
Matt Butcher,
Matt Farina &
Josh Dolitsky

Learning
Helm
Managing Apps on Kubernetes

Matt Butcher, Matt Farina, and Josh Dolitsky

Learning Helm
Managing Apps on Kubernetes

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08365-8

[LSI]

Learning Helm
by Matt Butcher, Matt Farina, and Josh Dolitsky

Copyright © 2021 Matt Butcher, Innovating Tomorrow, and Blood Orange. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Jeff Bleiel
Production Editor: Christopher Faucher
Copyeditor: Tom Sullivan
Proofreader: Kim Cofer

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

January 2021: First Edition

Revision History for the First Edition
2021-01-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492083658 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Helm, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492083658

Table of Contents

Preface. vii

1. Introducing Helm. 1
The Cloud Native Ecosystem 1

Containers and Microservices 2
Schedules and Kubernetes 6

Helm’s Goals 11
From Zero to Kubernetes 12
Package Management 12
Security, Reusability, and Configurability 13

Helm’s Architecture 16
Kubernetes Resources 16
Charts 18
Resources, Installations, and Releases 18
A Brief Note About Helm 2 19

Conclusion 19

2. Using Helm. 21
Installing and Configuring the Helm Client 21

Installing a Prebuilt Binary 21
Guidance on Building from Source 24
Working with Kubernetes Clusters 25
Getting Started with Helm 26

Adding a Chart Repository 26
Searching a Chart Repository 28
Installing a Package 29

Configuration at Installation Time 30
Listing Your Installations 33

iii

Upgrading an Installation 33
Configuration Values and Upgrades 35

Uninstalling an Installation 36
How Helm Stores Release Information 37

Conclusion 38

3. Beyond the Basics with Helm. 39
Templating and Dry Runs 39

The --dry-run Flag 41
The helm template Command 43

Learning About a Release 45
Release Records 45
Listing Releases 48
Find Details of a Release with helm get 49

History and Rollbacks 52
Keeping History and Rolling Back 53

A Deep Dive into Installs and Upgrades 54
The --generate-name and --name-template Flags 54
The --create-namespace Flag 56
Using helm upgrade --install 57
The --wait and --atomic Flags 58
Upgrading with --force and --cleanup-on-fail 59

Conclusion 60

4. Building a Chart. 61
The Chart Creation Command 61
The Chart.yaml File 65
Modifying Templates 67

The Deployment 68
Using the Values File 71

Container Images 71
Exposing Services 73
Resource Limits 74

Packaging the Chart 75
Linting Charts 77
Conclusion 78

5. Developing Templates. 79
The Template Syntax 79

Actions 80
Information Helm Passes to Templates 80
Pipelines 83

iv | Table of Contents

Template Functions 84
Methods 86
Querying Kubernetes Resources In Charts 88
if/else/with 89
Variables 91
Loops 91

Named Templates 93
Structuring Your Templates for Maintainability 97
Debugging Templates 97

Dry Run 98
Getting Installed Manifests 100
Linting Charts 101

Conclusion 101

6. Advanced Chart Features. 103
Chart Dependencies 103

Conditional Flags for Enabling Dependencies 107
Importing Values from Child to Parent Charts 109

Library Charts 110
Schematizing Values Files 113
Hooks 115
Adding Tests to Charts 117

Helm Test 117
Chart Testing Tool 119

Security Considerations 120
Custom Resource Definitions 123
Conclusion 125

7. Chart Repositories. 127
The Repository Index 128

An Example of a Chart Repository Index 128
Generating an Index 130
Adding to an Existing Index 131

Setting Up a Chart Repository 133
A Simple Chart Repository with Python 133
Securing a Chart Repository 134
Real-World Example: Using GitHub Pages 136

Using Chart Repositories 141
Adding a Repository 141
Downloading Charts 142
Listing Repositories 142
Updating Repositories 142

Table of Contents | v

Removing a Repository 143
Experimental OCI Support 143

Enabling OCI Support 144
Running a Local Registry 145
Logging In to a Registry 145
Logging Out of a Registry 146
Storing a Chart in the Cache 146
Listing Charts in the Cache 146
Exporting a Chart from the Cache 147
Pushing a Chart to the Registry 147
Pulling a Chart from the Registry 147
Removing a Chart from the Cache 148

Related Projects 148
ChartMuseum 148
Harbor 149
Chart Releaser 149
S3 Plugin 149
GCS Plugin 149
Git Plugin 149

8. Helm Plugins and Starters. 151
Plugins 151

Installing Third-Party Plugins 152
Custom Subcommands 154
Building a Plugin 155
plugin.yaml 157
Hooks 159
Downloader Plugins 160
Execution Environment 162
Shell Completion 163

Starters 166
Converting a Chart to a Starter 167
Making Starters Available to Helm 167
Using Starters 168

Extending Helm Further 168

A. Chart API Versions. 169

B. Chart Repository API. 179

Index. 183

vi | Table of Contents

Preface

Helm is the package manager for Kubernetes, the popular open source container
management platform.

Package managers make platforms more accessible to those who use them. In order
to use a platform like Kubernetes, you need to run software on it, and much of that
software will be off-the-shelf or shared. Package managers like Helm enable you to
install and start using the software quickly without needing to figure out how to make
it run or run well on the platform, because it has already been packaged up in an
easy-to-use manner.

If you have software you want to share with others, package managers make it easy to
do. Platforms are more useful when there is a wide variety of software to run on
them; open source projects and companies both like to make their software easy to
install on the platforms it runs on, and Helm makes this possible for Kubernetes.

Package managers aren’t just for sharing and consuming others’ software, however.
They are often an integral part of other systems, such as DevOps tooling, and they are
used as a building block.

Virtually every modern platform has a package manager. Operating systems, pro‐
gramming languages, and cloud platforms all have package managers of some form.

In this book you will learn about Helm, which provides modern package manage‐
ment for Kubernetes, and the packages, called charts, that you can use with it. You
will learn how to use Helm, how to create packages, and how to share those packages
with other platforms.

Who Should Read This Book
There are a few situations where you will find this book useful.

If you’re new to Kubernetes or want to learn how to install off-the-shelf applications,
this book will help you learn how to do that with Helm. It is much easier and faster to

vii

install applications through Helm than it is to learn how to do so by hand with
Kubernetes.

If you work for a company (or a project) that wants to distribute your applications to
Kubernetes users in an easy-to-consume manner, this book will teach you how to do
that with Helm. Being able to quickly install your application makes getting started
easier, and Helm can help you with that.

This book is also for DevOps professionals who want to learn to use Kubernetes
package management as part of their DevOps toolchains. Helm provides powerful
and advanced features that can be used as building blocks for other automation.
These have been used to deploy large and complex applications onto Kubernetes, and
this book will teach you how to leverage those features.

Why We Wrote This Book
We, the authors, are maintainers of Helm, so we set out to write a book to help those
who have questions about it. We didn’t just want to supply the technical details that
are often found in the documentation; we wanted to provide context and insight into
what Helm does and why.

Navigating This Book
The first three chapters introduce you to Helm and show you how to use the Helm
client. This begins in Chapter 1 with an overview of where Helm sits within the cloud
native ecosystem along with an overview of its architecture. Chapters 2 and 3 address
using the Helm client, beginning with installing Helm and progressing to advanced
usage.

Chapters 4 through 6 cover creating packages for Helm. This begins with how to cre‐
ate a package (Chapter 4), moves into learning the template syntax (Chapter 5), and
finishes with advanced features (Chapter 6). If you want to create packages for Helm,
these chapters are for you.

Sharing packages, including their individual release versions, is covered in Chapter 7.
Sharing is important if you are distributing software to others or sharing it between
systems while using DevOps processes.

Helm can be extended, which is covered in Chapter 8. There are opportunities to cus‐
tomize Helm without needing to fork or contribute functionality to Helm.

Two appendixes are provided with reference material. Appendix A provides an over‐
view of differences between current and legacy packages, while Appendix B covers
the repository API used for sharing packages.

viii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/masterminds/learning-helm.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

Preface | ix

https://github.com/masterminds/learning-helm
mailto:bookquestions@oreilly.com

need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Helm by Matt
Butcher, Matt Farina, and Josh Dolitsky (O’Reilly). Copyright 2021 Matt Butcher,
Innovating Tomorrow, and Blood Orange, 978-1-492-08365-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-helm.

x | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/learning-helm

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
This book has benefited from the attention of our official technical reviewers: Taylor
Thomas, Jonathan Johnson, and Michael Hausenblas.

We would like to express our appreciation for everyone at O’Reilly who helped bring
this project together. This is especially true of John Devins and Jeff Bleiel. The process
of writing the book was delightful.

The Helm ecosystem was created by a legion of contributors from all around the
globe. Individuals, nongovernmental organizations, and corporations have cooper‐
ated to build a technology that meets a broad array of needs. From building charts to
contributing fixes to helping others learn Helm, individuals have devoted time and
energy to improving the community and code for all. We deeply appreciate their
work.

Most of all, we want to thank our wives and children for their patience and love
throughout the process.

Preface | xi

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1

Introducing Helm

Helm is the package manager for Kubernetes. That is the way the Helm developers
have described Helm since the very first commits to the Git repository. And that sen‐
tence is the topic of this chapter.

In this chapter, we will start with a conceptual look at the cloud native ecosystem, in
which Kubernetes is a key technology. We will take a fresh look at what Kubernetes
has to offer to set the stage for describing Helm.

Next, we will look at the problems Helm sets out to solve. In this section, we will look
at the concept of package management and why we have modeled Helm this way. We
will also visit some of the unique facets of installing packages into a cluster manage‐
ment tool like Kubernetes.

Finally, we will finish the chapter with a high-level look at Helm’s architecture, focus‐
ing on the concepts of charts, templates, and releases. By the end of the chapter, you
will understand how Helm fits into the broader ecosystem of tools, and you will be
familiar with the terminology and concepts we will be using throughout this book.

The Cloud Native Ecosystem
The emergence of cloud technologies has clearly changed the way the industry looks
at hardware, system management, physical networking, and so on. Virtual machines
replaced physical servers, storage services displaced talk of hard drives, and automa‐
tion tools rose in prominence. This was perhaps an early change in the way the indus‐
try conceptualized the cloud. But as the strengths and weaknesses of this new
approach became clearer, the practices of designing applications and services also
began to shift.

1

Developers and operators began to question the practice of building large single-
binary applications that executed on beefy hardware. They recognized the difficulty
of sharing data across different applications while retaining data integrity. Distributed
locking, storage, and caching became mainstream problems instead of points of aca‐
demic interest. Large software packages were broken down into smaller discrete exe‐
cutables. And, as Kubernetes founder Brendan Burns often puts it, “distributed
computing went from an advanced topic to Computer Science 101.”

The term cloud native captures this cognitive shift in what one might call our architec‐
tural view of the cloud. When we design our systems around the capabilities and con‐
straints of the cloud, we are designing cloud native systems.

Containers and Microservices
At the very heart of cloud native computing is this philosophical perspective that
smaller discrete standalone services are preferable to large monolithic services that do
everything. Instead of writing a single large application that handles everything from
generating the user interface to processing task queues to interacting with databases
and caches, the cloud native approach is to write a series of smaller services, each rel‐
atively special purpose, and then join these services together to serve a higher-level
purpose. In such a model, one service might be the sole user of a relational database.
Services that wish to access the data will contact that service over (typically) a repre‐
sentational state transfer (REST) API. And, using JavaScript Object Notation (JSON)
over HTTP, these other services will query and update data.

This breakdown allows developers to hide the low-level implementation and instead
offer a set of features specific to the business logic of the broader application.

Microservices
Where once an application consisted of a single executable that did all of the work,
cloud native applications are distributed applications. While separate programs each
take responsibility for one or two discrete tasks, together these programs all form a
single logical application.

With all this theory, a simple example may better explain how this works. Imagine an
ecommerce website. We can think of several tasks that jointly comprise this sort of
website. There is a product catalog, user accounts and shopping carts, a payment pro‐
cessor that handles the security-sensitive process of monetary transactions, and a
frontend through which customers view items and select their purchases. There is
also an administrative interface where the store owners manage inventory and fulfill
orders.

2 | Chapter 1: Introducing Helm

Historically, applications like this were once built as one single program. The code
responsible for each of these units of work was all compiled together into one large
executable, which was then often run on a single large piece of hardware.

The cloud native approach to such an application, though, is to break this ecommerce
application into multiple pieces. One handles payment transactions. Another tracks
the product catalog. Yet another provides the administrative, and so on. These serv‐
ices then communicate with each other over the network using well-defined REST
APIs.

Taken to an extreme, an application is broken down into its smallest constituent
parts, and each part is a program. This is the microservice architecture. Standing at the
opposite end of the spectrum of a monolithic application, a microservice is responsi‐
ble for handling only one small part of the overall application’s processing.

The microservice concept has had an outsized influence on the evolution of cloud
native computing. And nowhere is this more evident than in the emergence of con‐
tainer computing.

Containers
It is common to compare and contrast a container and a virtual machine. A virtual
machine runs an entire operating system in an isolated environment on a host
machine. A container, in contrast, has its own filesystem, but is executed in the same
operating system kernel as the host.

But there is a second way of conceptualizing the container—one that may prove more
beneficial for the present discussion. As its name suggests, a container provides a use‐
ful way of packaging up the runtime environment for a single program so that the
executable is guaranteed to have all of its dependencies satisfied when it is moved
from one host to another.

This is a more philosophical approach, perhaps, because it imposes some non-
technical restrictions on a container. For example, one could package a dozen differ‐
ent programs in a single container and execute them all at the same time. But
containers, at least as they were designed by Docker, were intended as a vehicle for
one top-level program.

When we talk about programs here, we’re really thinking at a
higher level of abstraction than “a binary.” Most Docker containers
have at least a few executables that are there merely to assist the
main program. But these executables are auxiliary to the primary
function of the container. For example, a web server may require a
few other local utilities for starting up or performing low-level
tasks (Apache, for example, has tools for modules), but it is the web
server itself that is the primary program.

The Cloud Native Ecosystem | 3

Containers and microservices are, by design, a perfect match. Small discrete pro‐
grams can be packaged, along with all their dependencies, into svelte containers. And
those containers can be moved around from host to host. When executing a con‐
tainer, the host need not have all the tools required to execute the program because all
of those tools are packaged within the container. The host merely must have the abil‐
ity to run containers.

For example, if a program is built in Python 3, the host does not need to install
Python, configure it, and then install all the libraries that the program requires. All of
that is packaged in the container. When the host executes the container, the correct
version of Python 3 and each required library is already stored in the container.

Taking this one step further, a host can freely execute containers with competing
requirements. A containerized Python 2 program can run in the same host as a con‐
tainerized Python 3 requirement, and the host’s administrators need not do any spe‐
cial work to configure these competing requirements!

These examples illustrate one of the features of the cloud native ecosystem: adminis‐
trators, operators, and site reliability engineers (SREs) are no longer in the business of
managing program dependencies. Instead, they are free to focus on a higher level of
resource allocation. Rather than fretting over which versions of Python, Ruby, and
Node are running on different servers, operators can focus on whether network, stor‐
age, and CPU resources are correctly allocated for these containerized workloads.

Running a program in complete isolation is sometimes useful. But more often, we
want to expose some aspects of this container to the outside world. We want to give it
access to storage. We want to allow it to answer network connections. And we want
to inject tidbits of configuration into the container based on our present needs. All of
these tasks (and more still) are provided by the container runtime. When a container
declares that it has a service that is internally listening on port 8080, the container
runtime may grant it access on the host port 8000. Thus, when the host gets a net‐
work request on port 8000, the container sees this as a request on its port 8080. Like‐
wise, a host can mount a filesystem into the container, or set specific environment
variables inside of the container. In this way, a container can participate in the
broader environment around it—including not just other containers on that host, but
remote services on the local network or even the internet.

Container images and registries
Container technology is a sophisticated and fascinating space in its own right. But for
our purposes, we only need to understand a few more things about how containers
work before be can proceed to the next layer of the cloud native stack.

As we discussed in the previous section, a container is a program together with its
dependencies and environment. This whole thing can be packaged together into a
portable representation called a container image (often just referred to as an image).

4 | Chapter 1: Introducing Helm

Images are not packaged into one large binary; instead, they are packaged into dis‐
crete layers, each of which has its own unique identifier. When images are moved
around, they are moved as a collection of layers, which provides a huge advantage. If
one host has an image with five layers and another host needs the same image, it only
needs to fetch the layers that it doesn’t already have. So if it has two of the five layers
already, it only needs to fetch three layers to rebuild the entire container.

There is a crucial piece of technology that provides the ability to move container
images around. An image registry is a specialized piece of storage technology that
houses containers, making them available for hosts. A host can push a container
image to a registry, which transfers the layers to the registry. And then another host
can pull the image from the registry to the host’s environment, after which the host
can execute the container.

The registry manages the layers. When one host requests an image, the registry lets
the host know which layers compose that image. The host can then determine which
layers (if any) are missing and subsequently download just those layers from the
registry.

A registry uses up to three pieces of information to identify a particular image:

Name
An image name can range from simple to complex, depending on the registry
that stores the image: nginx, servers/nginx, or example.com/servers/nginx.

Tag
The tag typically refers to the version of the software installed (v1.2.3), though
tags are really just arbitrary strings. The tags latest and stable are often used to
indicate “the most recent version” and “the most recent production-ready ver‐
sion,” respectively.

Digest
Sometimes it is important to pull a very specific version of an image. Since tags
are mutable, there is no guarantee that at any given time a tag refers to exactly a
specific version of the software. So registries support fetching images by digest,
which is a SHA-256 or SHA-512 digest of the image’s layer information.

Throughout this book, we will see images referenced using the three preceding pieces
of information. The canonical format for combining these is name:tag@digest,
where only name is required. Thus, example.com/servers/nginx:latest says “give
me the tag latest for the image named example.com/servers/nginx.” And

example.com/my/app@sha256:
a428de44a9059feee59237a5881c2d2cffa93757d99026156e4ea544577ab7f3

says “give me example.com/my/app with the exact digest given here.”

The Cloud Native Ecosystem | 5

While there is plenty more to learn about images and containers, we have enough
knowledge now to move on to the next important topic: schedulers. And in that sec‐
tion, we’ll discover Kubernetes.

Schedules and Kubernetes
In the previous section we saw how containers encapsulate individual programs and
their required environment. Containers can be executed locally on workstations or
remotely on servers.

As developers began packaging their applications into containers and operators
began using containers as an artifact for deployment, a new set of questions emerged.
How do we best execute lots of containers? How do we best facilitate a microservice
architecture where lots of containers need to work together? How do we judiciously
share access to things like network attached storage, load balancers, and gateways?
How do we manage injecting configuration information into lots of containers? And
perhaps most importantly, how do we manage resources like memory, CPU, network
bandwidth, and storage space?

Moving even one level beyond, people began asking (based on their experiences with
virtual machines) how one might manage distributing containers across multiple
hosts, spreading the load equitably while still judiciously using resources? Or, more
simply, how do we run the fewest possible hosts while running as many containers as
we need?

In 2015, the time was right: Docker containers were making inroads into the enter‐
prise. And there was a clear need for a tool that could manage container scheduling
and resource management across hosts. Multiple technologies landed on the scene:
Mesos introduced Marathon; Docker created Swarm; Hashicorp released Nomad; and
Google created an open source sibling to its internal Borg platform, and named this
technology Kubernetes (the Greek word for a ship’s captain).

All of these projects were providing an implementation of a clustered container man‐
agement system that could schedule containers and wire them up for hosting sophis‐
ticated microservice-like distributed applications.

Each of these schedulers had strengths and weaknesses. But Kubernetes introduced
two concepts that set it apart from the crowd: declarative infrastructure and the recon‐
ciliation loop.

Declarative infrastructure
Consider the case of deploying a container. One might approach the process of
deploying a container like this: I create the container. I open a port for it to listen on,
and then I attach some storage at this particular place on the filesystem. Then I wait

6 | Chapter 1: Introducing Helm

for everything to be initialized. Then I test it to see if the container is ready. Then I
mark it as available.

In this approach, we are thinking procedurally by focusing on the process of setting
up a container. But Kubernetes’ design is that we think declaratively. We tell the
scheduler (Kubernetes) what our desired state is, and Kubernetes takes care of con‐
verting that declarative statement into its own internal procedures.

Installing a container on Kubernetes, then, is more a matter of saying, “I want this
container running on this port with this amount of CPU and some storage mounted
at this location on the filesystem.” Kubernetes works behind the scenes to wire every‐
thing up according to our declaration of what we want.

The reconciliation loop
How does Kubernetes work behind the scenes to do all of this? When we viewed
things procedurally, there was a certain order of operations there. How does Kuber‐
netes know the order? This is where the idea of the reconciliation loop comes into
play.

In a reconciliation loop, the scheduler says “here is the user’s desired state. Here is the
current state. They are not the same, so I will take steps to reconcile them.” The user
wants storage for the container. Currently there is no storage attached. So Kubernetes
creates a unit of storage and attaches it to the container. The container needs a public
network address. None exists. So a new address is attached to the container. Different
subsystems in Kubernetes work to fulfill their individual part of the user’s overall dec‐
laration of desired state.

Eventually, Kubernetes will either succeed in creating the user’s desired environment
or will arrive at the conclusion that it cannot realize the user’s desires. Meanwhile, the
user takes a passive role in observing the Kubernetes cluster and waiting for it to ach‐
ieve success or mark the installation as failed.

From containers to pods, services, deployments, etc.
While concise, the preceding example is a little misleading. Kubernetes doesn’t neces‐
sarily treat the container as the unit of work. Instead, Kubernetes introduces a higher-
level abstraction called a pod. A pod is an abstract envelope that describes a discrete
unit of work. A pod describes not just a container, but one or more containers (as
well as their configuration and requirements) that together perform one unit of work:

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
spec:
 containers:

The Cloud Native Ecosystem | 7

 - image: "nginx:latest"
 name: example-nginx

The first two lines define the Kubernetes kind (v1 Pod).

A pod can have one or more containers.

Most frequently, a pod only has one container. But sometimes they have containers
that do some preconfiguration for the main container, exiting before the main con‐
tainer comes online. These are called init containers. Other times, there are containers
that run alongside the main container and provide auxiliary services. These are called
sidecar containers. These are all considered part of the same pod.

In the preceding code, we have written a definition of a Kubernetes
Pod resource. These definitions, when expressed as YAML or JSON,
are referred to as manifests. A manifest can contain one or more
Kubernetes resources (also called objects or resource definitions).
Each resource is associated with one of the Kubernetes types, such
as a Pod or Deployment. In this book, we typically use resource
because the word object is overloaded: YAML defines the word
object to mean a named key/value structure.

A Pod describes what configuration the container or containers need (such as net‐
work ports or filesystem mount points). Configuration information in Kubernetes
may be stored in ConfigMaps or, for sensitive information, Secrets. And the Pod’s defi‐
nition may then relate those ConfigMaps and Secrets to environment variables or
files within each container. As Kubernetes sees those relationships, it will attempt to
attach and configure the configuration data as described in the Pod definition:

apiVersion: v1
kind: ConfigMap
metadata:
 name: configuration-data
data:
 backgroundColor: blue
 title: Learning Helm

In this case, we have declared a v1 ConfigMap object.

Inside of data, we declare some arbitrary name/value pairs.

A Secret is structurally similar to a ConfigMap, except that the values in the data
section must be Base64 encoded.

Pods are linked to configuration objects (like ConfigMap or Secret) using volumes. In
this example, we take the previous Pod example and attach the Secret above:

8 | Chapter 1: Introducing Helm

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
spec:
 volumes:
 - name: my-configuration
 configMap:
 name: configuration-data
 containers:
 - image: "nginx:latest"
 name: example-nginx
 env:
 - name: BACKGROUND_COLOR
 valueFrom:
 configMapKeyRef:
 name: configuration-data
 key: backgroundColor

The volumes section tells Kubernetes which storage sources this pod needs.

The name configuration-data is the name of our ConfigMap we created in the
previous example.

The env section injects environment variables into the container.

The environment variable will be named BACKGROUND_COLOR inside of the
container.

This is the name of the ConfigMap it will use. This map must be in volumes if we
want to use it as a filesystem volume.

This is the name of the key inside the data section of the ConfigMap.

A pod is the “primitive” description of a runnable unit of work, with containers as
part of that pod. But Kubernetes introduces higher-order concepts.

Consider a web application. We might not want to run just one instance of this web
application. If we ran just one, and it failed, our site would go down. And if we
wanted to upgrade it, we would have to figure out how to do so without taking down
the whole site. Thus, Kubernetes introduced the concept of a Deployment. A Deploy
ment describes an application as a collection of identical pods. The Deployment is
composed of some top-level configuration data as well as a template for how to con‐
struct a replica pod.

With a Deployment, we can tell Kubernetes to create our app with a single pod. Then
we can scale it up to five pods. And back down to three. We can attach a Horizontal‐

The Cloud Native Ecosystem | 9

PodAutoscaler (another Kubernetes type) and configure that to scale our pod based
on resource usage. And when we upgrade the application, the Deployment can
employ various strategies for incrementally upgrading individual pods without taking
down our entire application:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example-deployment
 labels:
 app: my-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: my-deployment
 template:
 metadata:
 labels:
 app: my-deployment
 spec:
 containers:
 - image: "nginx:latest"
 name: example-nginx

This is an apps/v1 Deployment object.

Inside of the spec, we ask for three replicas of the following template.

The template specifies how each replica pod should look.

When it comes to attaching a Kubernetes application to other things on the network,
Kubernetes provides Service definitions. A Service is a persistent network resource
(sort of like a static IP) that persists even if the pod or pods attached to it go away. In
this way, Kubernetes Pods can come and go while the network layer can continue to
route traffic to the same Service endpoint. While a Service is an abstract Kuber‐
netes concept, behind the scenes it may be implemented as anything from a routing
rule to an external load balancer:

apiVersion: v1
kind: Service
metadata:
 name: example-service
spec:
 selector:
 app: my-deployment
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

10 | Chapter 1: Introducing Helm

The kind is v1 Service.

This Service will route to pods with the app: my-deployment label.

TCP traffic to port 80 of this Service will be routed to port 8080 on the pods that
match the app: my-deployment label.

The Service described will route traffic to the Deployment we created earlier.

We’ve introduced a few of the many Kubernetes types. There are dozens more that we
could cover, but the most frequently used by far are Pod, Deployment, ConfigMap,
Secret, and Service. In the next chapter we will begin working with these concepts
more directly. But for now, armed with some generic information, we can introduce
Helm.

Helm’s Goals
Up to this point, we have focused on the broader cloud native ecosystem and on
Kubernetes’ role within that ecosystem. In this section, we will change focus to Helm.

In the previous section, we saw several distinct Kubernetes resources: A Pod, a
ConfigMap, a Deployment, and a Service. Each of these performs some discrete role.
But an application typically requires more than one of these.

For example, the WordPress CMS system can be run inside of Kubernetes. But typi‐
cally it would need at least a Deployment (for the WordPress server), a ConfigMap for
configuration and probably a Secret (to keep passwords), a few Service objects, a
StatefulSet running a database, and a few role-based access control (RBAC) rules.
Already, a Kubernetes description of a basic WordPress site would span thousands of
lines of YAML. At the very core of Helm is this idea that all of those objects can be
packaged to be installed, updated, and deleted together.

When we wrote Helm, we had three main goals:

1. Make it easy to go from “zero to Kubernetes”
2. Provide a package management system like operating systems have
3. Emphasize security and configurability for deploying applications to Kubernetes

We will look at each of these three goals, and then take a look at one other aspect of
Helm’s usage: its participation in the life cycle management story.

Helm’s Goals | 11

From Zero to Kubernetes
The Helm project started in 2015, a few months before the inaugural KubeCon.
Kubernetes was difficult to set up, often requiring new users to compile the Kuber‐
netes source code and then use some shell scripts to get Kubernetes running. And
once the cluster was up, new users were expected to write YAML (as we did in previ‐
ous sections) from scratch. There were few basic examples and no production-ready
examples.

We wanted to invert the learning cycle: instead of requiring users to start with basic
examples and try to construct their own applications, we wanted to provide users
with ready-made production-ready examples. Users could install those examples, see
them in action, and then learn how Kubernetes worked.

That was, and still is to this day, our first priority with Helm: make it easier to get
going with Kubernetes. In our view, a new Helm user with an existing Kubernetes
cluster should be able to go from download to an installed application in five minutes
or less.

But Helm isn’t just a learning tool. It is a package manager.

Package Management
Kubernetes is like an operating system. At its foundation, an operating system pro‐
vides an environment for executing programs. It provides the tools necessary to store,
execute, and monitor the life cycle of a program.

Instead of executing programs, it executes containers. But similar to an operating sys‐
tem, it provides the tools necessary to store, execute, and monitor those containers.

Most operating systems are supported by a package manager. The job of the package
manager is to make it easy to find, install, upgrade, and delete the programs on an
operating system. Package managers provide semantics for bundling programs into
installable applications, and they provide a scheme for storing and retrieving pack‐
ages, as well as installing and managing them.

As we envisioned Kubernetes as an operating system, we quickly saw the need for a
Kubernetes package manager. From the first commit to the Helm source code reposi‐
tory, we have consistently applied the package management metaphor to Helm:

• Helm provides package repositories and search capabilities to find what Kuber‐
netes applications are available.

• Helm has the familiar install, upgrade, and delete commands.
• Helm defines a method for configuring packages prior to installing them.

12 | Chapter 1: Introducing Helm

• Additionally, Helm has tools for seeing what is already installed and how it is
configured.

We initially modeled Helm after Homebrew (a package manager for macOS) and Apt
(the package manager for Debian). But as Helm has matured, we have sought to learn
from as many different package managers as we can.

There are some differences between typical operating systems and Kubernetes.
One of them is that Kubernetes supports running many instances of the same appli‐
cation. While I may only install the database MariaDB once on my workstation, a
Kubernetes cluster could be running tens, hundreds, or even thousands of MariaDB
installations—each with a different configuration or even a different version.

Another notion that is rare in typical operating systems, but is central to Kubernetes,
is the idea of a namespace. In Kubernetes, a namespace is an arbitrary grouping
mechanism that defines a boundary between the things inside the namespace and the
things outside. There are many different ways to organize resources with namespaces,
but oftentimes they are used as a fixture to which security is attached. For example,
perhaps only specific users can access resources inside of a namespace.

These are just a few ways that Kubernetes differs from traditional operating systems.
These and other differences have presented challenges in the design of Helm. We
have had to build Helm to take advantage of these differences, but without giving up
on our package management metaphor.

For example, the Helm installation command requires not only the name of the pack‐
age, but also a user-supplied name by which the installed version of that package will
be referenced. In the next chapter, we’ll see examples of this.

Likewise, operations in Helm are namespace-sensitive. One can install the same
application into two different namespaces, and Helm provides tools to manage these
different instances of the application.

In the end, though, Helm remains firmly in the package management class of tools.

Security, Reusability, and Configurability
Our third goal with Helm was to focus on three “must haves” for managing applica‐
tions in a cluster:

1. Security
2. Reusability
3. Configurability

In short, we wanted to make Helm aware enough about these principles that Helm
users can have confidence in the packages they use. A user should be able to verify

Helm’s Goals | 13

that a package came from a trustworthy source (and was not tampered with), reuse
the same package multiple times, and configure the package to fit their needs.

Whereas Helm’s developers have direct control over the previous two design goals,
this one is unique: Helm can only provide the right tools for package authors and
hope that these creators choose to realize these three “must haves.”

Security
Security is a broad category. In this context, though, we are referring to the idea that
when a user examines a package, the user has the ability to verify certain things about
the package:

• The package comes from a trusted source.
• The network connection over which the package is pulled is secured.
• The package has not been tampered with.
• The package can be easily inspected so the user can see what it does.
• The user can see what configuration the package has, and see how different

inputs impact the output of a package.

Throughout this book, and especially in Chapter 6, we will cover security in more
detail. But these five capabilities are things we believe we have provided with Helm.

Helm provides a provenance feature to establish verification about a package’s origin,
author, and integrity. Helm supports Secure Sockets Layer/Transport Layer Security
(SSL/TLS) for securely sending data across the network. And Helm provides dry-run,
template, and linting commands to examine packages and their possible
permutations.

Reusability
A virtue of package management is its ability to install the same thing repeatedly and
predictably. With Helm, this idea is extended slightly: we may want to even install the
same thing (repeatedly and predictably) into the same cluster or even same name‐
space in a cluster.

Helm charts are the key to reusability. A chart provides a pattern for producing the
same Kubernetes manifests. But charts also allow users to provide additional configu‐
ration (which we will talk about in the next chapter). So Helm provides patterns for
storing configuration so that the combination of a chart plus its configuration can
even be done repeatedly.

In this way, Helm encourages Kubernetes users to package their YAML into charts so
that these descriptions can be reused.

14 | Chapter 1: Introducing Helm

In the Linux world, each Linux distribution has its own package manager and reposi‐
tories. This is not the case in the Kubernetes world. Helm was constructed so that all
Kubernetes distributions could share the same package manager, and (with very, very
few exceptions) the same packages as well. When there are differences between two
different Kubernetes distributions, charts can accommodate this using templates (dis‐
cussed more thoroughly in Chapter 5) coupled with configuration.

Configurability
Helm provides patterns for taking a Helm chart and then supplying some additional
configuration. For example, I might install a website with Helm, but want to set (at
installation time) the name of that website. Helm provides tools to configure pack‐
ages at installation time, and to reconfigure installations during upgrades. But a word
of caution is in order.

Helm is a package manager. Another class of software handles configuration manage‐
ment. This class of software, typified by Puppet, Ansible, and Chef, focuses on how a
given piece of software (often packaged) is specifically configured for its host environ‐
ment. Its responsibility is to manage configuration changes over time.

Helm was not designed to be a configuration management tool, though there is at
least some overlap between package management and configuration management.

Package management is typically confined to implementing three verbs: install,
upgrade, and delete. Configuration management is a higher-order concept that focu‐
ses on managing an application or applications over time. This is sometimes called
“day-two ops.”

While Helm did not set out to be a configuration management tool, it is sometimes
used as one. Organizations rely upon Helm not just to install, upgrade, and delete,
but also to track changes over time, to track configuration, and to determine whether
an application as a whole is running. Helm can be stretched this way, but if you want
a strong configuration management solution, you may want to leverage other tools in
the Helm ecosystem. Many tools like Helmfile, Flux, and Reckoner have filled in
details in the larger configuration management story.

The Helm community has created a wealth of tools that interoper‐
ate with or augment Helm. The Helm project maintains a list of
those tools in the official documentation.

One of the common themes you will notice in Helm charts is that configuration
options are often set up so that you can take the same chart and release a minimal
version of it into your development environment, or (with different configuration
options) a sophisticated version into your production environment.

Helm’s Goals | 15

https://oreil.ly/hOqca

Helm’s Architecture
In the final section of this chapter, we will briefly turn to the high-level architecture of
Helm. As well as rounding out the conceptual discussion of cloud native Kubernetes
applications and package management, this section paves the way for Chapter 2,
where we will dive into using Helm.

Kubernetes Resources
We have had a look at several kinds of Kubernetes resources. We saw a couple of Pod
definitions, a ConfigMap, a Deployment, and a Service. There are dozens more pro‐
vided by Kubernetes. You can even use custom resource definitions (CRDs) for defin‐
ing your own custom resource types. The main Kubernetes documentation provides
both accessible guides and detailed API documentation on each kind.

Throughout this book, we will use many different Kubernetes resource types. While
we discuss them in context, you may find it beneficial to skim through the main
Kubernetes document as you run across new resource definitions.

As we discussed earlier, resource definitions are declarative. You, the user, describe for
Kubernetes the desired state of a resource. For example, you can read the Pod defini‐
tion we created earlier in the chapter as a statement that, “I want Kubernetes to make
me a Pod that has these features.” It is up to Kubernetes to figure out how to configure
and run a pod according to your specification.

All Kubernetes resource definitions share a common subset of elements. The follow‐
ing manifest uses a Deployment to illustrate the main structural elements of a
resource definition:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example-deployment
 labels:
 some-name: some-value
 annotations:
 some-name: some-value
resource-specific YAML

The API family and version for this resource.

The kind of resource. Combined with apiVersion, we get the “resource type”.

The metadata section contains top-level data about the resource.

A name is required for almost every resource type.

16 | Chapter 1: Introducing Helm

Labels are used to give Kubernetes query-able “handles” to your resources.

Annotations provide a way for authors to attach their own keys and values to a
resource.

Of particular note, a resource type in Kubernetes is composed of three pieces of
information:

API group (or family)
Several base resource types like Pod and ConfigMap omit this name.

API version
Expressed as a v, followed by a major version and an optional stability marker.
For example, v1 is a stable “version 1,” while v1alpha indicates an unstable “ver‐
sion 1 alpha 1.”

Resource kind
The (capitalized) name of the specific resource within the API group.

While a full resource type name is something like apps/v1 Deploy
ment or v1 Pod (for core types), Kubernetes users will often omit
the group and version when talking or writing about well-known
types. For example, in this book we simply write Deployment
instead of apps/v1 Deployment. Fully qualified names are used
when specifying an exact version or when discussing a resource
type defined in a CRD.

Thus, apps/v1 Deployment indicates that the API group “apps” has a “version 1” (sta‐
ble) resource kind called “Deployment.”

Kubernetes supports two main formats for declaring the resources you want: JSON
and YAML. Strictly speaking, YAML is a superset of JSON. All JSON documents are
valid YAML, but YAML adds a number of additional features.

In this book, we stick to the YAML format. We find it easier to read and write, and
almost all Helm users choose YAML over JSON. However, should your preferences
differ, both Kubernetes and Helm support plain JSON.

Earlier, we introduced the term manifest. A manifest is just a Kubernetes resource
serialized to either its JSON or YAML format. It would be fair to call our earlier Pod,
ConfigMap, Deployment, and Service examples each a Kubernetes manifest, since they
are resources expressed in YAML.

Helm’s Architecture | 17

Charts
We have already talked about Helm packages in this chapter. In Helm’s vocabulary, a
package is called a chart. The name is a play on the nautical nature of Kubernetes
(which means “ship’s captain” in Greek) and Helm (which is the steering mechanism
of a ship). A chart plots the way a Kubernetes application should be installed.

A chart is a set of files and directories that adhere to the chart specification for
describing the resources to be installed into Kubernetes. Chapter 4 explains the chart
structure in detail, but there are a few high-level concepts we will introduce here.

A chart contains a file called Chart.yaml that describes the chart. It has information
about the chart version, the name and description of the chart, and who authored the
chart.

A chart contains templates as well. These are Kubernetes manifests (like we saw ear‐
lier in this chapter) that are potentially annotated with templating directives. We will
cover these in detail in Chapter 5.

A chart may also contain a values.yaml file that provides default configuration. This
file contains parameters that you can override during installation and upgrade.

These are the basic things you will find in a Helm chart, though there are others that
we will cover in Chapter 4. When you see a Helm chart, though, it may be presented
in either unpacked or packed form.

An unpacked Helm chart is just a directory. Inside, it will have a Chart.yaml, a
values.yaml, a templates/ directory, and perhaps other things as well. A packed Helm
chart contains the same information as an unpacked one, but it is tarred and gzipped
into a single file.

An unpacked chart is represented by a directory with the name of the chart. For
example, the chart named mychart will be unpacked into a directory named mychart/.
In contrast, a packed chart has the name and version of the chart, as well as the tgz
suffix: mychart-1.2.3.tgz.

Charts are stored in chart repositories, which we will cover in Chapter 7. Helm knows
how to download and install charts from repositories.

Resources, Installations, and Releases
To tie together the terminology introduced in this section, when a Helm chart is
installed into Kubernetes, this is what happens:

1. Helm reads the chart (downloading if necessary).
2. It sends the values into the templates, generating Kubernetes manifests.
3. The manifests are sent to Kubernetes.

18 | Chapter 1: Introducing Helm

4. Kubernetes creates the requested resources inside of the cluster.

When a Helm chart is installed, Helm will generate as many resource definitions as it
needs. Some may create one or two, others may create hundreds. When Kubernetes
receives these definitions, it will create resources for them.

A Helm chart may have many resource definitions. Kubernetes sees each of these as a
discrete thing. But in Helm’s view all of the resources defined by a chart are related.
For example, my WordPress application may have a Deployment, a ConfigMap, a
Service, and so on. But they are all part of one chart. And when I install them, they
are all part of the same installation. The same chart can be installed more than once
(with a different name each time). Thus, I may have multiple installations of the same
chart, just as I might have multiple resources of the same Kubernetes resource type.

And this brings us to one final term. Once we install our WordPress chart, we have an
installation of that chart. Then we upgrade that chart using helm upgrade. Now, that
installation has two releases. A new release of an installation is created each time we
use Helm to modify the installation.

A release is created when we install a new version of WordPress. But a release is also
created when we merely change the configuration of an installation, or when we roll‐
back an installation. This is an important feature of Helm that we will see again in
Chapter 7.

A Brief Note About Helm 2
Those familiar with Helm 2 may notice certain concepts missing from this book.
There is no mention of Tiller or gRPC. These things were removed from Helm 3,
which is the subject of the present book. Also, this version of the book focuses on ver‐
sion 2 Helm charts. As confusing as it is, the Helm chart version increments sepa‐
rately from the Helm version. So Helm v2 used Helm Charts v1, and Helm v3 uses
Helm Charts v2. These differ in a few important ways from version 1 Helm Charts—
most notably in the way dependencies are declared. Helm 2 and Helm Charts v1 are
considered deprecated.

Conclusion
The material here should prepare you for the coming chapters. But we hope it also
provided insight into why we built Helm the way we did. Helm is only successful if it
makes Kubernetes more usable both for the first-time users and for the long-time
operations teams and SREs that use Helm day to day. The remainder of this book is
dedicated to explaining (with lots of examples) how to get the most out of Helm—
and how to do so securely and idiomatically.

Conclusion | 19

CHAPTER 2

Using Helm

Helm provides a command-line tool, named helm, that makes available all the fea‐
tures necessary for working with Helm charts. In this chapter, we will discover the
primary features of the helm client. Along the way, we’ll learn how Helm interacts
with Kubernetes.

We will start by looking at how to install and configure Helm, and work our way
through the main command groups in Helm. Then we will cover finding and learn‐
ing about packages, and how to install, upgrade, and delete them.

Installing and Configuring the Helm Client
Helm provides a single command-line client that is capable of performing all of the
main Helm tasks. This client is, appropriately enough, named helm. While there are
many other tools that can work with Helm charts, this one is the official general-
purpose tool maintained by the Helm core maintainers, and it is the subject of this
chapter as well as the next.

The helm client is written in a programming language called Go. Unlike Python, Java‐
Script, or Ruby, Go is a compiled language. Once a Go program is compiled, you do
not need any of the Go tools to run or otherwise work with the binary.

So we will first cover downloading and installing the static binary, and then we will
briefly introduce the process for fetching and compiling from the Go source code,
should you so desire.

Installing a Prebuilt Binary
Each time the Helm maintainers issue a new release of helm, the project provides new
signed binary builds of helm for a number of common operating systems and

21

architectures. At the time of this writing, prebuilt versions of Helm are available for
Linux, Windows, and macOS on architectures ranging from 64-bit Intel/AMD to
ARM, to s390 and PPC. This means you can run Helm on anything from a Raspberry
Pi to a supercomputer.

The definitive list of Helm releases is at the Helm release page. The release page will
show a chronological list of releases, with the latest release at the top.

Install with a Package Manager
Many operating system package managers, including Homebrew for macOS, Snap for
Linux, and Chocolatey for Windows, can install Helm for you. We are big package
management fans. Package managers make it easy to install, update, and delete your
software, so we encourage you let your operating system package manager install
Helm for you. But it is often wise to check whether the version in your package man‐
ager of choice is the same version that is currently marked stable on the Helm site.

A note on Helm version numbers
Until November 2020, two different major versions of Helm were actively main‐
tained. The current stable major version of Helm is version 3. When you visit the
Helm download pages, you may see both versions available for download. Because
the versions are chronologically listed, it is even possible that a Helm 2 release will be
newer than the latest Helm 3 release. You should use Helm 3.

Helm follows a versioning convention known as Semantic Versioning (SemVer). In
Semantic Versioning, the version number conveys meaning about what you can
expect in the release. Because Helm follows this specification, users can expect certain
things out of releases simply by carefully reading the version number.

At its core, a semantic version has three numerical components and an optional sta‐
bility marker (for alphas, betas, and release candidates). Here are some examples:

• v1.0.0

• v3.3.2

• v2.4.22-alpha.2

Let’s talk about the numerical components first.

We often generalize this format to talk about X.Y.Z, where X is a major version, Y is a
minor version and Z is a patch release:

• The major release number tends to be incremented infrequently. It indicates that
major changes have been made to Helm, and that some of those changes may

22 | Chapter 2: Using Helm

https://oreil.ly/L_My5
https://semver.org

break compatibility with previous versions. The difference between Helm 2 and
Helm 3 is substantial, and there is work necessary to migrate between the
versions.

• The minor release number indicates feature additions. The difference between
3.2.0 and 3.3.0 might be that a few small new features were added. However, there
are no breaking changes between versions. (With one caveat: a security fix might
necessitate a breaking change, but we announce boldly when that is the case.)

• The patch release number indicates that only backward compatible bug fixes have
been made between this release and the last one. It is always recommended to
stay at the latest patch release.

When you see a release with a stability marker, like alpha.1, beta.4, or rc.2,
appended to the release number, that means the release is considered to be a pre-
release, and is not ready for mainstream production usage. In particular, Helm fre‐
quently issues release candidates before a major or minor update. These give the
community a chance to give us some feedback on stability, compatibility, and new
features before we issue a final release.

With this in mind, we are ready to proceed with the actual installation.

Downloading the binary
The easiest way to install Helm from the repository is to simply go to the releases
page and download the latest Helm 3 version.

On Windows, the download file is a ZIP archive containing a README.md text file, a
LICENSE text file, and helm.exe.

On macOS and Linux, the download will be in a gzipped tar archive (.tar.gz) that
can be extracted with the tar -zxf command. Like the Windows version, it will con‐
tain a README.md text file, a LICENSE text file, and the helm binary. If you are using
Windows Subsystem for Linux (WSL), you should install the Linux AMD64 version
into your WSL instance.

Regardless of which operating system you use, the binary is the only file you need to
run Helm, and you can put it wherever you prefer on your system. It should be pre-
marked as an executable, but on rare occasions in UNIX-like environments, you may
also need to run the command chmod helm +x to set Helm to be an executable.

When installing with package managers like Homebrew (macOS),
Snap (Linux), or Chocolatey (Windows), helm will be installed in a
standard location and be made immediately available to you via the
command line.

Installing and Configuring the Helm Client | 23

https://oreil.ly/L_My5
https://oreil.ly/L_My5

Once you have helm installed, you should be able to run the command helm help
and see the Helm help text.

Using the get script to install
On macOS and Linux, you may prefer to run a shell script that will determine which
version of Helm to install and do it automatically for you.

The usual sequence of commands for installing this way is as follows:

$ curl -fsSL -o get_helm.sh \
https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
$ chmod 700 get_helm.sh
$./get_helm.sh

The preceding commands fetch the latest version of the get_helm.sh script, and then
use that to find and install the latest version of Helm 3.

For systems that automatically install Helm, such as continuous integration (CI) sys‐
tems, we recommend using this method if it is important to always have the latest
Helm version.

Guidance on Building from Source
Unless you are already familiar with Go development, building Helm from source can
be a daunting task. You will need a version of the make command. Because Makefile-
style build scripts do not follow a single standard, not all versions of make will work to
build Helm. Gnu Make, the one most frequently used on Linux and Mac, is the one
most Helm core developers use, so it is a safe bet. You will also need the gcc compiler
and the entire Go toolchain.

In addition to these, Helm needs several auxilliary tools. Fortunately, when you run
make the first time, it will attempt to install any additional tools that are missing.

While they are not strictly necessary, you will probably also want the git tool and the
kubectl command. The git tool will allow you to work directly with the Helm
source code repository instead of downloading source code bundles. kubectl, of
course, is for interacting with your Kubernetes cluster. While that’s not necessary for
building Helm, it’s certainly necessary when checking to see whether Helm is doing
what you want it to do.

Once you have the tools installed and configured, you can simply change directories
in the folder that contains Helm’s source code (the directory with the README.md
and Makefile files) and run make build. The first time you run this command, it will
take at least several minutes. The build system must fetch lots of dependencies,
including much of the Kubernetes source code, and compile it all.

24 | Chapter 2: Using Helm

Compiling Helm for the first time can be daunting, especially if you
are new to the Go programming language. Kubernetes is a sophisti‐
cated platform, and thus the Helm source code is large and difficult
to build. Plan on spending at least an hour or two to get a fresh
environment prepared to install Helm.

To verify that Helm is functioning correctly (especially if you have modified the
source code), you can run make test. This will build the code, run a variety of check‐
ers and linters, and then run the unit tests for Helm. If you plan on contributing any
changes to Helm, this command must pass before Helm’s core maintainers will even
look at your requested change.

When Helm is compiled, it will be located alongside the source code in a subdirectory
called bin/. It will not automatically be added to your executable path, so to execute
the version you just built, you may need to specify the relative or exact path
(e.g., ./bin/helm or $GOPATH/src/helm.sh/helm/bin/helm).

If the command helm version correctly executes, you can be assured that you cor‐
rectly compiled Helm.

From here, you can follow the detailed Developer Guide to learn more. As always, if
you run into problems, the helm-users channel on the Kubernetes Slack server is a
great place to ask for help.

Working with Kubernetes Clusters
Helm interacts directly with the Kubernetes API server. For that reason, Helm needs
to be able to connect to a Kubernetes cluster. Helm attempts to do this automatically
by reading the same configuration files used by kubectl (the main Kubernetes
command-line client).

Helm will try to find this information by reading the environment variable
$KUBECONFIG. If that is not set, it will look in the same default locations that
kubectl looks in (for example, $HOME/.kube/config on UNIX, Linux, and macOS).

You can also override these settings with environment variables (HELM_KUBECONTEXT)
and command-line flags (--kube-context). You can see a list of environment vari‐
ables and flags by running helm help.

The Helm maintainers recommend using kubectl to manage your Kubernetes cre‐
dentials and letting Helm merely autodetect these settings. If you have not yet
installed kubectl, the best place to start is with the official Kubernetes installation
documentation.

Installing and Configuring the Helm Client | 25

https://oreil.ly/X9-Ii
https://oreil.ly/pHZIh
https://oreil.ly/pHZIh

Getting Started with Helm
Whether you built Helm from source or installed using one of the aforementioned
methods, at this point you should have the helm command available on your system.
From here on, we will assume that Helm can be executed with the command helm (as
opposed to a full or relative path, as discussed in the previous section).

In what follows, we are going to take a look at the most common workflow for start‐
ing out with Helm:

1. Add a chart repository.
2. Find a chart to install.
3. Install a Helm chart.
4. See the list of what is installed.
5. Upgrade your installation.
6. Delete the installation.

Then, in the next chapter we will dive into some of the additional features of Helm
and in so doing learn more about how Helm works.

Adding a Chart Repository
Chart repositories are a topic in their own right, and in Chapter 7 we will examine
them in detail. But anyone using Helm must know a few basics about chart
repositories.

A Helm chart is an individual package that can be installed into your Kubernetes clus‐
ter. During chart development, you will often just work with a chart that is stored on
your local filesystem.

But when it comes to sharing charts, Helm describes a standard format for indexing
and sharing information about Helm charts. A Helm chart repository is simply a set of
files, reachable over the network, that conforms to the Helm specification for index‐
ing packages.

Helm 3 introduced an experimental feature for storing Helm charts
in a different kind of repository: Open Container Initiative (OCI)
registries (sometimes called Docker registries). In this backend, a
Helm chart can be stored alongside Docker images. While this fea‐
ture is not yet broadly supported, it may become the future of
Helm package storage. This is discussed more in Chapter 7.

26 | Chapter 2: Using Helm

There are many—perhaps thousands of—chart repositories on the internet. The easi‐
est way to find the popular repositories is to use your web browser to navigate to the
Artifact Hub. There you will find thousands of Helm charts, each hosted on an
appropriate repository.

To get started, we will install the popular Drupal content management system. This
makes a good example chart because it exercises many of Kubernetes’ types, including
Deployments, Services, Ingress, and ConfigMaps.

Helm 2 came with a Helm repository installed by default. The stable chart reposi‐
tory was at one time the official source of production-ready Helm charts. But we real‐
ized that centralizing the charts into one repository was overly taxing to a small
group of maintainers and frustrating for chart contributors.

In Helm 3, there is no default repository. Users are encouraged to use the Artifact
Hub to find what they are looking for and then add their preferred repositories.

Drupal’s Helm chart is located in one of the most well-curated chart repositories
available: Bitnami’s official Helm charts. You can take a look at the Artifact Hub’s
entry for the Drupal chart for more information.

A handful of Bitnami developers were among the core contributors
who designed the Helm repository system. They have contributed
to the establishment of Helm’s best practices for chart development
and have written many of the most widely used charts.

Adding a Helm chart is done with the helm repo add command. Several Helm
repository commands are grouped under the helm repo command group:

$ helm repo add bitnami https://charts.bitnami.com/bitnami
"bitnami" has been added to your repositories

The helm repo add command will add a repository named bitnami that points to
the URL https://charts.bitnami.com/bitnami.

Now we can verify that the Bitnami repository exists by running a second repo
command:

$ helm repo list
NAME URL
bitnami https://charts.bitnami.com/bitnami

This command shows us all of the repositories installed for Helm. Right now, we see
only the Bitnami repository that we just added.

Once we have added a repository, its index will be locally cached until we next update
it (see Chapter 7). And one important thing that we can now do is search the
repository.

Adding a Chart Repository | 27

https://artifacthub.io
https://artifacthub.io
https://www.drupal.org
https://oreil.ly/baxxf
https://charts.bitnami.com/bitnami

Searching a Chart Repository
Although we know, having looked at the Artifact Hub, that the Drupal chart exists in
this repository, it is still useful to search for it from the command line. Oftentimes,
searching is a useful way to find not only what charts can be installed, but what ver‐
sions are available.

To begin, let’s search for the Drupal chart:

$ helm search repo drupal
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/drupal 7.0.0 9.0.0 One of the most versatile open...

We did a simple search for the term drupal. Helm will search not just the package
names, but also other fields like labels and descriptions. Thus, we could search for
content and see Drupal listed there because it is a content management system:

$ helm search repo content
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/drupal 7.0.0 9.0.0 One of the most versa...
bitnami/harbor 6.0.1 2.0.0 Harbor is an an open...
bitnami/joomla 7.1.18 3.9.19 PHP content managemen...
bitnami/mongodb 7.14.6 4.2.8 NoSQL document-orient...
bitnami/mongodb-sharded 1.4.2 4.2.8 NoSQL document-orient...

While Drupal is the first result, note that there are a variety of other charts that con‐
tain the word content somewhere in the descriptive text.

By default, Helm tries to install the latest stable release of a chart, but you can over‐
ride this behavior and install a specific verison of a chart. Thus it is often useful to see
not just the summary info for a chart, but exactly which versions exist for a chart:

$ helm search repo drupal --versions
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/drupal 7.0.0 9.0.0 One of the most versatile op...
bitnami/drupal 6.2.22 8.9.0 One of the most versatile op...
bitnami/drupal 6.2.21 8.8.6 One of the most versatile op...
bitnami/drupal 6.2.20 8.8.5 One of the most versatile op...
bitnami/drupal 6.2.19 8.8.5 One of the most versatile op...
...

There are several dozen versions of the Drupal chart. The preceding example has
been truncated to just show the top few versions.

Chart and App Versions

A chart version is the version of the Helm chart. The app version is
the version of the application packaged in the chart. Helm uses the
chart version to make versioning decisions, such as which package
is newest. As we can see in the preceding example, multiple chart
versions may contain the same app version.

28 | Chapter 2: Using Helm

Installing a Package
In the next chapter, we will dive deeply into the details of how package installation
works in Helm. In this section, though, we will look at the basic mechanics of instal‐
ling a Helm chart.

At very minimum, installing a chart in Helm requires just two pieces of information:
the name of the installation and the chart you want to install.

Recall that in the previous chapter we distinguished between an installation and a
chart. This is an important distinction during installation and upgrading. In an oper‐
ating system package manager, we may request that it install a piece of software. But
it is extremely rare that we need to install the same exact package multiple times on
an operating system. A Kubernetes cluster is different. It makes complete sense in
Kubernetes to say “I want to install a MySQL database for Application A, and a sec‐
ond MySQL database for Application B.” Even if the two databases are exactly the
same version and have the same configuration, in order to appropriately manage our
applications, we may desire to have two instances running.

Therefore, Helm needs a way to distinguish between the different instances of the
same chart. So an installation of a chart is a specific instance of the chart. One chart
may have many installations. When we run the helm install command, we need to
give it an installation name as well as the chart name. So the most basic installation
command looks something like this:

$ helm install mysite bitnami/drupal
NAME: mysite
LAST DEPLOYED: Sun Jun 14 14:46:51 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/

2. Login with the following credentials

 echo Username: user
 echo Password: $(kubectl get secret --namespace default mysite-drupal...

The preceding will create an instance of the bitnami/drupal chart, and will name
this instance mysite.

Installing a Package | 29

As the install command runs, it will return a considerable amount of information,
including user-facing instructions about getting started with Drupal.

In future examples of helm install, we will omit the returned out‐
put for the sake of brevity. However, when using Helm, you will see
that output for each installation. In the next chapter, we will also
see how to view that output again with the helm get command.

At this point, there is now an instance named mysite in the cluster. If we tried to
rerun the preceding command, we wouldn’t get a second instance. Instead, we would
get an error because the name mysite has already been used:

$ helm install mysite bitnami/drupal
Error: cannot re-use a name that is still in use

One further clarification is in order. In Helm 2, instance names were cluster-wide.
You could only have an instance named mysite once per cluster. In Helm 3, naming
has been changed. Now instance names are scoped to Kubernetes namespaces. We
could install two instances named mysite as long as they each lived in a different
namespace.

For example, the following is perfectly legal in Helm 3, though it would have gener‐
ated a fatal error in Helm 2:

$ kubectl create ns first
$ kubectl create ns second
$ helm install --namespace first mysite bitnami/drupal
$ helm install --namespace second mysite bitnami/drupal

This will install one Drupal site named mysite in the first namespace, and an iden‐
tically configured instance named mysite in the second namespace. This might seem
confusing at first, but it becomes clearer when we think about a namespace as a prefix
on a name. In that sense, we have a site named “first mysite” and another named “sec‐
ond mysite.”

Using Namespace Flags Throughout Helm

When working with namespaces and Helm, you can use the
--namespace or -n flags to specify the namespace you desire.

Configuration at Installation Time
In the preceding examples, we installed the same chart a few different ways. In all
cases, they are identically configured. While the default configuration is good some‐
times, more often we want to pass our own configuration to the chart.

30 | Chapter 2: Using Helm

Many charts will allow you to provide configuration values. If we take a look at the
Artifact Hub page for Drupal, we would see a long list of configurable parameters.
For example, we can configure the username of the Drupal admin account by setting
the drupalUsername value.

In the next chapter we will learn how to get this information using
the helm command.

There are several ways of telling Helm which values you want to be configured. The
best way is to create a YAML file with all of the configuration overrides. For example,
we can create a file that sets values for drupalUsername and drupalEmail:

drupalUsername: admin
drupalEmail: admin@example.com

Now we have a file (conventionally named values.yaml) that has all of our configura‐
tion. Since it is in a file, it is easy to reproduce the same installation. You can also
check this file into a version control system to track changes to your values over time.
The Helm core maintainers consider it a good practice to keep your configuration
values in a YAML file. It is important to keep in mind, though, that if a configuration
file has sensitive information (like a password or authentication token), you should
take steps to ensure that this information is not leaked.

Both helm install and helm upgrade provide a --values flag that points to a
YAML file with value overrides:

$ helm install mysite bitnami/drupal --values values.yaml
NAME: mysite
LAST DEPLOYED: Sun Jun 14 14:56:15 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/

2. Login with the following credentials

Installing a Package | 31

https://oreil.ly/baxxf

 echo Username: admin
 echo Password: $(kubectl get secret --namespace default mysite-drupal -o js...

Notice that in the preceding output the Username is now admin instead of user. One
nice feature of Helm is that even the help text can be updated using values you
provide.

You can specify the --values flag multiple times. Some people use
this feature to have “common” overrides in one file and specific
overrides in another.

There is a second flag that can be used to add individual parameters to an install or
upgrade. The --set flag takes one or more values directly. They do not need to be
stored in a YAML file:

$ helm install mysite bitnami/drupal --set drupalUsername=admin

This sets just one parameter, drupalUsername. This flag uses a simple key=value
format.

Configuration parameters can be structured. That is, a configuration file may have
multiple sections. The Drupal chart, for example, has configuration specific to the
MariaDB database. These parameters are all grouped into a mariadb section. Building
on our previous example, we could override the MariaDB database name like this:

drupalUsername: admin
drupalEmail: admin@example.com
mariadb:
 db:
 name: "my-database"

Subsections are a little more complicated when using the --set flag. You will need to
use a dotted notation: --set mariadb.db.name=my-database. This can get verbose
when setting multiple values.

In general, Helm core maintainers suggest storing configuration in values.yaml files
(note that the filename does not need to be “values”), only using --set when abso‐
lutely necessary. This way, you have easy access to the values you used during an
operation (and can track those over time), while also keeping your Helm commands
short. Working with files also means you do not have to escape as many characters as
you do when setting things on the command line.

Before moving on to upgrades, though, we will take a quick look at one of the most
helpful Helm commands.

32 | Chapter 2: Using Helm

Listing Your Installations
As we have seen so far, Helm can install many things into the same cluster—even
multiple instances of the same chart. And with multiple users on your cluster, differ‐
ent people may be installing things into the same namespace on a cluster.

The helm list command is a simple tool to help you see installations and learn
about those installations:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mysite default 1 2020-06-14... deployed drupal-7.0.0 9.0.0

This command will provide you with lots of useful information, including the name
and namespace of the release, the current revision number (discussed in Chapter 1,
and in more depth in the next section), the last time it was updated, the installation
status, and the versions of the chart and app.

Like other commands, helm list is namespace aware. By default, Helm uses the
namespace your Kubernetes configuration file sets as the default. Usually this is the
namespace named default. Earlier, we installed a Drupal instance into the name‐
space first. We can see that with helm list --namespace first.

When listing all of your releases, one useful flag is the --all-namespaces flag, which
will query all of the Kubernetes namespaces to which you have permission, and
return all of the releases it finds:

$ helm list --all-namespaces
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mysite default 1 2020-06-14... deployed drupal-7.0.0 9.0.0
mysite first 1 2020-06-14... deployed drupal-7.0.0 9.0.0
mysite second 1 2020-06-14... deployed drupal-7.0.0 9.0.0

Upgrading an Installation
When we talk about upgrading in Helm, we talk about upgrading an installation, not
a chart. An installation is a particular instance of a chart in your cluster. When you
run helm install, it creates the installation. To modify that installation, use helm
upgrade.

This is an important distinction to make in the present context because upgrading an
installation can consist of two different kinds of changes:

• You can upgrade the version of the chart
• You can upgrade the configuration of the installation

Listing Your Installations | 33

The two are not mutually exclusive; you can do both at the same time. But this does
introduce one new term that Helm users refer to when talking about their systems: a
release is a particular combination of configuration and chart version for an
installation.

When we first install a chart, we create the initial release of an installation. Let’s call
this release 1. When we perform an upgrade, we are creating a new release of the
same installation: release 2. When we upgrade again, we will create release 3. (In the
next chapter, we’ll see how rollbacks also create releases.)

During an upgrade, then, we can create a release with new configuration, with a new
chart version, or with both.

For example, say we install the Drupal chart with the ingress turned off. (This will
effectively prevent traffic from being routed from outside the cluster into the Drupal
instance.)

Note that we are using the --set flag to keep examples compact, but would recom‐
mend using a values.yaml file in regular scenarios:

$ helm install mysite bitnami/drupal --set ingress.enabled=false

With ingress turned off, we can work on getting our site all set up to our liking.
Then when we are ready, we can create a new release that enables the ingress feature:

$ helm upgrade mysite bitnami/drupal --set ingress.enabled=true

In this case, we are running an upgrade that will only change the configuration.

In the background, Helm will load the chart, generate all of the Kubernetes objects in
that chart, and then see how those differ from the version of the chart that is already
installed. It will only send Kubernetes the things that need to change. In other words,
Helm will attempt to alter only the bare minimum.

The preceding example will only change the ingress configuration. Nothing changes
with the database, or even with the web server running Drupal. For that reason, noth‐
ing will be restarted or deleted and re-created. This can occasionally confuse new
Helm users, but it is by design. The Kubernetes philosophy is to make changes in the
most streamlined way possible, and Helm seeks to follow this philosophy.

On occasion, you may want to force one of your services to restart. This is not some‐
thing you need to use Helm for. You can simply use kubectl itself to restart things.
With an operating system’s package manager, you do not use the package manager to
restart a program. Likewise, you don’t need to use Helm to restart your web server or
database.

When a new version of a chart comes out, you may want to upgrade your existing
installation to use the new chart version. For the most part, Helm tries to make this
easy:

34 | Chapter 2: Using Helm

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "bitnami" chart repository
Update Complete. ⎈ Happy Helming!⎈

$ helm upgrade mysite bitnami/drupal

Fetch the latest packages from chart repositories.

Upgrade the mysite release to use the latest version of bitnami/drupal.

As you can see, the default policy of Helm is to attempt to use the latest version of a
chart. If you would prefer to stay on a particular version of a chart, you can explicitly
declare this:

$ helm upgrade mysite bitnami/drupal --version 6.2.22

In this case, even if a newer version is released, only bitnaim/drupal version 6.2.22
will be installed.

Configuration Values and Upgrades
One of the most important things to learn about Helm installs and upgrades is that
configuration gets applied freshly on each release. Here’s a quick illustration:

$ helm install mysite bitnami/drupal --values values.yaml
$ helm upgrade mysite bitnami/drupal

Install using a configuration file.

Upgrade without a configuration file.

What is the result of this pair of operations? The installation will use all of the config‐
uration data supplied in values.yaml, but the upgrade will not. As a result, some set‐
tings could be changed back to their defaults. This is usually not what you want.

Inspecting Values

In the next chapter we will look at the helm get command. You
can use helm get values mysite to see what values were used on
the last helm install or helm upgrade operation.

Helm core maintainers suggest that you provide consistent configuration with each
installation and upgrade. To apply the same configuration to both releases, supply the
values on each operation:

$ helm install mysite bitnami/drupal --values values.yaml
$ helm upgrade mysite bitnami/drupal --values values.yaml

Upgrading an Installation | 35

Install using a configuration file.

Upgrade using the same configuration file.

One of the reasons we suggest storing configuration in a values.yaml file is so that this
pattern is easy to reproduce. Imagine how much more cumbersome these commands
would be if you used --set to set three or four configuration parameters! For each
release, you’d have to remember exactly which things to set.

While we strongly advise using the pattern discussed here, and specifying --values
each time, there is an upgrade shortcut available that will just reuse the last set of val‐
ues that you sent:

$ helm upgrade mysite bitnami/drupal --reuse-values

The --reuse-values flag will tell Helm to reload the server-side copy of the last set of
values, and then use those to generate the upgrade. This method is okay if you are
always just reusing the same values. However, the Helm maintainers strongly suggest
not trying to mix --reuse-values with additional --set or --values options. Doing
so can make troubleshooting complicated and can quickly lead to unmaintainable
installations in which nobody is sure how certain configuration parameters were set.
While Helm does retain some state information, it is not a configuration manage‐
ment tool. Users are advised to manage configuration using their own tools and
explicitly pass that configuration to Helm in each invocation.

At this point, we’ve learned how to install, list, and upgrade installations. In the final
section of this chapter, we will delete an installation.

Uninstalling an Installation
To remove a Helm installation, use the helm uninstall command:

$ helm uninstall mysite

Note that this command does not need a chart name (bitnami/drupal) or any con‐
figuration files. It simply needs the name of the installation. In this section, we will
look at how deletion works and take a brief detour into a big change between Helm 2
and Helm 3.

Like install, list, and upgrade, you can supply a --namespace flag to specify that
you want to delete an installation from a specific namespace:

$ helm uninstall mysite --namespace first

The preceding will delete the site we created in the first namespace earlier in this
chapter. Note that there is no command to delete multiple applications. You must
uninstall a specific installation.

36 | Chapter 2: Using Helm

Deletion can take time. Larger applications may take several minutes, or even longer,
as Kubernetes cleans up all of the resources. During this time, you will not be able to
reinstall using the same name.

How Helm Stores Release Information
One of the big changes in Helm 3 is how it deletes Helm’s own data about an installa‐
tion. This section briefly describes how installations are tracked and then concludes
by explaining how and why Helm changed between version 2 and version 3.

When we first install a chart with Helm (such as with helm install mysite bit
nami/drupal), we create the Drupal application instance, and we also create a special
record that contains release information. By default, Helm stores these records as
Kubernetes Secrets (though there are other supported storage backends).

We can see these records with kubectl get secret:

$ kubectl get secret
NAME TYPE DATA AGE
default-token-vjhx2 kubernetes.io/service-account-token 3 58m
mysite-drupal Opaque 1 13m
mysite-mariadb Opaque 2 13m
sh.helm.release.v1.mysite.v1 helm.sh/release.v1 1 13m
sh.helm.release.v1.mysite.v2 helm.sh/release.v1 1 13m
sh.helm.release.v1.mysite.v3 helm.sh/release.v1 1 7m53s
sh.helm.release.v1.mysite.v4 helm.sh/release.v1 1 5m30s

We can see multiple release records at the bottom, one for each revision. As you can
see, we have created four revisions of mysite by running install and upgrade
operations.

In the next chapter, we will see how these extended records can be used to roll back to
previous revisions of an installation. But we point this out now to illustrate something
about how helm uninstall works.

When we run the command helm uninstall mysite, it will load the latest release
record for the mysite installation. From that record, it will assemble a list of objects
that it should remove from Kubernetes. Then Helm will delete all of those things
before returning and deleting the four release records:

$ helm uninstall mysite
release "mysite" uninstalled

The helm list command will no longer show mysite:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

We now have no installations. And if we rerun the kubectl get secrets command,
we will also see all records of mysite have been purged:

Uninstalling an Installation | 37

$ kubectl get secrets
NAME TYPE DATA AGE
default-token-vjhx2 kubernetes.io/service-account-token 3 65m

As we can see from this output, not only were the two Secrets created by the Drupal
chart deleted, but the four release records were deleted as well.

In the next chapter, we will see the helm rollback command. The preceding explan‐
ation should give you some hints as to why, by default, you cannot roll back an unin‐
stall. It is possible, though, to delete the application, but keep the release records:

$ helm uninstall --keep-history

In Helm 2, history was retained by default. In Helm 3, the default was changed to
deleting history. Different organizations prefer different policies, but core maintain‐
ers found that when most people uninstalled, they expected all traces of the installa‐
tion to be destroyed.

Conclusion
In this chapter, we covered the basics of installing and then using Helm. After looking
at popular methods of getting Helm installed and configured, we added a chart repos‐
itory and learned how to search for charts. Then we installed, listed, upgraded, and
finally uninstalled the bitnami/drupal chart.

Along the way, we picked up some important concepts. We learned about installa‐
tions and releases. We took a first look at chart repositories, which will be covered at
length in Chapter 7. And at the end of the chapter we learned a little about how Helm
stores information about our installations.

In the next chapter, we will return to the helm command, learning about other things
that the Helm tool can do.

38 | Chapter 2: Using Helm

CHAPTER 3

Beyond the Basics with Helm

In the previous chapter, we looked at the most frequently used Helm commands. In
this chapter we will explore other capabilities that the Helm tool provides. We will
dive into commands that provide information about releases, that test installations,
and that keep track of history. Finally, we will revisit installing and upgrading, this
time covering advanced cases.

We will get started with some tools helpful for troubleshooting and debugging.

Templating and Dry Runs
When Helm installs a release, the program steps through several phases. It loads the
chart, parses the values passed to the program, reads the chart metadata, and so on.
Near the middle of the process, Helm compiles all of the templates in the chart (all in
one pass), and then renders them by passing in the values (like we saw in the previous
chapter). During this middle portion, it executes all of the template directives. Once
the templates are rendered into YAML, Helm verifies the structure of the YAML by
parsing it into Kubernetes objects. Finally, Helm serializes those objects and sends
them to the Kubernetes API server.

Roughly, then, the process is:

1. Load the entire chart, including its dependencies.
2. Parse the values.
3. Execute the templates, generating YAML.
4. Parse the YAML into Kubernetes objects to verify the data.
5. Send it to Kubernetes.

39

For example, let’s look at one of the commands we issued in the previous chapter:

$ helm install mysite bitnami/drupal --set drupalUsername=admin

In the first phase, Helm will locate the chart named bitnami/drupal and load that
chart. If the chart is local, it will be read off of disk. If a URL is given, it will be fetched
from the remote location (possibly using a plugin to assist in fetching the chart).

Then it will transform --set drupalUsername=admin into a value that can be injected
into the templates. This value will be combined with the default values in the chart’s
values.yaml file. Helm does some basic checks against the data. If it has trouble pars‐
ing the user input, or if the default values are corrupt, it will exit with an error. Other‐
wise, it will build a single big values object that the template engine can use for
substitutions.

The generated values object is created by loading all of the values of the chart file,
overlaying any values loaded from files (that is, with the -f flag), and then overlaying
any values set with the --set flag. In other words, --set values override settings from
passed-in values files, which in turn override anything in the chart’s default val‐
ues.yaml file.

At this point, Helm will read all of the templates in the Drupal chart, and then exe‐
cute those templates, passing the merged values into the template engine. Malformed
templates will cause errors. But there are a variety of other situations that may cause
failure here. For example, if a required value is missing, it is at this phase that an error
is returned.

It is important to note that, when executed, some Helm templates require informa‐
tion about Kubernetes. So during template rendering, Helm may contact the Kuber‐
netes API server. This is an important topic that we will discuss in a moment.

The output of the preceding step is then parsed from YAML into Kubernetes objects.
Helm will perform some schema-level validation at this point, making sure that the
objects are well-formed. Then they will be serialized into the final YAML format for
Kubernetes.

In the last phase, Helm sends the YAML data to the Kubernetes API server. This is the
server that kubectl and other Kubernetes tools interact with.

The API server will run a series of checks on the submitted YAML. If Kubernetes
accepts the YAML data, Helm will consider the deployment a success. But if Kuber‐
netes rejects the YAML, Helm will exit with an error.

Later on, we’ll go into detail about what happens once the objects are sent to Kuber‐
netes. In particular, we’ll cover how Helm associates the process described earlier with
an installation and revisions. But right now, we have enough information about

40 | Chapter 3: Beyond the Basics with Helm

workflow to understand two related Helm features: the --dry-run flag and the helm
template command.

The --dry-run Flag
Commands like helm install and helm upgrade provide a flag named --dry-run.
When you supply this flag, it will cause Helm to step through the first four phases
(load the chart, determine the values, render the templates, format to YAML). But
when the fourth phase is finished, Helm will dump a trove of information to standard
output, including all of the rendered templates. Then it will exit without sending the
objects to Kubernetes and without creating any release records.

For example, here is a version of our previous Drupal install with the --dry-run flag
appended:

$ helm install mysite bitnami/drupal --values values.yaml --set \
drupalEmail=foo@example.com --dry-run

At the top of the output, it will print some information about the release:

NAME: mysite
LAST DEPLOYED: Tue Aug 11 11:42:05 2020
NAMESPACE: default
STATUS: pending-install
REVISION: 1
HOOKS:

The preceding tells us what the name of the installation is, when it was last deployed
(in this case, the current date and time), which namespace it would have been
deployed into, what phase of the release it is in (pending-install), and the revision
number. Since this is an install, the revision is 1. On upgrade, it would be 2 or greater.

Finally, if this chart declared any hooks, they would be enumerated here. For more on
hooks, see Chapters 6 and 7.

At first glance, it might seem that this metadata entry has a lot of unnecessary data.
After all, what good does LAST DEPLOYED do if we are not actually installing? In fact,
this chunk of information is a standard set used throughout Helm. It is part of the
release record: a set of information about a release. Commands like helm get use
these same fields.

Next, after the informational block, all of the rendered templates are dumped to stan‐
dard output:

Source: drupal/charts/mariadb/templates/test-runner.yaml
apiVersion: v1
kind: Pod
metadata:
 name: "mysite-mariadb-test-afv3u"
 annotations:

Templating and Dry Runs | 41

 "helm.sh/hook": test-success
spec:
 initContainers:
 - name: "test-framework"
 image: docker.io/dduportal/bats:0.4.0
...

The rendered Drupal chart is thousands of lines, so the preceding just shows the first
several lines of output.

Finally, at the bottom of the dry-run output, Helm prints the user-oriented release
notes:

NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/
...

The example is truncated for brevity.

This dry-run feature provides Helm users a way to debug the output of a chart before
it is sent on to Kubernetes. With all of the templates rendered, you can inspect exactly
what would have been submitted to your cluster. And with the release data, you can
verify that the release would have been created as you expected.

The principal purpose of the --dry-run flag is to give people a chance to inspect and
debug output before sending it on to Kubernetes. But soon after it was introduced,
Helm maintainers noticed a trend among users. People wanted to use --dry-run to
use Helm as a template engine, and then use other tools (like kubectl) to send the
rendered output to Kubernetes.

But --dry-run wasn’t written with this use case in mind, and that caused a few
problems:

1. --dry-run mixes non-YAML information with the rendered templates. This
means the data has to be cleaned up before being sent to tools like kubectl.

2. A --dry-run on upgrade can produce different YAML output than a --dry-run
on install, and this can be confusing.

3. It contacts the Kubernetes API server for validation, which means Helm has to
have Kubernetes credentials even if it is just used to --dry-run a release.

42 | Chapter 3: Beyond the Basics with Helm

4. It also inserts information into the template engine that is cluster-specific.
Because of this, the output of some rendering processes may be cluster-specific.

To remedy these problems, the Helm maintainers introduced a completely separate
command: helm template.

The helm template Command
While --dry-run is designed for debugging, helm template is designed to isolate the
template rendering process of Helm from the installation or upgrade logic.

Earlier, we looked at the five phases of a Helm install or upgrade. The template com‐
mand performs the first four phases (load the chart, determine the values, render the
templates, format to YAML). But it does this with a few additional caveats:

• During helm template, Helm never contacts a remote Kubernetes server.
• The template command always acts like an installation.
• Template functions and directives that would normally require contacting a

Kubernetes server will instead only return default data.
• The chart only has access to default Kubernetes kinds.

Regarding the last item, helm template makes a notable simplifying assumption.
Kubernetes servers support built-in kinds (Pod, Service, ConfigMap, and so on) as
well as custom kinds generated by custom resource definitions (CRDs). When run‐
ning an install or upgrade, Helm fetches those kinds from the Kubernetes server
before processing the chart.

However, helm template does this step differently. When Helm is compiled, it is
compiled against a particular version of Kubernetes. The Kubernetes libraries contain
the list of built-in kinds for that release. Helm uses that built-in list instead of a list it
fetches from the API server. For this reason, Helm does not have access to any CRDs
during a helm template run, since CRDs are installed on the cluster and are not
included in the Kubernetes libraries.

Running an old version of Helm against a chart that uses new kinds
or versions can produce an error during helm template because
Helm will not have the newest kinds or versions compiled into it.

As a result of these decisions, helm template produces consistent output run after
run. More importantly, it can be run in an environment that does not have access to a
Kubernetes cluster, like a continuous integration (CI) pipeline.

Templating and Dry Runs | 43

The output is also different from --dry-run. Here’s an example command:

$ helm template mysite bitnami/drupal --values values.yaml --set \
drupalEmail=foo@example.com

Source: drupal/charts/mariadb/templates/secrets.yaml
apiVersion: v1
kind: Secret
metadata:
 name: mysite-mariadb
 labels:
 app: "mariadb"
 chart: "mariadb-7.5.1"
 release: "mysite"
 heritage: "Helm"
type: Opaque
... LOTS removed from here
 volumes:
 - name: tests
 configMap:
 name: mysite-mariadb-tests
 - name: tools
 emptyDir: {}
 restartPolicy: Never

The preceding is a greatly abridged version of the output, showing just the command
and a sample of the beginning data and the end of the data. The important thing to
note, though, is that only the YAML-formatted Kubernetes manifest is printed by
default.

Because Helm does not contact a Kubernetes cluster during a helm template run, it
does not do complete validation of the output. It is possible that Helm will not catch
some errors in this case. You may choose to use the --validate flag if you want that
behavior, but in this case Helm will need a valid kubeconfig file with credentials for a
cluster.

The helm template command has a broad number of flags that mirror those in helm
install. So in many cases, you can execute a helm template command just as you
would a helm install, but then capture the YAML and use it with other tooling.

Using a Post-Render Instead of Helm Template

Sometimes you want to intercept the YAML, modify it with your
own tool, and then load it into Kubernetes. Helm provides a way to
execute this external tool without having to resort to using helm
template. The flag --post-renderer on the install, upgrade,
rollback, and template will cause Helm to send the YAML data to
the command, and then read the results back into Helm. This is a
great way to work with tools like Kustomize.

44 | Chapter 3: Beyond the Basics with Helm

To summarize, helm template is a tool for rendering Helm charts into YAML, and
the --dry-run flag is a tool for debugging installation and upgrade commands
without loading the data into Kubernetes.

Learning About a Release
In the previous chapter, we got a glimpse of the helm get command. At this point, we
will take a deeper look into that command and others that provide us with informa‐
tion about Helm releases.

To start, let’s revisit the five phases of a Helm installation from the previous section.
They were:

1. Load the chart.
2. Parse the values.
3. Execute the templates.
4. Render the YAML.
5. Send it to Kubernetes.

The first four phases are primarily concerned with a local representation of the data.
That is, Helm is doing all of the processing on the same computer that the helm com‐
mand is run on.

During the last phase, though, Helm sends that data to Kubernetes. And then the two
communicate back and forth until the release is either accepted or rejected.

During that fifth phase, Helm must monitor the state of the release. Moreover, since
many individuals may be working on the same copy of that particular application
installation, Helm needs to monitor the state in such a way that multiple users can see
that information.

Helm provides this feature with release records.

Release Records
When we install a Helm chart (with helm install), the new installation is created in
the namespace you specify, or the default namespace. We looked at this in the previ‐
ous chapter.

At the end of that chapter, we also saw how helm install creates a special type of
Kubernetes Secret that holds release information. We saw how we could inspect
these Secrets with kubectl:

Learning About a Release | 45

$ kubectl get secret
NAME TYPE DATA AGE
default-token-g777k kubernetes.io/service-account-token 3 6m
mysite-drupal Opaque 1 2m20s
mysite-mariadb Opaque 2 2m20s
sh.helm.release.v1.mysite.v1 helm.sh/release.v1 1 2m20s

Of particular note is that last Secret, sh.helm.release.v1.mysite.v1. Notice that it
uses a special type (helm.sh/release.v1) to indicate that it is a Helm secret. Helm
automatically generated this secret to track version 1 of our mysite installation
(which is a Drupal site).

Each time we upgrade that mysite installation, a new Secret will be created to track
each release. In other words, a release record tracks each revision of an installation:

$ helm upgrade mysite bitnami/drupal
Output omitted
$ helm upgrade mysite bitnami/drupal
Output omitted
$ kubectl get secrets
NAME TYPE DATA AGE
default-token-g777k kubernetes.io/service-account-token 3 8m43s
mysite-drupal Opaque 1 5m3s
mysite-mariadb Opaque 2 5m3s
sh.helm.release.v1.mysite.v1 helm.sh/release.v1 1 5m3s
sh.helm.release.v1.mysite.v2 helm.sh/release.v1 1 20s
sh.helm.release.v1.mysite.v3 helm.sh/release.v1 1 8s

In the preceding example, we have upgraded a few times, and now we are at v3 of
mysite. By default, Helm tracks up to ten revisions of each installation. Once an
installation exceeds ten releases, Helm deletes the oldest release records until no more
than the maximum remain.

Each release record contains enough information to re-create the Kubernetes objects
for that revision (an important thing for helm rollback). It also contains metadata
about the release.

For example, if we looked at the release using kubectl, we would see something like
this:

apiVersion: v1
data:
 release: SDRzSUFBQU... # Lots of Base64-encoded data removed
kind: Secret
metadata:
 creationTimestamp: "2020-08-11T18:37:26Z"
 labels:
 modifiedAt: "1597171046"
 name: mysite
 owner: helm
 status: deployed

46 | Chapter 3: Beyond the Basics with Helm

 version: "3"
 name: sh.helm.release.v1.mysite.v3
 namespace: default
 resourceVersion: "1991"
 selfLink: /api/v1/namespaces/default/secrets/sh.helm.release.v1.mysite.v3
 uid: cbb8b457-e331-467b-aa78-1e20360b5be6
type: helm.sh/release.v1

The labels contain Helm metadata

In this example, the giant Base64-encoded data has been removed along with a few
other inessential fields. That blob contains a gzipped representation of the chart and
release. But importantly, the labels section of the Kubernetes metadata contains
information about this release.

We can see, for instance, that this data describes the release named mysite, that its
current revision number is 3, and the release is marked deployed. If we were to look
at version 2, we would see the release status is superseded, which means that it has
been replaced by a later version.

In short, this secret is stored inside of Kubernetes so that different users of the same
cluster have access to the same release information.

During the life cycle of a release, it can pass through several different statuses. Here
they are, approximately in the order you would likely see them:

pending-install

Before sending the manifests to Kubernetes, Helm claims the installation by cre‐
ating a release (marked version 1) whose status is set to pending-install.

deployed

As soon as Kubernetes accepts the manifest from Helm, Helm updates the release
record, marking it as deployed.

pending-upgrade

When a Helm upgrade is begun, a new release is created for an installation (e.g.,
v2), and its status is set to pending-upgrade.

superseded

When an upgrade is run, the last deployed release is updated, marked as super
seded, and the newly upgraded release is changed from pending-upgrade to
deployed.

pending-rollback

If a rollback is created, a new release (e.g., v3) is created, and its status is set to
pending-rollback until Kubernetes accepts the release manifest. Then it is
marked deployed and the last release is marked superseded.

Learning About a Release | 47

uninstalling

When a helm uninstall is executed, the most recent release is read and then its
status is changed to uninstalling.

uninstalled

If history is preserved during deletion, then when the helm uninstall is com‐
plete, the last release’s status is changed to uninstalled.

failed

Finally, if during any operation, Kubernetes rejects a manifest submitted by
Helm, Helm will mark that release failed.

Listing Releases
Status messages show up in a number of Helm commands. We already saw how
pending-install appears in a --dry-run. In this section and the next, we’ll see a few
more places where this appears.

In the previous chapter, we used helm list to see the charts we had installed. Given
our coverage of status, it is worth revisiting helm list. The list command is the
best tool for quickly checking on the statuses of your releases.

For example, say we have a cluster with both the drupal and wordpress charts
installed. Here is the output of helm list:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP V...
mysite default 3 2020-08-11... deployed drupal-7.0.0 9.0.0
wordpress default 2 2020-08-12... deployed wordpress-9.3.11 5.4.2

To show the result of a failure, though, we can run an upgrade command that we
know will break:

$ helm upgrade wordpress bitnami/wordpress --set image.pullPolicy=NoSuchPolicy
Error: UPGRADE FAILED: cannot patch "wordpress" with kind Deployment:
Deployment.apps "wordpress" is invalid:
spec.template.spec.containers[0].imagePullPolicy: Unsupported value:
"NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"

As the error message indicates, a pull policy cannot be set to NoSuchPolicy. This
error came from the Kubernetes API server, which means Helm submitted the mani‐
fest, and Kubernetes rejected it. So our release should be in a failed state.

We can verify this by running helm ls again:

$ helm ls
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VER...
mysite default 3 2020-08-11 deployed drupal-7.0.0 9.0.0
wordpress default 3 2020-08-12 failed wordpress-9.3.11 5.4.2

48 | Chapter 3: Beyond the Basics with Helm

It is worth noting again that the REVISION field for our newly failed wordpress instal‐
lation has been incremented from 2 to 3. Even failed releases have revisions attached
to them. We’ll see why this is important in “History and Rollbacks” on page 52.

Find Details of a Release with helm get
While helm list provides a summary view of installations, the helm get set of com‐
mands provide deeper information about a particular release.

There are five helm get subcommands (hooks, manifests, notes, values, and all).
Each subcommand retrieves some portion of the information Helm tracks for a
release.

Using helm get notes

The helm get notes subcommand prints the release notes:

$ helm get notes mysite
NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/
...

This output should look familiar, as helm install and helm upgrade both print the
release notes at the end of a successful operation. But helm get notes provides a
convenient way to grab these notes on demand. That is useful in cases where you’ve
forgotten what the URL is to your Drupal site.

Using helm get values

One useful subcommand is values. You can use this to see which values were sup‐
plied during the last release. In the previous section, we upgraded a WordPress instal‐
lation and caused it to fail. We can see what values caused it to fail using helm get
values:

$ helm get values wordpress
USER-SUPPLIED VALUES:
image:
 pullPolicy: NoSuchPolicy

Learning About a Release | 49

We know that revision 2 was successful, but revision 3 failed. So we can take a look at
the earlier values to see what changed:

$ helm get values wordpress --revision 2
USER-SUPPLIED VALUES:
image:
 tag: latest

With this, we can see that one value was removed and one value was added. Features
like this are designed to make it easier for Helm users to identify the source of errors.

This command is also useful for learning about the total state of a release’s configura‐
tion. We can use helm get values to see all of the values currently set for that
release. To do this, we use the --all flag:

$ helm get values wordpress --all
COMPUTED VALUES:
affinity: {}
allowEmptyPassword: true
allowOverrideNone: false
customHTAccessCM: null
customLivenessProbe: {}
customReadinessProbe: {}
externalDatabase:
 database: bitnami_wordpress
 host: localhost
 password: ""
 port: 3306
...

When the --all flag is specified, Helm will get the complete computed set of values,
sorted alphabetically. This is a great tool for seeing the exact state of configuration for
the release.

Seeing Default Values

Although helm get values does not have a way of showing you
the default values, you can see those with helm inspect values
CHARTNAME. This inspects the chart itself (not the release) and prints
out the documented default values.yaml file. Thus, we could use
helm inspect values bitnami/wordpress to see the default con‐
figuration for the WordPress chart.

Using helm get manifest

The last helm get subcommand that we will cover is helm get manifest. This sub-
command retrieves the exact YAML manifest that Helm produced using the Chart
templates:

50 | Chapter 3: Beyond the Basics with Helm

$ helm get manifest wordpress
Source: wordpress/charts/mariadb/templates/secrets.yaml
apiVersion: v1
kind: Secret
metadata:
 name: wordpress-mariadb
 labels:
 app: "mariadb"
 chart: "mariadb-7.5.1"
 release: "wordpress"
 heritage: "Helm"
type: Opaque
...

One important detail about this command is that it does not return the current state
of all of your resources. It returns the manifest generated from the template. In the pre‐
ceding example, we see a Secret named wordpress-mariadb. If we query that Secret
using kubectl, the metadata section looks like this:

$ kubectl get secret wordpress-mariadb -o yaml
apiVersion: v1
kind: Secret
metadata:
 annotations:
 meta.helm.sh/release-name: wordpress
 meta.helm.sh/release-namespace: default
 creationTimestamp: "2020-08-12T16:45:00Z"
 labels:
 app: mariadb
 app.kubernetes.io/managed-by: Helm
 chart: mariadb-7.5.1
 heritage: Helm
 release: wordpress
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
...

The output of kubectl contains the record as it currently exists in Kubernetes. There
are several fields that have been added since the template output. Some (like the
annotations) are managed by Helm itself, and others (like managedFields and
creationTimestamp) are managed by Kubernetes.

Once again, Helm provides tools designed to ease debugging. Between helm get man
ifest and kubectl get, you have tools for comparing what Kubernetes thinks is the
current object with what the chart produced. This is particularly helpful when a
resource that should be managed by Helm was manually edited outside of Helm (e.g.,
using kubectl edit).

Learning About a Release | 51

With helm get, we can closely inspect an individual release. But the next tool we will
cover provides us a view of the progression of releases. In the next section, we will
look at helm history and helm rollback.

History and Rollbacks
Throughout this book, we have distinguished between installations and revisions. In
this chapter, we have been working with an installation named mysite and another
installation named wordpress. And when we ran helm list earlier, we saw that each
installation had three releases. Moreover, we saw that wordpress was in a failed state:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VER...
mysite default 3 2020-08-11 deployed drupal-7.0.0 9.0.0
wordpress default 3 2020-08-12 failed wordpress-9.3.11 5.4.2

We can investigate the release history of WordPress to see what happened. To do this,
we will use helm history:

$ helm history wordpress
REVISION UPDATED STATUS CHART APP VER DESCRIPTION
1 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug 12... deployed wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug 12... failed wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"

The output of this command gives us a nice history of the wordpress release. First it
was installed, and then it was upgraded and marked deployed (which means that it
was a successful upgrade). But when it was upgraded again, that upgrade failed. The
helm history command even gives us the error message that Kubernetes returned
when marking the release failed.

From the error, we know that the release failed because we supplied an invalid image
pull policy. So of course we could correct this by simply running another helm
upgrade. But imagine a case where the cause of error was not readily available. Rather
than leave the application in a failed state while diagnosing the problem, it would be
nice to simply revert back to the release that worked before.

This is what helm rollback is for:

$ helm rollback wordpress 2
Rollback was a success! Happy Helming!

This command tells Helm to fetch the wordpress version 2 release, and resubmit that
manifest to Kubernetes. A rollback does not restore to a previous snapshot of the

52 | Chapter 3: Beyond the Basics with Helm

cluster. Helm does not track enough information to do that. What it does is resubmit
the previous configuration, and Kubernetes attempts to reset the resources to match.

Now we can once again use helm history to see what has happened:

REVISION UPDATED STATUS CHART APP VER DESCRIPTION
1 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug 12... failed wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"
4 Wed Aug 12... deployed wordpress-9.3.11 5.4.2 Rollback to 2

The rollback operation created a new revision (4). Since the rollback was successful
(and Kubernetes accepted the alterations), the release is marked deployed. Note that
revision 2 is now marked superseded, while the failed release 3 is still marked
failed.

Because Helm has preserved the history, you can still examine the failed release after
rolling back to a known-good configuration.

In most cases, helm rollback is a great way to recover from a catastrophe. But if you
hand-edit resources that are managed by Helm, an interesting problem may arise.
Rollbacks can on occasion cause some unexpected behavior, especially if the Kuber‐
netes resources have been hand-edited by users. Helm and Kubernetes will attempt to
preserve those hand-edits if they do not conflict with the rollback. Essentially, a roll‐
back will generate a 3-way diff between the current state of the resources, the failed
Helm release, and the Helm release that you roll back to. In some cases, the generated
diff may result in rolling back handmade edits, while in other cases those discrepan‐
cies will be merged. In the worst case, some handmade edits may be overwritten
while other related edits are merged, leading to an inconsistency in configuration.
This is one of the many reasons Helm core maintainers recommend against hand-
editing resources. If all edits are made through Helm, then you can use Helm tools
effectively and with no guesswork.

Keeping History and Rolling Back
In the previous chapter, we saw that the helm uninstall command has a flag called
--keep-history. Normally, a deletion event will destroy all release records associated
with that installation. But when --keep-history is specified, you can see the history
of an installation even after it has been deleted:

$ helm uninstall wordpress --keep-history
release "wordpress" uninstalled

History and Rollbacks | 53

$ helm history wordpress
REVISION UPDATED STATUS CHART APP V DESCRIPTION
1 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug 12... failed wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"
4 Wed Aug 12... uninstalled wordpress-9.3.11 5.4.2 Uninstall complete

Note that the last release is now marked as uninstalled. When history is preserved,
you can roll back a deleted installation:

$ helm rollback wordpress 4
Rollback was a success! Happy Helming!

And now we can see a newly deployed release 5:

$ helm history wordpress
REVISION UPDATED STATUS CHART APP VER DESCRIPTION
1 Wed Aug... superseded wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug... superseded wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug... failed wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"
4 Wed Aug... uninstalled wordpress-9.3.11 5.4.2 Uninstall complete
5 Wed Aug... deployed wordpress-9.3.11 5.4.2 Rollback to 4

But without the --keep-history flag, this will not work:

$ helm uninstall wordpress
release "wordpress" uninstalled
$ helm history wordpress
Error: release: not found
$ helm rollback wordpress 4
Error: release: not found

A Deep Dive into Installs and Upgrades
In Chapter 2 we took a first look at installing and upgrading Helm packages, and
throughout this chapter we have looked at tools that help us work with Helm installa‐
tions. To close out this chapter, we will circle back to installation and upgrading and
look at a few advanced features.

The --generate-name and --name-template Flags
One of the subtle dangers of the way Kubernetes works has to do with naming.
Kubernetes assumes that names will have certain uniqueness properties. For example,

54 | Chapter 3: Beyond the Basics with Helm

a Deployment object must have a name unique within its namespace. That is, in the
namespace mynamespace I cannot have two Deployments named myapp. But I can
have a Deployment and a Pod each named myapp.

This has made certain tasks a little more complicated. For example, a CI system that
automatically deploys things must be able to ensure that the name it gives these
things is unique within the namespace. One approach to dealing with this issue is for
Helm to provide a tool for generating a unique name. (Another approach is to always
overwrite a name if it already exits. See the next section for that approach.)

Helm provides the --generate-name flag for helm install:

$ helm install bitnami/wordpress --generate-name
NAME: wordpress-1597689085
LAST DEPLOYED: Mon Aug 17 11:31:27 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1

With the --generate-name flag, we no longer need to provide a name as the first
argument to helm install. Helm generates a name based on a combination of the
chart name and a timestamp. In the preceding output, we can see the name that was
generated for us: wordpress-1597689085.

In Helm 2, “friendly names” were generated using adjectives and animal names. That
was removed in Helm 3 due to complaints that release names were unprofessional.
There is currently no way to re-enable this feature.

However, there is an additional flag that allows you to specify a naming template. The
--name-template flag allows you do to something like this:

$ helm install bitnami/wordpress --generate-name \
 --name-template "foo-{{ randAlpha 9 | lower }}"
NAME: foo-yejpiyjmp
LAST DEPLOYED: Mon Aug 17 11:46:04 2020
NAMESPACE: default

In this example, we used the name template foo-{{ randAlpha 9 | lower }}. This
uses the Helm template engine to generate a name for you. We’ll cover the Helm tem‐
plate engine in the next few chapters. But here’s what the name template does: The
{{ and }} demarcate the beginning and end of a template. Inside of that template, we
are calling the randAlpha function, asking for a 9-character random string from the
a-z, A-Z range of characters. Then we are “piping” the results through a second
function (lower) that lowercases everything.

Looking at the output of the earlier example, the result of {{ randAlpha 9 |

lower }} was yejpiyjmp. So the result of the entire name template was foo-
yejpiyjmp.

A Deep Dive into Installs and Upgrades | 55

The --create-namespace Flag
Another consideration with naming in Kubernetes has to do with namespaces. Ear‐
lier, we saw that no two objects of the same kind within the same namespace can have
the same name. But Kubernetes also has a concept of global names. CRDs and name‐
spaces each have global names.

A namespace, therefore, must be unique cluster-wide.

Whenever Helm encounters globally unique names, it adopts a defensive posture. In
later chapters, we’ll see how charts handle globally unique names. But here, it is worth
pointing out that Helm 3 assumes by default that if you attempt to deploy a chart into
a namespace, that namespace was already created.

For example, on a fresh cluster this will fail:

$ helm install drupal bitnami/drupal --namespace mynamespace
Error: create: failed to create: namespaces "mynamespace" not found

It fails because mynamespace has not already been created and Helm won’t automati‐
cally create a namespace. It won’t create one because namespaces are global, and the
safe assumption is that when a namespace is created, it probably needs access controls
(like RBACs) and other things assigned to it before it can be safely used in produc‐
tion. In short, it views silently creating a namespace as an opportunity for uninten‐
tionally creating a security hole.

However, Helm does let you override this consideration by explicitly stating that you
want to create a namespace:

$ helm install drupal bitnami/drupal --namespace mynamespace --create-namespace
NAME: drupal
LAST DEPLOYED: Mon Aug 17 11:59:29 2020
NAMESPACE: mynamespace
STATUS: deployed

By adding --create-namespace, we have indicated to Helm that we acknowledge that
there may not be a namespace with that name already, and we just want one to be
created. Be sure, of course, that if you use this flag on a production instance, you have
other mechanisms for enforcing security on this new namespace.

There is not an analogous --delete-namespace on helm uninstall. And the reason
for this falls out of Helm’s defensiveness regarding global objects. Once a namespace
is created, any number of objects may be put in the namespace, not all of them man‐
aged by Helm. And when a namespace is deleted, all of the objects inside of that
namespace are also deleted. So Helm does not automatically delete namespaces that
were created with --create-namespace. To delete a namespace, use kubectl delete
namespace (after making sure, of course, that no important objects exist in that
namespace).

56 | Chapter 3: Beyond the Basics with Helm

Using helm upgrade --install
Some systems, like CI pipelines, are employed to automatically install or upgrade a
chart each time a significant event occurs. For example, many organizations have
pipelines that trigger whenever new code is uploaded to a version control system
(VCS) like Git. GitHub, a popular Git hosting service, even provides tools to automat‐
ically deploy whenever a code change is merged.

Systems like this often run rudimentary scripts on a stateless platform that does not
have the means to query Kubernetes. Users of such systems requested a Helm feature
that would allow “install or upgrade” support in a single command.

To facilitate this behavior, Helm maintainers added the --install flag to the helm
upgrade command. The helm upgrade --install command will install a release if it
does not exist already, or will upgrade a release if a release by that name is found.
Underneath the hood, it works by querying Kubernetes for a release with the given
name. If that release does not exist, it switches out of the upgrade logic and into the
install logic.

For example, we can run an install and an upgrade in sequence using exactly the same
command:

$ helm upgrade --install wordpress bitnami/wordpress
Release "wordpress" does not exist. Installing it now.
NAME: wordpress
LAST DEPLOYED: Mon Aug 17 13:18:14 2020
NAMESPACE: default
STATUS: deployed
...
$ helm upgrade --install wordpress bitnami/wordpress
Release "wordpress" has been upgraded. Happy Helming!
NAME: wordpress
LAST DEPLOYED: Mon Aug 17 13:18:43 2020
NAMESPACE: default
STATUS: deployed

As we can see in the first line of output, the first run of the command caused an
install, while the second caused an upgrade.

This command does introduce some danger, though. Helm has no way of establishing
whether the name of the installation you provide to helm upgrade --install

belongs to the release you intend to upgrade or just happens to be the named the
same thing as the thing you want to install. Careless use of this command could result
in overwriting one installation with another. This is why it is not the default behavior
for Helm.

A Deep Dive into Installs and Upgrades | 57

The --wait and --atomic Flags
Another pair of significant flags for helm install and helm upgrade modify the suc‐
cess criteria for Helm operations. These are the --wait and --atomic flags.

The --wait flag modifies the behavior of the Helm client in a couple of ways. First,
when Helm runs an installation, it remains active for a set window of time (modifia‐
ble with the --timeout flag) during which it watches Kubernetes. It polls the Kuber‐
netes API server for information about all pod-running objects that were created by
the chart. For example, DaemonSets, Deployments, and StatefulSets all create pods.
So Helm with --wait will track such objects, waiting until the pods they create are
marked as Running by Kubernetes.

In a normal install or upgrade, Helm marks a release as successful as soon as the
Kubernetes API server accepts the manifests. This is similar to package managers that
consider a package successfully installed as soon as the package contents are written
to the correct storage locations.

But with --wait, the success criteria for an installation is modified. A chart is not
considered successfully installed unless (1) the Kubernetes API server accepts the
manifest and (2) all of the pods created by the chart reach the Running state before
Helm’s timeout expires.

Thus, installs with --wait can fail for a wide variety of reasons, including network
latency, a slow scheduler, busy nodes, slow image pulls, and outright failure of a con‐
tainer to start.

This behavior is seen as a desirable outcome, and operators use helm install --
wait to ensure that not only did the chart successfully install but that the resulting
application correctly started. However, it does introduce some complicating factors
when troubleshooting. Transient outages may result in Helm failures that are resolved
by Kubernetes later. For example, a delayed image pull might result in a Helm release
marked as failed, even though a few minutes later the image pull can complete and
the application can be started.

With this in mind, though, helm install --wait is a good tool for making sure that
the release is brought all the way to running. But when used in automated systems
(like CI), it may cause spurious failures. One recommendation for using --wait in CI
is to use a long --timeout (five or ten minutes) to ensure that Kubernetes has time to
resolve any transient failures.

A second strategy is to use the --atomic flag instead of the --wait flag. This flag
causes the same behavior as --wait unless the release fails. Then, instead of marking
the release as failed and exiting, it performs an automatic rollback to the last suc‐
cessful release. In automated systems, the --atomic flag is more resistent to outages,

58 | Chapter 3: Beyond the Basics with Helm

since it is less likely to have a failure as its end result. (Keep in mind, though, that
there is no assurance that a rollback will be successful.)

Just as --wait can mark a release as a failure for transitive reasons that may be
resolved by Kubernetes itself, --atomic may trigger an unnecessary rollback for the
same reasons. Thus, it is recommended to use longer --timeout durations for --
atomic, especially when used with CI systems.

Upgrading with --force and --cleanup-on-fail
The last two flags we will look at modify the way that Helm handles the nuances of
upgrades.

The --force flag modifies the behavior of Helm when it upgrades a resource that
manages pods (like Pod, Deployment, and StatefulSet). Normally, when Kubernetes
receives a request to modify such objects, it determines whether it needs to restart the
pods that this resource manages. For example, a Deployment may run five replicas of
a pod. But if Kubernetes receives an update to the Deployment object, it will only
restart those pods if certain fields are modified.

Sometimes, though, Helm users want to make sure that the pods are restarted. That’s
where the --force flag comes in. Instead of modifying the Deployment (or similar
object), it will delete and re-create it. This forces Kubernetes to delete the old pods
and create new ones. By design, using --force will cause downtime. While it is often
only seconds of downtime, it is downtime nonetheless. It is recommended to only use
--force when the situation clearly calls for it, not as a default option. For example,
the core maintainers do not recommend using --force in CI pipelines that deploy to
production.

Another way to modify the behavior of an upgrade is to use the --cleanup-on-fail
flag. Similarly to --force, this flag instructs Helm to do additional work.

Consider the case where you install a chart that creates one Kubernetes Secret. A
new version of the chart is created, and it creates a second Secret. But partway
through the installation, Helm encounters an error and marks the release a failure. It
is possible for the second Secret to be left hanging. This situation is more likely to
arise if --wait or --atomic are used, since those may fail after Kubernetes has
accepted the manifests and created the resources.

The --cleanup-on-fail flag will attempt to fix this situation. On failure, it will
request deletion on every object that was newly created during the upgrade. Using it
may make it a little harder to debug (especially if the failure was a result of the newly
created object), but it is useful if you do not want to risk having unused objects hang‐
ing around after a failure.

A Deep Dive into Installs and Upgrades | 59

Conclusion
The Helm command-line tool provides many useful commands. While the basic
commands were introduced in the previous chapter, this chapter has focused on some
of the other useful commands in Helm. Near the end, we also revisited the installa‐
tion and upgrade commands, getting a taste of some of the more sophisticated fea‐
tures for working with those.

However, not all of the commands were discussed here. In coming chapters, we’ll take
a look at commands for creating and packaging charts, commands for signing and
verifying packages, and more commands for working with repositories.

60 | Chapter 3: Beyond the Basics with Helm

CHAPTER 4

Building a Chart

Charts are at the heart of Helm. In addition to installing them into a Kubernetes clus‐
ter or managing the instances of charts you’ve installed, you can build new charts or
alter existing ones. In the next three chapters we will cover a lot of details about
charts including creating them, the elements inside them, templating Kubernetes
manifests, testing charts, dependencies, and more.

In this chapter you will learn how to create a new chart and learn about the many
parts of a chart. This will include the use of several built-in commands that can help
you in the chart development process.

Charts are the packages Helm works with. They are conceptually similar to Debian
packages used by APT or Formula used by Homebrew for macOS. The conceptual
similarity is where the similarities end. Charts are designed to target Kubernetes as a
platform that has its own unique style. At the heart of charts are templates to generate
Kubernetes manifests that can be installed and managed in a cluster.

Before we dig into templates in Chapter 5, let’s start by creating a basic fully func‐
tional chart. To do that we will cover an example chart named anvil. Using that chart
you will learn about using Helm to generate a chart, the structure of charts and files
within them, packaging charts, and linting charts. Reference the online source for this
chart at https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil.

The Chart Creation Command
Helm includes the create command to make it easy for you to create a chart of your
own, and it’s a great way to get started. This command creates a new Nginx chart,
with a name of your choice, following best practices for a chart layout. Since Kuber‐
netes clusters can have different methods to expose an application, this chart makes

61

https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil

the way Nginx is exposed to network traffic configurable so it can be exposed in a
wide variety of clusters.

The create command creates a chart for you, with all the required chart structure
and files. These files are documented to help you understand what is needed, and the
templates it provides showcase multiple Kubernetes manifests working together to
deploy an application. In addition, you can install and test this chart right out of the
box.

Throughout this chapter we will look at an example application named anvil. It is a
simple application that will show you the structure of a chart and provide you the
chance to alter a chart for a different application. To create the new chart, run the fol‐
lowing command from a command prompt:

$ helm create anvil

This will create a new chart as a subdirectory of your current directory with the name
anvil.

Different Starting Points
Nginx is a good starting point to showcase the parts of a chart and for basic stateless
services. However, if you regularly create charts that do not follow the Nginx model, a
different starting point would be more helpful. For this purpose, Helm has a feature
called starter packs, which helm create can utilize to provide a different starting
point to generate a chart from. This is covered in Chapter 6.

The new chart is a directory containing a number of files and folders. This does not
include every file and folder—you will discover some more in the next couple chap‐
ters. These are the basic ones needed for a functioning chart:

anvil
├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml

The Chart.yaml file contains metadata and some functionality controls for the
chart.

62 | Chapter 4: Building a Chart

Dependent charts can optionally be held in the charts directory. Chart dependen‐
cies are covered in Chapter 6. For now this will be an empty directory.

Templates used to generate Kubernetes manifests are stored in the templates
directory.

The NOTES.txt file is a special template. When a chart is installed, the NOTES.txt
template is rendered and displayed rather than being installed into a cluster.

Templates can include tests that are not installed as part of the install or
upgrade commands. This chart includes a test that is used by the helm test
command. Testing is covered in Chapter 6.

Default values passed to the templates when Helm is rendering the manifests are
in the values.yaml file. When you instantiate a chart, these values can be
overridden.

You can install this newly created chart without any modifications by running the fol‐
lowing command:

$ helm install myapp anvil

When you run this command Helm will create an instance of the chart running in the
cluster with the name myapp. It will install it using the currently configured connec‐
tion and context you use for Kubernetes. Helm is using the same configuration you’re
using when you use kubectl, the command-line application for Kubernetes. In that
command the final argument of anvil is the directory where the chart is located.

The output from this command includes content generated by rendering the
NOTES.txt template, as shown here:

NAME: myapp
LAST DEPLOYED: Sun Apr 5 08:12:59 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
1. Get the application URL by running these commands:
 export POD_NAME=$(kubectl get pods --namespace default ↵
 -l "app.kubernetes.io/name=anvil,app.kubernetes.io/instance=myapp" ↵
 -o jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use your application"
 kubectl --namespace default port-forward $POD_NAME 8080:80

The NOTES section contains information on connecting to the application. Depending
on the values you pass into the chart when it is instantiated, this information can be
very different. This chart can be configured to use a ClusterIP, NodePort, LoadBa‐
lancer, and Ingress to expose an application. By default, a ClusterIP is used.

The Chart Creation Command | 63

If you follow the directions in the notes you will see the default Nginx web page to
show you it’s running, as shown in Figure 4-1.

Figure 4-1. Default Nginx web page when you visit the running application

The methods to expose the application are tied to built-in Kubernetes resource types
rather than features of the application. That makes them portable to your custom
applications. The methods to expose applications include:

ClusterIP
A configuration option on the Kubernetes Service resource type that exposes the
service on a cluster-level internal IP address.

NodePort
An alternative option for Kubernetes Service resources that exposes the service
on a static port of each node. A ClusterIP is automatically created as well.

LoadBalancer
A Kubernetes Service configuration option that exposes an application exter‐
nally using a load balancer provided by the hosting provider.

Ingress
Ingress resources are additional resources to Services that expose a service over
HTTP and HTTPS. An Ingress Controller, such as ingress-nginx, is required for
this to work.

If you installed this chart into your cluster to test it, you can delete the instance from
your cluster by running the following command:

$ helm delete myapp

64 | Chapter 4: Building a Chart

When the chart is installed the image used for Nginx, by default, is
the latest version of the image from the Docker Official Images. If
the Kubernetes cluster you are working with does not have access
to hub.docker.com you won’t be able to install the image. You would
need to set the image to one your cluster has access to.

Now that a working chart has been scaffolded, let’s take a look at what’s inside and
modify it for the Anvil application.

The Chart.yaml File
Look inside the anvil directory and you’ll find a file named Chart.yaml. The
Chart.yaml file tells Helm and other tools about your chart. Other tools include
Kubeapps (an on-premise catalog and application installer), the Artifact Hub (a list‐
ing of cloud native artifacts), and many others.

When you open the Chart.yaml file, you will see the contents shown in Example 4-1.

Example 4-1. The generated Chart.yaml file

apiVersion: v2
name: anvil
description: A Helm chart for Kubernetes

A chart can be either an 'application' or a 'library' chart.
#
Application charts are a collection of templates that can be packaged into ↵
 versioned archives
to be deployed.
#
Library charts provide useful utilities or functions for the chart developer.↵
 They're included as
a dependency of application charts to inject those utilities and functions ↵
 into the rendering
pipeline. Library charts do not define any templates and therefore cannot be ↵
 deployed.
type: application

This is the chart version. This version number should be incremented each ↵
 time you make changes
to the chart and its templates, including the app version.
version: 0.1.0

This is the version number of the application being deployed. This version ↵
 number should be
incremented each time you make changes to the application. Versions are not ↵
 expected to
follow Semantic Versioning. They should reflect the version the application ↵

The Chart.yaml File | 65

https://oreil.ly/YghQP

 is using.
appVersion: 1.16.0

The apiVersion tells Helm what structure the chart is using. An apiVerison of
v2 is designed for Helm v3.

The name is used to identify the chart in various places.

Charts can have many versions. Helm uses the version information to order and
identify charts.

This Chart.yaml file contains numerous keys, of which only three are required. The
apiVersion property tells Helm which version of a chart this is. Helm v3 can work
with charts whose apiVersion is v1 or v2. v1 charts are those designed to work with
previous versions of Helm. If your charts are designed to work with Helm v3 or
newer you should set this to v2. The value of name is typically used as part of the
name for Kubernetes resources. This means names are limited to lowercase alphanu‐
meric, -, and . characters and must start and end with an alphanumeric character.
Names are typically lowercase alphanumeric characters. The final required key is
version, containing the version of the chart. Versions are expected to follow Seman‐
tic Versioning, which was covered in Chapter 2.

You might notice that the style of a Chart.yaml file is similar but mildly different from
those of Kubernetes manifests. Chart.yaml files are not the same format as custom
resources but do contain some of the same properties. The original Chart.yaml files
were designed back in 2015, long before Kubernetes custom resource definitions exis‐
ted. While Helm has progressed in major versions, it has maintained a certain
amount of backward compatibility over time to not disrupt users too much. This has
led to differences between the Chart.yaml file format and Kubernetes manifests.

Chart.yaml files also contain descriptive information, which is useful as it’s presented
in user interfaces. The description field in Example 4-1 is one such field, but you
can add additional fields, such as the following:

• home is a URL to the chart or projects homepage.
• icon is an image (e.g., PNG or SVG file) in the form of a URL.
• maintainers contains a list of maintainers. Each maintainer on the list can have

a name, email, and URL.
• keywords can hold a list of keywords about the project.
• sources is for a list of URLs to source code for the project or chart.

A full description of the properties in the Chart.yaml file are available in Appendix A,
for reference.

66 | Chapter 4: Building a Chart

The generated Chart.yaml file can be modified for the Anvil application. The follow‐
ing modifications update the required fields, add some descriptive files, and remove
comments:

apiVersion: v2
name: anvil
description: A surprise to catch something speedy.
version: 0.1.0
appVersion: 9.17.49
icon: https://wile.example.com/anvil.svg
keywords:
 - road runner
 - anvil
home: https://wile.example.com/
sources:
 - https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil
maintainers:
 - name: ACME Corp
 email: maintainers@example.com
 - name: Wile E. Coyote
 email: wile@example.com

One property that was in the generated Chart.yaml file but is not in the one for Anvil
is type. Anvil is an application which is the default value for the type field, so the
type field is not required. The other type of chart is a library chart, which is covered
in Chapter 7.

The appVersion property is unique. It is both descriptive and regularly used within
the templates. The appVersion property represents the version of the primary or
combined application. For example, if the application being packaged was Word‐
Press, it would be the version of WordPress.

The icon property is a URL, and that can include data URLs. Data
URLs enable you to embed small files in URL form. This is espe‐
cially useful if the logo is a small SVG file. If a chart may be run in
air-gapped on-premise environments or you do not want user
interfaces constantly downloading a file from your web server, a
data URL is a useful choice.

Modifying Templates
In order to modify this chart for the Anvil application or your own custom applica‐
tion, you will need to understand and modify templates. Out of the box, the templates
created by the helm create command run Nginx as a stateless application. In the
example we are working through, Nginx will need to be replaced with Anvil.

Modifying Templates | 67

https://oreil.ly/1gj45
https://oreil.ly/1gj45

Helm is written in the Go programming language, and Go includes template pack‐
ages. Helm leverages the text template package as the foundation for its templates.
This template language is similar to other template languages and includes loops, if/
then logic, functions, and more. An example template of a YAML file follows:

product: {{ .Values.product | default "rocket" | quote }}

In this YAML file there is a key name of product. The value is generated using a tem‐
plate. {{ and }} are the opening and closing brackets to enter and exit template logic.
There are three parts to the template logic separated by a |. This is called a pipeline,
and it works the same way as a pipeline in Unix-based systems. The value or output
of a function on the left is passed in as the last argument to the next item in the pipe‐
line. In this case, the pipeline starts with the value from the property in .Values.prod
uct. This comes from the data object passed in when the templates are rendered. The
value of this data is piped as the last argument to the default function, which is one
of the functions provided by Helm. If the value passed in is empty, the default func‐
tion uses the default value of "rocket", ensuring there is a value. This is then sent to
the quote function, which ensures the string is wrapped in quotes before writing it to
the template.

The . at the start of .Values.product is important. This is considered the root object
in the current scope. .Values is a property on the root object.

The Deployment
Helm charts can hold templates for any Kubernetes resource type you might use. That
includes StatefulSets, Jobs, PersistentVolumeClaims, Services, and much more.
The chart created with helm create is designed to run a stateless service as a Kuber‐
netes Deployment. The example application we are using here for Anvil is a stateless
application, which means it will work well as a deployment.

To understand the Deployment template, we can take a look at the deployment.yaml
file in the templates directory of the chart. The following is the templated version of
the Deployment up to the spec section:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ include "anvil.fullname" . }}
 labels:
 {{- include "anvil.labels" . | nindent 4 }}

This looks very similar to the start of a Kubernetes manifest. It has an apiVersion,
the kind, and metadata. Once you get into the metadata you’ll notice the templating
begins.

68 | Chapter 4: Building a Chart

If you are unfamiliar with the structure of Kubernetes Deploy‐
ments, you can read about them in the Kubernetes documentation.

The include template function enables including the output of one template in
another template, and this works in pipelines. The first argument to the include
function is the name of the template to use. The . passed in as the second argument is
the root object. This is passed in so the properties and functions on the root object
can be used within the called template.

anvil.fullname and anvil.labels are two reusable templates included in the chart via the
_helpers.tpl file. (The _ at the start of the name causes it to bubble up to the top of
directory listings so you can easily find it among your templates; Helm does not ren‐
der them into Kubernetes manifests but does make templates in them available for
use.) anvil.fullname provides a name based on the name chosen when the chart is
instantiated, and anvil.labels provides labels following Kubernetes best practices. The
functions are covered in more depth in Chapter 5.

After the metadata section of the template is the spec section, which reads as follows:

spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 {{- include "anvil.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 labels:
 {{- include "anvil.selectorLabels" . | nindent 8 }}
 spec:
 {{- with .Values.imagePullSecrets }}
 imagePullSecrets:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 serviceAccountName: {{ include "anvil.serviceAccountName" . }}
 securityContext:
 {{- toYaml .Values.podSecurityContext | nindent 8 }}
 containers:
 - name: {{ .Chart.Name }}
 securityContext:
 {{- toYaml .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default↵
 .Chart.AppVersion }}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 ports:
 - name: http
 containerPort: 80
 protocol: TCP

Modifying Templates | 69

https://oreil.ly/aIuIE

 livenessProbe:
 httpGet:
 path: /
 port: http
 readinessProbe:
 httpGet:
 path: /
 port: http
 resources:
 {{- toYaml .Values.resources | nindent 12 }}
 {{- with .Values.nodeSelector }}
 nodeSelector:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.affinity }}
 affinity:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.tolerations }}
 tolerations:
 {{- toYaml . | nindent 8 }}
 {{- end }}

The location and version of the container image is configurable via values.

The spec section completes the deployment. Most of this section is filling in data with
the properties on .Values. There are a few elements that are hardcoded, such as the
ports used to expose the application. Anvil is exposed over HTTP on port 80, so we
do not need to change the port. If your containers are exposed on different ports, you
will need to make changes here.

The value of image for the container is set using values. You won’t find the location of
the image hardcoded here. This is useful for those cases where the image location
needs to be set to a different location when a chart is instantiated. It means we need to
change the location in the default values.

The properties on .Values are computed based on a number of factors. The default
values and starting point are based on the values provided by the values.yaml file in
the chart. The values.yaml file is covered in the next section. These values can be
overridden by values passed in when the chart is instantiated. The helm CLI has flags
to pass in values directly (i.e., --set, --set-file, and --set-string) or to pass in a
file with values (i.e., -f or --values). The values are merged together, with those
being passed in later taking precedence.

Templates are a large topic and typically make up the bulk of a chart. Chapter 5 is
dedicated to templates.

70 | Chapter 4: Building a Chart

Using the Values File
When someone instantiates an application in a Kubernetes cluster from a chart, they
don’t need to supply all the values used in the templates. If they did, it would provide
for a difficult user experience. This is where the values.yaml file comes in.

Charts include a values.yaml file that sits alongside the Chart.yaml file in the root of a
chart. The values.yaml file contains the default values used by the chart, and it is a
form of documentation for the custom values that can be passed into a chart.

values.yaml is an unstructured YAML file. There are some common and useful practi‐
ces, which will be covered shortly, but nothing is required in the format of the YAML.
This enables chart creators to provide a structure and information that works well for
them. A values.yaml file can contain numerous things, from simple substitution for
Kubernetes manifest properties to elements needed for application-specific business
logic.

Container Images
The opening part of the values.yaml file created by helm create contains the image
information along with some opening documentation and information on replicas:

Default values for anvil.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

replicaCount: 1

image:
 repository: ghcr.io/masterminds/learning-helm/anvil-app
 pullPolicy: IfNotPresent
 # Overrides the image tag whose default is the chart version.
 tag: ""

imagePullSecrets: []

The location of the image. It has been updated to reflect the location of Anvil.

A policy of IfNotPresent means that the image will be cached in the Kubernetes
cluster by the version being used. Always is another option that bypasses the
cache and always downloads from the repository.

By default this chart uses the appVersion as the tag. If an image tag is specified, it
is used instead of the appVersion.

A list of pull secrets is used when credentials are needed to access a container
registry location that is protected with a username and password.

Using the Values File | 71

This chart and the values represent an application bundled as a single image. The pat‐
terns used in the values.yaml file are designed with that in mind. For example, there is
only one image location. If your applications have multiple images, each image would
have a section containing much of the information here. This includes replicaCount,
which is the number of replicas Kubernetes will use when the Deployment is
created.

The image section contains details about the image. The repository contains the
location of the image to use while the pullPolicy tells Kubernetes how often to fetch
or cache the images. If a moving tag, such as stable, is used, the pullPolicy should
be set to Always so that changes are picked up. Since a version is being used, the
default pullPolicy is set to IfNotPresent so that a cached version can be used if
available. The tag property provides an opportunity to set a tag that is different from
the appVersion set in the Chart.yaml file.

You might notice there is no method to set a digest when fetching an image. Digests
can be different when images are in different repositories. For example, if the Anvil
image were copied from Docker Hub to Quay, another image repository, the digest
would change for the same image even if the tag and content remained the same.
Chapter 5 provides an example of adding in support for a digest to a chart, if that is
desired.

If you need to pull an image from a container registry with access controls, Kuber‐
netes needs to know how to do that. This happens through the use of pull secrets.
imagePullSecrets allows you to list the names of pull secrets with access to private
registries. Reference the documentation for creating a pull secret.

The generated chart has some security considerations built in that can be enabled or
otherwise configured. A service account for the chart instance is created by default,
while the other options are opt-in. The following is what is generated by helm create:

serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, a name is generated using the fullname ↵
 template
 name:

podSecurityContext: {}
 # fsGroup: 2000

securityContext: {}
 # capabilities:
 # drop:
 # - ALL

72 | Chapter 4: Building a Chart

https://oreil.ly/BL-VO

 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000

You will notice that most of the properties in the configuration are comments and are
inactive. When the chart is rendered with the values as comments, there is no value
for those properties. The value is empty. By having a structure and values as com‐
ments the chart is documenting the structure and default values that can be used but
isn’t turning on those features.

Exposing Services
The next section of the values.yaml file deals with exposing the application for others
to consume:

service:
 type: ClusterIP
 port: 80

ingress:
 enabled: false
 annotations: {}
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 hosts:
 - host: chart-example.local
 paths: []
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local

In Kubernetes there are two built-in objects you can use to expose applications. The
first is a Service. The service property will let you select the type of Service being
used. While ClusterIP is used by default, other options such as NodePort and
LoadBalancer can be used. The few lines of YAML in the service section are paired
with the generated service.yaml template to create a full Service manifest to upload to
Kubernetes.

The second built-in object is the Ingress manifest, which can be paired with a Ser
vice, and the chart has the capability to generate them. Ingress configuration pro‐
vides a means to show off a common pattern found in charts: the use of an enabled
property to turn features on and off. In this case ingress.enabled is set to false.
When Helm renders the templates and sees a value of false, the Ingress manifest is
skipped. This is due to the use of an if logic statement in the Ingress template found
in the generated ingress.yaml file.

Using the Values File | 73

Ingress Controllers
For a functional ingress setup you need more than an Ingress resource in Kuber‐
netes. The Ingress resource you can include in a chart connects the Ingress Control‐
ler to a Service. You will need to have an Ingress Controller running in your cluster
because one is not included by default. The Kubernetes community provides the
Nginx Ingress Controller, which is a good default option.

Resource Limits
When you run applications in production, it is a good practice to set resource limits.
This prevents, for example, a memory leak in one container from disrupting other
containers. When a chart author creates a chart that others are going to use, they may
not know where it will be installed and how many resources will be available there.
Could this be installed on a laptop by a developer or someone testing out the chart?
Or, might this be installed on large production servers? To handle this variance in
environment, the recommendation is to put in resource limits and then turn them
into comments. This can be found in the next section of the values.yaml file:

resources: {}
 # We usually recommend not to specify default resources and to leave this as
 # a conscious choice for the user. This also increases chances charts run on
 # environments with little resources, such as Minikube. If you do want to
 # specify resources, uncomment the following lines, adjust them as necessary,
 # and remove the curly braces after 'resources:'.
 # limits:
 # cpu: 100m
 # memory: 128Mi
 # requests:
 # cpu: 100m
 # memory: 128Mi

Those who install applications use these numbers as recommendations when they
instantiate a chart. These numbers are the default values that have been set for a sim‐
ple Nginx setup as it was generated. They work for the Anvil application. If your
application will need different values, you will need to update these.

Workloads have the ability to specify details about where they are executed in a clus‐
ter by the settings node selector, tolerations, and affinity. Although these more
advanced features are often not used, it is a good idea to include them in a chart for
those who need them. The generated values.yaml file and templates take this into
account. The following example has generated YAML keys for these advanced
features. The values are empty by default with an expectation that the person who
installs the chart will set values as appropriate for their installation:

74 | Chapter 4: Building a Chart

https://oreil.ly/vc3ed

nodeSelector: {}

tolerations: []

affinity: {}

Packaging the Chart
You can package the files and directories of a chart into a single archive file. This is
useful for many reasons, including:

• For distribution to other people. One of the powerful aspects of a package man‐
ager is where someone with knowledge of running an application packages it up
so that others, who don’t have intimate knowledge of the platform or application,
can run it.

• When a version of an application needs to be taken through a multienvironment
test process. An example of this process is where there are development, quality
assurance (QA), and production environments and the application needs to pass
QA prior to going into production.

• When developing a multiservice application and developers need to run services
built or otherwise handled by others as part of their development setup.

In each of these situations it is often simpler to pass around a single file for the chart
than a directory structure.

Chart versions bring another wrinkle to the way you distribute and consume charts.
You or someone consuming your chart may need to use different versions of the
chart. This is why it’s useful to store and share different versions using chart reposito‐
ries or Open Container Initiative (OCI) registries, covered in Chapter 7. In these
environments, storing and sharing many files in a collection of directory structures
for each version is far from simple.

Helm has the ability to build a chart archive. Each chart archive is a gzipped TAR file
with the extension .tgz. Any tool that can create, extract, and otherwise work on gzip‐
ped TAR files will work with Helm’s chart archives.

When Helm generates the archive files, they are named using a pattern of
chart name-version.tgz. Helm expects this same pattern when consuming them. The
chart name is the name you will find inside the Chart.yaml file and the version is the
chart version. This enables multiple versions of the same chart to be stored alongside
each other. You can package Anvil as an archive by running:

$ helm package anvil

Packaging the Chart | 75

In this case anvil is the path to the location where the anvil chart source is located.
By default, the helm package command will place the archive in the directory you
were in when you ran the command.

There are some useful flags you can use when packaging a chart:

--dependency-update (-u)
Tells Helm to update the dependent charts prior to creating the archive. This will
update the Chart.lock file and place a copy of the dependent charts in the chart
directory. Dependencies are covered in more detail in Chapter 6.

--destination (-d)
Enables you to set the location to put the chart archive if it is different from the
current working directory.

--app-version

Can be used to set the appVersion property of the Chart.yaml file. This is espe‐
cially useful if you create new releases of the chart for each new release of your
application running within the container and there is no other change to the
chart. Automation can use a flag like this as part of the process to build the new
version.

--version

Updates the chart’s version. This is useful if you’re updating the appVersion
using the command line as part of the process to package a chart.

Flags for Pretty Good Privacy (PGP) signing charts
Helm charts can be cryptographically signed and verified. The package com‐
mand has flags for the signing portion of the process, while commands like
install and upgrade have flags for the verification portion of the process. Chap‐
ter 6 covers this process.

Sometimes you will have files in a chart directory that you do not want to include in
the chart archive. Optionally, in a chart directory there can be a .helmignore file. This
is similar to a .gitignore file for Git. The helm create command used earlier created
one with the following contents:

Patterns to ignore when building packages.
This supports shell glob matching, relative path matching, and
negation (prefixed with !). Only one pattern per line.
.DS_Store
Common VCS dirs
.git/
.gitignore
.bzr/
.bzrignore
.hg/
.hgignore

76 | Chapter 4: Building a Chart

.svn/
Common backup files
*.swp
*.bak
*.tmp
*.orig
*~
Various IDEs
.project
.idea/
*.tmproj
.vscode/

Many of these extensions and patterns may look familiar because they come from
various version control systems and code editors.

When the chart archive is created, you usually don’t want to include elements like
your version control system data. The .helmignore file provides a place to specify what
to skip. This file needs to be at the top level of the chart.

Helm is designed to work with the archive files the same way it works with directory
structures. Commands like helm install and helm lint, which will be covered
shortly, can be passed an archive file the same way they can be passed a directory.

Linting Charts
When developing charts, especially when working with YAML templates, it can be
easy to make a mistake or miss something. To help you catch errors, bugs, style
issues, and other suspicious elements, the Helm client includes a linter. This linter can
be used during chart development and as part of any testing processes.

To use the linter, use the lint command on a chart as a directory or a packaged
archive:

$ helm lint anvil
==> Linting anvil

1 chart(s) linted, 0 chart(s) failed

The first line is the command you run, while the following lines are output by Helm.
In this case there were no issues. You could use this command on an archive file like
the one in the previous section. To do that, change the anvil argument, set to the
directory location for the chart, to the archive file anvil-0.1.0.tgz.

This command is able to lint multiple charts in a single command. For example, if
you had a second chart called mychart and wanted to lint it alongside anvil, you could
run the following command:

$ helm lint anvil mychart

Linting Charts | 77

The three levels of actionable feedback about charts Helm provides are info, warning,
and errors. Info-level feedback is informational; charts can be installed with info-level
feedback. Info-level feedback causes Helm to have an exit code of 0. Error-level feed‐
back means there is a problem with the chart. If a chart generates an Invalid manifest
for Kubernetes, such as YAML being invalid, Helm will generate an error. Errors
cause Helm to have a nonzero exit code, which is useful to catch issues in automated
testing tools. In the middle are warning messages. These messages address findings
that may cause issues. By default, warning messages cause Helm to have an exit code
of 0, but Helm adds a --strict flag that causes the exit codes to be nonzero. You can
choose how to handle these in automation.

Exit Codes
When an application exits, it provides a code or status to the parent that executed it.
When you run Helm this is usually the operating system, command prompt, or shell.
A zero exit status means that the application exited without any issues. A nonzero exit
status means there was a problem. Automated testing systems often use exit codes to
know when to continue or stop. Typically, when an application used in automated
testing returns a nonzero exit code, the automated processes end and people are noti‐
fied of an error.

In this case there were no issues found with the anvil chart. A default chart, created
by helm create, will have a single info message about a missing icon property in the
Chart.yaml file. This is an info-level notice so that people are aware it is missing. The
missing icon will not affect the operation of the chart, but it will affect the way it is
displayed in user interfaces.

Conclusion
Creating a simple chart for your application is straightforward when you use the helm
create command. Even when your applications are more complicated, the structure
of charts is able to accommodate them, and the helm create command can help you.
With a few minor modifications made in this chapter you can install the Anvil chart
using helm install and see the custom application running in your cluster. You can
use this same flow to create your own charts.

In the next chapter you will learn about creating templates with an emphasis on how
the template language works and how you can apply it to Kubernetes templates stored
in charts. Templates are usually the largest part of a chart where you will spend the
most time. Understanding what you have available to you when you create templates
will make the process of developing them faster and easier.

78 | Chapter 4: Building a Chart

https://oreil.ly/zHz8g

CHAPTER 5

Developing Templates

Templates are at the heart of Helm charts, and they make up a majority of the files
and content of a chart. These are the files that live within the templates directory.
Helm will render the templates and send them to Kubernetes when you run com‐
mands like helm install and helm upgrade. If you use the helm template com‐
mand, the templates are rendered and displayed as output (i.e., sent to standard out).

The template engine enables a wide range of ways to build templates. In simple situa‐
tions, you can substitute values in Kubernetes manifest YAML files with values passed
in by the user or from the values.yaml file. In more complex situations, you can build
logic into templates that simplify what chart consumers need to input. Or you can
build in features that can configure applications themselves.

In this chapter you will learn how to develop templates and understand how the tem‐
plate syntax works. We’ll also cover a number of cool features that Helm has added to
the templates that enable you to work with YAML and interact with Kubernetes.
Along the way we will look at some patterns you can apply to your own templates.

The Template Syntax
Helm uses the Go text template engine provided as part of the Go standard library.
The syntax is used in kubectl (the command-line application for Kubernetes) tem‐
plates, Hugo (the static site generator), and numerous other applications built in Go.
The template engine, as it is used in Helm, is designed to work with various types of
text files.

You don’t need to know the Go programming language to develop templates. There
are some Go-isms in the template engine, but if you don’t know Go you can treat
them as nuances of the template language. We will call them out as you learn to
develop templates.

79

Why Go’s Template Engine?
When Helm was being developed and a need arose for a template engine, the tem‐
plate engine provided in the standard library for Go was the most mature and stable
option. Additionally, this template engine had a security model and was maintained
by Google with a security policy. It was the best choice.

Since that time, more general-purpose template engines have been made available to
Go. The Helm project has been open to supporting other template engines and for
several years had a code extension point where they could be added. Over that time
there was only mild interest in other template systems, and no one was motivated
enough to contribute support for one.

The Go template syntax is similar to those of other systems and has proven to be
capable of handing the needs of Helm users.

Actions
Logic, control structures, and data evaluations are wrapped by {{ and }}. These are
called actions. Anything outside of actions is copied to output.

When the curly brackets are used to start and stop actions they can be accompanied
by a - to remove leading or trailing whitespace. The following example illustrates this:

{{ "Hello" -}} , {{- "World" }}

The generated output of this is “Hello,World.” The whitespace has been removed
from the side with the - up to the next nonwhitespace character. There needs to be an
ASCII whitespace between the - and the rest of the action. For example, {{–12}}
evaluates to –12 because the - is considered part of the number instead of the bracket.

Within actions there are a wide variety of features you can leverage, including pipe‐
lines, if/else statements, loops, variables, subtemplates, and functions. Using these
together provides a powerful way to program templates.

Information Helm Passes to Templates
When Helm renders a template it passes a single data object to the template with
information you can access. Inside the template that object is represented as a . (i.e., a
period). It is referred to as a dot. This object has a wide variety of information avail‐
able on it.

In Chapter 4, you already saw how values in the values.yaml file are available as prop‐
erties on .Values. The properties on .Values are specific to each chart based entirely
on the values in the values.yaml file and those passed into a chart. The properties
on .Values do not have a schema and vary from chart to chart.

80 | Chapter 5: Developing Templates

In addition to the values, information about the release, as first described in Chap‐
ter 2, can be accessed as properties of .Release. This information includes:

.Release.Name

The name of the release.

.Release.Namespace

Contains the namespace the chart is being released to.

.Release.IsInstall

Set to true when the release is a workload being installed.

.Release.IsUpgrade

Set to true when the release is an upgrade or rollback.

.Release.Service

Lists the service performing the release. When Helm installs a chart, this value is
set to "Helm". Different applications, those that build on Helm, can set this to
their own value.

The information in the Chart.yaml file can also be found on the data object at .Chart.
This information does follow the schema for the Chart.yaml file. This includes:

.Chart.Name

Contains the name of the chart.

.Chart.Version

The version of the chart.

.Chart.AppVersion

The application version, if set.

.Chart.Annotations

Contains a key/value list of annotations.

Each of the properties that can be in a Chart.yaml file is accessible. The names differ
in that they start with a lowercase letter in Chart.yaml but start with an uppercase let‐
ter when they are properties on the .Chart object.

If you want to pass custom information from the Chart.yaml file to the templates, you
need to use annotations. The .Chart object only contains the fields from the
Chart.yaml file that are in the schema. You can’t add new fields to pass them in, but
you can add your custom information to the annotations.

The Template Syntax | 81

Uppercase Property Names
Property names on data objects passed into templates begin with uppercase letters.
This is a product of Helm being written in the Go programming language. In Go,
public properties start with an uppercase letter and private properties start with a
lowercase letter. When accessing the data object you just need to remember that the
first letter is uppercase.

Different Kubernetes clusters can have different capabilities. This can depend on
things like the version of Kubernetes you are using or if there are custom resource
definitions (CRDs) installed. Helm provides some data about the capabilities of the
cluster as properties of .Capabilities. Helm interrogates the cluster you are deploy‐
ing an application into to get this information. This includes:

.Capabilities.APIVersions

Contains the API versions and resource types available in your cluster. You will
learn how to use this in a little bit.

.Capabilities.KubeVersion.Version

The full Kubernetes version.

.Capabilities.KubeVersion.Major

Contains the major Kubernetes version. Because Kubernetes has not been incre‐
menting the major version, this is set to 1.

.Capabilities.KubeVersion.Minor

The minor version of Kubernetes being used in the cluster.

When helm template is used, Helm does not interrogate a cluster the same way it
does for helm install or helm upgrade. The capabilities information provided to
templates being processed when helm template is run is default information Helm
already knows about compliant Kubernetes clusters. Helm works this way because the
template command is expected to only be used for processing templates and doing
so in a manner that does not accidentally leak information from a configured cluster.

Charts can contain custom files. For example, you can have a configuration file you
want to pass to an application through a ConfigMap or Secret as a file in the chart.
The nonspecial files in a chart that are not listed in the .helmignore file are available
on .Files within templates. This will not give you access to the template files.

82 | Chapter 5: Developing Templates

The .helmignore File
You can include files in a chart directory that you do not want packaged up in a chart
archive and that you do not want to be used by Helm or the chart. List those files in
a .helmignore file at the root of the chart alongside the Chart.yaml file.

A .helmignore file is similar to a .gitignore file in Git, the source code management sys‐
tem. Individual files, directories, and patterns of files to ignore can be listed. When
helm create is run to generate a new chart, it includes a .helmignore file that ignores
common source control management systems and editor files.

The final piece of data passed into the template is details about the current template
being executed. Helm passes in:

.Template.Name

Contains the namespaced filepath to the template. For example, in the anvil chart
from Chapter 4 a path would be anvil/templates/deployment.yaml.

.Template.BasePath

The namespaced path to the templates directory of the current chart (e.g., anvil/
templates).

Later in this chapter you will learn how you can change the scope of . in some cir‐
cumstances. When the scope changes, properties like .Capabilities.KubeVer
sion.Minor will become inaccessible at that location. When template execution
begins, . is mapped to $ and $ does not change. Even when the scope changes,
$.Capabilities.KubeVersion.Minor and other passed-in data is still accessible. You
will find $ is typically only used when the scope has changed.

Now that you’ve learned about the data being passed into the template, we will look at
how you can use and manipulate that data within a template.

Pipelines
A pipeline is a sequence of commands, functions, and variables chained together. The
value of a variable or the output of a function is used as the input to the next function
in a pipeline. The output of the final element of a pipeline is the output of the pipe‐
line. The following illustrates a simple pipeline:

character: {{ .Values.character | default "Sylvester" | quote }}

There are three parts to this pipeline, each separated by a |. The first
is .Values.character, which is a calculated value of character. This is either the
value of character from the values.yaml file or one passed in when the chart is being
rendered by helm install, helm upgrade, or helm template. This value is passed as

The Template Syntax | 83

the last argument to the default function. If the value is empty, default will use the
value of “Sylvester” in its place. The output of default is passed as an input to quote,
which ensures the value is wrapped in quotation marks. The output of quote is
returned from the action.

Pipelines are a powerful tool you can use to transform data you want in the template.
They can be used for a variety of purposes, from creating powerful transformations to
protecting against simple bugs. Can you spot the bug in the following YAML output?

id: 12345e2

The value of id looks like a string, but it is not. The only letter is an e, and the rest are
numbers. YAML parsers, including the one used by Kubernetes, will interpret that as
a number in scientific notation. This will cause errors. A short string like this is a
common output when you get a shortened version of a digest or commit ID from Git.
A simple fix is to wrap the value in quotes:

id: "12345e2"

When the value is wrapped in quotes, the YAML parsers will interpret it as a string.
This is a case where using the quote function on the end of a pipeline can fix or avoid
a bug.

Unix Pipeline
In Unix and Unix-like systems (e.g., Linux) a pipeline is where the output of one
application is used as an input in the next application. Applications that each do one
thing can be chained together using their inputs and outputs as interfaces.

Pipelines originated from Douglas McIlroy and were later incorporated into the Unix
philosophy by Ken Thompson, who worked on the design and implementation of the
original Unix operating system. Two principles from the Unix philosophy include
“make each program do one thing well” and “expect the output of every program to
become the input to another, as yet unknown, program.”

Ken Thompson and Rob Pike, another member of the Unix team, are two of the orig‐
inal creators of the Go programming language.

Template Functions
Within actions and pipelines, there are template functions you can use. You have
already seen some of these, including the default and quote functions described ear‐
lier in this chapter. Functions provide a means to transform the data you have into
the format you need rendered or to generate data where none exists.

84 | Chapter 5: Developing Templates

Most of the functions are provided by Helm and are designed to be useful when
building charts. The functions range from the simple, like the indent and nindent
functions used to indent output, to the complex ones that are able to reach into the
cluster and get information on current resources and resource types.

Sprig Library
Many of the functions found in Helm templates are provided by a library named
Sprig. These functions were developed alongside Helm, by Helm authors, with chart
use cases in mind. They were placed into a separate library because they were generic
enough that other applications could use them, too.

This is useful to know if you need functions for your Go-based application, find an
issue in a function and want to report or fix it, or want to contribute a function of
your own to Helm.

To illustrate functions we can look at a common pattern used in charts to improve
readability. When helm create is run, as you saw in Chapter 4, a Kubernetes Deploy
ment template is created as part of the chart. The Deployment template includes a sec‐
tion for a security context:

 securityContext:
 {{- toYaml .Values.podSecurityContext | nindent 8 }}

Read the full chart from Chapter 4 at https://github.com/Master
minds/learning-helm/tree/main/chapter4/anvil.

In the values.yaml file there is a YAML entry for podSecurityContext. This is meant
to be the exact YAML passed in the template section of a Deployment for
securityContext. Inside, the template the information from the values.yaml file is no
longer YAML. Instead it is a data object. The toYaml function turns the data into
YAML.

The YAML under securityContext needs to be indented properly or the Deploy‐
ment’s manifest will have YAML errors due to a section not being properly indented.
This is accomplished through the use of two functions. To the left of toYaml a - is
used with {{ to remove all the whitespace up to the : on the previous line. The output
of toYaml is passed to nindent. This function adds a newline at the start of the text it
receives and then indents each line.

The Template Syntax | 85

https://oreil.ly/fBfwm
https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil
https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil

nindent is used instead of the indent function for readability. The indent function
does not add a newline at the beginning. nindent is used so that the YAML under
securityContext can be on a new line. This is another common pattern found in
templates.

In addition to toYaml, Helm has functions to convert data to JSON
with toJson and to TOML with toToml. toYaml is often used when
creating Kubernetes manifests, while toJson and toToml are more
often used when creating configuration files to be passed to appli‐
cations through Secrets and ConfigMaps.

The order of arguments passed into a function is intentional. When pipelines are
used, the output of one function is passed as the last argument to the next function in
the pipeline. In the previous example the output of toYaml is passed as the last argu‐
ment to nindent, which takes two arguments. The order of arguments on functions is
designed for common pipeline use cases.

There are more than a hundred functions available to use within templates. These
include functions for handling math, dictionaries and lists, reflection, hash genera‐
tion, date functions, and much more.

Methods
Up to this point, you have seen template functions. Helm also includes functions that
detect the capabilities of a Kubernetes cluster and methods to work with files.

The .Capabilities object has the method .Capabilities.APIVersions.Has, which
takes in a single argument for the Kubernetes API or type you want to check the exis‐
tence of. It returns either true or false to let you know if that resource is available in
your cluster. You can check for a group and version such as batch/v1 or a resource
type such as apps/v1/Deployment.

Checking for the existence of resources and API groups is useful
when dealing with custom resource definitions and multiple ver‐
sions of Kubernetes resource types. As Kubernetes API versions
move from alpha, to beta, to released versions, you want to use the
latest version of a resource type as alpha and beta are deprecated
and removed from Kubernetes. If your application will be installed
on a wide range of Kubernetes versions, it is useful to support API
versions in all of those clusters.

86 | Chapter 5: Developing Templates

https://oreil.ly/Xtoya

When helm template is used, Helm will use a default set of API
versions for a compliant Kubernetes cluster instead of interacting
with your cluster to generate the known capabilities.

The other place you will find methods is on .Files. It includes the following meth‐
ods to help you work with files:

.Files.Get name

Provides a means of getting the contents of the file as a string. name, in this case,
is the name including filepath from the root of the chart.

.Files.GetBytes

Similar to .Files.Get but instead of returning a string, the file is returned as an
array of bytes. In Go terms, this is a byte slice (i.e., []byte).

.Files.Glob

Accepts a glob pattern and returns another files object containing only the files
whose names match the pattern.

.Files.AsConfig

Takes a files group and returns it as flattened YAML suitable to include in the
data section of a Kubernetes ConfigMap manifest. This is useful when paired
with .Files.Glob.

.Files.AsSecrets

Similar to .Files.AsConfig. Instead of returning flattened YAML it returns the
data in a format that can be included in the data section of a Kubernetes Secret
manifest. It’s Base64 encoded. This is useful when paired with .Files.Glob. For
example, {{ .Files.Glob("mysecrets/**").AsSecrets }}.

.Files.Lines

Has an argument for a filename and returns the contents of the file as an array
split by newlines (i.e., \n).

To illustrate the use of these, the following template is from an example chart. It reads
all the files in the config subdirectory of a chart and embeds each one in a Secret:

apiVersion: v1
kind: Secret
metadata:
 name: {{ include "example.fullname" . }}
type: Opaque
data:
{{ (.Files.Glob "config/*").AsSecrets | indent 2 }}

The Template Syntax | 87

As the following example output from Helm shows, each file can be found at its own
key in the file:

apiVersion: v1
kind: Secret
metadata:
 name: myapp
type: Opaque
data:
 jetpack.ini: ZW5hYmxlZCA9IHRydWU=
 rocket.yaml: ZW5hYmxlZDogdHJ1ZQ==

Querying Kubernetes Resources In Charts
Helm contains a template function that enables you to look up resources in the
Kubernetes cluster. The lookup template function is able to return either an individ‐
ual object or a list of objects. This function returns an empty response when com‐
mands that do not interact with the cluster are executed.

The following example looks up a Deployment named runner in the anvil namespace
and makes the metadata annotations available:

{{ (lookup "apps/v1" "Deployment" "anvil" "runner").metadata.annotations }}

There are four arguments passed into the lookup function:

API version
This is the version of any object, whether included in Kubernetes or installed as
part of an add-on. Examples of this look like "v1" and "apps/v1".

Kind of object
This can be any resource type.

Namespace to look for the object in
This can be left blank to look in all namespaces you have access to or for global
resources such as Namespace.

Name of the resource you are looking for
This can be left blank to return a list of resources instead of a specific one.

When a list of resources is returned, you will need to loop over the results to access
the data on each of the individual objects. Where a lookup for an object returns a dict,
a lookup for a list of objects returns a list. These are two different types Helm pro‐
vides for use in templates.

When a list is returned, the objects are on the items property:

{{ (lookup "v1" "ConfigMap" "anvil" "").items }}

88 | Chapter 5: Developing Templates

The items can be iterated over using a loop, which you will learn about later in the
chapter. This example returns all the ConfigMaps in the anvil namespace, assuming
you have access to the namespace.

You should be careful when using this function. For example, it will return different
results when used as part of a dry run as opposed to when an upgrade is run. A dry
run does not interact with a cluster, so this function will return no results. When an
upgrade is run it will return results.

The results returned when installing or upgrading in various clusters can also be dif‐
ferent. For example, in a development environment and in a production environment
the resources installed in a cluster will have differences that can lead to unequal
responses.

if/else/with
Go templates have if and else statements along with something similar but mildly
different called with. if and else work the same way they do in most programming
languages. To illustrate an if statement, we can look at a pattern from the chart gen‐
erated using the helm create command covered in Chapter 4. In that chart the val‐
ues.yaml file contains a section on ingress with an enabled property. It looks like:

ingress:
 enabled: false

In the ingress.yaml file that creates the Ingress resource for Kubernetes, the first and
last lines are for the if statement that implements this:

{{- if .Values.ingress.enabled -}}
...
{{- end }}

In this case, the if statement evaluates whether the output of the pipeline following
the if statement is true or false. If it’s true, the content inside is evaluated. In order to
know where the end of the block is, you need an end statement. This is important
because indentation or more typical brackets could be part of the material you want
rendered.

Using if statements is how the common enabled pattern is typically implemented.

if statements can have an else statement that is executed if the if statement evalu‐
ates to false. The following example prints a YAML comment to output when
Ingress is not enabled:

{{- if .Values.ingress.enabled -}}
...
{{- else -}}
Ingress not enabled
{{- end }}

The Template Syntax | 89

Sometimes you will want to have multiple elements evaluated in an if statement by
combining them with an and or an or statement. In templates this is a little different
than you might be used to. Consider the following segment from a template:

{{- if and .Values.characters .Values.products -}}
...
{{- end }}

In this case and is implemented as a function with two arguments. That means and
comes before either of the two items being used. The same idea applies to the use of
or, which is also implemented as a function.

When one of the elements to be used with and or or is a function or pipeline, you can
use parentheses. The following example has one of the arguments to or being an
equal check:

{{- if or (eq .Values.character "Wile E. Coyote") .Values.products -}}
...
{{- end }}

The output of the equality check, implemented using the eq function, is passed as the
first argument to or. The parentheses enable you to group elements together to build
more complex logic.

with is similar to if with the caveat that the scope within a with block changes. To
continue with an example from Ingress, the following block shows the scope change:

 {{- with .Values.ingress.annotations }}
 annotations:
 {{- toYaml . | nindent 4 }}
 {{- end }}

If the value passed into with is empty, the block is skipped. If the value is not
empty, the block is executed and the value of . inside the block
is .Values.ingress.annotations. In this situation, the scope within the block has
changed to the value checked by with.

The pattern of checking a value using with and then sending it to
output using the toYaml and nindent functions is common for ele‐
ments you have in a values.yaml file that you want to directly out‐
put in a template. This is regularly used for image pull secrets, node
selectors, and more.

Just like with if statements, with can have an accompanying else block that you can
use when the value is empty.

90 | Chapter 5: Developing Templates

Variables
Within templates you can create your own variables and use them to pass as argu‐
ments to functions, print in the output, and more. Variables start with a $ and are
typed. Once a variable is created for one type, such as a string, you cannot set the
value to another type, such as an integer.

Creating and initializing a variable has a special syntax through the use of :=, like the
following example:

{{ $var := .Values.character }}

In this case a new variable is created and the value of .Values.character is assigned
to it. This variable can be used elsewhere; for example:

character: {{ $var | default "Sylvester" | quote }}

The value of $var is passed to default in the same way .Values.character was
passed earlier in the chapter.

The method to create a variable with an initial value is different from the method
used to change the value of an existing variable. When you assign a new value to the
existing variable, you use =. For example:

{{ $var := .Values.character }}
{{ $var = "Tweety" }}

In this case the variable is changed in another action. Variables live on for the life of
the template execution and are available in the same action or different ones later in
the template.

Variable handling is reflective of the syntax and style used in the
Go programming language. It follows the same semantics through
the use of :=, =, and typing.

Loops
Using loops is a common method to simplify a user’s interaction with a chart. For
example, you can use loops to collect a list of hosts to use when exposing a web appli‐
cation, through values, and then loop over the list to create more complex Kubernetes
Ingress resources.

The loop syntax in templates is a little different than that in many programming lan‐
guages. Instead of for loops, there are range loops that can be used to iterate over
dicts (also known as maps) and lists.

The Template Syntax | 91

The following example illustrates dicts and lists:

An example list in YAML
characters:
 - Sylvester
 - Tweety
 - Road Runner
 - Wile E. Coyote

An example map in YAML
products:
 anvil: They ring like a bell
 grease: 50% slippery
 boomerang: Guaranteed to return

You can think of a list as an array, while a map, with a key name and value, is similar
to dictionaries in Python or a HashMap in Java. Within Helm templates you can cre‐
ate your own dictionaries and lists using the dict and list functions.

There are two ways you can use the range function. The following example iterates
over the characters while changing the scope, which is the value of .:

characters:
{{- range .Values.characters }}
 - {{ . | quote }}
{{- end }}

In this case range iterates over each item in the list and sets the value of . to the value
of each item in the list as Helm iterates over the item. In this example, the value is
passed to quote in the pipeline. The scope for . is changed in the block up to end,
which acts as the closing bracket or statement for the loop.

The output of this snippet is:

characters:
 - "Sylvester"
 - "Tweety"
 - "Road Runner"
 - "Wile E. Coyote"

The other way to use range is by having it create new variables for the key and value.
This will work on both lists and dicts. This next example creates the variables that
you can use in the block:

products:
{{- range $key, $value := .Values.products }}
 - {{ $key }}: {{ $value | quote }}
{{- end }}

The $key variable contains the key in a map or dict and a number in a list. $value
contains the value. If this is a complex type, such as another dict, that will be available

92 | Chapter 5: Developing Templates

as the $value. The new variables are in scope up to the end of the range block, which
is signified by the corresponding end action. The output of this example is:

products:
 - anvil: "They ring like a bell"
 - boomerang: "Guaranteed to return"
 - grease: "50% slippery"

Under the Hood: dict and list
Within Go, lists are represented as slices that are backed by arrays. The value is an
interface, so it could be a variety of types. For example, if you use the list function to
create a list within a template the returned value would be typed as []interface{}.
When actions are taken on the value, reflection is used to figure out the type and how
to act on that type.

A map or dict is represented a little differently. They are typically represented as
map[string]interface{}. This is the type returned from the dict function that you
can use within templates. As with lists, the value type is figured out using reflection
when action is taken on the value.

Named Templates
There are times where you will want to create a template to call from within your
template of a Kubernetes manifest—for example, when you have a value generated by
some complex logic or when you have a section that is repeated across numerous
Kubernetes manifests. You can create your own templates, which Helm won’t auto‐
matically render, and use them within templates of Kubernetes manifests.

An example of this can be found when you run helm create to generate a chart. By
default Helm creates several Kubernetes manifests with some shared elements, such
as labels. To keep the labels consistent and so they only need to be updated in one
place, Helm generates a template and then calls that template each time the labels are
needed.

There are two types of labels used in the templates. There are the labels used on
higher-level resources, such as Deployments, and then there are the labels used in
specifications that are paired with selectors used for updates. These labels need to be
treated differently because the labels used on specifications and selectors are typically
immutable. This means you won’t want them to contain elements such as application
versions because those can change as an application is upgraded, but the specifica‐
tions and selectors cannot be updated with new versions.

Named Templates | 93

The following template selection contains the selector labels used to generate specifi‐
cations and selector sections in the generated template. The name, anvil, is from the
chart generated in Chapter 4:

{{/*
Selector labels
*/}}
{{- define "anvil.selectorLabels" -}}
app.kubernetes.io/name: {{ include "anvil.name" . }}
app.kubernetes.io/instance: {{ .Release.Name }}
{{- end -}}

A comment prior to defining the function. Comments in actions open with /*
and are closed by */.

You define a template with a define statement followed by the name for the tem‐
plate.

The content of a template is just like the content of any other template.

The definition for a template is closed through an end statement that matches to
the define statement.

This template includes several useful things you should consider using in your own
templates:

1. A comment describing the template. This is ignored when the template is ren‐
dered but is useful in the same way code comments are.

2. The name is namespaced, using . as the separator, to include the chart name. In
Chapter 6 you will learn about library charts and dependent charts. Using a
namespace on a template name enables the use of library charts and avoids colli‐
sions on dependent charts.

3. The define and end calls use actions that remove whitespace before and after
them so that their use does not add extra lines to the final output YAML.

This template is called in the spec section of resources, such as the Deployment in the
anvil chart:

spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 {{- include "anvil.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 labels:
 {{- include "anvil.selectorLabels" . | nindent 8 }}

94 | Chapter 5: Developing Templates

The matchLabels section here is immutable, so it cannot be changed and it looks for
the labels in the template section.

There are two functions you can use to include another template in your template.
The template function is a basic function for including another template. It cannot
be used in pipelines. Then there is the include function that works in a similar man‐
ner but can be used in pipelines. In the preceding example, include is used to call
another template and the output of that template is passed to nindent to ensure the
output has the proper indentation level. Since the output has a different indentation
level for each call, the indentation level cannot be included as part of the template
that defines it.

The include function takes two arguments. The first is the name of the template to
call. This needs to be the full name including any namespace. The second is the data
object to pass. This can be one you create yourself, using the dict function, or it can
be all or part of the global object used within the template. In this case the whole
global object is passed in.

The template function Helm created to generate the wider selection of labels, used on
the labels for the higher-level resources where the labels are mutable, both adds labels
and includes the selector labels. It has user-defined templates that call other user-
defined templates:

{{/*
Common labels
*/}}
{{- define "anvil.labels" -}}
helm.sh/chart: {{ include "anvil.chart" . }}
{{ include "anvil.selectorLabels" . }}
{{- if .Chart.AppVersion }}
app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
{{- end }}
app.kubernetes.io/managed-by: {{ .Release.Service }}
{{- end -}}

Because these labels are mutable, there are useful labels included here that will change
for various reasons. So as not to repeat the labels used for selectors, which are useful
here as well, those labels are included by calling the function that generates them.

Kubernetes Recommended Labels
The Kubernetes documentation recommends a set of common labels that you can
apply to your workload manifests. The chart generated by helm create includes tem‐
plates that generate these labels for you.

The labels begin with the prefix app.kubernetes.io followed by / as a separator. The
Kubernetes documentation for labels notes that a prefix should be used for any labels

Named Templates | 95

generated by automation and that those without a prefix are private to the user. These
labels are for users, like you, and for various tools.

These labels include the application’s name, the instance of the application (you can
run an application more than once in a cluster and even a single namespace), the ver‐
sion of the application, a component type used to show where it fits in a larger
application, what the application is part of, and the name of the tool used to manage
the life cycle of the application (e.g., Helm). These labels are useful when linking
applications together, displaying metadata in a user interface, and querying for infor‐
mation at the Kubernetes API.

You can learn more about the labels, which includes examples, in the Kubernetes doc‐
umentation.

Another situation you may find yourself in where a named template would be useful
is when you want to encapsulate complex logic. To illustrate this idea, consider a
chart where you want to be able to pass in a container version as a tag, a digest, or fall
back on the application version as a default. The part of the Pod specification that
accepts the container image, including the version, is a single line. To provide all
three of those options you need many lines of logic:

{{- define "anvil.getImage" -}}
{{- if .Values.image.digest -}}
{{ .Values.image.repository }}@{{ .Values.image.digest }}
{{- else -}}
{{ .Values.image.repository }}:
{{- .Values.image.tag | default .Chart.AppVersion }}
{{- end -}}
{{- end -}}

This new getImage template is able to handle a digest, tag, and default to the applica‐
tion version if neither of the other two are present. First, a digest is checked for and
used. A digest is immutable, and it is the most precise method to specify the revision
of an image to use. If no digest is passed in, a tag is checked. Tags are pointers to
digests and can be changed. If no tag is found, the AppVersion is used as a tag.

This function targets the structure of the anvil chart, first created for Chapter 4. The
image details are expected to be within the structure of that chart and its values.yaml
file.

In the template for the Deployment, the image would be referenced using the new
function:

image: "{{ include "anvil.getImage" . }}"

Templates can act like functions in a software program. They are a useful way for you
to break off complex logic and have shared functionality.

96 | Chapter 5: Developing Templates

https://oreil.ly/uAFIm
https://oreil.ly/uAFIm

Structuring Your Templates for Maintainability
There is limited structure that is enforced on the templates in the templates directory.
Multiple Kubernetes manifests can be in the same YAML file, which means that the
templates for multiple Kubernetes manifests can be in the same file, too. Named
templates can live in any of the template files and be referenced in the others. The
NOTES.txt template is a special file that displays to the user, and tests are handled in a
special way. Tests are covered in Chapter 6. Other than that, it is a blank canvas for
you to create templates.

To aid in creating maintainable templates that are easy to navigate, the Helm main‐
tainers recommend several patterns. These patterns are useful for a few reasons:

• You may go long periods without making structural changes to the templates in a
chart and then come back to it. Being able to quickly rediscover the layout will
make the processes faster.

• Other people will look at the templates in charts. This may be team members
who create the chart or those that consume it. Consumers can, and sometimes
do, open up a chart to inspect it prior to installing it or as part of a process to fork
it.

• When you debug a chart, which is covered in the next section, it is easier to do so
with some structure in the templates.

The first pattern is that each Kubernetes manifest should be in its own template file
and that file should have a descriptive name. For example, name your template
deployment.yaml if there is a single deployment. If you have the case of multiple man‐
ifests of the same type, such as the case when you have a database deployed using pri‐
maries and replicas, you use names such as statefulset-primary.yaml and statefulset-
replica.yaml.

A second guideline is to put the named templates, which you include in your own
templates, into a file named _helpers.tpl. Because these are essentially helper templates
for your other templates, the name is descriptive. As mentioned earlier, the _ at the
start of the name causes it to bubble up to the top of directory listings so you can
easily find it among your templates.

When you use the helm create command to start a new chart, the contents of the
templates it starts with, by default, will already follow these patterns.

Debugging Templates
When developing templates it’s useful to debug the templates. Helm provides three
features you can use in your development workflow to find issues. These are in addi‐
tion to testing, which is covered in Chapter 6.

Structuring Your Templates for Maintainability | 97

Dry Run
The commands to install, upgrade, roll back, and uninstall Helm charts all have a flag
to initiate a dry run and simulate the process but not fully execute on that process.
This is accomplished using the --dry-run flag on these commands. For example, if
you use the --dry-run flag on the install command on the anvil chart, you could
use the command helm install myanvil anvil --dry-run. Helm would render the
templates, check the templates to make sure what would be sent to Kubernetes was
well formed, and would then send it to output. The output would look similar to the
output on a normal install but would have two additional sections:

NAME: myanvil
LAST DEPLOYED: Tue Jun 9 06:58:58 2020
NAMESPACE: default
STATUS: pending-install
REVISION: 1
HOOKS:
...
MANIFEST:
...
NOTES:
1. Get the application URL by running these commands:
 export POD_NAME=$(kubectl get pods --namespace default ↵
 -l "app.kubernetes.io/name=anvil,app.kubernetes.io/instance=myanvil" ↵
 -o jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use your application"
 kubectl --namespace default port-forward $POD_NAME 8080:80

The two new sections are the HOOKS and MANIFEST sections that will contain the
YAML Helm would normally pass to Kubernetes. Instead it is sent to the output. For
brevity the full generated YAML is not included because this would be pages long.

If there were a problem in the templates, the response would be quite different. To
illustrate this, try removing the first } from the deployment.yaml file in the anvil chart
and performing a dry-run install again. Removing the } will cause an error parsing
the actions in the templates. Instead of outputting the status, Helm will output an
error like:

Error: parse error at (anvil/templates/deployment.yaml:4): unexpected "}" in
operand

The information here outlines a hint where to look for the issue. It includes:

• The file where the error is occurring. anvil/templates/deployment.yaml, in this
case.

• The line number in the file where the error occurred. Here it is line 4.

98 | Chapter 5: Developing Templates

• An error message with a hint about the problem. The error message will often
not display what the issue is, but rather where the parser is having an issue. In
this case a single } is unexpected.

Helm will check for more than errors in the template syntax. It will also check the
syntax of the output. To illustrate this, in the same deployment.yaml file remove the
apiVersion: at the start of it. Make sure to add back the missing } so that the action
is fixed. The beginning of the file will now look like:

apps/v1
kind: Deployment

Performing a dry-run install will produce the following output:

Error: YAML parse error on anvil/templates/deployment.yaml: error converting
YAML to JSON: yaml: line 2: mapping values are not allowed in this context

You might be wondering why there is an error converting between YAML and JSON.
This is a product of the YAML parsing library that Helm and Kubernetes use. The
useful part of the error message is the part that starts with line 2. The first line is not
complete, so the second line is in the wrong context even though it is well formed.
The file is not valid YAML, and Helm is telling you where to start looking for the
problem. If you took the same section of YAML and tested it in an online YAML vali‐
dator, you would get the same error.

Helm is also able to validate the schemas of Kubernetes resources. This is accom‐
plished because Kubernetes provides schema definitions for its manifests. To illus‐
trate this, change the apiVersion in the deployment.yaml to be foo:

foo: apps/v1
kind: Deployment

Performing a dry-run install will produce the following output:

Error: unable to build kubernetes objects from release manifest: error
validating "": error validating data: apiVersion not set

The deployment is no longer valid, and Helm was able to provide specific feedback
on what is missing. In this case, the apiVersion property is not set.

Utilizing a dry-run isn’t the only way you can get access to this feature. The
helm template command provides a similar experience but without the full debug‐
ging feature set. The template command does turn the template commands into
YAML. At this point it will provide an error if the generated YAML cannot be parsed.
What it won’t do is validate the YAML against the Kubernetes schema. The template
command won’t warn you if apiVersion is turned to foo. This is due to Helm not
communicating with a Kubernetes cluster to get the schema for validation when the
template command is used.

Debugging Templates | 99

Getting Installed Manifests
There are times where you install an application into a cluster and something else
changes the manifests afterwards. This leads to differences between what you
declared and what you have running. One example of this is when a service mesh
automatically adds a sidecar container to the Pods created by your Helm charts.

Service Mesh
A service mesh is a layer of infrastructure used to manage service-to-service commu‐
nications. In Kubernetes, a service mesh uses a sidecar proxy container added to Pods
to handle the communication. Many service mesh platforms offer the ability to auto‐
matically inject the sidecar proxies by altering the configuration of manifests.

You can get the original manifests deployed by Helm using the helm get manifest
command. This command will retrieve the manifests for a release as they were when
Helm installed the release. It is able to retrieve this information for any revision of a
release still available in the history, as found using the helm history command.

To continue the myanvil example, to retrieve the manifests for this instance of the
anvil chart you would run:

$ helm get manifest myanvil

The output will include all of the manifests with --- at the start of each new manifest.
The following is the first 15 lines from the output:

Source: anvil/templates/serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 name: myanvil-anvil
 labels:
 helm.sh/chart: anvil-0.1.0
 app.kubernetes.io/name: anvil
 app.kubernetes.io/instance: myanvil
 app.kubernetes.io/version: "9.17.49"
 app.kubernetes.io/managed-by: Helm

Source: anvil/templates/service.yaml
apiVersion: v1
kind: Service
...

--- is used as a separator between YAML documents. In addition to that, Helm adds
a YAML comment with the source template used to generate the manifest.

100 | Chapter 5: Developing Templates

Linting Charts
Some of the problems you will encounter don’t show up as violations of the API spec‐
ification and aren’t problems in the templates. For example, Kubernetes resources are
required to have names that can be used as part of a domain name. This restricts the
characters that you can use in names and their length. The OpenAPI schema pro‐
vided by Kubernetes does not provide enough information to detect names that will
fail when sent to Kubernetes. The lint command, previously covered in Chapter 4, is
able to detect problems like this and tell you where they are.

To illustrate this you can modify the anvil chart to add Wile to the end of the Deploy‐
ment name in deployment.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ include "anvil.fullname" . }}-Wile

Running helm lint anvil will produce an error informing you of the issue:

$ helm lint anvil
==> Linting anvil
[ERROR] templates/deployment.yaml: object name does not conform to Kubernetes
naming requirements: "test-release-anvil-Wile"

Error: 1 chart(s) linted, 1 chart(s) failed

In this case, helm lint is pointing you to a problem and telling you where it is
happening.

Conclusion
The templates you include in a chart provide a powerful ability to create resources
within Kubernetes. It’s akin to a programming language around templates. The tem‐
plate system has features like logic, built-in functions, custom templates, and debug‐
ging. This means you can collect the input you desire through values and generate the
Kubernetes manifests you need.

There is still more to charts, including dependencies, testing, schemas for values files,
and more. Chapter 6 is going to expand on what you can have and do with charts.

Conclusion | 101

CHAPTER 6

Advanced Chart Features

There is more to charts than metadata about the chart and a collection of templates.
Charts can have dependencies, values can have schemas, Helm has life cycle hooks,
you can sign charts, and more. In this chapter you will learn about other elements of
charts, moving beyond templates.

These features provide powerful solutions to common problems that arise when
building packages. The chapter starts by covering dependencies. Dependencies are a
critical part of virtually every package management solution because they let you lev‐
erage existing packages in your solution and build on the work of others. It then goes
on to cover schemas and validation, which are useful when you want to help chart
users avoid issues before covering ways you can hook into processes Helm performs
to execute custom actions. This chapter covers tests and testing as well—tests are vital
in development because they ensure your software is running as expected. Helm pro‐
vides security features that aid in mitigating some common threat paths, which are
covered next. The chapter concludes by looking at how charts can be used to extend
the Kubernetes API.

Throughout this chapter, you will see charts as examples you can reference at https://
github.com/masterminds/learning-helm/blob/main/chapter6. They showcase different
features covered in the chapter along with a Helm repository.

Chart Dependencies
Dependencies are a common element of package managers and their packages.
Charts can have dependencies on other charts. This enables the encapsulation of a
service in a chart, the reuse of charts, and the use of multiple charts together.

To illustrate dependencies, consider a chart to install WordPress, the popular blog‐
ging software. WordPress depends on a MySQL-compliant database to store the blog

103

https://github.com/masterminds/learning-helm/blob/main/chapter6
https://github.com/masterminds/learning-helm/blob/main/chapter6

content, users, and other configuration. A MySQL-compliant database can be used by
other applications and can be consumed as a service. One way to handle the use of
MySQL with WordPress is to put the manifests for it in the WordPress chart. Another
way to handle it is to have a MySQL chart that stands alone while the WordPress
chart has a dependency on it. Having a MySQL-compliant database as an independ‐
ent chart enables it to be used by more than one application, and the database can be
built and tested independently.

Dependencies are specified in the Chart.yaml file. The following is the dependencies
section in the Chart.yaml file for a chart named rocket:

dependencies:
 - name: booster
 version: ^1.0.0
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/

The name of the dependent chart within the repository.

A version range string for the chart.

The repository to retrieve the chart from.

Helm charts use semantic versions as their versioning scheme. The version field
used for dependencies accepts a version range, and there are some shorthand syn‐
taxes for those ranges. For example, ^1.2.3 is shorthand for >= 1.2.3, < 2.0.0.
Helm supports ranges including =, !=, <, ⇐, >, >=, ^, ~, and -. Different ranges can be
combined together using a space or comma to support logical and combinations and
| to support logical or combinations. Helm also supports using a wildcard character
of either X or *. If you omit a section of a version, such as omitting the patch portion,
Helm will assume the missing part is a wildcard.

Ranges are the preferred manner to specify the desired version. In a moment you’ll
learn how to lock to a specific dependency version from the specified range. By speci‐
fying a range, it is possible to use Helm commands to automatically update to the lat‐
est release within that range. This is useful if you want to pull in bug fixes or security
updates to dependencies.

Shorthand Range Syntaxes
While semantic versions are defined from a specification, the range syntaxes in use to
specify semantic version ranges have no specification. Different tools will use differ‐
ent algorithms for the same shorthand syntaxes of ^ and ~. Helm follows the same
syntax used by JavaScript with npm and Rust with Cargo.

104 | Chapter 6: Advanced Chart Features

For major versions greater than 0, when you use ^ it does a range that is greater than
or equal to the number you set and less than the next major version. When the major
version is less than 1, Helm typically treats the minor version as the range it works in
instead of the major version. The following are examples of the ranges and equivalent
meanings:

• ^1.2.3 is equivalent to >= 1.2.3 < 2.0.0
• ^1.2.x is equivalent to >= 1.2.0 < 2.0.0
• ^2.3 is equivalent to >= 2.3 < 3
• ^2.x is equivalent to >= 2.0.0 < 3
• ^0.2.3 is equivalent to >= 0.2.3 < 0.3.0
• ^0.2 is equivalent to >= 0.2.0 < 0.3.0
• ^0.0.3 is equivalent to >= 0.0.3 < 0.0.4
• ^0.0 is equivalent to >= 0.0.0 < 0.1.0
• ^0 is equivalent to >= 0.0.0 < 1.0.0

~ is used for specifying patch ranges. Where ^ typically rounds up to the latest within
a major version range, ~ rounds up within a minor version range as long as the minor
version is specified. The following examples illustrate ~:

• ~1.2.3 is equivalent to >= 1.2.3 < 1.3.0
• ~1 is equivalent to >= 1 < 2
• ~2.3 is equivalent to >= 2.3 < 2.4
• ~1.2.x is equivalent to >= 1.2.0 < 1.3.0
• ~1.x is equivalent to >= 1 < 2

The repository field is where you specify the chart repository location to pull the
dependency from. You can specify this in one of the following two ways:

• A URL to the Helm repository.
• To the name of a repository you have set up using the helm repo add command.

This name needs to be preceded by an @ and wrapped in quotes (e.g.,
"@myrepo").

A full URL is typically used to specify the location. This will ensure the same depend‐
ency is retrieved in every environment the chart is used in.

Once you have the dependencies with their requested version ranges specified, you
need to use Helm to lock those dependencies to specific versions and retrieve the

Chart Dependencies | 105

dependencies. If you are going to package up your chart as a chart archive as covered
in Chapter 4, you need to lock and fetch dependencies before packaging.

To resolve the latest version of the dependency within the specified range and to
retrieve it, you can use the following command:

$ helm dependency update .

After running the command you will see the following output:

Saving 1 charts
Downloading booster from repo https://raw.githubusercontent.com/Masterminds/
 learning-helm/main/chapter6/repository/
Deleting outdated charts

Running this command caused a few steps to happen.

First, Helm resolved the latest version of the booster chart. It used the metadata in the
repository to know which versions of the chart were available. From the metadata
and the specified version range, Helm found the best match.

The resolved information is written to the Chart.lock file. Instead of a version range,
the Chart.lock file contains the specific version of the dependencies to be used. This is
important for reproducibility. The Chart.lock file is managed by Helm. Changes from
users will be overwritten the next time helm dep up (the shorthand syntax) is run.
This is similar to lock files for dependency managers on other platforms.

Once Helm knows the specific version to use, it downloads the dependent chart and
puts it into the charts subdirectory. It is important for the dependent charts to be in
the charts directory because this is where Helm will get their contents from to render
the templates. Charts can be in the charts directory in either their archive or directory
form. When Helm downloads them from a repository, it stores them in their archive
form.

If you have a Chart.lock file but no contents in the charts directory, you can rebuild
the charts directory by running the command helm dependency build. This will use
the lock file to retrieve the dependencies at their already determined versions.

Once you have dependencies, Helm will render their resources when you run com‐
mands like helm install or helm upgrade.

When you specify a dependency, you may also want to pass configuration from the
parent or main chart to the dependent chart. If we look back at the WordPress exam‐
ple, this could be used to set the name of the database to use. Helm provides a
method to do this within the parent chart’s values.

In the main chart’s values.yaml file, you can create a new section with the name of the
dependent chart. In this section you can set the values you want passed in. You only

106 | Chapter 6: Advanced Chart Features

need to set the ones you want changed because the dependent charts included in the
values.yaml file will serve as the default values.

In the values.yaml file for the rocket chart there is a section that reads:

booster:
 image:
 tag: 9.17.49

Helm knows this section is for the booster chart. In this case it sets the image tag to a
specific value. Any of the values in the dependent chart can be set this way. When
commands like helm install are run, you can use the flags to set values (e.g., --set)
of the dependencies as well as those of the main chart.

If you have two dependencies on the same chart you can optionally use the alias
property in the Chart.yaml file. This property goes on each dependency you want to
use an alternative name for next to the name, version, and other properties. With
alias you can give each dependency a unique name that you can reference else‐
where, such as in the values.yaml file.

Tightly Versus Loosely Coupled Dependencies
When you have dependencies, you can tightly couple or loosely couple them. Using
the Chart.yaml file to specify dependencies causes a tight coupling between charts.
You can see this in the way upgrades work. To upgrade one chart you must upgrade
the whole group. There are benefits to tight coupling, such as a single Helm com‐
mand being able to install the whole collection of charts. A tight coupling is useful
when you want to distribute charts to others, outside your company or organization.

In a loose coupling situation you can install each chart independently from the rest.
Each chart will run as its own instance. In this setup, each instance acts as a service
that other services can connect to. With a loose coupling you can change and upgrade
each chart independently from the rest. This method is sometimes used when you
create and run charts within your own organization.

Conditional Flags for Enabling Dependencies
Helm provides the ability for you to enable or disable dependencies through configu‐
ration. To illustrate this idea, consider the case where you want to provide a Word‐
Press blogging solution but give the option to the personnel installing WordPress to
either use a database as a service or an included database. If the person installing the
chart chooses to use a database as a service, they would provide a URL to that service
and not need to have a database installed. This can be accomplished through configu‐
ration in two different ways.

Chart Dependencies | 107

When you want to control if a single feature is enabled or disabled through a depend‐
ency, you can use the condition property on a dependency. To illustrate this we will
look at the dependencies section in the Chart.yaml file for the conditional chart:

dependencies:
 - name: booster
 version: ^1.0.0
 condition: booster.enabled
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/

The dependency has a condition key with a value that tells Helm where to look in
the values to know if it should be enabled or disabled. In the values.yaml file the cor‐
responding section is:

booster:
 enabled: false

The default value, in this case, is to disable the dependency. When someone installs
the chart they can enable the dependency by passing in a value to enable it.

When you have multiple features you want to enable or disable that involve depen‐
dencies, you can use the tags property. Like condition, this property sits alongside
the name and version when describing a dependency. It contains a list of tags for a
dependency. To illustrate this we can look at the dependencies of another chart
named tag:

dependencies:
 - name: booster
 tags:
 - faster
 version: ^1.0.0
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/
 - name: rocket
 tags:
 - faster
 version: ^1.0.0
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/

Here you will see two dependencies with a tags section. The tags are a list of related
tags. In the chart’s values.yaml file you use a tags property:

tags:
 faster: false

tags is a property with a special meaning. The values here tell Helm to disable depen‐
dencies with the tag faster by default. They can be enabled when the chart’s user
passes a true value into the chart as it’s being installed or upgraded.

108 | Chapter 6: Advanced Chart Features

Importing Values from Child to Parent Charts
There are times where you may want to import or pull values from a child to a parent
chart. Helm provides two methods to do this. One is for the case where a child chart
explicitly exported a value to be imported by a parent, and the other is for the case in
which the child chart did not export a value.

The exports property

The exports property is a special top-level property in a values.yaml file. When a
child chart has declared an export property, its contents can be imported directly
into a parent chart.

For example, consider the following from a child chart’s values.yaml file:

exports:
 types:
 foghorn: rooster

When the parent chart declares the child as a dependency, it can import from the
exports like the following:

dependencies:
 - name: example-child
 version: ^1.0.0
 repository: https://charts.example.com/
 import-values:
 - types

Within the parent’s calculated values the types are now accessible at the top level. In
YAML that would be equivalent to:

foghorn: rooster

The child-parent format
When a parent chart wants to import a value from a child but the child chart hasn’t
exported the value, there is a way to tell Helm to pull the child value into the parent
chart.

To illustrate this, consider a child chart with the following values specified in its
values.yaml file:

types:
 foghorn: rooster

These values are not exported, but the parent chart can import them anyway. When
the dependency is declared in the parent, it can import the values using child and
parent files, like the following example:

dependencies:
 - name: example-child

Chart Dependencies | 109

 version: ^1.0.0
 repository: https://charts.example.com/
 import-values:
 - child: types
 parent: characters

In both methods of importing it’s the import-values property that’s used on the
dependency. Helm knows how to differentiate between the different formats, and you
can mix the two.

In the child chart the top-level property of types will not be available in the parent
chart under the top-level property of characters in its calculated values. That would
be represented in YAML as:

characters:
 foghorn: rooster

This format does allow for accessing nested values in addition to top-level properties
using a period as a separator. For example, if the child chart had the following format,
the child property on import-values could read data.types:

data:
 types:
 foghorn: rooster

Library Charts
You may run into the situation where you are creating multiple similar charts—charts
that share a lot of the same templates. For these situations, there are library charts.

Library charts are conceptually similar to software libraries. They provide reusable
functionality that can be imported and used by other charts but cannot be installed
themselves.

If you use helm create to create a new library chart, the first step is to remove the
contents of the templates directory and the values.yaml file because neither of these
will be used. Then, you need to tell Helm that this is a library chart. In the Chart.yaml
file set the type to library. To illustrate this, here is the Chart.yaml file from a chart
named mylib:

apiVersion: v2
name: mylib
type: library
description: an example library chart
version: 0.1.0

The default value for type, when not set, is application. You only need to set it when
your chart is a library.

110 | Chapter 6: Advanced Chart Features

Files in the templates directory that start with an underscore (i.e., _) are not expected
to render manifests to send to Kubernetes. The convention is that helper templates
and snippets are in _*.tpl and _*.yaml files.

To illustrate how reusable templates work, the following is the template to create a
ConfigMap in the mylib chart file named _configmap.yaml:

{{- define "mylib.configmap.tpl" -}}
apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ include "mylib.fullname" . }}
 labels:
 {{- include "mylib.labels" . | nindent 4 }}
data: {}
{{- end -}}
{{- define "mylib.configmap" -}}
{{- template "mylib.util.merge" (append . "mylib.configmap.tpl") -}}
{{- end -}}

The fullname function is the same as the one generated by helm create.

The labels function generates the common labels Helm recommends to use in
charts.

A special template is defined that knows how to merge templates together.

Most of this definition looks similar to other templates you would put into the tem‐
plates directory. define is a function used to define a template that is used elsewhere.
There are two templates defined in this file. mylib.configmap.tpl contains a template
for a resource. This will look similar to other templates. It provides a blueprint that is
meant to be overridden by the caller in a chart that includes this library. mylib.config‐
map is a special template. This is the template another chart will use. It takes
mylib.configmap.tpl along with another template, yet to be defined, containing over‐
rides, and merges them into one output. mylib.configmap uses a utility function that
handles the merging and is handy to reuse. That function is:

{{- /*
mylib.util.merge will merge two YAML templates and output the result.
This takes an array of three values:
- the top context
- the template name of the overrides (destination)
- the template name of the base (source)
*/ -}}
{{- define "mylib.util.merge" -}}
{{- $top := first . -}}
{{- $overrides := fromYaml (include (index . 1) $top) | default (dict) -}}
{{- $tpl := fromYaml (include (index . 2) $top) | default (dict) -}}

Library Charts | 111

{{- toYaml (merge $overrides $tpl) -}}
{{- end -}}

This function takes a context (think about the . data covered in Chapter 5), a tem‐
plate containing overrides, and the base template function to be overridden. The
function will become more clear when you see how it is used.

The concept of library charts was developed prior to their official
inclusion in Helm. The merge function was created by Adnan
Abdulhussein as part of his work developing the idea through a
chart named Common.

To illustrate using this library function, the following template is from another chart
named mychart. Prior to using the resources it defines, it needs to be added as a
dependency, just like any other. A template is included in mychart to create a Config
Map:

{{- include "mylib.configmap" (list . "mychart.configmap") -}}
{{- define "mychart.configmap" -}}
data:
 myvalue: "Hello Bosko"
{{- end -}}

Including and using the function from the library chart for the ConfigMap.

A new template is defined with just the parts to override the template provided
by the library.

The data section is provided for use in the ConfigMap.

This template may appear to be confusing at first because there is a lot going on.

The first line includes the ConfigMap template from the library chart. A new list is
passed to it with two items. The first is the current data object, and the second is the
name of another template containing elements to override those provided by the
library chart.

The rest of the file is the template containing overrides. In the template provided by
the library chart no content was provided for the data section. It is empty. The func‐
tion mychart.configmap provides a data section.

The Helm rendered output from this template is:

apiVersion: v1
kind: ConfigMap
metadata:
 labels:
 app.kubernetes.io/instance: example

112 | Chapter 6: Advanced Chart Features

 app.kubernetes.io/managed-by: Helm
 app.kubernetes.io/name: mychart
 helm.sh/chart: mychart-0.1.0
 name: example-mychart
data:
 myvalue: Hello Bosko

This output is the merged output from the library and the chart consuming the
library. The same concept can be extended to other resources including those that are
longer and more complex.

Schematizing Values Files
The values defined by a values.yaml file are schemaless. There is no set structure that
all values.yaml files need to follow. Different charts have different structures. This
enables you to structure the values to the application or workload you’re deploying
with the chart.

Schemas provide numerous useful benefits including the ability to validate content,
and you can do things such as generate user interfaces from them.

Helm provides the optional ability for each chart to provide its own schema for its
values using JSON Schema. JSON Schema provides a vocabulary to describe JSON
files. YAML is a superset of JSON, and you can transform content between the two
file formats. This makes it possible to use a JSON Schema to validate the content of a
YAML file.

When you run the commands helm install, helm upgrade, helm lint, and helm
template, Helm will validate the values against what it finds in the values.schema.json
file. The values Helm validates are the computed values. They include the values pro‐
vided by the chart as well as the values passed in by the person installing the chart.
The values.schema.json file lives next to the values.yaml file in the root of a chart. The
file can describe all or part of the values.

Consider the following section from a values.yaml file:

image:
 repository: ghcr.io/masterminds/learning-helm/anvil-app
 pullPolicy: IfNotPresent
 tag: ""

A JSON Schema to check this would be:

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "properties": {
 "image": {
 "type": "object",
 "properties": {

Schematizing Values Files | 113

https://json-schema.org

 "pullPolicy": {
 "type": "string",
 "enum": ["Always", "IfNotPresent"]
 },
 "repository": {
 "type": "string"
 },
 "tag": {
 "type": "string"
 }
 }
 }
 }
}

image is an object. If image is passed to Helm as something other than an object,
an error will be thrown.

pullPolicy is a string. When other types, such as an integer, are passed in, an
error will be thrown. This can catch subtle problems.

The pullPolicy must be one of the listed values. When another value, even a
misspelling, is passed in to Helm, an error will be thrown.

To illustrate this, we can use the booster chart. If you run the command from the root
of the chart, you’ll see an error:

$ helm lint . --set image.pullPolicy=foo

The following error tells you where the values don’t match the schema:

==> Linting .
[ERROR] templates/: values don't meet the specifications of the schema(s) in the
following chart(s):
booster:
- image.pullPolicy: image.pullPolicy must be one of the following: "Always",
 "IfNotPresent"

Error: 1 chart(s) linted, 1 chart(s) failed

JSON Schemas provide several ways to describe properties. The most flexible method
(a catch-all) is the use of regular expressions for strings. For example, instead of an
enum a pattern of ^(Always|IfNotPresent)$ could have been used. The pattern
would not have been as descriptive. The error would have noted the value didn’t fit
the pattern. Patterns are great to use when there is no other method to describe a
property’s value.

Schemas are a useful addition to charts that can catch and correct subtle issues some‐
one may have when installing a chart.

114 | Chapter 6: Advanced Chart Features

Hooks
Helm provides a means to hook into events in the release process and take action.
This is useful if you want to bundle actions as part of a release—for example, building
in the ability to back up a database as part of the upgrade process while ensuring that
the backup occurs prior to upgrading the Kubernetes resources.

Hooks are like regular templates and the functionality they encapsulate is provided
through containers running in Kubernetes clusters alongside the other resources for
your application. What distinguishes hooks from other resources is when a special
annotation is set. When Helm sees the helm.sh/hook annotation, it uses the resource
as a hook instead of a resource to be installed as part of the application installed by
the chart. Table 6-1 contains a list of hooks and when they are executed.

Table 6-1. Helm hooks

Annotation value Description
pre-install Execution happens after resources are rendered but prior to those resources being uploaded to

Kubernetes.

post-install Execution happens after resources have been uploaded to Kubernetes.

pre-delete Execution happens on a deletion request prior to any resources being deleted from Kubernetes.

post-delete Execution happens after all resources have been deleted from Kubernetes.

pre-upgrade Execution happens after resources are rendered but prior to resources being updated in Kubernetes.

post-upgrade Execution happens after resources have been upgraded in Kubernetes.

pre-rollback Execution happens after resources have been rendered but prior to any resources in Kubernetes being
rolled back.

post-rollback Execution happens after resources have been rolled back in Kubernetes.

test Execution occurs when the helm test command is run. Tests are covered in the next section.

A single resource can implement more than one hook by listing them as a comma-
separated list. For example:

annotations:
 "helm.sh/hook": pre-install,pre-upgrade

Hooks can be weighted and specify a deletion policy for the resources after they have
run. The weight enables more than one hook for the same event to be specified while
providing an order in which they will run. This gives you the ability to ensure a deter‐
ministic order. Because Kubernetes resources are used for the execution of hooks, the
resources are stored in Kubernetes even after execution has completed. The deletion
policy provides you with some additional control on when to delete these resources
from Kubernetes.

The following code provides example annotations specifying all three values:

Hooks | 115

annotations:
 "helm.sh/hook": pre-install,pre-upgrade
 "helm.sh/hook-weight": "1"
 "helm.sh/hook-delete-policy": before-hook-creation,hook-succeeded

The weight, specified by the helm.sh/hook-weight annotation key, is a number rep‐
resented as a string. It should always be a string. The weight can be a positive or nega‐
tive number and has a default value of 0. Prior to executing hooks, Helm sorts them
in ascending order.

The deletion policy, set using the annotation key helm.sh/hook-delete-policy, is a
comma-separated list of policy options. The three possible deletion policies are found
in Table 6-2.

Table 6-2. Helm hook deletion policies

Policy value Description
before-hook-creation The previous resource is deleted before a new instance of this hook is launched. This is the default.

hook-succeeded Delete the Kubernetes resource after the hook is successfully run.

hook-failed Delete the Kubernetes resource if the hook failed while executing.

By default, Helm keeps the Kubernetes resources used for hooks until the hook is run
again. This provides the ability to inspect the logs or look at other information about
a hook after it is run. A common policy to set is the one used in the previous exam‐
ple. This will keep hook resources around unless they complete successfully. When
hooks fail, the resources and their logs are still available for inspection, but otherwise
they are deleted.

The following Pod is an example of a hook running post-install:

apiVersion: v1
kind: Pod
metadata:
 name: "{{ include "mychart.fullname" . }}-post-install"
 labels:
 {{- include "mychart.labels" . | nindent 4 }}
 annotations:
 "helm.sh/hook": post-install
 "helm.sh/hook-weight": "-1"
 "helm.sh/hook-delete-policy": before-hook-creation,hook-succeeded
spec:
 containers:
 - name: wget
 image: busybox
 command: ["/bin/sleep","{{ default "10" .Values.sleepTime }}"]
 restartPolicy: Never

If you are running a Helm command, such as helm install, and want to skip run‐
ning hooks, the --no-hooks flag can be used. This flag is available on commands that

116 | Chapter 6: Advanced Chart Features

have hooks and will cause Helm to skip executing them. Hooks are an opt-out
feature.

Adding Tests to Charts
Testing is an integral part of software development, and Helm provides the ability to
test charts through the use of the test hook and Kubernetes resources. That means
tests run in a Kubernetes cluster right alongside the workloads with access to the
components installed by the chart. In addition to the chart testing built into Helm,
the Helm project provides an additional testing tool named Chart Testing. Since
Chart Testing builds upon the features in the Helm client, we will first look at the
functionality built into the Helm client.

Helm Test
Helm has a helm test command that executes test hooks on a running instance of a
chart. The resources implementing those hooks can check database access, that data‐
base schemas are properly in place, for working connections between workloads, and
other operational details.

If a test fails, Helm will exit with a nonzero exit code and provide you with the name
of the Kubernetes resource that failed. The nonzero exit code is useful when paired
with some automation testing systems that detect failures this way. When you have
the name of the Kubernetes resource, you can look at the logs to see what failed.

Tests typically live in the tests subdirectory of the templates directory. Putting the tests
in this directory provides a useful separation. This is a convention and not required
for tests to run.

To illustrate a test, we will look at the booster chart. In the templates/tests directory,
there is a single test in the file test-connection.yaml that contains the following test
hook:

apiVersion: v1
kind: Pod
metadata:
 name: "{{ include "booster.fullname" . }}-test-connection"
 labels:
 {{- include "booster.labels" . | nindent 4 }}
 annotations:
 "helm.sh/hook": test
spec:
 containers:
 - name: wget
 image: busybox
 command: ['wget']
 args: ['{{ include "booster.fullname" . }}:{{ .Values.service.port }}']
 restartPolicy: Never

Adding Tests to Charts | 117

https://oreil.ly/COJ7w

This test is the one created by default for Nginx when helm create is run. It happens
to work to test connectivity to the booster application, as well. This simple test illus‐
trates the structure of a test.

If you look at tests in some existing charts you might find the hook
they use is test-success instead of test. In Helm version 2 there
was a hook named test-success for running tests. Helm version 3
provides backward compatibility and will run this hook name as a
test.

There are two steps to run tests. The first step is to install the chart so that an instance
of it is running. You can use the helm install command to do this. The following
command installs the booster chart and assumes you are running it from the root
directory of the chart:

$ helm install boost .

Once the instance of the chart is running, you run the helm test command to exe‐
cute the tests:

$ helm test boost

Helm will output the status of the test as it executes and then information about the
test and the release when complete. For the previous test it would return:

Pod boost-booster-test-connection pending
Pod boost-booster-test-connection pending
Pod boost-booster-test-connection running
Pod boost-booster-test-connection succeeded
NAME: boost
LAST DEPLOYED: Tue Jul 21 06:47:05 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: boost-booster-test-connection
Last Started: Tue Jul 21 06:47:12 2020
Last Completed: Tue Jul 21 06:47:17 2020
Phase: Succeeded
NOTES:
1. Get the application URL by running these commands:
 export POD_NAME=$(kubectl get pods --namespace default -l
 "app.kubernetes.io/name=booster,app.kubernetes.io/instance=boost"
 -o jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use your application"
 kubectl --namespace default port-forward $POD_NAME 8080:80

When charts have dependencies that have tests, those will be run, as well. For exam‐
ple, if the tests in the rocket chart used earlier in the chapter are run, the booster chart
tests and the rocket chart tests will be run.

118 | Chapter 6: Advanced Chart Features

If you need to have configuration installed as part of a test, you can
put the test hook on a Kubernetes Secret or ConfigMap to have it
installed with other test resources.

Testing charts is a great way to ensure the contents of a chart are able to get the work‐
load running in Kubernetes and catch changes that may break that.

Chart Testing Tool
The Helm project provides an additional testing tool, built on the foundation of helm
test, that provides more advanced testing capabilities. Some of the additional fea‐
tures it includes are:

• The ability to test different—mutually exclusive—configuration options at install
time for a chart.

• Chart.yaml schema validation that includes custom schema rules.
• Additional YAML linting that includes configurable rules. For example, you can

make sure indentation in the YAML files is consistent.
• When the source is stored in Git, the ability to check if the version property in a

Chart.yaml file has been properly incremented.
• The ability to work with collections of charts and only test those that have

changed.

The Chart Testing tool was designed to use in continuous integration system work‐
flows, and some of the features directly target this situation.

History of Chart Testing
When Helm was in its early days, the project maintainers started a repository with
some charts to showcase what you could do with charts. Helm repositories were
designed to be distributed from the start—with different organizations running their
own repositories—and the Helm project provided an example of how to do this.

This chart repository grew to have many charts and became a form of central reposi‐
tory. To aid in maintaining the many charts, automation scripts were created to help
automatically provide feedback to proposed pull requests to the charts.

The automation scripts proved to be useful to more than the Helm project. To enable
the chart repositories hosted by others to have the same testing capabilities, the
scripts used by the Helm project were broken out into a separate tool and rewritten
with portability in mind.

Adding Tests to Charts | 119

The Chart Testing tool is now used by a variety of companies and organizations to aid
in the testing of their hosted charts.

The ability for Chart Testing to test a chart with different, mutually exclusive, config‐
urations requires knowing those configurations. These are bundled in the ci directory
of a chart.

In the ci directory you can create a values file for each situation to test. You need to
use the glob naming pattern *-values.yaml when you name each file. For example, you
can use file names like minimal-values.yaml and full-values.yaml.

Chart Testing will test each of these configurations separately. For example, when the
chart is being linted, each case will be linted separately. The custom values will be
passed to helm lint using the --values flag. The same idea and flag applies when
the chart is being runtime tested. The values are passed to Helm using the --values
flag beacuse this is how end users, who install the chart, provide their custom
configuration.

If you want to test using various configurations but do not want to ship those config‐
urations as part of the chart archive, you can put the ci directory in the .helmignore
file. When Helm packages the chart, the ci directory will be ignored.

Chart Testing can be installed and used in various ways. For example, you can use it
as a binary application on a development system or in a container within a continu‐
ous integration system. Learn more about using and setting it up for your situation
on the project page.

Security Considerations
Some of the biggest and most trusted technology organizations have had their users
be attacked through software updates. Software changes and the mechanisms used to
update and even install software provide a channel of attack.

Helm provides an opt-in means to check the provenance and integrity of charts.
Provenance provides a means to verify the origin, such as a company or person, of a
chart while integrity provides a way to check that you received what you expected
without alterations. This functionality enables you and those who use your charts to
verify who they came from and that the contents have not changed.

To accomplish this Helm uses Pretty Good Privacy (PGP), hashes, and a provenance
file that sits alongside the chart archive file. For example, if you have a chart archive
named mylib-1.0.0.tgz, you can have a provenance file named mylib-1.0.0.tgz.prov.
This file contains a PGP message with the contents of the Chart.yaml file along with
the hash of the chart archive. Helm can generate these files for you. The following
example is the provenance file for mylib-1.0.0.tgz:

120 | Chapter 6: Advanced Chart Features

https://oreil.ly/sJXpR
https://oreil.ly/sJXpR

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

apiVersion: v2
description: an example library chart
name: mylib
type: library
version: 0.1.0

...
files:
 mylib-0.1.0.tgz: sha256:d312aea39acf7026f39edebd315a11a52d29a9
 6a8d68737ead110ac0c0a1163d
-----BEGIN PGP SIGNATURE-----

iQIzBAEBCgAdFiEEcR8o1RDh4Ly9X2v+lDboC/ukaQkFAl8yiesACgkQlDboC/uk
aQkG2BAAlIEgGI7uu9Kr8j4ZIxDseLmgphhPM1kgnIMPriLieBxFXSJQxciN3+dx
OQpIfdsFQvW98EnJ4781Pm+leHY2iI/L08O1cQWUtzKhfPEWC65YQJPXkTKpHnC2
wXYVUVYWvhx6BJ77RiS/f+hoXiC+i1aBqqS0TAG+AqXuwARO2tY/L7cF6EHjsUwD
pPuTNpYZ/OEWqh1KEYZYVDvLm6uN6QjV4pNTFfAgnvMckfoDLQ+kOPQVqCeUWG3F
tZO3sBzUg+Ak2dDviSTOFQ7TCifc3tOOaWS1XtcooSOkUENmTeeWV56jZnhK1rT4
yaIGT16zXZIdmkZ1t5o9VccuAhQ1Us2FhipdGqpD8yDoJABVz/ee9d2zoX8anfR7
LZ7fwecgQ/THnj54RroyQlzf2aottFiL9ZV4MjUqs0CSoA9+SZ/CcJDd/rxBGI8C
yxRqo0VoNdjT8Kr9hha13krfwD8IpLH8bv4kWt3Ckh6rgphjUL19xyTHJY7w2toY
bAeZMl3Y05Ca76EA7XDdoltE57SUS1Zzd+wDRzRD0IZO8KVk+Z5/PzzvV4l9lnDJ
X63fptInbJpyk0xYKLMFquOY7Yy5mlI9de7424CScePo9Nua3GAakfi4zk3i4Auz
2eaoU/S5uXt605OydkSLLz99BAyJwmazzf/qPyYcPWMw/b+gHxw=
=pRcC
-----END PGP SIGNATURE-----

A provenance file is a PGP signed message with a particular structure in the message.
That hash in the message is used by Helm to validate integrity, and the PGP signature
is used to validate who it came from.

There are two steps to using provenance files. First, you need to generate them. In
order to do that you need to have a PGP key pair.

When creating a package using the helm package command, you can tell Helm to
sign the package:

$ helm package --sign --key 'bugs@acme.example.com' \
 --keyring path/to/keyring mychart

The additional flags will tell Helm to create the provenance file. The --sign flag opts-
in to signing, the --key flag specifies the name of the private key to use, and the
--keyring flag specifies the location of the keyring to use that contains the private
key to use for signing. When Helm creates the archive of the chart, it will also create
the .prov file alongside it.

The provenance file should then be uploaded alongside the chart archive and made
available for download from a chart repository.

Security Considerations | 121

Verifying happens in reverse and is built into commands such as helm install, helm
upgrade, and helm pull along with being available in the helm verify command.

Helm can handle the situation where you have both the archive and provenance file
locally available and when you have the chart in a remote repository.

To illustrate the situation of having both files locally, we can use the helm verify
command:

$ helm verify --keyring path/to/keyring mychart-0.1.0.tgz

The verify command will tell Helm to check the hash and signature. The --keyring
flag tells Helm where a PGP keyring exists with the public key that matches the pri‐
vate key the chart was signed with. This can be either a keyring or a non-ASCII-
Armored version of the public key. Helm will look for the mychart-0.1.0.tgz.prov file
and use that to perform the check.

Running the verify command on the mylib chart would look like:

$ helm verify mylib-0.1.0.tgz --keyring public.key

This would output:

Signed by: Matthew Farina
Using Key With Fingerprint: 672C657BE06B4B30969C4A57461449C25E36B98E
Chart Hash Verified: sha256:d312aea39acf7026f39edebd315a11a52d29a96a8d68737ead11
 0ac0c0a1163d

If you have a chart in a Helm repository, Helm will download the provenance file
when it downloads the chart. For example:

$ helm install --verify --keyring public.key myrepo/mychart

When Helm fetches the chart archive, it will also download the provenance file, verify
the signature, and verify the hash.

The public key should be shared through a different channel from
the chart and provenance file.

If there is a problem during the verification process, Helm will provide an error and
exit with a nonzero exit code.

GNU Privacy Guard
Starting in GNU Privacy Guard (GPG) 2.1, keys were stored in a new keybox format.
This new format is incompatible with PGP specifications and formats. That means

122 | Chapter 6: Advanced Chart Features

there are some extra steps to working with keys if you use GPG. The following com‐
mands provide a reference you can use when working with GPG.

You can export your secret keys from GPG into a PGP format with:

gpg --export-secret-keys > secring.gpg

You can export public keys from GPG into a PGP format with:

gpg --export > pubring.gpg

You can convert a public key in ASCII-Armor format to binary format with:

gpg --dearmor < pgp_key.asc > public.key

pgp_key.asc is the name of the ASCII-Armored key file and public.key is the name of
the same key in binary format. This public.key file can be passed to Helm as a keyring
for verification.

If you use a password or a hardware security device with GPG, you may not be able to
export your private key. In that case, there is the Helm GPG plugin. It provides com‐
mands and a means to directly work with provenance files through GPG. Plugins are
covered in more detail in Chapter 8.

Verifying that a chart came from who you expected and that the content hasn’t
changed is a useful step in securing your software supply chain.

Custom Resource Definitions
Kubernetes custom resource definitions (CRDs) provide a means to extend the
Kubernetes API, and Helm provides methods to install them as part of the chart.

Custom Resource Definitions, the Kubernetes API, and Some Gotchas
CRDs provide a method to extend the Kubernetes API for all users of a cluster. They
add new resource types, known as custom resources, that can be uploaded to a cluster
alongside the resource types that ship with Kubernetes. CRDs provide a schema and
can describe multiple versions of the same resource. They are a shared global
resource.

CRDs in a cluster can be updated to change an API. This can be to change or update
the schema for an existing version of an API or to add new versions to the API. The
Kubernetes community recommends that the API version be incremented anytime
there is a breaking change to an API, but backward compatible changes are accepta‐
ble. There is no enforcement of this recommendation within Kubernetes. For exam‐
ple, adding an optional field to an API is backward compatible, but a new mandatory
field is not. Changes to CRDs affect all users of the cluster.

Custom Resource Definitions | 123

https://oreil.ly/pEJh3

When a CRD is deleted from a cluster, all of the custom resources based on it are
deleted as well. This applies to all users of the cluster because CRDs are cluster-wide
resources. In multitenant clusters, when one tenant deletes a CRD the custom resour‐
ces described by that CRD for all tenants are deleted.

CRDs work this way because they were designed to be cluster-level extensions. In a
retrospective on CRDs, Brendan Burns, one of Kubernetes’ founders, described their
three goals as:

1. An easy method to dynamically add new API types to Kubernetes.
2. To enable API extensibility without significant additional load on operators of

Kubernetes clusters.
3. Enable an ecosystem of value add extensions to end-user clusters.

When Kubernetes API extensions were being developed, another method to extend
the API was developed that required a lot more work from cluster operators and
those developing extensions. CRDs simplified the experience.

CRDs are conceptually similar to kernel modules and extensions in operating
systems.

There are two Helm-based methods to managing the CRDs used by a chart. Choos‐
ing between the methods to use often depends on the requirements and environment
configurations of those who need to install your charts.

First, the crds directory is a special directory you can add to a chart to hold your
CRDs. Helm will install CRDs prior to installing other resources. This ensures that
CRDs are available for any custom resources or controllers that may leverage them in
the chart.

CRDs in the crds directory are different from other resources installed by Helm.
These files are not templated. This is useful for the CRD management workflows we
will cover in a moment. Helm will not upgrade or delete CRDs like it does other
resources. Upgrading CRDs changes the API surface for all instances of the custom
resources in the cluster, and deleting CRDs removes all of the custom resources for all
users. When it comes to handling these cluster-wide changes you will need to use a
companion tool, like kubectl, the command-line tool for Kubernetes.

Because CRDs change the Kubernetes API, whoever is installing your chart may not
have permission to install, upgrade, or delete them. This is the case if you are bun‐
dling an application for distribution to other companies or the general public. Some
cluster administrators restrict access to these functions as part of their access controls
for security.

124 | Chapter 6: Advanced Chart Features

The CRDs in the crds directory can be extracted from a chart and used directly with
tools like kubectl. This enables the CRDs to be passed to someone with permission
to install them, if the person installing the chart doesn’t have permission. The extrac‐
ted CRDs can also be used to upgrade the CRDs within a cluster using other tools.

A second, Helm-based, way to manage CRDs while providing an ordering that
installs CRDs before using them through custom resources is to use a second chart
that holds the CRDs. This method provides more nuanced control through Helm.

Using a second chart will let you:

1. Use Helm templates and the normal templates directory for CRDs.
2. Helm will manage the life cycle of the CRDs. That includes uninstalling and

upgrades. If you want to keep the CRD installed after the chart is uninstalled, you
can set the annotation "helm.sh/resource-policy": keep to tell Helm to skip
uninstalling the resource.

3. If you have issues with an application and use the uninstall and reinstall method
to try to fix issues, the CRDs in the separate chart will not be deleted.

This second chart can be installed with either a loose coupling, where the directions
tell people to install it first, or a tight coupling, where it is set as a dependency. If the
chart holding the CRDs is set as a dependency the use case should be that it is only
installed once as it is setting cluster-wide resources.

When Helm is managing the CRDs, special care needs to be given for handling
upgrade and delete cases. For example, if two versions of the CRD installing chart are
installed, as you need to ensure an older version doesn’t overwrite a newer version
and that a newer version doesn’t break the functionality for someone else in the clus‐
ter using the older version. This can happen if two people install different versions of
the chart that installs CRDs. In multitenant clusters different users of the cluster may
not know about each other, and it’s important to ensure that one user of the cluster
does not break the workloads of another user of the cluster.

When installing and working with CRDs, the Helm developers recommend taking
special care in all of the life cycle steps to make sure that users of charts don’t run into
situations that accidentally break production workloads.

Conclusion
Helm charts are more than a collection of templates. They handle dependencies, can
include schemas, provide an event hook mechanism, can include tests, and have fea‐
tures for security. These features are part of what make Helm a robust and reliable
solution to the package management problem.

Conclusion | 125

CHAPTER 7

Chart Repositories

No package manager is complete without a way to share and distribute the packages
themselves. Organizations and vendors must have a way to publish packages for end
users to download and consume. Likewise, end users must have a common way to
fetch packages from a variety of sources.

Helm enables package distribution though a system called chart repositories. Chart
repositories are simple HTTP(S) web services from which users can discover and
download available charts. Conceptually, chart repositories are similar in design to
Debian package repositories, Fedora package databases, or the Comprehensive Perl
Archive Network (CPAN).

In this chapter, we will first dive deep into the internals of a chart repository. We will
discuss the repository index and how to update it with new chart versions. After that,
we will show how to set up a chart repository from scratch, how to secure one, and
also show a real-world example of how to host a public chart repository using GitHub
Pages for open source projects. After this, we will walk through the various helm
repo commands and how to use them effectively.

Toward the end of the chapter, we will cover the next generation of chart repositories
using Helm’s experimental Open Container Initiative (OCI) support. This bleeding-
edge functionality added in Helm 3 allows users to store Helm charts in container
registries alongside their container images.

Lastly, we will briefly describe some of the projects in the Helm ecosystem related to
chart repositories.

127

The Repository Index
All chart repositories contain a special repository index file called index.yaml, which
lists all available charts and their respective download locations.

See Appendix B for more details describing the format of
index.yaml.

Here’s an example of a very basic index.yaml file:

apiVersion: v1
entries:
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-27T17:46:52.60919-05:00"
 description: A Helm chart for Kubernetes
 digest: cd1f8d949aeb6a7a3c6720bfe71688d4add794881b78ad9715017581f7867db4
 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-27T17:46:52.607943-05:00"

Note the entries section, which lists all charts and chart versions. This index.yaml
example lists a just single chart, superapp, with a single version, 0.1.0.

An Example of a Chart Repository Index
Usually, chart repositories list many charts and all their available versions. This allows
users to download a specific version of the chart they wish to install. The following is
a more real-world example of a chart repository index, containing multiple charts
and chart versions:

apiVersion: v1
entries:
 cert-manager:
 - apiVersion: v1
 appVersion: v0.14.2
 created: "2020-04-08T11:38:26.281Z"
 description: A Helm chart for cert-manager
 digest: 160e1bd4906855b91c8ba42afe10af2d0443b184916e4534175890b1a7278f4e
 home: https://github.com/jetstack/cert-manager
 icon: https://raw.githubusercontent.com/jetstack/cert-manager/master/logo/
 logo.png
 keywords:

128 | Chapter 7: Chart Repositories

 - cert-manager
 - kube-lego
 - letsencrypt
 - tls
 maintainers:
 - email: dev@jetstack.io
 name: jetstack-dev
 name: cert-manager
 sources:
 - https://github.com/jetstack/cert-manager
 urls:
 - charts/cert-manager-v0.14.2.tgz
 version: v0.14.2
 - apiVersion: v1
 appVersion: v0.14.1
 created: "2020-03-25T18:30:16.354Z"
 description: A Helm chart for cert-manager
 digest: 629150400487df41af6c7acf2a3bfd8e691f657a930bc81e1dcf3b9d23329baf
 home: https://github.com/jetstack/cert-manager
 icon: https://raw.githubusercontent.com/jetstack/cert-manager/master/logo/
 logo.png
 keywords:
 - cert-manager
 - kube-lego
 - letsencrypt
 - tls
 maintainers:
 - email: dev@jetstack.io
 name: jetstack-dev
 name: cert-manager
 sources:
 - https://github.com/jetstack/cert-manager
 urls:
 - charts/cert-manager-v0.14.1.tgz
 version: v0.14.1
 tor-proxy:
 - apiVersion: v1
 created: "2018-11-16T09:23:13.538Z"
 description: A Helm chart for Kubernetes
 digest: 1d2fd11e22ba58bf0a263c39777f0f18855368b099aed7b03123ca91e55343e4
 name: tor-proxy
 urls:
 - charts/tor-proxy-0.1.1.tgz
 version: 0.1.1
generated: "2020-04-23T17:43:41Z"

The preceding example shows two available charts: cert-manager and tor-proxy. There
are a total of three available chart versions: cert-manager v0.14.1, cert-manager
v0.14.2 (latest), and tor-proxy 0.1.1 (latest). The latest versions of each chart in the
repo are displayed when running a helm search.

The Repository Index | 129

Typically chart archives (.tgz files) themselves are served from the same location as
the repository index, but the index may also link to remote locations on entirely dif‐
ferent domains. Here is a snippet from an index.yaml referencing chart archives loca‐
ted on a separate domain (note the absolute URL):

...
 - appVersion: 2.10.1
 created: 2019-01-14T23:25:37.125126859Z
 description: A simple, powerful publishing platform that allows you to share
 your stories with the world
 digest: dcadf39f81253a9a016fcab1b74aba1d470e015197152affdaeb1b337221cc5c
 engine: gotpl
 home: http://www.ghost.org/
 icon: https://bitnami.com/assets/stacks/ghost/img/ghost-stack-220x234.png
 keywords:
 - ghost
 - blog
 - http
 - web
 - application
 - nodejs
 - javascript
 maintainers:
 - email: containers@bitnami.com
 name: Bitnami
 name: ghost
 sources:
 - https://github.com/bitnami/bitnami-docker-ghost
 urls:
 - https://charts.example.com/ghost-6.2.3.tgz
 version: 6.2.3
...

Absolute chart URL

Other fields found in each entry include the metadata for a chart as described in
Chart.yaml, such as description, as well as an added digest field containing the
Secure Hash Algorithm (SHA-256) checksum of the chart archive. In Chapter 4 we
covered chart metadata and Chart.yaml in detail.

Additionally, at the top level is a generated field describing when the index was cre‐
ated (in RFC 3339 format), as well as an apiVersion describing the API version of
the index. At the time of writing, there is currently only one API version for chart
repositories. This field should always be v1.

Generating an Index
The repository index can be generated by a custom program, or typed out manually.
Helm also provides built-in functionality to generate the repository index for you.

130 | Chapter 7: Chart Repositories

Let’s create an empty directory, charts/, which will serve as the root of our chart
repository:

$ mkdir -p charts/

To generate a repository index inside the charts/ directory, run the following:

$ helm repo index charts/

This will create a file at charts/index.yaml. Let’s take a look:

$ cat charts/index.yaml
apiVersion: v1
entries: {}
generated: "2020-04-28T09:55:29.517285-05:00"

You’ll notice that the entries are empty. This is expected because we do not yet have
any charts in the charts/ directory.

Let’s create a sample chart, and package it into the charts/ directory:

$ helm create superapp
Creating superapp
$ helm package superapp/ --destination charts/
Successfully packaged chart and saved it to: charts/superapp-0.1.0.tgz

Now let’s try generating the index again:

$ helm repo index charts/
$ cat charts/index.yaml
apiVersion: v1
 entries:
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T10:12:22.507943-05:00"
 description: A Helm chart for Kubernetes
 digest: 46f9ddeca12ec0bc257a702dac7d069af018aed2a87314d86b230454ac033672
 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-28T10:12:22.507289-05:00"

Now we see our chart listed in the entries section.

Adding to an Existing Index
In some scenarios (continuous integration/continuous deployment [CI/CD], for
example), you may only have access to an existing index.yaml file and a newly pack‐
aged chart archive. Helm provides a mechanism for building upon the contents of an
existing index with the --merge option.

The Repository Index | 131

Let’s simulate this scenario. Create a new directory called workspace/, which will rep‐
resent a new working directory in a CI/CD pipeline:

$ mkdir -p workspace/

Copy the existing index file into the workspace/ directory with a new name, such as
index-old.yaml:

$ cp charts/index.yaml workspace/index-old.yaml

In a real-world scenario, you might source the existing index file from some remote
location (e.g., Amazon S3).

Next let’s create another Helm chart and package it into the workspace/ directory:

$ helm create duperapp
Creating duperapp
$ helm package duperapp/ --destination workspace/
Successfully packaged chart and saved it to: workspace/duperapp-0.1.0.tgz

Run the following command, which will create a new index.yaml file based on the
combination of the existing entries found in index-old.yaml, as well as any .tgz files in
the workspace/ directory:

$ helm repo index workspace/ --merge workspace/index-old.yaml

Finally, move the files from the workspace/ directory into the charts/ directory, over‐
writing the old index file with the new one:

$ mv workspace/duperapp-0.1.0.tgz charts/
$ mv workspace/index.yaml charts/

The new version of the index file should now contain entries for both charts:

$ cat charts/index.yaml
apiVersion: v1
entries:
 duperapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T11:34:26.780267-05:00"
 description: A Helm chart for Kubernetes
 digest: 30ea14a4ce92e0d1aea7626cb30dfbac68a87dca360d0d76a55460b004d62f52
 name: duperapp
 type: application
 urls:
 - duperapp-0.1.0.tgz
 version: 0.1.0
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T10:12:22.507943-05:00"
 description: A Helm chart for Kubernetes
 digest: 46f9ddeca12ec0bc257a702dac7d069af018aed2a87314d86b230454ac033672

132 | Chapter 7: Chart Repositories

 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-28T11:34:26.779758-05:00"

This method is useful in environments where you do not necessarily have access to a
directory containing all of the chart archives.

Keep in mind, however, that if this merge occurs on multiple systems at the same
time, you may run into a race condition where one or more charts goes missing from
the index. This can be mitigated by ensuring that this process is only performed syn‐
chronously (e.g., a single CI job responsible for creating index.yaml for the reposi‐
tory). Another way to address this problem is to use a dynamic web server that is
responsible for generating the contents of index.yaml. The ChartMuseum project,
which is described later in this chapter in “Related Projects” on page 148, is one such
example of a dynamic chart repository server you can use for this purpose.

Setting Up a Chart Repository
One of the benefits of chart repositories is that they can be entirely static—meaning
you can place the files behind a simple web server such as Apache or Nginx and serve
them as is. You can even use object storage providers, such as Amazon S3. No signifi‐
cant computation needs to occur on the server side when a client requests index.yaml,
for example. The static web server just opens the file as it exists on the filesystem and
sends the raw contents back to the client.

A Simple Chart Repository with Python
For the sake of this example, we will use Python’s built-in static web server to start up
a local test repository. Note that almost all programming languages have some sup‐
port in their standard libraries to start a web server and serve static files. Python is
chosen simply because it comes preinstalled on most Unix-based systems, and
because it provides an easy one-line command to start a static web server.

Follow the instructions in the previous section (“Generating an Index” on page 130)
to create the charts/ directory, containing the files index.yaml, superapp-0.1.0.tgz, and
duperapp-0.1.0.tgz. Run one of the following commands to start a local web server at
http://localhost:8080.

Using Python 3 (try this first):

$ (cd charts/ && python3 -m http.server --bind 127.0.0.1 8080)

Using Python 2:

$ (ch charts/ && python -m SimpleHTTPServer 8080)

Setting Up a Chart Repository | 133

http://localhost:8080

The Python 2 version of this command listens on all interfaces
(0.0.0.0) versus just the loopback interface (127.0.0.1). Depend‐
ing on your system, this will allow other devices on your network
to connect. Be mindful of which files are present in the charts/
directory before running this command.

Now, in another terminal window, try fetching index.yaml using curl:

$ curl -sO http://localhost:8080/index.yaml
$ ls *.yaml
index.yaml

Now let’s verify that we can fetch chart archives:

$ curl -sO http://localhost:8080/superapp-0.1.0.tgz
$ curl -sO http://localhost:8080/duperapp-0.1.0.tgz
$ ls *.tgz
duperapp-0.1.0.tgz superapp-0.1.0.tgz

If the curl commands succeed, your chart repository is ready to be used with Helm.

Securing a Chart Repository
In many cases, you may wish to limit access to a chart repository or maintain an audit
trail of which users are accessing which resources. Helm has built-in support to allow
users to authenticate themselves against chart repositories protected by either basic
auth or mTLS.

Basic auth
Chart repositories can be protected by basic access authentication, or basic auth. This
requires that users provide a valid username/password combination to access resour‐
ces on the server.

Basic auth can be implemented by a server by first checking the Authorization
header prior to processing a request. An incoming basic auth header resembles the
following:

Authorization: Basic bXl1c2VyOm15cGFzcw==

The opaque string here is the Base64 encoding of username + “:” + password.

The contents of the Authorization header are not encrypted, so
you are strongly encouraged to also use HTTPS when supplying
basic auth credentials.

134 | Chapter 7: Chart Repositories

When adding a repository for the first time, you can supply a username and pass‐
word combination on the command line, which will instruct Helm to use basic auth
when making requests against this repository:

$ helm repo add mycharts http://localhost:8080 --username myuser \
 --password mypass
"mycharts" has been added to your repositories

Client certificates
Most client-server communication over HTTPS allows the client to verify the identity
of the server based on the SSL certificate provided by the server. With mutual TLS
authentication (mTLS), servers can also verify the identity of the client based on a
separate SSL certificate presented by the client during the TLS handshake.

Here is a simple Nginx server configuration enabling mTLS for a chart repository,
assuming static files (i.e., index.yaml, .tgz files) are located in the directory /chartrepo
on the server:

events { }
http {
 server {
 root /chartrepo;
 listen 443 ssl;
 server_name charts.example.com;
 ssl_certificate /certs/server.crt;
 ssl_certificate_key /certs/server.key;
 ssl_client_certificate /certs/client-ca.pem;
 ssl_verify_client on;
 proxy_set_header SSL_CLIENT_CERT $ssl_client_cert;
 }
}

Server’s SSL certificate

Server’s private key

Certificate authority (CA) for client authentication—only requests from clients
with a certificate signed by this CA will be accepted

The first step in obtaining a client certificate is to generate a new private key and cer‐
tificate signing request (CSR):

$ mkdir -p ~/client-certs/
$ cd ~/client-certs/
$ openssl genrsa -out francis.key 4096
$ openssl req -new -key francis.key -out francis.csr

Setting Up a Chart Repository | 135

When prompted for a “Common Name” when generating the CSR, you must enter a
value. Use something that identifies the client (e.g., “francis”). Other fields can techni‐
cally be left blank, although you are encouraged to fill them out.

Next, using the certificate authority configured on the server (client-ca.pem) and
the associated private key (client-ca.key), generate a new client certificate from the
CSR:

$ openssl x509 -req -in francis.csr \
 -CA /certs/client-ca.pem -CAkey /certs/client-ca.key \
 -out francis.crt -sha256

Now you can use this certificate to authenticate by specifying the --cert-file and
--key-file options upon adding a new chart repository:

$ helm repo add client-cert-repo https://charts.example.com \
 --cert-file ~/client-certs/francis.crt --key-file ~/client-certs/francis.key
"client-cert-repo" has been added to your repositories

In the case that your server is using a self-signed certificate, you can also specify the
--ca-file option pointing to a trusted certificate or certificate bundle:

$ helm repo add client-cert-repo-selfsigned https://charts.example.com \
 --cert-file ~/client-certs/francis.crt --key-file ~/client-certs/francis.key
 --ca-file /certs/server.crt
"client-cert-repo-selfsigned" has been added to your repositories

The paths used for --cert-file, --key-file, and --ca-file are
all stored in the Helm cache tied to the repository. It is important
not to move these files; otherwise, future requests to the repository
will fail due to missing files needed for the client to authenticate.

For more information on mTLS, please see Internet Engineering Task Force (IETF)
RFC 8446, “The Transport Layer Security (TLS) Protocol Version 1.3.”

Real-World Example: Using GitHub Pages
GitHub has a free, static hosting solution called GitHub Pages. If you don’t mind
making your charts public to the world, GitHub Pages is a great option for hosting a
chart repository as you incur zero cost.

What’s even better is that GitHub Pages allows you to use a custom domain name that
points to your GitHub Pages site. In this section we will show how to easily set up a
public Helm chart repository using GitHub Pages.

There are some limitations on GitHub Pages (such as bandwidth), so before using
this method, enumerate the performance requirements for your chart repository
compared to GitHub’s documentation of GitHub Pages’ features.

136 | Chapter 7: Chart Repositories

Create a new Git repo
The first step is to create a brand-new Git repo on GitHub dedicated to your chart
repository. You could technically host the chart repo alongside other content, but for
the sake of simplicity, we will use a dedicated Git repo. Figure 7-1 shows how to set
up a new repository.

Figure 7-1. Creating a new public repository in GitHub

Once you’re logged in to GitHub, click the top right of the screen and select “New
repository.” Name the Git repo whatever you want. We will use the name mycharts for
this example. Make sure to select the option for marking the repository as “Public,”

Setting Up a Chart Repository | 137

which is a prerequisite for using GitHub Pages. Select the box for “Initialize this
repository with a README,” which will allow us to clone the repo immediately. Feel
free to select a license such as “MIT License” to indicate that the source code in this
repo is free to use and repurpose. Finally, click “Create repository.”

It’s important to note in this context the difference between a Helm
repo (or chart repository) and a Git repo hosted on GitHub, which
is used for version control.

Enable GitHub Pages
Navigate to the Settings panel on the repository. In the main settings, scroll down to
the section titled GitHub Pages (see Figure 7-2). For the Source option, select “main
branch.” This will cause GitHub to redeploy your GitHub Pages site every time you
make a new commit to the main branch. Click Save.

Figure 7-2. Enabling GitHub Pages on your repository

Optional: Use a custom domain

Sites on GitHub Pages, by default, are hosted as a subdomain on the github.io
domain. For example, the URL to your site would resemble something like https://
yourusername.github.io/mycharts/.

If you have a custom domain name to use, in your registrar’s web console (or alterna‐
tively, in the console for the service you have set up to use for your authoritative
nameservers), create a new DNS record pointing to yourusername.github.io. If using

138 | Chapter 7: Chart Repositories

the root domain, use an ALIAS record type; otherwise, for subdomains, use a CNAME
record type.

Go back to your repository settings in GitHub. As in Figure 7-3, in the “Custom
domain” input, enter your domain that you set up a DNS record for.

Figure 7-3. Using a custom domain for GitHub Pages

It may take up to an hour for GitHub to generate a TLS certificate for your domain.
Once it is ready, you should see some text displayed in the settings such as “Your site
is published at https://example.com.” Once you see this, make sure to enable the
Enforce HTTPS option so that your site is only ever accessed over HTTPS versus just
plain HTTP.

Setting Up a Chart Repository | 139

Adding chart repository files
Locate the clone URL for your repo in the GitHub UI (typically on the right side of
the screen). Clone your new GitHub repository to your local system so that we can
add some files to turn it into a real chart repository:

$ git clone git@github.com:youruser/mycharts.git
Cloning into 'mycharts'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 7 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (7/7), done.

Enter the directory of your Git repository:

$ cd mycharts/

Next, let’s create a chart called pineapple in a new src/ directory, package it into an
archive in the root of the repo, and create an index.yaml file:

$ mkdir -p src/
$ helm create src/pineapple
Creating src/pineapple
$ helm package src/pineapple/
Successfully packaged chart and saved it to: /home/user/mycharts/
 pineapple-0.1.0.tgz
$ helm repo index .

Once that’s done, let’s commit and push all these new files back to GitHub:

$ git add .

$ git commit -m "Add pineapple chart v0.1.0"
[main 9bba19d] Add pineapple chart v0.1.0
 13 files changed, 395 insertions(+)
 create mode 100644 index.yaml
 create mode 100644 pineapple-0.1.0.tgz
 create mode 100644 src/pineapple/.helmignore
 create mode 100644 src/pineapple/Chart.yaml
 create mode 100644 src/pineapple/templates/NOTES.txt
 create mode 100644 src/pineapple/templates/_helpers.tpl
 create mode 100644 src/pineapple/templates/deployment.yaml
 create mode 100644 src/pineapple/templates/hpa.yaml
 create mode 100644 src/pineapple/templates/ingress.yaml
 create mode 100644 src/pineapple/templates/service.yaml
 create mode 100644 src/pineapple/templates/serviceaccount.yaml
 create mode 100644 src/pineapple/templates/tests/test-connection.yaml
 create mode 100644 src/pineapple/values.yaml

$ git push origin main
Enumerating objects: 20, done.
Counting objects: 100% (20/20), done.
Delta compression using up to 12 threads
Compressing objects: 100% (17/17), done.

140 | Chapter 7: Chart Repositories

Writing objects: 100% (19/19), 9.29 KiB | 4.64 MiB/s, done.
Total 19 (delta 0), reused 0 (delta 0)
To github.com:youruser/mycharts.git
 4964b76..9bba19d main -> main

Go back to GitHub in the browser. There is a small delay between the time you push a
change and those changes becoming avaiable on your GitHub Pages site. Click the
Environments item in the right sidebar. This will tell you the last time your site was
deployed. If you see a reference to the commit you just pushed (9bba19d in the pre‐
ceding example), your GitHub Pages site is ready to use.

Using your GitHub Pages site as a chart repository
Once you have pushed an index.yaml file up to your Git repo, and the site is live with
the latest commit, you can use it exactly as you would any other chart repository.

Add your GitHub Pages chart repository to your local repositories:

$ helm repo add gh-pages https://yourusername.github.io/mycharts/

Or, if you’re using a custom domain:

$ helm repo add gh-pages https://example.com

Using Chart Repositories
Once you have a working chart repository (see previous section), you can then lever‐
age it using the Helm CLI.

Several commands are available under the top-level helm repo subcommand for
working with chart repositories. This section will focus on how to use each of these
commands effectively.

Adding a Repository
The very first step in using a chart repository is to assign a unique name to it (such as
mycharts) and add it to a list of repositories known by Helm. When you first add a
repository, Helm fetches index.yaml from the URL provided and stores it locally.

Use the helm repo add command to add your repository:

$ helm repo add mycharts http://localhost:8080
"mycharts" has been added to your repositories

If you are running the Python example, check out the logs for your chart repository
and you should see the incoming request for GET /index.yaml:

127.0.0.1 - - [06/May/2020 15:31:07] "GET /index.yaml HTTP/1.1" 200 -

Using Chart Repositories | 141

Downloading Charts
To download a chart directly from a repository, use the helm pull command:

$ helm pull mycharts/superapp

Helm will automatically find the latest version based on Semantic Versioning. You
can also specify a version:

$ helm pull mycharts/superapp --version 0.1.0

This will result in a new chart archive (.tgz file) in your workspace:

$ ls *.tgz
superapp-0.1.0.tgz

This archive can be then be installed directly:

$ helm install superapp-dev superapp-0.1.0.tgz

You can also install charts directly from added repositories:

$ helm install superapp-dev mycharts/superapp

Listing Repositories
It’s oftentimes helpful to know which chart repositories have already been added on
your system. Knowing this may help you decide whether you want to use one of them
to download charts or to remove one of them from the system completely.

Use the helm repo list command to list all chart repositories added to your system:

$ helm repo list
NAME URL
mycharts http://localhost:8080

You can also leverage the --output / -o option to get this in machine-readable for‐
mat, if needed.

Get the list as YAML by adding -o yaml:

$ helm repo list -o yaml
- name: mycharts
 url: http://localhost:8080

Get the list as JSON by adding -o json:

$ helm repo list -o json
[{"name":"mycharts","url":"http://localhost:8080"}]

Updating Repositories
Once new chart versions are released, repository owners add the .tgz package to the
repo storage and update index.yaml with a new entry.

142 | Chapter 7: Chart Repositories

In order to fetch the latest version of the repository index, use the helm repo update
command:

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "mycharts" chart repository
Update Complete. Happy Helming!

If you are running the Python example, once again, you should notice an incoming
request for GET /index.yaml in the output logs from your chart repository:

127.0.0.1 - - [06/May/2020 15:31:07] "GET /index.yaml HTTP/1.1" 200 -

Whether or not the repository index has changed contents (we haven’t added any
more charts to myrepo), the file is fetched and downloaded into the cache, overwrit‐
ing the previously saved version.

Removing a Repository
In order to remove a repository, you can use helm repo remove:

$ helm repo remove mycharts
"mycharts" has been removed from your repositories

This will remove all references to this repository stored in the Helm cache.

Experimental OCI Support
Helm’s OCI support is still considered highly experimental. While
development in this area is still active, the syntax described in this
section may soon become outdated.

The chart repository system was designed to be easy to use. In most cases, this system
has proven to be sufficient—enabling organizations around the globe to share and
distribute their Helm charts.

Chart repositories do, however, present a few key challenges:

• They have no concept of namespaces; all charts for a repo are listed in a single
index

• They have no fine-grained access control; you either have access to all charts in
the repo or none of them

• Chart packages with different names but the exact same raw contents are stored
twice

Experimental OCI Support | 143

https://oreil.ly/eH4KE

• The repository index can become extremely large, causing Helm to consume a lot
of memory

Rather than trying to add features to address all of these issues with the current chart
repository model, it made much more sense to build the next generation of chart
repositories on top of registries that conform to the OCI Distribution Specification.

OCI stands for the Open Container Initiative. Taken from the website at https://open
containers.org, OCI is defined as the following:

An open governance structure for the express purpose of creating open industry
standards around container formats and runtimes.

One of the standards defined by OCI is the distribution specification. This spec
describes an HTTP API used for distributing container images. Interestingly enough,
this API is general-purpose and can apply to all sorts of things that aren’t container
images—things such as Helm charts!

Starting in Helm 3.0.0, experimental support was added to push and pull charts to
and from OCI-based container registries.

History of the OCI Distribution Spec
Docker introduced its own container engine in 2013, which was challenged in 2014
by CoreOS when it introduced rkt, an alternative engine with an open standard. Fun
fact: the concept of the Kubernetes Pod comes directly from rkt. In an effort to bridge
the divide, the Open Container Initiative was formed in 2015 to collaborate on open
standards for container runtimes and images.

Meanwhile, Docker had also been working on v2 of its registry API. If you have ever
used docker pull or docker push, the underlying HTTP calls are based upon this
API. Docker registries began to see massive industry adoption, giving birth to compa‐
nies such as Quay.io. Cloud providers such as Amazon Web Services began offering
their own hosted options.

In 2018, Docker donated its registry v2 specification to OCI under the name distribu‐
tion spec, enabling a broader community to continue to build on top of Docker’s
efforts. The spec continues to evolve today as a general-purpose storage solution with
a strong API.

Enabling OCI Support
At the time of writing, Helm’s OCI support is still considered experimental.

For now, set the following in your environment to enable OCI support:

$ export HELM_EXPERIMENTAL_OCI=1

144 | Chapter 7: Chart Repositories

https://opencontainers.org
https://opencontainers.org
https://www.quay.io
https://oreil.ly/JWYFv
https://oreil.ly/JWYFv

Running a Local Registry
The Docker Distribution project (also known as the Docker registry) was the original
implementation of Docker’s Registry v2 API. It supports Helm charts out of the box.

If you have docker installed, you can easily run a local registry in a container on port
5000 with the following command:

$ docker run -d --name oci-registry -p 5000:5000 registry

To tail the logs for you registry, run the following (press Ctrl-C to exit):

$ docker logs -f oci-registry

To stop your registry, run the following:

$ docker rm -f oci-registry

The Docker registry has several configuration options related to authentication, stor‐
age, etc.

If you wish to configure basic auth with a single username-password combo, first cre‐
ate a .htpasswd file:

$ htpasswd -cB -b auth.htpasswd myuser mypass

Then start the registry, mounting the .htpasswd file and setting the REGISTRY_AUTH
environment variable:

$ docker run -d --name oci-registry -p 5000:5000 \
 -v $(pwd)/auth.htpasswd:/etc/docker/registry/auth.htpasswd \
 -e REGISTRY_AUTH="{htpasswd: {realm: localhost, path: /etc/docker/registry \
 auth.htpasswd}}" registry

For more information about Docker Distribution, visit the project GitHub page.

Logging In to a Registry
In order to authenticate against a registry, use the helm registry login command
(you will be prompted to manually enter a password):

$ helm registry login -u myuser localhost:5000
Password:
Login succeeded

This makes a simple GET request to the path /v2/ on the registry using the credentials
to determine if they are valid. If they are, the credentials will be stored in a Helm con‐
fig file. If you have any Docker credential stores enabled (such as osxkeychain on
macOS), the username and password will be stored there securely.

Experimental OCI Support | 145

https://oreil.ly/CBb0F
https://oreil.ly/Q8Omf

The example of running a local registry at localhost:5000 uses no
authentication. If you haven’t enabled authentication on your regis‐
try, any combination of login credentials will be accepted.

Logging Out of a Registry
In order to remove credentials for a given registry from your system, use the helm
registry logout command:

$ helm registry logout localhost:5000
Logout succeeded

Storing a Chart in the Cache
Prior to uploading a chart to a registry, you must first save it into the cache. This con‐
verts a chart from its normal state into content-addressable blobs and also gives it a
unique identifier.

Use helm chart save to store a chart in the cache:

$ helm chart save mychart/ localhost:5000/myrepo/mychart
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
2.7.0: saved

Notice that the tag used on the chart reference is based upon the chart’s version in
Chart.yaml (2.7.0).

You can also use a custom tag, such as stable, by specifying it after a colon (:) on the
chart reference:

$ helm chart save mychart/ localhost:5000/myrepo/mychart:stable
ref: localhost:5000/myrepo/mychart:stable
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
stable: saved

Listing Charts in the Cache
Use helm chart list to display all charts currently stored in the cache:

$ helm chart list
REF VERSION DIGEST SIZE
localhost:5000/myrepo/mychart:2.7.0 2.7.0 84059d7 454 B

146 | Chapter 7: Chart Repositories

localhost:5000/stable/acs-engine-autoscaler:2.2.2 2.2.2 d8d6762 4.3 KiB
localhost:5000/stable/aerospike:0.2.1 0.2.1 4aff638 3.7 KiB
localhost:5000/stable/airflow:0.13.0 0.13.0 c46cc43 28.1 KiB
localhost:5000/stable/anchore-engine:0.10.0 0.10.0 3f3dcd7 34.3 KiB

Exporting a Chart from the Cache
If you wish to extract the source files of a chart once it is in the cache, it must first be
exported to a local directory. Use the helm chart export command to export the
chart:

$ helm chart export localhost:5000/myrepo/mychart:2.7.0
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
Exported chart to mychart/

The name of the chart will be used to determine the output path (e.g., mychart/).

Pushing a Chart to the Registry
Pushing (a.k.a. uploading) a chart to the registry allows for it to be used by others.
Once you are already logged in to the registry and the chart you want to push has
been saved to the cache, use the helm chart push command to push a chart:

$ helm chart push localhost:5000/myrepo/mychart:2.7.0
The push refers to repository [localhost:5000/myrepo/mychart]
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
2.7.0: pushed to remote (1 layer, 2.4 KiB total)

Pulling a Chart from the Registry
Once charts have been pushed to a registry, other users can then pull (a.k.a. down‐
load) them. Pulling charts from a registry places them into the local cache. To pull an
existing chart from a registry, use the helm chart pull command:

$ helm chart pull localhost:5000/myrepo/mychart:2.7.0
2.7.0: Pulling from localhost:5000/myrepo/mychart
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
Status: Downloaded newer chart for localhost:5000/myrepo/mychart:2.7.0

Experimental OCI Support | 147

Removing a Chart from the Cache
To remove a chart from the local cache, use the helm chart remove command:

$ helm chart remove localhost:5000/myrepo/mychart:2.7.0
2.7.0: removed

Related Projects
Helm’s chart repository system has spawned a collection of open source tools to fur‐
ther enhance this experience. The following subsections cover some of the projects
related to chart repositories.

ChartMuseum
Project homepage: https://github.com/helm/chartmuseum

ChartMuseum is a simple chart repository web server. Configure it to point to a stor‐
age location containing chart packages and it will dynamically generate index.yaml. It
also exposes an HTTP API for uploading, querying, and deleting chart packages from
storage. Additionally, it has a number of other configuration settings for auth, multi‐
tenancy, and caching that make it a popular choice for users hosting private or inter‐
nal chart repositories.

ChartMuseum’s Supported Backends
ChartMuseum supports a wide array of storage backends, including the following:

• Alibaba Cloud OSS Storage
• Amazon S3
• Baidu Cloud BOS Storage
• DigitalOcean Spaces
• etcd
• Google Cloud Storage
• Local filesystem
• Microsoft Azure Blob Storage
• Minio
• Netease Cloud NOS Storage
• Openstack Object Storage
• Oracle Cloud Infrastructure Object Storage
• Tencent Cloud Object Storage

148 | Chapter 7: Chart Repositories

https://github.com/helm/chartmuseum

Harbor
Project homepage: https://github.com/goharbor/harbor

Harbor is a full-featured registry with added security and management features. It
provides a UI for Helm charts and leverages ChartMuseum on the backend as a mul‐
titenant chart respository. It also provides support for Helm’s experimental OCI fea‐
ture set.

Similar to Helm, Harbor is a graduated, top-level CNCF project.

Chart Releaser
Project homepage: https://github.com/helm/chart-releaser

Chart Releaser, or cr, is a command-line tool that leverages GitHub releases for host‐
ing chart packages. It has the ability to detect charts in a Git repo, package them, and
upload each of them as artifacts to GitHub releases named after the unique chart
version.

Once charts have been uploaded using cr, the tool can also be used to generate an
index.yaml file based on the contents of GitHub releases and associated artifacts. This
repository index can then be hosted statically, on GitHub Pages or elsewhere.

S3 Plugin
Project homepage: https://github.com/hypnoglow/helm-s3

The S3 plugin is a Helm plugin that allows you to use a private Amazon S3 bucket as
a chart repository.

GCS Plugin
Project homepage: https://github.com/hayorov/helm-gcs

The GCS plugin is a Helm plugin that allows you to use a private Google Cloud Stor‐
age bucket as a chart repository.

Git Plugin
Project homepage: https://github.com/aslafy-z/helm-git

The Git plugin is a Helm plugin that allows you to use a Git repository containing
chart source files as a chart repository. It supports subpaths, custom references, and
both HTTPS and SSH Git URLs.

Related Projects | 149

https://github.com/goharbor/harbor
https://github.com/helm/chart-releaser
https://github.com/hypnoglow/helm-s3
https://github.com/hayorov/helm-gcs
https://github.com/aslafy-z/helm-git

CHAPTER 8

Helm Plugins and Starters

As we’ve seen throughout this book, Helm has plenty of features and methods that aid
in delivering applications on Kubernetes. However, it is also possible to customize
and extend the functionality provided by Helm.

In this chapter we will discuss two ways to further enhance and customize your usage
of Helm: plugins and starters.

Plugins allow you to add extra functionality to Helm and integrate seamlessly with
the CLI, making them a popular choice for users with unique workflow requirements.
There are a number of third-party plugins available online for common use cases,
such as secrets management. In addition, plugins are incredibly easy to build on your
own for unique, one-off tasks.

Starters expand the possibilities of using helm create to generate new Helm charts
for different types of applications. For example, you might have a Helm chart built for
an internal microservice that fits perfectly as an example for future microservices.
You could convert the chart into a starter, which you can then use each time you
begin a new project with similar requirements.

By leveraging plugins and starters, we can build on top of Helm’s out-of-the-box
functionality to simplify and automate everyday workflow tasks.

Plugins
Helm plugins are external tools that are accessible directly from the Helm CLI. They
allow you to add custom subcommands to Helm without making any modifications
to Helm’s Go source code. This is similar in design to how plugin systems are imple‐
mented in other tools, such as kubectl (the Kubernetes CLI).

151

Additionaly, downloader plugins allow you to specify a custom protocol for commu‐
nicating with chart repositories. This can be useful if you have some custom authenti‐
cation method, or if you need to somehow modify the method in which Helm fetches
charts from repositories

Installing Third-Party Plugins
Many third-party plugins are made open source and publicly available on GitHub.
Many of these plugins use the “helm-plugin” tag/topic to make them easy to find.
Refer to the documentation for Helm plugins on GitHub.

Sample Publicly-Available Plugins
Here are just a few of the Helm plugins you can find on GitHub:

helm/helm-2to3
Plugin for converting Helm 2 releases to Helm 3 releases in place

jkroepke/helm-secrets
Plugin for effectively managing secrets in YAML format

maorfr/helm-backup
Plugin to backup/restore Helm releases to/from a text file

karuppiah7890/helm-schema-gen
Plugin to generate values.schema.json based on values.yaml (see Chapter 6 for
more info on schematized values)

hickeyma/helm-mapkubeapis
Plugin to update Helm release metadata that contains deprecated Kubernetes
APIs

Once you have found a plugin to install, obtain its version control URL. This will be
used as the means of obtaining the correct version of plugin.yaml and the rest of the
plugin source code.

Git, SVN, Bazaar (Bzr), and Mercurial (Hg) URLs are currently supported. For Git,
the version control URL looks something like https://example.com/myorg/

myrepo.git.

For example, there is a simple plugin for managing Helm starters located in a git repo
at https://github.com/salesforce/helm-starter. The version control URL for this plugin
is https://github.com/salesforce/helm-starter.git.

To install this plugin, run helm plugin install passing the version control URL as
the first argument:

152 | Chapter 8: Helm Plugins and Starters

https://oreil.ly/3KwNb
https://github.com/salesforce/helm-starter

$ helm plugin install https://github.com/salesforce/helm-starter.git
Installed plugin: starter

If the installation succeeds, you can proceed to use the plugin:

$ helm starter --help
Fetch, list, and delete helm starters from github.

Available Commands:
 helm starter fetch GITURL Install a bare Helm starter from Github
 (e.g., git clone)
 helm starter list List installed Helm starters
 helm starter delete NAME Delete an installed Helm starter
 --help Display this text

To list all installed plugins, use the helm plugin list command:

$ helm plugin list
NAME VERSION DESCRIPTION
starter 1.0.0 This plugin fetches, lists, and deletes helm starters from github.

To attempt to update the plugin, use the helm plugin update command:

$ helm plugin update starter
Updated plugin: starter

If you wish to the uninstall the plugin from your system, use the helm plugin
remove command:

$ helm plugin remove starter
Uninstalled plugin: starter

Unless otherwise specified, Helm will use the plugin.yaml and source code located on
the default branch of the Git repo when installing a plugin. If you wish to specify a
Git tag to use, use the --version flag on install:

$ helm plugin install https://github.com/databus23/helm-diff.git --version v3.1.0

It is also possible to install plugins directly from a tarball URL. Helm will download
the tarball and unpack it into the plugins directory:

$ helm plugin install https://example.com/archives/myplugin-0.6.0.tar.gz

In addition, you can install a plugin from a local directory:

$ helm plugin install /path/to/myplugin

Instead of copying the files, Helm will create symlinks to the original files:

$ ls -la "$(helm env HELM_PLUGINS)"
total 8
drwxrwxr-x 2 myuser myuser 4096 Jul 3 21:49 .
drwxrwxr-x 4 myuser myuser 4096 Jul 1 21:38 ..
lrwxrwxrwx 1 myuser myuser 21 Jul 3 21:49 myplugin -> /path/to/myplugin

Plugins | 153

This might be useful, for example, if you are actively developing a plugin. Making
changes to plugin.yaml and other source files will be recognized immediately when
invoking a symlinked plugin.

Custom Subcommands
Plugins have a number of useful features that enable seemless integration with the
existing Helm user experience. Probably the most notable feature of Helm plugins is
that each plugin supplies Helm with a custom, top-level subcommand. These sub‐
commands even have the ability to leverage shell completion (covered later in this
chapter).

A Bit of Helm Plugin History
One of the original features of Helm plugins was that they were provided with envi‐
ronment settings for connecting to Tiller, the deprecated Helm server-side compo‐
nent that existed in Helm 2. This was an important concept for plugin subcommands
that needed to integrate closely with Helm, since anything involving Helm releases
needed to route through Tiller.

In Helm 3, Tiller has been removed, and all communication to the Kubernetes API is
performed by the Helm client itself. The plugin system, however, has remained.

Once a plugin is installed, a new command will become available for you to use based
on the plugin’s name. This new command integrates directly with Helm and will even
show up in helm help.

For example, let’s say we have a plugin installed called inspect-templates that gives
us extra information about the YAML templates found within a chart. This plugin
will provide you with an extra Helm command:

$ helm inspect-templates [args]

This will execute the inspect-templates plugin, passing along any arguments or
flags provided to the underlying tool that the plugin executes upon invocation. The
author of the plugin specifies some command that Helm should run as a subprocess
each time the plugin is invoked (more info on how to specify this in “Building a
Plugin” on page 155).

Plugins offer a happy alternative to augment Helm’s existing feature set without the
need to make any modifications to Helm itself.

154 | Chapter 8: Helm Plugins and Starters

Building a Plugin
Building a Helm plugin is a fairly straightforward process. Depending on the require‐
ments and overall complexity of the plugin, it may require some programming
knowledge; however, many plugins run just a basic shell command.

The underlying implementation
Consider the following Bash script, inspect-templates.sh, the underlying implementa‐
tion for our example inspect-templates plugin:

#!/usr/bin/env bash
set -e

First argument on the command line, a relative path to a chart directory
CHART_DIRECTORY="${1}"

Fail if no chart directory provided or is invalid
if [["${CHART_DIRECTORY}" == ""]]; then
 echo "Usage: helm inspect-templates <chart_directory>"
 exit 1
elif [[! -d "${CHART_DIRECTORY}"]]; then
 echo "Invalid chart directory provided: ${CHART_DIRECTORY}"
 exit 1
fi

Print a summary of the chart's templates
cd "${CHART_DIRECTORY}"
cd templates/
echo "----------------------"
echo "Chart template summary"
echo "----------------------"
echo ""
total="$(find . -type f -name '*.yaml' -maxdepth 1 | wc -l | tr -d '[:space:]')"
echo " Total number: ${total}"
echo ""
echo " List of templates:"
for filename in $(find . -type f -name '*.yaml' -maxdepth 1 | sed 's|^\./||'); do
 kind=$(cat "${filename}" | grep kind: | head -1 | awk '{print $2}')
 echo " - ${filename} (${kind})"
done
echo ""

This script is what Helm will execute behind the scenes when a user runs helm
inspect-templates.

Underlying plugin implementations are not required to be written
in Bash, Go, or any specific programming language. To the end-
user of this plugin, it should appear to be just another part of the
Helm CLI.

Plugins | 155

The plugin manifest
Each plugin is defined by a YAML file called plugin.yaml. This file contains plugin
metadata and information regarding what command to run when the plugin is
invoked.

Here’s a basic example of plugin.yaml for the inspect-templates plugin:

name: inspect-templates
version: 0.1.0
description: get a summary of a chart's templates
command: "${HELM_PLUGIN_DIR}/inspect-templates.sh"

The name of the plugin.

The version of the plugin.

A basic description of the plugin.

The command to run when this plugin is invoked.

Manual installation
First check the configured path for the plugin storage root directory:

$ HELM_PLUGINS="$(helm env HELM_PLUGINS)"
$ echo "${HELM_PLUGINS}"
/home/myuser/.local/share/helm/plugins

Using a Custom Root Directory for Plugins

The root directory for plugins can be overridden by providing a
custom path for the HELM_PLUGINS environment variable in the
current environment.

Create a directory matching the name of the plugin (inspect-templates) inside the
plugin storage root directory:

$ PLUGIN_ROOT="${HELM_PLUGINS}/inspect-templates"
$ mkdir -p "${PLUGIN_ROOT}"

Next, copy over plugin.yaml and inspect-templates.sh to the new directory, and make
sure the script is executable:

$ cp plugin.yaml "${PLUGIN_ROOT}"
$ cp inspect-templates.sh "${PLUGIN_ROOT}"
$ chmod +x "${PLUGIN_ROOT}/inspect-templates.sh"

156 | Chapter 8: Helm Plugins and Starters

The end result

Here’s what our inspect-templates plugin looks like in action:

$ helm inspect-templates
Usage: helm inspect-templates <chart_directory>
Error: plugin "inspect-templates" exited with error

$ helm inspect-templates nonexistant/
Invalid chart directory provided: nonexistant/
Error: plugin "inspect-templates" exited with error

$ helm create mychart
Creating mychart

$ helm inspect-templates mychart/

Chart template summary

 Total number: 5

 List of templates:
 - serviceaccount.yaml (ServiceAccount)
 - deployment.yaml (Deployment)
 - service.yaml (Service)
 - hpa.yaml (HorizontalPodAutoscaler)
 - ingress.yaml (Ingress)

Notice how the command-line arguments provided (i.e., mychart/) are passed
directly to the script. This makes it easy for plugin authors to build standalone tools
that accept any number of arguments or custom flags.

plugin.yaml
plugin.yaml is the name of the plugin manifest file that describes a plugin, its invoca‐
tion command, and other important details.

Here is an example plugin.yaml that contains all possible options you can specify for
your plugin:

name: myplugin
version: 0.3.0
usage: "helm myplugin --help"
description "a plugin that belongs to me"
platformCommand:
 - os: windows
 arch: amd64
 command: "bin/myplugin.exe"
command: "bin/myplugin"
ignoreFlags: false
hooks:

Plugins | 157

 install: "scripts/install-hook.sh"
 update: "scripts/update-hook.sh"
 delete: "scripts/delete-hook.sh"
downloaders:
 - command: "bin/myplugin-myp-downloader"
 protocols:
 - "myp"
 - "myps"

The name of the plugin.

The plugin version.

The usage instructions for this plugin.

A description of the plugin.

Platform-specific commands. If a client matches an os/arch combo, run that
command instead of the default one.

Command to run when this plugin is invoked.

Whether or not to supress Helm global flags passed (such as --debug) when
passed as arguments to the plugin.

Plugin hooks (see “Hooks” on page 159).

Downloaders and associated protocols (see “Downloader Plugins” on page 160).

The name of the plugin will be the subcommand used to invoke this plugin from the
Helm CLI (e.g., helm myplugin). Due to this, plugin names should not match any
existing Helm subcommands (install, repo, etc.). The name can only contain the
characters a–z, A–Z, 0–9, _, and -.

The plugin version should be a valid SemVer 2 version.

The usage and description for the plugin will be displayed when you run helm help
and helm help myplugin. However, the plugin itself must handle its own flag parsing
for things like helm myplugin --help.

The command is what Helm will execute in a subprocess when this plugin is invoked. If
a section for platformCommands is defined, Helm will first check if the system
matches the provided os (operating system) and arch (architecture), and if so, Helm
will instead use the command defined in the matching entry. The arch field is optional,
and if missing, just the os will be checked.

158 | Chapter 8: Helm Plugins and Starters

Here is the exact order in which Helm determines which command to run when a
plugin is invoked, based on the contents of plugin.yaml and the runtime environment:

1. If platformCommand is present, it will be searched first.
2. If both os and arch match the current platform, search will stop and the

platform-specific command will be executed.
3. If os matches and there is no more specific match, the platform-specific com‐

mand will be executed.
4. If no os/arch match is found, the default top-level command will be executed.
5. Helm will exit with an error if no top-level command is present and no matches are

found in platformCommand.

Hooks
Plugin hooks allow you to take additional actions when the plugin is installed, upda‐
ted, or deleted.

For example, the underlying implementation for your plugin may be a platform-
specific binary that must be downloaded from the internet. The URL for the binary
varies depending on the user’s operating system.

A script to handle this logic based on operating system might look something like the
following:

#!/usr/bin/env bash

set -e

URL=""
EXTRACT_TO=""

if [["$(uname)" = "Darwin"]]; then
 URL="https://example.com/releases/myplugin-mac"
 EXTRACT_TO="myplugin"
elif [["$(uname)" = "Linux"]]; then
 URL="https://example.com/releases/myplugin-linux"
 EXTRACT_TO="myplugin"
else
 URL="https://example.com/releases/myplugin-windows"
 EXTRACT_TO="myplugin.exe"
fi

mkdir -p bin/
curl -sSL "${URL}" -o "bin/${EXTRACT_TO}"

By defining an install hook for our plugin, we can make it so that this script runs
when a user installs this plugin.

Plugins | 159

To define a hook, add a hooks section to your plugin.yaml, defining commands for
each event you want to respond to:

...
hooks:
 install: "scripts/install-hook.sh"
 update: "scripts/update-hook.sh"
 delete: "scripts/delete-hook.sh"

Command to run on helm plugin install

Command to run on helm plugin update

Command to run on helm plugin remove

Downloader Plugins
Some plugins have special functionality that allows them to be used as an alternative
for downloading charts.

This is useful if you are storing charts in some way that is different than a pure chart
repository, or if your chart repository implementation has extra requirements.

A downloader plugin defines one (or more) protocols that, if detected on the com‐
mand line, will instruct Helm to download index.yaml or chart .tgz packages using
the plugin versus Helm’s internal download mechanism.

Here is an example of a plugin.yaml for a downloader plugin called “super-secure,”
which registers the ss:// protocol:

name: super-secure
version: 0.1.0
description: a super secure chart downloader
command: "${HELM_PLUGIN_DIR}/super-secure.sh"
downloaders:
 - command: "super-secure-downloader.sh"
 protocols:
 - "ss"

Command to run when this plugin is invoked as a downloader

Custom protocols declared by this plugin

160 | Chapter 8: Helm Plugins and Starters

Keep in mind that all plugins, including downloader plugins,
define a custom top-level command (i.e., helm super-secure).
The command for the plugin downloader can be identical to the
command field; just beware that if you wish to use the plugin as both
a standard plugin and as a downloader, it might become challeng‐
ing to determine how it’s being used. One way you could determine
if the plugin is being used as a downloader is to check if the com‐
mand is invoked with exactly four command-line arguments.

Downloader commands are always invoked with the following arguments:

<command> certFile keyFile caFile full-URL

The certFile, keyFile, and caFile arguments are derived from entries in a YAML
configuration file, whose path is returned by $(helm env HELM_REPOSITORY_CON
FIG), and are set when a repository is added using helm repo add (see Chapter 7 for
more background). The full-URL argument is the full URL for the resource that is
being downloaded, either an index.yaml, or chart .tgz/.prov file.

Let’s check out the implementation for the ss:// protocol downloader defined by the
super-secure plugin:

#!/usr/bin/env bash
set -e

The fourth argument is the URL to the resource to download from the repo
URL="${4}"

Replace "ss://" with "https://"
URL="$(echo ${URL} | sed 's/ss:/https:/')"

Request the resource using the token, outputting contents to stdout
echo "Downloading $(basename ${URL}) using super-secure plugin..." 1>&2
curl -sL -H "Authorization: Bearer ${SUPER_SECURE_TOKEN}" "${URL}"

This downloader allows us to use a chart repository protected with token/bearer auth.
It expects that the environment variable SUPER_SECURE_TOKEN is set, which will be
used to formulate the header Authorization: Bearer <token> used when request‐
ing a resource from a chart repository.

While the super-secure plugin is a great example of a simple
downloader plugin, future versions of Helm may actually support
bearer token auth out of the box.

Plugins | 161

Downloader plugins are expected to output the contents of the resource to stdout, so
any extra logs etc. should be printed to stderr. This is why, in the line starting with
echo, we redirect this message to stderr using 1>&2.

Once this plugin is installed, here’s how we would add a chart repository protected by
token auth:

$ export SUPER_SECURE_TOKEN="abc123"
$ helm repo add my-secure-repo ss://secure.example.com
Downloading index.yaml using super-secure plugin...
"my-secure-repo" has been added to your repositories

This repository URL will now show up in the local list of repositories, containing the
ss:// protocol:

$ helm repo list
NAME URL
my-secure-repo ss://secure.example.com

Now the repository can be used just like any other repository, to download remote
chart packages:

$ export SUPER_SECURE_TOKEN="abc123"
$ helm pull my-secure-repo/superapp
Downloading superapp-0.1.0.tgz using super-secure plugin...
$ ls
superapp-0.1.0.tgz

Downloader plugins provide a way for Helm users to extend the transfer mechanism
for working with chart repositories by defining custom protocols. When Helm
detects a custom protocol being used, it will attempt to locate an installed plugin that
can handle it, then defers the resource request to that plugin.

Execution Environment
Since plugins are meant to extend Helm’s functionality, they might need access to
some of Helm’s internal configuration files, or global flags provided on the command
line.

To provide plugins access to this type of information, a series of known environment
variables are provided to the plugin at runtime.

Here is a current list of all the environment variables available to plugins, in alphabet‐
ical order:

HELM_BIN

The path to the Helm command being executed

HELM_DEBUG

Value set for the global boolean --debug option (“true” or “false”)

162 | Chapter 8: Helm Plugins and Starters

HELM_KUBECONTEXT

Value set for the global --kube-context <context> option

HELM_NAMESPACE

Value set for the global --namespace <namespace> option

HELM_PLUGIN_DIR

Root directory of the current plugin

HELM_PLUGIN_NAME

Name of the current plugin

HELM_PLUGINS

Top-level directory containing all plugins

HELM_REGISTRY_CONFIG

Root directory for registry configuration

HELM_REPOSITORY_CACHE

Root directory for repository cache

HELM_REPOSITORY_CONFIG

Root directory for repository configuration

Shell Completion
Helm has built-in support for shell autocompletion for both Bash and Z shell (Zsh)
(see helm completion --help). This is helpful in situations where you cannot
remember the name of a subcommand or flag you are attempting to use.

Plugins also have the ability to supply their own custom shell completions by using
one of two methods: static autocompletion and dynamic completion.

Static autocompletion
By including a file called completion.yaml in the root of the plugin directory, Helm
plugins can specify all of the expected flags and commands available for the plugin
statically.

Here is an example completion.yaml for an imaginary zoo plugin:

name: zoo
flags:
 - disable-smells
 - disable-snacks
commands:
 - name: price
 flags:
 - kids-discount

Plugins | 163

 - name: animals
 commands:
 - name: list
 validArgs:
 - birds
 - reptiles
 - cats
 - name: describe
 flags:
 - format-json
 validArgs:
 - birds
 - reptiles
 - cats

The name of the plugin that this completion file is for

A list of flags available (Note: these should not include a - or -- prefix)

A list of subcommands available

Name of an individual subcommand

A list of valid options for the first parameter following a subcommand

Underneath the top-level commands section, another commands section can be speci‐
fied for nested subcommands (and recursively as many times as necessary). Each
command in a commands section can contain its own list of flags and validArgs.

Helm’s global flags, such as --debug or --namespace, are already handled by Helm’s
built-in shell completion, so it is not necessary to list these under flags.

If we begin trying to run the example zoo plugin, then press the Tab key, it should
show us all of the available subcommands:

$ helm zoo # (click tab)
animals price

Now if we do the same, but add a --disable-s suffix prior to pressing the Tab key,
we should see our flags:

$ helm zoo --disables-s # (click tab)
--disable-smells --disable-snacks

Using static completion, we are able to achieve parity with Helm’s existing shell com‐
pletions, making plugins feel even more tightly integrated with the Helm user
experience.

164 | Chapter 8: Helm Plugins and Starters

If you are in the process of developing a plugin, you must open a
new terminal window for static shell completions to be refreshed.
Alternatively, you can run one of the following to get the latest
completions in the current terminal:

source <(helm completion bash) # for Bash
source <(helm completion zsh) # for Z shell

Dynamic completion
In some cases, the valid arguments for a given command may not be known ahead of
time. For example, you may want to provide a list of Helm release names in your
cluster as valid arguments for your plugin. This can be achieved using dynamic
completion.

To enable dynamic completion, include an executable file named plugin.complete in
the root of the plugin directory. This file can be any type of executable; for example, a
shell script or binary.

For plugins containing a plugin.complete file, when completion is requested (i.e.,
pressing the Tab key), Helm will run this executable, passing along the text that needs
completion as the first argument. This program should then return a list of possible
results, each separated by a new line, and exit successfully (i.e., return code 0).

You might even decide to supply this completion functionality as part of the primary
plugin program, using a simple wrapper script to trigger it using a flag such as
--complete. Here is an example of a basic plugin.complete executable that does just
this:

#!/usr/bin/env sh
$HELM_PLUGIN_DIR/my-plugin-program --complete "$@"

Building on the zoo plugin example, let’s say the list of available animal categories is
constantly changing and stored in a file called animals.txt in the user’s home direc‐
tory. Here’s what animals.txt might look like:

birds
reptiles
cats

We want to be able to dynamically provide completion based on the contents of this
file. Here is an example of a plugin.complete executable (Bash script) that could be
used to provide dynamic completion:

#!/usr/bin/env bash
set -e
INPUT="${@}"
if [["${INPUT}" == "animals list"*]]; then
 INPUT="$(echo "${INPUT}" | sed -e 's/^animals list //')"
 for flag in $(cat "${HOME}/animals.txt"); do

Plugins | 165

 if [["${flag}" == "${INPUT}"*]]; then
 echo "${flag}"
 fi
 done
fi

Now if we run the plugin and type in animals list, then press the Tab key, it should
show us a list of all the available animal categories for listing:

$ helm zoo animals list # (press Tab key)
birds cats reptiles

To ensure it’s dynamic, let’s add an extra category “monkeys” to animals.txt and try
again:

$ echo "monkeys" >> "${HOME}/animals.txt"
$ helm zoo animals list # (press Tab key)
birds cats monkeys reptiles

It works!

This is just a simple example of using dynamic completion, but keep in mind that you
could also query something remote, such as resources in your Kubernetes cluster,
making this a powerful feature for plugins.

If you are already using static completion using a completion.yaml
file, then dynamic completion is not used, even if a
plugin.complete executable is present in the plugin’s root
directory.

Starters
Starters, or starter packs, are similar to Helm charts, except that they are meant to be
used as templates for new charts.

When you use the helm create command to create a new chart, this generates a new
chart using Helm’s built-in starter, which is a general-purpose chart using best
practices.

To specify a custom starter, you can use the --starter option when creating a new
chart:

$ helm create --starter basic-webapp superapp

Using starters allows us to leverage a chart that has been previously built for an appli‐
cation with a similar purpose. This is useful for bootstrapping new projects with simi‐
lar requirements to be instantly ready to deploy to your Kubernetes environment.

166 | Chapter 8: Helm Plugins and Starters

Converting a Chart to a Starter
Any Helm chart can be converted into a starter. The only thing that separates a starter
from a standard chart is the presence of dynamic references to the chart name in a
starter’s templates.

To convert a standard chart into a starter, replace any hardcoded references to the
chart’s name with the string <CHARTNAME>.

To demonstrate, let’s take this simple ConfigMap template from a chart called
mychart:

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ include "mychart.fullname" . }}
 labels:
 {{- include "mychart.labels" . | nindent 4 }}
data:
 hello: {{ .Values.hello | quote }}

Here’s what that template would look like instead in a starter:

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ include "<CHARTNAME>.fullname" . }}
 labels:
 {{- include "<CHARTNAME>.labels" . | nindent 4 }}
data:
 hello: {{ .Values.hello | quote }}

This chart must still contain a Chart.yaml file to work; however, it
will be overwritten by the generator.

Making Starters Available to Helm
Before using a starter, you must first decide on a unique name for it, for example
“basic-webapp” for a starter containing boilerplate templates for deploying a basic
web application.

To make this starter a valid option to be used when the --starter flag is specified on
the command line, it must exist as a directory under the filepath
$(helm env HELM_DATA_HOME)/starters.

If this is the first starter you are adding, ensure that the top-level starters directory
first exists:

Starters | 167

$ export HELM_STARTERS="$(helm env HELM_DATA_HOME)/starters"
$ mkdir -p "${HELM_STARTERS}"

Then just copy the entire basic-webapp directory into that top-level directory:

cp -r basic-webapp "${HELM_STARTERS}"

Using Starters
Once a starter is available, you can generate new charts based on it by referencing its
name on the command line:

$ helm create --starter basic-webapp superapp
Creating superapp

The structure of the newly generated chart will be identical to that of the starter. All
references to <CHARTNAME> in the starter’s templates will be replaced with the new
chart’s name (i.e., superapp).

Here’s an example directory structure for a generated chart based on a starter that has
only two templates defined, deployment.yaml and service.yaml:

$ tree superapp/
superapp/
├── Chart.yaml
├── templates
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ └── service.yaml
└── values.yaml

From here, you could check this new chart into version control and start making
changes to customize it for the given application.

Extending Helm Further
In this chapter, we have discussed how Helm can be extended using plugins and start‐
ers. However, there is one other way in which you can extend Helm: via open source
contributions.

Everything in this book has been a reflection of thousands of open source contribu‐
tions to the Helm project. While much of this work has been performed by maintain‐
ers (past and present), the majority of contributions have come from individuals
around the world. This includes not only changes to the Go source code, but also
testing and documentation updates.

Do you have something to contribute to the Helm project? Navigate to the Helm
community landing page to learn more!

168 | Chapter 8: Helm Plugins and Starters

https://oreil.ly/9TloH
https://oreil.ly/9TloH

APPENDIX A

Chart API Versions

This appendix covers the differences between chart API versions 2 and 1 (legacy).

The chart API version is specified in each chart’s Chart.yaml file and is used by Helm
to determine how to parse the chart and which feature sets are made available.

For new charts, API version 2 should generally be used. However, many publicly
available charts were created prior to the genesis of API version 2, and use 1, the leg‐
acy API version. Here we will go into detail on each of these API versions and the
ways in which they are different.

API Version 2
Chart API version 2 is the current API version that was introduced in Helm 3. This is
the default API version used when new charts are created using helm create.

Charts using API version 2 are guaranteed to be supported by Helm 3, but not neces‐
sarily by Helm 2. If you are only planning to support Helm 3 and above, it is recom‐
mended to just use this API version.

The Chart.yaml File
The following is an example of a Chart.yaml file for a chart using API version 2:

apiVersion: v2
name: lemon
version: 1.2.3
type: application
description: When life gives you lemons, do the DevOps
appVersion: 2.0.0
home: https://example.com
icon: https://example.com/img/lemon.png

169

sources:
 - https://github.com/myorg/mychart
keywords:
 - fruit
 - citrus
maintainers:
 - name: Carly Jenkins
 email: carly@mail.cj.example.com
 url: https://cj.example.com
 - name: William James Spode
 email: william.j@mail.wjs.example.com
 url: https://wjs.example.com
deprecated: false
annotations:
 sour: 1
kubeVersion: ">=1.14.0"
dependencies:
 - name: redis
 version: ~10.5.7
 repository: https://kubernetes-charts.storage.example.com/
 condition: useCache,redis.enabled
 - name: postgresql
 version: 8.6.4
 repository: @myrepo
 tags:
 - database
 - backend

Field denoting chart API version 2

Each of the top-level fields in this file will be described in detail in the following
subsections.

Field: apiVersion
Required

The API version of this chart.

This field should always be set to v2.

Field: name
Required

The name of the chart.

In most cases, this should be 1-to-1 with the name of your application (i.e., lemon). If
your application is broken into multiple, installable components, it is common to suf‐
fix this name with a description of the component; for example, lemon-frontend,
lemon-backend, etc.

170 | Appendix A: Chart API Versions

Chart names must be composed of lowercase letters, numbers, and dashes (-).

Field: version
Required

The current version of the chart, strictly formatted using Semantic Versioning 2.

Versioning Helm Charts
Semantic Versioning, if done correctly, can be extremely helpful. It lets the operator
know what to expect during a software upgrade. You’ve likely already seen and used
semantic versions. They are comprised of three numbers separated by a period (.),
such as 3.1.2. Semantic versions follow the format MAJOR.MINOR.PATCH, where the
following rules apply if each are incremented:

MAJOR

Indicates that breaking changes are made that are not backward compatible (e.g.,
3.1.2 → 4.0.0)

MINOR

Indicates that there are newly available features that are backward compatible
(e.g., 3.1.2 → 3.2.0)

PATCH

Indicates that one or more bugs were fixed, and that changes were made to make
things work as originally expected without introducing any new features (e.g.,
3.1.2 → 3.1.3)

Helm charts can be challenging to version properly because they are not typical soft‐
ware packages containing an application with features. As a rule of thumb, most
updates to the chart version should be increments to the MINOR version.

For example, any time that you are adding new key-value pairs that are used inside
templates, this can be considered a new “feature,” since the options for configuration
have been expanded. On the other hand, if you are modifying the way a certain value
is used in a template, or removing a configuration setting entirely, this would be con‐
sidered a breaking change, and you should increment the MAJOR version. Lastly, if you
simply make a fix to a Helm chart that is not templating properly given an expected
input, or is otherwise broken, this would be considered a bug fix and you should
increment the PATCH version.

As for an initial version to use for your chart, choose 0.1.0 or 1.0.0. When the
MAJOR version is 0 (e.g., 0.1.0), this technically indicates no promises will be made
regarding breaking changes between MINOR and PATCH upgrades. Versions 1.0.0 and
higher indicate a certain level of stability and a strict adherence to SemVer 2.

Chart API Versions | 171

Field: type
Required

Specifies the chart type, which may be one on the following two types:

application

A typical, installable chart

library

A noninstallable chart containing common definitions, meant to be included as a
dependency chart

This field is unique to API version 2. In API version 1, all charts are considered to be
application charts. For more information on library charts, please see Chapter 6.

Field: description
A simple, one-sentence description of the chart.

Field: appVersion
The version of the application that the chart represents.

This field should match the version of the software you are deploying, not the chart
itself. For example, if you’re creating a new internal chart to deploy a custom config‐
ured Nginx 1.18.0, the appVersion field would be 1.18.0, whereas the version field
would be something more like 0.1.0 (initial version).

Field: home
An absolute URL to the homepage for the chart and/or application.

Field: icon
An absolute URL to an image that can be used as an icon for this chart.

This field is typically used by services such as Artifact Hub to display an appropriate
image for the chart available for download.

Field: sources
One or more absolute URLs to the source code of the chart (if made available).

Field: keywords
A list of keywords or topics that the chart represents.

These are used by services such as Artifact Hub to group together charts by category
or further enhance search capabilities.

172 | Appendix A: Chart API Versions

Field: maintainers
A list of name/email/URL combinations for the person(s) who maintain the chart.

Field: deprecated
Whether or not the chart is deprecated.

This field is used by services such as Artifact Hub to determine when to remove chart
listings.

Field: annotations
Additional mappings for the chart uninterpreted by Helm, made available for inspec‐
tion by other applications.

Note: this field is not linked to Kubernetes annotations in any meaningful way; how‐
ever, you may choose to define these as Kubernetes-specific annotations depending
on how you decide to use this field.

Field: kubeVersion
A SemVer constraint specifying the minimum Kubernetes version required for the
chart to properly install.

Some charts may use Kubernetes resource types and API groups that are only avail‐
able on certain versions of Kubernetes. If an operator attempts to install a chart with
an incompatible kubeVersion compared to that of the target cluster, an error will
occur before any Kubernetes resources are provisioned.

Field: dependencies
A list of dependencies for the chart.

The chart dependencies listed here will be negotiated and placed appropriately into
the charts/ subdirectory when you run helm dependency update.

At a bare minimum, each entry under the dependencies block should contain a name
subfield, and either a repository or an alias subfield. A repository should be an
absolute URL to a valid chart repository (serving /index.yaml). An alias should be
the character “@” followed by the name of a previously added chart repository (e.g.,
@myrepo).

For more information about how to use chart dependencies, see “Chart Dependen‐
cies” on page 103.

Chart API Versions | 173

The Chart.lock File
When a chart has dependencies listed under the dependencies field in Chart.yaml, a
special file named Chart.lock is generated and updated each time you run the com‐
mand helm dependency update. When a chart contains a Chart.lock file, operators
can run helm dependency build to generate the charts/ directory without the need
to renegotiate dependencies.

Here is an example of a Chart.lock file generated based on the dependencies specified
in the Chart.yaml example:

dependencies:
- name: redis
 repository: https://kubernetes-charts.storage.example.com/
 version: 10.5.7
- name: postgresql
 repository: https://charts.example.com/
 version: 8.6.4
digest: sha256:529608876e9f959460d0521eee3f3d7be67a298a4c9385049914f44bd75ac9a9
generated: "2020-07-17T11:10:34.023896-05:00"

Dynamic fields such as conditions and tags are stripped out, and this file simply
contains the repository, name, and version that were resolved for each dependency
during the update, as well as a digest (SHA-256) and a generated timestamp.

Notice that the alias: "@myrepo" setting for the PostgreSQL dependency has been
converted into repository: https://charts.example.com/. This means that some‐
time prior to updating the dependencies, a chart repository was added using the fol‐
lowing command:

$ helm repo add myrepo https://charts.example.com/

API Version 1 (legacy)
Chart API version 1 is the original API version, and the only version recognized by
Helm 2. The apiVersion field in Chart.yaml was first introduced in Helm 3 and is
not recognized by Helm 2. Using Helm 2, all charts are assumed to be adhering to
API version 1. In Helm 3, the apiVersion is strictly required.

Charts using API version 1 are guaranteed to be supported by both Helm 2 and Helm
3, but may not be able to support certain features that will only be made available to
Helm 3 in the future.

174 | Appendix A: Chart API Versions

The Chart.yaml File
The format of the Chart.yaml file for charts using API version 1 is nearly identical to
that of charts using API version 2, with a couple notable differences.

The following is an example of a Chart.yaml file for a chart using API version 1:

apiVersion: v1
name: lemon
version: 1.2.3
description: When life gives you lemons, do the DevOps
appVersion: 2.0.0
home: https://example.com
icon: https://example.com/img/lemon.png
sources:
 - https://github.com/myorg/mychart
keywords:
 - fruit
 - citrus
maintainers:
 - name: Carly Jenkins
 email: carly@mail.cj.example.com
 url: https://cj.example.com
 - name: William James Spode
 email: william.j@mail.wjs.example.com
 url: https://wjs.example.com
deprecated: false
annotations:
 sour: 1
kubeVersion: ">=1.14.0"
tillerVersion: ">=2.12.0"
engine: gotpl

Field denoting chart API version 1

Differences from v2
As it compares to the Chart.yaml example for API version 2, there are some subtle
differences:

• The apiVersion field is set to v1 (Note: In Helm 2, this field is not strictly
required).

• The type field is missing. There is no concept of library charts in API version 1.
• The dependencies field is missing. In API version 1, chart dependencies are

specified in a dedicated file called requirements.yaml (as described later in this
section).

• Two additional fields are present: tillerVersion and engine.

Chart API Versions | 175

In many ways, the two chart API versions can essentially be consid‐
ered Helm 2 charts (v1) versus Helm 3 charts (v2). This is espe‐
cially true since chart API version 2 was introduced at the exact
same time that Helm 3 was released.
The reason these versions aren’t instead named v2 and v3 (denot‐
ing the Helm version) is because the API for charts is independ‐
ently versioned from the API for the Helm CLI.
For example, if and when Helm 4 is released, it is possible that
chart API version 2 will still be used. Likewise, if chart API version
2 is later determined to be insufficient for whatever reason, a new
chart API version 3 could be introduced prior to another major
Helm release.

Field: tillerVersion (legacy)
A SemVer constraint specifying the Tiller version required for the chart to properly
install.

Tiller is a legacy Helm server-side component only used in Helm 2. This field is
ignored entirely when using Helm 3.

Field: engine (legacy)
The name of the template engine to use. Defaults to gotpl.

The requirements.yaml File (Legacy)
In API version 1, there is an additional file called requirements.yaml that specifies the
chart’s dependencies. The format of this file is identical to the dependencies field as
defined in API version 2.

Here is an example of a standalone requirements.yaml file:

dependencies:
 - name: redis
 version: ~10.5.7
 repository: https://kubernetes-charts.storage.example.com/
 condition: redis.enabled
 - name: postgresql
 version: 8.6.4
 repository: "@myrepo"
 tags:
 - database
 - backend

For a detailed description of each of the subfields, please see the subsection titled
“Field: dependencies” under API version v2. In API version v2, the contents of this
file are defined directly in Chart.yaml.

176 | Appendix A: Chart API Versions

The requirements.lock File (Legacy)
In API version 1, the chart dependency lock file has the name requirements.lock. This
file is identical in format and purpose to the Chart.lock file described under API ver‐
sion 2, just with a different name. For more information, please see the subsection
titled “The Chart.lock File” under API version 2.

Chart API Versions | 177

APPENDIX B

Chart Repository API

In Chapter 7, we covered chart repositories. This appendix briefly covers the chart
repository API, the underlying specification that enables Helm to work with chart
repositories.

The chart repository API is lightweight because there is only one required HTTP
endpoint that must be implemented: GET /index.yaml.

In 99% of cases, chart repositories also serve chart package tarballs (.tgz) and any
associated provenance files (.prov). However, it is also possible to host these files on a
separate domain.

As described in detail in Chapter 7, index.yaml represents the repository index, con‐
taining a complete list of all the available chart versions in the repository. The format
of this file is specific to Helm, and it currently has only one API version (1).

index.yaml
When implementing the chart repository API, your service must provide an HTTP
GET /index.yaml route relative to the repository URL provided. The response from
this request must return a status code 200 OK, and the response body must be a valid
index.yaml as described in the following.

The GET /index.yaml endpoint does not need to be at the root of
the URL path. For instance, given a provided repository URL such
as https://example.com/charts, the GET /index.yaml route must be
accessible at https://example.com/charts/index.yaml.

179

https://example.com/charts
https://example.com/charts/index.yaml

The index.yaml Format
Following is a simple, valid index.yaml with a single chart version (superapp-0.1.0):

apiVersion: v1
entries:
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T10:12:22.507943-05:00"
 description: A Helm chart for Kubernetes
 digest: 46f9ddeca12ec0bc257a702dac7d069af018aed2a87314d86b230454ac033672
 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-28T11:34:26.779758-05:00"

The repository API version (must always be v1).

A map of unique chart names in the repository to a list of all available versions.

The timestamp of when the tarball was created using helm package.

A SHA-256 digest of the tarball.

A list of URLs where the chart can be downloaded. These URLs can be absolute,
and even hosted on separate domain(s). If a relative path is provided, it is consid‐
ered relative to index.yaml. Usually only one URL entry is provided per chart ver‐
sion, but multiple can be provided, and Helm will try to download the next item
in the list if the previous one is inaccessible.

The timestamp of when this index.yaml file was generated, in RFC 3339 format.

With the exception of the fields created, digest, and urls, all of the fields on each
individual chart version are defined by the chart API (name, version, etc.). Please see
Appendix A for more info.

When Is index.yaml Downloaded?
There are five noteworthy scenarios when Helm downloads or redownloads the
repository index:

1. When initially adding a chart repository:
$ helm repo add myrepo https://charts.example.com

2. When updating all chart repositories:

180 | Appendix B: Chart Repository API

$ helm repo update

3. When updating dependencies (disabled with the --skip-refresh flag):
$ helm dependency update

4. When building dependencies from a lock file (disabled with the --skip-refresh
flag):

$ helm dependency build

5. When installing a local chart with dependencies using the --dependency-update
flag:

$ helm install myapp . --dependency-update

When Is the Cached Version of index.yaml Used?
Once index.yaml is downloaded, it is stored in a local cache and used whenever you
reference the unique name you have associated with the repository (e.g., “myrepo”).

There are five noteworthy scenarios when Helm makes use of the locally cached
repository index:

1. When pulling a chart from a repo:
helm pull myrepo/mychart

2. When installing a chart from a repo:
helm install myapp myrepo/mychart

3. When upgrading a release based on a chart from a repo:
helm upgrade myapp myrepo/mychart

4. When searching for charts to use:
helm search repo myrepo/

5. When updating dependencies using the --skip-refresh flag (and a dependency
contains an alias subfield such as "@myrepo"):

helm dependency update --skip-refresh

.tgz Files

.tgz files in a repository represent individual chart versions, packaged as compressed
tarballs.

There is no requirement for the URL path for these files as they are hosted in the
repository; however, they must be able to be downloaded when they are requested by
Helm. The status code of the response must be a 200 OK, and the response body
should be the content of the .tgz in binary form.

Chart Repository API | 181

When Are .tgz Files Downloaded?
There are three noteworthy scenarios when Helm downloads chart package .tgz files:

1. When pulling a chart from a repo:
helm pull myrepo/mychart

2. When installing a chart from a repo:
helm install myapp myrepo/mychart

3. When upgrading a release based on a chart from a repo:
helm upgrade myapp myrepo/mychart

.prov Files

.prov files in a repository represent chart version signature files, signed with GNU
Privacy Guard. These files are optional and are used for verification purposes.

Unlike .tgz files, .prov files have a unique URL path requirement. They must be acces‐
sible at the path of the associated .tgz suffixed with .prov. For example, if a .tgz file is
located at https://charts.example.com/superapp-0.1.0.tgz, then the .prov file must be
located at https://charts.example.com/superapp-0.1.0.tgz.prov.

The status code of the response must be a 200 OK, and the response body should be
the content of the .prov in binary form.

When Are .prov Files Downloaded?
There are three noteworthy scenarios when Helm downloads chart signature .prov
files:

1. When pulling a chart from a repo with the --verify flag:
helm pull myrepo/mychart --verify

2. When installing a chart from a repo with the --verify flag:
helm install myapp myrepo/mychart --verify

3. When upgrading a release based on a chart from a repo with the --verify flag:
helm upgrade myapp myrepo/mychart --verify

182 | Appendix B: Chart Repository API

Index

Symbols
$ (dollar sign) in variable names, 91
. (dot) in range loops, 92
.helmignore file, 83
. (dot objects) in templates, 80

scope of dot, 83
.prov files in repository, 182
.tgz file handling by repository API, 181
:= (colon equals sign) to initialize, 91
= (equals sign) assigning new value, 91
_ (underscore) before file names, 111

_helpers.tpl file for named templates, 97
{ } (curly brackets) in templates, 80
| (pipe) in templates, 83

A
Abdulhussein, Adnan, 112
access controls with pull secrets, 72
actions in templates, 80
alias property in Chart.yaml file, 107
Amazon S3 plugin for chart repository, 149
and statements in templates, 90
API Version 1 details, 174-177
API Version 2 details, 169-174
apiVersion in Chart.yaml file, 66, 169, 170, 174
APIVersion of Kubernetes, 82

resource availability determination, 86
app version, 28
appVersion property, 67, 172
architecture of Helm

charts, 18
Kubernetes resources, 16

archive file from packaging chart, 75-77
dependencies, 106

index.yaml for repository, 130
adding to an existing, 131
generating, 130

naming protocol, 75
Artifact Hub

chart repositories, 27
Drupal configuration parameters, 31

ASCII-Armor public key format, 123
atomic flag, 58

B
backup plugin, 152
Bash scripts

downloader plugin, 161
inspect-templates plugin, 155
install-hook for plugins, 159
shell autocompletion built in, 163
shell script to install helm client, 24

basic auth (basic access authentication)
chart repository, 134
Docker local registry, 145

building a plugin, 155-157
building charts

Anvil example online source, 61
Chart.yaml file, 65-67
create command, 61-65

directory structure, 62
service account created, 72

Deployment template, 68-70
security context readable, 85

linting, 77, 101
Chart Testing tool, 119

modifying templates, 67-70
Go template packages, 68

183

packaging the chart, 75-77
values.yaml file, 71-74

Burns, Brendan, 2

C
cache for chart

exporting chart from, 147
listing charts in, 146
path environment variable, 163
pulling chart from registry, 147
pushing chart to registry, 147
removing chart from, 148
saving chart into, 146

Capabilities object, 82
APIVersions.Has method, 86

certificate signing request (CSR), 135
Chart object, 81
Chart Releaser chart package host, 149
chart repositories

about, 127
basics, 26
challenges of, 143
Helm working with, 18
simplicity of serving, 133

adding a chart repository, 26, 141
GitHub Pages repository, 141
listing added repositories, 142
removing a repository, 143
token auth protection, 162
updating added repositories, 142

API
about, 179
.prov files, 182
.tgz files, 181
index.yaml, 179
index.yaml cached version use, 181
index.yaml downloaded, 180
index.yaml format, 180

app version, 28
Artifact Hub for, 27
chart dependencies, 106
chart version, 28
downloading charts, 142
GitHub Pages for, 136-141

adding chart repository files, 140
creating new repository, 137
custom domain option, 138
enabling GitHub Pages, 138
HTTPS option enabled, 139

using the GitHub Pages site, 141
HELM_REPOSITORY_CACHE, 163
HELM_REPOSITORY_CONFIG, 161, 163
history of, 119
index.yaml, 128-130

adding to an existing, 131
API cached version use, 181
API download of index.yaml, 181
API format of index.yaml, 181
API requirements, 179
API version, 179
generating, 130
GitHub Pages repository, 141
updating added repositories, 142

listing, 142
OCI registries, 144

(see also OCI (open container initiative)
registries)

open source tools
Chart Releaser chart package host, 149
ChartMuseum web server, 148
GCS plugin, 149
Git repository plugin, 149
Harbor full-featured registry, 149
S3 plugin, 149

provenance file, 122
provenance of charts, 14, 120-123

removing a repository, 143
repository field of Chart.yaml file, 105
searching a chart repository, 28
security, 134-136

basic auth, 134
basic auth for Docker local registry, 145
client certificates, 135
real-world example, 136

setting up
about, 133
creating new GitHub repository, 137
Python repository, 133
securing, 134-136

updating added, 142
Chart Testing tool, 119
Chart.lock file, 106

API Version 2 details, 174
Chart.yaml file, 65-67

about, 62
about charts, 18
alias property, 107
API Version 1 details, 175

184 | Index

API Version 2 details, 169, 175
apiVersion, 66, 169, 170, 174
chart dependencies, 104

API Version 2 details, 173
conditional, 107
helm dependency command, 106
tightly versus loosely coupled, 107

Chart object information, 81
custom information, 81

create command directory structure, 62
icon property, 66, 67, 172

example, 67
missing, 78

information Helm passes to templates, 81
modifying, 67-70
schema validation, 119
type property

application default, 67, 110
library chart creation, 110

ChartMuseum chart repository web server, 148
charts

about, 18
Chart.yaml, 18
Helm version and, 19
installed into Kubernetes, 18
packed versus unpacked, 18
templates, 18, 61, 79
values.yaml, 18, 35

about helm client, 21
building

Anvil example online source, 61
Chart.yaml file, 65-67
create command, 61-65
create command directory structure, 62
create command service account, 72
Deployment template, 68-70
Deployment template security context,

85
linting, 77, 101, 119
modifying templates, 67-70
packaging the chart, 75-77
starters, 166
values.yaml file, 71-74

configurability via, 15
custom files within, 82

.helmignore file, 83
dependencies, 103-110

Chart.lock file, 106, 174
Chart.yaml file, 104, 173, 175

Chart.yaml file alias property, 107
charts subdirectory, 106
child chart exporting value, 109
child chart value without export, 109
conditional dependencies, 107
configuration via values.yaml, 106
helm dependency build command, 106
helm dependency command, 106
namespacing template name, 94
package management and, 103
semantic versions, 104
tags property, 108
tests included in dependencies, 118
tightly versus loosely coupled, 107

development versus production, 15
installation of

atomic flag, 58
basic mechanics of, 29
cleanup-on-fail flag, 59
configuration at installation, 30
generate-name flag, 55
helm get command for details, 49-52
helm history command, 52
helm install command, 29
install or upgrade via upgrade install

flag, 57
Kubernetes overview, 18
listing installations, 33
release information, 37, 45
release life cycle statuses, 47
releases listed, 48
templates, 39
uninstalling, 36-38
uninstalling and keeping history, 53
upgrading an installation, 33
upgrading and configuration, 35
upgrading and releases, 19, 34
wait flag, 58

integrity of, 120
Kubernetes resources queried, 88
library charts, 110-113

how reusable templates work, 111
namespacing template name, 94

online resource for chapter 6 charts, 103
as packages, vii, 18, 26, 61
packaging, 75-77

dependencies, 106
index.yaml added to, 131
index.yaml for repository, 130

Index | 185

index.yaml generated, 130
Pretty Good Privacy signature, 121

reusability via, 14
security, 14, 120-123

GNU Privacy Guard, 122
helm verify command, 122
Pretty Good Privacy, 76, 120-123
provenance feature, 14, 120-123

starters converted from, 167
tests added to

about, 117
Chart Testing tool, 119
example, 117
helm test command, 117
history of, 119
steps to running tests, 118

uninstalling, 36-38
keeping history, 53

versions
chart repositories, 28, 146
Chart.yaml file, 66, 104
custom resource definitions and, 125
dependencies, 104
distribution of charts, 75, 106
Semantic Versioning, 22, 104, 171
versioning charts, 171

YAML via
helm post-renderer flag, 44
helm template command, 43

CI (continuous integration) pipelines
chart install or upgrade automated, 57

installs with wait flag failing, 58
timeout recommended, 58, 59

force flag not for production, 59
helm template command, 43
names unique within namespace, 55

cleanup-on-fail flag, 59
client certificates for chart repositories, 135
cloud native ecosystem

about, 1
dependencies handled, 4

containers
about, 3
container images, 4
runtime connecting to world, 4
scheduling, 6

Helm
about, 11
architecture, 16-19

configurability, 15
ease of Kubernetes setup, 12
package management overview, 12
reusability, 14
security, 14

Kubernetes
about scheduling containers, 6
configuration information storage, 8
declarative infrastructure, 6, 16
Deployment, 9, 16
Helm and, 11
pods, 7-11
reconciliation loop, 7
Service, 10

microservices, 2
containers for, 4

cluster capabilities, 82
ClusterIP, 64
colon equals sign (:=) to initialize, 91
comments in templates, 94
completion command, 163
completion.yaml file, 163, 166

shell completions, 163
completions by plugins

dynamic completion, 165
static autocompletion, 163

conditional dependencies, 107
conditional statements in templates, 89
ConfigMaps (Kubernetes), 8

converting to starter, 167
custom files in charts, 82
library chart use example, 111
lookup for list of, 89

configuration
chart installation, 30, 35

testing charts and, 119
chart installation upgrade, 33

configuration fresh with release, 35
configurability in Helm, 15

charts in development versus produc‐
tion, 15

default values via helm inspect command,
50

dependent charts via values.yaml, 106
helm client connecting to Kubernetes clus‐

ter, 25
helm rollback command, 52
pod configuration information storage, 8

volumes linking, 8

186 | Index

reusability in Helm, 14
values via helm get command, 50
values.yaml file, 18, 35

containers
about, 3

runtime connecting to world, 4
container images

about, 4
digest, 5
digest in values.yaml file, 72
getImage example, 96
image name, 5
image registry, 5
image registry with access controls, 72
tag, 5
values.yaml file, 71

init containers, 8
scheduling execution, 6

declarative infrastructure, 6
pods, 7
reconciliation loop, 7

sidecar containers, 8
continuous integration pipelines (see CI)
CoreOS rkt, 144
CRDs (see custom resource definitions)
create command, 61-65

API version 2 by default, 169
Chart.yaml file, 65-67
deployment.yaml file, 68-70
directory structure, 62
ingress.yaml file, 73
label management with named templates,

93-96
library charts, 110
service account created, 72
service.yaml, 73
starters, 151, 166, 168

(see also starters)
test created by default, 118
values.yaml file, 71-74

curly brackets ({ }) in templates, 80
custom domain for GitHub Pages, 138
custom resource definitions (CRDs), 123-125

crds directory, 124
declarative resource definitions, 16
helm template command and, 43
Kubernetes API and, 123
second chart for, 125

D
data Helm passes to templates (see information

Helm passes to templates)
data in release records (see information in

release records)
debugging and troubleshooting

Chart Testing tool, 119
cleanup-on-fail flag, 59
downtime from force flag, 59
dry-run flag, 41, 98
exit codes, 78
helm get command, 49-52

manifests, 50, 100
helm rollback command, 52
helm template command, 43, 99
helm test command, 117
HELM_DEBUG environment variable, 162
installs with wait flag failing, 58
linting charts, 77, 101

Chart Testing tool, 119
listing installations, 33

release status check, 48
uninstalling an installation, 36-38
uninstalling and keeping history, 53

schematizing values.yaml files, 113
YAML output string potential errors, 84

declarative infrastructure of Kubernetes, 6
resources in Helm architecture, 16

default function, 83
define function, 111
deletion policies of hooks, 115
dependencies between charts, 103-110

about, 103
Chart.lock file, 106

API Version 2 details, 174
Chart.yaml file, 104

alias property, 107
API Version 1 details, 175
API Version 2 details, 173

charts subdirectory, 106
child chart exporting value, 109
child chart value without export, 109
conditional dependencies, 107
configuration via values.yaml, 106
helm dependency command, 106

rebuilding charts directory, 106
namespacing template name, 94
requirements.yaml file, 175, 176
semantic versions, 104

Index | 187

tags property, 108
tests included in dependencies, 118
tightly versus loosely coupled, 107

dependency command, 106
rebuilding charts directory, 106

Deployment (Kubernetes), 9
deployment.yaml file, 68-70
HorizontalPodAutoscaler, 9
resource definition example, 16
security context readability, 85
template, 68-70
upgrading application via, 10

dicts
about, 92, 93
dict function, 92
lookup for an object, 88
loops in templates, 91

digest of container images, 5
directory structure from create command, 62

charts subdirectory for dependent charts,
106

Docker
container design, 3
Docker registries, 26, 144

configuration documentation, 145
Docker Distribution project GitHub

page, 145
donated to OCI, 144

(see also OCI)
local registry via, 145

Nginx default images, 65
dollar sign ($) in variable names, 91
domain for GitHub Pages, 138
dot (.) in range loops, 92
.helmignore file, 83
dot objects (.), 80

scope of dot, 83
.prov files in repository, 182
.tgz file handling by repository API, 181
downloader plugins, 152, 160-162
Drupal charts

dry-run flag, 41
installation of chart, 29

configuration at installation, 30
installation of content management system,

27
searching, 28
upgrading installation, 34

dry-run flag, 41, 98

lookup in dry run, 89
dynamic completion, 165

E
else statements in templates, 89
enabled property, 73

if statements evaluating, 89
end statements in templates, 89
environment variables

HELM_BIN, 162
HELM_DEBUG, 162
HELM_KUBECONTEXT, 163
HELM_NAMESPACE, 163
HELM_PLUGINS, 156, 163
HELM_PLUGIN_DIR, 163
HELM_PLUGIN_NAME, 163
HELM_REGISTRY_CONFIG, 163
HELM_REPOSITORY_CACHE, 163
HELM_REPOSITORY_CONFIG, 161, 163
plugin access to, 162

eq function for equality, 90
equals sign (=) assigning new value, 91
errors (see debugging and troubleshooting)
exit codes, 78

chart verification, 122
helm test command, 117

export property in dependencies, 109

F
Files object methods, 87
force flag, 59
functions in templates, 84-86

and/or functions, 90
eq function, 90
list of available, 86
lookup function, 88
Sprig library, 85
variables as arguments, 91

G
GCS repository plugin, 149
generate-name flag, 55
get command

configuration values, 50
manifest retrieval, 50, 100
release details, 49-52

release notes via get notes, 49
getting started

188 | Index

about helm client, 21
chart installation, 29-32

(see also installation of charts)
chart repository added, 26
chart repository searched, 28
cloud native ecosystem, 1

(see also cloud native ecosystem)
installing a package, 29-32

(see also installation of charts)
installing helm client

building from source, 24
Kubernetes cluster connection, 25
prebuilt binary, 21-24

listing installations, 33
Git repository plugin, 149
git tool, 24, 57
GitHub Pages for chart repository, 136-141

adding chart repository files, 140
creating new repository, 137
custom domain option, 138
enabling GitHub Pages, 138
HTTPS option enabled, 139
using the GitHub Pages site, 141

global names, 56
GNU Privacy Guard (GPG), 122
Go programming language

creators of, 84
Helm written in, 68
property names, 82
Sprig library of template functions, 85
template engine

syntax of templates, 79
template packages, 68
why Go, 80

variable handling, 91
Google Cloud Storage as repository, 149

H
Harbor full-featured chart registry, 149
Helm

about Kubernetes and, 11
chart installed into Kubernetes, 18
ease of Kubernetes setup, 12
package management overview, 12
security, 14

architecture
charts, 18
charts installed into Kubernetes, 18
Kubernetes resources, 16

chart repositories, 26, 127
(see also chart repositories)
adding, 26
searching, 28

charts, 18
(see also charts)
versions of Helm and, 19

Developer Guide, 25
Go programming language

Helm written in, 68
template packages, 68
template syntax, 79
why Go, 80

goals of, 11-15
helm client

about, 21
installing, 21-25
plugins, 151
plugins history, 154
starters, 151

online community, 25, 168
Artifact Hub for chart repositories, 27

package manager, vii, 1, 12, 15
security, 14

provenance of packages, 14, 120-123
tools that interoperate with, 15
versions

API Version 1 details, 174-177
API Version 2 details, 169-174
apiVersion in Chart.yaml file, 66, 169,

170
chart instance names, 30
chart version, 28
charts and, 19
helm template command, 43
helm-2to3 plugin for converting, 152
names generated, 55
open container initiative registries, 26
prebuilt binaries, 22
release information storage, 37
Semantic Versioning, 22, 104, 171
test versus test-success, 118
Tiller of Helm 2, 154

helm-2to3 plugin for converting releases, 152
helm-backup plugin, 152
helm-mapkubeapis plugin for deprecated APIs,

152
helm-schema-gen plugin for schematizing val‐

ues, 152

Index | 189

helm-secrets plugin for managing secrets, 152
helm-starter plugin for managing starters, 152
.helmignore file, 83
HELM_BIN, 162
HELM_DEBUG, 162
HELM_KUBECONTEXT, 163
HELM_NAMESPACE, 163
HELM_PLUGINS, 156, 163
HELM_PLUGIN_DIR, 163
HELM_PLUGIN_NAME, 163
HELM_REGISTRY_CONFIG, 163
HELM_REPOSITORY_CACHE, 163
HELM_REPOSITORY_CONFIG, 161, 163
help command and plugins, 154
history command, 52

uninstalling and keeping history, 53
hooks, 115

helm test command, 117
install-hook script for plugins, 159
no-hooks flag, 116
plugins, 159

HorizontalPodAutoscaler (Kubernetes), 9

I
icon property, 66, 67, 172

example, 67
missing, 78

if statements in templates, 89
and/or statements, 90

images (container images)
about, 4
digest, 5

values.yaml file, 72
getImage example, 96
image registry, 5

access controls, 72
digest, 5
image name, 5
tag, 5

values.yaml file, 71
import-values property in dependencies, 109
include function to include a template, 95
indent function, 86
index.yaml of chart repositories, 128-130

adding to an existing, 131
API version, 179
chart repository API, 179

cached version use, 181
downloading index.yaml, 180

format of index.yaml, 180
generating, 130
GitHub Pages repository, 141
updating added repositories, 142

information Helm passes to templates, 80-83
.helmignore file, 83
dot objects, 80

information in release records, 37, 45
helm get for details, 49-52
Release for information, 81

Ingress, 64
Ingress Controller, 74
manifests in building charts, 73

ingress flag, 34
ingress.yaml file, 73
init containers, 8
inspect values command for default configura‐

tion, 50
inspect-templates example plugin, 155
install command, 29

atomic flag, 58
chart repository files, 142
configuration at installation, 30, 35

testing charts and, 119
create-namespace flag, 56
dry-run flag, 41, 98
generate-name flag, 55
process of, 40
provenance file, 122
testing process, 118
wait flag, 58

atomic flag instead, 58
install-hook script for plugins, 159
installation of charts

about, 18
atomic flag, 58
basic mechanics of, 29
cleanup-on-fail flag, 59
configuration at installation, 30, 35

testing charts and, 119
generate-name flag, 55
helm get command for details, 49-52
helm history command, 52
helm install command, 29

configuration at installation, 30
process of, 40

install or upgrade via upgrade install flag, 57
listing installations, 33
release information, 37, 45

190 | Index

release instance name scope, 30
release life cycle statuses, 47
releases listed, 48
templates, 39
uninstalling, 36-38

keeping history, 53
upgrading an installation, 33

configuration fresh with release, 35
releases, 19, 34

wait flag, 58
atomic flag instead, 58

installation of helm client
about helm client, 21
adding chart repository, 26
building from source, 24
chart installation, 29-32

listing installations, 33
chart repository searched, 28
installing a package, 29-32

listing installations, 33
Kubernetes cluster connection, 25
prebuilt binary, 21-24

downloading binary, 23
Helm version numbers, 22
list of Helm releases, 22
package managers, 22
shell script, 24

installing third-party plugins, 152
instance name scope, 30
integrity of charts, 120
iteration (loops) in templates, 91

J
JSON (JavaScript Object Notation)

chart repositories listed as, 142
JSON Schema, 113
manifests for resources, 8, 17
service queries and data updates, 2
toJson function, 86
YAML as superset of, 17

K
Kubernetes

about scheduling containers, 6
API server

custom resource definitions and, 123
release success determinant, 58
templates, 40
wait flag for Running status, 58

Capabilities object, 82
APIVersions.Has method, 86

configuration information storage, 8
declarative infrastructure, 6

chart installed into Kubernetes, 18
resources in Helm architecture, 16

Deployment, 9
deployment.yaml file, 68-70
HorizontalPodAutoscaler, 9
resource definition example, 16
security context readability, 85
template, 68-70
upgrading application via, 10

founder, 2
Helm

about Kubernetes and, 11
chart installed into Kubernetes, 18
ease of Kubernetes setup, 12
methods to expose applications, 64
package management overview, 12
package manager, vii, 1, 15
resources in architecture, 16
security, 14

helm client connection, 25
helm template command not needing, 43
kubectl

about, 24
credential management, 25
delete namespace, 56
helm client connection, 25
manifest secret metadata, 51
release information secrets, 37, 45
restarting a service, 34

label recommendations, 95
namespace, 13

create-namespace flag, 56
deleting with kubectl, 56
Helm and namespace flags, 30
HELM_NAMESPACE, 163
listing installations, 33
named templates, 94
names unique within, 54

operating systems versus, 13
namespace, 13

pods
about, 7, 9
configuration information storage, 8
Deployment, 9
forcing restarts on update, 59

Index | 191

init containers, 8
manifests, 8
Pod resource, 8
rkt as historical origin, 144
Running state and wait flag, 58
Service, 10
sidecar containers, 8
volumes linking to configuration, 8

reconciliation loop, 7
resources

charts, 18
(see also charts)

Helm architecture, 16
methods to expose applications, 64
resource type, 17
schema validation, 99

Secrets, 8
custom files in charts, 82
helm-secrets plugin, 152
image registry with access controls, 72
pull secrets, 72
release failure leaving hanging Secret, 59
release information storage, 37

Service, 10
exposing applications, 73
restarting a service, 34

version determination, 82
resource availability determination, 86

Kustomize tool and helm post-renderer flag, 44

L
labels

labels function, 111
management with named templates, 93-96

Kubernetes recommended labels, 95
library charts, 110-113

how reusable templates work, 111
namespacing template name, 94

linting charts, 77, 101
Chart Testing tool, 119

Linux pipelines, 84
listing installations, 33

release status check, 48
lists

about, 92, 93
list function, 92, 93
lookup function returning, 88
loops in templates, 91

LoadBalancer, 64

lookup function
dry run versus upgrade, 89
returning dict or list, 88

loops in templates, 91
loose coupling between charts, 107

M
manifests

about, 8, 17
building charts, 73
chart installed into Kubernetes, 18
helm get command to retrieve, 50, 100
label recommendations by Kubernetes, 95
MySQL manifests in WordPress chart, 103
plugin creation, 156

plugin.yaml, 157-159
which code to run, 159

release success determinant, 58
schema definitions from Kubernetes, 99
templates as, 18

maps (see dicts)
McIlroy, Douglas, 84
merge function, 111

creator Adnan Abdulhussein, 112
metadata annotations via resource lookup, 88
methods in templates

Capabilities object, 86
Files object, 87

microservices, 2
containers for, 4

mutual TLS authentication (mTLS), 135
MySQL and chart dependencies, 103

N
name-template flag, 55
named templates, 93-96

getImage example, 96
_helpers.tpl file for, 97

names
alias property in Chart.yaml file, 107
chart archive files, 75
chart instance name scope, 30
Chart.yaml versus Chart object, 81
container images, 5
descriptive template names, 97
helm install command generate-name flag,

55
label recommendations by Kubernetes, 95
lint detecting problems, 101

192 | Index

property names on data objects, 82
starters

converting chart to starter, 167
unique name for, 167
using starters, 168

variables, 91
namespace (Kubernetes), 13

create-namespace flag, 56
deleting with kubectl, 56
Helm and namespace flags, 30
HELM_NAMESPACE, 163
listing installations, 33
named templates, 94
names unique within, 54

chart instance name scope, 30
global names, 56
starters, 167

Nginx
helm create command, 61, 67

about Nginx as default, 62
test created by default, 118

images from Docker Official Images, 65
Ingress Controller, 74
mTLS for chart repository, 135
web page indicating running, 64

nindent function, 86
including another template, 95

NodePort, 64
NOTES.txt template, 63

O
OCI (open container initiative) registries

about, 144
experimental status, 143, 144

cache
exporting chart from, 147
listing charts in, 146
path environment variable, 163
pulling chart from registry, 147
pushing chart to registry, 147
removing chart from, 148
saving chart into, 146

chart versions, 75, 146
distribution specification, 144
enabling OCI support, 144
Helm 3 introducing, 26
history of, 143, 144

distribution spec homepage, 144
local registry creation, 145

logging in to, 145
logging out of, 146
online information source, 143

online community, 25, 168
Artifact Hub for chart repositories, 27

open container initiative registries (see OCI)
open source tools

Chart Releaser chart package host, 149
ChartMuseum web server, 148
contributions to, 168
GCS repository plugin, 149
Git repository plugin, 149
Harbor full-featured registry, 149
S3 repository plugin, 149

operating systems versus Kubernetes, 13
or statements in templates, 90

P
package command, 75

Pretty Good Privacy signature, 121
package managers

about, vii, 12
configuration management versus, 15

charts as packages, vii, 18, 26, 61
dependencies and, 103
Helm as, vii, 1, 12

configuration management and, 15
installing helm client, 22
success determination, 58

packages
charts as, vii, 18, 26, 61
packaging a chart, 75-77

dependencies, 106
index.yaml added to, 131
index.yaml for repository, 130
index.yaml generated, 130
Pretty Good Privacy signature, 121

provenance feature of Helm, 14, 120-123
packed charts, 18
Pike, Rob, 84
pipelines in template syntax

about, 83, 84
default function, 83
including another function, 95
quote function, 84

plugin.complete file, 165, 166
plugins

about, 151
building, 155-157

Index | 193

code executed, 155
end result, 157
install-hook script, 159
manifest, 156
manual installation, 156

code executed
building a plugin, 155
install-hook script, 159
which command to run, 159

completions
dynamic completion, 165
static autocompletion, 163

custom subcommands, 154
helm help command and, 154

documentation, 152
downloader plugins, 152, 160-162
environment variables available to, 162

HELM_PLUGINS, 163
HELM_PLUGIN_DIR, 163
HELM_PLUGIN_NAME, 163

GCS as repository, 149
Git as repository, 149
helm-2to3 for converting releases, 152
helm-backup, 152
helm-mapkubeapis for deprecated APIs, 152
helm-schema-gen for schematizing values,

152
helm-secrets for managing secrets, 152
helm-starter for managing starters, 152
history of, 154
hooks, 159
inspect-templates example plugin, 155
installing third-party, 152
listing installed plugins, 153
plugin.yaml, 152, 153, 157-159

hooks, 160
inspect-templates example plugin, 156
which command to run, 159

removing installed, 153
root directory override, 156
S3 as repository, 149
updating, 153

pods
about, 7, 9
configuration information storage, 8

volumes linking, 8
Deployment, 9
forcing restarts on update, 59
init containers, 8

manifests, 8
Pod resource, 8
rkt as historical origin, 144
Running state and wait flag, 58
Service, 10
sidecar containers, 8

prebuilt binary for helm client installation,
21-24

Pretty Good Privacy (PGP), 76, 120-123
helm verify command, 122
public key sharing, 122

GNU Privacy Guard, 122
property names, 82
protocol handling by downloader plugins, 152,

160-162
.prov files in repository, 182
provenance of charts, 14, 120-123
public key for Pretty Good Privacy, 122

ASCII-Armor public key format, 123
GNU Privacy Guard, 122

pull command, 142
pull secrets, 72
Python chart repository, 133

Q
quote function for string output, 84

R
range function, 91
reconciliation loop of Kubernetes, 7
Release object, 81
releases

about, 19, 34
actions bundled as part of, 115
chart installed into Kubernetes, 18

release installation process, 39
dry-run flag, 41
helm history command, 52
helm rollback command, 52
helm-2to3 plugin for converting, 152
helm-backup plugin, 152
hooking into events, 115

no-hooks flag, 116
tests added to charts, 117-120

information in release records, 37, 45
helm get for details, 49-52
Release for information, 81

instance name scope, 30
life cycle statuses, 47

194 | Index

listing installations, 33
listing releases, 48
release notes via helm get notes, 49
success determination, 58
templates, 18, 39
upgrading installations, 34

configuration fresh with release, 35
repositories (see chart repositories)
repository field in Chart.yaml file, 105
requirements.lock file (legacy), 177
requirements.yaml file (legacy), 175, 176
resource limits, 74
resources

about use of term, 8
annotating, 88
charts, 18, 18

(see also charts)
custom resource definitions, 123-125

crds directory, 124
helm template command and, 43
Kubernetes API and, 123
second chart for, 125

declarative resource definitions, 6, 16
hand-editing and rollbacks, 53
Helm architecture, 16
hooks, 115
manifests, 8, 17

helm get command to retrieve, 50, 100
methods to expose applications, 64
namespace, 13

Helm and namespace flags, 30
querying in charts, 88
resource availability determination, 86
resource type, 17
schema validation, 99

resources for learning
book supplemental material, ix
building anvil chart, 61
chart repositories, 27
Chart Testing tool, 120
charts from chapter 6 of book, 103
Docker Distribution, 145

Docker registry configuration, 145
Helm Developer Guide, 25

tools that interoperate with Helm, 15
Helm releases, 22
helm-users channel on Kubernetes Slack

server, 25
JSON Schema, 113

label recommendations by Kubernetes, 96
Nginx Ingress Controller, 74
OCI information, 143

distribution spec, 144
online community, 25, 168

Artifact Hub for chart repositories, 27
plugin documentation, 152
Sprig library of template functions, 85
template functions available, 86
tools that interoperate with Helm, 15

REST (representational state transfer) APIs, 2, 3
restarting a service with kubectl, 34
reusability in Helm, 14
revisions of installations

failed releases have revisions, 49
helm history command, 52
helm rollback command, 52
release records containing, 46

rkt (CoreOS), 144
rollback command, 52

atomic flag, 58
keeping history, 53

root directory of plugins, 156

S
S3 plugin for chart repository, 149
scalability in Deployment (Kubernetes), 9
schema validation of Chart.yaml, 119
schema validation of Kubernetes resources, 99
schematizing values.yaml files, 113

benefits of schemas, 113, 114
helm-schema-gen plugin, 152
JSON Schema, 113

scope
chart instance name, 30
dot objects, 83
with statements, 90

scripts (see Bash scripts)
Secrets (Kubernetes), 8

custom files in charts, 82
helm-secrets plugin, 152
image registry with access controls, 72
pull secrets, 72
release failure leaving hanging Secret, 59
release information storage, 37

security
basic auth, 134

Docker local registry, 145
chart repository, 134-136

Index | 195

basic auth, 134
client certificates, 135
real-world example, 136

chart security, 14, 120-123
provenance feature, 14, 120-123

client certificates, 135
downloader plugin for protocol handling,

160-162
GitHub Pages HTTPS option enabled, 139
GNU Privacy Guard, 122
namespaces, 13
Pretty Good Privacy signing, 76, 120-123

helm verify command, 122
public key and GNU Privacy Guard, 122
public key sharing, 122

pull secrets for, 72
Semantic Versioning, 22, 171

range syntaxes, 104
version field for dependencies, 104

Service (Kubernetes)
about, 10
exposing applications, 73
restarting a service, 34

service account from create command, 72
service meshes, 100

manifest changes, 100
service.yaml, 73
shells

autocompletion, 163
shell script to install helm client, 24

(see also Bash scripts)
sidecar containers, 8
snippets in _*.yaml files, 111
Sprig library of template functions, 85
starters

about, 151, 166
converting chart to, 167
helm-starter plugin for managing, 152
making available to Helm, 167
using, 168

static autocompletion, 163, 166
stderr for plugin logging, 162
stdout for plugin output, 162
string output potential errors, 84

T
tag of container image, 5
tags property in dependencies, 108
template command, 43, 79

cluster not interrogated, 43, 82, 87, 99
debugging templates, 99

template function for including a template, 95
templates

about, 79
_ (underscore) before file names, 111
why Go, 80

about charts, 18, 61
chart create command, 61-65

Chart.yaml file, 65-67
directory structure, 62, 79
values.yaml file, 71-74

chart installed into Kubernetes, 18
release installation process, 39

charts subdirectory, 106
comments in, 94
debugging

dry-run flag, 41, 89, 98
linting charts, 77, 101, 119
manifests, 50, 100

Deployment, 68-70
security context readability, 85

helm template command, 43, 79
cluster not interrogated, 43, 82, 87

information Helm passes to, 80-83
.helmignore file, 83
dot objects, 80

library charts, 110-113
how reusable templates work, 111
namespacing template name, 94

modifying, 67-70
Go template packages, 68

name-template flag, 55
named templates, 93-96

_helpers.tpl file for, 97
NOTES.txt, 63
starter dynamic references, 167

(see also starters)
structuring for maintainability, 97
syntax of templates, 79-93

actions, 80
complex logic in named template, 96
.helmignore file, 83
dot objects, 80
example template, 68
functions, 84-86, 88, 90
functions available listed, 86
functions in example, 69
if/else/with, 89

196 | Index

information Helm passes to templates,
80-83

loops, 91
methods, 86
pipelines, 83
property names, 82
querying Kubernetes resources, 88
quote function, 84
Values examples, 68, 69
variables, 91
why Go, 80

testing and create command, 63
values.yaml file for default values, 63, 71

test command, 117
Chart Testing tool, 119

history of, 119
example, 117
steps to running tests, 118
test-success versus, 118

testing
chart testing

about, 117
Chart Testing tool, 119
helm test command, 117
history of, 119
steps to running tests, 118

exit codes, 78
chart verification, 122
helm test command, 117

templates and create command, 63
.tgz file handling by repository API, 181
Thompson, Ken, 84
tight coupling between charts, 107
timeout flag, 58, 59
toJson function, 86
toToml function, 86
toYaml function, 85
troubleshooting (see debugging and trouble‐

shooting)
type property

application default, 67, 110
library chart creation, 110

U
underscore (_) before file names, 111

_helpers.tpl file for named templates, 97
uninstalling charts, 36-38

keeping history, 53
Unix pipelines, 84

unpacked charts, 18
upgrades

custom resource definitions and, 125
Deployment handling, 10
dry-run flag, 41, 98
install flag for install or upgrade, 57
installation upgrades, 33
releases, 19

(see also releases)

V
Values

schematizing, 113
values.yaml file providing, 70, 80
variable initialization, 91

values.schema.json file, 113
values.yaml file

about charts, 18
building charts, 71-74

container images, 71
exposing services, 73
resource limits, 74
service account, 72

dependent chart configuration, 106
child chart exporting value, 109
child chart value without export, 109
conditional dependencies, 108

library chart creation, 110
schematizing, 113

helm-schema-gen plugin, 152
JSON Schema, 113

upgrading an installation, 35
templates, 40

Values from, 70, 80
template default values, 63, 71

with conditional output, 90
variables in templates, 91
verify command, 122
version field for dependencies, 104

range syntaxes, 104
version of Kubernetes, 82

resource availability determination, 86
versions of Helm

API Version 1 details, 174-177
API Version 2 details, 169-174
apiVersion in Chart.yaml file, 66, 169, 170
charts and, 19

chart instance names, 30
chart version, 28

Index | 197

open container initiative registries, 26
helm template command, 43
helm-2to3 plugin for converting, 152
names generated, 55
prebuilt binaries, 22

Semantic Versioning, 22
release information storage, 37
Semantic Versioning, 22, 171

range syntaxes, 104
version field for dependencies, 104

test versus test-success, 118
Tiller of Helm 2, 154

volumes linking pods to configuration objects,
8

W
wait flag, 58

atomic flag instead, 58
with statements in templates, 90
WordPress and chart dependencies

conditional dependencies, 107
MySQL dependency, 103
passing configuration, 106

Y
YAML

capturing
helm post-renderer flag, 44
helm template command, 43

chart repositories listed as, 142
Chart.yaml, 18, 65-67

(see also Chart.yaml file)
information Helm passes to templates,

81
template modification, 67-70

completion.yaml file, 166
ConfigMap, 8

Deployment, 10
resource definition, 16
security context readability, 85

deployment.yaml file, 68-70
helm-secrets plugin, 152
index.yaml of chart repositories, 128-130

(see also index.yaml)
adding to existing, 131
generating, 130

library chart, 111
manifests for resources, 8, 17

helm get command to retrieve, 50, 100
output string potential errors, 84
plugin.yaml, 152, 153, 157-159

hooks, 160
inspect-templates example plugin, 156
which command to run, 159

requirements.yaml file, 175, 176
reusability in Helm, 14
Service, 10
service.yaml, 73
snippets in _*.yaml files, 111
superset of JSON, 17
templates, 40

(see also templates)
template modification, 67-70

test-connection.yaml example file, 117
toYaml function, 85
values.yaml file, 18

(see also values.yaml file)
building charts, 71-74
child chart exporting value, 109
schematizing, 113
with for conditional output, 90

Z
Z shell (Zsh) autocompletion, 163

198 | Index

About the Authors
Matt Butcher is a cofounder/creator of the Helm project. He leads a team of open
source engineers at Microsoft Azure. Matt is also the cocreator of The Illustrated
Children’s Guide to Kubernetes (with Karen Chu, Cloud Native Computing Founda‐
tion) and has authored eight other books (two with Matt Farina). He holds a Ph.D. in
philosophy. When not coding, he enjoys drinking great coffee or hiking in the Colo‐
rado Rockies.

Matt Farina is a maintainer on the Helm project and has been contributing to open
source projects for more than 15 years. He cofounded and cochairs the Kubernetes
Apps Special Interest Group (SIG), which focuses on running workloads on Kuber‐
netes. Matt works as a software architect at SUSE where he works on Kubernetes and
developer tooling. He has previously authored two books alongside Matt Butcher.
Creative problem solving and helping people are two driving forces for Matt’s work
with software.

Josh Dolitsky is a maintainer of the Helm project and founder of the ChartMuseum
project. He is the owner and lead engineer of Blood Orange, a software consulting
firm specialized in helping with DevOps, CI/CD, and Kubernetes. Josh has a pen‐
chant for undertaking ambitious software projects and seeing them to completion
(for the most part). He is a chronic user of airplane mode while not on an aircraft,
and relishes the many nondigital joys in life.

Colophon
The animal on the cover of Learning Helm is a little grebe (Tachybaptus ruficollis),
also known as a dabchick, a small water bird found in a large range extending across
Europe, Africa, and southern Asia.

The little grebe has a pointed bill, which darkens from yellow to black as it matures,
surrounded by white accents. Its mostly dark plumage, which runs down the bird’s
back to its blunt rear, is offset by a rust-colored neck and a lighter abdomen. The little
grebe’s breeding call is a trilled weet-weet-weet that has been likened to a horse’s
whinny.

Its legs are set far back, like all grebes, and while it has difficulty walking on land the
dabchick is a talented swimmer and diver. Thus, it prefers to dine on insects, mol‐
lusks, tadpoles, and small fish and build its nest at the water’s edge. Little grebe chicks
are fed feathers by their parents to create a soft stomach lining that prevents damage
from fish bones and shells.

While the little grebe’s conservation status is currently listed as of Least Concern,
many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Elements of Ornithology. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Helm
	The Cloud Native Ecosystem
	Containers and Microservices
	Schedules and Kubernetes

	Helm’s Goals
	From Zero to Kubernetes
	Package Management
	Security, Reusability, and Configurability

	Helm’s Architecture
	Kubernetes Resources
	Charts
	Resources, Installations, and Releases
	A Brief Note About Helm 2

	Conclusion

	Chapter 2. Using Helm
	Installing and Configuring the Helm Client
	Installing a Prebuilt Binary
	Guidance on Building from Source
	Working with Kubernetes Clusters
	Getting Started with Helm

	Adding a Chart Repository
	Searching a Chart Repository
	Installing a Package
	Configuration at Installation Time

	Listing Your Installations
	Upgrading an Installation
	Configuration Values and Upgrades

	Uninstalling an Installation
	How Helm Stores Release Information

	Conclusion

	Chapter 3. Beyond the Basics with Helm
	Templating and Dry Runs
	The --dry-run Flag
	The helm template Command

	Learning About a Release
	Release Records
	Listing Releases
	Find Details of a Release with helm get

	History and Rollbacks
	Keeping History and Rolling Back

	A Deep Dive into Installs and Upgrades
	The --generate-name and --name-template Flags
	The --create-namespace Flag
	Using helm upgrade --install
	The --wait and --atomic Flags
	Upgrading with --force and --cleanup-on-fail

	Conclusion

	Chapter 4. Building a Chart
	The Chart Creation Command
	The Chart.yaml File
	Modifying Templates
	The Deployment

	Using the Values File
	Container Images
	Exposing Services
	Resource Limits

	Packaging the Chart
	Linting Charts
	Conclusion

	Chapter 5. Developing Templates
	The Template Syntax
	Actions
	Information Helm Passes to Templates
	Pipelines
	Template Functions
	Methods
	Querying Kubernetes Resources In Charts
	if/else/with
	Variables
	Loops

	Named Templates
	Structuring Your Templates for Maintainability
	Debugging Templates
	Dry Run
	Getting Installed Manifests
	Linting Charts

	Conclusion

	Chapter 6. Advanced Chart Features
	Chart Dependencies
	Conditional Flags for Enabling Dependencies
	Importing Values from Child to Parent Charts

	Library Charts
	Schematizing Values Files
	Hooks
	Adding Tests to Charts
	Helm Test
	Chart Testing Tool

	Security Considerations
	Custom Resource Definitions
	Conclusion

	Chapter 7. Chart Repositories
	The Repository Index
	An Example of a Chart Repository Index
	Generating an Index
	Adding to an Existing Index

	Setting Up a Chart Repository
	A Simple Chart Repository with Python
	Securing a Chart Repository
	Real-World Example: Using GitHub Pages

	Using Chart Repositories
	Adding a Repository
	Downloading Charts
	Listing Repositories
	Updating Repositories
	Removing a Repository

	Experimental OCI Support
	Enabling OCI Support
	Running a Local Registry
	Logging In to a Registry
	Logging Out of a Registry
	Storing a Chart in the Cache
	Listing Charts in the Cache
	Exporting a Chart from the Cache
	Pushing a Chart to the Registry
	Pulling a Chart from the Registry
	Removing a Chart from the Cache

	Related Projects
	ChartMuseum
	Harbor
	Chart Releaser
	S3 Plugin
	GCS Plugin
	Git Plugin

	Chapter 8. Helm Plugins and Starters
	Plugins
	Installing Third-Party Plugins
	Custom Subcommands
	Building a Plugin
	plugin.yaml
	Hooks
	Downloader Plugins
	Execution Environment
	Shell Completion

	Starters
	Converting a Chart to a Starter
	Making Starters Available to Helm
	Using Starters

	Extending Helm Further

	Appendix A. Chart API Versions
	API Version 2
	The Chart.yaml File
	The Chart.lock File

	API Version 1 (legacy)
	The Chart.yaml File
	The requirements.yaml File (Legacy)
	The requirements.lock File (Legacy)

	Appendix B. Chart Repository API
	index.yaml
	The index.yaml Format
	When Is index.yaml Downloaded?
	When Is the Cached Version of index.yaml Used?

	.tgz Files
	When Are .tgz Files Downloaded?

	.prov Files
	When Are .prov Files Downloaded?

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

