked the deployed honeypots had 69,884 sources with 57 
attack events. During this period, on average, the size of botnets was about 8,500 
based on the observed sources, a mean number of 658 sources per event. Figures 4.2 
and 4.3 exhibit the geographical distribution of cliques of attacks with regard to top 
attacking countries and the port sequence targeted by attackers.

The interested reader can refer to the original research work [17] for more infor-
mation on the global behavior of detected phenomena.
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4.4.2  Large-Scale Log Analysis for 
Detecting Suspicious Activity

In the previous case study, the ultimate goal was to reconstruct the sequences of 
attack events and find the attack events that may have the same root causes. Since 
the dataset was collected from honeypots, one can safely assume that the collected 
data is malicious, and is the result of different attack events. This part addresses a 
different problem. It explains techniques that can be used to discover attack events 
when the suspicious traffic is blended in with millions of benign events.

Beehive [16] is a system that is proposed to automatically extract knowledge 
from log data produced by security products in large enterprises. Such approaches 
are useful in a sense that they improve on signature-based approaches by mainly 
focusing on characterizing the behavior of suspicious traffic. This allows security 
analysts to identify suspicious host behaviors and determine the root causes of the 
incidents.

Attack event. Beehive aims to facilitate the detection of threats by reporting 
network hosts that exhibit suspicious behaviors. These suspicious behaviors include 
contacting an attack website, communicating with C&C servers, or exchang-
ing traffic with a previously unseen external destination. These behaviors may be 
the results of malware activities in the compromised host, direct control of hosts 
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by an external attacker, or benign users being tricked into performing dangerous 
behavior.

4.4.2.1  Defining Attack Characteristics

In order to discover an attack event, Beehive employs a wide range of logs generated 
by network devices including web proxies, DHCP servers, VPN servers, authenti-
cation servers, and antivirus software logs. In order to characterize outbound traffic 
from the enterprise, for each dedicated host, a feature vector with 15 features is 
generated. In the following, we provide more details on how Beehive characterizes 
the outbound traffic.

Suspicious origins. Exchanging traffic with uncommon external origins may be 
indicative of suspicious behaviors. One may be interested in identifying hosts that 
communicate with new, external destinations that have never been contacted before. 
For example, the number of new external destinations contacted by each host per day 
is recorded as a history of external destinations by internal hosts over time. In addi-
tion to new, uncommon destinations, the system also collects unpopular external raw 
IP addresses. The assumption is that connections to unpopular IPs can indicate suspi-
cious activity, as legitimate services can usually be reached by their domain names.

Suspicious hosts. Hosts in organizations are often very homogeneous in their 
software configurations. Installing new software on a host is, in fact, indicative of 
suspicious behavior.

Beehive infers the software configurations of a host from the user-agent string 
included in http request headers. A UserAgent (UA) string includes the name of the 
application making the request, its version, capabilities, and the operating environ-
ment. Beehive maintains the number of new UA strings from the host, and builds 
a history of UA strings per host over a month-long period.

Policy enforcement. If the origin of a request is unknown, and has not yet 
been categorized, the user must explicitly agree to respect the company’s policy 
before being allowed to proceed. The domains (and connections) that require this 
acknowledgment are called challenged, and those to which the user has agreed are 
called consented. For each host, the number of domains (and connections) con-
tacted by the host that are blocked, challenged, or consented is counted.

Suspicious traffic. Abrupt changes in the host’s traffic volume can be the result 
of malware infection, or the presence of automated processes. Beehive is designed 
to extract these activities by defining a connection spike as a one-minute window 
and monitoring the host’s traffic. An appropriate threshold for high traffic volume 
is determined over a sufficiently long period of time by counting the number of 
connections for each host.

Figure 4.4 shows the cumulative distribution across all one-minute windows for 
all dedicated hosts. Approximately 90% of the hosts generated less than 101 con-
nections, and contacted fewer than 17 distinct domains, per minute.
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4.4.2.2  Discovering Outliers in the Network

Beehive allows security analysts to observe groups of hosts that exhibit similar behaviors 
as well as misbehaving hosts with unique behavioral patterns. Based on the attack char-
acteristics explained in Section 4.4.2.1, each host is represented as a multidimensional 
feature vector. In order to remove potential dependencies between features and reduce 
the dimensionality of the vectors, principal component analysis (PCA) [36] is applied 
on the dataset. The data reduction is performed by projecting the original vectors onto 
a set of principal components. Each principal component is chosen to capture as much 
of the variance in the data as possible [16]. By selecting the top m principal components, 
the projection of the original vectors decreases to the dimensionality m.

The clustering algorithms to the projected vectors are an adaptation of the 
K-means clustering algorithm, but do not require the number of clusters to be speci-
fied in advance [37]. Beehive discovers incidents for the top outlying hosts, and 
reports them to the security analyst. The algorithm forms clusters by iteratively iden-
tifying the nodes that are furthest away from other clusters.

After discovering the outliers, incidents are reported to security analysts to 
perform further investigations. In order to facilitate the manual investigation, an 
incident report includes contextual information about the cluster in which the host 
belongs to, other hosts in the cluster, and the value of the feature vectors.
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Figure 4.4 CDF for number of web connections and number of domains contacted 
by a host per one-minute interval.
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Beehive showed effectiveness in detecting contacted domains created by domain-
generation algorithms (DGAs). The destination-based features (i.e., suspicious ori-
gins) was effective in clustering hosts that generated malicious traffic, as most of the 
DGA hosts belong to clusters with high numbers of new destinations.

Beehive also showed effectiveness by discovering 81 incidents where the cor-
responding hosts communicated with low-reputation websites, downloaded zipped 
files or executables, used malformed UA strings in http requests, or repeatedly con-
tacted the same URL. Table 4.1 represents the suspicious incidents categorized by 
the Security Operation Center (SOC) of the company.

4.5  Conclusion
In this book chapter, a set of techniques was introduced to address the complex 
problem related to attack attribution and root cause analysis. The chapter also 
explains two case studies based on recent research and shows their effectiveness 
in discovery knowledge from the attack events. In the first case study, the chapter 
explained how apparently unrelated attack events could be attributed to the same 
global attack root. The chapter also provided details on techniques to automatically 
extract knowledge in a large enterprise from millions of event logs collected every 
day from several network devices.
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Chapter 5

Data Visualization 
for Cybersecurity

Lane Harrison

Data visualization is an indispensable means for analysis and communication, par-
ticularly in cyber security. Promising techniques and systems for cyber data visual-
ization have emerged in the past decade, with applications ranging from threat and 
vulnerability analysis to forensics and network traffic monitoring. We revisit several 
of these milestones in this chapter.

Beyond recounting the past, however, we uncover and illustrate the emerging 
themes in new and ongoing cyber data visualization research. We explore the need 
for principled approaches toward combining the strengths of the human perceptual 
system with analytical techniques like anomaly detection, for example, as well as 
the increasingly urgent challenge of combating suboptimal visualization designs— 
designs that waste both analyst time and organization resources.
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5.1  Introduction
Unfortunately, cyber security needs data visualization.

Cyber security needs visualization because—in practice—security requires 
substantial human involvement. Even small organizations require constant time 
and attention from trained Security Information Workers (SIWs) to ensure accept-
able levels of security. SIWs spend much of their time in security operations: 
scanning devices on their network for vulnerabilities, for example, or analyzing 
incoming network traffic for malicious activity. Their limited time and attention is 
fragmented between collecting and analyzing data, and using it to form and priori-
tize changes in their organization’s network and systems. While hardly noticeable 
at first glance, visual representations of data—bar charts, pie charts, line charts, 
and the like—are ubiquitous in these operations.

The need for data visualization in cyber security is unfortunate because many 
organizations would happily relegate their security operations to intelligent sys-
tems, if it were possible.

Intelligent systems operate much faster than human operators, and are less 
prone to error than we are. The transition to intelligent systems is tempting for 
many organizations, especially given recent advances in artificial intelligence and 
machine-learning. Machine learning can now process massive streams of diverse 
types of data from both inside and outside an organization, for example, providing 
models that capture malicious behavior. Artificial intelligence, similarly, can ana-
lyze network infrastructure to suggest changes that help avoid misconfiguration. 
These advances represent new ways of thinking in security.

While promising, these advances have not been adopted in operational con-
texts, nor will they replace the security analyst. Experts in machine learning 
argue that, even when intelligent systems reach the point of making operational 
decisions, human judgment will still be necessary for managing the systems 
themselves.

This gap aligns with the goal of data visualization: to aid human analysis and 
judgment with data. Visualization combines the inherent strengths of our visual 
system with the powerful graphical and computational abilities of the computer. A 
properly designed visualization allows our eyes to quickly discern patterns in data, 
which feeds our understanding of the underlying features and phenomena in our 
data. Visual inspection leads us to new insights about our data, helping us form 
hypotheses about where to focus next. Interaction allows us to further pursue these 
hypotheses either by showing other parts of the data, or by showing the same data 
from a different perspective. These features make data visualization an invaluable 
tool for exploration, analysis, and communication.

Effective data visualization is difficult, however. Most of us are familiar with 
basic graphs and charts. Given the prevalence of tools like Microsoft Excel, it would 
be difficult to find a colleague who has never spent time creating bar charts and 
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pie charts. If you were to ask the same colleague to explain whether their bar chart 
is superior to a pie chart, however, no answer they give would be complete. The 
relative effectiveness of even the most basic charts is still a topic of debate. (Most 
research suggests that pie charts are the inferior choice, though some disagree, and 
recent work has begun investigating just how people read them.) Charts common 
in more technical contexts are no exception: histograms, box-plots, and scatterplots 
are frequently the topic of ongoing studies.

Given its ongoing study, one might wonder exactly when data visualization is 
useful in cyber security. Examples are readily available. When analyzing system-
level logs, for instance, two of the most commonly used tools are command-line 
utilities and Excel. Command-line utilities are used to access, manipulate, and 
filter the logs, while Excel is used for inspection, analysis, and visualization. SIWs 
use these visualizations not only to aid in their analysis, but also to communicate 
their results to other security teams and stakeholders.

Examples of techniques developed through data visualization research are also 
plentiful. For instance, the data visualization capabilities of tools like Excel rapidly 
become difficult when the number of columns is large. If an analyst needed to 
look for relationships across 20 columns, for instance, using Excel they would need 
to manually create multiple charts comparing pairs of columns. Data visualiza-
tion research offers several scalable alternatives. One is the parallel-coordinates plot 
(see Figure 5.1), which shows multiple dimensions side-by-side, and affords several 
interaction techniques to allow users to arrange columns to look for hidden correla-
tions and outliers.

Cyber security is much more than log analysis, however. SIWs handle every-
thing from threat and vulnerability management to forensics, traffic analysis, and 
more. As we cover these topics in the remainder of the chapter, bear in mind that 
our focus is not on covering the entire space, but rather on a sample of applicable 
data visualization techniques for each area.
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Figure 5.1 A parallel-coordinates plot [1]. Each axis represents a dimension (col-
umn) of the data. Each line represents a row (a particular car, in this case).
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5.2  Threat Identification, Analysis, and Mitigation
Threat analysis involves identifying and categorizing actions (both purposeful and 
accidental) that could interrupt day-to-day operations. Threat analysis uses many 
data sources, for instance, the risk of host or section of the network on its known 
vulnerabilities, as well as data on the possible paths an attacker might take through 
a network or into a system. SIWs spend a significant amount of time on threat 
analysis in their organizations because it is the primary means of prioritizing ongo-
ing maintenance and response procedures in the event of a breach (Figure 5.2).

ATTACK GRAPHS Diagrams can help illustrate the possible ways an attacker 
can traverse through a network toward a high value target. Commonly called attack 
graphs, these diagrams enable SIWs to computationally quantify threat analysis. 
These graphs can be computationally constructed from several pieces of informa-
tion available in organizations, such as the network structure, the systems running 
on the network, and their associated vulnerabilities. Attack graphs allow SIWs to 
identify necessary changes in their networks and systems, and to test whether their 
changes were actually successful in stopping potential attacks.

Figure 5.2 The NAVIGATOR system. (From Matthew Chu, Kyle Ingols, Richard 
Lippmann, Seth Webster, and Stephen Boyer. In Proceedings of the Seventh 
International Symposium on Visualization for Cyber Security, pp. 22–33. ACM, 
2010.) Attack graph reachability information is combined with vulnerability 
information through node-link diagrams with treemap diagrams as the nodes.
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From a data analysis perspective, the challenge with attack graphs is that they 
quickly become large and multifaceted. There are usually multiple possible paths 
(edges) between systems (nodes) in a network. Each of these edges and nodes may 
have several attributes, leading to a large multidimensional graph. Visual represen-
tations of large graphs often lead to a “hairball,” where the large number of node 
and edge-crossings makes it difficult to see the underlying structure of the graph.

Challenges in graph visualization are a perennial topic in data visualization 
research. In security visualization, several recent approaches have focused on show-
casing how careful encoding and interaction design can improve cyber analysis 
with attack graphs.

Generally, attack graphs are represented as node-link diagrams and use differ-
ent colors or shapes for the nodes and links to represent risk, vulnerability-type, 
and other available variables [2–5]. Since node-link diagrams are often one of 
the best visual representations for following links [6], analysts are able to explore 
how attackers might gain access to critical machines through existing vulnerabili-
ties. Node-link diagrams have several well-documented limitations, however [6], 
so researchers have proposed novel visual metaphors for attack graphs, including 
pixel-based matrix views and treemaps [7,8] (see Figure 5.3).

Figure 5.3 Firewall rule-set visualization. (From Florian Mansmann, Timo Gbel, 
and William Cheswick. In Proceedings of the Ninth International Symposium 
on Visualization for Cyber Security, 2012.) Hierarchically evaluated rules are 
arranged in a sunburst diagram. Rule predicates toward the inside of the sun-
burst are processed first, while those on the outside are processed at the end (if 
reached at all).
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Given the complexity of visualizing graphs, each attack graph technique has 
relative strengths and limitations. SIWs may benefit from having several of these 
techniques at their disposal.

CONFIGURATION There are several research efforts that attempt to make 
the configuration of security assets, particularly firewalls and routers, easier for 
SIWs.

Firewall configuration remains an open and difficult problem for security ana-
lysts. Rules can conflict in a number of ways, and firewall configuration remains 
computationally intractable. Therefore, effective firewall configuration in large net-
works may benefit through a hybrid approach that combines configuration algo-
rithms with human-centered visualization techniques. Recent developments in this 
area have visualized different types of rule conflicts [9], and focused on accurately 
representing the dimensions of firewall configuration [10].

It is also important for analysts to understand router configuration. This prob-
lem differs from firewalls in that it requires the analysis of large traffic data, reach-
ability data, routing data, and more. Basic visualizations such as scatterplots and 
stacked graphs can help SIWs identify patterns in DNS traffic [11]. Given the 
diverse data types, coordinated multiple view visualizations have been shown use-
ful in representing these data sources together, allowing analysts to find important 
connections in the data [12,13].

NAVIGATION Orienting threat analysis becomes a challenge as organizations 
grow and add new data sources. This growth increases the size and complexity of 
data that security analysts must navigate in their day-to-day activities. Recognizing 
this trend, several researchers have focused on visualization techniques that aid 
security analysts in navigating complex heterogeneous data.

The mantra “Overview, zoom and filter, details on demand” is one of the most 
widely known and followed design guidelines in interactive data visualization [14]. An 
overview of data is usually intuitive. For a company focused on sales, it may be sales 
and related metrics over the past year, perhaps shown weekly or a month at a time. 
Overviews like this provide a starting point for an analyst at the company to zoom 
and filter into daily or even individual transactions of interest.

In cyber security, however, choosing a good overview is more difficult. Given 
the large and varied sources of data in an organization, an overview that serves as 
a starting point for all the types of analysis done in a security setting is not pos-
sible. This complexity has led to three commonly chosen overviews: the node-link 
diagram, the geospatial map, and the dashboard [15].

Many overviews start with the topology of the network. Network topologies 
are naturally represented as a node-link diagram, with individual IPs as nodes and 
connections between them as edges. Such data is readily inferred from a variety 
of widely available network data, including netflow, pcap, and firewall logs, for 
example.

Node-link diagrams, despite their prevalence in cyber security, suffer from 
many well-documented limitations [6]. Seeing a need for better approaches to 
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overviews in security settings, Fowler and colleagues created IMap—a map-based 
overview of a large network [16].

The IMap algorithm begins with a node-link representation of a network, and 
leverages this structure to build a geographic map, like the familiar maps we use 
for directions. The resulting maps resemble continents with country boundaries, 
indicating different portions of the network. This transformation eliminates several 
problematic features of node-link diagrams, like hairballs of edge-crossings and 
difficult-to-decipher positions of nodes.

Beyond mitigating the tradeoffs of representations commonly used for over-
views, map-inspired representations bring several immediate benefits to analysts. 
For one, they capitalize on these results and other research demonstrating that 
two-dimensional spatializations of data aid navigation [17]. Another way to think 
of IMap is as an even higher-level overview than the node-link diagrams typically 
used. This is true by definition, as the authors demonstrate that individual nodes 
and links can be shown on demand from inside the IMap. Further benefits have 
yet to be investigated. However, decades of research in cartography have pointed 
to spatial maps as a useful tool for helping analysts find “common ground,” and 
orienting themselves when facing new data and scenarios [18].

Now having discussed overviews, consider a situation in which an analyst has 
used an overview to identify activity of interest in their network. Navigation is still 
a challenge in this situation because the analyst must identify the context in which 
the activity occurred to determine what actions are appropriate to take. In this case, 
context might include information like what subnet the activity was on, which user 
was logged in, and what machines are in the “vicinity” of the activity (in a connec-
tivity sense, not necessarily meaning that the machines are physically close).

Analysts must reason about the context of suspicious activity when deciding 
how to respond. Few tools explicitly support this type of reasoning, however. An 
analyst might use tools to trace the route of one machine to another to discover 
other IPs of interest, yet this information must also be combined with context 
about the IPs along the route themselves.

Recognizing this need, Gray et al. have contributed the notion of contextual 
network navigation [19]. In their work, the primary activity of interest is placed at 
the center of a network (i.e., egocentric), while other machines of interest are placed 
around it. This context can extend well beyond an organizational network and into 
the Internet. Context outside of a network can be useful in helping analysts reason 
about the origin of attacks, for instance, providing information that can be used to 
strengthen the borders of the network.

5.3  Vulnerability Management
In order to assess the security posture of the servers and workstations in their net-
work, security analysts and systems administrators use vulnerability assessment 
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tools to scan their network and deploy code for potential exploits. In an organiza-
tion with many services and systems, the number of open vulnerabilities is typically 
large and constantly changing.

It is unreasonable to expect all vulnerabilities to be patched—employees intro-
duce new software to their machines weekly, and even new versions of trusted 
software can introduce vulnerabilities. SIWs must prioritize where they spend their 
time. Relying on lists of vulnerabilities and SIW’s mental models of a network 
to determine what should be prioritized can lead to troubling results, however. 
Industry reports show that unpatched systems are to blame for some of the largest 
and most harmful breaches in recent years [20].

NETWORK VULNERABILITIES Nessus and similar tools can produce an 
overwhelming amount of data for large networks. Network vulnerability scanners 
probe machines to determine which network ports are open, what services are run-
ning on the ports, and, most importantly, what versions of those services are run-
ning. Identifying the services and the versions enables these tools to match them 
with known vulnerabilities.

Scan analysis tools usually present the data in tables, sometimes with color cod-
ing to attempt to provide an overview of each vulnerability’s severity. But scan data 
can be very large. With little support for comparing individual or logical groupings 
of machines, it can be difficult for SIWs to build a mental picture of what the over-
all vulnerability status is in the network. Further, it can be difficult to determine 
how the vulnerability status of a network has changed between scans at different 
points in time.

NV uses treemaps and linked histograms to allow security analysts and systems 
administrators to discover, analyze, and manage vulnerabilities on their networks 
[21] (see Figure 5.4). In addition to visualizing single Nessus scans, NV supports 
the analysis of sequential scans by showing which vulnerabilities have been fixed, 
remain open, or are newly discovered.

SOFTWARE VULNERABILITIES Vulnerabilities are not limited to com-
mercial software. Organizations may run a number of scripts and services in their 
network for business operations. In fact, one of the main concerns of SIWs is dis-
covering the “known unknowns” of the threats that exist in their organization’s 
infrastructure [20].

Organizations must detect and manage vulnerabilities not only in the software 
they deploy, but also in the software they make. Similar to network vulnerability 
scanning, there are many tools for detecting and logging vulnerabilities in a given 
source code.

Recognizing this need, Goodall et al. developed a visual analysis tool to help 
understand and correct vulnerabilities in code bases [22]. Their system includes 
multiple views of not only the vulnerabilities detected by logging tools, but also the 
code itself. Exploiting the simplicity of the problem allows a unique self-contained 
system in which analysts can prioritize and fix vulnerabilities in a single tool.
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Vulnerability management and remediation make up a large portion of how 
SIWs spend their time. There are few data-oriented tools and workflows specifically 
targeted at vulnerability management, however—this is an opportunity for future 
work.

5.4  Forensics
Visualization can benefit forensic analysis after a network or system is deter-
mined to be compromised. Forensic analysis requires in-depth data from one or 
several machines and devices. While these data sources can often be visualized 
with traffic and activity monitoring tools, the views in these tools are often of 
limited use in forensics, where the SIW needs to build a story of how an attack 
occurred. A distinguishing feature of forensics tools is the lower level of detail 
they present to analysts. Research focusing on forensic analysis has dealt with 
network data, individual device data, or behavioral data (e.g., email) in a post-
intrusion setting (Figure 5.5).

Forensics tools focus on smaller subsets of the network, favoring features that 
show more detail and allow analysts to pivot between machines or subnetworks. 
For example, instead of relying solely on text-based command-line utilities like 
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Figure 5.4 NV system. (From Lane Harrison, Riley Spahn, Mike Iannacone, 
Evan Downing, and John R Goodall. In Proceedings of the Ninth International 
Symposium on Visualization for Cyber Security, 2012.) A vulnerability scan of 
multiple machines at once is shown in a treemap diagram. Users can rearrange 
the hierarchy to focus on ports, IPs, or individual vulnerabilities.
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grep, detailed search results can be visualized to assist analysts in exploring 
and filtering historical network traffic and events [23]. Several approaches have 
combined visualization with machine-learning to create and refine classification 
models for historic data, which can then be used to aid future forensics efforts 
[24,25].

Visualization has also supported device-level forensics, particularly in digi-
tal string search, a core component of forensic analysis. In particular, traditional 
search algorithms have been used in conjunction with visual techniques to provide 
an overview of the search results and to display file and string interactively [26]. 
Another approach is to visualize changes to directory trees, as many attacks can be 
identified by how they modify files on a system [27].

Other applications have explored how visualization can benefit the behavioral 
forensics, such as attacks that involve email and chat. Email flow and group analysis 
results have been visualized to provide insight into both a user’s typical usage pat-
tern history [28] and to uncover malicious spam campaigns [29].
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Figure 5.5 Change-Link system. (From Timothy R Leschke and Alan T Sherman. 
In Proceedings of the Ninth International Symposium on Visualization for Cyber 
Security, 2012.) Malicious processes and patches often change directory struc-
tures temporarily, deleting evidence of their work as they finish. Change-Link 
shows how directories have been changed over time.



Data Visualization for Cybersecurity ◾ 109

5.5  Traffic
Many data visualization tools in cyber security are designed to facilitate network 
monitoring and intrusion detection, or situation awareness. Situation awareness 
refers to knowing what is happening in a specific, rapidly changing environment.

Situation awareness can be broken down into three stages: perception, compre-
hension, and projection [30]. Perception involves monitoring the status of a net-
work and systems within a network, while comprehension involves synthesizing the 
status of the individual elements in the first stage to recognize patterns that should 
be investigated further. In contrast, projection involves extrapolating the current 
state of the network toward the immediate future. In security visualization, most 
efforts and tools target perception and comprehension.

There are several stages of network analysis and defense [31]. These include 
monitoring and initial detection, as well as the network forensics and reporting and 
decision making activities that follow. Other studies have examined how analysts 
make decisions and how visualization might benefit that process [32], as well as 
how high-level security goals relate to low-level data [33].

Another focus area in situation awareness research is to examine analysts’ exist-
ing toolkits to identify the strengths and limitations of current tools and workflows. 
These studies lay the groundwork for new visualization techniques and systems. For 
instance, although command-line search tools such as grep remain a staple in the ana-
lysts’ toolkit, few visualization systems incorporate even basic search functionality [34], 
potentially damaging their adoption. Similarly, analysts often need to relate external 
security information to activity on their network (e.g., from websites, mailing lists, 
and other online sources). Recent data visualization systems have begun to process 
external information and visualize how it relates to internal network operations [35].

Visualization designs have taken many forms in support of situation awareness. 
Given the time-focused nature of network security data, some visualization tech-
niques emphasize time and support interactions that allow SIWs to move forward 
and backward through the temporal dimensions of their data. One such approach 
is event plots, which visually encodes events by category using visual marks to rep-
resent events [36]. Challenges for event plots include defining what an event is (e.g., 
packets are low-level events, whereas emails are high-level events) and defining how 
to represent an event (e.g., color, shape). While clutter can become an issue, event 
plots becoming more widely used because they can provide both an overview and a 
detailed view of a large number of machines.

5.6  Emerging Themes
Data visualization has been applied to many areas of security analysis. Security 
analysis is changing, however. Two emerging themes are a push to move analysis 
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toward intelligent systems, and a realization that data analysis benefits not only the 
individual SIW, but their team, their organization, and their community.

HUMAN-IN-THE-LOOP MACHINE LEARNING Machine learning has 
had considerable success in some areas of cyber security, but limited success in oth-
ers. Spam filters are a machine learning success story. With numerous examples of 
spam emails, machine learning is used to accurately vet incoming mail for spam-
like features (most of the time, at least). This reduces the number of phishing emails 
that make it to end-users, considerably improving the security of the organization. 
Yet as we have seen, SIWs focus on much more than email.

Machine learning has been repeatedly applied toward helping SIWs iden-
tify anomalous traffic and connections in their networks. These efforts have 
not seen widespread adoption, however, for several reasons: Attacks are rare, 
meaning the number of false positives a model produces will be much larger 
than the actual number of attacks [37]. (In spam the situation is different, given 
the large number of malicious emails.) This false alarm problem is multiplied 
when machine-learning models are built using different data sources or sub-
networks. Smaller models like this are often necessary for building a model of 
what normal activity looks like.

High-frequency data such as traffic and connections in a network can lead to an 
overwhelming number of false positives that SIWs must investigate. In these cases, 
the analysts’ ability to defend the network is significantly reduced [32,33].

A deeper problem is the understandability of the models produced by machine 
learning. While some learning algorithms produce human-readable output, a 
sequence of questions about features in the data, for example, other algorithms pro-
duce models that are difficult for humans to internalize. This is a general problem 
in machine learning, but because security events must be vetted by SIWs, the gap 
between humans and models in machine learning remains a longstanding chal-
lenge [37–39].

Given the potential impact, researchers have been actively working to close 
this gap. One approach is to add constraints to the learned models that align with 
SIW’s ability to understand them [40]. Another emerging approach is to conduct 
assessments of the tools SIWs would need to better manage multiple models [41]. 
These approaches hold promise to meld the operational needs of SIWs with the 
structure, capabilities, and limitations of machine learning.

EXPLORATION VERSUS EXPOSITION Security has become more data-
driven in recent years. Data manipulation tools have become more usable, analysis 
techniques have become more scalable, and visualization techniques have become 
more aligned with the strengths and limitations of our perceptual and cognitive 
abilities. But data analysis and exploration is only part of the story.

Beyond exploration, the communication and exposition of data have become 
central topics in security. Part of this is driven by data-laden industry reports. 
The Verizon Data-Breach Investigations Report [20], for example, collects breach 
reports from multiple organizations and identifies emerging trends and gaps in 
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the past year. Reports such as these are invaluable as organizations plan and pull-
together resources for future years.

Given the expansion beyond exploratory data visualization to expository data 
visualization, new challenges have arrived. Best practices such as only using the 
absolute best perceived visual stimuli in data visualization (such as position or 
length) make sense in exploratory contexts where it is assumed that you have the 
full attention of the viewer. In exposition, however, accuracy in visual stimuli may 
need to be sacrificed for stimuli that are engaging.

Unfortunately, many practitioners, companies, and academics remain unaware 
of best practices in data visualization. This leads to a number of flashy (yet inef-
fective) analysis tools and attractive (yet misleading) industry reports. More study 
is necessary to navigate this space. As research moves from focusing on techniques 
to focusing on the SIW [42,43], security visualization will become an even more 
integral part of day-to-day security operations and communication.
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Cybersecurity defense must be practiced by everyone in your organization. Not 
only do cyber-warriors and IT members need to fend off cyber attackers, but the 
most casual computer user, from the Contracts Office personnel to company offi-
cers, needs to follow good procedures and maintain the organization’s cybersecu-
rity boundary. While the IT and cybersecurity staff  certainly know more about 
identifying, responding to, and warding off cybersecurity attacks than other com-
puter users in your organization, everyone in the company will need to know and 
follow procedures, such as setting strong passwords and applying caution when 
opening email attachments or downloading  files.

To address these needs, this chapter focuses on cybersecurity training. The 
chapter first discusses specific characteristics of training cybersecurity. In particu-
lar, smart humans competing against smart humans, the power and complexity 
of networks and computers, and human-made nature of computers and networks 
are discussed. Second, general principles of training and learning are discussed in 
detail. Topics of interest include desired result of training, use of media in train-
ing, context in which to present general learning principles, learning with under-
standing, reflections and interactions, immersive environments of simulations and 
games, building on what learners know, metacognition, teamwork, feedback, moti-
vation, transfer, and misconceptions. Third, some of the practical factors that influ-
ence the design of a course are discussed. These practical factors include managing 
sponsor’s expectations, understanding available resources, subject matter experts, 
and cognitive task analysis, identifying what trainees need to learn, underlying 
representation that supports computerized assessment and instruction, pilot-testing 
the instruction, putting it all together, and the role of Big Data in cybersecurity 
training.

6.1  Specific Characteristics of Training Cybersecurity
Cybersecurity is special in that cybersecurity approaches and tools change much 
faster than other domains change. Relative to some domains that change infre-
quently (e.g., budgeting rules) or evolve as more is learned (e.g., medical practices), 
cybersecurity changes rapidly due to a few factors.

First, smart humans compete with other smart humans in cybersecurity. Cyber-
attackers try to infiltrate and access data from some other organization’s networks 
while cyber-defenders do their best to squelch attacks. The tools that both attack-
ers and defenders can use are evolving to leverage any potential weakness, and 
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to plug those weaknesses and limit damage once a network has been infiltrated. 
Cybersecurity changes are fueled by competition and human ingenuity.

Second, the power and complexity of computer networks and communication 
protocols are increasing. As networks and communication protocols change, meth-
ods by which they can be attacked and defended change.

Third, computers and networks are human-made and arbitrary. This differs 
from other domains, such as chemistry or biology, in which building blocks can be 
discovered but not changed. One consequence of the rapid evolution of cybersecu-
rity approaches and techniques is that cybersecurity experts must spend more time 
learning new threats and defensive approaches.

6.2  General Principles of Training and Learning
6.2.1  Desired Result of Training: Better Performance

Before discussing training, consider the bigger goals for the organization. The orga-
nization wants its staff to support the mission. Frequently this involves training to 
follow effective procedures, but not always. Alternatives to training include setting 
up automated procedures, or providing incentives for excellent performance [1]. A 
decision maker in charge of human performance must decide which approach to 
use to yield good performance [2]. Within your organization, different user types 
may need different kinds of solutions.

For the everyday user of computers, many solutions to good cybersecurity per-
formance can be entrusted to engineered procedures rather than training. Some 
examples are requiring users to create strong passwords and forcing users to change 
them regularly. More stringent cybersecurity requirements would restrict users 
from opening selected types of attachments or installing programs on their com-
puters. These kinds of solutions to potentially dangerous actions that users might 
make do not involve training. While training may offer the best solution to a per-
formance problem, training should be considered within the wider set of perfor-
mance improvement tools.

Decision makers who determine how to keep the organization’s computer net-
work safe and productive will have to specify which approach to use for each user 
type. One possible answer is to provide in-depth cybersecurity training for the IT 
staff and cybersecurity experts, while creating processes with which other users 
must abide, such as requiring frequent password changes, which force them to fol-
low good procedures, even if they would not choose them.

6.2.2  Use of Media in Training

Training can be provided by an instructor, by a computer, or by a blended solution 
of an instructor and a computer. An instructor can make run-of the-mill curriculum 
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lead to excellent learning and inspired students; or a not-so-good instructor can 
take excellent curriculum and use it poorly to yield ineffective training. Generally, 
good instructors can adapt content to learners’ needs and backgrounds, and pro-
vide inspiration and relevance to training.

Computers provide two capabilities that human instructors cannot. First, com-
puters can provide realistic, simulated environments in which trainees can be 
immersed in situations they might find themselves in their future. Many learning 
principles take advantage of immersive environments, as interacting with simula-
tions can improve learning. Fortunately, for learning cybersecurity, many cyber-
security simulations exist that can be used for training. Second, computerized 
training is much more consistent than instructor-led training. Thus, data about 
training effectiveness can be referenced back to specific training successes or weak-
nesses much more easily with computer-led training than with instructors.

6.2.3  Context in which to Present General Learning Principles

To describe general principles of training and creating an environment for effi-
cient learning, we will use a computerized presentation of content as our example. 
By using a prescribed training environment, the explanations and examples of 
effective learning can be tied directly to programmed interventions and instruc-
tional approaches rather than presenting ambiguous and less repeatable human 
interventions. The rest of this chapter assumes computer-based instruction. Even 
if you will be creating material for or leading instructor-led training, you will get 
more out of reading this chapter if you consider how to have instructors apply the 
principles described specifically with computer-led presentations.

6.2.4  Learning with Understanding

Current instructional theory states that people perform better if they learn not simply 
facts and rules, but also learn so they understand the connections between facts, con-
cepts, models, and conditions. This is referred to as Learning with Understanding [3]. 
People who understand a domain not only recall facts, procedures, and concepts, but 
also organize their knowledge so they can apply it to perform accurately and efficiently, 
produce new solutions if needed, and transfer their knowledge to new situations.

In cybersecurity, understanding a particular network enabled personnel to more 
accurately detect when a sequence of cyber events was due to a cyber-attack [4]. 
This supports the generally accepted notion that experience in a domain improves 
performance in that domain.

6.2.5  Reflection and Interactions

One approach that supports learning with understanding is having students reflect 
on the content they are learning. When learning from a computerized simulation, 
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learners can be led to reflect on the domain and what they have observed in the 
simulation by tasks such as (1) answering questions, which requires them to con-
struct relationships between entities shown in the simulation or (2) creating a rea-
soned solution to a difficult problem presented within the simulation. As learners 
reflect on the content with the task of creating a new representation of the domain 
presented via the simulation, they construct their understanding of the simulated 
environment [5].

While reflection has been a specific technique used to yield learning with under-
standing, another viewpoint is that any rich interaction with content helps learners 
gain understanding [6]. Potential rich interactions involve solving problems, creat-
ing new designs, listening to others as they solve problems, creating examples in 
which concepts they are learning are evident, connecting concepts that they had 
not previously understood as connected, or developing logical arguments. Applying 
knowledge from a domain in novel ways can help learners organize their knowledge 
and apply it in new situations. In cybersecurity, Abawajy [7] analyzed users’ prefer-
ences, including advantages of reflection within classroom courses.

6.2.6  Immersive Environments of Simulations and Games

Learners can reflect on and interact with a domain’s principles through simulations 
and games. Simulations and games have many benefits as instructional environments:

 1. Simulations and games provide contexts that are similar to the environment 
in which learners apply their knowledge. So learners (a) practice applying 
content that is helpful for their jobs, and (b) understand that what they are 
learning will be helpful to their job productivity, which most learners find 
motivating.

 2. Simulations and games enable learners to condition their knowledge so they 
apply it when it is appropriate [8]. It is common to teach theory but not the 
conditions to which it applies. Simulations and games give learners opportuni-
ties to develop this skill. There are many theories of cognition that express the 
view that learning is easier if it is done in context. This view is often described 
as “situated cognition.” It gained popularity when it was observed that learn-
ers can both (a) learn theoretical content in a classroom that they cannot 
apply to the real world, and (b) learn content in the real world that they can-
not apply in classroom exercises, even if similar procedures are invoked [9].

 3. Simulations or games can be built to adapt the environment to learners’ cur-
rent level of understanding. This is unlike the real world, in which many 
cases may be too easy or too complicated for most workers. A simulation can 
modify a problem that is too easy for learning by either adding complexity to 
the situation in real-time (if the training simulation has that capability), or 
to select a more complex problem for the next learning challenge. A simula-
tion can adapt to presenting problems that are too difficult by reducing the 
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complexity in real time (if the training simulation has that capability), or to 
provide more assistance to the learner.

 4. Simulations and games can expose learners to the concepts that the student 
needs to know within a natural progression of slightly increasing complex 
simulations [10]. The first task in a simulation or game could be the simplest 
curricular item in the course. As the learner gains competency, the simulation 
or game will present increasingly complex challenges. New concepts can be 
introduced within the sequence of increasingly complex environments.

There have also been many simulations that have been proposed for training 
cybersecurity personnel including those reported by Fite [11] and Thompson and 
Irvine [12].

6.2.7  Building on What Learners Know

For knowledge to be effectively applied, it must be integrated with learners’ exist-
ing knowledge. As noted above, studies demonstrate that learners do not always 
generalize what they learn in school to the real world, or apply methods they have 
developed in the real world to school tests [13]. When a new concept is presented, 
the training system should try to connect the new concepts that are to be taught 
with experiences that learners have already experienced in life. Otherwise, the con-
cepts that learners acquire in the simulation may not be integrated with the learn-
ers’ existing knowledge, and the learner may not use the new knowledge.

When learners have to learn some concept for which they already have a misconcep-
tion, evidence suggests that the misconception should be directly brought up, and learn-
ers should be told why they may possess the misconception [14]. New concepts should 
be presented so learners integrate the new concept with their previous misconception.

6.2.8  Metacognition

One effective instructional approach asks learners to monitor their own learn-
ing. Learners should assess what they know and what they should learn. The skill 
of understanding one’s own cognition is called metacognition. Learners who are 
thinking about their strengths and weaknesses will be able to target their weak-
nesses as instructional targets. While recognizing a learner’s own strengths and 
weaknesses is an advanced skill for learners [15], it is necessary for learners when 
they have to learn outside the context of a course.

6.2.9  Teamwork

Another instructional target that can be addressed in a simulation is the ability to com-
municate well with others. Communication is vital to success in complex situations 
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such as warfighters conducting military operations, first responders dealing with emer-
gencies, and medical staff attending to patients. Similar to those environments, the 
cybersecurity team members must communicate well in order for the value provided 
by each member to contribute to the performance of the team. Developing team com-
munication skills is nearly its own course; but practicing the skills in context can be 
done well in a simulation [16]. The simulation must present conditions in which com-
munication is important, and provide a channel in which teammates should com-
municate. The communication can be monitored and tracked for assessment and 
instruction, though natural language processing challenges must be overcome.

6.2.10  Feedback

Instructional feedback and assessment are very challenging topics that have 
their own rich scientific literature and specialists. The goal of feedback should 
be to improve performance. Hence, feedback is reliant on assessment to iden-
tify performance weaknesses. Some interesting research and practical questions 
regarding feedback are associated with (1) using student performance to make 
assertions about the knowledge or skill that a learner does or does not possess; 
and (2) designing feedback that supports student learning and leads to long-
term gains in performance.

As most of our focus is on immersive environments, we will address assessment 
for simulations and games. Even if we were only developing assessment for objec-
tives tests, assessment and feedback are complex [17]. But assessing performance 
in complex environments is more difficult than determining if objective test items 
are correct; and feedback in simulations and games is trickier than giving feedback 
to multiple choice or true/false questions. The feedback might simply explain to 
the trainee how to perform better. But to improve performance more, the feed-
back should take into account the principles of learning that were discussed earlier. 
Feedback should engage the learner in a process in which learner actions can be 
reviewed, and the trainee can interact with content to support improved under-
standing and decisions.

Assessment that leads to feedback should address practical and theoretically 
motivated issues:

 1. The assessment of performance within simulations and games should be con-
ducted for a practical consequence. Two primary purposes of assessment are 
to trigger an instructional intervention or to classify a person’s specific level of 
competence. Assessing performance that does not lead to a practical instruc-
tional consequence is wasteful.

 2. The assessment could trigger many different types of instructional inter-
vention. In particular, three types of instruction could focus on instruc-
tional intervention. The instruction may seek to improve (1) the learner’s 
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metacognitive approach to learning, (2) the learner’s mental model of a com-
plex situation, or (3) a specific, fine-grained weakness in a learner’s under-
standing of a situation. To follow the principles of basing learning on 
reflection and interactions, the intervention that is triggered should involve 
more than a simple explanation. Rather, the intervention could include an 
interactive task that induces the learner to reflect on the applications of con-
cepts within the domain.

  The triggering of an interaction is somewhat different from the approach 
used in traditional Intelligent Tutoring Systems (ITS). Typically, ITS attempted 
to create a detailed analysis of learner knowledge in order to provide just the 
right content that the learner did not possess or apply that would support 
improved performance. Current theories of learning for understanding take 
the perspective that learners need to construct their understanding and build 
cognitive organizations through rich interaction with content [18]. Following 
this view of learning, the instructional intervention should provide an inter-
action in which learners are exposed to content that they reflect on and inte-
grate into their mental organization of a topic. This should lead to improved 
understanding, and thus, performance. Common types of interaction include 
scaffolding messages that direct the learner to a desired action via a series of 
hints that become progressively more revealing.

  Feedback is also frequently given to learners in classroom or computerized 
instruction when the learners are at the end of a lecture, chapter, or computer-
presented problem. At the end of a lecture or chapter, learners should inte-
grate the information that they have just been exposed to. At the end of a 
problem, learners are no longer striving to solve a problem, and can pay atten-
tion and reflect on the actions that they took to try to solve the problem, and 
organize whatever they learned in the problem with their existing knowledge. 
This is frequently related to following principles of instruction that aim to not 
overwhelm students with excessive cognitive load [19]. As applied to present-
ing abstract concepts when solving problems, good practice normally follows 
the pattern of focusing on the current problem that the learner is struggling 
with, through to the point of the student solving the problem. After the stu-
dent solves the problem, the problem can be reviewed, and general principles 
can be raised without interfering or distracting the learner from solving the 
problem.

6.2.11  Motivation

Motivation is a very complex topic. In training and education, many researchers 
have investigated what helps students’ motivation [20]. Immersive environments 
are often seen as supporting motivation, as students can see direct connections 
between their training and what they need to do in the real world. Games are 
expressly designed to be engaging; as students play to win, they also learn.
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Still, there are some issues that should be addressed to improve motivation in 
simulations and games. One concern is to make the challenges given to learners to 
be neither too difficult nor too easy. If a problem is too difficult, learners might give 
up. If a problem is too easy, learners will not learn anything. Making problems so 
they are neither too easy nor too hard can be addressed most obviously by select-
ing an appropriately difficult problem [21]. Even if a problem is selected that is too 
difficult or too easy, remedies can be provided. For problems that are too difficult, 
students can receive more assistance from the instructional system (which can be 
presented as a coach in a simulation or a co-conspirator character in a game). For 
problems that are too easy and the learner reached a solution too quickly, an adapt-
able scenario could make the challenge greater.

One question about students’ approach to learning is whether their primary 
concern is to become smart or look like they are smart [22]. Whether a student 
is interested in becoming smart or in “looking smart” is related to whether the 
student is intrinsically interested in the topic. With simulations and games, even if 
students are primarily interested in looking smart, they have to perform and apply 
knowledge, increasing the likelihood that they will learn.

One method to increase motivation for the game is to have learners interact with 
other students who also participate in the same learning environment. Students 
may be motivated by interest in the topic, and they may be encouraged to learn well 
due to the social interaction forces. Of course, it is also possible that disinterested, 
cynical students may spoil the motivating social effects.

6.2.12  Transfer

Having students apply what they have learned, beyond the specific examples used 
in training, is a common educational goal. As with motivation, immersive environ-
ments provide some advantages to transfer, relative to more common educational 
techniques. Approaches used in immersive environments that promote transfer 
include specifying problems that include a number of different situations and pro-
moting learning with understanding [23]. Simulations can provide student encoun-
ters with different classes of problems, in which learners apply general principles in 
different contexts. The reflective period after a problem can provide an interaction 
in which learners are exposed to abstract principles that can be applied across many 
contexts.

One of the abstract principles that can be explicit for learners is the specification 
of a mental model. “Mental models” have been explored in depth for decades and 
a rich literature abounds for them. The basic idea is for learners to have a pictorial 
representation of a complex system. The pictorial representation enables the learner 
to quickly grasp the connections between components of the system. Experts pos-
sess mental models of systems in their domain, and learners are constructing their 
own mental model. Often the mental model presents some general principle that 
can be widely applied across problems and can be used when learners perform 
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different tasks. A few examples of such principles can be seen with common electri-
cal theories that apply across many domains, cooking methods that apply across 
foods, and requirements for editing computer files that are common across nearly 
all editing programs. Within cybersecurity, a mental model might address how 
opening an attachment with malware infects a host’s computer. Explicitly making 
learners aware of the mental model supports transfer.

6.2.13  Misconceptions

One situation that presents a transfer problem for learners is when they hold incor-
rect knowledge. The effects of pre-existing knowledge are often seen in studies 
of physics students who possess the theoretical knowledge of physics that they 
learned in class, but also continue to hold “folk physics” knowledge that is not cor-
rect, yet part of the common culture. These are examples of not transferring new 
knowledge to situations it should transfer to. To overcome this pre-existing knowl-
edge, the discrepancies between existing, incorrect knowledge and new knowledge 
should be explicitly addressed in the learning environment [24]. Misconceptions 
are common in cybersecurity, given the fast rate at which threats and defensive 
tactics change.

6.3  Practical Design
When designing a course, in addition to applying principles from current learning 
theory to training and instruction, there are many practical factors that will influ-
ence the design of your course. This section raises some of these factors so you can 
incorporate them into your overall plans.

6.3.1  Sponsor’s Expectations

The most obvious practical factor is the expectation of the sponsor. Sponsors will 
have many expectations about a course they wish to create. Some expectations they 
can make explicit and others they cannot. You should discuss with sponsors the 
overall budget that can be spent, deadlines, and the expected technology to be 
used, such as using human-led or computerized instruction. Often their implicit 
expectations will include training methods with which they are familiar. This ten-
dency to use familiar methods may be overcome by some leader’s call to revamp 
and improve the instruction, or to reduce the costs of the training. The use of 
technology unfamiliar to the sponsor, such as simulations and games, may require 
persuasive discussion with sponsors.

The sponsor and the designer need to discuss and agree on many features of the 
instruction beyond technology:
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 1. The importance of evaluating the training effectiveness must be clarified. 
Some sponsors may assume that if learners work through the instruction, 
they will learn the material. Other sponsors may have more interest or need 
to have the instructional benefits accurately assessed. Sometimes the develop-
ers of new instruction may wish to compare it to the effectiveness of older 
instruction. Assessing current instructional effectiveness is sometimes politi-
cally difficult.

 2. How to use the data after the course is completed should be clarified. The 
sponsor may wish to store student data for later analysis, or may not. It is 
important for the sponsors and the designers to have a shared vision of the 
end use and disposition of the data.

One sponsor input that must be followed is the budget. Difficult decisions will 
be required, and some instructional features will not be affordable. The costs of 
some factors are decreasing (such as virtual reality), while other costs are increas-
ing (as expectations for production values increase, the appearance of simulations 
and games rise). You should consider both the costs to develop the training and the 
costs to maintain it. The course should be designed to create the maximal instruc-
tional power given the budget available for the instruction.

6.3.2  Available Resources

Another practical factor is to collect and use existing available resources. Example 
resources that you might be able to use are existing curriculum, graphics, or videos. 
Using existing materials translates into less content you must create.

A critical resource is access to subject matter experts (SMEs) who will help 
develop and refine instructional material. If these experts are plentiful and inexpen-
sive, you can use them in your plan with less carefully planned processes. Another 
important resource for creating instruction is access to students in order to pilot test 
the effectiveness of the instruction. With cybersecurity instruction, access to SMEs 
and students is critical, given the fast rate of change in the domain. Access to these 
resources may be assisted by course sponsors.

6.3.3  Subject Matter Experts and Cognitive Task Analysis

Of great practical importance are methods used to acquire expertise from SMEs. 
There are many methods by which experts’ expertise can be drawn out and made 
explicit for training [25]. These methods are often referred to as “cognitive task 
analysis” (CTA), or simply “task analysis.” The most valuable insight from all these 
methods is that asking experts to explain their thought processes in performing 
complex tasks is much more difficult than commonly assumed [26]. Experts have 
access to some of their ability and knowledge, but not to all of it. The content that 
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they cannot express but use anyway is called tacit knowledge. In addition to stud-
ies that show tacit knowledge, some experts are poor at communicating what they 
know, even if they are aware they are using specific kinds of knowledge [27]. It is 
important to apply CTA methods that efficiently elicit their knowledge.

CTA methods make tacit knowledge of SME explicit. Many CTA methods 
involve some form of situated cognition. Experts are placed in a situation similar to 
the one in which they must apply their knowledge. They may be asked to (1) make 
decisions and explain those decisions in context, (2) critique decisions that others 
made, or (3) indicate critical factors in their decisions. The knowledge of SMEs 
made explicit in these situated cognition contexts needs to be unified into a repre-
sentation that can be applied across many contexts.

6.3.4  Identify What Trainees Need To Learn

While CTA clarifies expert performers’ knowledge and skill which helps identify 
the content trainees need to learn, the SME’s knowledge and skill that he or she 
applies to solve the most difficult problems defines the most complicated aspect of 
what trainees need. We also need to know the knowledge and skill learners possess 
at the beginning of a course. This incoming knowledge of trainees is important 
as it is inefficient to create instruction for what learners already know or to create 
instruction that relies on knowledge trainees have not yet learned. Training content 
should include material that learners can learn but do not now know.

6.3.5  The Underlying Representation That Supports 
Computerized Assessment and Instruction

Computerized training systems that assess learner knowledge and adapt instruc-
tion to student needs are called Intelligent Tutoring Systems (ITSs). In this field 
researchers have developed many formats of assessment and instruction. Places to 
read about them include a set of books sponsored by the Army Research Laboratory 
[28], and an excellent summary by Dr. Beverly Woolf [29]. The general framework 
for an ITS specifies a model of the domain to be learned, a model of the student’s 
knowledge, a pedagogical module that plans and manages instructional interven-
tion, and an interface that manages user input and the presentation of a complex 
environment from a learning system.

As you design computer-based training, you should use the concepts and meth-
ods developed for ITS that can apply to your situation. Many ITSs have been 
developed for research purposes; if you are developing an effective and affordable 
training method, you would apply resources to those modules that are most impor-
tant for good performance.

Many research ITSs have a pedagogical module that applies different instruc-
tional strategies based on student need. While a pedagogical component is reason-
able within a research framework, it would not be used in a practical application. 
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For any specific training, the design of an instructional environment will use the 
pedagogical approaches deemed most efficient for a target set of learners and con-
tent. The pedagogical module will be chosen during design and implemented as 
part of the interface between the system and the learner. The interface will be 
designed to be cost-effective and beneficial for learners.

The domain model and the student model will be built to support the learner’s 
training interactions. The representation of the student model frequently takes 
on one of three forms. One form is to overlay the representation of the learner’s 
assessed knowledge and skill on a model of the domain. The domain model will 
represent the knowledge of an expert. The overlay model of a learner identifies 
which nodes or portions of the expert model each learner is believed to possesses 
(this knowledge can be represented probabilistically). The overlay model compares 
the student model to an experts’ model, and indicates which parts of the experts’ 
model that a learner does not have [30].

A second representation of a student model lists mistakes that students com-
monly make. A learner will be marked as making a mistake or not. This approach 
is frequently called a bug library. Historically, the concept of a bug library comes 
from software development: a bug is an incorrect specification of steps used to com-
plete the desired task. For student models, a bug refers to some deficit in knowledge 
or skill which, if remediated, would lead to improved performance. The bug library 
model does not bother to specify the content of the expert model when specifying 
a student’s weakness; rather, student performance is identified as exhibiting one of 
a known set of mistakes [31].

A third diagnostics approach is to identify which constraints of good perfor-
mance a student violates [32]. While this resembles a bug library, its relationship 
with the violation of good performance is often seen as different from a bug. A bug 
library has traditionally been associated with local remediation that refers to misap-
plication of local rules. A constraint violation can also lead to local repairs, though 
it may also lead to an intervention that addresses larger misconceptions.

Whether an assessment uses an overlay model, bug library, or constraint viola-
tion, they all are intended to trigger a beneficial instructional intervention. And 
while they have different names and different processes are often used to construct 
them, their differences in application are more in degree than in category. An over-
lay model is often used when diagnoses refer to underlying knowledge and skill 
that enable complex performance. The intervention with an overlay model tries to 
help the student learn the underlying knowledge that is required for the complex 
performance. A bug model is used when a specific rule that should lead to good per-
formance is not followed. The intervention targets an incorrectly applied rule. Bug 
models are often used when all the rules for good performance can be specified. The 
classical example of a bug model is with rules for simple mathematical computations. 
The constraint violation model is typically related to specific performance mistakes, 
and associated constraints that the trainee seems to be applying. Constraint-based 
models can be used when there are multiple good paths to a solution.
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One computer representation that links diagnosed student weaknesses to 
instructional interventions is a process explorer [33]. A process explorer specifies how 
a process is executed. For example, the process explorer has a description of a Cross 
Site Scripting attack. The assessment system identifies what the student should know 
to perform well, and can present a remedial explanation from the process explorer.

6.3.6  Pilot Test the Instruction

Ideally, instructional interventions for the trainee to learn content should be tested 
before the computer programming of the interactions is implemented. While the 
computer programming of the simulation or game environment can be constructed in 
order to support the student interactions, it will likely require little adjustment based 
on interactions with the trainee. But testing the interactions [34] is important because 
if the designed training interactions are ineffective, modifying them is easier and less 
expensive before the programming is completed. The pilot test should investigate:

 ◾ The instructional effectiveness of interactions designed to help trainees learn.
 ◾ The ability of the assessment system to inform instructional interventions.
 ◾ The capability of the computer representation to support the planned com-

puterized instruction and assessment system.
 ◾ The costs to develop instructional and assessment systems that should be col-

lected and used to estimate costs for the designed intervention.

The pilot test should be conducted in an early and small iteration of the entire 
development. This allows some experimentation of the instructional interactions 
and assessment capabilities. After the pilot test helps determine effective processes, 
the creation of instructional content, the assessment system, and the underlying 
computer representation can be constructed in a streamlined fashion.

6.4  Putting it All Together
This chapter has presented many elements that the developer of a training sys-
tem needs to develop, organize, and integrate. To help the developer coalesce this 
knowledge, the following section leads the reader through applying these concepts 
to an example learning context. In addition to following through the decisions that 
this section leads you through, you should consider applying the questions to a situ-
ation with which you are familiar.

 1. Clarifying sponsor expectations and budget
  Clarify the expectations of your sponsor, and the budget that is assigned to 

the project. Earlier, we raised questions that should be answered by discussions 
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between the sponsor and the leader of the instructional development team. 
A vision that illustrates what the instruction is expected to look like can be 
presented to the sponsor, the development team, and various stakeholders, 
including users. This will clarify questions such as the media used and the 
role of SMEs and instructors.

  Members of the instructional development team, such as the artist, the 
software lead, and the instructional design team, should estimate costs for 
the content and programming needed to develop the instruction. This must 
fall within the budget that the sponsor wishes to spend. The sponsor will be 
informed regarding progress toward goals that had been defined in earlier 
phases of development.

  When reviewing cyber-training, some examples indicate that the cyber-
security training world applies a traditional model of training that does not 
take full use of the capabilities of current instructional theory [35]. A report 
from the National Institute of Standards and Technology (NIST) on cyber-
security training [36] involves situated cognition to only a limited degree. 
The report discussed many different roles for which training should be cre-
ated. It is worth considering an alternative view that would focus on train-
ing common mental models that would cut across many cybersecurity roles. 
The report also assumed that the instruction would be instructor-led, and 
did not always include the use of simulations, which could increase training 
effectiveness.

 2. Take stock of resources
  Collect the resources that are at the disposal of the instructional design 

team. This has been described previously, including such concrete assets as a 
curriculum and graphics. The instructional team leader should also consider 
the relative strengths and weaknesses of the development team. An example is 
identifying the strengths of the programming staff and the computer systems 
in which they have expertise.

  In cybersecurity training, potentially valuable assets that training might 
use are cybersecurity testbeds that have been built to test cybersecurity tools. 
Some of these are used in training [37]. They are a valuable set of assets that 
could be widely exploited in cybersecurity training.

 3. Design the learner interaction
  In this phase, the learning team creates a mock-up of the instructional 

interactions by which the learner gains knowledge and skill. The instruc-
tional team needs to consider many factors:

 1. What does the learner need to learn? This helps clarify the skills that the 
instructional interaction imparts to the learner. This will require access to 
knowledge of the task. Usually, this is obtained via an SME and assess-
ment of trainees’ incoming skill. It is possible that the sponsor provides 
the SME to the instructional team.
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 2. What media will be used in this instruction? If the course is entirely 
instructor led, there is less design work, and more decisions are left to the 
instructor. The entire course may be given by a computer, or the com-
puter might simply provide a practice environment in which the instruc-
tor provides assessment of learner performance and leads a discussion in 
which learners are exposed to instructional objectives and interesting and 
appropriate cybersecurity situations.

 3. If the course involves a simulation or game, common interactions by the 
learner within the game should be made clear, as well as how evaluation 
initiates an instructional intervention, and what the sequence of interac-
tions between the learner and the instructional system looks like.

 4. Sketch the environment in which the learner interactions occur. This 
might be a simulation or a game, and may include more traditional didac-
tic instruction.

  As cybersecurity is a quickly evolving environment, it would be beneficial 
to construct the interactions with trainees, so they can be easily revised. The 
cybersecurity environment should also be easy to revise as new tools for use 
by cyber-defenders become available and as new threats are observed.

 4. Conduct a pilot study of the instruction interaction
  The instructional interactions should be tested for user acceptance and 

user effectiveness before the computer interactions are implemented in code. 
The interactions should be tested by pilot participants that are similar to the 
eventual learners. This allows observation of the instructional interactions 
to see if they have the intended effect. Testing the interaction at this stage 
allows for the opportunity to revise the instruction. In general, any feedback 
that can be obtained from typical learners is valuable to understand how the 
instruction can be made more effective.

 5. Develop more instructional and assessment content, and represent it in a 
computer.

  After settling on the environment and instructional intervention (hope-
fully after a pilot test), the computer format for the assessment and instruc-
tion content must be finalized. This is followed by content creation. There are 
quite a few formats which have been used to represent and apply computer-
ized instruction. Many examples are given in [29].

  For cybersecurity, the domain is evolving quickly, and new attack and 
defense approaches are being tried. The computer representation should be 
designed with this nature of the domain in mind; the computer representa-
tion should be simple in order to support flexibility.

  To conduct cybersecurity CTA, it would be valuable to embed the SMEs 
within a testbed for observing cybersecurity tools and techniques. If pos-
sible, for the study of cyber-defense, one expert could be the cyber-defender; 
another expert could be the cyber-attacker. The cyber-defender would not 
know what line of attack will be followed, and the attacker will not know 
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the defender’s tool or approach. The task analyst would conduct a structured 
talk-aloud protocol with the two cyber SMEs. One description of such a talk 
aloud protocol is described in [38].

 6. Test the completed instruction to observe and revise instructional weaknesses.
  After creating the instruction, test it with a few participants to identify 

weaknesses in the content that need to be revised before wide deployment. 
This is ideally done before conducting a full test of instructional effectiveness. 
The instruction should be revised based on the results from this test.

 7. Test the completed instruction for full instructional effectiveness.
  After the content has been reviewed with a few participants, test the entire 

course for instructional effectiveness. The test should use a sufficient number 
of participants to reasonably assess instructional effectiveness. Ideally, this 
would be conducted within an experiment designed to report the effective-
ness of this instruction.

  Ideally, the test of instructional effectiveness would be designed so that 
much of it could be used repeatedly; it would be ideal if the assessment of the 
instruction could be repeated regularly.

 8. Once the instruction is deployed, monitor it for continued effectiveness.
  Once the system is deployed, monitor its effectiveness. Internal measures of 

learner progress through the instruction should provide information whether 
the training is proving to be effective. Try to get measures from the field of 
the practical skill of trainees who have worked through the instruction. Use 
these indicators to design revisions and improvements to the instruction.

6.5  Using Big Data to Inform Cybersecurity Training
In describing how big data should be applied to cybersecurity training, we will 
begin by looking at how data is used now, and then consider how big data can 
improve cybersecurity training.

Data is used to establish the capabilities of workers as they complete their tasks. 
In cybersecurity, analysts’ performance in maintaining security and investigating 
attacks can be measured with two kinds of measures: first is data that reveals the 
overall success of cybersecurity operations; second is more detailed data that reveals 
processes used by cybersecurity personnel. If performance is constantly being 
monitored and an instructional intervention (or a new tool) is provided to cyber-
analysts, the resultant change in performance can be linked to the changes from 
newly acquired training or tools.

Monitoring performance of cyber-analysts as they conduct their work can lead 
to a cycle of improved effectiveness. Data is collected, which initially establishes 
a baseline. An intervention is introduced while all else stays the same. Continual 
monitoring of performance reveals how performance is changed by the interven-
tion. This performance can inspire another intervention—ideally, the change 
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selected would yield the biggest performance improvement for the lowest cost. The 
next change would, given the current situation, again yield the biggest change from 
the current situation for the lowest cost.

Besides the overall outcome performance change as a result of new training or 
tools, another use in using data is to examine details of processes used by workers 
who received new training. For example, if a training improvement leads defensive 
cyber analysts to inspect the computers in a network that have a newly discovered 
vulnerability first, outcome measures would assess if the training led to improved 
cyber-defense (if the monitors wanted to be sure that the change was due to the new 
training intervention and not a change in the kind of attacks the network receives, 
comparison to a network supported by cyber-defenders who did not receive the 
new training could be used as an experimental control group). Process data could 
be investigated in more detail to see if trainees followed the guidance they received 
from the training by tracking details of how they responded to attacks.

Big data is perfect for examining both outcome and process effects of training. 
Big data can be applied to the two big questions addressed above: monitoring of 
current performance, and process changes in how workers execute their tasks dif-
ferently following training.

In a report for the U.S. Army, Ososky et al. [39] foresee two uses for big data 
and training. The first is to collect overall effectiveness measures of each worker. As 
data of workers’ performance will be collected as they do their jobs, big data could 
be used to reveal their overall effectiveness.

Collecting and analyzing big data to assess overall effectiveness and worker 
experiences informs targets for instruction. In a cybersecurity context, the data 
that assesses overall competencies might reveal that trained cyber-defenders are 
excellent at one task (e.g., recovery after malware has been detected) but perform 
worse than expected or desired at a second task (e.g., identifying the origin of an 
intrusion). Big data could reveal which training, life experience, or other charac-
teristics of workers differentiates highly successful performers from less successful 
performers. Additionally, each worker would know how well he or she performs 
relative to other workers. Training decision makers would use big data to adjust 
training content, experiences, and emphasis. Big data informs improvement in the 
large-scale design of courses.

The second use of big data is to collect very detailed data of the processes that 
trainees used while interacting with a training system. The training systems would, 
using big data capabilities, collect very detailed accounts of training system effi-
ciency. If big data reveals that training on a topic is inefficient, then a solution 
would seek to improve the effectiveness of training on that topic. A second result 
might be that workers are learning about intrusion detection efficiently, but they 
just need more training time to become as proficient as needed.

Big data that examines the relationships across trainee behaviors, instructional 
system interactions, and assessment that shows trainee improvement will reveal 
if trainees are actually improving at some skills or knowledge as expected by the 
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instruction plan. Collecting big data of trainee interactions can answer questions 
of training efficiency.

When using big data to inform training effectiveness and efficiency, there are 
a few classic problems with data to which big data is susceptible. Big data may 
not collect the data that illuminates the factors that lead to correct conclusions. 
A cautionary tale about the use of big data came from a study of the worst places 
to live in America [40]. In this article, a Washington Post reporter, Christopher 
Ingraham, had used a variety of variables to identify good and poor places to live. 
Example factors included were economic conditions, educational attainment, 
crime, climate, and cultural diversity. Based on these factors, Red Lake Falls, 
Minnesota was ranked the worst place to live in America. The townspeople of Red 
Lake Falls invited Ingraham to visit their city. He took them up on their offer, 
and visited Red Lake Falls. He enjoyed it so much, he moved there, as described 
in the referenced article. The data collected about the town did not include factors 
that were actually important to Ingraham, such as the friendliness of the people 
in the town or the quality of life that his two young boys enjoyed as they explored 
the town.

As applied to training and cybersecurity, data must include those factors that 
enable analysts to make correct judgments about network cybersecurity. For exam-
ple, big data may capture the number of network intrusions, but not the methods 
that led to successful intrusions. To guide training improvement, the data must be 
sufficiently rich to capture the details that are critical to successful or unsuccessful 
intrusion detection. Big data will collect data that can be collected; but it should 
not miss the pertinent data. Experts that understand cybersecurity processes and 
analysis of big data will be required to use the data collected to make beneficial 
interpretations of data for training.

Additionally, big data can contribute in two more ways to training cybersecu-
rity analysts, though these contributions go beyond training. First, big data can 
monitor the types of cybersecurity tactics used by opponents. This can inform what 
analysts should be trained in, as well as what kinds of tools and tactics should be 
used by cybersecurity analysts. Second, big data is used to visualize a computer 
network, including its currently understood vulnerability and current state. Big 
data visualization should be used in training and by cybersecurity analysts as they 
perform their real-world tasks.

6.6  Conclusions
This chapter, if successful, should lead the reader to see that training goes far 
beyond the presentation of information, or interacting with a simulation. Effective 
training requires interactions that engage trainees with concepts that they apply 
to their tasks and lead them to deeply understand not only actions they take, but 
why other tasks that they could take will be less successful than the preferred task. 
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Simulations and games can be a great environment for learning, and they should be 
used with applications of good learning principles for maximum effect.

Developing training is a technical enterprise in defining the right content and 
presenting it effectively and efficiently to trainees. Developing training is also a 
social and business enterprise that involves managing relationships with sponsors, 
users, and existing training professionals, all of who have idiosyncratic perspectives 
based on their personal learning and training history. Creating the best training for 
the available funds requires attention to both technical and social factors.

Big data in cybersecurity will undoubtedly have large consequences in the 
near term future of training cybersecurity. Big data will influence the visualization 
which cybersecurity analysts use and are trained with. Use of big data in training 
cybersecurity analysts also has a responsibility to the future use of big data in train-
ing. Cybersecurity is an ideal domain in which to collect big data. The environment 
in which cybersecurity plays out is an electronic network with tremendous amounts 
of available data; big data abounds in computer networks. Big data is not as easily 
available in interactions that are not electronic. For example, healthcare, childhood 
education, and business interactions involve many face to face communications 
that are not tracked electronically. Training in cybersecurity should use carefully 
and analytically applied big data in order to illustrate the benefits of big data for 
learning and performance improvement. The benefits of big data for training can 
be illustrated in cybersecurity training, which can then serve as a model for other 
domains.
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Today’s systems produce a rapidly exploding amount of data, and the data further 
derives more data, forming a complex data propagation network that we call the 
data’s lineage. There are many reasons that users want systems to forget certain 
data including its lineage. From a privacy perspective, users who become concerned 
with new privacy risks of a system often want the system to forget their data and 
lineage. From a security perspective, if an attacker pollutes an anomaly detector 
by injecting manually crafted data into the training data set, the detector must 
forget the injected data to regain security. From a usability perspective, a user can 
remove noise and incorrect entries so that a recommendation engine gives useful 
recommendations. Therefore, we envision forgetting systems, capable of forgetting 
certain data and their lineages, completely and quickly.

In this chapter, we introduce machine unlearning, or simply unlearning, capa-
ble of forgetting certain data and their lineages in learning models completely and 
quickly. We present a general, efficient unlearning approach by transforming learn-
ing algorithms used by a system into a summation form. To forget a training data 
sample, our approach simply updates a small number of summations—asymptotically 
faster than retraining from scratch. Such an approach is general because the sum-
mation form is from the statistical query learning in which many machine learn-
ing algorithms can be implemented. Such an approach also applies to all stages of 
machine learning, including feature selection and modeling.

7.1  Introduction
7.1.1  The Need for Systems to Forget

Today’s systems produce a rapidly exploding amount of data, ranging from personal 
photos and office documents to logs of user clicks on a website or mobile device [1]. 
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From this data, the systems perform a myriad of computations to derive even more 
data. For instance, backup systems copy data from one place (e.g., a mobile device) 
to another (e.g., the cloud). Photo storage systems re-encode a photo into different 
formats and sizes [2,3]. Analytics systems aggregate raw data such as click logs into 
insightful statistics. Machine learning systems extract models and properties (e.g., 
the similarities of movies) from training data (e.g., historical movie ratings) using 
advanced algorithms. This derived data can recursively derive more data, such as a 
recommendation system predicting a user’s rating of a movie based on movie simi-
larities. In short, a piece of raw data in today’s systems often goes through a series of 
computations, “creeping” into many places and appearing in many forms. The data, 
computations, and derived data together form a complex data propagation network 
that we call the data’s lineage.

For a variety of reasons, users want a system to forget certain sensitive data and 
its complete lineage. Consider privacy first. After Facebook changed its privacy 
policy, many users deleted their accounts and the associated data [4]. The iCloud 
photo hacking incident [5] led to online articles teaching users how to completely 
delete iOS photos including the backups [6]. New privacy research revealed that 
machine learning models for personalized warfarin dosing leak patients’ genetic 
markers [7], and a small set of statistics on genetics and diseases suffices to identify 
individuals [8]. Users unhappy with these newfound risks naturally want their data 
and its influence on the models and statistics to be completely forgotten. System 
operators or service providers have strong incentives to honor users’ requests to 
forget data, both to keep users happy and to comply with the law [9]. For instance, 
Google had removed 171,183 links [10] by October 2014 under the “right to be 
forgotten” ruling of the highest court in the European Union.

Security is another reason that users want data to be forgotten. Consider anom-
aly detection systems. The security of these systems hinges on the model of nor-
mal behaviors extracted from the training data. By polluting* the training data, 
attackers pollute the model, thus compromising security. For instance, Perdisci et 
al. [11] show that PolyGraph [12], a worm detection engine, fails to generate use-
ful worm signatures if the training data is injected with well-crafted fake network 
flows. Once the polluted data is identified, the system must completely forget the 
data and its lineage to regain security.

Usability is a third reason. Consider the recommendation or prediction sys-
tem Google Now [13]. It infers a user’s preferences from his or her search history, 
browsing history, and other analytics. It then pushes recommendations, such as 
news about a show, to the user. Noise or incorrect entries in analytics can seriously 
degrade the quality of the recommendation. One of our lab members experienced 
this problem first-hand. He loaned his laptop to a friend who searched for a TV 
show (“Jeopardy!”) on Google [14]. He then kept getting news about this show on 
his phone, even after he deleted the search record from his search history.

* In this chapter, we use the term pollute [11] instead of poison [15,16].
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We believe that systems must be designed under the core principle of com-
pletely and quickly forgetting sensitive data and its lineage for restoring privacy, 
security, and usability. Such forgetting systems must carefully track data lineage 
even across statistical processing or machine learning, and make this lineage visible 
to users. They let users specify the data to forget with different levels of granular-
ity. For instance, a privacy-conscious user who accidentally searches for a sensitive 
keyword without concealing his or her identity can request that the search engine 
forget that particular search record. These systems then remove the data and revert 
its effects so that all future operations run as if the data had never existed. They 
collaborate to forget data if the lineage spans across system boundaries (e.g., in the 
context of web mashup services). This collaborative forgetting potentially scales to 
the entire Web. Users trust forgetting systems to comply with requests to forget 
because the aforementioned service providers have strong incentives to comply, but 
other trust models are also possible. The usefulness of forgetting systems can be 
evaluated with two metrics: how completely they can forget data (completeness) 
and how quickly they can do so (timeliness). The higher these metrics, the better 
the systems at restoring privacy, security, and usability.

Forgetting systems can be easily adopted because they benefit both users and 
service providers. With the flexibility to request that systems forget data, users have 
more control over their data, so they are more willing to share data with the sys-
tems. More data also benefits the service providers because they have more profit 
opportunity services and fewer legal risks. In addition, we envision forgetting sys-
tems playing a crucial role in emerging data markets [17–19] where users trade data 
for money, services, or other data because the mechanism of forgetting enables a 
user to cleanly cancel a data transaction or rent out the use rights of his or her data 
without giving up the ownership.

Forgetting systems are complementary to much existing work [12,20,21]. 
Systems such as Google Search [22] can forget a user’s raw data upon request, but 
they ignore the lineage. Secure deletion [23–25] prevents deleted data from being 
recovered from the storage media, but it largely ignores the lineage, too. Information 
flow control [26,27] can be leveraged by forgetting systems to track data lineage. 
However, it typically tracks only direct data duplication, not statistical processing 
or machine learning, to avoid taint explosion. Differential privacy [20,21] preserves 
the privacy of each individual item in a data set equally and invariably by restrict-
ing accesses only to the whole data set’s statistics fuzzed with noise. This restric-
tion is at odds with today’s systems such as Facebook and Google Search which, 
authorized by billions of users, routinely access personal data for accurate results. 
Unsurprisingly, it is impossible to strike a balance between utility and privacy in 
state-of-the-art implementations [7]. In contrast, forgetting systems aim to restore 
privacy on select data. Although private data may still propagate, the lineage of 
this data within the forgetting systems is carefully tracked and removed completely 
and in a timely manner upon request. In addition, this fine-grained data removal 
caters to an individual user’s privacy consciousness and the data item’s sensitivity. 
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Forgetting systems conform to the trust and usage models of today’s systems, rep-
resenting a more practical privacy versus utility tradeoff. Researchers also proposed 
mechanisms to make systems more robust against training data pollution [12,28]. 
However, despite these mechanisms (and the others discussed thus far such as dif-
ferential privacy), users may still request systems to forget data due to, for example, 
policy changes and new attacks against the mechanisms [7,11]. These requests can 
be served only by forgetting systems.

7.1.2  Machine Unlearning

While there are numerous challenges in making systems forget, this chapter focuses 
on one of the most difficult challenges: making machine learning systems forget. 
These systems extract features and models from training data to answer questions 
about new data. They are widely used in many areas of science [12,29–35]. To for-
get a piece of training data completely, these systems need to revert the effects of the 
data on the extracted features and models. We call this process machine unlearning, 
or unlearning for short. A naive approach to unlearning is to retrain the features 
and models from scratch after removing the data to forget. However, when the set 
of training data is large, this approach is quite slow, increasing the timing window 
during which the system is vulnerable.

We present a general approach to efficient unlearning, without retraining from 
scratch, for a variety of machine learning algorithms widely used in real-world sys-
tems. To prepare for unlearning, we transform learning algorithms in a system to a 
form consisting of a small number of summations [36]. Each summation is the sum of 
some efficiently computable transformation of the training data samples. The learning 
algorithms depend only on the summations, not individual data. These summations 
are saved together with the trained model. (The rest of the system may still ask for 
individual data and there is no injected noise as there is in differential privacy.) Then, 
in the unlearning process, we subtract the data to forget from each summation, and 
then update the model. As Figure 7.1 illustrates, forgetting a data item now requires 
recomputing only a small number of terms, asymptotically faster than retraining 
from scratch by a factor equal to the size of the training data set. It is general because 
the summation form is from statistical query (SQ) learning [37]. Many machine 
learning algorithms, such as naive Bayes classifiers, support vector machines, and 
k-means clustering, can be implemented as SQ learning. Our approach also applies to 
all stages of machine learning, including feature selection and modeling.

While prior work proposed incremental machine learning for several specific 
learning algorithms [38–40], the key difference is that unlearning is a general effi-
cient unlearning approach applicable to any algorithm that can be converted to the 
summation form, including some that currently have no incremental versions, such 
as normalized cosine similarity and one-class SVM. In addition, the unlearning 
approach handles all stages of learning, including feature selection and modeling 
approach on real systems.
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7.1.3  Chapter Organization

The rest of the chapter is organized as follows. In Section 7.2, we present some back-
ground on machine learning systems and the extended motivation of unlearning. 
In Section 7.3, we present the goals and work flow of unlearning. In Section 7.4, 
we present the core approach of unlearning, i.e., transforming a system into the 
summation form, and its formal backbone. In Section 7.5, we report one case study 
on LensKit. In Section 7.6, we discuss related work.

7.2  Background and Adversarial Model
This section presents some background on machine learning (Section 7.2.1) and the 
extended motivation of unlearning (Section 7.2.2).

7.2.1  Machine Learning Background

Figure 7.2 shows a general machine learning system with three processing stages.

Feature selection. During this stage, the system selects, from all features of the 
training data, a set of features most crucial for classifying data. The selected 
feature set is typically small to make later stages more accurate and efficient. 

... ... ... ...

g1 g2 g1 g2 g1 g2

Training data
samples

g1, g2:
transformations

A small
number of
summations

Machine learning modelMachine learning model

Learn

Learn

Σ Σ

Figure 7.1 Unlearning idea. Instead of making a model directly depend on each 
training data sample (left), we convert the learning algorithm into a summation 
form (right). Specifically, each summation is the sum of transformed data sam-
ples, where the transformation functions gi are efficiently computable. There are 
only a small number of summations, and the learning algorithm depends only on 
summations. To forget a data sample, we simply update the summations and then 
compute the updated model. This approach is asymptotically much faster than 
retraining from scratch.



Machine Unlearning ◾ 143

Feature selection can be (1) manual where system builders carefully craft the 
feature set or (2) automatic where the system runs some learning algorithms 
such as clustering and chi-squared test to compute how crucial the features 
are and select the most crucial ones.

Model training. The system extracts the values of the selected features from each 
training data sample into a feature vector. It feeds the feature vectors and the 
malicious or benign labels of all training data samples into some machine 
learning algorithm to construct a succinct model.

Prediction. When the system receives an unknown data sample, it extracts the 
sample’s feature vector and uses the model to predict whether the sample is 
malicious or benign.

Note that a learning system may or may not contain all three stages, work 
with labeled training data, or classify data as malicious or benign. We present the 

Training data set

+ + −

Feature
selection

Feature
set

Model
training

Model

Prediction
Unknown sample Result

or? + −

Figure 7.2 A general machine learning system. Given a set of training data 
including both malicious (+) and benign (–) samples, the system first selects a set 
of features most crucial for classifying data. It then uses the training data to con-
struct a model. To process an unknown sample, the system examines the features 
in the sample and uses the model to predict the sample as malicious or benign. 
The lineage of the training data thus flows to the feature set, the model, and 
the prediction results. An attacker can feed different samples to the model and 
observe the results to steal private information from every step along the lineage, 
including the training data set (system inference attack). The attacker can pollute 
the training data and subsequently every step along the lineage to alter prediction 
results (training data pollution attack).
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system in Figure 7.2 because it matches many machine learning systems for security 
purposes such as Zozzle. Without loss of generality, we refer to this system as an 
example in the later sections of the chapter.

7.2.2  Adversarial Model

To further motivate the need for unlearning, we describe several practical attacks 
in the literature that target learning systems. They either violate privacy by infer-
ring private information in the trained models (Section 7.2.2.1), or reduce secu-
rity by polluting the prediction (detection) results of anomaly detection systems 
(Section 7.2.2.2).

7.2.2.1  System Inference Attacks

The training data sets, such as movie ratings, online purchase histories, and brows-
ing histories, often contain private data. As shown in Figure 7.2, the private data 
lineage flows through the machine learning algorithms into the feature set, the 
model, and the prediction results. By exploiting this lineage, an attacker gains an 
opportunity to infer private data by feeding samples into the system and observing 
the prediction results. Such an attack is called a system inference attack [41].*

Consider a recommendation system that uses item-item collaborative filter-
ing which learns item-item similarities from users’ purchase histories and recom-
mends to a user the items most similar to the ones he or she previously purchased. 
Calandrino et al. [41] show that once an attacker learns (1) the item-item similari-
ties, (2) the list of recommended items for a user before he or she purchased an 
item, and (3) the list after, the attacker can accurately infer what the user purchased 
by essentially inverting the computation done by the recommendation algorithm. 
For example, on LibraryThing [42], a book cataloging service and recommenda-
tion engine, this attack successfully inferred six book purchases per user with 90% 
accuracy for over one million users!

Similarly, consider a personalized warfarin dosing system that guides medical 
treatments based on a patient’s genotype and background. Fredrikson et al. [7] 
show that with the model and some demographic information about a patient, an 
attacker can infer the genetic markers of the patient with accuracy as high as 75%.

7.2.2.2  Training Data Pollution Attacks

Another way to exploit the lineage in Figure 7.2 is using training data pollution 
attacks. An attacker injects carefully polluted data samples into a learning sys-
tem, misleading the algorithms to compute an incorrect feature set and model. 
Subsequently, when processing unknown samples, the system may flag a big 

* In this chapter, we use system inference instead of model inversion [7].
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number of benign samples as malicious and generate too many false positives, or it 
may flag a big number of malicious samples as benign so the true malicious samples 
evade detection.

Unlike system inference in which an attacker exploits an easy-to-access public 
interface of a learning system, data pollution requires an attacker to tackle two 
relatively difficult issues. First, the attacker must trick the learning system into 
including the polluted samples in the training data set. There are a number of 
reported ways to do so [11,16,43]. For instance, the attacker may sign up as a 
crowdsourcing worker and intentionally mislabel benign emails as spam [16]. He 
or she may also attack the honeypots or other baiting traps intended for collecting 
malicious samples, such as sending polluted emails to a spamtrap [44], or com-
promising a machine in a honeynet and sending packets with polluted protocol 
header fields [11].

Second, the attacker must carefully pollute enough data to mislead the machine 
learning algorithms. In the crowdsourcing case, the administrator of the crowd-
sourcing sites directly pollutes the labels of some training data [16]. Approximately 
3% mislabeled training data turned out to be enough to significantly decrease 
detection efficacy. In the honeypot cases [11,44], the attacker cannot change the 
labels of the polluted data samples because the honeypot automatically labels them 
as malicious. However, the attacker controls what features appear in the samples, so 
he or she can inject benign features into these samples, misleading the system into 
relying on these features for detecting malicious samples. For instance, Nelson et al. 
injected words that also occur in benign emails into the emails sent to a spamtrap, 
causing a spam detector to classify 60% of the benign emails as spam. Perdisci et al. 
injected many packets with the same randomly generated strings into a honeynet, 
so that true malicious packets without these strings evade detection.

7.3  Overview
This section presents the goals (Section 7.3.1) and work flow (Section 7.3.2) of 
machine learning.

7.3.1  Unlearning Goals

Recall that forgetting systems have two goals: (1) completeness, or how completely 
they can forget data, and (2) timeliness, or how quickly they can forget. We discuss 
what these goals mean in the context of unlearning.

7.3.1.1  Completeness

Intuitively, completeness requires that once a data sample is removed, all its effects 
on the feature set and the model are also cleanly reversed. It essentially captures 
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how consistent an unlearned system is with the system that has been retrained from 
scratch. If, for every possible sample, the unlearned system gives the same predic-
tion result as the retrained system, then an attacker, operator, or user has no way of 
discovering that the unlearned data and its lineage existed in the system by feeding 
input samples to the unlearned system or even observing its features, model, and 
training data. Such unlearning is complete. To empirically measure completeness, 
we quantify the percentage of input samples that receive the same prediction results 
from both the unlearned and the retrained system using a representative test data 
set. The higher the percentage, the more complete the unlearning. Note that com-
pleteness does not depend on the correctness of prediction results: an incorrect but 
consistent prediction by both systems does not decrease completeness.

Our notion of completeness is subject to such factors as how representative the 
test data set is and whether the learning algorithm is randomized. In particular, 
given the same training data set, the same randomized learning algorithm may 
compute different models which subsequently predict differently. Thus, we consider 
unlearning complete as long as the unlearned system is consistent with one of the 
retrained systems.

7.3.1.2  Timeliness

Timeliness in unlearning captures how much faster unlearning is than retraining 
at updating the features and the model in the system. The more timely the unlearn-
ing, the faster the system is at restoring privacy, security, and usability. Analytically, 
unlearning updates only a small number of summations and then runs a learning 
algorithm on these summations, whereas retraining runs the learning algorithm 
on the entire training data set, so unlearning is asymptotically faster by a factor of 
the training data size. To empirically measure timeliness, we quantify the speedup 
of unlearning over retraining. Unlearning does not replace retraining. Unlearning 
works better when the data to forget is small compared to the training set. This 
case is quite common. For instance, a single user’s private data is typically small 
compared to the whole training data of all users. Similarly, an attacker needs only a 
small amount of data to pollute a learning system. When the data to forget becomes 
large, retraining may work better.

7.3.2  Unlearning Work Flow

Given a training data sample to forget, unlearning updates the system in two 
steps, following the learning process shown in Figure 7.2. First, it updates the set 
of selected features. The inputs at this step are the sample to forget, the old feature 
set, and the summations previously computed for deriving the old feature set. The 
outputs are the updated feature set and summations. For example, Zozzle [30], a 
JavaScript malware detection engine, selects features using the chi-squared test, 
which scores a feature based on four counts (the simplest form of summations): 
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how many malicious or benign samples contain or do not contain this feature. To 
support unlearning, we can augment Zozzle to store the score and these counts 
for each feature. To unlearn a sample, we can update these counts to exclude this 
sample, rescore the features, and select the top scored features as the updated fea-
ture set. This process does not depend on the training data set, and is much faster 
than retraining which has to inspect each sample for each feature. The updated 
feature set in our experiments is very similar to the old one with a couple of features 
removed and added.

Second, unlearning updates the model. The inputs at this step are the sample to 
forget, the old feature set, the updated feature set, the old model, and the summa-
tions previously computed for deriving the old model. The outputs are the updated 
model and summations. If a feature is removed from the feature set, we simply 
splice out the feature’s data from the model. If a feature is added, we compute its 
data in the model. In addition, we update summations that depend on the sample 
to forget, and update the model accordingly. For Zozzle which classifies data as 
malicious or benign using naive Bayes, the summations are probabilities (e.g., the 
probability that a training data sample is malicious given that it contains a certain 
feature) computed using the counts recorded in the first step. Updating the prob-
abilities and the model is thus straightforward, and much faster than retraining.

7.4  Unlearning Approach
As previously depicted in Figure 7.1, the unlearning approach introduces a layer of 
a small number of summations between the learning algorithm and the training 
data to break down the dependencies. Now, the learning algorithm depends only 
on the summations, each of which is the sum of some efficiently computable trans-
formations of the training data samples. Chu et al. [36] show that many popular 
machine learning algorithms, such as naive Bayes, can be represented in this form. 
To remove a data sample, we simply remove the transformations of this data sample 
from the summations that depend on this sample, which has O(1) complexity, and 
compute the updated model. This approach is asymptotically faster than retraining 
from scratch.

More formally, the summation form follows statistical query (SQ) learning 
[37]. SQ learning forbids a learning algorithm from querying individual training 
data samples. Instead, it permits the algorithm to query only statistics about the 
training data through an oracle. Specifically, the algorithm sends a function g(x,lx ) 
to the oracle where x is a training data sample, lx is the corresponding label, and g is 
an efficiently computable function. Then, the oracle answers an estimated expecta-
tion of g(x,lx ) over all training data. The algorithm repeatedly queries the oracle, 
potentially with different g-functions, until it terminates.

Depending on whether all SQs that an algorithm issues are determined upfront, 
SQ learning can be nonadaptive (all SQs are determined upfront before the 
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algorithm starts) or adaptive (later SQs may depend on earlier SQ results). These 
two different types of SQ learning require different ways to unlearn, described in 
the following two subsections.

7.4.1  Nonadaptive SQ Learning

A nonadaptive SQ learning algorithm must determine all SQs upfront. It follows 
that the number of these SQs is constant, denoted m, and the transformation 
g-functions are fixed, denoted g1, g2, ..., gm. We represent the algorithm in the fol-
lowing form:
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where xi is a training data sample and l xi  is its label. This form encompasses many 
popular machine learning algorithms, including linear regression, chi-squared test, 
and naive Bayes.

With this form, unlearning is as follows. Let Gk be g x lk i xi
( , )∑ . All Gks are 

saved together with the learned model. To unlearn a data sample xp, we compute 
′Gk  as G g x lk k p x p

− ( , ) . The updated model is thus
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Unlearning on a nonadaptive SQ learning algorithm is complete because this 
updated model is identical to
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i p
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≠ ≠∑ ∑ii p≠∑( )
the model computed by retraining on the training data excluding xp. For timeli-
ness, it is also much faster than retraining because (1) computing ˊGk  is easy: simply 
subtract g x lk p x p

( , )  from Gk and (2) there are only a constant number of summa-
tions Gk.

We now illustrate how to convert a nonadaptive SQ learning algorithm into this 
summation form using naive Bayes as an example. Given a sample with features 
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F1, F2, ..., and Fk, naive Bayes classifies the sample with label L if P(L|F1,..., Fk ), 
the conditional probability of observing label L on a training data sample with all 
these features, is bigger than this conditional probability for any other label. This 
conditional probability is computed using Equation 7.1.
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We now convert each probability term P in this equation into summations. 
Consider P(Fi|L) as an example. It is computed by taking (1) the number of train-
ing data samples with feature Fi and label L, denoted N F Li , , and dividing by 
(2) the number of training data samples with label L, denoted Nl. Each counter 
is essentially a very simple summation of a function that returns 1 when a sample 
should be counted and 0 otherwise. For instance, Nl is the sum of an indicator 
function gl(x,lx) that returns 1 when lx is L and 0 otherwise. Similarly, all other 
probability terms are computed by dividing the corresponding two counters. P(L) 
is the division of Nl over the total number of samples, denoted N. P(Fi) is the 
division of the number of training data samples with the feature Fi, denoted N Fi

, 
over N.

To unlearn a sample, we simply update these counters and recompute the prob-
abilities. For instance, suppose the training sample to unlearn has label L and one fea-

ture Fj. After unlearning, P(Fj|L) becomes 
N

N
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7.4.2  Adaptive SQ Learning

An adaptive SQ learning algorithm issues its SQs iteratively on the fly, and later 
SQs may depend on results of earlier ones. (Nonadaptive SQ learning is a spe-
cial form of adaptive SQ learning.) Operationally, adaptive SQ learning starts by 
selecting an initial state s0, randomly or heuristically. At state sj, it determines the 
transformation functions in the SQs based on the current state, sends the SQs to 
the oracle, receives the results, and learns the next state sj+1. It then repeats until the 
algorithm converges. During each iteration, the current state suffices for determin-
ing the transformation functions because it can capture the entire history starting 



150 ◾ Big Data Analytics in Cybersecurity

from s0. We represent these functions in each state Sj as g g gs s s mj j j, , ,, , ,1 2  . Now, 
the algorithm is in the following form:

 (1) So: initial state;

 (2) s Learn g x l g x lj s i x
x X

s i x
xj i

i
j i

i
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∈
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x X
g x l
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i

, ( , ) ;

 (3) Repeat (2) until the algorithm converges.

The number of iterations required for the algorithm to converge depends on the 
algorithm, the initial state selected, and the training data. Typically the algorithm 
is designed to robustly converge under many scenarios. This adaptive form of SQ 
learning encompasses many popular machine learning algorithms, including gradi-
ent descent, SVM, and k-means.

Unlearning this adaptive form is more changing than nonadaptive because, 
even if we restart from the same initial state, if the training data sample to for-
get changes one iteration, all subsequent iterations may deviate and require com-
puting from scratch. Fortunately, the insight is that, after removing a sample, the 
previously converged state often becomes only slightly out of convergence. Thus, 
unlearning can simply “resume” the iterative learning algorithm from this state on 
the updated training data set, and it should take much fewer iterations to converge 
than restarting from the original or a newly generated initial state.

Operationally, the adaptive unlearning approach works as follows. Given the 
converged state S computed on the original training data set, it removes the contri-
butions of the sample to forget from the summations that Learn uses to compute S, 
similar to unlearning the nonadaptive form. Let the resultant state be S′. Then, it 
checks whether S′ meets the algorithm’s convergence condition. If not, it sets S′ as 
the initial state and runs the iterative learning algorithm until it converges.

We now discuss the completeness of the adaptive unlearning approach in 
three scenarios. First, for algorithms such as SVM that converge at only one 
state, the approach is complete because the converged state computed from 
unlearning is the same as that retrained from scratch. Second, for algorithms 
such as k-means that converge at multiple possible states, the approach is com-
plete if the state S′ is a possible initial state selected by the algorithm (e.g., 
the algorithm selects initial state randomly). A proof sketch is as follows. Since 
S′ is a possible initial state, there is one possible retraining process that starts 
from S′ and reaches a new converged state. At every iteration of this retraining 
process, the new state computed by Learn is identical to the state computed in 
the corresponding iteration in unlearning. Thus, they must compute the same 
exact converged state, satisfying the completeness goal (Section 7.3.1.1). Third, 
the approach may be incomplete if (a) S′ cannot be a possible initial state (e.g., 
the algorithm selects the initial state using a heuristic that happens to rule out 
S′) or (b) the algorithm does not converge or converges at a state different than 
all possible states retraining converges to. We expect these scenarios to be rare 
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because adaptive algorithms need to be robust anyway for convergence during 
normal operations.

The adaptive unlearning approach is also timely. The speedup over retraining 
is twofold. First, unlearning is faster at computing the summations if there are old 
results of the summations to use. For example, it updates the state S by removing 
contributions of the removed sample. Second, unlearning starts from an almost-
converged state, so it needs fewer iterations to converge than retraining. In practice, 
we expect that the majority of the speedup comes from the reduced number of 
iterations. The implication is that, in principle, the adaptive unlearning approach 
should speed up any robust iterative machine learning algorithm, even if the algo-
rithm does not follow SQ learning. In practice, however, very few practical learn-
ing algorithms cannot be converted to the adaptive SQ learning form. Specifically, 
many machine learning problems can be cast as optimization problems, potentially 
solvable using gradient descent, an adaptive SQ learning algorithm.

Now, we illustrate how to convert an adaptive SQ learning algorithm into the 
summation form using k-means clustering as an example. K-means clustering starts 
from an initial set of randomly selected cluster centers, ci,..., ck, assigns each data 
point to a cluster whose center has the shortest Euclidean distance to the point, and 
then updates each ci based on the mean value of all the data points in its cluster. It 
repeats this assignment until the centers no longer change.

To support unlearning, we convert the calculation of each ci into summations. 
Because k-means clustering is unsupervised, labels are not involved in the following 
discussion. Let us define g xc ji , ( )  as a function that outputs x when the distance 
between x and ci is minimum, and otherwise 0; and define ˊg xj ( )  as a function that 
outputs 1 when the distance between x and ci is minimum, and otherwise 0. Now, 

the new ci in the j + 1 iteration equals 
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To unlearn a sample xp, we update g xc j
x X i , ( )

∈∑  and ′
∈∑ g xc j

x X i , ( )  by sub-
tracting g xc j pi , ( )  and ′g xc j pi , ( )  from the summations. Then, we continue the itera-
tion process until the algorithm converges.

7.5  Unlearning in LensKit
In this section, we use LensKit [33] as an example to describe the unlearning 
approach. We start by describing LensKit’s recommendation algorithm. Recall 
that by default it recommends items to users using item-item collaborative filtering 
[31,33] that computes the similarity of every two items based on user ratings of 
the items because, intuitively, similar items should receive similar ratings from the 
same user. Operationally, LensKit starts by constructing a user-item matrix based 
on historical user ratings of items, where row i stores all ratings given by user i, and 
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column j all ratings received by item j. Then, LensKit normalizes all ratings in the 
matrix to reduce biases across users and
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items. For instance, one user’s average rating may be higher than another user’s, but 
both should contribute equally to the final item-item similarity. Equation 7.2 shows 
the normalized rating aij for rij, user i’s original rating of item j, where μi is the aver-
age of all ratings given by user i, ηj the average of all ratings received by item j, and 
g is the global average rating.
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Based on the normalized user-item rating matrix, LensKit computes an item-
item similarity matrix within which the cell at row k and column l represents the 
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similarity between items k and l. Specifically, as shown in Equation 7.3, it computes 
the cosine similarity between columns k and l in the user-item rating matrix, where 


x
2

 represents the Euclidean norm of 


x , and 


a k*,  is a vector, (a1k, a1k,,..., ank), repre-
senting all the ratings received by item k.
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Now, to recommend items to a user, LensKit computes the most similar items to 
the items previously rated by the user.

The workload that we use is a public, real-world data set from movie recommen-
dation website MovieLens [45]. It has three subsets: (1) 100,000 ratings from 1,000 
users on 1,700 movies, (2) 1 million ratings from 6,000 users on 4,000 movies, and 
(3) 10 million ratings from 72,000 users on 10,000 movies. The LensKit’s default 
settings are used in all experiments.

7.5.1  The Attack–System Inference

Since there exists a prior system inference attack against recommendation systems 
[41], we reproduced this attack against LensKit and verified the effectiveness of the 
attack. As described by Calandrino et al. [41], the attacker knows the item-item 
similarity matrix and some items that the user bought from the past. To infer a 
newly bought item of the user, the attacker computes a delta matrix between the 
current item-item similarity matrix and the one without the item. Then, based on 
the delta matrix, the attacker could infer an initial list of items that might lead 
to the delta matrix, i.e., potential items that the user might have newly bought. 
Comparing the list of inferred items and the user’s purchasing history, the attacker 
could infer the newly bought item. Following the attack steps, we first record the 
item-item similarity matrix of LensKit and one user’s rating history. Then, we add 
one item to the user’s rating history, compute the delta matrix and then successfully 
infer the added rating from the delta matrix and the user’s rating history.

7.5.2  Analytical Results

To support unlearning in LensKit, we converted its recommendation algorithm 
into the summation form. Equation 7.4 shows this process. We start by substitut-
ing 



a k*,
 and a l*,

 in Equation 7.3 with their corresponding values in Equation 7.2 
where n is the number of users and m is the number of items, and expanding the 
multiplications. We then simplify the equation by substituting some terms using 
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the five summations listed in Equation 7.5. The result shows that the summation 
approach applies to item-item recommendation using cosine similarity.
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We now discuss analytically the completeness and timeliness of unlearning 
in LensKit. To forget a rating in LensKit, we must update its item-item similarity 
matrix. To update the similarity between items k and l, we simply update all the sum-
mations in Equation 7.4, and then recompute sim(k,l ) using the summations. This 
unlearning process is 100% complete because it computes the same value of sim(k,l ) 
as recomputing from scratch following Equation 7.3. The asymptotic time to unlearn 
sim(k,l ) is only O(1) because there is only a constant number of summations, each of 
which can be updated in constant time. Considering all m2 pairs of items, the time 
complexity of unlearning is O(m2). In contrast, the time complexity of retraining 
from scratch is O(nm2) because recomputing sim(k,l ) following Equation 7.3 requires 
the dot-product of two vectors of size n. Thus, unlearning has a speedup factor of 
O(n ) over retraining. This speedup is quite huge because a recommendation system 
typically has many more users than items (e.g., Netflix’s users vs. movies).

Now that we have shown mathematically how to convert LensKit’s item-item simi-
larity equation into the summation form and its analytical completeness and timeliness, 
we proceed to show algorithmically how to modify LensKit to support unlearning. 
While doing so is not difficult once Equation 7.4 is given, we report the algorithms we 
added to provide a complete picture of how to support unlearning in LensKit.

We added two algorithms to LensKit. Algorithm 1 runs during the learning 
stage of LensKit, which occurs when the system bootstraps or when the system 
operator decides to retrain from scratch. This algorithm computes the necessary 
summations for later unlearning. To compute the average rating of each user i (μi, 
line 13), it tracks the number of ratings given by the user (Count

iµ , line 6) and the 
sum of these ratings ( Sum

iµ , line 5). It similarly computes the average rating of each 
item k (ηk, line 17) by tracking the number of all ratings received by item k (Count

kη , line 
8) and the sum of these ratings ( Sum

kη , line 7). It computes the average of all ratings 
(g, line 15) by tracking the total number of ratings (Countg, line 10) and the sum of 
them (Sumg, line 9). In addition, it computes additional summations Sk and Skl (line 
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19 and 23) required by Equation 7.4. Once all summations are ready, it computes 
the similarity of each pair of items following Equation 7.4. It then stores the sum-
mations μi and count

iµ  for each user, ηj and count
iη  for each item, g and countg, Sk 

for each item, and Skl for each pair of items for later unlearning.

Algorithm 1 Learning Stage Preparation in LensKit

Input:
 All the users: 1 to n
 All the items: 1 to m
Process:
1: Initializing all the variables to zero
2: for i = 1 to n do
3: for j = 1 to m do
4:   if rij ≠ null then
5:    Sumμi Sumμi + rij
6:    Countμi++
7:    Sumηj ← Sumηj + rij
8:    Countηj++
9:    Sumg ← Sumg + rij
10:    Countg++
11:   end if
12:  end for
13:  μi ← Sumμi/Countμi
14: end for
15: g ← Sumg/Countg
16: for k = 1 to m do
17:  ηk ← Sumηk/Countηk
18:  for i = 1 to n do
19:   Sk ← Sk + (rik − μi)
20:  end for
21:  for l = 1 to m do
22:   for i = 1 to n do
23:    Skl ← Skl + (rik − μi) * (ril − μi)
24:   end for
25:   Calculate sim(k; l)
26:  end for
27: end for

Algorithm 2 is the core algorithm for unlearning in LensKit. To forget a rating, 
it updates all relevant summations and relevant cells in the item-item similarity 
matrix. Suppose that user u asks the system to forget a rating she gave about item t. 
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Algorithm 2 first updates user u’s average rating μi, item t’s average rating ηj, and the 
global average rating g by multiplying the previous value of the average rating with 
the corresponding total number, subtracting the rating to forget rut, and dividing by 
the new total number (lines 1–3). It then updates item t’s summations St and Stt by 
subtracting the value contributed by rut which simplifies to the assignments shown 
on lines 4–5. It then updates Sj and Sjj (lines 6–11) for each of the other items j that 
received a rating from user m. Because the ratings given by the other users and their 
averages do not change, Algorithm 2 subtracts the old value contributed by user u 
and adds the updated value. Algorithm 2 updates Sjk similarly (lines 12–20). Finally, 
it recomputes sim(j,k) based on updated summations following Equation 7.4 (line 21).

Algorithm 2 Unlearning Stage in LensKit

Input:
 u : the user who wants to delete a rating for an item  User u
 t : the item, of which the user wants to delete the rating  Item t
 rut : the original rating that the user gives  Rating rut
Process:
1: oldμu ← μu
2: μu ← (μu * Countμu − rut)/(Countμu − 1)
3: ηt  (ηt * Countηt − rut)/(Countηt − 1)
4: g ← (g * Countg − rut)/(Countg − 1)
5: St ← St − (rut − oldμu)
6: St ← Stt − (rut − oldμu) * (rut − oldμu)
7: for j = 1 to m do
8:  if ruj ≠ null && j ≠ t then
9:   Sj ← Sj + oldμu − μu
10:   Sjj ← Sjj − (ruj − oldμu) * (ruj − oldμu) + (ruj − μu) * (ruj − μu)
11:  end if
12: end for
13: for k = 1 to m do
14:  for l = 1 to m do
15:   if ruk ≠ null  &&  rul ≠ null  &&  k ≠ l then
16:    if j = t||l = t then
17:     Skl ← Skl − (ruk − oldμu) * (rul − oldμu)
18:    else
19:     Skl ← Skl − (ruk − oldμu) * (rul − oldμu) + (ruk − μu) * (rul − μu)
20:    end if
21:   end if
22:   Update sim(k; l)
23:  end for
24: end for
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Note that while these algorithms require additional n + m2 + 2m space to store 
the summations, the original item-item recommendation algorithm already uses 
O(nm) space for the user-item rating matrix and O(m2) space for the item-item 
similarity matrix. Thus, the asymptotic space complexity remains unchanged.

7.5.3  Empirical Results

To modify LensKit to support unlearning, we have inserted 302 lines of code into 
nine files spanning over three LensKit packages: lenskit-core, lenskit-knn, and 
lenskit-data-structures.

Empirically, we evaluated completeness using two sets of experiments. First, 
for each data subset, we randomly chose a rating to forget, ran both unlearning 
and retraining, and compared the recommendation results for each user and the 
item-item similarity matrices computed. We repeated this experiment 10 times and 
verified that in all experiments, the recommendation results were always identical. 
In addition, the maximum differences between the corresponding similarities were 
less than 1.0 × 10–6. These tiny differences were caused by imprecision in floating 
point arithmetic.

Second, we verified that unlearning successfully prevented the aforementioned 
system inference attack [41] from gaining any information about the forgotten rat-
ing. After unlearning, LensKit gave exactly the same recommendations as if the 
forgotten rating had never existed in the system. When we launched the attack, 
the delta matrices (Section IV in [41]) used in the attack contained all zeros, so the 
attacker cannot infer anything from these matrices.

We evaluated timeliness by measuring the time it took to unlearn or retrain. 
We used all three data subsets and repeated each experiment three times. Table 7.1 
shows the results. The first row shows the time of retraining, and the second row 
the time of unlearning, and the last row the speedup of unlearning over retraining. 
Unlearning consistently outperforms retraining. The speedup factor is less than the 
O(n) analytical results because there are many empty ratings in the data set, i.e., a 

Table 7.1 Speedup of Unlearning Over Retraining for LensKit

100K Ratings from 
1,000 Users and 

1,700 Items

1M Ratings from 
6,000 Users and 

4,000 Items

10M Ratings from 
72,000 Users and 

10,000 Items

Retraining 4.2 s 30 s 4 min 56 s

Unlearning 931 ms 6.1 s 45 s

Speedup 4.51 4.91 6.57

Note: The time of retraining increases by the factor of the number of total ratings, 
and the overhead of unlearning increases by the factor of the number of 
total users.
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user does not give ratings for every movie. Therefore, the retraining speed is closer 
to O(Nm), and the speedup factor is closer to O(N/m), where N is the number of 
ratings and m is the number of users. For a larger data set, the speedup may be even 
larger. For example, IMDb contains 2,950,317 titles (including TV shows, movies, 
etc.) and 54 million registered users [46,47], which may produce billions or even 
trillions of ratings. In that case, the unlearning may take several hours to complete, 
while the retraining may take several days.

7.6  Related Work
In Section 7.1, we briefly discussed related work. In this section, we discuss 
related work in detail. We start with some attacks targeting machine learning 
(Section 7.6.1), then the defenses (Section 7.6.2), and finally incremental machine 
learning (Section 7.6.3).

7.6.1  Adversarial Machine Learning

Broadly speaking, adversarial machine learning [15,48] studies the behavior of 
machine learning in adversarial environments. Based on a prior taxonomy [15], the 
attacks targeting machine learning are classified into two major categories: (1) caus-
ative attacks in which an attacker has “write” access to the learning system—he or 
she pollutes the training data and subsequently influences the trained models and 
prediction results; and (2) exploratory attacks in which an attacker has “read-only” 
access—he or she sends data samples to the learning system hoping to steal private 
data inside the system or evade detection. In the rest of this subsection, we discuss 
these two categories of attacks in greater detail.

7.6.1.1  Causative Attacks

These attacks are the same as data pollution attacks (Section 7.2.2.2). Perdisci et 
al. [11] developed an attack against PolyGraph [12], an automatic worm signature 
generator that classifies network flows as either benign or malicious using a naive 
Bayes classifier. In this setup, the attacker compromises a machine in a honeynet 
and sends packets with polluted protocol header fields. These injected packets make 
PolyGraph fail to generate useful worm signatures. Nelson et al. [43] developed 
an attack against a commercial spam filter called SpamBayes [49], which also uses 
naive Bayes. They showed that, by polluting only 1% of the training data with well-
crafted emails, an attacker successfully causes SpamBayes to flag a benign email as 
spam 90% of the time. While these two attacks target Bayesian classifiers, other 
classifiers can also be attacked in the same manner, as illustrated by Biggio et al.’s 
attack on SVM [50]. Instead of focusing on individual classifiers, Fumera et al. [51] 
proposed a framework for evaluating classifier resilience against causative attacks at 
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the design stage. They applied their framework on several real-world applications 
and showed that the classifiers in these applications are all vulnerable.

Our practical pollution attacks targeting Zozzle [30], OSNSF [32], and PJScan 
[52] fall into this causative attack category. All such attacks, including prior ones 
and ours, serve as a good motivation for unlearning.

7.6.1.2  Exploratory Attacks

There are two sub-categories of exploratory attacks. The first sub-category of 
exploratory attacks is system inference or model inversion attacks, as discussed in 
Section 7.2.2.1. Calandrino et al. [41] showed that, given some auxiliary informa-
tion of a particular user, an attacker can infer the transaction history of the user. 
Fredrikson et al. [7] showed that an attacker can infer the genetic markers of a 
patient given his or her demographic information. These attacks serve as another 
motivation for unlearning.

In the second sub-category, an attacker camouflages malicious samples as 
benign samples, and influences the prediction results of a learning system. In par-
ticular, for those systems that detect samples with malicious intentions, an attacker 
usually crafts malicious samples to mimic benign samples as much as possible, e.g., 
by injecting benign features into malicious samples [16,53–55]. As suggested by 
Srndic et al. [55], in order to make learning systems robust to those attacks, one 
needs to use features inherent to the malicious samples. These attacks are out of 
the scope of this chapter because they do not pollute training data nor leak private 
information of the training data.

7.6.2  Defense of Data Pollution and Privacy Leakage

In this subsection, we discuss current defense mechanisms for data pollution and 
privacy leakage. Although claimed to be robust, many of these defenses are subse-
quently defeated by new attacks [7,11]. Therefore, unlearning serves as an excellent 
complimentary method for these defenses.

7.6.2.1  Defense of Data Pollution

Many defenses of data pollution attacks apply filtering on the training data to 
remove polluted samples. Brodley et al. [28] filtered mislabeled training data by 
requiring absolute or majority consensus among the techniques used for labeling 
data. Cretu et al. [56] introduced a sanitization phase in the machine learning 
process to filter polluted data. Newsome et al. [12] clustered the training data set to 
help filter possible polluted samples. However, they are defeated by new attacks [11]. 
None of these techniques can guarantee that all polluted data is filtered. Another 
line of defense is to increase the resilience of the algorithms. Dekel et al. [57] devel-
oped two techniques to make learning algorithms resilient against attacks. One 
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technique formulates the problem of resilient learning as a linear program, and the 
other uses the Perceptron algorithm with an online-to-batch conversion technique. 
Both techniques try to minimize the damage that an attacker could cause, but the 
attacker may still influence the prediction results of the learning system. Lastly, 
Bruckner et al. [58] model the learner and the data-pollution attacker as a game and 
prove that the game has a unique Nash equilibrium.

7.6.2.2  Defense of Privacy Leaks

In general, differential privacy [20,21] preserves the privacy of each individual item 
in a data set equally and invariably. McSherry et al. [59] built a differentially pri-
vate recommendation system and showed that in the Netflix Prize data set the 
system can preserve privacy without significantly degrading the system’s accuracy. 
Recently, Zhang et al. [21] proposed a mechanism to produce private linear regres-
sion models, and Vinterbo [20] proposed privacy-preserving projected histograms 
to produce differentially private synthetic data sets. However, differential privacy 
requires that accesses to data fit a shrinking privacy budget, and are only to the 
fuzzed statistics of the data set. These restrictions make it extremely challenging to 
build usable systems [7]. In addition, in today’s systems, each user’s privacy con-
sciousness and each data item’s sensitivity varies wildly. In contrast, forgetting sys-
tems aim to restore privacy on select data, representing a more practical privacy 
versus utility tradeoff.

7.6.3  Incremental Machine Learning

Incremental machine learning studies how to adjust the trained model incremen-
tally to add new training data or remove obsolete data, so it is closely related to our 
work. Romero et al. [39] found the exact maximal margin hyperplane for linear 
SVMs so that a new component can be easily added or removed from the inner 
product. Cauwenberghs et al. [38] proposed using adiabatic increments to update 
an SVM from l training samples to l + 1. Utgoff et al. [60] proposed an incremen-
tal algorithm to induce decision trees equivalent to the trees formed by Quinlan’s 
ID3 algorithm. Domingos et al. [61] proposed a high performance construction 
algorithm of decision trees to deal with high-speed data streams. Recently, Tsai 
et al. [40] proposed using warm starts to practically build incremental SVMs with 
linear kernels.

Compared to prior incremental machine learning work, our unlearning 
approach differs fundamentally because we propose a general efficient unlearn-
ing approach applicable to any algorithm that can be converted to the sum-
mation form, including some that currently have no incremental versions. For 
instance, we successfully applied unlearning to normalized cosine similarity 
which recommendation systems commonly use to compute item-item similar-
ity. This algorithm had no incremental versions prior to our work. In addition, 
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we applied our learning approach to real-world systems, and demonstrated that 
it is important that unlearning handles all stages of learning, including feature 
selection and modeling.

Chu et al. [36] used the summation form to speed up machine learning algo-
rithms with map-reduce. Their summation form is based on SQ learning, and 
provided inspiration for our work. We believe we are the first to establish the 
connection between unlearning and the summation form. Furthermore, we dem-
onstrated how to convert non-standard machine learning algorithms, e.g., the 
normalized cosine similarity algorithm, to the summation form. In contrast, prior 
work converted nine standard machine learning algorithms using only simple 
transformations.
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This chapter describes mobile app security analysis, one of the new emerging 
cybersecurity issues with rapidly increasing requirements introduced by the pre-
dominant use of mobile devices in people’s daily lives, and discusses how big data 
techniques such as machine learning (ML) can be leveraged for security analysis 
of mobile applications. In particular, the discussion focuses on malware detection 
for Android apps. ML is a promising approach in triaging app security analysis, 
in which it can leverage the big datasets in the app markets to learn a classifier, 
incorporating multiple features to separate apps that are more likely to be malicious 
from the benign ones. Recently, there have been several efforts focused on apply-
ing ML to app security analysis. However, there are still some significant challenges 
in making the solution practical, most of which are due to the unique operational 
constraints and the “big data” nature of the problem. This chapter systematically 
studies the impacts of these challenges as a set of questions and provides insights 
to the answers based on systematic experimentation results obtained from authors’ 
past research. Meanwhile, this chapter also demonstrates the impact of some chal-
lenges on some existing machine learning-based approaches. The large (market-
scale) dataset (benign and malicious apps) used in the above experiments represents 
the real-world Android app security analysis scale. This chapter is particularly 
written to encourage the practice of employing a better evaluation strategy and 
better designs of future machine learning-based approaches for Android malware 
detection.

8.1  Introduction to Mobile App Security Analysis
Mobile platforms such as Android are becoming the predominant computing util-
ities for end users. These platforms usually adopt an open-market model where 
developers submit applications to an “app store” for users to purchase and download 
to devices. The app store operators want to ensure that apps entering the market 
are trustworthy and free of malware. However, this is a non-trivial task due to the 
inherent undecidable nature of determining code behavior statically and the limita-
tion of testing. Thus, app store operators adopt a variety of approaches to reduce the 
likelihood of “bad apps” entering the market and harming end users. This includes 
vetting of an app when it is first uploaded to the app store, and continuous vetting 
of apps that become popular. In addition, they constantly monitor issues reported 
by users, researchers, and companies to identify and remove malicious apps not 
flagged by the vetting process.

While app stores such as Google Play and Apple App Store have existed for 
years, current vetting technologies are still lagging behind the threats. This is evi-
dent from periodic reports of malware from these markets. The situation is worse 
in third-party markets. Even though the average malware rate for official markets 
like Google Play is low, with thousands of new apps uploaded to Google Play, new 
malicious apps are entering the official Google Play market without being detected 
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on a daily basis. While we did not find any official explanation from Google on 
why it has not done a better job at stopping malware, the scale of the app vetting 
process is clearly a factor. Early studies done by researchers showed that Google’s 
app vetting service Bouncer only scans an app for 30 seconds each time to detect 
security problems [1].

While the extent of damage caused by those malicious apps is not clear, the pos-
sibility of them getting into app stores poses a non-trivial risk. Such risks need to be 
minimized by (1) curtailing the number of apps with security problems getting into 
the market and (2) quickly removing apps with security problems at the first sign. 
Both require effective analysis methods so that one can make quick and accurate 
decisions on which app has what security problems. This has to scale up to the large 
volumes of apps uploaded to app stores on a daily basis.

It is definitely not easy to achieve this. Common practice in industry, e.g., 
Google Bouncer and Amazon ATS, has adopted a variety of approaches including 
static and dynamic analysis. The research community has also designed advanced 
analysis methods and tools. But there needs to be an effective approach to address 
the scale problem in the vetting process. We observe that (1) although the number 
of apps in a market is huge, the number of malicious apps is not. If a “triage” pro-
cess can effectively direct attention to the “right apps” for further examination, 
it could dramatically reduce the amount of compute and manual efforts; (2) the 
large number of apps in the markets actually provides an edge for defenders: it will 
allow us to identify patterns and trends that would be hard to find with smaller 
amounts of data [2]. The key to success is to identify, in an efficient and precise way, 
which apps are more likely to have security problems, so that the precious resources 
(human or computer) can be directed to those apps first. This triage problem has 
been examined in prior work [3] with promising results. The effect of big data 
in helping identify malware is further illustrated in the recent MassVet work [4], 
which aimed at quickly identifying malware created by repackaging existing legiti-
mate apps with malicious payload. MassVet adopts a simple yet effective approach 
where an app is compared with a large number of existing apps in the market 
to identify “visually similar apps” with different components and “visually non-
similar apps” with common components. The “DiffComm” analysis yields anoma-
lous different or common components between apps which become the basics for 
identifying repackaged malware. This analysis can be done efficiently at a market 
scale. While these analysis techniques were invented to identify malware that are 
built in specific ways like repackaging existing popular apps, the threat landscape is 
certain to move toward more sophisticated malware creation processes that require 
more efforts from the malware writers, e.g., they may have to create their own 
apps that become popular instead of getting free rides on existing popular apps, 
or they may invent techniques to obfuscate the repackaging relations to break the 
assumptions of the specific detection techniques such as MassVet, and so on. This 
is inevitable given the rising stakes mobile devices bring to both individuals and 
organizations—mobile devices are now used for critical functions such as payments 
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and are becoming an integral part of organizations’ enterprise IT systems. All this 
indicates that app vetting will be a highly complex and evolving process and it is 
not likely that a completely automated process without human intervention can do 
an adequate job. This is highlighted in Google’s recent announcement to change its 
vetting process which now involves human review before an app can be published, 
instead of the completely automated process in the past. This puts more urgent 
need for better triaging capabilities since human labor is scarce given the amount 
of work needed, and expensive. An effective triaging can increase productivity by 
helping analysts to focus their effort on apps that are more likely to be malicious, 
and spending less time on those that are more likely to be benign. In the end, more 
general methods for triaging the vetting of apps on a large scale will be needed to 
address the evolving threats.

8.2  Applying Machine Learning (ML) 
in Triaging App Security Analysis

Machine learning is a promising approach in triaging app security analysis, in 
that it can leverage the big data in the app markets to learn a classifier, incor-
porating multiple app features to separate apps that are more likely to be mali-
cious from the benign ones. Such separations are often times subtle and cannot 
be easily expressed by logical rules; machine learning is good at identifying 
hidden relationships in big data. A typical machine learning-based approach 
for Android malware app detection employs a classifier (e.g., an off-the-shelf 
machine learning classifier, such as k-NN) which is trained on a training set 
consisting of known benign apps and known malware apps. To evaluate the 
classification performance, the number of correctly and incorrectly classified 
apps is measured on a test set whose labels are unknown to the classifier at the 
time of evaluation.

Recently, there have been several efforts focused on applying machine learning 
to app security analysis [5–8]. However, there are still some significant challenges 
in effectively using a machine learning approach to triage mobile app security anal-
ysis, most of which are due to the unique operational constraints and the “big data” 
nature of the problem.

 ◾ Noise and uncertainty on labels. It is hard to obtain ground truths to train a 
machine-learned classifier for mobile app security. The degree of “truths” on 
the labels assigned to samples varies depending on the quality of information 
sources based on which the labels are assigned. The learning algorithm must 
account for this.

 ◾ Imbalance on data. The overwhelming majority of data samples for mobile 
apps are benign applications. The amount of malicious apps is minuscule 
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compared to the millions of good apps on the markets. This both presents a 
challenge in learning and puts a high requirement on the classifier’s perfor-
mance. For example, with a 0.1% malware prevalence, a 1% false positive rate 
would mean 10 times false alarms than true alarms on the market, clearly 
unacceptable in operations.

 ◾ Feature limitation. Features that can be extracted from an app in a compu-
tationally cheap way are weak indicators of security problems and many of 
them can be easily evaded by malware writers. To improve triage quality, a 
higher quality set of features is needed and more computation needs to be 
involved to derive features with more reliable attack semantics that cannot 
be easily evaded. This comes at odds with the scale challenge of the problem. 
In addition, the highly dynamic nature of adversarial behaviors means that 
predictive features will change over time. An effective triage must account for 
that and identify the optimal window for training.

 ◾ Although the results of the machine learning-inspired approaches look prom-
ising, many critical research questions still remain unanswered. There exists 
substantial room for clarification and improvement.

The above “big data” challenges result in additional concrete challenges when 
applying machine learning to Android malware detection, as described below:

Ensuring proper evaluation: These challenges arise in selecting the evalua-
tion metrics as well as in collecting and preparing the data (e.g., correctly 
labeling the apps in training/test set). We see that in most of the current 
ML-approaches, (1) the evaluation strategy does not follow a common stan-
dard; and (2) the ground truth on which these approaches are evaluated 
lack reliability.

Algorithm design: These challenges arise in the design space of the machine 
learning approaches. One such challenge is to construct an informative fea-
ture set for the classifier. For example, in some works (e.g., [5]) the feature 
set contains hundreds of thousands of items, and many items (such as the 
names of the app components) are arbitrary strings at the app developer’s 
choice. This raises a question on whether all items in this large feature 
set are really helping the classifier or if a subset can be sufficient (or even 
better).

The previously proposed ML-approaches focused more on a specific setting 
defined by factors such as specific evaluation metrics, ground truth quality, com-
position of the training/test data, the feature set, and others. The reported per-
formance results are then measured in that particular setting. However, since the 
setting varies widely across different approaches, it is difficult (if not impossible) to 
fairly compare the results. For many of the recently proposed solutions, we are not 
aware of the impact of the above factors on the classifier performance.
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8.3  The State-of-the-Art ML Approaches 
for Android Malware Detection

Drebin [5] works with a massive feature set (more than 500K features) containing 
different types of manifest features (permissions, etc.) and “code” features (URLs, 
APIs, etc.). Yet, Drebin authors demonstrated that the malware detection system is 
scalable, and it can even run on a phone in the order of seconds. Drebin’s perfor-
mance results are also very impressive.

DroidSIFT [8] is unique in designing features in terms of distance among API 
dependency graphs. It builds the API dependency graphs G for each app, and then 
constructs the feature vector of the app. The features represent the similarity of the 
graphs G with a reference database of graphs of known benign apps and malware 
apps. Finally, the feature vectors are used in anomaly or signature detection.

MAST [3] is a triage architecture whose goal is to spend more resources on 
apps that have a higher probability of being malicious, thereby reducing the aver-
age computation overhead for app vetting. This system utilizes a statistical method 
called multiple correspondence analysis (MCA). It uses permissions, intents, and 
the presence of native code to determine the probabilities of being malicious.

MUDFLOW [6] argues that the pattern of sensitive information flows in mal-
ware is statistically different from those in benign apps, which can be utilized for 
malware detection. From an app, it extracts the flow paths through static analysis, 
and these paths are then mapped to a feature vector that is used in a classifier.

8.4  Challenges in Applying ML 
for Android Malware Detection

Figure 8.1 illustrates the overall pipeline for using machine learning for mobile app 
security analysis. The large number of app samples goes through a labeling and 
feature extraction process. Then part of the data is used in constructing a machine-
learned classifier, and the rest is used in evaluation. There are multiple challenges 
in each stage of the process.
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Figure 8.1 Big data analysis pipeline for mobile apps.
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8.4.1 Challenges in Ensuring Proper Evaluation

To ensure that the ML-approach is evaluated properly is not straightforward. The 
related challenges fall under two subcategories as follows.

 1. Challenges in deciding the evaluation metrics. The evaluation metrics for an 
ML-approach are not yet standardized and different ML-approaches rely on 
different metrics. For instance, DroidSIFT [8] and MUDFLOW [6] report 
the performance results in terms of true positive rate (TPR) and false-positive 
rate (FPR). Other existing works, such as MAST [3] and Drebin [5] present 
the receiver operating characteristic (ROC) plot, which is a generalized rep-
resentation of TPR and FPR while the separating threshold is varied. Further, 
the ML-community has reported [9] that if the dataset is highly imbalanced, 
the PRC (precision-recall curve) is a better metric for measuring classifier per-
formance than the traditional ROC curve. Given that the Android malware 
domain is highly imbalanced, i.e., the ratio of malware to benign apps in the 
real-world is highly skewed (1:100 or up), the above facts raise substantial 
doubt on whether current works are using the best metric.

 2. Challenges due to characteristics of the input data. These challenges are 
related to data preparation, e.g., labeling the apps, composing the training/
testing set, and so on. We see that these challenges are applicable to all the cur-
rent ML-approaches. For instance, the age of input data may pose one chal-
lenge. Dated apps versus recent apps could lead to very different evaluation 
results in some cases. Deciding the data composition is another challenge, e.g., 
selecting the ratio between positive class (malware apps) size and negative class 
(benign apps) size in the test data, which may lead to different performance 
results of the classifier. To ensure realistic evaluation, we should conform to 
the real-life ratio of malware and good apps in the app store, but unfortunately 
this is not practiced in many existing works. Furthermore, the ground truth is 
noisy in reality while manually labeling a million plus apps is not feasible. So, 
we have to depend on security companies’ reports on those apps (if available), 
which effectively lead to imperfect ground truth. We see that the ground truth 
on which the current ML-approaches depend is not fully reliable, which has 
a negative impact in two ways: (i) if training data has noise (mislabeled apps), 
the classifier mislearns things, which will negatively influence the classifica-
tion performance. (ii) If test data has noise, we evaluate on the wrong ground 
truth, and then the reported performance results can be misleading. In addi-
tion, the presence of adware apps (which show unwanted advertisements to the 
user) in the dataset leads to further challenges. As adware has similarities to 
both benign and malware apps, it is often challenging to label an adware, e.g., 
including adware in the malware set or in the benign set, or dropping adware 
from the dataset altogether. The existing works differ on this choice, which 
further complicates attempting to compare their performance.
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8.4.2  Challenges in the Algorithm Design

These challenges are related to the design of the ML approach itself. One chal-
lenge is to construct an informative (i.e., discriminative across the classes) feature 
set for the classifier. Some of the existing approaches are overwhelmed by this 
challenge. As an example, the Drebin approach [5] uses a very large feature set. 
One may want to know whether the classifier really needs this large feature set or 
only a subset of these items could be sufficient. We note that the size of Drebin’s 
feature set is correlated with the size of its dataset—it has nearly 500K features 
while applied on the authors’ dataset [5], but when we emulated Drebin feature’s 
extraction on our larger dataset we achieved more than 1 million features. Do we 
really need these many features? How to identify and select strong, discriminative 
features is a challenge.

8.4.3  Challenges in Data Collection

We have discussed above the challenges due to characteristics of the dataset. 
Collecting a large dataset of apps poses a formidable challenge. Attempting to 
collect modern apps is an even more challenging task. Although Google Play 
provides the whole set of “free” apps (over 1.4 million), there is no “download 
API” available. So, we need to rely on app store crawlers like PlayDrone [10] that 
periodically scan the Google Play app store and collect entire snapshots of the 
store. The most recent apps, however, are not always available in the PlayDrone 
archive. Moreover, collecting a large set of adware and malware apps is also 
challenging—we have to rely on several sources. VirusShare and anti-virus com-
panies provide large datasets of potentially malicious apps. These sets, however, 
are often noisy and impure, sometimes containing benign apps, Win32 binaries, 
and even blank apps. We believe that the large amount of data, even if some-
what noisy, provides further credibility to the results. To reduce the computa-
tion complexity of the machine learning approach is a further challenge. It is 
not straightforward how to design a scalable machine learning approach. When 
considering the millions of apps in the Play store, and the thousands of new 
apps added every day, scalability is of paramount importance. As an example 
of the degree of this challenge, we take note of MUDFLOW [6] authors’ com-
ment that sometimes their system took more than 24 hours to analyze one single 
Android app.

8.4.4  Insights Based on Our Own Study

Our research team has recently conducted an investigation of challenges that are 
faced in applying ML for Android security analysis [11]. We found that previously 
proposed machine learning approaches vary widely in terms of factors such as spe-
cific evaluation metrics, ground truth quality, composition of the training/test data, 
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the feature set, and others, making it difficult (if not impossible) to fairly compare 
the results. Some findings relevant to this chapter are listed below.

 ◾ Is ROC the best metric to evaluate ML-based malware detection approaches? The 
evaluation metrics for an ML-approach are not yet standardized and different 
ML-approaches rely on different metrics, such as true positive rate (TPR) and 
false-positive rate (FPR), receiver operating characteristic (ROC) plot, and 
the PRC (precision-recall curve). Given that the Android malware domain 
is highly imbalanced, i.e., the ratio of malware to benign apps in the real-
world is highly skewed (1:100 or up), it is likely that PRC is a better metric 
for measuring classifier performance than the traditional ROC curve. Our 
investigation shows that indeed, the area under the PRC is a better metric for 
comparing results of different approaches in machine learning-based Android 
malware detection [11].

 ◾ Does having dated malware in training/test set mislead performance? The Genome 
Malware Project [12] has been used for many years as a main source of malware 
for many machine learning-based works. However, the Genome set, with mal-
ware from 2010–2012, has become a dated source of malware. We hypothesized 
that using dated malware sources together with more modern benign sources 
can lead to misleading results, and our study supports this hypothesis [11].

 ◾ Does classifier performance degrade as we approach real-world ratio of malware 
and benign apps? The occurrence of malware in the app stores is relatively low. 
This imbalance in the amount of malware and benign apps can contribute 
an interesting factor in classifier performance. Specifically, our results [11] 
show that the area under the PRC substantially degrades as the ratio increases 
(although the commonly used TPR and FPR do not change much), suggest-
ing that results based on datasets that do not conform to the real data distri-
bution could be misleading.

 ◾ Does quality of ground truth affect the performance? Peer works generally 
do some form of ground truth preparation for a machine learning classi-
fier. Some works [5] require that a minimum of 20% of VirusTotal reports 
indicate the app is malicious. Other works [8] hold stringent standards and 
require that the reports return a matching malware family to be used in their 
dataset. In our own research [11], we investigated the effect of the quality of 
the ground truth data on the performance of the classifier, and found that the 
higher quality malware leads to substantially better results.

8.5  Recommendations
Below we present a number of recommendations for applying big data analysis to 
mobile apps. Some of them are specifically about the application of machine learning, 
while others involve complementary methods that could benefit the problem domain.
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8.5.1  Data Preparation and Labeling

The community should explore and experiment with different ways to obtain 
ground truth information. In general, based on returned antivirus scanning results, 
we can separate Android samples into three categories:

 1. Ideal malware. Apps in this category have highly credible labels and a high 
rate of shared labels among different antivirus companies, e.g., more than 25 
different scanners are showing the sample as malicious and 20 of them give 
a shared keyword “DroidKungFu” in their scanning results. Thus, we can 
safely choose the shared label “DroidKungFu” as their family information.

 2. Candidate malware. Apps in this category have either an unclear or a low rate 
of shared labels. For instance, only 10 out of 50 scanners identify the sample 
as malicious, even though 20 different scanners recognize it as malicious but 
only 5 scanners return a shared label. In either case, we cannot make a confi-
dent decision about the exact malware family, and only know that the sample 
is malicious.

 3. Unknown type. Apps in this category do not have enough meaningful scan-
ning results. The app could be benign but we are not really sure due to pos-
sible false negative in the antivirus products.

We expect the ideal malware datasets to be relatively small compared to 
the other two types of datasets, but cleaner. The candidate malware dataset is 
expected to be noisier, in the sense that we cannot label samples with high con-
fidence. The unknown type dataset is the noisiest. By using such datasets, one 
can thoroughly study how a classifier’s performance varies with the amount of 
noise.

Furthermore, given the uncertainty on the data label, it is interesting to 
study different approaches to labeling. For example, one can use the majority 
voting strategy to assign hard 0/1 labels to the samples. Alternatively, one can 
assign confidence scores to labels, based on the number of antivirus scanners 
that agree on that label, the trustworthiness of each scanner, and also the fresh-
ness of the application. By using information about “freshness,” one can avoid 
a situation where all or most scanners identify an app as legit, and as a result 
the app will be labeled as benign with high confidence, when in fact it is a new 
type of malware. On the other hand, if a very small number of scanners iden-
tify an application as malware, while that application has been on the market 
for a long time, then there is a good chance that the application is legitimate. 
The confidence scores (which take values in between 0 and 1) associated with 
the two possible class labels of an app can be seen as soft labels (or probabilistic 
labels), and they essentially represent a probability distribution over labels for 
each instance. Intuitively, the soft labels can help capture (to some extent) the 
uncertainty on labels.
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8.5.2  Learning from Large Data

To deal with large datasets, we recommend representing the classification problems 
at hand into a small hierarchy, where the problem at the root is the easiest, and has 
the largest amount of data, while the most specific problems—assigning malware 
to specific groups or categories—are the hardest, and have smaller amounts of data. 
More basic features can be used to address the more general problem (one advan-
tage being that it will be less expensive to generate those features for a large number 
of apps), while semantics-richer features can be used for the more specific problems 
(such features will be more expensive to extract, but they will be generated for a 
smaller number of apps).

8.5.3  Imbalanced Data

Generally, the number of good Android apps is significantly larger than the number 
of malicious ones, leading to the challenge of learning from highly imbalanced data. 
We recommend the use of different standard strategies (such as under-sampling, 
over-sampling, cost-based learning, ensemble-based learning, etc.) to address the 
class imbalance problem.

8.5.4  Expensive Features

We envision systems that can help a human analyst in the vetting process. As 
part of this process, each new app will be classified using a hierarchy of classifiers. 
Furthermore, the classification process has to be fast. However, some classifiers (the 
most specific ones) may require expensive features whose construction can slow 
down the process, while a particular test app may be relatively easy to classify. To 
address this challenge and avoid generating expensive features unnecessarily, we 
suggest learning multiple classifiers for the same classification problem—from sim-
pler classifiers that are based on more basic features to more complex classifiers that 
require more sophisticated features. Building a set of classifiers for each problem 
can be computationally expensive, but this task is done offline and, therefore, time 
is not the biggest concern (assuming the resources to perform the computation are 
available). At runtime, for a given app, we will first extract the most basic features, 
and use the classifier learned using those features to classify the app. If the app is 
classified with high confidence as benign or as malicious, nothing else needs to be 
done on the machine part. Otherwise, we will incrementally extract the next set of 
features required by the next classifier available for the problem at hand.

8.5.5  Leveraging Static Analysis in Feature Selection

An Android app is composed of one or more components and components inter-
act (mostly) through mediated channels in the form of intent. While this nature 
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of Android apps makes static analysis challenging, it also creates an opportunity 
for presenting an app’s behavior in a compact format that can help to extract rich 
features for machine learning.

As an example, consider a recent malware app called HijackRAT that we stud-
ied (illustrated in Figure 8.2). One of the malware’s components—MyActivity— 
has the following behaviors: (1) By calling an Android system API, it attempts 
to hide the app’s icon from the phone home screen and prevents the app from 
being stopped by garbage collection, and (2) it constructs an intent and sends it to 
DevicePolicyManager (a system service) to ask for administrative privilege. These 
two behaviors are suspicious and we can detect them by examining the code of this 
single component. We can detect behavior (1) by looking for the relevant API call 
in the code. We can detect behavior (2) by performing data flow analysis to resolve 
the target for the ICC call of the intent.

User click
BOOT_COMPLETE
USER_PRESENT Event with URL mssojd://my.app

My activity Boot receiver Web activity

1. Hide icon and prevent stop
2. Start main service
3. Ask admin privilege

MDAR
Admin privilege
receiver
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3. Start main service
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2. Start main service
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1. Load payload
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Pay load
1. Register a Broadcast receiver
2. Schedule three timer tasks

Timer1 Timer2 Timer3

Check whether
Korean bank apps

are installed. If
installed, show

alert to user and
ask for update.

Check whether
two antivirus apks

are installed. If
installed, uninstall

them.

If online, check
command from
C and C server.

Receiver

1. Verify current environment, e.g., not
    dynamic sandbox, not China
2. SMS_RECEIVED: If message is from
    blacklist, then block the message
3. SMS_SEND: Log sms send success or
    not
4. CONNECTIVITY_CHANGE
5. BATTERY_CHANGED
6. USER_PRESENT
7. PHONE_STATE
8. PACKAGE_ADDED
9. PACKAGE_REMOVED
4−9 events will trigger the app to check
command from C and C server.

Figure 8.2 The ICC graph of malware HijackRAT.
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On the other hand, this app also has inter-component behavior. After the 
component asks for admin privilege, it will save the user’s decision (acceptance/
rejection) to the SharedPreference (internal storage of an app). This will be retrieved 
by another component before it tries to perform actions that require admin privi-
lege. If the user has not granted the privilege, the app will try to acquire it again. 
SharedPreference is a channel that the above two components use to communicate, 
which can be captured using static analysis.

MainService is the major component of the malware app. It dynamically loads 
a payload that is packaged in a separate file in the app’s apk file. Upon running, 
the payload will register a broadcast receiver—a type of Android component that 
works like a mailbox receiving intents that can be filtered by it. Based on the type of 
the intent received, Receiver will perform various malicious functions, e.g., block-
ing messages from legitimate bank numbers so users are not aware of the nefarious 
transactions the app is trying to perform on the user’s behalf. MainService will also 
initialize three times to perform other malicious functionalities.

A static analyzer like Amandroid [13] can detect the above behaviors and out-
put them in the form of inter-component interaction graph (shorthand ICC graph) 
like the one shown in Figure 8.2. The unique advantage of this type of graph is that 
they provide a richer set of features that reveal an app’s semantics in addition to 
other features such as API calls, source-to-sink flows, etc. Extracting a richer set of 
semantic features from an app is critical to the effectiveness of applying ML in tri-
aging malware analysis, since malware writers can adapt and try to evade detection 
by changing the way the code is written. If features are based on code properties 
that can easily be changed, such as the choice of strings to name URLs or compo-
nents, they will not be robust to evasion even if the classifier has very good perfor-
mance results on the current malware data set. Features that are based on an app’s 
behaviors are harder to evade since this would require the malware writer to change 
how the app achieves its objectives, which may only have a limited set of choices.

8.5.6  Understanding the Results

In addition to learning classifiers that can help in the malware triage process, one 
also needs to understand the results of the classifiers, especially to identify features 
that are predictive of problematic behaviors within an application. Information 
about predictive features can be used to inform how to better detect the problem 
using perhaps a slightly different static analysis plugin, and can help analysts in 
confirming/ruling out the results. A variety of methods can be used to perform 
feature ranking: wrapper methods, filter-based methods, and embedded methods 
[14]. Similar to learning classifiers from large Android app datasets, gaining insight 
into the results of the classifiers by performing feature ranking poses several chal-
lenges. Most importantly, the amount of labeled data available could be small for 
some classification tasks, while exhibiting high class imbalance. To address such 
challenges, methods for performing feature ranking from imbalanced data will be 
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beneficial, including semi-supervised/unsupervised methods. First, to address the 
imbalance challenge, one can use under-sampling, over-sampling, and ensemble-
type methods to perform feature ranking [15]. As an example of the ensemble-
type methods, one approach for learning from highly imbalanced data with an 
imbalanced ratio of 1:n works as follows. Construct n balanced subsets, where all 
subsets contain the same positive data (the minority class) and different subsets 
of non-overlapping negative data. Perform filter-based feature ranking on each 
subset and use the average scores to perform an overall ranking for the dataset. 
A similar approach, where the subsets could have overlapping negative data, was 
successfully used [16] on the problem of predicting software defects. Furthermore, 
semi-supervised-like approaches (e.g., transductive SVM) together with sam-
pling approaches can be used to perform feature ranking using a recursive feature 
elimination-type algorithm [17].

8.6  Summary
In this chapter we discussed a number of challenges in applying big data ana-
lytic techniques, in particular machine learning, to mobile app security analysis. 
Many of the challenges are due to the scale of the mobile app market, e.g., Google 
Play. We present results from our own research that shows that consistent applica-
tion of evaluation metrics in ML classifier performance is paramount to producing 
comparable results. The high imbalance in the positive and negative data samples 
in mobile data sets present unique challenges in both ML algorithm design and 
evaluation. We provide a few recommendations to approaches that can potentially 
address these challenges, and hope that they are useful for the research community 
to further research in this area.
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Cloud computing is revolutionizing the cyberspace by enabling convenient, on-
demand network access to a large shared pool of configurable computing resources 
(e.g., networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released. While cloud computing is gaining popularity, diverse secu-
rity, privacy, and trust issues are emerging, which hinders the rapid adoption of this 
new computing paradigm.

To address the cybersecurity needs for this new computing paradigm, this 
chapter introduces important concepts, models, key technologies, and unique char-
acteristics of cloud computing, which helps readers better understand the funda-
mental reasons for current security, privacy, and trust issues in cloud computing. 
Furthermore, critical security, privacy and trust challenges, and the corresponding 
state-of-the-art solutions are categorized and discussed in detail, and followed by 
future research directions.

9.1  Introduction to Cloud
Cloud computing is defined as a service model that enables convenient, on-
demand network access to a large shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, and services) that can 
be rapidly provisioned and released with minimal management effort or service 
provider interaction [1].

This innovative information system architecture, which is fundamentally 
changing the way how computing, storage, and networking resources are allocated 
and managed, brings numerous advantages to users, including but not limited to 
reduced capital costs, easy access to information, improved flexibility, automatic 
service integration, and quick deployment [2]. Many businesses and organizations 
are attracted by the cloud’s nearly unlimited data storage capacity and processing 
power. In addition, the highly scalable and flexible resource consumption services 
provided by the cloud make it ideal for businesses that require a cost-effective solu-
tion for computationally intensive operations.

Cloud computing has been adopted by a wide range of applications and 
forms the backbone for many of them. For example, many social media sites 
rely on the cloud to enable the global access of their users from anywhere, any 
device, and at any time, to conduct efficient big data analytics on their user 
behaviors and activities, to host their heavy multimedia content (e.g., videos and 
photographs), which is the most popular content generated and shared by indi-
vidual users every day. Another example is that in the Internet of Things applica-
tions, anything, no matter if it is a washer and dryer, a car, or a piece of medical 
equipment, can communicate with each other through the cloud, where signifi-
cant amounts of messages can be efficiently processed, stored, and analyzed in 
real time.
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In this section, we will introduce the cloud’s deployment models, service mod-
els, and distinct characteristics, as well as key technologies that enable these char-
acteristics. In addition, we also provide brief discussions on the potential security, 
privacy, and trust challenges introduced by these components, which serve as the 
basis for later sections.

9.1.1  Deployment Models

Cloud users have different options to deploy the cloud based on their budget and 
security requirements. This section will introduce some popular cloud deployment 
models, as shown in Figure 9.1, their characteristics as well as the security analysis.

 1. Public Cloud: Public cloud is the most popular form of the cloud computing 
deployment model. It is made available for the general public users through 
interfaces on web browsers in a pay-as-you-go manner [1–3]. Cloud service 
provider (CSP) has full ownership of the public cloud’s policy, value, and 
charging model [4]. Some examples of public cloud services include Amazon 
EC2, S3, Google AppEngine, and Force.com. Compared to other deploy-
ment models, the public cloud minimizes cloud users’ cost by achieving econ-
omies of scale. However, it also leads to more security issues due to the public 
access to shared IT resources [5].

Geographically
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data centers .  .  .  .

Organization (cloud user) 1

On-premise
data center

Organization (cloud user) m

.  .  .  .

Public cloud

Private cloud Community cloud

Hybrid cloud

Multicloud

Geographically
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data centers 

On-premise
data center

CSP1 CSPn

Figure 9.1 Cloud deployment models.
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 2. Private Cloud: To enjoy the cost reduction from resource sharing while 
avoiding security issues caused by public access, some businesses or orga-
nizations choose to deploy a private cloud, which only provides services for 
internal usage and is not available to the general public [3]. It may be man-
aged and operated by the organization itself or a third party. One example of 
a private cloud is academic use for research and teaching purposes [4,5]. The 
advantages of a private cloud include maximization of in-house resources uti-
lization, higher security guarantee compared to public clouds, and full access 
control over the activities that reside behind the firewalls [1]. Nevertheless, 
compared to other deployment models, it still generates high costs due to the 
on-premises hardware maintenance/upgrade and IT management.

 3. Community Cloud: To further reduce the cost from operating a private cloud 
while still keeping the security control to some extent, multiple organizations 
can collaborate with one another and form a community cloud. A commu-
nity cloud is similar to a private cloud in that it provides services to a specific 
community of users, who trust one another and share the same interests [1,6]. 
It could be hosted by a third party or within one of the organizations in the 
community [5]. Specifically, the community members cooperate on security 
controls over the cloud and meanwhile also share the operational costs. As a 
consequence, a community cloud may provide a balance between users’ bud-
get and security requirements.

 4. Hybrid Cloud: Another model to balance cloud users’ budget and security 
controls is the hybrid model, which combines two or more cloud deployment 
models through standardized or proprietary technology that enables data and 
application portability [1]. By utilizing a hybrid cloud, organizations are able 
to outsource their non-significant, peripheral activities to public clouds for 
cost-savings while maintaining those core or sensitive business functions on-
premise through a private cloud to ensure the security guarantee.

 5. Multicloud: A multicloud denotes the adoption of multiple cloud computing 
services in a single heterogeneous architecture. A cloud user may use separate 
CSPs for infrastructure and software services or different infrastructure pro-
viders for different workloads. A multicloud differs from a hybrid cloud in 
that it refers to multiple cloud services rather than multiple deployment mod-
els. The motivations of using a multicloud deployment model include reduc-
ing reliance on any single vendor and increasing flexibility through choice. 
However, in a multicloud environment, security and governance are more 
complicated.

These deployment models provide different ways to trade off cloud users’ budget 
and security requirements. From a security point of view, a private cloud provides 
the maximum level of security, followed by a community cloud which consists of 
only collaborative organizations. In a hybrid cloud, users may lose part of their 
security controls by outsourcing their non-significant data/tasks to a public cloud. 
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The security over a public cloud goes beyond the control of cloud users. They have 
to heavily rely on CSPs to provide a security guarantee. The least secured model 
is a multicloud which has the most complicated security governance scenarios 
by involving multiple CSPs. From a cost perspective, however, these models are 
ranked in the reverse order. Multicloud provides the cheapest solution by involv-
ing multiple CSPs to avoid single vendor lock-in, followed by public cloud, which 
is operated by a single CSP. Both of these two models reduce cloud users’ costs 
by achieving economics of scale through resource sharing among disparate users. 
Cloud users’ costs in a hybrid cloud, community cloud, and private cloud are usu-
ally much higher than that in the two previous models because of the on-premise 
deployment and maintenance of IT resources.

9.1.2  Service Models

A cloud provides various services to satisfy different levels of user requirements, 
including software as a service (SaaS), platform as a service (PaaS), and infrastruc-
ture as a service (IaaS), as shown in Figure 9.2.

 1. Software as a Service (SaaS): Software as a service (SaaS), sometimes referred 
to as on-demand software, is a software delivery model that provides software 
services to cloud users remotely as an Internet-based service. In particular, 
CSPs deploy software applications on their servers. Cloud users can order 
application software and services via the Internet according to their demands, 
and they are usually charged based on their usage or through a subscription 
fee. The key features of the SaaS model include: (a) central management on 
software upgrades and patches and (b) web access from users. Some exam-
ples of the SaaS model are Google Apps, Salesforce, Workday, Dropbox, and 
Cisco WebEx.

Physical hardware
(server, storage, network)

Virtualization
(hypervisor)

Virtual machines
(operating system)

Application and data

Graphic user interface (GUI)
Application program interface (API)

IaaS

PaaS

SaaS

Figure 9.2 Cloud service models.
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  The broad web access from heterogeneous user devices introduces high 
access control risks and requires more robust authentication and access con-
trol schemes.

 2. Platform as a Service (PaaS): Platform as a service (PaaS) provides cloud 
users with an application development environment, which typically includes 
operating system, programming-language execution environment, databases, 
and web servers. Cloud users can design their own graphical user interface 
(GUI) and determine what application program interface (API) (provided by 
the CSP) to call. Cloud users’ applications will be running on top of the cloud 
and the data generated by these applications will be stored in the cloud.

  In the PaaS model, users can save their costs by focusing more on their 
software development while not maintaining the underlying hardware and 
software environment. Furthermore, the underlying computing and storage 
resources scale automatically to meet the application requirement and users 
will be charged according to their actual usage. The key features for the PaaS 
model include (1) services for quick, easy, and cost-effective application devel-
opment, testing, and deployment, (2) allowance of multiple concurrent users 
of the same development application, and (3) support for development team 
collaboration [7]. Some examples of the PaaS model are Apprenda, Microsoft 
Azure, Google Compute Engine (GCE), and Salesforce Heroku.

  The PaaS receives increasing concerns from users who store their business 
data in the cloud about their data confidentiality, integrity, availability, and 
privacy breach. In addition, the lack of a secure software development process 
may lead to insecure code [8].

 3. Infrastructure as a Service (IaaS): Infrastructure as a service (IaaS) provides 
cloud users with fundamental IT resources, such as servers, storage, network, 
and operating systems, as an on-demand service. In an IaaS model, cloud 
users will be assigned one or multiple virtual machines (VMs), over which 
they have full control, such as installing operating systems and application 
software, and running different tasks. A virtualization software on top of the 
cloud physical infrastructure, named hypervisor, hosts VMs owned by one or 
multiple cloud users as guests and abstracts cloud users from the infrastruc-
ture details, such as management of the physical servers, resource sharing and 
scaling, backup, security, and so on. Some popular hypervisors include Xen, 
VMware ESX/ESXi, KVM, and Hyper-V. The key features of IaaS include 
(a) distribution of resources as a service, (b) dynamic scaling of resources, 
and (c) resource sharing among multiple users. Some examples of IaaS are 
Amazon Web Services (AWS) and Cisco Metapod [7].

  Compared to other service models, IaaS provides cloud users with more 
controls, which allows capable users to further enhance their security levels. 
Meanwhile, it also grants cloud users more privilege and thus opens more 
opportunities for malicious users to exploit hypervisor vulnerabilities and to 
even penetrate the virtual isolation among different cloud users.
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9.1.3  Distinct Characteristics

Cloud computing is revolutionizing cyberspace through its distinct characteris-
tics such as broad-based network access, resource pooling, rapid elasticity, pay-as-
you-go services, and federated environment. While these essential characteristics 
distinguish cloud computing from conventional Internet-based services and are 
attracting tremendous users, they also introduce new vulnerabilities and open a 
new frontier for cyber security and defense researches. The understanding of these 
essential characteristics can serve as a basis to analyze security, privacy, and trust 
challenges in the cloud environment.

 1. Broad-Based Network Access: Broad-based network access indicates that 
cloud computing resources can be easily accessed by cloud users over the 
Internet [9]. Specifically, through a single user account logged on from diverse 
devices located anywhere in the world, a cloud user can access its data and 
applications running on a single logical location which is usually the integra-
tion of multiple physical or virtual devices.

  This characteristic attracts users by providing them a convenient way 
to access cloud services. However, it also provides a much larger attack 
surface by introducing a dynamic series of access points that have a vari-
ety of security postures [10]. The heterogeneity of various access points 
raises high access control risks such as account hijacking, browser vul-
nerabilities, and unauthorized users [11], which dramatically increase the 
possibility for illegitimate users to obtain unauthorized access to data and 
services.

 2. Resource Pooling: Resource pooling indicates the joining of IT resources 
from a variety of locations around the world [9]. These resources, including 
both physical and virtual resources, are shared among multiple customers 
or tenants to significantly improve resource utilization efficiency and reduce 
operating costs [12].

  However, various security, privacy, and trust challenges are raised due to 
the imperfect isolation and the risk of having untrustworthy tenants reside 
in the same physical hardware. For instance, the malware injection attack 
involves an attacker uploading a malicious instance of an unsuspecting user 
into the cloud who can steal data from the victim [11]. Other attacks that 
exploit resource pooling include co-resident attacks and attacks against the 
hypervisor that manages multiple VMs.

 3. Rapid Elasticity: The cloud provides dynamic resource expanding/ contracting 
based on users’ capacity needs, which is defined as rapid elasticity. This allows 
a user to upgrade or degrade the cloud services at run time in order to pro-
mote scalability. For instance, to increase the data processing speed of a sys-
tem, the number of VMs can be increased automatically to meet the demand 
of the system.
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  Nevertheless, the constantly changing allocation of resources among dis-
parate users dramatically increases the risk of resource compromises. If an 
attacker manages to hijack a resource and run malicious code, the compro-
mised resource could be assigned to multiple users before its abnormal behav-
ior is identified [11]. This service-injection attack could allow attackers to 
steal confidential information or data from its victim.

 4. Pay-As-You-Go Service: Pay-As-You-Go service, derived from utility com-
puting, considers cloud resources as one type of utility, so that cloud users 
are billed according to their actual usage of these resources. It allows a user 
to scale, customize, and provision computing resources, including software, 
storage, and development platforms.

  However, the metering information, which determines the cost of each 
cloud user, has become a potential vulnerability that can be manipulated by 
attackers [11]. This information is more detailed than in previous IT imple-
mentations due to the dynamic and resource sharing attributes of the cloud 
[10]. Moreover, a theft of service attack presents an even greater threat to 
the cloud, and it specifically targets the measured service feature. This type 
of attack is made possible by the scheduling vulnerabilities of the hypervi-
sors. As a result, the attacker is able to consume cloud resources without the 
knowledge of the CSP and avoid the billing charges [11].

9.1.4  Key Technologies

Diverse technologies have been developed in cloud computing scenarios to 
provide high quality and cost-efficient solutions for cloud users. Among these 
technologies, multi-tenancy, virtualization, distributed data storage, and cloud 
federation are essential elements that enable the distinct characteristics of cloud 
computing.

 1. Multi-tenancy: Multi-tenancy is defined as “the practice of placing multiple 
tenants on the same physical hardware to reduce costs of the user by leverag-
ing economies of scale” [13]. It indicates sharing of computational resources, 
storage, services, and applications with other tenants, hosted by the same 
physical or logical platform at the provider’s premises [14]. Specifically, the 
concept of multi-tenancy varies for different service models [13].

 a. In SaaS, multiple tenants have their applications share a single instance of 
object code.

 b. In PaaS, each tenant may have various layers of their hosted solution, 
such as business logic, data access logic and storage, or presentation logic, 
hosted across multiple physical servers.

 c. In IaaS, the hosted environment for each tenant is partitioned and con-
trolled by a single instance of hypervisor and virtualization software.



Security, Privacy, and Trust in Cloud Computing ◾ 193

 2. Virtualization: Virtualization refers to the logical abstraction of computing 
resources from physical constraints. Such computing resources include oper-
ating systems, networks, memory, and storage. One representative example 
of virtualization technology is the virtual machine (VM), a piece of software 
emulating a physical machine to execute programs. Virtualization can be 
implemented at different layers, including hardware virtualization, software 
virtualization, network virtualization, and desktop virtualization. In prac-
tice, virtualization at multiple layers may be integrated to flexibly provide 
services based on users’ requirements [15]. In a virtualized environment, com-
puting resources can be dynamically created, expanded, shrunk, or moved 
according to users’ demands, which greatly improves agility and flexibility, 
reduces costs, and enhances business values for cloud computing [9].

 3. Distributed Data Storage: The cloud stores a user’s data in a logical stor-
age pool which may physically span multiple geographically distributed data 
 centers. It dramatically decreases the cost of massive data storage since differ-
ent available storage pieces can be effectively integrated and managed to store 
data. On the other hand, high data reliability is achieved by backing up data 
using redundant storage at different places around the globe [15].

 4. Cloud Federation: Cloud federation is the practice of interconnecting the 
cloud computing resources from multiple cloud service providers [16]. The 
federation of cloud resources allows a cloud user to optimize its operations by 
distributing workloads around the globe and moving data between disparate 
clouds [17]. It provides more choices to cloud users, so that they can choose the 
best cloud service provider to meet a particular business or technological need.

Despite enabling substantial benefits, these technologies are still at their devel-
oping stage. Attacks exploiting the vulnerabilities of these imperfect technologies 
are gaining popularity and threatening the security of cloud infrastructure. We will 
discuss such attacks in detail in Section 9.3.

9.2  Security, Privacy, and Trust Challenges 
in Cloud Computing

Although cloud computing brings numerous attractive features, it does not come 
without costs. The computing society has to face emerging security, privacy, and 
trust challenges raised by cloud services.

9.2.1  Security Attacks against Multi-Tenancy

While the multi-tenancy architecture allows CSPs to maximize the organizational 
efficiency and significantly reduce a cloud user’s computing expenses, it also results 
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in a number of security challenges by hosting multiple tenants with heterogeneous 
security settings and diverse behaviors on the same physical or logical platform.

 1. Uncoordinated security controls among disparate tenants: In the multi-tenant 
environment, the security policies made by different tenants may disagree or 
even conflict with one another. Such disagreements or conflicts could intro-
duce threats to tenants’ needs, interests, or concerns [18]. More important, 
different tenants’ security controls are heterogeneous. The tenant with fewer 
security controls or misconfigurations is easier to compromise, which may 
later serve as a stepping stone to the more secured tenants located in the same 
host. This could reduce the overall security level for all the tenants to that of 
the least secured one [19].

 2. Attacks against general co-residents: Adversaries taking advantage of the co-
residency opportunities may launch diverse attacks against their co-residents 
[20]. This type of attack usually does not target specific tenants in the cloud. 
Instead, the attackers’ goal is to exhaust shared resources in the system such 
as thread execution time, memory, storage requests, and network interfaces, 
so that other users sharing the same physical resources are not able to con-
sume the cloud services [21]. In [22], a Shrew attack is proposed where the 
attackers are able to launch low-rate DoS attacks by identifying the bottle-
necks of the cloud through a loss-based probe.

 3. Attacks against target co-residents: There are also attacks focusing on a spe-
cific target tenant (i.e., victim). Attackers may manage to place their mali-
cious tenants in the same physical device that hosts the target tenant and then 
launch attacks against it. There are usually three steps in this type of attack. 
Different attack strategies can be involved in each step.
Step 1: Determine the location of the targeted tenant through network prob-

ing. In [23], different tools, such as nmap, hping, and wget, are employed 
to perform network probes. And the geographical zone of a target tenant 
can be located by its IP information. A malicious tenant can verify its 
co-residence by having an identical DOM0 IP address and small packet 
round-trip times (RTT) with the target tenant [24].

Step 2: Place a malicious tenant on the same host as the targeted tenant. A 
brute-force placement strategy is proposed in [23], with which the attacker 
runs numerous malicious tenants over a relatively long time period and 
achieves co-residency with 8.4% of the target tenants. By taking advan-
tage of the CSP’s placement locality, an instance flooding strategy, where 
the attacker launches as many tenants in parallel as possible, has success-
fully achieved co-residency with a specific target tenant [23].

Step 3: Attack the target tenant. With the success of the first two steps, 
attackers are able to place malicious tenants at the same physical server as 
the target tenant.
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Malicious tenants may be able to infer confidential information of the target 
tenant via covert side channel attacks. A side channel attack is any attack based on 
unauthorized access to information through physical implementation of a system, 
named side channels [25]. Generally speaking, the potential side channels can be 
any physical resources shared between multiple tenants, such as network access, 
CPU branch predictors and instruction cache [26–29], DRAM memory bus [30], 
CPU pipelines [31], scheduling of CPU cores and timeslices, disk access [32], and 
so on. Some typical side channel attacks include: (1) timing attack, one of the most 
common side channel attacks, in which the attacker attempts to gain information 
by measuring the time it takes for a unit to perform operations [33], (2) power 
consumption attacks where the attacker can identify system processes by analyz-
ing the power consumed by a unit while performing different operations [33], and 
(3) differential fault analysis where the attacker studies the behavior of a system 
by injecting faults into it [33], (4) cache usage attacks where the attacker measures 
the utilization of CPU caches on its physical machine to monitor the activities on 
co-resident’s activities [23], (5) load-based co-residence attack where the attacker 
measures the load variation of its co-resident to verify whether it is co-located with 
the target VM [23], and (6) co-resident traffic rates estimation [23].

Furthermore, malicious tenants may also penetrate the isolation among tenants 
by exploiting system vulnerabilities. For example, the attacker who obtains access 
to the underlying operating system memory could potentially capture the sensitive 
information from other tenants. A misconfigured hypervisor which hosts multiple 
tenants may serve as a conduit for information leakage [19].

Last but not least, malicious tenants may also degrade victim’s performance by 
over-consuming computing resources, such as CPU, memory, storage space, I/O 
resources, and so on. A Swiper attack is proposed in [24], with which the attacker 
uses a carefully designed workload to incur significant delays on the victim’s tar-
geted application. In [34], the authors propose and implement an attack which 
modifies the workload of a target VM in a way that frees up resources for the 
attacker’s VM. The reason for the success of such an attack is that an overload cre-
ated by one tenant may negatively impact the performance of another tenant [35].

9.2.2  Security Attacks against Virtualization

Serving as an essential component of the cloud foundation, virtualization technol-
ogy receives extensive security attacks from different aspects.

 1. Physical vulnerabilities: Vulnerabilities in the physical infrastructure still 
threaten the virtual environment [19]. On the one hand, the virtualized imple-
mentation is also subject to risks and attacks against the physical resources. 
For example, the attacks penetrating the misconfigured physical firewalls 
are also able to compromise the virtual firewall with the same configuration 
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settings. On the other hand, the virtualized environment will be exposed to 
threats if the underlying physical infrastructure has been compromised.

 2. New access context: Virtualization brings new challenges to user authen-
tication, authorization, and accounting in terms of properly defining roles 
and policies [19]. Virtualization technology enables users to access their 
data and applications running on a single logical location which is usually 
the integration of multiple physical or virtual devices. The lack of security 
border and isolation introduces the possibility of information leakage [36]. 
Furthermore, such access can be done through a single user account logged 
on from diverse devices located anywhere in the world. This new access 
context raises many challenges, such as whether a user has the same privi-
leges to access different physical or virtual devices; whether the accounts 
logged on from multiple distant geographic locations belong to the same 
user. Granular separation of user roles is required to address these chal-
lenges [19].

 3. Attacks against hypervisor: The hypervisor that manages multiple VMs 
becomes the target of attacks [19]. Different from physical devices which 
are independent from one another, VMs in the cloud are usually residing 
in one physical device managed by the same hypervisor. The compromise 
of the hypervisor therefore will put multiple VMs at risk. For example, if an 
attacker gains access over the hypervisor, he or she is able to manipulate the 
network traffic, configuration files, and even the connection status of the 
VMs located on top of the hypervisor [37,38].

  Furthermore, the immaturity of the hypervisor technology, such as 
isolation, access control, security hardening, and so on, provides attackers 
with new potentials to exploit the system. Attackers gaining access to the 
host running multiple VMs are able to access the resources shared by the 
VMs, and even bring down these resources and turn off the hypervisor 
[38].

 4. Attacks against VMs: Diverse attacks can be launched against virtual 
machines. For example, VMs can exist in either active or dormant states. 
Although the dormant VMs may still hold sensitive user data, they can easily 
be overlooked and not updated with the latest security settings, leading to 
potential information leakage [19].

  In addition, when a VM is launched, the information required to invoke 
the VM is created and saved on the host. In the multi-tenant scenario, this 
information for all the VMs located in the same server will be stored on a 
common storage system. The attackers gaining access to this storage space 
will be able to break into the VMs, which is called VM hijacking [39].

  Moreover, since a VM can be copied over network or through a USB, and 
the source configuration files are recreated when the VM is moved to a new 
location, the attackers may be able to modify the configuration file as well 
as the VM’s activities during the VM migration [37]. Once a VM is infected 
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and readmitted to its original host, the infection can potentially spread out to 
other VMs located on the same host. Such an attack is also known as virtual 
library check-out [40].

9.2.3  Data Security and Privacy in Cloud

Different from traditional IT infrastructure, where organizations have complete 
control over their data, cloud computing diminishes users’ control over their data 
when they move it from local servers to cloud servers. Such loss of control has 
raised a great number of concerns on data protection and privacy, such as where the 
data is stored, how the data is backed up, who has the access to the data, whether 
the deleted data will be permanently removed from the cloud, and so on, making 
organizations hesitant to move to cloud.

 1. Data loss and data breach: Data loss and data breaches are recognized as 
the top threats in the cloud computing environment in 2013 [41]. A recent 
survey shows that 63% of customers would be less likely to purchase a cloud 
service if the cloud vendor reported a material data breach involving the loss 
or theft of sensitive or confidential personal information [42]. Whether a 
CSP can securely maintain customers’ data has become the major concern of 
cloud users. The frequent outages occurring on reputable CSPs [43], includ-
ing Amazon, Dropbox, Microsoft, Google drive and so on, further exacerbate 
such concerns.

  To help customers recover in case of service failures, data proliferation is 
conducted in the cloud where customers’ data is replicated in multiple data 
centers as backups [44]. However, the distributed storage for multiple data 
copies may increase the risks of data breaches and inconsistency. For example, 
due to the heterogeneity of security settings for the multiple storage devices, 
the overall security level of the data is only determined by the “weakest link 
in the chain.” The attackers can obtain the data if any one of the storage 
devices is compromised. In addition, the multiple data copies need to be 
synchronized when customers make any data updates, including insertion, 
modification, and deletion. The failures of data synchronization will lead to 
data inconsistency. Last but not least, it is more challenging for a cloud user 
to track the appropriateness of a CSP’s data operations. For example, it is 
extremely difficult to ascertain whether the CSP will completely delete all the 
data copies when such a request is made by the user [44].

 2. Cheap data and data analysis: The rapid development of cloud computing 
has facilitated the generation of big data, leading to cheap data collections 
and analysis [45]. For example, many popular online social media sites, such 
as Facebook, Twitter, and LinkedIn, are utilizing cloud computing technol-
ogy to store and to process their customers’ data [46]. Cloud providers who 
store the data are gaining considerable business revenue by either retrieving 
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user information through data mining and analysis by themselves or selling 
the data to other businesses for secondary usage [44]. One example is that 
Google is using its cloud infrastructure to collect and analyze users’ data for 
its advertising network [45].

  Such data usage has raised extensive privacy concerns since the sensitive 
information of cloud users may be easily accessed and analyzed by unautho-
rized parties. The Electronic Privacy Information Center (EPIC) asked to shut 
down Gmail, Google Docs, Google Calendar, and the company’s other Web 
apps until government-approved “safeguards are verifiably established” [47]. 
Netflix had to cancel its $1 million prize data challenge due to a legal suit 
that it violated customers’ privacy during the data sharing process [48]. While 
technologies such as data anonymization are under investigation [44], users’ 
data privacy has to be fundamentally protected by standards, regulations, 
and laws.

  According to a research survey conducted by Ponemon Institute, the level 
of commitment a CSP has for protecting data privacy has an important 
impact on cloud users’ purchase decisions [42]. Specifically, such commit-
ment includes policies and practices about setting up strict processes to sepa-
rate customer data, disclosing physical location of customers’ data, and not 
mining user data for advertising.

 3. Data storage and transmission under multiple regional regulations: Due to 
the distributed infrastructure of the cloud, cloud users’ data may be stored 
on data centers geographically located in multiple legal jurisdictions, leading 
to cloud users’ concerns about the legal reach of local regulations on data 
stored out of region [49]. For example, data privacy laws are not the same for 
every country. Furthermore, the local laws may be violated since the dynamic 
nature of the cloud makes it extremely difficult to designate a specific server 
or device to be used for the transborder data transmission [44]. As one solu-
tion, cloud service providers, such as Amazon, allow customers to control the 
geographic location of their cloud services [50].

9.2.4  Lack of Trust among Multiple Stakeholders in Cloud

Trust, originated from social science, is defined as a relationship between two parties. 
That is, how much confidence one party has about whether the other party will per-
form a certain action or possess a certain property. Lack of trust has been identified 
as one of the major obstacles that hinders the rapid adoption of cloud computing [51].

 1. Cloud users’ trust on CSPs: The adoption of cloud, especially public cloud, 
heavily relies on cloud users establishing trust on CSPs. Such a trust estab-
lishment process is challenging. It relies on the development of technology, 
people’s changing of mindset, and transparency between cloud users and ser-
vice providers.
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  Take task scheduling as an example. In the cloud, users’ tasks are usually 
divided into smaller subtasks which are executed on multiple computing nodes 
in parallel. Computing nodes involved in a given task can be very diverse in 
their security settings. The less secured computing nodes, once compromised by 
attackers, may lead to the failure of the entire task. Thus, developing technolo-
gies to ensure the security of computing nodes plays a critical role in increasing 
the overall trustworthiness of large-scale cloud computation [52].

  Take cloud data storage service as another example. Data, especially sensi-
tive business data, is always the last thing that an organization would like to 
give up control over [53]. In traditional IT infrastructure, organizations build 
up their own data centers on-premise and place all of their data and applica-
tions locally on their own servers, over which they have complete control. In 
contrast, in cloud computing, organizations have to give up at least part of 
their control and outsource it to CSPs, which makes them hesitate to adopt 
this new computing paradigm. In many cases, even organizations using the 
cloud, for most of the time, only store their less sensitive data on the cloud. 
It takes time to persuade organizations to change their mindset and establish 
trust in CSPs [45].

  In addition, providing transparent services could often facilitate trust 
establishment. It requires CSPs to be more open and disclose more details on 
their security readiness. But CSPs often consider some of the information as 
trade secret and thus are not willing to share.

 2. CSPs’ trust in cloud users: On the other hand, it is also important for CSPs 
to monitor and evaluate the trustworthiness of their users, since not all cloud 
users can be trusted. However, this problem has been neglected due to several 
reasons. First, cloud service providers’ potential loss caused by malicious users 
is often underestimated. Second, cloud’s open nature and the economies of 
scale feature drive CSPs to attract more cloud users, as long as they honestly 
pay for their resource consumption. Third, evaluating users’ trustworthiness 
by tracking and analyzing their behaviors is not trivial and usually leads to 
extra resource consumption and management costs.

  Nevertheless, these statements are not true in reality. Untrustworthy cloud 
users managing to reside in the same physical device with normal users may 
be able to launch co-resident attacks and steal sensitive information [54]. 
Without CSP’s appropriate monitoring and logging about users’ behaviors, it 
is extremely difficult for normal cloud users to protect themselves from being 
attacked by malicious users. As a consequence, even malicious attacks target-
ing only cloud users may eventually hurt CSPs’ reputation and undermine 
normal users’ trust in the cloud. More important, compared to the Internet 
attackers, untrustworthy cloud users may cause more severe damage because 
they can directly access the software, platform, and even infrastructure of 
the cloud [51]. Smart attacks have already been developed to deceive CSPs’ 
billing schemes for free riding, which causes CSPs’ economic loss.
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 3. Trust in other parties: Beyond the explicit trust relationship between cloud 
users and service providers, there are other different stakeholders involved in 
the trustworthy cloud computing scenario, such as multiple collaborating 
CSPs or third parties, making the trust evaluation process even more com-
plicated. For example, a multicloud model may be deployed where multiple 
CSPs work together to provide services for a cloud user’s different workloads. 
In such cases, the cloud user’s overall security guarantee has to rely on the 
collaborations from multiple CSPs. The delegation of security responsibili-
ties among different CSPs becomes a challenging issue. In addition, some 
third parties, such as third party audit, authentication, encryption, and so on, 
are proposed to facilitate trust development between cloud users and CSPs 
through recommendations. These third parties, however, can only help when 
they are trusted by both cloud users and service providers, which brings in 
new types of trust issues.

9.3  Security, Privacy, and Trust Solutions 
in Cloud Computing

Various solutions have been proposed to handle the above-mentioned secu-
rity, privacy, and trust challenges in cloud computing. In this section, we first 
discuss the adoption of some “conventional” security solutions, such as log-
ging and monitoring, access control, and encryption, which serve as general 
equations to solve security issues in different cyber systems. Then we introduce 
emerging solutions specifically designed to work in a cloud computing scenario, 
such as virtual isolation and defense against co-resident attacks. At the end, we 
investigate different ways to establishing trust among different parties in the 
cloud scenario.

9.3.1  Logging and Monitoring

Logging and monitoring collect ample evidence of user behaviors as well as system 
status to assist anomaly detection.

User behavior monitoring. Selective monitoring of user activities is proposed 
in [55], where all users are assigned a security label based on prior activities, and 
additional surveillance is given to those with previous security violations. Any 
abnormalities will result in denied permission and immediate alerting. In [56], 
the authors propose to combine user monitoring tools with the intrusion detec-
tion system for immediate action against malicious users and alerting of proper 
system administrators. This proposed framework suggests a strong user authentica-
tion, monitoring of user activity and all media transfers, and resource checking. If 
security violations occur, a defense manager will immediately deny permissions. 
By taking user behaviors as input, machine learning techniques can be applied to 
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identify malicious users (1) cloning a virtual machine, (2) copying everything from 
a virtual machine, and (3) taking snapshots of the virtual machine [57].

System status monitoring. In [58], it was proposed that anomaly detection 
should be based on the effects on the system caused by malicious events rather 
than on the behavior of individual users. Network activities are monitored from 
user perspective, database server perspective, and file server perspective. Hoda et 
al. [59] proposed to build a global model for the entire set of available domains to 
detect both blending anomalies and irregular user behavior. In their work, the term 
“domain” refers to separate categories of data (e.g., email domain or logon domain, 
etc.) that may exhibit different behavior and therefore requires suitable processing 
and analysis techniques.

Logging and monitoring are indirect defense solutions that do not directly pre-
vent or stop malicious attacks. However, results generated by the logging and moni-
toring process provide critical evidence to facilitate other later mentioned defense 
solutions, such as access control, isolation, co-resident attack detection, trustwor-
thiness evaluation, and so on.

9.3.2  Access Control

As previously mentioned, cloud computing has introduced new access context, 
which significantly increases the risks of fraudulent users obtaining unauthorized 
access to data and services [10,11].

Access control, consisting of authentication, authorization, and accountability, 
is the way of ensuring that the access is provided only to the authorized users and 
hence the data is stored in a secure manner [60].

Research has been conducted to develop advanced access control techniques 
in terms of properly defining roles and policies [36,40]. For example, a role-based 
multi-tenancy access control (RM-MTAC) model, which applies identity manage-
ment to determine the user’s identity and applicable roles, is designed to efficiently 
manage a user’s access privilege to achieve application independence and data isola-
tion [61]. In [62], the authors define and enforce access policies based on data attri-
butes and allow the data owner to delegate most of the computation tasks involved 
in fine-grained data access control to untrusted cloud servers without disclosing 
the underlying data contents. Furthermore, physical measures are also proposed to 
ensure the access control to the hypervisor or VMs. An example is a hardware token 
possessed by the administrator in order to launch the hypervisor [63].

9.3.3  Encryption-Based Security Solutions

At the current stage, encryption is still one of the major solutions to address data 
confidentiality, integrity, and privacy issues in cloud computing [64,65]. Through 
encryption algorithms, sensitive information is encrypted and can only be accessed 
by users possessing the encryption keys.
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There are many encryption schemes available. For example, El-Etriby et al. [66] 
compared eight modern encryption methods in the context of cloud computing. 
However, due to the involvement of multiple parties in the cloud environment, the 
adoption of encryption schemes has to face a critical question as to which party 
should encrypt the data and manage the encryption keys.

Cloud users can simply rely entirely on CSP for their encryption needs. For 
example, Amazon Simple Storage Service (S3) encrypts users’ data by default. In 
this case, the problem is that cloud users lose control over ensuring the confiden-
tiality of their data, since CSP has full access to the data. Even if the CSP does 
not intend to do any harm to the cloud users’ data, there is still a risk associated 
with malicious insiders. Since cloud users’ data are stored on distributed storage 
nodes in the cloud, one or multiple compromised nodes may breach the confiden-
tiality, integrity, and privacy of the entire data set. To prevent this possibility, a 
ciphertext policy-attribute-based-encryption (CP-ABE) can be used to achieve a 
fine-grained data access control by enabling cloud users to define their own access 
policies over the data encrypted by CSP [67]. Specifically, cloud users can grant dif-
ferential access rights to different parties according to their attributes. Such access 
rights will be used to generate private keys for each party. As a consequence, only a 
party with a set of attributes satisfying the access policy of the encrypted data can 
decrypt the ciphertext and obtain the data. It does not rely on CSPs for preventing 
unauthorized data access.

To avoid the full access of data from CSP, cloud users can choose their own 
encryption method, encrypt their data, and store it in the cloud. Many cloud 
users are using this approach today to protect their data. This approach, however, 
raises a challenging question as to how CSPs can provide data services to cloud 
users, such as search, insertion, and deletions, while not decrypting their data. 
Homomorphic encryption [68] is useful in this scenario because it allows CSPs 
to manage users’ data by providing services, such as searches, correctness veri-
fication, and error localization [69], without having to decrypt it. Specifically, 
Craig Gentry [70], using lattice-based cryptography, describes the first plausible 
construction for a fully homomorphic encryption scheme. Gentry’s scheme sup-
ports both additions and multiplications on ciphertexts, which provide the basis 
to perform arbitrary computation. Later in 2010, a second fully homomorphic 
encryption scheme was proposed [71], which replaces the ideal lattice-based 
scheme with a much simpler integer-based scheme while maintaining similar 
properties for homomorphic operations and efficiency. In 2013, IBM presented 
an open source software library, Helib [72], which has implemented fully homo-
morphic encryption with some optimization. Although promising, the homo-
morphic encryption has its own disadvantages such as expensive computational 
and bandwidth costs. Another weakness is exposed when attackers can detect 
certain patterns in the communications associated with operations using the 
homomorphic encryption [73].
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Recently, efforts have been made to partially leverage homomorphic encryption 
algorithms for only efficient operations in cloud computing. For example, CryptDB 
has been proposed to prevent a curious database administrator (DBA) from learn-
ing private data (e.g., health records, financial statements, personal information). 
One of the key techniques involved is an SQL-aware encryption strategy, which 
executes SQL queries over encrypted data. Homomorphic encryption has been 
adopted for summation, where the encryption of two values’ summation can be 
calculated by multiplying the encryption of these two values [74]. The SQL-aware 
encryption algorithms are also adopted by the SecureDBaaS architecture [75], 
which allows multiple, independent, and geographically distributed cloud users to 
execute concurrent operations on encrypted data in the cloud.

If cloud users choose to do the encryption by themselves, they have to be respon-
sible for the heavy computation introduced by encryption algorithms. In addition, 
the quality of encryption algorithms arbitrarily chosen by individual cloud users 
could be questionable. More problems arise when cloud users lose their encryp-
tion keys, or in an even worse case, have encryption keys stolen by an attacker who 
compromises their workstations.

Another approach is to have a trusted third-party organization to be in charge 
of encryption and managing the encryption keys. Although this option solves some 
security problems such as the lost encryption keys or weak encryption algorithms, 
cloud users still face the possibilities of losing privacy and confidentiality since the 
third-party encryption service still has full access to their data. Newly emerging 
cloud encryption methods take a step further in terms of key management. They 
do not allow any one party to take full ownership of an encryption key. Instead, 
they divide the key into pieces, each of which is kept by a cloud user, a CSP, and a 
third-party data encryption service.

9.3.4  Virtual Isolation

To keep the benefits generated by resource sharing among different cloud users, 
while addressing security issues caused by it, much research focuses on enhancing 
virtual isolation, which aims to provide a certain level of isolation among tenants’ 
data, computing, and application processes.

With perfect isolation, the execution of one user’s service should not interfere 
with the performance of another user. In particular, it should achieve

 ◾ Segregation of VMs’ storage, processing, memory, and access path networks 
in IaaS.

 ◾ Segregation of running services and API calls as well as operating system level 
process in PaaS.

 ◾ Segregation of transactions carried out on the same instance by different ten-
ants and tenants’ data or information in SaaS [9,15].
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Current studies implement virtual isolation from different levels of the cloud. 
First, some isolation solutions are proposed to directly work on the hardware level, 
such as allocating memory bandwidth [76] and processor caches [77] in a better 
way. Second, isolation can also be facilitated by utilizing hypervisors or virtual 
machine monitor (VMM), a piece of computer software, firmware, or hardware 
that creates and runs virtual machines. For example, the original development 
of the Xen hypervisor aimed to realize isolation [78]. Third, some software level 
resource management mechanisms are proposed to perform isolation for cache [79], 
disk [80], memory bandwidth [81], and network [82]. Fourth, security models are 
established to ensure isolation. In [83], the concept of tenant-ID is introduced on 
the data-link layer to securely segment, isolate, and identify tenants and their assets 
in the cloud. The authors in [84] propose a security model and a set of principles to 
secure logical isolation between tenant resources in a cloud storage system.

9.3.5  Defense against Co-Resident Attacks

Various schemes have been proposed to defend against co-resident attacks. We clas-
sify them into two categories. Schemes in the first category aim at detecting mali-
cious residents by analyzing their unique behavior patterns. Different from such 
solutions, schemes in the second category do not explicitly differentiate malicious 
residents from normal ones. Instead, they treat all residents as potential attackers 
and provide more general solutions, such as increasing the difficulties of achieving 
or verifying co-residence, obfuscating side channel information, or running VMs 
at isolated physical servers.

 1. Detecting co-resident attacks: The straightforward way to defend against 
co-resident attacks is to identify the attack patterns. For example, the authors 
in [85] have proposed a cache-based side channel detection approach (i.e., 
CSDA), which identifies the attack patterns as high cache miss time at the 
physical host side as well as frequent changes in CPU/memory utilization at 
the VM side. Sundareswaran et al. [86] have proposed a detection framework, 
in which an “observer” VM identifies VMs launching excess system calls and 
interrupts as suspicious VMs, and then a “defender” further searches suspi-
cious VMs’ behavior for particular attack patterns.

  However, such detection schemes suffer from three limitations. First, the 
noisy resource consumption from either the physical server itself or other 
normal residents makes it very challenging to differentiate attack patterns 
from normal behaviors. Second, different types of co-resident attacks usually 
do not share the same attack patterns, requiring detection schemes to handle 
them separately. As a consequence, detection schemes are usually ad-hoc and 
application specific. Third, such detection schemes need to monitor, aggre-
gate, and analyze the behavior of each individual process, which may cause 
high overhead and even drop the performance of the physical server.
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 2. Preventing co-resident attacks: Due to the challenges to detect co-resident 
attacks accurately and efficiently, many defense solutions are proposed to 
minimize the possibilities for co-resident attacks to succeed. We further dis-
cuss them according to their working mechanisms.

Security aware VM allocation policy. Attackers who aim to launch co- 
resident attacks against a certain target have to first place their malicious 
VMs on the same physical host where the target VM locates. Co-resident 
attacks cannot succeed if this first step fails. Therefore, researches are 
launched to design security aware VM allocation policies which signifi-
cantly increase the difficulties for attackers to achieve co-residence.

  Many VM allocation policies are studied to assign different initial 
positions to VMs. For instance, a randomization way to assign VMs has 
been proposed [87] to make VMs’ deployment unpredictable to attack-
ers. Han et al. have proposed a co-resident attack resistant VM allocation 
policy [88], which distributes VMs by optimizing security, workload bal-
ance, and power consumption needs of cloud servers.

  Beyond the VM initial position allocation policy, there is also some 
research investigating VM migration policies to reduce the possibility 
of co-resident attacks. For example, Li and Zhang et al. have designed 
a Vickrey–Clarke–Groves (VCG) mechanism to migrate VMs periodi-
cally, so that malicious VMs cannot stay co-located with their target VM 
for a long time even if they can achieve co-residence [89].

Increasing the difficulty of verifying co-residence. As discussed in Section 
9.2.1, malicious VMs can confirm their co-residence status by having an 
identical DOM0 IP address with the target VM. A straightforward solu-
tion is to hide the DOM0’s IP address from cloud users. Nevertheless, 
when attackers use more complicated strategies to verify the co-residence, 
more advanced defense solutions are required.

Obfuscating side channel information. Another approach to prevent sensitive 
information from being transferred between co-resident VMs is to hide or 
obfuscate information exposed to side channels at different levels of the 
cloud infrastructure. First, eliminating side channels from the hardware 
level [90–92] usually provides more effective defense. However, due to the 
complex process of introducing new hardware into existing cloud infra-
structure, the adoption of such schemes is very difficult. Second, extensive 
research has been carried out at the hypervisor level [93–95]. For example, 
XenPump, proposed as a module located in the hypervisor [96], moni-
tors the hypercalls used by timing channels and adds latency to potential 
malicious operations, which increases the error rate in timing channels. 
Another example is a scheduling mechanism that mitigates shared-core 
side channel attacks by limiting the frequency of preemptions [97]. In addi-
tion, the authors in [94] propose to make the timer substantially coarser 
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by removing resolution clocks on Xen-virtualized x86 machines, so that 
malicious VMs can hardly obtain accurate time measurement. The key 
drawback of these schemes is that they often require significant modifica-
tions of the hypervisors. Third, more recently, a system called Düppel has 
been proposed to mitigate cross-VM side channels at the VM OS level, 
which does not require any hypervisor modifications [98]. Specifically, 
time-shared cache cleansing is periodically performed by this system to 
defend individual resident VM from cache-based side channel attacks in 
public clouds. Fourth, some schemes are proposed at the application level 
[99,100]. For instance, the authors in [101] propose to hide the real power 
consumption information from user VMs by deploying a police VM to 
generate false information. Such schemes do not require substantial changes 
in the cloud infrastructure and are thus easy to be adopted. Nevertheless, 
they often suffer from the heavy overhead caused by obfuscating side 
channel information at the upper level of the cloud infrastructure.

  Running VMs at isolated physical servers. Due to the challenges to 
completely mitigate co-resident attacks in a multi-tenant cloud, some 
security-aware cloud users require the cloud service provider to run 
their VMs at isolated physical servers. Although this solution effectively 
avoids attacks from co-residents, it sacrifices the economic benefit of the 
public cloud due to the usage of dedicated physical servers, which leads 
to its limited adoption by individual or small business users who are 
cost-sensitive.

  In addition, even cloud users who adopt this solution are still facing a 
challenging issue as to how to verify the physical isolation of their VMs. 
In this scenario, Zhang et al. have proposed that normal cloud users can 
also use side channel analysis to verify their exclusive usage of a physical 
server [102].

9.3.6  Establishing Trust in Cloud Computing

Trust-based solutions, which guide entities to detect misbehavior, to take actions 
by avoiding risks, and to stimulate cooperation among distributed entities, play a 
unique and indispensable role in making the cloud secure and trustworthy. Current 
cloud computing trust studies mainly focus on (1) establishing cloud users’ trust 
on CSPs, (2) ensuring the trustworthiness of cloud computing resources, such as 
hardware, software, applications, and so on, (3) evaluating the trustworthiness of 
cloud users, and (4) trust evaluation on other parties or entities.

 1. Establishing users’ trust on CSPs: As discussed above, establishing users’ 
trust on CSPs is critical for the rapid adoption of cloud computing. Therefore, 
it has become the most active field for trustworthy cloud computing research. 
A typical trust evaluation relies on three steps.
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Step 1: Determining the evaluation criteria. Whether a CSP is trustworthy 
or whether a CSP A is more trustworthy than a CSP B is a subjective 
question. The answers can be different depending on what the evaluation 
criteria are. Therefore, determining the trust evaluation criteria is a funda-
mental step for trust studies. In [103], the authors propose that users’ trust 
on CSP is related with several factors including data location, allowance 
of investigation, data segregation, availability, long-term viability, regu-
latory compliance, backup and recovery, and privileged user access. The 
impact of these factors is evaluated through survey and statistical analysis. 
In [104], the authors propose a multi-faceted trust management (TM) 
system architecture that evaluates the trustworthy CSP by integrating 
assessment from multiple sources on different CSP attributes (e.g., secu-
rity, performance, compliance). Moreover, many schemes use the service 
level agreement (i.e., SLA) between the CSP and cloud users as the evalu-
ation criteria. The authors in [105] propose an SLA-based trust model to 
select the most suitable CSP for cloud users. An SLA-aware trust model is 
proposed in [106], which considers various SLA parameters between cloud 
users and CSPs in the trust computation and compliance process. In [107], 
a hybrid distributed trust model is proposed to prevent SLA violations by 
identifying violation-prone services at the service selection stage.

Step 2: Collecting evidence about CSPs’ behavior. The evidence of CSPs’ 
behavior can be collected through CSPs’ self-assessment, third-party 
auditing, and cloud users’ own experience.

  Multiple programs are initiated to collect CSPs’ security control infor-
mation through CSPs’ self-assessment. Specifically, the “Security, Trust 
& Assurance Registry (STAR)” program was initiated by the Cloud 
Security Alliance (CSA) as a free publicly accessible registry, which 
allows CSPs to publish the self-assessment of their security controls [108]. 
Beyond the STAR program, the CloudTrust Protocol (CTP), which was 
proposed by the CSC.com [109] and adopted by CSA [110], provides a 
request-response mechanism for users to obtain transparency informa-
tion of a specific cloud such as configuration, vulnerability, audit log, ser-
vice management, and so on. Such programs provide standards for CSPs 
to reveal their security control information to users, which facilitates the 
establishment of cloud users’ trust on CSPs. However, CSPs may hide 
the potential flaws in their security and privacy controls, which makes the 
reliability of the self-assessment based evidence collection questionable.

  Third-party auditors are also involved in the evidence collection process. 
The Cloud Trust Authority (CTA) [111] was announced by RSA as a third 
party to provide trust as a service (TaaS). Specifically, the CTA enables 
cloud users to view the security profiles of multiple cloud providers against 
a common benchmark. In this scenario, the trustworthiness of the third-
party auditors is the key to determining the reliability of the evidence.
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  Evidence can also be collected by cloud users themselves. Such evi-
dence includes both users’ direct experiences and indirect observations 
(i.e., recommendations). A cloud user will believe his or her own experi-
ences most. However, as a single user, the number of direct experiences 
may be very limited to make informative decisions. In many current stud-
ies, cloud users’ feedback (i.e., ratings and reviews) are collected to serve 
as indirect observations. For example, in [112], the authors propose that a 
service broker can help users to choose a trustworthy CSP based on users’ 
ratings. Since the ratings/reviews may be provided by untrustworthy or 
even malicious users, an effective protection scheme is on demand. The 
authors in [113] introduce the uncertainty of users’ opinion into the trust 
computation for CSPs. In [114], the authors protect the entity reputation 
in a hybrid cloud by detecting and filtering out dishonest feedback where 
a personalized similarity measure is involved to compute the credibility 
of feedback through personalized experiences.

Step 3: Deriving trust aggregation algorithm. Diverse trust models have been 
proposed to evaluate the trustworthiness of CSP. For example, a dynamic 
trust evaluation approach based on multi-level Dirichlet distribution is pro-
posed in [115]. The authors in [116] propose a formal trust management 
model that evaluates the trustworthiness of the SaaS in the cloud com-
puting environment by integrating various trust properties, such as direct 
trust, recommended trust, reputation factor, and so on. A trust manage-
ment model based on fuzzy set theory is proposed in [117] to help cloud 
users selecting trustworthy CSP. In [118], an extensible trust evaluation 
model named ETEC is proposed to compute the trust of CSP by integrat-
ing a time-variant comprehensive evaluation method for expressing direct 
trust and a space-variant evaluation method for calculating recommenda-
tion trust. A multi-tenancy trusted computing environment model (i.e., 
MTCEM) has been designed as a two-level hierarchy transitive trust chain 
model to assure a trusted cloud infrastructure to customers [119].

  In addition, a number of studies also integrate trust mechanisms with 
existing technologies to address specific security and privacy challenges 
in cloud computing. In [120], the authors proposed a cloud trust model 
which integrates the user authentication, authorization management, and 
access control based on a family gene tree. In [121], a collaborative trust 
model of firewall-through is proposed to ensure the security of the cloud 
by combining the strength of the domain-based trust model and the fea-
ture of a firewall. In [122], a watermark-aware trusted running environ-
ment is proposed to ensure to protect the software running in the cloud. 
In [123], a trust model is integrated with encryption-based schemes to 
ensure the data confidentiality in cloud computing.

 2. Evaluating the trustworthiness of cloud users. Some research is launched 
to evaluate cloud users’ trustworthiness. In [51], the authors propose 
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practical ways to collect evidence about users’ behavior, and propose an 
analytic hierarchy process (AHP) based trust model to calculate user 
trust. In [124], a policy-based user trust model is proposed, based on 
which the CSP is able to restrict untrustworthy users’ access to cloud 
resources. Compared to CSPs’ trust evaluation, evaluating cloud users’ 
trustworthiness has been underestimated, and therefore limited work has 
been conducted thus far.

 3. Trust evaluation on other parties or entities. In addition to CSP and cloud 
users, there are other third parties whose trustworthiness may also affect the 
overall security of the cloud environment. Trust models are also developed 
to evaluate such parties. For example, a trust framework, which integrates 
various trust mechanisms based on evidence, attribute certification, and vali-
dation, is proposed to evaluate the trustworthiness of various parties in the 
cloud, such as CSP, cloud brokers, and third-party auditors [125]. In [126], 
a DHT-based trust management framework on all data centers is proposed 
to reinforce the security and privacy in cloud applications. Sato et al. pro-
posed to establish mutual trust between CSP and cloud users through a mul-
tiple layer trust model that ensures cloud users’ “internal trust” through the 
trusted platform module (TPM) and establish CSP’s “contracted trust” on 
users through the agreement that contains three documents as service policy/
service practice statement (SP/SPS), ID policy/ID practice statement (IDP/
IDPS), and the contract [127].

 4. Strengths and limitations. The establishment of trust in the cloud promotes 
collaborations among different parties and further facilitates the broad adop-
tion of the cloud computing technology. Furthermore, trust can also support 
different parties to make their decisions. For example, with accurate trust 
values, cloud users can choose the most reliable CSP; a CSP can determine 
whether to allow a specific user to access certain resources; and the most 
trustworthy third parties could be selected to bridge the trust gap between 
cloud users and CSPs.

  There are also some limitations of current trust based schemes. (1) While 
extensive studies have been conducted on evaluating CSP’s trustworthiness, 
the evaluations on cloud users and third parties are still in their initial stages. 
(2) Trust evaluation criteria in different studies are not consistent. The lack of 
standardized evaluation criteria makes it extremely difficult to compare dif-
ferent trust evaluation results. (3) Entities’ trustworthiness is mainly evalu-
ated qualitatively. Quantitative trust computation algorithms are required 
to accurately evaluate and compare the reliability of entities. (4) Current 
schemes are mostly ad-hoc, which can only partially ensure the cloud secu-
rity and privacy [128]. A unified framework that integrates comprehensive 
trust evaluations on diverse entities involved in the cloud environment is on 
demand. Advanced trust-based solutions are under investigation to address 
such limitations.
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9.4  Future Directions
While cloud computing is rapidly gaining popularity, diverse security, privacy, and 
trust issues are emerging against this new computing paradigm. However, the devel-
opment of defense solutions is lagging behind. Based on discussions in this chapter, 
we envision three future research directions to secure the cloud environment.

First, some conventional security solutions, such as logging and monitoring, 
access control, and encryption, may still play important roles in ensuring a secured 
cloud environment. However, the unique characteristics and technologies used in 
cloud computing raise new challenges against these solutions, requiring them to 
be further tailored to meet the special needs in this new computing paradigm. For 
example, access control schemes have to be able to handle broad-based network 
access, a new challenge that never occurred in previous systems. Encryption-based 
solutions have to face the critical challenge as encryption key management due to 
the separation between data owner and data handler.

Second, emerging security solutions for cloud computing, such as virtual isola-
tion, defense against co-resident attacks are not mature yet. The most challenging 
issue is how to enable dynamic sharing and scaling of resources while eliminating 
interference on users’ legitimate resource consumption caused by malicious usage. 
Moreover, as sophisticated attacks are developed rapidly, enhanced solutions are 
required.

Third, stimulating the security cooperation among diverse stakeholders, includ-
ing CSP, cloud users, and many third parties, in the cloud scenario is very challeng-
ing. The involvement of diverse parties in the cloud makes the security, privacy, and 
trust issues complicated since security objectives for different parties can be very 
different, and sometimes these objectives may even conflict with one another. For 
example, a cloud user may require CSPs to be more transparent about their security 
controls, while a CSP may need to protect its entire cloud infrastructure by not 
revealing details about its security settings. Establishing trust relationships among 
diverse parties, which enables negotiation and tradeoffs, may serve as a promising 
solution.

Last but not least, the integration of multiple solutions provides a great poten-
tial to address security, privacy, and trust issues that cannot be addressed by a 
single, ad-hoc solution. For example, by integrating encryption and access control, 
cloud users are able to ensure the fulfillment of their access control policies on the 
cloud server [62,129,130]. By integrating trust models with encryption schemes, 
users can protect their data confidentiality by only allowing trustworthy CSPs to 
decrypt and process their sensitive data [123]. However, how to seamlessly integrate 
different security solutions remains an open challenge.

To ensure a secure and trustworthy cloud computing environment, research 
challenges as well as opportunities remain. The resolution of these security, 
privacy, and trust issues will serve as the key to enable the rapid adoption of 
cloud computing.
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9.5  Conclusion
As an emerging and rapidly developing computing scenario, cloud computing has 
introduced a number of security, privacy, and trust challenges. This chapter first 
introduces background knowledge about cloud computing, such as deployment 
model, service model, unique characteristics, and key technologies, followed by 
brief discussions about the reasons that these technologies raise diverse security, 
privacy, and trust challenges. Furthermore, critical security, privacy, and trust chal-
lenges as well as the corresponding state-of-the-art solutions are investigated in 
detail, followed by a discussion on future research directions, which concludes this 
chapter.
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This chapter introduces the Internet of Things (IoT) as one of the most rapid 
expanding cybersecurity domains and presents the big data challenges faced by IoT, 
as well as various security requirements and issues in IoT. IoT is a giant network 
containing various applications and systems. Every application or system has its 
own devices, data sources, protocols, data formats, and so on. Thus, the data in IoT 
is extremely heterogeneous and big, and this poses heterogeneous big data security 
and management problems. Cybersecurity in IoT has attracted various interests 
when many smart devices are found vulnerable to hacking and reported on head-
line news recently. This chapter describes current solutions and also outlines how 
big data analytics can address security issues in IoT when facing big data.

10.1  Introduction
Internet of Things (IoT) is the network where physical objects are connected [1]. 
These physical objects may include every object in our daily lives, such as TV, 
refrigerator, car, wallet, and so on. In IoT, these objects are either electronic or have 
electronic devices, such as sensors or radio frequency identification (RFID) tags 
attached to them [2]. IoT has a huge market potential. Cisco estimated that IoT 
could create an economic value up to $19 trillion in the next decade [3].

However, people began to be concerned about the security of IoT when more 
and more devices in IoT were found vulnerable to hacking and it was reported on 
headline news recently. As McAfee reported, a Fisher-Price smart toy bear could be 
used by hackers to steal information from children [4]. Hackers can remotely kill 
a Jeep Cherokee, and the video was posted on YouTube and referred to by many 
online media [5]. IoT has a close relationship to our daily lives. Thus, the security 
of IoT has a bigger impact on humans than any other systems or networks [1]. 
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Nowadays, many medical devices are becoming smart, and this raises the possibil-
ity for hackers to attack a human [6].

Cybersecurity in IoT faces many challenges. IoT is highly heterogeneous. The 
devices in IoT are heterogeneous. The data in IoT are heterogeneous. The protocols 
in IoT are heterogeneous. Thus, security issues in IoT are complicated. Security 
solutions in IoT have to address heterogeneous data management problems to effi-
ciently manage keys and identities, to build trust between entities, to protect pri-
vacy, to prevent frauds, and so on.

These challenges have been studied in other fields, and we have some  traditional 
security solutions, such as intrusion detection systems (IDS) [7–9], firewall [10], and 
so on. However, data volume in IoT is tremendously big. As Cisco reported, the data 
generated by IoT was over 100 zettabytes by 2013, and will reach 400 zettabytes by 
2018, where a zettabyte is a trillion GB [11]. Cybersecurity in IoT is facing the big 
data challenge. The traditional security solutions cannot well address the challenges 
that big data brings to cybersecurity.

Big data analytic (BDA) methods for cybersecurity adopt big data analytic 
technologies (such as Hadoop) to solve big data cybersecurity problems. BDA can 
address some challenges that the traditional security solutions cannot address. BDA 
can analyze a single big data set, as well as a significant amount of small data sets. 
BDA can correlate heterogeneous data sources in IoT and manage big security data. 
Using BDA, security solutions in IoT can achieve dynamic feature selection and 
cross-boundary intelligence.

10.2  IoT and Big Data
Internet of Things (IoT) is formally defined in Recommendation ITU-T Y.2060 
as “A global infrastructure for the information society, enabling advanced services 
by interconnecting (physical and virtual) things based on existing and evolving 
interoperable information and communication technologies” [12]. Simply speak-
ing, IoT is a giant network of a huge amount of connected smart devices. As shown 
in Figure 10.1 [13], it is the conceptual framework of IoT.

IoT relates to our daily lives closely. The applications of IoT cover almost all 
the aspects of people’s lives. The technology of IoT is used to build smart homes 
where all the home appliances, such as TV, refrigerator, microwave oven, and so 
on, are smart. When you set an alarm at 7 AM in the morning on your cell phone, 
your cell phone may notify the coffee maker to make a morning coffee for you 
automatically. Moreover, when you get up, your coffee is ready. When the cartridge 
is running low, the printer could place an order online automatically. The technol-
ogy of IoT is used to build smart power grids, which is Smart Grid [14–17]. Smart 
Grid provides many advanced features including real-time energy usage monitor-
ing, real-time pricing, self-healing, and so on. Using the technology of IoT, cars are 
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becoming smart [18]. When you are late for a meeting, your car may automatically 
send a message to the meeting organizer based on your schedule. The technology of 
IoT has been applied to many other fields, such as industry, agriculture, retail, and 
so on, which are shown in Table 10.1 [19].

IoT has a huge emerging market. By 2011, the number of devices with RFID 
tags was 12 million [8]. These devices were used to monitor objects, collect data, 
or track movement. As estimated, this number will continue to increase and reach 
209 billion by 2021 [20]. Gartner says the incremental revenue generated by IoT 
will exceed $300 billion by 2020 [21]. Cisco estimated that IoT could create an 
economic value up to $19 trillion in the next decade [3].

However, when more and more smart devices join IoT, the data in IoT 
becomes tremendously big. As Cisco reported, the data generated by IoT was over 
100 zettabytes by 2013, and will reach 400 zettabytes by 2018, where a zettabyte is 
a trillion GB [11]. Take a Boeing 787 aircraft as an example; it generates 40 TB data 
on an hourly basis [11]. As shown in Figure 10.2 [22], smart devices collect data 
from factories, power grids, homes, and so on, and send to cloud servers.

It is well known that big data has four “Vs”, which are volume, velocity, vari-
ety, and veracity. Volume refers to the scale of data. Velocity refers to the pace of 
data flow. Variety means the various sources and types of data. Veracity means the 
quality of data. In some fields, the big data problem may have only one “V”. For 
example, the big data in video streaming only has “velocity”. However, the big data 
in IoT has all four “V” properties. The volume of big data in IoT is extremely big. 
The pace of big data flow in IoT is very fast in some applications, such as patient 
survelliance. The sources and types of data are especially diverse and heterogeneous. 
Moreover, because of the variety of data, the quality of data in IoT also varies.

10.3  Security Requirement and Issues
IoT is a giant complicated network of many subnetworks involving a huge amount 
of devices, different protocols, different data structures, different message formats, 
and different system requirements. Thus, the security requirements and issues in 
IoT are complicated. The security threat map of IoT is shown in Figure 10.3 [23].

We will study various security requirements and issues in the context of IoT and 
present major security requirements and issues in this section.

10.3.1  Heterogeneous Big Data Security and Management

IoT is a giant network containing various applications and systems. Every applica-
tion or system has its own devices, data sources, protocols, data formats, and so on. 
Thus, the data in IoT is extremely heterogeneous and big, and this poses a hetero-
geneous big data security and management problem.
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Table 10.1 Applications and Devices in IoT

Application Function Description Device

Smart cities Structural health Monitoring 
vibration of 

bridges, buildings, 
etc.

Sensor

Waste management Monitoring trash 
condition

Sensor

Transportation Smart parking Monitoring parking 
space

Sensor

Traffic congestion Monitoring traffic 
conditions

Sensor

Smart drive Assisting your 
schedule, route, 
etc. based on the 

calendar

Smart car

Home 
automation

Remote control 
appliances

Turning on/off 
home appliances 

remotely

Smart TV, smart 
refrigerator, 

smart 
microwave 
oven, etc.

Energy and water 
use

Monitoring energy 
usage of home 

appliances

Smart meter

eHealth Emergency 
notification

Assisting elderly or 
disabled people

Smart caregiver 
wearable heart 

monitors

Patient surveillance Assisting patient 
care

Pain relief 
wearables

Smart chair

Physical exercise 
assistance

Assisting physical 
exercise

Smart scale

Education Child education 
assistance

Assisting child 
education

Smart toy

(Continued)
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Table 10.1 (Continued) Applications and Devices in IoT

Application Function Description Device

Smart 
environment

Forest fire 
detection

Monitoring forests 
to report fire

Sensor

Air pollution Monitoring air 
condition

Sensor

Earthquake early 
detection

Monitoring 
earthquake zone

Sensor

Smart water Chemical leakage 
detection in rivers

Monitoring rivers 
for chemical 

leakage

Sensor

Water leakages Monitoring pipes 
for water leakages

Sensor

River floods Monitoring rivers 
for floods

Sensor

Smart 
metering

Smart grid Monitoring energy 
usage

Smart meter

Tank level Monitoring oil, gas 
level in tanks

Sensor

Retail Supply chain 
control

Monitoring storage 
conditions

Sensor, RFID

Smart product 
management

Controlling 
rotation of 
products

Sensor, RFID

Industrial 
control

Temperature 
monitoring

Controlling 
temperature during 

manufacturing

Sensor

Smart 
agriculture

Wine quality 
enhancing

Controlling the 
amount of sugar in 

grapes

Sensor

Greenhouses Controlling 
conditions in 
greenhouses

Sensor

Animal tracking Tracking locations 
of animals

RFID

Source: Top 50 Internet of Things Applications. http://www.libelium.com/top_50 
_iot_sensor_applications_ranking/ (accessed May 8, 2016).

http://www.libelium.com
http://www.libelium.com
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The input data in IoT is heterogeneous big data from both traditional cyber-
space and the physical world. The traditional cyberspace data includes network 
traffic data, OS log data, workstation log data, cloud-based host log data, anti-virus 
log data, firewall log data, web proxy log data, and so on. Physical world data 
includes home appliance data, smart meter data, power substation data, smart car 
data, smart watch data, and so on. The output includes both archival data and real-
time alerts.

10.3.2  Lightweight Cryptography

Many applications in IoT are human-centric, such as early education, home auto-
mation, and eHealth. The security of these applications is crucial and urgent, 
and data encryption is an essential requirement. However, the smart devices in 
these applications are usually resource-constrained, which have limited energy, 
storage, and processing capabilities, such as smart toys, body area sensors, and 
smart meters. These applications and devices require lightweight cryptography to 
encrypt and authenticate. But the security strength should not be “light” [24,25].

10.3.3  Universal Security Infrastructure

As shown in Table 10.1, IoT has many applications and systems. Every application 
or system has its own security infrastructure. In Smart Grid, supervisory control 
and data acquisition (SCADA) [5] is used to monitor the power generation, trans-
mission, distribution, and redistribution process. Smart meters adopt symmetric 
key encryption and authentication, e.g., DES and AES. In RFID, various security 
systems have been proposed, such as Deckard [26]. Various encryption methods 
have been  proposed for RFID devices, such as Hummingbird [27]. These security 
infrastructures have totally different encryption, authentication, and threat han-
dling  processes. The security events, logs, and alerts they generate are totally dif-
ferent [28].

Existing security solutions, such as various IDS, firewalls, anti-virus software, 
honeypots, and so on, usually work individually and seldom cooperate. They 
might perform similar redundant operations on the same threats in the systems. 
Or they might generate repeated or even conflicted security events and alerts. 
A universal security infrastructure for IoT is needed to integrate security infra-
structures of various applications in IoT and correlate security information from 
different sources.

10.3.4  Trust Management

Trust management is to build and manage trust between each two entities in IoT. 
IoT is highly heterogeneous. The devices in IoT are heterogeneous. The frameworks 
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of applications in IoT are heterogeneous. The security infrastructures in IoT are 
heterogeneous. Data source, data type, and format are also heterogeneous in IoT. 
Therefore, trust management is crucial in IoT to support information correlation, 
data fusion, and context-aware intelligence, as well as information security and 
privacy. The paper [29] summarizes objectives of trust management in IoT, which 
include trust relationship and decision, data perception trust, data fusion and min-
ing trust, data transmission and communication trust, quality of IoT services, pri-
vacy preservation, human–computer trust interaction, and so on.

10.3.5  Key Management

Key management is the process to generate, distribute, and store encryption and 
authentication keys securely in security solutions. Public key infrastructure (PKI) 
is used for the most sophisticated authentication and key management system. PKI 
is widely used in Internet-based security solutions, and its security has been widely 
studied and proved. The development of PKI is to overcome some shortcomings of 
symmetric key, such as key distribution, storage, and revocation. However, sym-
metric key is easier to generate and more lightweight than public key.

Many devices in IoT are resource-constrained, which have limited processing 
and storage capabilities. These devices include various sensors, wearables, smart 
meters, RFID tagged objects, and so on. The traditional PKI does not apply to 
these devices because it is impossible to manage a tremendous amount of certifi-
cates. Developing lightweight cryptography is one trend toward solving this prob-
lem. Current lightweight cryptography, such as Hummingbird and AES-EAX [30], 
is symmetric key encryption, which is more expensive to manage.

Some recent studies propose using PKI with a lightweight certificate or no 
certificate. The paper [31] proposes a key management scheme based on a micro-
certificate for IoT. The certificate only takes a few bytes. The paper [30] proposes 
using certificateless PKI for Smart Grid.

10.3.6  Privacy Preservation

Privacy preservation has attracted various interests in different application areas 
of IoT, including connected cars [32], connected smart meters [15], wireless sensor 
networks (WSN) [33,34], and so on. Privacy preservation in IoT is to carry out a series 
of technologies, mechanisms, legislation, and so on, to protect the privacy of smart 
device owners in IoT. However, the complexity of IoT involves many challenges in 
privacy preservation, and the main challenges include [35,36] the following.

10.3.6.1  Identity Privacy

Identity privacy is hiding the identities of smart devices and thus protecting the pri-
vacy of device owners. Traditionally, identities include real IDs, names, addresses, 
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or pseudonyms of real IDs. But in IoT, emerging technologies, such as face recog-
nition, speech recognition, surveillance camera, fingerprint identification, and so 
on, make it possible to use face, voice, fingerprints, and so on as identities. These 
bio-featured identities are more difficult to hide and the existing privacy-preserving 
techniques may not be applicable.

10.3.6.2  Location Privacy

Location privacy is hiding the locations and movements of smart devices and thus 
protecting the privacy of device owners. If the locations or movements of smart 
devices are exposed to adversaries, the information could be used for crimes, such 
as hijacking and stalking. However, localization and tracking are the main func-
tionalities of many IoT applications. Moreover, the diversity of location resources 
in IoT could provide adversaries with multiple data sources.

10.3.6.3  Profiling Privacy

In many IoT applications, a business generates customer profiles based on user 
behavior analysis and uses these profiles to make marketing strategy. However, 
profiling may lead to privacy violation, such as unsolicited advertisements, price 
discrimination, and so on.

10.3.6.4  Linkage Privacy

Previously separated systems may have their own privacy preserving mechanisms 
and policies. However, the combination of data from different sources may poten-
tially cause new privacy violation issues when these separated systems collaborate 
under the context of IoT.

10.3.6.5  Interaction Privacy

In many IoT applications, interaction between smart devices and device owners is 
one of the main functionalities. Interaction includes touching, shaking, or speak-
ing to smart devices. However, these interactions could be observed by nearby peo-
ple and thus causes privacy violation issues.

10.3.7  Transparency

The term transparency often co-occurs with privacy. Privacy preservation refers to 
how to protect user’s privacy. Transparency closely relates to privacy, but it refers 
to letting the users know how their data are collected and used. In the traditional 
Internet-based systems, it is easier to integrate transparency into the privacy pres-
ervation design since the devices have enough displaying and processing ability 
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to interact with end users. In IoT, devices are highly heterogeneous and resource-
constrained. It is very difficult for devices to consider transparency when most of 
their capabilities are used to guarantee functionality.

10.3.8  Fraud Protection

Fraud is to use falsified objects or statements to deceive victims and gain illegal ben-
efit. IoT creates new opportunities for fraud to spread over billions of smart devices. 
Smart devices are usually resource-constrained devices that have limited program-
ming memory for security mechanisms to use [30]. Thus, they are more likely to be 
infected by malware and be utilized by fraudsters. Typical frauds in IoT include ad 
fraud [37], ATM fraud [38], non-technical loss (NTL) fraud [39], and so on.

10.3.8.1  Ad Fraud

Ad fraud is where fraudsters use botnet to stimulate human traffic to steal from 
advertisers’ budgets. A typical case is an advertiser who wants to increase traffic 
to the site he or she owns. A traffic broker site promises to bring highly quali-
fied customers. But in fact, the owner of the broker site is a fraudster who spreads 
malware to infect many smart devices and forms a botnet to increase traffic to the 
advertiser’s site.

10.3.8.2  ATM Fraud

ATM fraud is where fraudsters force access to web-configurable ATMs to gain 
illegal benefit by changing system parameters or setting up fraudulent transactions. 
A typical case is that fraudsters use the web-based control to let banks ignore the 
balance on compromised accounts.

10.3.8.3  NTL Fraud

NTL fraud is a typical fraud in Smart Grid where fraudsters compromise smart 
meters and send fraudulent billing information to the utility to lower electricity 
bills. NTL fraud has a long history in the power grid. However, with the rise of 
smart meters, fraudsters have many more ways to commit NTL fraud.

10.3.9  Identity Management

Identity is a unique value to identify an object in a domain. In IoT, emerging tech-
nologies bring the possibilities of using face, voice, fingerprint, and so on, as identi-
ties, and this brings a new challenge of how to manage these identities. Meanwhile, 
the traditional identities, such as IP address, may not be used as identity in IoT, and 
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this adds another new challenge. The main challenges of identity management in 
IoT include the following.

10.3.9.1  Identity and Address

Some of the devices in IoT are IP-based, such as smart meters, and they can use an 
address as identity. Some of the devices in IoT use RFID in applications such as 
animal trackers; they are not built on IP addresses and thus cannot use addresses 
as identities.

10.3.9.2  Identity and Ownership

The owners, users, or operators of smart devices could change over time. The rela-
tionship between identity and ownership in IoT affects other processes such as 
authentication. The ownership between devices is also a problem. For example, a 
fingerprint sensor embedded in a smart phone is a single device. Should it only be 
controlled by this phone?

10.3.9.3  Identity and Domain

In IoT, devices could be connected with each other using different protocols. For 
example, in Smart Grid, a smart meter is connected with several smart home appli-
ances using ZigBee to form a Home Area Network [40]. At the same time, the 
meter and home appliances should join metering networks using ANSI C12 series 
of protocols [41]. It is a problem to manage the identity of the same device in dif-
ferent domains. Alternatively, should we use a universal identity for each device?

10.3.9.4  Identity and Lifecycle

Different from traditional user identity management where an identity usually has 
a long lifecycle, identity lifecycle in IoT varies from minutes to a lifetime.

10.4  Big Data Analytics for Cybersecurity in IoT
The traditional security solutions for IoT include IDS, firewall, anti-virus soft-
ware, and monitoring systems. However, these solutions have difficulty in stor-
ing, processing, and integrating big data. Facing big data challenges, big data 
analytics (BDA) is a good choice to address cybersecurity issues in IoT. Hadoop 
technologies, such as MapReduce, HDFS, Hive, Pig, and so on, are often used 
by BDA solutions to process big data. MapReduce is a programming model that 
processes large datasets with a parallel and distributed algorithm [42]. HDFS is 
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the distributed file system. Hive is the data warehouse and Pig is the database 
querying language similar to SQL. Hadoop has the ability to divide a large 
security analysis task or a large traffic dataset into many small subtasks or sub-
datasets. When these subtasks or sub-datasets are processed in a parallel and 
distributed manner, the security analysis process will be accelerated thousands 
of times.

Besides big data processing, these traditional security solutions cannot sim-
ply store the data. NoSQL databases, such as MongoDB, HBase, Cassandra, 
CouchDB, and so on, are often used to store many security events, alerts, and logs.

In this section, we will introduce the shortcomings of the traditional IoT secu-
rity solutions and the benefits of employing BDA solutions.

10.4.1  Single Big Dataset Security Analysis

IDS is one of the most used ways to combat cyberattack [7–9]. The traditional 
IDSs are either based on misuse detection or anomaly detection [43]. They analyze 
traffic and events of a host or a network and generate security alerts. However, a 
single dataset in IoT could be very big, such as space exploration. In 2018, Square 
Kilometre Array (SKA), the largest radio telescope, will be built. SKA will generate 
700 terabytes of data per second [44]. As reported in the paper [44], a traffic flow 
with the speed of 1 Gbps is enough to cause big data issues for the traditional IDS. 
The big dataset contains “heavy” attributes such as image, video stream, and high 
dimensional scientific data, which makes it very difficult for the traditional IDS to 
perform deep analysis.

In the paper [45], the authors propose a Hadoop-based traffic monitoring 
system to detect DDoS attack. The playback files used in the experiments vary 
from 1 TB to 5 TB. They can achieve a throughput from 6 Gbps to 14 Gbps. In 
the paper [46], a BDA solution is proposed for IDS. The author proposes using 
HDFS to process big data if they are needed immediately and using a cloud 
computing storage system (CCSS) to store big data locally for later analysis. 
The authors in [47] introduce how Hadoop technologies can address big data 
problems in the traditional IDS and issues when applying BDA to intrusion 
detection.

10.4.2  Big Amount of Datasets Security Analysis

Compared to a single big dataset, some systems or applications in IoT generate 
small datasets. For example, road traffic data, weather data, and pollution data in a 
Smart City are small datasets with specific attributes [48]. A wind turbine adjusts 
itself by sensing and generating small datasets with the attributes of temperature, 
wind speed, wind direction, and vibration. However, a Smart City has a lot of 
wind turbines and other smart devices; the volume of these small datasets becomes 
tremendously big.
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The traditional security solutions in IoT can process these small datasets, but it 
takes a long time. Instead of processing these small datasets one by one, BDA solu-
tions can parallelize the process. As reported in the paper [49], it takes 20 minutes 
to one hour to query security data of one month using their traditional security 
solution. When they switch to BDA solutions, it takes only one minute to get the 
same results. In the paper [50], the authors propose a distributed BDA solution 
based on Hadoop and Snort. Their experiments employ eight slaves and a master 
node. The processing speed of using nine nodes increases more than four times 
compared to using only one node.

10.4.3  Big Heterogeneous Security Data

IoT data are heterogeneous, which have various data sources, data formats, and 
data types. When heterogeneous data meet big data, it becomes the problem of 
heterogeneous big data. The traditional security solutions in IoT cannot deal with 
heterogeneous data, or they lack scalability which is required by IoT systems. The 
paper [51] introduces different types of big heterogeneous security data as follows.

10.4.3.1  Heterogeneous Input Data

10.4.3.1.1  Big Heterogeneous Cyberspace Data

Big heterogeneous cyberspace data refer to the traditional traffic data collected by 
the network layer monitoring systems or associated with various hosts. The paper 
[52] introduces an example of outsourcing network traffic monitoring and IDS 
to cloud providers. The example used in the paper is a university network with a 
throughput up to 1 Gbps.

Besides network traffic data, another type of cyberspace data is the host event 
log. The types of hosts in IoT are various including workstations, servers, cloud-
based hosts, appliances, and so on. The types of log files in IoT also vary from OS 
log, anti-virus software log, server log, proxy log, to firewall log, and so on. Beehive 
[53] is a BDA security solution based on large-scale log analysis. Beehive was imple-
mented at EMC Corporation for two weeks, and it can well address the big hetero-
geneous data problem of EMC which has 1.4 bn log messages generated every day.

10.4.3.1.2  Big Heterogeneous Industrial Data

An important application of IoT is industrial process control, such as Smart Grid, 
Smart Water, Smart Factory, and so on. Big heterogeneous industrial data refer 
to the data generated by different devices during the industrial control process 
which has various types and formats. A typical security solution in the traditional 
industrial process control is SCADA. However, SCADA also faces big data chal-
lenges. The paper [54] studies the feasibility of applying BDA to SCADA. The 
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experimental results show that the proposed BDA solution can meet the require-
ment of processing big heterogeneous data in SCADA.

10.4.3.2  Heterogeneous Output Data

10.4.3.2.1  Big Archival Security Data

Big archival security data refer to the output data that is archived for later analysis 
or digital forensic. Archival security data in IoT creates a big challenge with storing 
big heterogeneous data, especially when the data generated in each second might 
have to be stored. In the paper [55], a BDA model is proposed to improve the ability 
of long-term digital forensics. The study shows that 5 TB storage space is required 
for a traffic flow with the speed of 10 Gbps per hour. The paper also points out that 
the traditional security solutions, such as IDS and firewall, often do not obtain 
enough forensic information.

10.4.3.2.2  Big Alert Data

Another type of output data is big alert data. Security systems generate security alerts 
when they detect threats. An individual IDS could generate many security alerts. 
Various heterogeneous data sources in IoT generate heterogeneous security alerts and 
the volume of the alerts is big.

10.4.4  Information Correlation and Data Fusion

One benefit of applying BDA to cybersecurity in IoT is that BDA solutions can 
correlate security information from various data sources. The traditional security 
solutions in IoT, such as IDS, firewall, anti-virus software, and so on, have their 
specialties in addressing various threats. However, they often work separately. Or 
they work together to protect a system but they are not well-integrated. Information 
correlation and data fusion are to integrate and correlate security information, such 
as security events, security alerts, and so on, to improve detection accuracy and 
decrease the false alarm rate.

The basic idea behind information correlation and data fusion is to use a BDA 
method to build a correlation layer, and to analyze various security information 
generated by heterogeneous security systems. Shown in Figure 10.4 is a framework 
of information correlation and data fusion [56]. A number of observers are deployed 
in the network to monitor and collect data. A few slave nodes act as local analyzers 
that execute a given detection algorithm. Each analyzer relates to several observers. 
A master node acts as the global analyzer, which finalizes the correlation process.

Another type of information correlation is security alert correlation. Alert cor-
relation is a technique used to stop continuously generating similar alerts. The 
paper [57] proposes a framework to improve the security situation awareness based 
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on knowledge discovery. The basic idea is to collect security alerts from sensors and 
correlate them using correlation rules based on the network security situation.

10.4.5  Dynamic Security Feature Selection

Feature selection is a crucial technique used by security solutions to identify various 
threats, attacks, abnormal behaviors, and potential anomaly. Traditionally, secu-
rity solutions study static datasets that contain abnormal traffic, extract features 
from the abnormal traffic using machine learning or other techniques, and classify 
attacks by matching these features with incoming traffic. A more accurate feature 
selection will significantly improve classification accuracy and reduce false alarm 
rate. The feature selection process takes storage and computational efforts especially 
when the data is big. Thus, most of the existing security solutions employ offline 
feature selection to achieve better accuracy.

However, cybersecurity in IoT is dynamically changing and diverse. More and 
more attacks are zero-day exploits. Features selected today might not be applicable 
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tomorrow. Dynamic feature selection is to select features from incoming traffic in 
a real-time manner. Dynamic feature selection can greatly improve the efficiency 
and accuracy of threat detection. Dynamic feature selection requires the abilities of 
big data storage, fast big data processing, and fast big data classification, which are 
the abilities that BDA solutions can provide.

In the paper [58], a BDA framework is proposed to detect botnet attacks in real 
time. The framework is built on Hadoop, Hive, and Mahout. Hive is used for net-
work traffic sniffing which enables dynamic feature selection. Mahout is used to build 
a random forest based decision tree model. The framework is shown in Figure 10.5.

10.4.6  Cross-Boundary Intelligence

The traditional security solutions in IoT, such as IDS, firewall, anti-virus soft-
ware, and so on, address threats within their domains, but they work separately 
and seldom cooperate. BDA can help security solutions to achieve cross-boundary 
intelligence which contributes to making a better decision and protecting safety in 
various domains. For example, a BDA-enabled security solution in Smart Grid can 
detect threats and defend attackers. At the same time, it can send out alerts when 
there is a leaking or short loop. It can even remind customers of energy efficiency 
and savings.

Traffic
sniffing
module

Malicious
node

detected
Classifies flow
as malicious

and non-
malicious

Flow instances
given to

trained model
for evaluation Hadoop

cluster
Network flow

statistics
resubmitted
to cluster for
Mahout job
execution

Packet
streaming data

through
Dumpcap

Traffic
Master

submits MR
jobs through

Hive

Extraction of
network flows

and flow
statistics

Figure 10.5 A BDA framework for dynamic feature selection. (Based on 
K. Singh, S. Guntuku, A. Thakur, and C. Hota. 2014. Big data analytics framework 
for peer-to-peer botnet detection using random forests. Information Sciences 
278:488–497.)



Cybersecurity in Internet of Things (IoT) ◾ 239

The paper [59] proposes a BDA-enabled security solution supporting cross-
boundary intelligence. As shown in Figure 10.6, the security solution integrates 
security events from multiple sources including network, host, application, data-
base and directory. Multiple technologies, such as vulnerability management, anti-
malware, firewall, IDS, and so on, cooperate to protect security. Intelligent actions 
and decisions are made based on multiple intelligence sources, such as threat intel-
ligence, vulnerability intelligence, crowd intelligence, and so on. The paper [60] 
introduces how cross-boundary intelligence helps to build intelligent railway con-
trol systems in Russia. The intelligent railway control systems employ BDA tools 
to build multi-level intelligence and a better decision-making scheme based on a 
rough set.
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10.5  Conclusion
In this chapter, we introduced IoT and the big data challenges in IoT. We pre-
sented various security requirements and issues in IoT, including key management, 
identity management, lightweight cryptography, privacy preservation, and trans-
parency. We introduced how BDA can address security issues in IoT when facing 
big data.

References
 1. J. Liu, Y. Xiao, and C. L. P. Chen. Internet of Things’ authentication and access 

control, International Journal of Security and Networks (IJSN), 7(4): 228–241, 2012. 
doi:10.1504/IJSN.2012.053461.

 2. Y. Xiao, S. Yu, K. Wu, Q. Ni, C. Janecek, and J. Nordstad. Radio frequency identifi-
cation: Technologies, applications, and research issues, Wireless Communications and 
Mobile Computing (WCMC) Journal, John Wiley & Sons, 7(4): 457–472, May 2007.

 3. O. Kharif. 2014. Cisco CEO Pegs Internet of Things as $19 Trillion Market. http://
www.bloomberg.com/news/articles/2014-01-08/cisco-ceo-pegs-internet-of-things 
-as-19-trillion-market (accessed May 19, 2016).

 4. G. Davis. Another Day, Another Smart Toy Hack: This Time, It’s Fisher-Price. https://
blogs.mcafee.com/consumer/fisher-price-toy-vulnerability/ (accessed May 19, 2016).

 5. J. Gao, J. Liu, B. Rajan, R. Nori, B. Fu, Y. Xiao, W. Liang, and C. L. P. Chen. Scada 
communication and security issues. Security and Communication Networks Security 
Comm, 7(1): 175–194, 2014.

 6. Y. Xiao, X. Shen, B. Sun, and L. Cai. Security and privacy in RFID and applications 
in telemedicine, IEEE Communications Magazine, Special issue on Quality Assurance 
and Devices in Telemedicine, 44(4): 64–72, Apr. 2006.

 7. B. Sun, L. Osborne, Y. Xiao, and S. Guizani. Intrusion detection techniques in mobile 
ad hoc and wireless sensor networks, IEEE Wireless Communications Magazine, Special 
Issue on Security in Wireless Mobile Ad Hoc and Sensor Networks, 56–63, 2007.

 8. B. Sun, K. Wu, Y. Xiao, and R. Wang. Integration of mobility and intrusion detec-
tion for wireless ad hoc networks, (Wiley) International Journal of Communication 
Systems, 20(6): 695–721, June 2007.

 9. B. Sun, Y. Xiao, and R. Wang. Detection of fraudulent usage in wireless networks, 
IEEE Transactions on Vehicular Technology, 56(6): 3912–3923, Nov. 2007.

 10. V. Ndatinya, Z. Xiao, V. Manepalli, K. Meng, and Y. Xiao. Network forensics analysis 
using wireshark, International Journal of Security and Networks, 10(2): 91–106, 2015.

 11. D. Worth. Internet of Things to generate 400 zettabytes of data by 2018. http://
www.v3.co.uk/v3-uk/news/2379626/internet-of-things-to-generate-400-zettabytes 
-of-data-by-2018, 2014 (accessed May 19, 2016).

 12. Y.2060. Overview of the Internet of Things. https://www.itu.int/rec/T-REC-Y.2060 
-201206-I (accessed May 19, 2016).

 13. JessGroopman. Visualizing the Internet of Things: A round-up of maps, frameworks, 
and infographics of IoT. https://jessgroopman.wordpress.com/2014/08/25/ visualizing 
-the-internet-of-things-a-round-up-of-maps-frameworks-and-infographics-of-iot/ 
(accessed June 1, 2016).

http://www.bloomberg.com
http://www.bloomberg.com
http://www.bloomberg.com
https://blogs.mcafee.com
https://blogs.mcafee.com
http://www.v3.co.uk
http://www.v3.co.uk
http://www.v3.co.uk
https://www.itu.int
https://www.itu.int
https://jessgroopman.wordpress.com
https://jessgroopman.wordpress.com


Cybersecurity in Internet of Things (IoT) ◾ 241

 14. J. Gao, Y. Xiao, J. Liu, W. Liang, and C. L. P. Chen. A survey of communication 
/networking in smart grids, (Elsevier) Future Generation Computer Systems, 28(2): 
391–404, Feb. 2012. doi:10.1016/j.future.2011.04.014.

 15. J. Liu, Y. Xiao, S. Li, W. Liang, and C. L. P. Chen. Cyber security and privacy issues 
in smart grids, IEEE Communications Surveys & Tutorials, 14(4): 981–997, 2012. 
doi:10.1109/SURV.2011.122111.00145.

 16. W. Han and Y. Xiao. NFD: A practical scheme to detect non-technical loss fraud in 
smart grid. In Proceedings of the 2014 International Conference on Communications 
(ICC’14), pp. 605–609, June 2014.

 17. W. Han and Y. Xiao. FNFD: A fast scheme to detect and verify non-technical loss 
fraud in smart grid. International Workshop on Traffic Measurements for Cybersecurity 
(WTMC’16), accepted, doi:http://dx.doi.org/10.1145/2903185.2903188, 2016.

 18. W. Han and Y. Xiao. IP2DM for V2G networks in smart grid. In Proceedings of 
the 2015 International Conference on Communications (ICC’15), pp. 782–787, June 
2015.

 19. Top 50 Internet of Things Applications. http://www.libelium.com/top_50_iot 
_ sensor_applications_ranking/ (accessed May 8, 2016).

 20. T. Dull. Big data and the Internet of Things: Two sides of the same coin? http://www 
.sas.com/en_us/insights/articles/big-data/big-data-and-iot-two-sides-of-the-same 
-coin.html (accessed May 19, 2016).

 21. Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion Units By 
2020. http://www.gartner.com/newsroom/id/2636073 (accessed May 19, 2016).

 22. Internet of Things World, Europe. https://opentechdiary.wordpress.com/tag/internet 
-of-things/ (accessed May 19, 2016).

 23. Beecham Research. IoT Security Threat Map. http://www.beechamresearch.com 
/download.aspx?id=43 (accessed May 19, 2016).

 24. A. Olteanu, Y. Xiao, F. Hu, B. Sun, and H. Deng. A lightweight block cipher based 
on a multiple recursive generator for wireless sensor networks and RFID, Wireless 
Communications and Mobile Computing (WCMC) Journal, John Wiley & Sons, 11(2): 
254–266, Feb. 2011, doi:10.1002/wcm.988.

 25. B. Sun, C. Li, K. Wu, and Y. Xiao. A lightweight secure protocol for wireless 
 sensor networks, Computer Communications Journal, special issue on Wireless Sensor 
Networks: Performance, Reliability, Security and Beyond, 29(13–14): 2556–2568, 
Aug. 2006.

 26. L. Mirowski and J. Hartnett. Deckard. A system to detect change of RFID tag own-
ership. IJCSNS International Journal of Computer Science and Network Security, 7(7); 
2007.

 27. B. J. Mohd, T. Hayajneh, and A. V. Vasilakos. A survey on lightweight block ciphers 
for low-resource devices: Comparative study and open issues. Journal of Network and 
Computer Applications, 58:73–93, 2015.

 28. L. Zeng, Y. Xiao, and H. Chen. Auditing overhead, auditing adaptation, and bench-
mark evaluation in Linux, (Wiley Journal of ) Security and Communication Networks, 
8(18): 3523–3534, Dec. 2015, doi:10.1002/sec.1277.

 29. Z. Yan, P. Zhang, and A. V. Vasilakos. A survey on trust management for Internet of 
Things. Journal of Network and Computer Applications 42:120–134, 2014.

 30. W. Han and Y. Xiao. Non-technical loss fraud in advanced metering infrastructure 
in smart grid. The 2nd International Conference on Cloud Computing and Security 
(ICCCS 2016), Nanjing, China, July 29–31, 2016.

http://dx.doi.org
http://www.libelium.com
http://www.libelium.com
http://www.sas.com
http://www.sas.com
http://www.sas.com
http://www.gartner.com
https://opentechdiary.wordpress.com
https://opentechdiary.wordpress.com
http://www.beechamresearch.com
http://www.beechamresearch.com


242 ◾ Big Data Analytics in Cybersecurity

 31. L. Du, F. Feng, and J. Guo. Key management scheme based on micro-certificate for 
Internet of Things. International Conference on Education Technology and Information 
System (ICETIS 2013), pp. 701–711, 2013.

 32. W. Han and Y. Xiao. CO2: A fault-tolerant relay node deployment strategy for 
 throwbox-based DTNs. The 11th International Conference on Wireless Algorithms, 
Systems, and Applications (WASA 2016), August 8–10, 2016, Bozeman, MT.

 33. Y. Xiao, H. Chen, K. Wu, B. Sun, Y. Zhang, X. Sun, and C. Liu. Coverage and 
detection of a randomized scheduling algorithm in wireless sensor networks, IEEE 
Transactions on Computers, 59(4): 507–521, Apr. 2010. doi:10.1109 /TC.2009.170.

 34. Y. Xiao, V. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway. A survey of key man-
agement schemes in wireless sensor networks, Computer Communications Journal, 
30(11–12): 2314–2341, Sept. 2007.

 35. J. Ziegeldorf, O. Morchon, and K. Wehrle. Privacy in the Internet of Things: Threats 
and challenges. Security and Communication Networks, 7(12), 2014.

 36. W. Han and Y. Xiao. Privacy preservation for V2G networks in smart grid: A Survey. 
Submitted.

 37. Here Are 4 Common Methods That Ad Fraudsters Use to Make Their Ill-
Gotten Money. http://www.adweek.com/news/technology/here-are-4-common 
-methods-ad-fraudsters -use-make-their-ill-gotten-money-169285 (accessed May 
19, 2016).

 38. B. Baesens, W. Verbeke, and V. Vlasselaer. Fraud Analytics Using Descriptive, 
Predictive, and Social Network Techniques. Wiley, 2015.

 39. W. Han and Y. Xiao. CNFD: A novel scheme to detect colluded non-technical loss 
fraud in smart grid. The 11th International Conference on Wireless Algorithms, Systems, 
and Applications (WASA 2016), Bozeman, MT, August 8–10, 2016.

 40. J. Liu, Y. Xiao, and J. Gao. Achieving accountability in smart grids, IEEE Systems 
Journal, 8(2): 493–508, June 2014. doi:10.1109/JSYST.2013.2260697.

 41. W. Han and Y. Xiao. Combating TNTL: Non-technical loss fraud targeting time-
based pricing in smart grid. The 2nd International Conference on Cloud Computing 
and Security (ICCCS 2016), Nanjing, China, July 29–31, 2016.

 42. Z. Xiao and Y. Xiao. Achieving accountable MapReduce in cloud computing, 
(Elsevier) Future Generation Computer Systems, 30(1): 1–13, Jan. 2014. doi:10.1016/j 
.future.2013.07.001.

 43. W. Han, W. Xiong, Y. Xiao, M. Ellabidy, A. V. Vasilakos, and N. Xiong. A class of 
non-statistical traffic anomaly detection in complex network systems. In Proceedings 
of the 32nd International Conference on Distributed Computing Systems Workshops 
(ICDCSW’12), pp. 640–646, June 2012.

 44. M. Nassar, B. Bouna, and Q. Malluhi. Secure outsourcing of network flow data anal-
ysis. 2013 IEEE International Congress on Big Data, pp. 431–432, 2013.

 45. Y. Lee. Toward scalable internet traffic measurement and analysis with hadoop. ACM 
SIGCOMM Comput Commun Rev. 43(1): 5–13, 2013. 10.1145/2427036.2427038.

 46. S. Suthaharan. Big data classification: Problems and challenges in network intrusion 
prediction with machine learning. In Big Data Analytics Workshop, in Conjunction 
with ACM Sigmetrics. ACM, Pittsburgh, PA, 2013.

 47. H. Jeong, W. Hyun, J. Lim, and I. You. Anomaly teletraffic intrusion detection 
systems on hadoop-based platforms: A survey of some problems and solutions. In 
15th International Conference on Network-Based Information Systems (NBiS), IEEE, 
Melbourne, Australia, pp. 766–770, 2012. 10.1109/NBiS.2012.139

http://www.adweek.com
http://www.adweek.com


Cybersecurity in Internet of Things (IoT) ◾ 243

 48. Dataset Collection. http://iot.ee.surrey.ac.uk:8080/datasets.html (accessed May 19, 
2016).

 49. E. Chickowski. 2012. A case study in security big data analysis. http://www 
. darkreading.com/analytics/security-monitoring(accessed May 19, 2016).

 50. J. Cheon and T-Y. Choe. Distributed processing of snort alert log using hadoop. 
International Journal of Engineering & Technology 5(3): 2685–2690, 2013.

 51. R. Zuech, T. M Khoshgoftaar, and R. Wald. Intrusion detection and big heteroge-
neous data: A survey. Journal of Big Data, 2015.

 52. M. Nassar, B. al Bouna, and Q. Malluhi. Secure outsourcing of network flow data 
analysis. In IEEE International Congress on Big Data (BigData Congress), IEEE, Santa 
Clara, CA, pp. 431–432, 2013. 10.1109/BigData.Congress.2013.71.

 53. T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, and E. 
Kirda. Beehive: Large-scale log analysis for detecting suspicious activity in enterprise 
networks. In Proceedings of the 29th Annual Computer Security Applications Conference. 
ACM, New Orleans, LA, pp. 199–208, 2013. 10.1145/2523649.2523670.

 54. X-B. Xu, Z-Q. Yang, J-P. Xiu, and C. Liu. A big data acquisition engine based on 
rule engine. J China Universities Posts Telecommunications 2013, 20: 45–49, 2013. 
10.1016/S1005-8885(13)60250-2.

 55. R. Hunt and J. Slay 2010. The design of real-time adaptive forensically sound secure 
critical infrastructure. In The 4th International Conference on Network and System 
Security (NSS). IEEE, Melbourne, Australia, pp. 328–333, 2010. 10.1109/NSS 
.2010.38.

 56. B. Fessi, S. Benabdallah, M. Hamdi, S. Rekhis, and N. Boudriga. Data collection 
for information security system. In Second International Conference on Engineering 
Systems Management and Its Applications (ICESMA), IEEE, Sharjah, United Arab 
Emirates, pp. 1–8, 2010.

 57. F. Lan, W. Chunlei, and M. Guoqing. A framework for network security situa-
tion awareness based on knowledge discovery. In 2nd International Conference on 
Computer Engineering and Technology (ICCET), IEEE, Chengdu, China, pp. 1–226, 
2010.

 58. K. Singh, S. Guntuku, A. Thakur, and C. Hota. Big data analytics framework for 
peer-to-peer botnet detection using random forests. Information Sciences 278: 488–
497, 2014.

 59. Y. Li, Y. Liu, and H. Zhang. Cross-boundary enterprise security monitoring. In 
International Conference on Computational Problem-Solving (ICCP), IEEE, Leshan, 
China, pp. 127–136, 2012.

 60. A.V. Chernov, M.A. Butakova, and E.V. Karpenko. Security incident detection tech-
nique for multilevel intelligent control systems on railway transport in Russia. 23rd 
Telecommunications Forum TELFOR, pp. 1–4, November 2015.

http://iot.ee.surrey.ac.uk:8080
http://www.darkreading.com
http://www.darkreading.com


http://taylorandfrancis.com

http://taylorandfrancis.com


245

Chapter 11

Big Data Analytics 
for Security in Fog 
Computing

Shanhe Yi and Qun Li

Contents
11.1 Introduction ............................................................................................ 246
11.2 Background of Fog Computing ................................................................247

11.2.1 Definitions ....................................................................................247
11.2.2 Features ........................................................................................248
11.2.3 Architectures and Existing Implementations ................................248
11.2.4 The State-of-the-Art of Data Analytics in Fog Computing ...........249

11.3 When Big Data Meets Fog Computing ....................................................249
11.4 Big Data Analytics for Fog Computing Security ......................................251

11.4.1 Trust Management .......................................................................251
11.4.2 Identity and Access Management .................................................252
11.4.3 Availability Management ..............................................................253
11.4.4 Security Information and Event Management ..............................253
11.4.5 Data Protection.............................................................................256

11.5 Conclusion ...............................................................................................257
References .........................................................................................................257



246 ◾ Big Data Analytics in Cybersecurity

This chapter presents a new cybersecurity domain fog computing, and discusses 
why big data analytics is important for fog computing as well as the security issues 
in fog computing. Fog computing is recently proposed as a brand new solution 
to support the rapid development of Internet of Things (IoT), cloud computing, 
and big data technologies. As an emerging computing paradigm, its concept is to 
extend the cloud computing paradigm to the edge of a network and provide elastic 
resources at the edge of Internet to enable many new applications and services.  As 
an extension to cloud, fog computing inherits some similar security issues from 
cloud computing unavoidably, and additionally, it adds new complexity due to its 
distinct characteristics. As the fog computing is still in its infant stage, its security 
issues must be carefully taken care of before we can expect large adoptions from 
IT industrial.

11.1  Introduction
We are in the era of big data, where data sets are becoming intractable if using only 
traditional IT technologies due to the increasingly vast volume and complexity of 
data [1]. However, mining and analyzing those data are critical since the data can 
provide valuable insights and benefits for decision making in areas such as com-
mercial business, IT industry biomedical research, governing and national secu-
rity, and so on. Even though we understand the importance of handling big data, 
making it into practice is non-trivial. As a key enabler, cloud computing has been 
a revolutionary technology that consolidates resources (e.g., computation, memory 
storage, etc.) elastically to make organizations able to tackle big data problems in 
a “pay-as-you-go” fashion [2]. While cloud computing has been the main comput-
ing paradigm through the years, there are nontrivial challenges in the adoption of 
cloud computing such as unpredictable delay, lack of mobility support and location 
awareness, and so on. Therefore, fog computing [3] is proposed as a brand new 
solution to support the rapid development of the Internet of Things (IoT), cloud 
computing, and big data technologies. The basic idea of fog computing is to extend 
the cloud computing paradigm to the edge of the network, where a large scale of 
IoT devices facilitate the operation of compute, storage and networking services 
between end devices and cloud.

As an extension to cloud, fog computing unavoidably inherits some similar 
security issues as in cloud computing [4]. Additionally, fog computing is located 
at the edge of the Internet, with less protection compared to a remote cloud in data 
center infrastructures, which makes fog computing infrastructures and services 
more attractive targets. The distinct characteristics of fog computing will also add 
complexity to the security of fog computing. For example, the geographical dis-
tribution of fog nodes can make secure-related maintenance tasks significantly 
difficult and laborious. We may need better ways to track, predict, and patch 
 security-faulty nodes. In the data domain, due to the massive scale of end devices, 
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and the enormous volume of date generated, most data analytic tasks in fog com-
puting are big data problems. Those tasks analyzing security-related data are of 
interest for enterprises and researchers to identify and defend against security 
threats and attacks. Instead of identifying various security threats and attacks 
case by case, data-driven techniques have opened a new way for security research: 
mining and understanding those data can improve the security of our systems. 
Currently, there are limited existing works [5–11] on the subject of data analytics 
platforms in fog computing. However, none of them are about big data analytics 
for fog computing security. As fog computing is still in its infant stage, the security 
issues must be carefully taken care of before we can expect large adoptions from 
the IT industry. We believe that big data analytics for fog computing security is of 
importance to investigate and can address the unique challenges of fog computing 
security.

In this chapter, we argue that big data analytics for security is a new direction 
to explore to enhance the security of fog computing. By surveying relevant papers, 
we try to understand how big data security techniques can go out of the cloud and 
into the fog, and answer questions like what are those big data security problems, 
what are the differences, and how do we solve those problems.

11.2  Background of Fog Computing
In this section, we will give a brief introduction to the definitions, features, archi-
tectures, existing implementations, and the state-of-the-art of big data analytics in 
fog computing.

11.2.1  Definitions

Currently, fog computing is still a buzzword, which has several definitions from var-
ious perspectives. We will discuss those definitions simply to give a comprehensive 
understanding on the concept of fog computing. Fog computing was introduced by 
Cisco with a position paper [3], which is defined as an extension of cloud comput-
ing at the edge of the Internet, to provide elastic resources to a large scale of IoT 
devices. Work [12] has given an integrative view of fog computing, comprehending 
the underlying technologies such as cloud, sensor network, peer-to-peer networks, 
network function virtualization (NFV), and so on. In our previous work [13], we 
provided a more general definition that can abstract similar concepts: “Fog com-
puting is a geographically distributed computing architecture with a resource pool 
consisting of one or more ubiquitously connected heterogeneous devices (including 
edge devices) at the edge of the network and not exclusively seamlessly backed by 
cloud services, to collaboratively provide elastic computation, storage, and com-
munication (and many other new services and tasks) in isolated environments to a 
large scale of clients in proximity.”
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11.2.2  Features

There are many features that make fog computing distinguishable from other com-
puting paradigms such as cloud computing. Fog computing can support applica-
tions that require minimal delay such as gaming, augmented reality, and real-time 
video streaming processing. This is mainly because of the edge location of fog 
computing, which can provide rich information such as local network condition, 
local traffic statistics, and client-side information. Unlike the centralized cloud, 
fog computing is more geographically distributed in terms of resources and data. 
A computation node in fog computing, which provides elastic resources, is called 
fog node. There are a large number of heterogeneous nodes coming in different 
form factors, which is very different than cloud nodes. Also not like the cloud, 
there is a predominance of wireless access in a fog computing network. Finally, 
fog computing has better support for mobility because it needs to communicate 
directly with mobile devices.

11.2.3  Architectures and Existing Implementations

Fog computing usually has a three-layered architecture, consisting of end users, 
fog, and cloud, as shown in Figure 11.1 [14]. Work [13] has discussed the design 
goals and challenges of a standard fog computing platform. A proof-of-concept fog 
computing platform is built upon OpenStack. There are several existing imple-
mentations of fog computing platforms. Cloudlet [15] is a resource-rich fog node 

Cloud

Fog

More computation power
More data storage

More responsive
More mobility

Less delay

Figure 11.1 A typical conceptual architecture of user/fog/cloud. (From Yi, S., 
Qin, Z., Li, Q.: Security and privacy issues of fog computing: A survey. In: Wireless 
Algorithms, Systems, and Applications, pp. 685–695. Springer, 2015.)
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implementation, i.e., a data center in a box, which follows the cloud computing 
paradigm in a more centralized manner and is built on high-volume servers. The 
IOx is a commercial platform, which supports developers to run scripts, compile 
code, and install their own operation systems [16]. Both of those two implementa-
tions use hypervisor virtualization to provide isolation. ParaDrop [17] is another 
fog node implementation built on wireless routers, which is suitable for lightweight 
tasks. Due to the limited resources on a wireless router, ParaDrop leverages con-
tainers to provide OS-level virtualization. The wireless router is an ideal fog node 
choice due to its ubiquity, full connectivity, and proximity to end users.

11.2.4  The State-of-the-Art of Data Analytics in Fog Computing

Since fog computing is still an emerging technique, there are limited existing works 
on data analytics in fog computing. Work [10] has designed a hierarchical distrib-
uted fog computing architecture for the integration of massive numbers of infra-
structure components and services in the context of smart cities. GeeLytics [6] has 
provided a design of geo-distributed edge analytic platforms which aims at real-time 
stream processing both at the network edge and in the cloud. GeeLytics leverages 
the topology of running instances on cloud or edge to make optimized scheduling. 
Work [9] has proposed MigCEP to solve the operator placement and migration 
problem for complex event processing (CEP) in fog computing, where the mobility 
of users, latency, and bandwidth constraints are taken into consideration. Xu et 
al. [11] have implemented a message-based edge analytics platform using SDN-
integrated switches as fog nodes. Yu et al. [5] have implemented FAST, a fog com-
puting assisted distributed analytics system, with the purpose of detecting falling 
in real-time. CARDAP [8] is a context aware real-time data analytics platform for 
fog computing, which can deliver data efficiently considering the cost of energy, 
resources, and query processing. Other than the above data analytics platforms, a 
couple of fog-based applications have also been involved in multimedia data analyt-
ics including images and videos. Ha et al. [7] have designed a wearable cognitive 
assistant on Google Glass, which relies on Cloudlet for real-time image data pro-
cessing and analytics. Zhang et al. [18] have built a wireless video surveillance sys-
tem which relies on a fog server to provide real-time video analysis for tracking and 
surveillance in enterprise campuses, retail stores, and across smart cities. Therefore, 
we can easily find out that none of those existing works is about data analytics for 
security. Among all the existing efforts in data analytics in fog computing, none of 
them is related to security-related data.

11.3  When Big Data Meets Fog Computing
Big data analytics will be an indispensable component in fog computing. Inter-
esting data analytics applications, including smart traffic light systems, smart city 
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crowd prediction, and distributed object tracking, usually require real-time data 
processing and response. Fog computing as the frontier of computation can provide 
desirable resources to process the data, act as the controller for decision making, 
and upload preprocessed information for in-depth analysis to a remote cloud. To 
summarize the reasons why fog computing is a must for big data analytics:

 ◾ Fog computing can provide enough resources to make big data analytics pos-
sible at the edge of the network, without uploading massive amounts of data 
to the cloud.

 ◾ Fog computing can provide low latency responses for certain time-critical 
tasks. For example, it may be too late for the remote cloud to detect the mal-
function of a critical machine in a certain region, which may have already 
brought significant economic loss to the enterprise.

 ◾ The interplay between fog and cloud can overcome several security issues 
in current big data analytics such as data integrity, data privacy, data prov-
enance, and so on.

 ◾ Fog nodes can collect more information at a lower cost. The edge location 
enables fog nodes to collect more useful domain-specific or even more sensi-
tive data. Processing of those data can provide insightful knowledge that can 
help in various decision making.

In this section, we will explain several advantages that fog computing can bring 
to big data handling. These benefits will fundamentally contribute to the big data 
analytics for security in fog computing.

Real-time big data analytics. Real-time data processing is one of the primary 
goals for many big data analytics applications. Phan et al. [19] have provided a 
case study on MapReduce job scheduling of data-intensive application in the cloud 
showing that handling jobs with deadlines needs improvement. As we know, big 
data analytics in the cloud usually cannot meet the real-time requirement due to 
the unpredictable delay. Unlike cloud computing, fog computing supports multi-
level processing at the edge in which the event can be handled at different levels to 
meet various deadline requirements. The measurement in our preliminary study 
has shown that, compared to cloud, fog has clear advantages in delay and through-
put [13].

Geo-distributed big data handling. The geo-distribution has been suggested 
as the fourth dimension of big data. By pushing resources to the edge, fog comput-
ing can handle a large scale of geographically distributed data. For example, many 
data processing tasks are essentially solving distributed optimization problems. 
Lubell-Doughtie et al. [20] have implemented a MapReduce-based alternating 
direction method of multipliers (ADMM) algorithm for distributed optimization. 
In those applications, fog computing can provide better services in terms of latency, 
cost, and scalability.
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Client-side information. Fog computing can easily gather and utilize client-
side information to better provide services to nearby clients. Traditional web tech-
nologies cannot adapt to user requests once the web is optimized at the server side. 
However, knowledge, such as local wireless network conditions or traffic statistics, 
can be collected at the client side or in the client’s network. Work [21] has utilized 
an edge router as a fog node, which can easily make use of client side network con-
ditions to optimize the web page loading dynamically. Similarly, client side detec-
tions, such as rogue AP [22], session hijacking, cross-site request forgery, and so on, 
can be easily integrated in fog computing to enhance security.

11.4  Big Data Analytics for Fog Computing Security
As fog computing infrastructures become critical in various applications such 
as Smart Home/City, e-Health, crowd sourcing, mobile applications, and so on, 
 security-related challenges will be the main factors that impact the adoption choice 
of this new emerging technique. At the same time, it is not hard to infer that most 
security problems in the context of fog computing will have big data properties due 
to the massive scale of underlying IoT devices. In this section, we will mainly dis-
cuss some security issues that are significantly different with their counterparts in 
cloud computing and show how fog computing can leverage big data technologies 
to solve those security issues. We will also talk about the benefits or new opportuni-
ties that fog computing can bring to big data analytics for security.

11.4.1  Trust Management

The trust management in fog computing is very important since the service is offered 
to a massive scale of end devices by heterogeneous fog nodes that may belong to dif-
ferent organizations such as Internet service providers, cloud service providers, and 
even end users. This is different with cloud computing in which the service provid-
ers can be easily verified or audited by various authorities. As a potential solution for 
trust, a reputation-based trust model has been widely deployed in peer-to-peer [23], 
e-commerce [24], online social network [25], and crowd sourcing applications [26]. 
However, the mobility, large scale, and geo-distribution make it hard to narrow 
down the scope of this problem, which has to be addressed in a large scope with 
big data technologies. For example, a large repository of device identities, finger-
prints, behavior profiles, configuration profiles, locations, and many other meta 
data can be constantly collected and updated, upon which the trust management 
can be built. Bao et al. [27] have proposed a trust management protocol that is an 
event-driven based occurrence of social events. However, their scheme will have 
scalability issues due to slow convergence in a fog deployment with a large num-
ber of devices. As the advantage of deep learning for effectively mining big data, 
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Zhou et al. [28] have demonstrated that a context-ware stereotypical deep learning 
method can achieve better robustness and an overall much higher accuracy for a 
priori trust inference.

11.4.2  Identity and Access Management

As the increasing demands of correctly resourced access in highly complex envi-
ronments, identity and access management (IAM) is an important component in 
fog computing security for managing access control, authentication, single sign-on, 
digital identities, security tokens, and so on. IAM big data analytics can improve 
the fog computing security by finding anomalies in their IAM activities, automat-
ing access control policy generation, and so on.

Authentication. Authentication is an important security issue for fog computing 
since its services are provided to a massive number of end users. The authentication 
of a fog node is mandatory before offloading any tasks from the end device to any 
fog node. Stojmenovic et al. [29] have discussed the authentication and authorization 
techniques that can be used in fog computing. Bouzefrane et al. [30] have proposed 
an NFC-based authentication scheme for cloudlet. The advances in smart devices 
have opened new opportunities in multi-factor authentication, using various biomet-
rics, hardware/software tokens, and so on. At the same time, big data analytics based 
authentication can make those procedures less abrupt and more secure. Kent et al. 
[31] have proposed an authentication graph to analyze the network authentication 
activities within an enterprise network. The authentication graph model can be easily 
extended to a common fog computing scenario. Freeman et al. [32] have evaluated an 
enterprise large-scale statistical framework that can detect suspicious login attempts. 
The basic idea is to classify login attempts into normal and suspicious activity based 
on features such as source IP, geo-location, browser configuration, and time of day.

Access control. Similar to mobile client platforms, fog nodes are designed to 
run applications in an isolated environment with limited privileges. How to grant 
access permissions becomes important in such a situation, where it should be non-
disruptive, automatic, and adaptive. Also, access control is one of the important 
methods for many security enhancements. However, manually access control policy 
generation in a fog node will not be practical in the sense that a single fog node may 
provide services to a massive number of end devices. Policy enforcement will also 
be a big burden to system administrators if these tasks are not handled intelligently.

Work [33] has proposed a secure provenance-based access control in the context 
of cloud, which can be easily adopted in fog computing environments. Provenance 
is a meta data, detailing the history of the data including the source, the processing 
history, and so on, which can be used as the basis for attribute-based access control 
systems. Dsouza et al [34] have proposed a policy-based resources access manage-
ment in fog computing, in which a policy-driven security management framework 
is designed to support collaboration and interoperability between various resources 
in fog computing.
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11.4.3  Availability Management

As one of the triad of information security, there are plenty of security issues in 
fog computing availability management, such as denial-of-service (DoS) attacks, 
security control of APIs, and secure system upgrades.

DoS attack detection. Network flow analysis has been the primary interest of 
DoS attack detection [35]. Lee et al. [36] have implemented an Internet flow analy-
sis method based on MapReduce and can improve the flow statistics computation 
time by 72%. One example of DoS detection using MapReduce is presented in 
[37]. Due to the number of connected devices in fog computing, DoS attacks are 
much easier to generate in such an environment and all come in very large scales. 
Recent advances in anomaly detection in big data environments may shed some 
light on DoS attack detection in IoT and fog computing. Work [38] has built on 
Kafka queue and Spark Streaming with two metrics, relative entropy and Pearson 
correlation, to dynamically detect anomalies in big data scenarios. Eagle [39] has 
proposed a user profile-based anomaly detection by collecting audit logs, analyzing 
user behavior, and predicting anomalous activities based on prior profiles. However, 
there are some other challenges that should be addressed in DoS attack detection 
in fog computing, such as predominate wireless infrastructure, massive mobility, 
node heterogeneity, and so on. The fog computing will also play an important role 
in attack mitigating and defending [40].

Secure interfaces or APIs. The availability of interfaces or APIs is key to the 
reliability and robustness of fog computing applications or services. Also, a unified 
interfacing and programming model for fog computing will ease the burden on 
developers to port applications to the fog computing platforms. Hong et al. [41] 
have proposed a high-level programming model of mobile fog for IoTs, which are 
large scale, geo-distributed, and latency sensitive. However, there is no discussion 
on security issues of those interfaces, which we believe can be strengthened by big 
data analytics. The abuse of insecure APIs may pose a major risk to users by allow-
ing hackers to extract sensitive user information on a massive scale. Works [42,43] 
have shown how unprotected and undocumented APIs can be leveraged to support 
malicious attacks in mobile operating systems. Big data analytics can be used to 
monitor and track the usage of APIs to find abnormal usage patterns, to predict and 
prevent the large-scale attacks that have exploited those insecure APIs.

11.4.4  Security Information and Event Management

Security information and event management (SIEM) is a necessary IT security ser-
vice in fog computing since SIEM is in charge of real-time analysis of security-related 
information and events, which will benefit from big data analytics in tasks such as 
intrusion detection, botnet detection, advanced persistent detection, and so on.

Intrusion detection. As the close distance to end users and rich resources for 
follow-up attacks, fog nodes will be among those preferable targets for intrusion 
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attack. To fight against system invaders, the intrusion detection has to face the big 
data challenge as it is usually done by analyzing a large number of system logs or 
network traffic. Therefore, investigating big data techniques for intrusion detec-
tions has drawn a lot of attention from both industry and academia [44].

In the early stage, Ryan et al. [45] have shown learning user profiles could be 
an effective way for detecting intrusion. Lee et al. [46] have investigated a real time 
intrusion detection system based on data mining. In order to achieve real time 
performance, the computational costs of feature extraction and modeling are used 
in a multiple model based approach for minimal computation cost with adequate 
accuracy. From a more practical perspective, Sommer and Paxson [47] have indi-
cated the difficulties of applying machine learning to intrusion detection in the 
“real world,” large-scale, operational environments. The big data properties will 
make the intrusion detection system even more challenging [48]. More effort has 
been put into how to improve the performance of intrusion detection with big data 
input. Guilbault and Guha [49] have designed an experiment of an intrusion detec-
tion system using Amazon’s elastic compute cloud. MIDeA [50] is a multi-parallel 
intrusion detection architecture tailed for high-speed networks, which combines 
the computation power of multiple CPUs and GPUs. Beehive [51] has proposed a 
scheme that can automatically extract features from dirty log data produced by all 
kinds of security products in a large enterprise to detect suspicious activities. By 
applying MapReduce, Aljarah et al. [52] have shown that the proposed intrusion 
detection system scales well with the sizes of data sets. Marchal et al. [53] have 
introduced an intrusion detection architecture which exploits scalable distributed 
data storage and management and is evaluated against state-of-the-art big data 
analysis tools such as Hadoop, Spark, Storm, and so on. Cuzzocrea et al. [54] have 
implemented an adaptive ensemble-based intrusion detection system to meet the 
requirements of distributed, cooperativeness, scalability, multi-scale network traffic 
analysis.

In the context of fog computing, it provides us new opportunities that fog as 
a shield layer can perform intrusion detection not only for the client but also for 
the centralized cloud. Shi et al. [55] have designed a cloudlet mesh based intrusion 
detection system that can identify intrusion to the remote cloud, and secure the 
communication channels among end devices, cloudlet, and the cloud. The dis-
tributed IDS on the cloudlet mesh can improve the detection rate since multiple 
IDS can collaborate in the detection. A spamming detection application on mobile 
social network is used as an example, in which the cloudlet mesh will try to identify 
the spam and only offload large sized files to the remote cloud using MapReduce 
filtering if the cloud mesh cannot identity whether it is spam.

Botnet detection. IoT Botnet or ThingBot is a concrete threat to current IoT 
and to fog computing as well in a natural course. As the fog nodes are widely 
deployed among switches/routers, set-top boxes, industrial controllers, embedded 
servers, and web cameras, it is also possible that those fog nodes are infected and 
become zombie nodes of the botnet. A study of Proofpoint has shown that a smart 
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refrigerator or smart TV can be exploited to launch a spamming attack [56]. Fog 
nodes are of higher interest to attackers compared to IoT in terms of botnet, since 
they usually have rich resources, full connectivity, and a virtualization environ-
ment. Once a botnet is formed, it can be a powerful tool of attackers’ own inter-
est for network scanning, password cracking, DoS attack, spamming, click-fraud, 
crypt-currency mining, and so on.

While many of those detection methods are built on analyzing network traffic, 
they usually face the challenge of processing large amounts of traffic data. BotMiner 
[57] has proposed a detection framework that can identify malicious clusters after 
clustering on communication traffic. In order to reduce the traffic workload, flow 
aggregation is used to make the problem scalable. Also for computation complexity 
of clustering, a dimension reduction technique is employed in a two-step cluster-
ing method. BotGrep [58] has focused on detection of peer-to-peer botnets by the 
relative mixing rates of random walks on subgraphs, which consist of candidate 
P2P nodes obtained by an efficient pre-filter on a large graph. Complementary 
to those data reduction techniques, massive parallel processing techniques are 
 usually used. BotGraph [59] has leveraged MapReduce framework to detect spam-
ming bots by efficiently computing on a large user-user graph. BotCloud [60] has 
utilized a host dependency graph model and an adapted PageRank algorithm in a 
Hadoop cluster, which brings performance benefits in the average execution time 
for PageRank iterations. BotFinder [61] can find bots by machine learning on key 
features of the communication of the command-and-control (C&C). Due to the 
independence of features, the extraction processes can speed up with a multipro-
cessing library. Singh et al. [62] have built a learning-based intrusion detection 
system for peer-to-peer botnet attacks using Hadoop, Hive, and Mahout. As fog 
computing also relies on virtualization, the botnet detection should be fulfilled in 
virtualized environments. Hsiao et al. [63] have proposed a detection scheme that 
monitors guest OS and uses a learning-based method to generate guest OS behavior 
profiles for detection of botnet.

Advanced persistent threat. Big data analytics for security have set a new 
direction for advanced persistent threat (APT) attack detection. APT attacks are 
attacks carried out by sophisticated attackers that target specific information in high- 
profile companies and governments [64]. The penetration is persistent, usually over 
a long term and the attack methods involve different steps and different techniques. 
Even though there is no current evidence of its existence in fog computing, APT 
attacks have been found in many relevant fields of fog computing such as wireless 
infrastructure, hypervisor, and IoT. The advantages of utilizing big data analytics 
for APT detections in fog computing would rely on (1) collecting more informa-
tion in a low cost due to the closer distance to users; (2) making the early stage 
detection much earlier by conducting detection at the edge; and (3) collaborat-
ing with the centralized cloud can create opportunities in improving the detection 
accuracy and reducing false positives. Existing MapReduce-based APT detection 
can be easily integrated into a distributed fog computing platform. Giura et al. [65] 
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have proposed and implemented a model for APT detection by logging all system 
events and computing on them using a large-scale distributed computing frame-
work with MapReduce, which can provide near-real time detection. Kim et al. [66] 
have presented a secure event aggregation system over MapReduce for scalable situ-
ation analysis for APTs, which provides periodic and ad-hoc aggregation of security 
events and supports analytical queries.

11.4.5  Data Protection

The protection of data in fog computing has faced severe challenges in which some 
of them are inherited from cloud computing and some are unique in fog comput-
ing. We will briefly discuss how big data analytic techniques can improve the data 
protection in fog computing in terms of data audit and data leakage detection.

Data audit. Similar to cloud, a user needs to hand over control of data to 
the fog in order to use its services. This outsourced computation model will call 
for the need of data auditing in fog computing. However, in fog computing, we 
have to address a unique challenge of data audit, which is the geo-distribution. 
The geo-distribution doesn’t only mean the geo-distributed resources but also the 
geo-distributed data due to the mobility of end users. Therefore, the provable data 
possession has to be deployed in a distributed manner to maximize a certain goal 
(e.g., minimal delay) in constraints of resources and data distribution. Zhang et al. 
[67] have leveraged the special features for MapReduce to automatically partition a 
computing job according to the security level of the data and arrange the computa-
tion across a hybrid cloud. The job can be an audit task and the arrangement of 
computation among fog computing can be adjusted to the available resources and 
data on individual fog nodes. Beside this, one important requirement for data audit 
is preserving data privacy; otherwise, a malicious auditee can easily forge desirable 
results. Zhang et al. [68] have proposed a MapReduce-based data anonymization 
method for the cloud platform, which can be ported to fog computing and ben-
efit the data audit due to its MapReduce framework and privacy-preserving 
anonymization.

Data leakage detection. One of the potential security enhancement applications 
for fog computing in preserving user data privacy is to keep sensitive data on a local 
fog node and process them locally without uploading to any remote cloud. However, 
a client needs to make sure no sensitive data leakage occurs during this process while 
the data control is handed over to the fog. Data leakage detection (DLD) is crucial in 
complex systems as many computations on data are done in an outsourced manner. 
The user (distributor) has to supposedly trust the agents, e.g., cloud or fog computing 
service provider, in order to use the provided services or resources to process the data. 
Borders et al. [69] have proposed a scheme for quantifying information leak capacity 
in the outbound network traffic. Work [70] has utilized a guilt agent model to char-
acterize the data leakage detection problem and investigated data allocation strategies 
and fake data injection on identifying guilty agents. Shu et al. [71] have proposed a 
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network-based DLD detection based on a small amount of specialized digests with-
out revealing the sensitive data. As the data volume becomes larger and larger, big 
data analytics are applied in DLD. Liu et al. [72] have leveraged the MapReduce 
framework to compute collection intersection for data leak detection. The paradigm 
of fog computing can be well utilized to identify and prevent the data leakage. Davies 
et al. [73] have designed a privacy mediator on a cloudlet-like architecture of data 
owner which can perform privacy data obfuscation, privacy policy enforcement, and 
many other privacy preserving techniques to avoid the potential leakage.

11.5  Conclusion
We have briefly introduced fog computing and its state-of-the-art in big data ana-
lytics. We envision that the big data analytics for security will be a promising tech-
nique to solve many security issues in fog computing. We have identified security 
issues in trust management, identity and access management, availability manage-
ment, security information, and event management of fog computing. And we have 
surveyed existing work utilizing big data analytics for those security issues in the 
domain of fog computing or in relevant underlying domains.
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Online social networks (OSNs) have grown exponentially in a short period of time, 
and this growth has revolutionized how societies interact with each other. Many 
people around the world use social media on a daily basis; for example, there are 
about 1.3 billion registered Twitter users, with an average of 100 million daily active 
users, and 65 million users just in the United States [1]. In addition to Twitter, 
Facebook is the largest social network in the world. The social networking site com-
prises approximately 1.65 billion monthly active users with about 167 million daily 
active users in the United States and Canada who spend an average of 20 minutes 
of their day on Facebook [2].

12.1  Introduction
The use of social media, specifically, went from being a source of entertainment 
or a way to find and connect with friends or family members, no matter where 
they are globally, to more of a deviant usage/purpose, e.g., to conduct cybercrime, 
hacking, cyber terrorism, spread propaganda or misinformation, conduct cyber 
warfare tactics, or other similar deviant acts. For example, the Russians are spend-
ing millions of dollars to finance the Kremlin’s Troll Army (legions of pro-Russia, 
English-speaking, Internet commenters) to promote President Vladimir Putin and 
his policies, and to spread disinformation about some events or disseminate a pro-
paganda war on the Ukraine [3]. Often these acts exhibit a flash mob style behav-
ior, i.e., a process where a group of individuals get together in cyberspace, conduct 
a deviant behavior, and then disappear into the anonymity of the Internet. We call 
such behavior deviant cyber flash mobs (DCFM) [4].

These nefarious uses of social media pose a significant threat to society, and 
thus require special research attention. It would be of benefit to the information 
assurance domain, and its respective subdomains, to conduct new research initia-
tives into the phenomenon of deviant behavior in OSNs especially with the vast 
amounts of evidentiary information that is continuously generated on different 
social media outlets. In this chapter, we study the following research questions:

 ◾ What strategies and tools do deviant groups, e.g., transnational crime organi-
zations or terrorist groups, use to disseminate their propaganda? And who is 
responsible for disseminating it (e.g., powerful actors)?

 ◾ Can we measure an individual’s interest, control, and power in the dis-
semination process using the theoretical constructs of collective action, 
thereby modeling individual motivations to participate in propaganda 
dissemination?

 ◾ Are botnets involved in the dissemination process and how sophisticated are 
these bot networks? What role do these bots play in such information maneu-
vers? Are there structural pattern(s) among bot networks? How can we detect 
them?
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Seeking answers to the aforementioned research questions, we make the follow-
ing contributions in this chapter:

 ◾ We develop a systematic methodology that can be followed to analyze 
propaganda dissemination. This methodology was obtained from several 
experiments we conducted on the dataset we collected for different events 
mentioned above.

 ◾ We identified the strategies and tools that are used by deviant groups to con-
duct such a deviant act, e.g., propaganda dissemination.

 ◾ We show how cyber forensics can be used to discover hidden connec-
tions between information actors and can be used to study the cross media 
affiliations.

The rest of the chapter is organized as follows. We provide a brief literature 
review in Section 12.2. Section 12.3 discusses our methodology. We discuss the 
two cases we have investigated (namely, Daesh or ISIS/ISIL and Novorossiya) along 
with the results and analysis we obtained in each case in Section 12.4. Finally, 
Section 12.5 summarizes the study with possible future research directions.

12.2  Literature Review
In our methodology we applied an algorithm called focal structure (FSA) which 
is an algorithm that was developed by Sen et al. [5] to discover a set of influential 
nodes in a large network. This set of nodes does not have to be strongly connected 
and may not be the most influential on its own but by acting together it forms a 
compelling power. This algorithm was tested on many real world information cam-
paigns such as the Saudi Arabian women’s Oct26Driving campaign on Twitter* and 
during the 2014 Ukraine Crisis† when President Viktor Yanukovych refused to sign 
a European association agreement.

Botnets/bots/or automated social actors/agents (ASAs) are not a new invention. 
They have been used since 1993 in the Internet relay chat (IRC), and known as 
Eggdrop. They used to do very simple tasks such as greeting new participants and 
warning them about the other users’ actions [6]. Then the usage of botnets evolved 
over time due to their multi-functionality that can be performed and their easiness 
to implement. In our work we were able to identify and study the network struc-
ture (the way the network looks) of botnets in all of the aforementioned events. 
A similar study was conducted on the Syrian Social Bot (SSB) that was used to 
disseminate propaganda during the Syrian civil war in 2012 [7]. Abokhodair et al. 
have categorized the bots by their activity type into four categories, namely: Core 

* The right to drive campaign #oct26driving (available at: http://bit.ly/1OmyCIO).
† Ukraine protests after Yanukovych EU deal rejection (available at: http://bbc.in/1qhcy6V).

http://bit.ly
http://bbc.in
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bots—Generators (tweet a lot), Core bots—Short Lived (retweet a lot and were 
active for less than six weeks), Core bots—Long Lived (retweet a lot and were active 
for more than 25 weeks), and Peripheral Bots (retweeting one or more tweets gen-
erated by the core bots and the account names look like a legitimate user account 
name).

We have also used some cyber forensics tools and techniques to discover the 
hidden relationships between different blog sites. We used Maltego tool, which is 
an open source intelligence and forensics application. It saves a lot of time in min-
ing and gathering of information as well as the representation of this information 
in an easy to understand format. In addition to that we used some cyber forensics 
techniques such as Google Analytics ID, which is an online analytics tool that 
allows a website owner to gather some statistics about their website visitors such 
as their browser, operating system, and country. Multiple sites can be managed 
under a single Google analytics account. The account has a unique identifying 
“UA” number, which is usually embedded in the website’s code [8]. Using this code 
other blog sites that are managed under the same UA number can be identified. 
This method was reported in 2011 by Wired, and also was cited in the book Open 
Source Intelligence Techniques by Michael Bazzell, an FBI cyber crime expert [8,9].

12.3  Methodology
In this section, we present our methodology that we followed to obtain the results 
and findings mentioned in Sections 12.4.1 and 12.4.2. Figure 12.1 shows our meth-
odology as a flowchart of operations we used in combination with the software. 
This is followed by a stepwise explanation of each step/component in the diagram. 
We used the following software in our methodology:

 ◾ Maltego: a cyber forensics tool that helps uncover the hidden connection 
between different blogs sites, available at: http://bit.ly/1OoxDCD.

 ◾ GoogleTAGs: for collecting data in a continuous manner, available at: http://
bit.ly/1KPrRH2.

 ◾ TAGSExplorer: to have a live visualization of the data collected with 
GoogleTAGs, available at: http://bit.ly/24NmFjy.

 ◾ Blogtrackers: to analyze the blogs whose data we collected. The tool can be 
accessed via the following URL: blogtrackers.host.ualr.edu.

 ◾ CytoScape: an open source software platform for data visualization, avail-
able at: http://bit.ly/1VTWOow.

 ◾ NodeXl: to collect and analyze the data, available at: http://bit.ly/1WKA5u9.
 ◾ Linguistic Inquiry and Word Count (LIWC): to calculate the sentiments 

scores, available at: http://bit.ly/1WKAyN3.
 ◾ IBM Watson Analytics: to explore the dataset and get further insights, such 

as the nature and type of conversations, available at: http://ibm.co/214CjoD.

http://bit.ly
http://bit.ly
http://bit.ly
http://bit.ly
http://bit.ly
http://bit.ly
http://bit.ly
http://ibm.co
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 ◾ TouchGraph SEO Browser: to check the usage of a keyword or hashtag 
on different websites, it displays a network of connectivity (by keyword or 
hashtag) between websites, as reported by Google’s database, available at: 
http://bit.ly/1Tm8Cz4.

 ◾ ORA-LITE: to assess and analyze the dynamic meta-network of the data, 
available at: http://bit.ly/27fuHnv.

 ◾ Web Content Extractor: a web extraction software, which can extract the 
content of a website in a highly accurate and efficient way, available at: http://
bit.ly/1uUtpeS.

 ◾ Merjek: an online tool, which can be used to identify the FSA, available at: 
http://bit.ly/21YV5OC.

We start with seed knowledge about an event. This seed knowledge could be 
keywords, hashtags, twitter accounts, or blog sites. Once this knowledge becomes 
clear, then using the flowchart shown in Figure 12.1 we can perform seven types 
of analysis/scenarios if not more. Next we give the steps for each of the seven sce-
narios; these can be easily followed from looking at the flowchart as well. These 
are numbered for the sake of distinguishing between each scenario or analysis 
type:

 1. To apply FSA: first, we should get seed knowledge about the event, then 
check how these keywords are used in the Internet; we should identify the 
keywords used on Twitter, and then collect data based on these keywords 
using NodeXl. Once this is done, we will have an agent-by-agent network, 
which contains both the social network of the users who used these keywords 
(their friends and followers network) and also the communication network 
(any user who tweeted, mentioned, or retweeted and the text containing the 
targeted keyword). Then we can apply FSA to discover the influential group 
of individuals in a large network using Merjek.

 2. To calculate the powerful actors in a network: we can calculate the power-
ful users in the dataset we collected for applying FSA by using our developed 
formula to calculate the power of individuals based on their interest in dis-
seminating a message and the control they have on disseminating that mes-
sage. This formula was derived from the theory of collective action and was 
used to calculate the power of ISIL top 10 disseminators [10,11].

 3. To identify botnets: we should get seed knowledge about the event, then 
check how these keywords are used in the Internet; we should identify the 
keywords used on Twitter, then collect data based on these keywords using 
GoogleTAGs. Then we will get an agent-by-knowledge network. Turning this 
into a network of agent-by-text (text includes tweets, retweets, mentions, and 
replies) and using CytoScape we can identify botnets in the network. We 
used this method to identify botnets that were working to disseminate ISIL 
beheading video propaganda [4].

http://bit.ly
http://bit.ly
http://bit.ly
http://bit.ly
http://bit.ly
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 4. Understanding the sentiments: we can use the same network mentioned in 
the previous step to understand the sentiments of the public about a specific 
event, e.g., how does the public feel about an issue or what kind of narrative 
is being pushed in the propaganda? This can be done by using LIWC to 
calculate the score of the sentiments of the text, and then use IBM Watson 
Analytics to ask questions of interest, and then find an answer to it.

 5. Have a live visualization of the data: on the same data collected in Step 3 
we can use TAGSExplorer to continuously collect data and have a live visual-
ization of the Twitter feed of users talking about the event.

 6. Using Maltego to discover related blogs sites: anytime we have a seed blog 
or a Twitter handle we can use Maltego to discover the other blogs that are 
owned by the same person or managed by the same unique identifying “UA” 
number. We can also find blogs from the Twitter handle or vice versa to study 
the cross media affiliation using Maltego.

 7. Blog analysis using Blogtrackers: once we identify the blogs of interest we 
can crawl their data using a web content extractor tool to extract the content 
of the blog’s site and then clean the data and feed it to the Blogtrackers tool 
for further analysis.

12.4  Case Studies
12.4.1  DAESH or ISIS/ISIL Case Study: 

Motivation, Evolution, and Findings

12.4.1.1  Exploring the Network of the Top Disseminators of ISIL

Our interest in studying the Islamic State’s (also known as ISIL, ISIS, or Daesh) 
behavior on social media started with a study we conducted on the network of 
the top 10 disseminators of ISIL on social media [11] that were released by the 
International Center for Study of Radicalization and Political Violence (ICSR) in 
September 2014 [12]. In Carter et al.’s study, they interviewed the disseminators and 
recruiters of ISIL on social media and published their identities. In our work, we 
crawled those recruiter’s friends’ and followers’ network (in August 2014) and then 
applied our developed framework to identify the powerful actors in that network. 
Powerful actors are individuals who assert a lot of control on the dissemination of 
a message and possess a great interest in disseminating them [10,11]. We found 
out that the top disseminator nodes are not only the most central nodes (most 
connected) but they also constitute a focal structure, meaning the top dissemina-
tors are coordinating with each other. They are coordinating in disseminating ISIS 
propaganda, forming a powerful campaign organization network. Figure 12.2(a) 
and (b) show two tweets as samples of the tweets we collected from the ISIL net-
work containing propaganda as well as a message to the their followers. We did a 
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follow-up on the accounts we collected in their network and found out that some 
of these accounts were suspended by Twitter, others were attacked by Anonymous* 
(a hacking group), while the owners of other accounts were physically captured by 
law enforcement. Therefore, we decided to recrawl the network on February 2015 
(six months later) to find out how the suspensions and cyber attacks affected the 
overall network. We found that ISIL increased its recruiting activities to almost 
double. Also, we found out some accounts were mostly used/owned by more than 
one individual, e.g., the owner of @shamiwitness was captured by law enforcement 
but the account was still active and attracting more people as we recrawled the 
network. Figure 12.3 shows the old and new network after recrawling it by six 
months, where red nodes represent the nodes that still exist, white nodes are the 
nodes suspended by Twitter, and blue nodes are the new ones added. The big 10 
nodes represent the top 10 disseminators of ISIL as identified by ICSR.

Since very few users share their location on Twitter, we tried to infer the loca-
tion of those Twitter accounts using the time zone they follow which is available for 
most users we collected (see Figure 12.4). Figure 12.4 shows the top 10 dissemina-
tors marked in orange while the rest of their friends and followers are marked in 
green. We zoomed-in on two of the top 10 disseminators @Shamiwitness bottom 
left and @Ash_shawqi bottom right. We found out that many users do not follow 
the time zone where they actually live in which indicates that they are either using 
proxy servers to hide their physical location or they are responsible for disseminat-
ing messages to audiences in different time zones than the one they follow. For 
example, @Shamiwitness follows Central Africa time zone but he was captured in 

* Anonymous “Hacktivists” strike a blow against ISIS (Available at: http://bit.ly/1vzrTSQ).

(a) (b)

Figure 12.2 This figure shows a sample of the tweets we collected from the 
Daesh/ISIL network containing propaganda and messages to their follow-
ers. (a) Propaganda tweeted by one of the top 10 disseminators we have in our 
 datasets. (b) Tweet containing a message to the followers of that account.

http://bit.ly
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Shamiwitness

Suspended nodes of ISIL old network

abusiqr

ash_shawqi

khalid_maqdisi

ahmadmusajibri1

musacerantonio

jabhtannusrah

saqransaar

troublejee

nasserjan2

Existing nodes from ISIL old network
New nodes joined ISIL existing network

Figure 12.3 A total of 16,539 nodes and 21,878 edges (the friends/followers of 
ISIL’s top 10 disseminators/powerful actors.

Figure 12.4 Inferring geolocation of ISIL’s top 10 disseminators.
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Bangalore, India.* We also found out that some accounts changed their identity 
after we recrawled the network, e.g., the account @Ash_shawqi: On the time of data 
collection this account had 5,990 tweets, 3,867 followers, and follows 279 users. 
His time zone is Brisbane, Australia. Six months later this account looks totally dif-
ferent. First, he wiped his old tweets and friends/followers (has just three tweets and 
one follower). Second, his profile language changed from Arabic to Russian. Third, 
he shared his location as in “Москва” which means “Moscow” in English. Finally, 
he used to describe himself as a member of Ahlu-Sunnah Wal Jama’ah (Platform of 
Tawhid and Jihad) but six months later his description changed into Russian lan-
guage “Помощь должна совершаться не против воли того, кому помогает,” 
which is translated using the Google translation service to English as “Aid should 
not be committed against the will of the one who helps.”

12.4.1.2  Beheading of Innocent People by ISIL

In 2015, the so-called Islamic State or Daesh started releasing videos on social 
media where they depicted gruesome beheadings of innocent people and accusing 
them of being unbelievers or traitors in an attempt to spread horror among the 
minority religious in the Middle East and capture the attention of the media. We 
crawled the communication network (tweets, retweets, replies, and mentions) of the 
Twitter users who used some keywords or hashtags specific in their communication 
on Twitter to three beheading events, namely: the beheadings of Egyptian Copts in 
Libya† (on February 15, 2015) [see Figure 12.5(a)], the beheading of an Arab-Israeli 
“spy” in Syria‡ (on March 10, 2015) [see Figure 12.5(b)], and the beheading of 
Ethiopian Christians in Libya§ (on April 19, 2015) [see Figure 12.5(c)]. This resulted 
in three datasets with a total of 80,685 texts including: 22,580 tweets, 8,295 men-
tions, and 49,810 retweets. These texts were generated by 47,148 Twitter users with 
the majority of them setting their language to English (67% of total users), Arabic 
in second place (17% of total users), French in third place (5% of total users), while 
the other 11% represents users who speak other languages [4]. During these three 
events, ISIL/Daesh has used social media in a very sophisticated way to dissemi-
nate their propaganda (messages have a URL to an image/YouTube video, or news 
article about the beheadings) to a large audience in a very short period of time. 
They used bots/botnets/ASAs, which are computer programs that can be tasked 
and scheduled to act like humans, e.g., tweet, retweet on a user behalf [4]. They 

* Shami witness arrest rattles ISIS’ cages on Twitter (Available: http://bit.ly/1Ty7um0). 
† ISIS video appears to show beheadings of Egyptian Coptic Christians in Libya (Available at: 

http://cnn.it/1vO9CkA). 
‡ ISIL executes an Israeli Arab after accusing him of being an Israeli spy (Available at: http://

bit.ly/1DGRHAg).
§ Isis video purports to show massacre of two groups of Ethiopian Christians (Available at: 

http://bit.ly/1yJX8fp).

http://bit.ly
http://cnn.it
http://bit.ly
http://bit.ly
http://bit.ly
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have used some of the very effective information maneuvers to disseminate their 
messages such as:

 ◾ Misdirection, where the bot tweets unrelated news that is happening some-
where else but mentions a hashtag related to the beheading crises.

 ◾ Hashtag-latching, when strategically associating unrelated but popular or 
trending hashtags to target a broader, or in some cases a very specific, audi-
ence (e.g., using the #WorldCup and then including a URL of a beheading 
video).

 ◾ Smoke screening, when the bot would mention something about ISIL but not 
necessarily related to the beheading (similar techniques have been used in the 
SSB to raise awareness of the Syrian civil war [7]).

 ◾ Thread-jacking, the change of topic in a “thread” of discussion in an open 
forum (e.g., using a hashtag of #ISIL but the tweet has a link to a shopping 
website).

We also observed that once the news released about the event many people talk 
about it and try to disseminate it to their friends/followers but two days later the activ-
ity started to decline (people know about the event already either by social media or 
some other means). We also intersected the datasets we collected about ISIL (the one 
mentioned in Section 12.4.1.1 and the three datasets mentioned in Section 12.4.1.2) 
to identify the common nodes in an attempt to find the new disseminators’ network. 
We found out a lot of common nodes between datasets, which means those common 
users possess greater interest in disseminating the propaganda of ISIL/Daesh. Table 
12.1 shows the number of common nodes resulting from the intersection (∩) between 
ISIL datasets that we collected. The symbol (∩) we use in the table is the mathemati-
cal intersection of two sets, i.e., the intersection between two sets, set “X” and set “Y” 
is the set “Z” which contains the unique elements from both set “X” and set “Y” [13].

(a) (b) (c)

Figure 12.5 This figure shows a screenshot for each of the beheadings of inno-
cent people executed by ISIL/Daesh. (a) The beheading of Egyptian Copts in 
Libya by ISIL on February 15, 2015. (b) The beheading of the Arab-Israeli “spy” 
in Syria by ISIL on March 10, 2015. (c) The beheading of the Ethiopian Christians 
in Libya by ISIL on April 19, 2015.
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12.4.2  Novorossiya Case Study: Motivation, 
Evolution, and Findings

In this case study we studied the influence operations in Novorossiya. We followed 
a similar approach to that we followed in the ISIL case study, but here we added the 
cyber forensics aspect to reveal hidden connections between different organizing 
groups and to study the cross media affiliation of individuals and groups.

We started by studying the case of the Crimean water crisis* when the Russians 
invaded the Crimean peninsula on March 16, 2014. This crisis was met with inter-
national discontent and a sense of Russian imperialism to expand their reign of 
power. The United Nations as well as the NATO Secretary General condemned this 
expansion of Russian sphere of influence. Pro-Russian media propagandized that the 
closing of a main irrigation canal in April by Ukrainian authorities caused starvation 
in the peninsula and the death of many crops like rice, corn, and wheat. The pro-
Russian media further emphasized that this has caused a humanitarian crisis, which 
was followed by grievances and requests for help. Many on-the-ground reports on 
developing conflicts and problems are reported in a variety of open source platforms 
including blogs, websites, Twitter, Facebook, and other open source channels such 
as YouTube. During this crisis, bots were used to effectively disseminate thousands 
of messages in relation to the Crimean water crisis. We collected data for the period 
between April 29, 2014 8:40:32 PM and July 21, 2014 10:40:06 PM UTC from 
Twitter using keywords related to this crisis and we wanted to investigate the tactical 
information maneuvers, especially the role of botnets in propaganda dissemination 

* Aid Elusive, Crimea farms face hurdles (available at: http://nyti.ms/1UOpzlg).

Table 12.1 The Number of Common Nodes between the Datasets 
We Collected

Dataset Names # of Nodes

Beheading of Coptic’s ∩ beheading of Arab Israeli 265

Beheading of Coptic’s ∩ beheading of Ethiopians 753

Beheading of Ethiopians ∩ beheading of Arab Israeli 339

Dataset of top 10 disseminators ∩ beheading of Arab Israeli 126

Dataset of top 10 disseminators ∩ beheading of Ethiopians 83

Dataset of top 10 disseminators ∩ beheading of Coptic’s 61

Beheading of Coptic’s ∩ beheading of Arab Israeli ∩ 
beheading of Ethiopians

68

Note: These common nodes have a great interest in disseminating ISIL’s propa-
ganda and might be the new disseminators of ISIL propaganda.

http://nyti.ms
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campaigns. This resulted in collection of 1,361 unique tweets, 588 unique Twitter 
users, and 118,601 relations/edges between the Twitter users. There are four basic 
types of relations in the Twitter data, namely, follows, mentions, replies, and tweets. 
We found out that these bots had a central account that is responsible for giving the 
propaganda to them and they work to disseminate these propaganda messages. By 
closely examining their network, as depicted in Figure 12.6, we found out that they 
have a mutually reciprocated relationship, suggesting the principles of “Follow Me 
and I Follow You” (FMIFY) and “I Follow You, Follow Me” (IFYFM) in practice—
a well-known practice by Twitter spammers for link farming or quickly gaining 
followers [14–16]. The bots in this case were considered simple bots, which means if 
you find one you find others. While in the following case explained next we found 
more sophisticated bots, which were harder to discover.

After the study of the Crimean water crisis, we studied the propaganda pro-
jected against two military exercises conducted by U.S. forces and NATO, namely 
the Dragoon Ride Exercise* and the Trident Juncture Exercise† (TRJE 2015). In 
the Dragoon Ride Exercise, a march of U.S. soldiers were sent on a mission as part 
of Operation Atlantic Resolve and began Operation Dragoon Ride (in March 21, 
2015) to exercise the unit’s maintenance and leadership capabilities and demon-
strate the freedom of movement that exists within NATO. That march covered 
more than 1,100 miles and across five international borders including Estonia, 
Latvia, Lithuania, Poland, and the Czech Republic. The Trident Juncture Exercise, 
which involved 36,000 personnel from more than 30 nations, took place through-
out Belgium, Germany, the Netherlands, Norway, Spain, Portugal, Italy, Canada, 
the Mediterranean Sea, and the Atlantic Ocean to demonstrate NATO’s capability 
and capacity to meet the present and future security challenges.

There was a lot of propaganda projected during these two military exercises. In 
addition to that, some of the local residents from the participating countries did not 
like those exercises. There were calls for civil unrest and a lot of propaganda asking 

* Operation Atlantic Resolve exercises begin in Eastern Europe (available at: http://1.usa 
.gov/1rDSxcb, Last accessed: June 12, 2016).

† Trident Juncture 2015 (available at: http://bit.ly/1OdqxpG, last accessed: June 12, 2016).

Figure 12.6 Naive botnets observed during the Crimean water crisis (2014). 
Mutual reciprocity and extremely closely knit behaviors were observed.

http://1.usa.gov
http://1.usa.gov
http://bit.ly
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people to protest and conduct violent acts against the troops participating in both 
exercises. For the Dragoon Ride Exercise, this was done mainly by a group of bot-
nets. These botnets were identified using Scraawl (an online social media analysis tool 
available at www.scraawl.com). We collected the network of these bots in the period 
between May 8, 2015 8:09:02 PM and June 3, 2015 11:27:31 PM UTC of 73 Twitter 
accounts that included friend–follower relations and tweet–mention–reply relations. 
This resulted in 24,446 unique nodes and 31,352 unique edges including: 35,197 
friends and followers edges, 14,428 tweet edges, 358 mention edges, and 75 reply 
edges. We studied their network structure in an attempt to understand how they 
operate and compare how different they are from the Crimean water crisis bots. As 
depicted in Figure 12.7, we found out the bots network here is not as simple as the 
one in the Crimean water crisis. Bots here do not follow the principles of “Follow 
Me and I Follow You” (FMIFY) and “I Follow You, Follow Me” (IFYFM) but the 
identification of these bots has been challenging because the bots here are also coor-
dinating. This behavior is more pronounced in the communication network (retweet 
+ mention + reply). Meaning, if we look at the friends–followers network we don’t 
see much coordination (unlike the Crimean water crisis simple bots). While looking 
at the communication network it does reflect coordination, and that too is observed 
by applying a very sophisticated network structure analysis algorithm, i.e., our FSA 
approach [5].

In the Trident Juncture Exercise, we did an empirical study of the anti-OTAN 
and anti-TRJE 2015 cyber propaganda campaigns organized on Twitter and the 
blogosphere. Domain experts identified six groups that propagated their messages 
on social media inviting people to act against NATO and TRJE 2015. We identi-
fied their blog sites as well as their Twitter handles using Google search and cyber 
forensics techniques. Then we collected their Twitter network for the period of 
August 3, 2014 4:51:47 PM UTC to September 12, 2015 3:22:24 AM UTC. This 

Figure 12.7 Coordination among Dragoon Ride (2015) bots discovered on examin-
ing the communication network. Social network does not exhibit any coordination.

http://www.scraawl.com
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resulted in 10,805 friends–followers, 68 replies, 654 tweets, 1,365 mentions, 9,129 
total unique nodes, and 10,824 total unique edges.

Then we used cyber forensics tools (Maltego: an open source intelligence and 
forensics application. It saves a lot of time in mining and gathering of informa-
tion as well as the representation of this information in an easy to understand 
format [see Figure 12.8]) and cyber forensics techniques, such as tracking Google 
Analytics ID, which is an online analytics tool that allows a website owner to gather 
some statistics about their website visitors such as their browser, operating system, 
and country. As depicted in Figure 12.8, multiple sites can be managed under a 
single Google analytics account. Using the techniques in [8] and [9], we were able 
to uncover the hidden relations between different blog sites and also to study the 
cross media affiliation of different groups.

After identifying these blogs, we crawled them and fed their data to our in-
house developed Blogtrackers tool, where further analysis on the blogs level as well 
as blogger level can be conducted. Using Blogtrackers we were able to see the spike 
of activity of blogs (number of blog posts) just before the Trident Juncture Exercise 
(see Figure 12.9). We were also able to identify the most influential posts [17] that 
happened to have a lot of propaganda and a clear call for civil unrest against NATO 
forces (see Figure 12.10).

Figure 12.8 Finding related websites, IP addresses, and locations of websites 
using the Maltego tool and the unique identifier (Google Analytics ID).
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Figure 12.9 This shows the spike in blogs posting activity just before the Trident 
Juncture Exercise.

Figure 12.10 This shows the most influential post, which has a clear call for civil 
unrest against the NATO forces.
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12.5  Conclusion and Future Work
In conclusion, with the rapid advancement of technology, people are more connected 
than ever before. Internet and social media boosted the speed of information diffusion 
tremendously across the globe. Thus, disseminating propaganda or misinformation 
about events, i.e., conducting deviant acts, becomes convenient, effective, and fast. 
Deviant groups can nowadays coordinate cyber campaigns in order to achieve strategic 
goals, influence mass thinking, and steer behaviors or perspectives about an event in a 
very sophisticated way (hard to discover) and yet easy to be done. In this chapter, we 
provided two important and detailed case studies, namely Daesh (ISIS: Islamic State 
in Iraq and Syria/ISIS/ISIL) and Novorossiya. We analyzed the situational awareness 
of the real world information environment in and around those events by employing 
computational social network analysis and cyber forensics informed methodologies to 
study information competitors who seek to take the initiative and the strategic message 
away from the main event in order to further their own agenda. We showed the meth-
odology we followed and the results we obtained from each case study. The research 
gave many interesting findings that are mentioned above and was of great benefit to 
NATO and U.S. forces participating in both exercises on the ground.
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Chapter 13

Security Tools

Matthew Matchen

When people are prepared to apply cybersecurity ideas and theory to practical 
application in the real world, they equip themselves with tools to better enable the 
successful outcome of their efforts. However, choosing the right tools has always 
been a challenge.

The focus of this chapter is to identify functional areas in which cyberse-
curity tools are available and to list examples in each area to demonstrate how 
tools are better suited to provide insight in one area over the other. In particular, 
we discuss boundary tools, network monitoring tools, memory protection tools, 
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memory forensics tools, and password management tools. Our discussion is guided 
by NIST’s cybersecurity framework with the intent to provide clear guidance and 
standards on protecting U.S. critical infrastructure but is applicable to all aspects of 
cybersecurity. We also discuss how traditional cybersecurity tools such as network 
monitoring, firewall, or antivirus tools can be implemented to work with big and 
higher velocity data.

13.1  Introduction
When people are prepared to apply cybersecurity ideas and theory to practical appli-
cation in the real world, they equip themselves with tools to better enable the suc-
cessful outcome of their efforts. But do they choose the right tools? Are these tools 
multipurpose or oriented toward a more specific function? Even if tools are multi-
purpose, should they still be used in a dedicated capacity or should usage be split 
between different objectives? The cybersecurity markets are flooded with advertise-
ments, research, and accredited professionals all competing for attention and time in 
an effort to increase adoption of various tools that further revenue, research grants, 
and personal objectives. How, then, can someone choose the right tools?

The focus of this chapter is to identify functional areas in which cybersecurity 
tools are available and to list examples in each area to demonstrate how tools are 
better suited to provide insight in one area over the other. This chapter is by no 
means an exhaustive list and serves as a starting point in cybersecurity toolkit devel-
opment. Our first phase in developing this toolkit is to determine functional areas 
of cybersecurity. Thankfully there are already a plethora of functional models, but 
a core challenge is attempting to map cybersecurity functions in a standardized and 
simplified approach. In 2014, the United States National Institute of Standards and 
Technology published the first version of the cybersecurity framework for improv-
ing critical infrastructure. In this context, the myriad of cybersecurity facets is con-
densed into five functions labeled the Framework Core* as depicted in Table 13.1.

Each core component has categories that better define specific needs, and out of 
the categories available, these appear to be the most relevant under which we can 
discuss practical cybersecurity tools as shown in Table 13.2.

* http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf

Table 13.1 NIST’s Cybersecurity Framework Core*

Identify Protect Detect Respond Recover

Source: http://www.nist.gov/cyberframework/upload/cyber 
security-framework-021214.pdf.

http://www.nist.gov
http://www.nist.gov
http://www.nist.gov
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13.2  Defining Areas of Personal Cybersecurity
NIST published the cybersecurity framework with the intent to provide clear guid-
ance and standards on protecting U.S. critical infrastructure, but the foundation of the 
framework is built on cybersecurity knowledge many have come to recognize through 
certifications such as CompTIA Security+, EC-Council Certified Ethical Hacker, and 
ISC2 Certified Information Systems Security Professional. In addition, NIST collected 
input from cybersecurity experts within the U.S. government as well as commercial 
organizations and individual subject matter experts. Government agencies and even 
commercial organizations look to NIST’s cybersecurity framework and the concepts 
therein when considering which tools they incorporate into their cybersecurity tool-
kits. Even when downsizing the scale of that approach, several areas remain applicable 
to implementing and maintaining a strong cybersecurity profile on a personal level. 
For example, an enterprise security footprint can be visualized in Figure 13.1.

Combining areas of cybersecurity that overlap between what NIST defines and 
what cybersecurity professionals need to protect on their home networks seems to 
provide toolset categories that apply to both realms.

13.3  Tools for Big Data Analytics
It is hard to define a clear boundary between big data analytics and traditional cyber-
security tools. On the one hand, traditional cybersecurity tools such as network moni-
toring, firewall, or antivirus tools can be implemented to work with big and higher 
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Figure 13.1 Visual example of an enterprise cybersecurity footprint.
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velocity data. In this case, these tools take advantage of load balancing, parallel data 
ingestion, distributed data stores, or other scalable services designed for cloud comput-
ing. From this point of view, the challenge is to use the appropriate software or service 
to make the application more scalable. For example, one can run various copies of a 
popular network monitoring tool, namely Wireshark, using a scalable framework such 
as a Kafka/Storm combination, and assign each copy to monitor different segments 
of the network. In this example, Wireshark becomes a “big data tool” not because it 
is implemented with scalability in mind but by taking advantage of big data software. 
In another example, a tool that performs a simple machine learning operation such as 
classification or clustering can be implemented using a scalable programming frame-
work such as MapReduce or Spark and hence becomes a big data analytics tool.

On the other hand, big data analytics tools can also be realized as tools that apply 
practical and scalable machine learning and artificial intelligence for cybersecurity. 
Note that these tools are beyond running a simple application or an algorithm but 
are deployed and specialized to solve complex cybersecurity problems, generally at 
the enterprise level. Three examples of these tools are IBM Cognitive Security – 
Watson for Cyber Security,* Teradata Cyber Security,† and Sqrrl Enterprise.‡ For 
the purposes of this book, we will not delve into these applications and refer the 
reader to their respective manuals.

In both cases, big data is in the eye of the beholder. Even relatively straightfor-
ward tasks such as recording network packets can be unfeasible at large scales. Hence, 
it is more beneficial to pick and choose tools that are more suited for the scale of the 
cybersecurity problem at hand. Big data tools also come with an overhead such as 
computation and maintenance, and they might not be the most efficient solution at 
smaller scales. We recommend the readers to learn and experience the basic analyti-
cal tools first, and then move into more advanced tools. Therefore, we first start with 
studying boundary tools as the first line of defense. Note that the outputs of these 
tools (e.g., logs of blocked traffic) can also be used to support data analytics.

13.4  Boundary Tools
Similar to how barriers control access in the physical realm, the logical barriers 
provided by firewalls enforce boundary separation to help define, at a minimum, 
a “trusted” zone and an “untrusted” zone. Most people think of “trusted” and 
“untrusted” as being the LAN and the WAN, but they could also be network seg-
ment A and network segment B, both residing in IP space not accessible from the 
Internet. In an enterprise network, big firewall names include companies like Palo 
Alto, Check Point, Cisco, and Juniper.

* http://www-03.ibm.com/security/cognitive/
† http://www.teradata.com/solutions-and-industries/cyber-security-analytics
‡ https://sqrrl.com/

http://www-03.ibm.com
http://www.teradata.com
https://sqrrl.com
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13.4.1  Firewalls

Procuring an appliance from one of the companies above to act as a firewall in a 
home network is cost-prohibitive for most, but the need to protect devices con-
nected in the home from attack and compromise remains. Thankfully, if a home is 
Internet-connected, Internet service providers provide basic firewall functionality 
when provisioning one of their routers or cable modems. It is at this ISP-provided 
firewall we review our first practical cybersecurity tool, because in the absence of 
any other means, it is useful to understand what firewall capabilities are available.

13.4.1.1  ISP Firewalls

In this example, we’ll review the Actiontec MI424WR-F router provided by Verizon 
and what firewall settings are available. Regardless of what hardware ISPs provide, most 
have similar settings just arranged in a different way. In Figure 13.2, we show Verizon 
router’s main display. When logging in, the dashboard presents a heads-up display of 
sorts to show whether the Internet is detected, what Internet public IP address is pro-
visioned, connected devices in the home, and shortcuts to other configuration areas.

Many people may take this display for granted, but the list of connected devices 
is an important visibility factor and falls under the Identify component of the NIST 
cybersecurity framework core. In this example, the Actiontec device is not provid-
ing any Wi-Fi services, which is why the device connection types are only Ethernet 

Figure 13.2 Verizon router: main display.
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and Coax. Wireless security settings are standard across devices with the Internet 
providing a multitude of examples and recommendations of how the Wi-Fi settings 
should be set, but explanations of the firewall settings are much less common.

A review of the firewall settings shows many of the same basic protection con-
trols present in the Actiontec that are also present in enterprise-class firewalls. These 
controls map the Protect component of the NIST cybersecurity framework. For 
ease of deployment and configuration, ISPs choose an initial operating mode that 
accounts for most home user access to the Internet without causing issues so that 
the ISP technician assigned to the installation can deploy and leave quickly without 
getting stuck in troubleshooting.

Notice that in Figure 13.3, all outbound traffic is accepted. Unlike the home-
based firewall configuration, in a popular enterprise firewall such as Palo Alto, 
the configuration is not pre-staged for rapid deployment and must be built from 
scratch. Defining a policy on the Palo Alto similar to what the Verizon router pro-
vides would look similar to Figure 13.4. Comparing the two figures, many menu 
options reflect the same configuration setting concepts overall but are implemented 
in different ways. For instance, the Access Control and Advanced Filtering options 
on the Verizon router equate to setting Security policy rules in the Palo Alto fire-
wall, whose policy view can be seen in Figure 13.4. Benefits that firewall vendors 
such as Palo Alto and others provide build on top of the core firewall configuration 
elements to include capabilities such as SSL/TLS decryption, URL content filter-
ing, and application signature recognition, to name only a few.

Firewall best practices advise to deny by default, and only permit by exception, 
and to do so for both inbound and outbound policies. However, to block all out-
bound traffic and only permit by exception means each Internet-outbound request 

Figure 13.3 Verizon router, firewall settings.
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must be reviewed to determine if it should be permitted. That approach delays 
service implementation and can be difficult to deploy without a strategic implemen-
tation plan, which is why many home networks and even small- to medium-sized 
businesses have firewall policies allowing all outbound traffic. A sample of rules 
required in the Verizon router firewall policies if choosing to reject all outbound 
traffic unless otherwise defined is depicted in Figure 13.5.

Figure 13.5 Verizon router strict ruleset.

Figure 13.4 Palo Alto firewall, policy view.
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It is worth taking the time to explore the router provided by the ISP to deter-
mine what granularity of control can be implemented in the firewall area, because 
in some cases desired capabilities or features are absent. People who travel often 
may need access to home network resources while on the road, and the most secure 
method for remote access is an encrypted tunnel established using a virtual private 
network (VPN) connection. Typically, ISP-provided routers do not provide VPN 
services on the device itself, but setting up a VPN connection to a home network is 
a common enough use case that there is a myriad of choices available.

13.4.1.2  Home Firewalls

One VPN implementation option is to purchase a router from a different vendor 
such as Asus or Netgear, in which the device purchased would market VPN capa-
bility as a feature. For instance, on the ASUS RT-AC68U setting up a VPN is in 
the advanced settings area and provides VPN server choices between PPTP and 
OpenVPN. The OpenVPN settings view can be seen in Figure 13.6.

Instead of choosing one device over the other, both devices could be used 
to isolate functions as well as provide defense-in-depth. An example of isolating 

Figure 13.6 Asus RT68U OpenVPN settings.
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functions would be to disable the wireless completed on the ISP router, so that the 
Asus router provides Wi-Fi. For defense-in-depth, the Asus router can firewall off 
its Ethernet connection to the ISP router so that if the ISP router becomes compro-
mised, then the Asus is the next layer of defense an attacker would have to over-
come. For even more network boundary security, another firewall can be layered in 
the home network path and instead of purchasing another hardware device, some 
software-based firewalls are available that are also free.

13.4.1.3  Free Software Firewalls

A recent trend in cybersecurity companies that sell products is to provide a free 
offering for home users. In the firewall market two examples are Sophos and 
Comodo and although they both offer software-based firewalls, the “form-factor” 
for each is different. The offering from Sophos is marketed as a unified threat 
management (UTM) firewall and is deployed as a virtual appliance.* Installation 
requires a virtual environment such as a VMware ESX host for applied use, but for 
testing VMware, Player can be used. Sophos distributes the UTM virtual appliance 
in the form of a .iso file, which can be mounted in VMware Player as a live CD from 
which to boot. After booting the image and setting networking information, the 
Sophos UTM virtual machine can be accessed via the network.

For home users and even businesses that want to pay for the licensed version, the 
Sophos UTM is a fully featured product that provides several cybersecurity options. 
Settings displayed in Figure 13.7 depict this instance being used as an HTML5 
SSL-VPN, with VPN rules set to establish a closed VPN tunnel so Internet access 
is routed through the VPN connection, and firewall rules to set boundaries on what 
internal networks connected VPN clients are permitted to access.

The difference between the Sophos UTM and Comodo firewalls is that Comodo 
offers a software installation package for its firewall instead of a full virtual appli-
ance. An easier way to think of them is a network-based firewall (Sophos) compared 
to a system-based firewall (Comodo). Comodo has more than firewall functions 
built into its software package. It also includes a host intrusion prevention (HIPS) 
component, antivirus, sandboxing, and content filtering. An example of the HIPS 
preventing execution of a batch file from a malicious binary is shown in Figure 13.8.

Comodo HIPS also looks for known registry key manipulation and will both 
alert and log instances of malicious registry key manipulation. Alerts provide the 
user a similar screen to the one in Figure 13.8, providing choices of how to treat the 
situation. Once the user confirms the choice, the event is logged. A representative 
set of Comodo HIPS logged events can be seen in Figure 13.9.

*  https://www.sophos.com/en-us/products/free-tools/sophos-utm-home-edition.aspx#

https://www.sophos.com
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Figure 13.7 Sophos UTM management dashboard.

Figure 13.8 Comodo HIPS preventing malware launch of batch script.
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13.4.2  Antivirus

Currently almost dismissed from serious consideration as an element of cybersecu-
rity defense, antivirus software is less and less a standalone piece of software and 
more often built into another software solution as a subcomponent. Perhaps not 
considered by some as crucial a part of defense as it once was, antivirus is still ben-
eficial to assist in preventing script kiddies or other malicious actors using known 
malware payloads. Cybersecurity vendors seem to have recognized to protect indi-
vidual machines requires more than pattern matching, and through the other capa-
bilities layered on top, the new up and coming phrase to describe what antivirus 
protection is enveloped under is “Endpoint Protection.”

Big players in the antivirus tool area include many names already popularized 
such as TrendMicro, Intel Security (McAfee), Kaspersky, Symantec, and Sophos. 
One not often mentioned in that grouping, but definitely worth mentioning as 
another antivirus tool, is MalwareBytes. Each of these companies provides some 
sort of free offering as well as enhanced paid versions for software providing anti-
virus protection.

TrendMicro offers antivirus through the form of their free tool called HouseCall, 
which markets a feature looking for system vulnerabilities as well.* For the malware 
that entrench a foothold in systems using a rootkit, TrendMicro also offers a free 
tool called RootkitBuster to scan for and remove them.† Another free tool provided 
by TrendMicro called HijackThis initiates a registry scan and generates a report 

* http://housecall.trendmicro.com/
† http://free.antivirus.com/us/rootkit-buster/index.html 

Figure 13.9 Comodo HIPS logged events.

http://housecall.trendmicro.com
http://free.antivirus.com
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where the findings include files commonly manipulated by both good software 
and malware. It may not be as popular of a tool because it requires manual analysis 
of the findings to determine if the item found should be ignored and marked as 
normal behavior or if the item should be deleted. A practical approach to using this 
tool would be to run in as soon as a system is purchased so all known software can 
be flagged as “good” so that baseline will be available the next time HijackThis is 
used.

Intel Security (McAfee) provides their Security Scan Plus tool free and it is often 
seen bundled with other installation packages such as Adobe Reader and Flash as 
an extra option.* Most of the other free tools offered by McAfee are either built 
for single-purpose use or they are legacy and more oriented toward older operat-
ing systems.† A similar tool to Security Scan Plus from Intel Security is offered by 
Kaspersky under the name Security Scan. When comparing the two, it seems the 
name provides an exact idea of what these tools do, which is scan. At the end of 
the scan, a report is presented with either a system’s clean bill of health or malware 
findings with a link to purchase the full software so that malware can actually be 
removed. Kaspersky does provide a Virus Removal tool, but the description is vague. 
It may be similar to some of the single-purpose tools Intel Security provides. Like 
Intel Security, Kaspersky offers other free tools which appear to be supplemental 
to overall cybersecurity, but it appears these tools are relevant to systems currently 
in use.‡

Symantec provides free antivirus tools in the form of specific malware removal 
and crimeware removal. Malware removal offered is targeted toward specific 
instances of malware, rather than scanning an entire system.§

Sophos offers antivirus protection in the form of a product called Sophos Home, 
emulating a trend in Managed Security Services where a cloud-based dashboard 
presents a management interface through which administrators remotely moni-
tor computers for observed threats and apply security policies. Security functions 
capable of being leveraged through Sophos Home include antivirus as well as con-
tent filtering, and can be deployed for free in up to 10 personal devices. Currently, 
only Windows and Mac are supported. Sophos Home dashboard view is shown in 
Figure 13.10.

Antivirus scans can be initiated remotely as well as on the devices itself by the 
user. From the dashboard, policies for web content filtering can be set to provide or 
block access or when chosen, provide a warning page to advertise a caution message 
to the user before they can proceed. Without making a more granular selection, 
by default if content filtering is selected it will prevent devices with the Sophos 
Home agent installed from accessing sites known by Sophos to contain malware. 

* http://home.mcafee.com/downloads/free-virus-scan
† http://www.mcafee.com/us/downloads/free-tools/index.aspx
‡ http://free.kaspersky.com/us
§ https://www.symantec.com/security_response/removaltools.jsp

http://home.mcafee.com
http://www.mcafee.com
http://free.kaspersky.com
https://www.symantec.com
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The Sophos Home dashboard must be used to initially deploy the agent, but then 
deployed users can initiate scans and get alerted locally on the installed device. This 
local view is shown in Figure 13.11.

The added aspects to antivirus monitoring include the free remote manage-
ment for multiple devices and content filtering. It should be mentioned here that 

Figure 13.10 Sophos home, dashboard view.

Figure 13.11 Sophos home, local device view.
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Comodo also has free remote management for multiple devices, but the service 
offerings are slightly different with one example being remote patch management. 
Comparing these additional free services beyond antivirus will be left to the reader 
to exercise.

13.4.3  Content Filtering

Jumping right into web content filtering, first it is worth discussing the two strate-
gies applied through free content filtering products: DNS and proxying. Controls 
based on DNS requests are leveraged by setting DNS server settings on devices 
or by provisioning the DNS server through DHCP settings so that each device 
receives the DNS settings automatically as they connect to the network. When 
these devices receive provisioning pointing DNS queries to servers providing pro-
tection, any time a DNS query is received asking for a site belonging to a prohibited 
category, the DNS response provides an IP address directing the device to initiate 
a request staged to provide the device a path to a page instructing the user that the 
request is blocked due to content filtering. A benefit to DNS-based content filtering 
is that by setting the DNS content filter servers on the DHCP server, all machines 
receiving DNS settings can be centrally provisioned. Controls based on proxying 
are typically device-isolated, meaning that the software applying the content filter-
ing control is installed on each device. Instead of using DNS to review the intended 
destination, the proxy software sees the request before the device transmits any 
outbound data and can query its content filter database and/or cloud component 
to receive a category response and apply policy. An advantage to this approach is 
that the full request can be inspected, rather than just the DNS hostname queries.

To illustrate the two approaches, an example could be an ecommerce website 
called “shopthissiteforthingstobuy.com” recently compromised by a bad actor and 
now presents a malware payload to unsuspecting website visitors. The malware pay-
load URL is accessed during the loading of the webpage footer content as an image 
link from the ecommerce domain referenced in the CSS of each page being loaded. 
If a DNS-based content filtering solution believes the website hostname is catego-
rized correctly, then the possibility of payload delivery is high. Once the DNS-
based content filtering solution becomes aware of the malware from the ecommerce 
site, then the entire site would be blocked. A DNS-based content-filter workflow is 
depicted in Figure 13.12.

From the perspective of the proxy content filtering solution, the payload is only 
delivered via a specific URL and if each URL is inspected individually, only the 
URL called during the loading of the footer would be blocked while the rest of the 
page is displayed, which is shown in Figure 13.13.

Free solutions for each approach are available, with OpenDNS* (recently 
acquired by Cisco) providing DNS-based content filtering and Blue Coat providing 

* https://www.opendns.com/

https://www.opendns.com
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Scenario 1: DNS lookup
for known good site

Good site: 1.2.3.4
Bad site: 5.6.7.8
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HTTP 1.x
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Malware

DNS query:
mysite.com

DNS response:
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Figure 13.12 DNS-based content filter workflow.
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Figure 13.13 Proxy agent content filtering.
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proxy content filtering through their K9 Web Protection* software. The free con-
tent filter solution comparison is summarized in Table 13.3.

13.5  Network Monitoring Tools
In the previous section, discussion focused on boundary tools typically seen as part 
of an enterprise boundary protection solution suite. Supplementing the protection 
and enforcement aspects of cybersecurity are the tools used to inspect network traf-
fic. Rules applied in protection and enforcement tools provide boundaries; threat 
actors are typically aware of basic boundaries applied by the tools focused on those 
areas and so will attempt to mask activity inside what appears to be authorized net-
work traffic. Cybersecurity professionals are aware that threat actors know this as 
well, and have applied network monitoring tools to inspect traffic as it ingresses and 
egresses the network and/or device to provide on-demand granular inspection. Free 
tools providing such network inspection capability include Wireshark, NetWitness, 
Netminer, and TCPView.

Ample information is already present through other resources discussing 
Wireshark,† as it is by far the most popular free network traffic analysis tool. To pro-
vide a sample though, many cybersecurity certifications and classes discuss port scans, 
but often not many have actually seen what a port scan looks like when viewed 
through a packet capture.

Figure 13.14 contains the captured traffic of a port scan. Packets 934 and 935 
reveal an open port (1099), whereas all others in the view show the “victim” machine 
being scanned sending reset [RST] packets to the “attacker” machine. In many scan-
ning tools, Packets 934 and 934 simply appear as “Port 1099: Open,” and this packet 
capture reveals the mechanism by which the scanning tool determined the port was 
indeed available. From a different perspective, this also reveals how noisy scanning 
tools can be since there is no delay from the time the “attacker” machine receives 
the RST packet to the time the next SYN packet is sent looking for the next port 
according to the scanning logic used.

* http://www1.k9webprotection.com/
† https://www.wireshark.org/

Table 13.3 Free Content Filter Solution Comparison

Solution Central Control Granular Control Vendor

DNS Yes No OpenDNS.com

Proxy No Yes Blue Coat

http://www1.k9webprotection.com
https://www.wireshark.org
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NetWitness* operates differently than Wireshark in that it seems more oriented 
toward looking at a packet capture analysis instance in terms of case management. 
To begin analysis packet captures have to be imported into collections, after which 
the capture is parsed through to define easy investigative starting points from which 
analysts can drill down. The NetWitness view of the same packet capture depicted 
in Figure 13.14 is shown in Figure 13.15.

* https://register.netwitness.com/register.php

Figure 13.14 Wireshark port scan display.

Figure 13.15 NetWitness analyst initial view.

https://register.netwitness.com
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If the same attacker IP address is chosen from the packet capture as the starting 
point, the view changes (see Figure 13.16 for this view). Notice that certain infor-
mation is parsed out immediately such as observed actions (login, get), observed 
user accounts (badmin, anonymous, vxu), and observed file extensions (.zip). While 
this presents interesting information parsed out in readily clickable filters, the port 
scan isn’t visible in the same way. Only by selecting the source or destination could 
I then look at what TCP ports were used, and once sorted by session, “Other” pro-
vided 640 entries.

While most of those entries only displayed packet count indicators of one 
packet, port 21 showed 21 packets. Once a path is drilled down to its most interest-
ing “leaf” node, clicking on the number of packets brings up a session view wherein 
if the service is recognized then only the plaintext translation of bytes to ASCII is 
represented in a request/response breakdown. For unrecognized traffic, the raw bytes 
are displayed for review in the same request/response breakdown. Between the two, 
it seems that Wireshark is best for a “from the ground up” view, while NetWitness 
provides a “top down” view.

Figure 13.16 NetWitness port scan view.
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A tool that provides another viewpoint altogether is NetworkMiner,* which 
is similar in one aspect to NetWitness, attempts to save network analysts time 
by extracting information from the packet capture in easy-to-navigate menus. 
Sampling the same packet capture, the port scan is more easily discernable once 
the “attacker” IP address information is expanded. This port scan evidence can be 
observed in Figure 13.17.

Looking at the parsed results, NetworkMiner displays the “attacker” machine 
using the same port to send multiple connection attempts to the “victim” machine 
on various ports. Clicking through the tabs at the top displays automatically parsed 
information related to the topic chosen, including: files, images, messages, cre-
dentials, sessions, DNS, command parameters, and anomalies. Keywords can be 
prepopulated in hex format for NetworkMiner to have as filters when the packet 
capture is first loaded.

Up to this point, these network analysis tools are all system-independent in the 
sense that they can review network traffic captured in a packet capture format from 
any network segment from any organization. TCPView is different from the rest 
in that it is used on Windows systems to view current network connection states 
(see Figure 13.18) including the process spawning the connection. This free tool 
can be a great supplement to the network traffic analysis tools above if in the net-
work analysis workflow a Windows system is identified to have generated suspicious 
network traffic. Instead of immediately removing the network connection from 
that system and assuming it can be quarantined into a forensic investigative LAN 

* http://www.netresec.com/?page=NetworkMiner

Figure 13.17 NetworkMiner 2.0 port scan evidence.

http://www.netresec.com
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segment, then TCPView could be loaded to observe what processes are generating 
the suspect outbound traffic.

Using TCPView can validate suspicion if mysterious network traffic is observed 
from an upstream device, as well as audit behavior of newly installed applications. 
Occasionally applications will install using settings that spawn network listeners, 
and unless users are aware those connection vectors exist or if the post-install con-
figuration is altered so the process avoids enabling that functionality, the machine 
can have those ports open indefinitely.

13.6  Memory Protection Tools
In the world of Windows, Microsoft’s free Enhanced Mitigation Experience Toolkit 
(EMET)* is one of the best defenses applied to Windows memory protection avail-
able. When installed, the EMET administrator must choose which applications 
will receive memory protection as well as what types of protection. Almost every 
aspect of deploying EMET is a manual process because if not applied carefully and 
correctly it is very possible to break application functionality. In the example in 
Figure 13.19, Firefox is manually configured to be protected by EMET.

In Linux, a popular free memory protection tool is grsecurity.† However, to use 
grsecurity requires installing it as a kernel patch, and interested installers should 
follow whatever distro is the selected target to determine how to install a kernel 
patch. Once installed, grsecurity provides many of the memory protection options 
EMET does but reflected toward a Linux system.

* https://technet.microsoft.com/en-us/security/jj653751
† https://grsecurity.net/

Figure 13.18 TCPView displaying current network connection states.

https://technet.microsoft.com
https://grsecurity.net
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13.7  Memory Forensics Tools
In the event a system becomes compromised (or as many would say now, when), 
it may prove useful to analyze a memory image from an infected machine. Three 
of the most popular free tools for this purpose are Volatility, Rekall, and Redline. 
Prior to analysis, a system memory dump must be taken, and a quick search will 
reveal several free tools to do so.

Many cheat sheets are available for Volatility* and several blog posts are avail-
able describing its use, not to mention a 900-page book The Art of Memory Forensics, 
so suffice it to say that it is covered in much more detail elsewhere. For a simple view 
into what it can reveal, Figure 13.20 contains the output of the processes observed 
when the memory dump was taken on a target machine.

Rekall† is another memory forensics analysis tool that uses plugins similar to 
Volatility through which information targeted to a specific goal can be extracted. 
In Figure 13.21, instead of looking at processes via methods that help uncover 
rootkits, this output views processes and parent processes to determine how child 
processes were spawned.

Redline‡ is a Windows-only based tool from Mandiant (Fireeye) that can analyze 
memory dumps as well. Be prepared though, for it is much more time-intensive to gen-
erate analysis output than Volatility or Rekall. Once a memory image is loaded, Redline 

* http://www.volatilityfoundation.org/
† http://www.rekall-forensic.com/
‡ https://www.fireeye.com/services/freeware/redline.html

Figure 13.19 Microsoft enhanced mitigation experience toolkit.

http://www.volatilityfoundation.org
http://www.rekall-forensic.com
https://www.fireeye.com
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will run it through analysis and provide choices from an investigative starting viewpoint 
to guide users into the most likely prominent area to investigate first. A workflow view 
similar to the process tree output provided by Rekall is provided in Figure 13.22.

Each memory analysis tool has its own strengths, and should be exercised by 
the reader to determine useful strengths with respect to each individual’s workflow.

13.8  Password Management
Probably one of the most practical cybersecurity tools is using a password manage-
ment tool. Tools providing password management essentially enable users to store 

Figure 13.20 Volatility output of running processes.

Figure 13.21 Rekall output of process tree plugin.
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all passwords into a single vault, which itself can be encrypted and secured with 
two-factor authentication. Examples in this category include LastPass, DashLane, 
and KeePass. All three provide the capability to be used on various operating 
systems, web browsers, and devices. The biggest benefit in using a password man-
agement tool is the ability to generate secure passwords that are random and 

Figure 13.23 LastPass secure password generator.

Figure 13.22 Redline process tree view.



Security Tools ◾ 307

meet complex password security requirements to ensure password cracking will 
be difficult at best. A view of LastPass secure password generation is provided in 
Figure 13.23.

KeePass can be installed into web browsers similar to LastPass and Dashlane, 
but at first install it provides a view into a password database stored on the local 
system as depicted in Figure 13.24.

To alleviate concern about storing all passwords in a single location, each respec tive 
password management application provides strong protections against unauthorized 
attempts to recover the stored passwords. Enabling two-factor authentication in 
addition to the password vault encryption is the best method of ensuring that even 
if the company were to become compromised, passwords would be unrecoverable 
without the two-factor token. Google has adopted two-factor authentication in 

Figure 13.24 KeePass database view.

Figure 13.25 Google two-factor authentication.



308 ◾ Big Data Analytics in Cybersecurity

many of its services, and a representative view of Google’s two-factor authentication 
can be observed in Figure 13.25.

13.9  Conclusion
These tools only scratch the surface of what’s available, and there are several more 
sections of cybersecurity that, due to content conciseness consideration, had to be 
excluded. These include areas such as best practices analyzers, system monitoring, 
and the myriad of “red team” tools available. The best method to learn tools such 
as those mentioned above is to practice, and fortunately a burgeoning industry 
trend in the past few years is Capture the Flag competitions and establishing legal 
hacking environments, which enable anyone interested to test these tools against 
malicious tools in a safe environment. Or, if preferred, readers can install virtu-
alization software to spin up a few virtual machines to deploy these tools and see 
how they operate when defending under normal conditions as well as when under 
attack. Staying motivated and being willing to learn something new will greatly 
help anyone desiring to become skilled with the various cybersecurity tools avail-
able. An important point to remember is that even when these tools are deployed, 
it is vital to understand as much as possible how to configure them and understand 
their intended purpose. Tools can only automate so much, and it’s up to humans to 
fill in the remaining cybersecurity gap.
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Big data based cybersecurity analytics is a data-centric approach. Its ultimate goal 
is to utilize available technology solutions to make sense of the wealth of relevant 
cyber data and turn it into actionable insights that can be used to improve the cur-
rent practices of network operators and administrators. At its core is data. As in 
other fields, however, obtaining access to and curating data has always been chal-
lenging. This chapter aims at introducing relevant data sources for cybersecurity 
analysis, such as benchmark datasets for cybersecurity evaluation and testing, and 
certain research repositories where real world cybersecurity datasets, tools, mod-
els, and methodologies can be found to support research and development among 
cybersecurity researchers. In addition, some insights are added for the future direc-
tions on data sharing for big data based cybersecurity analysis. 

14.1  Cybersecurity Data Sources
The datasets can be categorized by where they are collected from (e.g., network vs. 
host), which layer they are collected from (e.g., application layer vs. network layer), 
or how they are collected (e.g., network routers vs. system kernel). Instead of rein-
venting a wheel, we would like to follow the categorization presented in [1], and list 
cybersecurity datasets from the Operating System, Network Traffic, and Applications.

14.1.1  Datasets from the Operating System

An operating system (OS) is a system software that manages computer hardware 
and software resources and provides common services for computer programs. All 
computer programs require an operating system to function. OS has both volatile 
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and non-volatile memory. Volatile memory, contrary to non-volatile memory, 
is computer memory that requires power to maintain the stored information; it 
retains its contents while powered on but when the power is interrupted the stored 
data is lost very rapidly or immediately. Examples of volatile memory include 
RAM while examples of non-volatile data include hard drive, CD, USB storage, 
and memory cards. Non-volatile memory is typically used for long-term persistent 
storage. Operating systems store and use many files in the non-volatile memory.

These files are invaluable sources as datasets for network forensics and cyberse-
curity applications.

Configuration files: Configuration files or config files configure the parameters 
and initial settings for some computer programs. They are used for user appli-
cations, server processes, and operating system settings. Some of the impor-
tant configuration files that are of great interest for analysis are as follows.
– File system: File system mounting and unmounting records, modules 

that are currently loaded by the system, and configuration for copy, create 
directory, format, and so on operations.

– System administration: Group and user account management, superuser 
(or root) access privileges, package installation, and password manage-
ment are some examples of system administration.

– Networking: Configuration for the wireless and wired networking inter-
faces, routing tables, gateways and networks that can be accessed by the 
current network(s), distributed file system access, and networking proto-
cols information.

– System commands: System commands are commands that make the 
system work in harmony. Some examples include login, the commands 
that provide interaction between a user and the computer (e.g., bash in 
Linux), and boot commands.

– Daemons: Daemons are programs that run in noninteractive mode, or in 
other words, run in the background. Most of them run as services and are 
mostly related to the networking area. Some examples include FTP and 
Web servers, MySQL server, and timing servers.

– User programs: There are also many “user” programs that are not part of the 
kernel. They include configurations about how the program runs. For exam-
ple, the character set they use, the time-zone, or the UI coloring preferences.

Logs: Log files contain events that are logged by the operating system compo-
nents. These events are often predetermined by the operating system itself. 
System log files may contain information about device changes, device driv-
ers, system changes, events, operations, and more while a data service log 
file records log events for each server request that runs a data service. Some 
examples of OS log files are as follows.
– System events: Each OS maintains several system logs that help admin-

istrators of the system by informing them of important events. The events 
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are written into a log file, which can record a variety of events, including 
system error messages, system startups, and system shutdowns.

– Application and service events: Application and service events include 
operational actions performed by applications and services, such as startup, 
restart, and shutdown, application failures, and major application con-
figuration changes.

– Command history: Command history allows administrators to see a list-
ing of the commands previously run under user and group accounts.

– File system access: File access data records inserts, writes, reads, and 
deletes to the file system. The file system can be networked. The file access 
can be through processes or services.

Application files: Applications files include executables, shell scripts, configura-
tion files, log files, history files, libraries, application policies, user customiza-
tion, and multimedia.

Data files: Data files are the primary source for storing information for appli-
cations. Text files, document processing files, spreadsheets, databases, post-
script and PDFs, and multimedia files are all examples of data files.

Swap files: Operating systems use swap files as a file to provide space for pro-
grams that have been transferred from the processer’s memory. They are gen-
erally temporary files and are deleted once the need is over.

Temporary files: The temporary files that are needed for installation, or can be 
used to recover lost data if the program or computer is abnormally halted.

Volatile datasets: Operating systems use RAM as a form of computer data stor-
age which stores frequently used program instructions to increase the general 
speed of a system. RAM allows data items to be read or written in almost the 
same amount of time irrespective of the physical location of data inside the 
memory. Some important examples of RAM datasets are as follows.
– Network configuration: Networking is a dynamic process. Hence, 

some of the network configuration is determined on the fly and stored 
in the RAM.

– Network connections: With the availability of the wireless connections 
such as 4G, LTE, Wi-Fi, and Bluetooth, and the number of online ser-
vices an operating system makes use of, it is very common to use various 
network interface configurations.

– Running processes: A process is an instance of a computer program that 
is being executed. In addition, a process can have multiple threads, and 
a process can be launched by another process (e.g., by using “fork” in 
Linux). Identifying the running processes is beneficial for identifying 
programs that should be disabled or removed.

– Open files: A program or a service generally opens many files during its 
execution. For example, a document or a spreadsheet is kept open while 
being edited. It is beneficial to keep track of open files, and restrict access 
to certain ones for system stability and security.
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14.1.2  Datasets from Network Traffic

Data from network traffic can be used to detect network-based attack, spread of 
malicious programs, as well as network management. Almost all modern operating 
systems use the TCP/IP communication stack, which is composed of four major 
layers (if the physical layer is also included, then five major layers). The first layer is 
the Application Layer, which sends and receives data for applications such as hyper-
text transfer protocol (HTTP), file transfer protocol (FTP), or simple mail trans-
fer protocol (SNMP). The Transport Layer provides end-to-end or host-to-host 
communication services for applications within a layered architecture of network 
components and protocols. This layer provides services such as connection-oriented 
data stream support, reliability, flow control, and multiplexing. The Network Layer 
is responsible for packet forwarding including routing through intermediate rout-
ers. Internet protocol (IP) is the de facto Network Layer protocol. The fourth layer 
is the Data Link Layer, which transfers data between adjacent network nodes in 
a wide area network (WAN) or between nodes on the same local area network 
(LAN) segment. Ethernet is the most commonly used Data Link Layer.

The following two datasets from these layers are of great interest for cybersecu-
rity analytics:

NetFlow data: By default, traffic flow records in NetFlow can be exported to a 
user-specified monitoring station using UDP packets, if one of the following 
conditions occurs:

 ◾ The transport protocol indicates that the connection is completed (TCP 
FIN); there is a small delay to allow for the completion of the FIN acknowl-
edgment handshaking;

 ◾ Traffic inactivity exceeds 15 seconds;
 ◾ For flows that remain continuously active, flow cache entries expire every 

30 minutes to ensure periodic reporting of active flows.

  Every single UDP datagram contains one flow header and 30 flow records. 
Each flow record is made up of several fields, including source/destination 
IP address, next hop address, input and output interface number, number 
of packets, total bytes, source/destination port, protocol, type of service 
(ToS), source/destination autonomous system (AS) number, and TCP flags 
(Cumulative OR of TCP flags). Note that the NetFlow record represents the 
packets in an aggregated format. Each line does not represent the information 
of a packet. Instead, each line represents the information of all packets in a 
flow (which is defined as a series of packets sent from a source IP address to a 
destination IP address over a period of time).

SNMP data: SNMP is an “Internet-standard protocol for managing devices on 
IP networks.” As a component of the Internet Protocol Suite, SNMP consists 
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of a set of standards for network management, including an application layer 
protocol, a database schema, and a set of data objects. Supported by typi-
cal network devices (e.g., routers, switches, servers, workstations, printers, 
modem racks, etc.), SNMP is widely used in network management systems to 
monitor network-attached devices for conditions that warrant administrative 
attention. SNMP exposes management data in the form of variables on the 
managed systems, which describe the system configuration. These variables 
can then be queried (and sometimes set) by managing applications. Typical 
management data includes operational status information, performance data, 
and other metrics specific to the function of a particular device. SNMP pro-
vides a flexible and practical method to retrieve information about the behav-
ior of a device, without resorting to proprietary vendor software and drivers.

  SNMP is an application layer protocol used to monitor network-attached 
devices. SNMP works as the manager/agent model. The manager and agent 
use a management information base (MIB) and a relatively small set of com-
mands to exchange information. The MIB is organized in a tree structure with 
individual variables, represented as leaves on the branches. A long numeric tag 
or object identifier (OID) is used to distinguish each variable uniquely in the 
MIB and in SNMP messages.

14.1.3  Datasets from the Application Layer

Applications such as browsers, document processing software, e-mail, and com-
puter games as well as services such as web servers and databases, use and create data. 
From an analytics point of view, collecting, examining, and analyzing this applica-
tion data provides a great opportunity. In this section, we study what datasets can 
be collected from the application layer and have potential to further enhance big 
data analytics.

E-mail: E-mail is still widely used to exchange messages. E-mail is an asyn-
chronous form of communication where the sender and recipient do not 
have to be online, as opposed to online messaging. In addition to the con-
tent of the e-mail, which might include attachments such as spreadsheets 
or images, e-mail metadata is a useful source of data and can be mined to 
provide insights into network forensics. The metadata is stored in the message 
header. The sender, and the recipient(s) of the message, which can include 
carbon-copied (CC’ed) or blind-carbon-copied (BCC’ed), are required fields. 
In addition, other metadata such as message identification number, type of 
e-mail client, routing information, and message content type is also available 
in the header.

Web usage: Web usage data contains information about user browsing data and 
metadata, and web server logs. For example, using browser metadata, the 
information about browser types, sites visited, cookies stored by websites, 
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type of operating system or device used for web access, and interactions made 
with the web sites and/or browser can be retrieved. Web server logs contain 
information about the requests, including client IP address, request date/
time, page requested, HTTP code, bytes served, user agent, and referrer.

Instant messaging and chats: Chats and instant messaging provide an environ-
ment for participants of the chat to share text, audio, and video among each 
other. This can be achieved either via peer-to-peer or using a server/client 
architecture. Chat and instant messaging logs contain information about files 
shared between the participants, the audio and video connection metadata, 
and other application specific metadata.

File sharing: File sharing can be achieved via peer-to-peer or client/server 
architecture. Traditionally, file sharing clients, e.g., FTP, use the server by 
initiating connections to it, authenticating to it (if required), reviewing the 
list of available files (if needed), and then transferring files to or from the 
server. Under peer-to-peer file sharing, the file sharing applications typically 
have a central server that gives clients information on where other clients are 
located, but the server does not participate in the transmission of files or file 
information.

14.2  Benchmark Datasets
A common practice in the cybersecurity community is to use benchmark datasets 
for the evaluation of cybersecurity algorithms and systems. For this purpose, cyber-
security researchers and analysts have been seeking methods to effectively curate 
benchmark datasets [2–9]. In the following we review several benchmark datasets 
widely accepted by the community, and their limitations.

14.2.1  DARPA KDD Cup Dataset

14.2.1.1  Website

https://www.ll.mit.edu/ideval/data/

14.2.1.2  Short Description

The DARPA KDD dataset [2,3] is the first stand corpora for evaluation of com-
puter network intrusion detection systems. It was constructed and published by the 
Cyber Systems and Technology Group (formerly the DARPA Intrusion Detection 
Evaluation Group) of MIT Lincoln Laboratory in 1998, 1999, and 2000. This 
dataset was later criticized for issues associated with the artificial injection of nor-
mal and attack traffic data types into the generated datasets. The key problems with 
this approach are that they do not reflect real-world network traffic data, contain 

https://www.ll.mit.edu
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irregularities in the dataset such as the absence of false positives, are outdated for 
effective intrusion detection system (IDS) evaluation of modern networks both in 
terms of attack types and network infrastructure, and lack actual attack data records.

The KDD Cup 1999 dataset was created by processing the tcpdump portions 
of the 1998 DARPA IDS evaluation dataset [10]. The network traffic records were 
generated through simulations performed on a military networking environment 
that consisted of normal background traffic and attack traffic data records and 
where the two types are merged together in a simulated environment. Despite this, 
the dataset has been widely used as a benchmark IDS dataset; however, it has now 
become outdated as its network traffic of attacks and normal users cannot reflect 
real-world traffic patterns in modern computer networks.

14.2.2  CDX 2009 Dataset

14.2.2.1  Website

http://www.usma.edu/crc/sitepages/datasets.aspx

14.2.2.2  Short Description

The CDX 2009 dataset [4,5] was established through Cyber Defense Exercise 
(CDX) 2009 in an attempt to provide users of the dataset with a means to cor-
relate IP addresses found in the PCAP files with the IP addresses to hosts on the 
internal USMA (United States Military Academy) network. It includes 3 days Snort 
Intrusion Detection Logs, 3 days Domain Name Service Logs, and 24 hour Web Server 
Logs. This dataset demonstrates that network warfare competitions can be utilized 
to generate modern-day labeled datasets with real-word attacks and normal uses. 
This data has been used as a benchmark dataset. However, it has also become kind 
of outdated as it could not provide enough volume and diversity of traffic normally 
seen in production networks.

14.2.3  UNB ISCX 2012

14.2.3.1  Website

http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html

14.2.3.2  Short Description

The UNB ISCX 2012 dataset [6,7], generated by the University of New Brunswick, 
represents dynamically generated data which reflects network traffic and intrusions. 
This dataset is collected using a real-time testbed that generates real traffic (e.g., 
HTTP, SMTP, SSH, IMAP, POP3, and FTP) to mimic users’ behavior. It also 

http://www.usma.edu
http://www.unb.ca
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incorporates various multistage attack scenarios for malicious traffic. It is built on 
the concept of profiles that include the details of intrusions. It uses two profiles— 
α and β—during the generation of the datasets. α profiles are constructed using 
the knowledge of specific attacks and β profiles are built using the filtered traffic 
traces. Normal background traffic is provided by executing user-profiles that were 
synthetically generated at random synchronized times creating profile-based user 
behaviors. This dataset represents a good sampling of the most widely used datasets 
by the research community; however, it still lacks realistic Internet background 
noise and the overall normal traffic is not comparable to a real live network.

14.3  Research Repositories and Data Collection Sites
Several research repositories [11–13] have been built to share real world cybersecu-
rity datasets, tools, models, and methodologies, in order to support research and 
development among cybersecurity researchers, technology developers, and policy-
makers in academia, industry, and the government. In addition, there are some 
public repositories or data collection websites [14–16], maintained by an individual 
or a private company or university, which are freely available on the Internet. Those 
websites provide rich data sources for cybersecurity researchers. We realize it is 
impossible to list all the available data repositories and data collection sites. In the 
following we only list some examples, and suggest that readers visit various sites to 
find relevant data fitting their needs.

14.3.1  IMPACT (The Information Marketplace for 
Policy and Analysis of Cyber-Risk & Trust)

14.3.1.1  Website

https://www.dhs.gov/csd-impact

14.3.1.2  Short Description

IMPACT has been established and is funded by the U.S. Department of Homeland 
Security (DHS) Science and Technology Directorate (S&T) Cyber Security Divi-
sion (CSD). Its predecessor program is Protected Repository for the Defense of 
Infrastructure Against Cyber Threats (PREDICT). IMPACT provides current 
network operational data to researchers in a secure and controlled manner, that 
respects the security, privacy, and legal and economic concerns of Internet users 
and network operators. Three key capabilities offered by IMPACT are

 1. A Web-based portal that catalogs current computer network and operational 
data, and handles data requests.

https://www.dhs.gov
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 2. Secure access to multiple sources of data collected on the Internet. It provides 
standardized policies and procedures to connect researchers with a federation 
of providers and hosts, and a central interface and process to discover and 
access tools to analyze and/or use data from within and outside of IMPACT. 
It provides vetted data source provenance and mediated access entitlement, so 
sensitive data is shared with legitimate researchers.

 3. Facilitates data sharing among IMPACT participants for the purpose of 
developing new models, technologies, and products, thereby increasing cyber 
security capabilities. It provides feedback mechanisms among providers, 
hosts, researchers, and domain experts to improve and optimize data, tools, 
analytics, and collective knowledge.

IMPACT continually adds new data that is responsive to cyber risk manage-
ment (e.g., attacks and measurements) to provide the R&D community with timely, 
high-value information to enhance research innovation and quality.

14.3.1.3  Example Datasets

 ◾ Application Layer Security Data: The scan data of the HTTPS ecosystem 
includes regular and continuing scans of the HTTPS Ecosystem from 2012 
and 2013, including parsed and raw X.509 certificates, temporal state of 
scanned hosts, and the raw ZMap output of scans on port 443. The dataset 
contains approximately 43 million unique certificates from 108 million hosts 
collected via 100+ scans. The total size of the dataset is 120 GB.

 ◾ BGP Routing Data: A BGP route hijacking incident dataset includes BGP 
 control-plane data (i.e., route updates) that captures several route hijacking inci-
dents. This dataset can be used for evaluating algorithms that aim to detect route 
miscreant behavior or for evaluating the effects of such activity (e.g., how far 
these updates propagated in the Internet). The total size of the dataset is 170 MB.

 ◾ IDS and Firewall Data: Firewall/IDS logs dataset includes logs submitted 
by over 1700 networks (5 full Class B networks, over 45 full Class C net-
works, and many smaller subnetworks). The logs provide a condensed sum-
mary obtained from various firewall and IDS platforms including BlackIce 
Defender, CISCO PIX Firewalls, ZoneAlarm, Linux IPchains, Portsentry, 
and Snort. The total size of the dataset is 2 GB.

 ◾ Sinkhole Data: Client connection data from a Flashback sinkhole includes the 
IPv4 address of the connecting client (bot), and the number of attempted con-
nections from that IP address in a minute. Number of attempted connections 
was measured by the number of TCP SYN/ACK packets sent to clients as 
Step 2 of the TCP three-way handshake. The total size of the dataset is 225 MB.

 ◾ Synthetically Generated Data: Packet captures from the 2016 National Collegiate 
Cyber Defense Competition (nccdc.org). NCCDC is a multi-day competition 
that specifically focuses on the operational aspects of managing and protecting 
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an existing commercial network infrastructure. Teams of undergraduate and 
graduate students are provided with a fully functional (but insecure) small 
business network they must secure, maintain, and defend against a live Red 
Team. Teams must also respond to business tasks called “injects” throughout 
the competition. The total size of the dataset is 1900 GB.

 ◾ Traffic Flow Data: DNS AMPL DDOS DEC2015 is a real-world distributed 
denial of service (DDoS) attack captured at Merit’s border router in SFPOP. 
It is a reflection and amplification DDoS attack  that is mostly based on the 
DNS protocol. The attack appears within ft-v05.2015-07-22.140000-0400. 
The attack victim should appear under 204.38.0.0/21.

 ◾ Scalable Network Monitoring Program Traffic: Netflow data that captures the 
large NTP DDoS attacks during the early months of 2014. The total size of 
the dataset is 1.5 GB.

14.3.2  CAIDA (The Center for Applied 
Internet Data Analysis)

14.3.2.1  Website

http://www.caida.org/data/

14.3.2.2  Short Description

CAIDA is an analysis and research group based at the University of California, 
San Diego’s Supercomputer Center. CAIDA promotes data sharing, provides a pri-
vacy sensitive data sharing framework that employs technical and policy means to 
balance individual privacy, security, and legal concerns against the needs of gov-
ernment researchers and scientists for access to data in an attempt to address the 
inevitable conflict between data privacy and science. It maintains servers that allow 
researchers to download data via secure login and encrypted transfer protocols.

CAIDA aims to (1) provide collection, curation, analysis, visualization, and 
dissemination of sets of the best available Internet data, (2) provide macroscopic 
insight into the behavior of Internet infrastructure worldwide, (3) improve the 
integrity of the field of Internet science, (4) improve the integrity of operational 
Internet measurement and management, and (5) inform science, technology, and 
communications public policies.

14.3.2.3  Example Datasets

 ◾ DDoS Attack 2007: One hour of anonymized traffic traces from a DDoS 
attack on August 4, 2007. This type of denial-of-service attack attempts to 
block access to the targeted server by consuming computing resources on the 
server and by consuming all of the bandwidth of the network connecting 

http://www.caida.org
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the server to the Internet. The total size of the dataset is 5.3 GB (compressed; 
21 GB uncompressed).

 ◾ The CAIDA UCSD IPv6 DNS Names Dataset: DNS names are useful for 
obtaining additional information about routers and hosts making up the 
Internet topology. For example, DNS names of routers often encode the 
link type (backbone vs. access), link capacity, point of presence (PoP), and 
geographic location. This dataset is collected from CAIDA’s large-scale 
traceroute-based measurements running on the Archipelago (Ark) mea-
surement infrastructure.

 ◾ The Dataset on the Witty Worm: This dataset contains information useful for 
studying the spread of the Witty worm. The dataset is divided into two por-
tions: a publicly available set of files that contains summarized information 
that does not individually identify infected computers, and a restricted-access 
set of files that does contain more sensitive information, including packet 
traces containing complete IP and UDP headers and partial payload received 
from hosts spreading the Witty worm.

 ◾ Internet Traces 2014 Dataset: This dataset contains anonymized passive traf-
fic traces from CAIDA’s equinix-chicago and equinix-sanjose monitors on 
high-speed Internet backbone links. This data is useful for research on the 
characteristics of Internet traffic, including application breakdown, security 
events, topological distribution, and flow volume and duration.

14.3.3  Publicly Available PCAP Repository 
Collections—netresec.com

14.3.3.1  Website

http://www.netresec.com/?page=PcapFiles

14.3.3.2  Short Description

This site, maintained by an independent software vendor, provides a list of public 
packet capture repositories, which are freely available on the Internet. It provides 
the PCAP datasets in the following categories:

 ◾ Cyber Defense Exercises (CDX): This category includes network traffic from 
exercises and competitions, such as CDX and red-team/blue-team competitions.

 ◾ Capture the Flag Competitions (CTF): PCAP files from CTF competitions 
and challenges.

 ◾ Malware Traffic: Captured malware traffic from honeypots, sandboxes, or 
real world intrusions.

 ◾ Network Forensics: Network forensics training, challenges, and contests.
 ◾ SCADA/ICS Network Captures

http://www.netresec.com
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 ◾ Packet Injection Attacks/Man-on-the-Side Attacks
 ◾ Uncategorized PCAP Repositories
 ◾ Single PCAP files

14.3.3.3  Example Datasets

 ◾ Dataset under CDX
– MACCDC—PCAPs from National CyberWatch Mid-Atlantic Collegiate 

Cyber Defense Competition. The MACCDC is a unique experience for 
college and university students to test their cybersecurity knowledge and 
skills in a competitive environment. The MACCDC 2012 data set is 
generated from the MACCDC 2012 competition. It includes everything 
from scanning/recon through exploitation, as well as some c99 shell traf-
fic. Roughly it has 22694356 total connections. http://www.netresec.com 
/?page=MACCDC

– ISTS—PCAPs from The Information Security Talent Search. http://
www.netresec.com/?page=ISTS

– Captures from the “2009 Inter-Service Academy Cyber Defense Com-
petition” served by Information Technology Operations Center (ITOC), 
United States Military Academy. https://www.itoc.usma.edu/research 
/dataset/

 ◾ Dataset under CTF
– DEFCON Capture the Flag Contest traces (from DEF CON 8, 10 and 

11). http://cctf.shmoo.com/
– DEFCON 17 Capture the Flag Contest traces

• http://ddtek.biz/dc17.html
• https://media.defcon.org/torrent/DEF CON 17 CTF.torrent (torrent)
• https://media.defcon.org/dc-17/DEFCON 17 Hacking Conference—

Capture the Flag complete packet capture.rar (direct download)
 ◾ Malware Traffic

– Contagio Malware Dump: Collection of PCAP files categorized as APT, 
Crime or Metasplot.

– Malware analysis blog that shares malware as well as PCAP files. http://
malware-traffic-analysis.net/

– GTISK PANDA Malrec—PCAP files from malware samples run in 
PANDA. http://panda.gtisc.gatech.edu/malrec/

– Stratosphere IPS—PCAP and Argus datasets with malware traffic. 
https://stratosphereips.org/category/dataset.html

– Regin malware PCAP files. http://laredo-13.mit.edu/~brendan/regin 
/pcap/

– Ponmocup malware/trojan (a.k.a. Milicenso) PCAP. https://download 
.netresec.com/pcap/ponmocup/vm-2.pcap

http://www.netresec.com
http://www.netresec.com
http://www.netresec.com
http://www.netresec.com
https://www.itoc.usma.edu
https://www.itoc.usma.edu
http://cctf.shmoo.com
http://ddtek.biz
https://media.defcon.org
https://media.defcon.org
http://malware-traffic-analysis.net
http://malware-traffic-analysis.net
http://panda.gtisc.gatech.edu
https://stratosphereips.org
http://laredo-13.mit.edu
http://laredo-13.mit.edu
https://download.netresec.com
https://download.netresec.com
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 ◾ Network Forensics
– Hands-on Network Forensics—Training PCAP dataset from FIRST 

2015. https://www.first.org/_assets/conf2015/networkforensics_virtualbox 
.zip (VirtualBox VM), 4.4 GB PCAP with malware, client- and server-
side attacks as well as “normal” Internet traffic.

– Forensic Challenge 14—“Weird Python” (The Honeynet Project). http://
honeynet.org/node/1220

 ◾ SCADA/ICS Network Captures
– 4SICS ICS Lab PCAP files—360 MB of PCAP files from the ICS village 

at 4SICS. http://www.netresec.com/?page=PCAP4SICS
– Compilation of ICS PCAP files indexed by protocol (by Jason Smith). 

https://github.com/automayt/ICS-pcap
– DigitalBond S4x15 ICS Village CTF PCAPs. http://www.digitalbond 

.com/s4/s4x15-week/s4x15-ics-village/
 ◾ Packet Injection Attacks/Man-on-the-Side Attacks

– PCAP files from research by Gabi Nakibly et al. [17] http://www .cs 
.technion .ac.il/~gnakibly/TCPInjections/samples.zip

– Packet injection against id1.cn, released by Fox-IT at BroCon 2015. https://
github.com/fox-it/quantuminsert/blob/master/presentations/brocon2015 
/pcaps/id1.cn-inject.pcap

– Packet injection against www.02995.com, doing a redirect to www .hao123 
.com. https://www.netresec.com/files/hao123-com_packet-injection .pcap

14.3.4  Publicly Available Repository 
Collections—SecRepo.com

14.3.4.1  Website

http://www.secrepo.com/

14.3.4.2  Short Description

This site, maintained by Mike Sconzo, provides a list of security related data in 
the categories of network, malware, system, and others. This data is shared under 
a Creative Commons Attribution 4.0 International License. It also provides a col-
lection of links to other third-party data repositories. It is a rich data source for 
cybersecurity researchers. Here we only list some examples.

14.3.4.3  Example Datasets

 ◾ Network
– Bro logs generated from various Threatglass samples, Exploit kits, benign 

traffic, and unlabeled data. 6663 samples available.

https://www.first.org
https://www.first.org
http://honeynet.org
http://honeynet.org
http://www.netresec.com
https://github.com
http://www.digitalbond.com
http://www.digitalbond.com
http://www.cs.technion.ac.il
http://www.cs.technion.ac.il
https://github.com
https://github.com
https://github.com
http://www.02995.com
http://www.hao123.com
http://www.hao123.com
https://www.netresec.com
http://www.secrepo.com
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– Snort logs generated from various Threatglass samples, Exploit kits, 
benign traffic, and unlabeled data. Two datasets, 5 MB and 9 MB.

 ◾ Malware
– Static information about Zeus binaries—Static information (JSON) of 

about 8 k samples from ZeuS Tracker.
– Static information about APT1 binaries—Static information (JSON) of 

APT1 samples from VirusShare.
 ◾ System

– Squid Access Log—Combined from several sources (24 MB compressed, 
~200 MB uncompressed).

– Honeypot data—Data from various honeypots (Amun and Glastopf) 
used for various BSides presentations posted below. Approx 213 k entries, 
JSON format.

 ◾ Other
– Security Data Analysis Labs, Connection Log—(522 MB compressed, 

3 GB uncompressed) ~22 million flow events.
 ◾ Third-Party Data Repository Links

– Network
• Internet-Wide Scan Data Repository (https://scans.io/)—Various types 

of scan data (License Info: Unknown)
• Detecting Malicious URLs (http://sysnet.ucsd.edu/projects/url/)—

An anonymized 120-day subset of our ICML-09 data set (470 MB 
and 234 MB), consisting of about 2.4 million URLs (examples) and 
3.2 million features. (License Info: Unknown)

• OpenDNS public domain lists (https://github.com/opendns/public 
-domain-lists)—A random sample of 10,000 domain names all over 
the globe that are receiving queries, sorted by popularity. (License 
Info: Public Domain)

• Malware URLs (http://malware-traffic-analysis.net/)—Updated daily 
list of domains and URLs associated with malware. (License Info: 
Disclaimer posted in link)

• Information Security Centre of Excellence (ISCX) (http://www.unb 
.ca/research/iscx/dataset/index.html)—Data related to Botnets and 
Android Botnets. (License Info: Unknown)

• Industrial Control System Security (https://github.com/hslatman 
/awesome-industrial-control-system-security)—Data related to SCADA 
Security. (License Info: Apache License 2.0 [site], Data: various)

– Malware
• The Malware Capture Facility Project (http://mcfp.weebly.com/)—

Published long-runs of malware including network information. 
The Malware Capture Facility Project is an effort from the Czech 
Technical University ATG Group for capturing, analyzing, and pub-
lishing real and long-lived malware traffic. (License Info: Unknown)

https://scans.io
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• Project Bluesmote (http://bluesmote.com/)—Syrian Bluecoat Proxy 
Logs. This data was recovered from public FTP servers in Syria over 
a period of six weeks in late 2011. The logs are from Blue Coat 
SG-9000 filtering proxies (aka “deep packet inspection”) installed by 
Syrian ISPs and used to censor and surveil the Internet. The data set 
is ~55 GB in total compressed, and almost 1/2 TB uncompressed. 
(License Info: Public Domain)

• Drebin Dataset (https://www.sec.cs.tu-bs.de/~danarp/drebin/index 
.html)—Android malware. The dataset contains 5,560 applications 
from 179 different malware families. The samples have been collected 
in the period of August 2010 to October 2012. (License Info: Listed 
on site)

– System
• Website Classification (http://data.webarchive.org.uk/opendata/ukwa 

.ds.1/classification/)—(License Info: Public Domain, info on site)
• Public Security Log Sharing Site (http://data.webarchive.org.uk 

/opendata/ukwa.ds.1/classification/)—This site contains various free 
shareable log samples from various systems, security and network 
devices, applications, and so on. The logs are collected from real 
systems; some contain evidence of compromise and other malicious 
activity. (License Info: Public, site source)

• CERT Insider Threat Tools (https://www.cert.org/insider-threat/tools 
/index.cfm)—A collection of synthetic insider threat test datasets, 
including both synthetic background data and data from synthetic 
malicious actors. (License Info: Unknown)

– Threat Feeds
• ISP Abuse Email Feed—Feed showing IOCs from various abuse 

reports (other feeds also on the site) (License Info: Unknown)
• Malware Domain List (https://www.malwaredomainlist.com/mdl 

.php)—Labeled malicious domains and IPs (License Info: Unknown)
• CRDF Threat Center (https://threatcenter.crdf.fr/)—List of new threats 

detected by CRDF Anti Malware. (License Info: Open Usage)
• abuse.ch trackers (https://www.abuse.ch/)—Trackers for ransome-

ware, ZeuS, SSL Blacklist, SpyEye, Palevo, and Feodo (License Info: 
Unknown)

14.4  Future Directions on Data Sharing
As we have discussed thus far, many large and rich cybersecurity datasets are 
generated due to the recent advances in computers, mobile devices, Internet-of-
Things, and computing paradigms. However, access to them and identifying a suit-
able dataset is not an easy task, which clearly hinders cybersecurity progress. In 
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addition, the data is now so overwhelming and multidimensional that no single 
lab/organization can possibly completely analyze it. There is an increasing need 
for sharing the data sources to support the design and develop cybersecurity tools, 
models, and methodology.

Several research initiatives and data sharing repositories have been established, 
aiming to provide an open but standardized way to share the cybersecurity resources 
among cyber security researchers, technology developers, and policymakers in aca-
demia, industry, and the government. There are also many public repositories or 
data collection websites, maintained by an individual or a private company or uni-
versity, which are freely available on the Internet.

It is worth noting that the current practice of data sharing still does not com-
pletely fulfill the increasing need, due to the following reasons:

 ◾ There is no well-established method to protect the data access right. Mostly, the 
current practice is to provide open access to the community, which is not 
practical as data original owners (generator or original collector) with certain 
contexts need to specify the access condition. In particular, the contributing 
lab/researchers should be able to determine when—and to what extent—the 
data is made available, and the conditions under which it can be used (e.g., 
who, what organization, when, etc.).

 ◾ There is no established mechanism to monitor and track the usage of data. There 
is no established mechanism to provide credit for sharing data and, con-
versely, in competitive situations, shared data could even be used unfairly by 
reviewers in confidential paper reviews.

 ◾ There are many data formats and there is no standard for metadata. Annotated 
metadata is often obsolete but is very important.

 ◾ There is no internal connection among these tools. In the cybersecurity commu-
nity, there are different groups of researchers and experts, and various users 
have different focus and expectations for data sharing. Over the last decade, 
the amount of openly available and shared cybersecurity data has increased 
substantially. However, lack of internal connections among these tools limits 
their wide adoptions.

 ◾ There is no easy way to share and access. Some existing systems require many 
lengthy steps (create accounts, fill forms, wait for approval, upload data via 
ftp, sharing services, or shipping a hard drive, etc.) to share data, which may 
significantly reduce their engagement. Some systems provide only limited 
access to certain users, which again significantly impacts its adoption.

 ◾ Lack of sufficient benchmark data and benchmark analytics tools for cybersecurity 
evaluation and testing. It is the common practice in the  cybersecurity com-
munity to use benchmark datasets for the evaluation of cybersecurity algo rithms 
and systems. It was found that the state-of-the-art cybersecurity bench-
mark datasets (e.g., KDD, UNM) are no longer reliable because their datasets 
cannot meet the expectations of current advances in computer technology. 
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Benchmark tools and metrics also help cybersecurity analysts take a quali-
tative approach to the capabilities of their cybersecurity infrastructure and 
methodology. The community is looking for new benchmark data and 
benchmark analytics tools for cybersecurity evaluation and testing.

In short, data sharing is a complex task with many challenges. It needs to be 
done properly. If it is done correctly, everyone involved benefits from the collective 
intelligence. Otherwise, it may mislead participants or create a learning opportu-
nity for our adversaries.

The ultimate goal of cybersecurity analysis is to utilize available technology 
solutions to make sense of the wealth of relevant cyber data, turning it into action-
able insights that can be used to improve the current practices of network operators 
and administrators. In other words, cybersecurity analysis is really dealing with the 
issue of how to effectively extract useful information from cyber data and use that 
information to provide informed decisions to network operators or administrators. 
With more and more shared datasets, a more standardized way of sharing, and 
more advanced data analysis tools, we expect that the current practice of cyberse-
curity analysis can be significantly improved in the near future.
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