Hands-On
Microservices
with Kubernetes

Hands-On Microservices
with Kubernetes

Build, deploy, and manage scalable microservices
on Kubernetes

Gigi Sayfan

BIRMINGHAM - MUMBAI

Hands-On Microservices with Kubernetes

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Rohit Rajkumar

Content Development Editor: Amitendra Pathak
Senior Editor: Rahul Dsouza

Technical Editor: Prachi Sawant

Copy Editor: Safis Editing

Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Jayalaxmi Raja

First published: July 2019

Production reference: 1050719

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-546-8

www.packtpub.com

http://www.packtpub.com

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Gigi Sayfan is a principal software architect at Helix — a bioinformatics and genomics start-
up — and author of Mastering Kubernetes, published by Packt. He has been developing
software professionally for more than 20 years in domains as diverse as instant messaging,
morphing, chip-fabrication process control, embedded multimedia applications for games
consoles, and brain-inspired machine learning. He has written production code in many
programming languages including Go, Python, C#, Java, Delphi, JavaScript, and even
Cobol and PowerBuilder, for operating systems such as Windows, Linux, macOS, Lynx,
and Sony PlayStation. His technical expertise covers databases, low-level networking,
unorthodox user interfaces, and the general SDLC.

About the reviewers

Guang Ya Liu is a senior technical staff member for IBM Cloud Private and is currently
focused on cloud computing, container technology, and distributed computing. He is also a
member of the IBM Academy of Technology. He was an OpenStack Magnum Core member
from 2015 to 2017, and now serves as an Istio maintainer, Kubernetes member, Kubernetes
Federation V2 maintainer, Apache Mesos committer, and PMC member.

Shashidhar Soppin is a senior software architect with over 18 years' experience in IT. He
has worked on virtualization, storage, the cloud and cloud architecture, OpenStack,
machine learning, deep learning, and Docker container technologies. Primarily, his focus is
on building new approaches and solutions for enterprise customers. He is an avid author of
open source technologies (OSFY), a blogger (LinuxTechi), and a holder of patents. He
graduated from BIET, Davangere, India. In his free time, he loves to travel and read books.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: Introduction to Kubernetes for Developers 6
Technical requirements 6
Installing Docker 7
Installing kubectl 7
Installing Minikube 7
The code 7
Kubernetes in a nutshell 7
Kubernetes — the container orchestration platform 7
The history of Kubernetes 8
The state of Kubernetes 8
Understanding the Kubernetes architecture 9
The control plane 10
The API server 10

The etcd store 10

The scheduler 10

The controller manager 11

The data plane 11
The kubelet 11

The kube proxy 12

The container runtime 12

Kubectl 12
Kubernetes and microservices — a perfect match 13
Packaging and deploying microservices 13
Exposing and discovering microservices 16
Securing microservices 16
Namespaces 17
Service accounts 17
Secrets 17

Secure communication 18
Network policies 18
Authenticating and authorizing microservices 19
Role-based access control 19
Upgrading microservices 20
Scaling microservices 21
Monitoring microservices 21
Logging 22

Metrics 23
Creating a local cluster 23
Installing Minikube 23

Troubleshooting Minikube 25

Table of Contents

Verifying your cluster
Playing with your cluster
Installing Helm

Summary
Further reading

Chapter 2: Getting Started with Microservices

Technical requirements

Installing Go with Homebrew on macOS

Installing Go on other platforms

The code
Programming in the small — less is more
Making your microservice autonomous
Employing interfaces and contracts
Exposing your service via APIs
Using client libraries
Managing dependencies
Coordinating microservices

The uniformity versus flexibility trade-off
Taking advantage of ownership
Understanding Conway's law

Vertical

Horizontal

Matrix
Troubleshooting across multiple services
Utilizing shared service libraries
Choosing a source control strategy

Monorepo

Multiple repos

Hybrid
Creating a data strategy

One data store per microservice

Running distributed queries

Employing Command Query Responsibility Segregation

Employing APl composition

Using sagas to manage transactions across multiple services

Understanding ACID
Understanding the CAP theorem
Applying the saga pattern to microservices

Summary
Further reading

Chapter 3: Delinkcious - the Sample Application

Technical requirements
Visual Studio Code

25
26
27
29
29

30
31
31
31
31
31
34
34
35
36
36
37
37
38
39
40
40
40
41
42
42
43
43
44
44
44
46
46
47
48
49
49
50
51
51

52
53
53

[ii]

Table of Contents

GolLand
LiteIDE
Other options
The code
Choosing Go for Delinkcious
Getting to know Go kit
Structuring microservices with Go kit
Understanding transports
Understanding endpoints
Understanding services
Understanding middleware
Understanding clients
Generating the boilerplate
Introducing the Delinkcious directory structure
The cmd subdirectory
The pkg subdirectory
The svc subdirectory
Introducing the Delinkcious microservices
The object model
The service implementation
Implementing the support functions
Invoking the API via a client library
Storing data
Summary
Further reading

Chapter 4: Setting Up the CI/CD Pipeline

Technical requirements
The code
Understanding a CI/CD pipeline
Options for the Delinkcious CI/CD pipeline
Jenkins X
Spinnaker
Travis Cl and CircleCl
Tekton
Argo CD
Rolling your own
GitOps
Building your images with CircleClI
Reviewing the source tree
Configuring the Cl pipeline
Understanding the build.sh script
Dockerizing a Go service with a multi-stage Dockerfile
Exploring the CircleCI Ul
Considering future improvements

53
53
54
54
54
55
56
57
58
59
59
60
60
61
61
62
63
63
64
66
69
72
76
79
79

80
80
81
81
82
83
83
84
84
85
85
86
86
87
88
90
92
93
95

[iii]

Table of Contents

Setting up continuous delivery for Delinkcious
Deploying a Delinkcious microservice
Understanding Argo CD

Argo CD is built on Argo
Argo CD utilizes GitOps
Getting started with Argo CD
Configuring Argo CD
Using sync policies
Exploring Argo CD
Summary
Further reading

Chapter 5: Configuring Microservices with Kubernetes

Technical requirements
The code
What is configuration all about?
Configuration and secrets
Managing configuration the old-fashioned way
Convention over configuration
Command-line flags
Environment variables
Configuration files
INI format
XML format
JSON format
YAML format
TOML format
Proprietary formats
Hybrid configuration and defaults
Twelve factor app configuration
Managing configuration dynamically
Understanding dynamic configuration
When is dynamic configuration useful?
When should you avoid dynamic configuration?
Remote configuration store
Remote configuration service
Configuring microservices with Kubernetes
Working with Kubernetes ConfigMaps
Creating and managing ConfigMaps
Applying advanced configuration
Kubernetes custom resources
Service discovery
Summary
Further reading

Chapter 6: Securing Microservices on Kubernetes
Technical requirements

96
96
98
98
98
99
101
103
103
108
109

110
110
111
111
112
112
112
113
114
115
115
116
117
117
118
119
121
122
122
123
123
124
124
125
125
126
130
136
137
140
140
141

142
143

[iv]

Table of Contents

The code
Applying sound security principles

Differentiating between user accounts and service accounts

User accounts
Service accounts

Managing secrets with Kubernetes
Understanding the three types of Kubernetes secret
Creating your own secrets
Passing secrets to containers
Building a secure pod

Managing permissions with RBAC

Controlling access with authentication, authorization, and

admission
Authenticating microservices
Authorizing microservices
Admitting microservices

Hardening your Kubernetes cluster using security best practices

Securing your images
Always pull images
Scan for vulnerabilities
Update your dependencies
Pinning the versions of your base images
Using minimal base images
Dividing and conquering your network
Safeguarding your image registry
Granting access to Kubernetes resources as needed
Using quotas to minimize the blast radius
Units for requests and limits
Implementing security contexts
Hardening your pods with security policies
Hardening your toolchain
Authentication of admin user via JWT tokens
Authorization via RBAC
Secure communication over HTTPS
Secret and credentials management
Audits
Cluster RBAC
Summary

Further reading

Chapter 7: Talking to the World - APIs and Load Balancers
Technical requirements
The code
Getting familiar with Kubernetes services
Service types in Kubernetes
East-west versus north-south communication

143
143
146
146
147
150
151
152
153
154
156

160
160
164
165
165
165
165
166
166
166
166
167
169
170
171
173
173
175
176
176
176
177
177
177
177
177

178

179
179
180
180
182
183

[v]

Table of Contents

Understanding ingress and load balancing 184
Providing and consuming a public REST API 184
Building a Python-based API gateway service 184
Implementing social login 185
Routing traffic to internal microservices 188
Utilizing base Docker images to reduce build time 189
Adding ingress 190
Verifying that the API gateway is available outside the cluster 191
Finding the Delinkcious URL 191

Getting an access token 192

Hitting the Delinkcious API gateway from outside the cluster 194
Providing and consuming an internal gRPC API 196
Defining the NewsManager interface 196
Implementing the news manager package 196
Exposing NewsManager as a gRPC service 199
Defining the gRPC service contract 200
Generating service stubs and client libraries with gRPC 201

Using Go-kit to build the NewsManager service 202
Implementing the gRPC transport 203
Sending and receiving events via a message queue 206
What is NATS? 206
Deploying NATS in the cluster 207
Sending link events with NATS 208
Subscribing to link events with NATS 211
Handling link events 213
Understanding service meshes 214
Summary 215
Further reading 215
Chapter 8: Working with Stateful Services 216
Technical requirements 216
The code 217
Abstracting storage 217
The Kubernetes storage model 217
Storage classes 218
Volumes, persistent volumes, and provisioning 218
Persistent volume claims 219

In-tree and out-of-tree storage plugins 222
Understanding CSI 223
Standardizing on CSI 225
Storing data outside your Kubernetes cluster 225
Storing data inside your cluster with StatefulSets 226
Understanding a StatefulSet 226
StatefulSet components 228

Pod identity 230
Orderliness 230

When should you use a StatefulSet? 231

[vil

Table of Contents

Comparing deployment and StatefulSets
Reviewing a large StatefulSet example
A quick introduction to Cassandra
Deploying Cassandra on Kubernetes using StatefulSets
Achieving high performance with local storage
Storing your data in memory
Storing your data on a local SSD
Using relational databases in Kubernetes
Understanding where the data is stored
Using a deployment and service
Using a StatefulSet
Helping the user service locate StatefulSet pods
Managing schema changes
Using non-relational data stores in Kubernetes
An introduction to Redis
Persisting events in the news service
Summary
Further reading

Chapter 9: Running Serverless Tasks on Kubernetes

Technical requirements
The code

Serverless in the cloud
Microservices and serverless functions
Modeling serverless functions in Kubernetes

Functions as code
Functions as containers

Building, configuring, and deploying serverless functions
Invoking serverless functions

Link checking with Delinkcious
Designing link checks
Implementing link checks

Serverless link checking with Nuclio
A quick introduction to Nuclio
Creating a link checker serverless function
Deploying the link checker function with nuctl
Deploying a function using the Nuclio dashboard
Invoking the link-checker function directly
Triggering link checking in LinkManager

Other Kubernetes serverless frameworks
Kubernetes Jobs and CronJobs
KNative
Fission
Kubeless
OpenFaas

Summary

231
231
232
233
236
236
237
237
237
238
239
239
241
242
242
243
247
247

248
248
250
250
251
252
252
252
252
253
253
253
256
259
260
261
264
266
267
268
269
269
270
271
271
272
272

[vii]

Table of Contents

Further reading

Chapter 10: Testing Microservices
Technical requirements
Unit testing
Unit testing with Go
Unit testing with Ginkgo and Gomega
Delinkcious unit testing
Designing for testability
The art of mocking
Bootstrapping your test suite
Implementing the LinkManager unit tests
Should you test everything?
Integration testing
Initializing a test database
Running services
Running the actual test
Implementing database test helpers
Implementing service test helpers
Checking errors
Running a local service
Stopping a local service
Local testing with Kubernetes
Writing a smoke test
Running the test
Telepresence
Installing Telepresence
Running a local link service via Telepresence
Attaching to the local link service with GoLand for live debugging
Isolating tests
Test clusters
Cluster per developer
Dedicated clusters for system tests
Test namespaces
Writing multi-tenant systems
Cross namespace/cluster
End-to-end testing
Acceptance testing
Regression testing
Performance testing
Managing test data
Synthetic data
Manual test data
Production snapshot
Summary
Further reading

273

274
275
275
275
278
279
279
280
282
282
284
285
286
286
287
288
292
292
293
293
294
294
297
298
299
299
301
302
303
303
304
304
304
304
305
305
306
306
307
307
307
308
308
309

[viii]

Table of Contents

Chapter 11: Deploying Microservices
Technical requirements
The code
Kubernetes deployments
Deploying to multiple environments
Understanding deployment strategies
Recreating deployment
Rolling updates
Blue-green deployment
Adding deployment — the blue label
Updating the link-manager service to match blue pods only
Prefixing the description of each link with [green]
Bumping the version number
Letting CircleClI build the new image
Deploying the new (green) version
Verifying that the service now uses the green pods to serve requests
Canary deployments
Employing a basic canary deployment for Delinkcious
Using canary deployments for A/B testing
Rolling back deployments
Rolling back standard Kubernetes deployments
Rolling back blue-green deployments
Rolling back canary deployments
Dealing with a rollback after a schema, API, or payload change
Managing versions and dependencies
Managing public APIs
Managing cross-service dependencies
Managing third-party dependencies
Managing your infrastructure and toolchain
Local development deployments
Ko
Ksync
Draft
Skaffold
Tilt
Summary
Further reading

Chapter 12: Monitoring, Logging, and Metrics
Technical requirements
The code
Self-healing with Kubernetes
Container failures
Node failure
Systemic failures
Autoscaling a Kubernetes cluster

310
311
311
311
313
317
317
318
320
322
323
324
324
325
326
328
329
331
335
335
336
337
337
338
339
339
340
341
342
342
343
347
349
350
353
360
361

362
363
363
363
364
366
366
367

[ix]

Table of Contents

Horizontal pod autoscaling
Using the horizontal pod autoscaler
Cluster autoscaling
Vertical pod autoscaling
Provisioning resources with Kubernetes
What resources should you provision?
Defining container limits
Specifying resource quotas
Manual provisioning
Utilizing autoscaling
Rolling your own automated provisioning
Getting performance right
Performance and user experience
Performance and high availability
Performance and cost
Performance and security
Logging
What should you log?
Logging versus error reporting
The quest for the perfect Go logging interface
Logging with Go-kit
Setting up a logger with Go-kit
Using a logging middleware
Centralized logging with Kubernetes
Collecting metrics on Kubernetes
Introducing the Kubernetes metrics API
Understanding the Kubernetes metrics server
Using Prometheus
Deploying Prometheus into the cluster
Recording custom metrics from Delinkcious
Alerting
Embracing component failure
Grudgingly accepting system failure
Taking human factors into account
Warnings versus alerts
Considering severity levels
Determining alert channels
Fine-tuning noisy alerts
Utilizing the Prometheus alert manager
Configuring alerts in Prometheus
Distributed tracing
Installing Jaeger
Integrating tracing into your services
Summary
Further reading

367
368
370
371
373
373
374
376
377
377
377
378
379
379
379
380
380
381
381
381
382
382
384
387
388
388
389
391
391
396
400
400
401
401
401
402
402
402
403
404
404
405
407
409
409

[x]

Table of Contents

Chapter 13: Service Mesh - Working with Istio
Technical requirements
The code
What is a service mesh?
Comparing monoliths to microservices
Using a shared library to manage the cross-cutting concerns of
microservices
Using a service mesh to manage the cross-cutting concerns of
microservices
Understanding the relationship between Kubernetes and a service mesh
What does Istio bring to the table?
Getting to know the Istio architecture
Envoy
Pilot
Mixer
Citadel
Galley
Managing traffic with Istio
Routing requests
Load balancing
Handling failures
Injecting faults for testing
Doing canary deployments
Securing your cluster with Istio
Understanding Istio identity
Authenticating users with Istio
Authorizing requests with Istio
Enforcing policies with Istio
Collecting metrics with Istio
When should you avoid Istio?
Delinkcious on Istio
Removing mutual authentication between services
Utilizing better canary deployments
Automatic logging and error reporting
Accommodating NATS
Examining the Istio footprint
Alternatives to Istio
Linkerd 2.0
Envoy
HashiCorp Consul
AWS App Mesh
Others
The no mesh option
Summary
Further reading

Chapter 14: The Future of Microservices and Kubernetes

410
410
412
412
412

413

414
415
416
416
417
418
418
419
419
419
420
420
421
423
423
424
425
425
426
429
429
431
432
432
435
436
438
439
441
442
442
442
443
443
443
443
444

445

[xil

Table of Contents

The future of microservices 446
Microservices versus serverless functions 446
Microservices, containers, and orchestration 447
gRPC and gRPC-Web 447
GraphQL 448
HTTP/3 is coming 448

The future of Kubernetes 449
Kubernetes extensibility 450

Abstracting the container runtime 450

Abstracting networking 451
Abstracting storage 451

The cloud provider interface 452

Service mesh integration 453
Serverless computing on Kubernetes 454
Kubernetes and VMs 455

gVisor 456

Firecracker 456

Kata containers 456

Cluster autoscaling 457

Using operators 457
Federation 459
Summary 460
Further reading 461
Other Books You May Enjoy 462
Index 465

[xii]

Preface

Hands-On Microservices with Kubernetes is the book you have been waiting for. It will walk
you though the parallel paths of developing microservices and deploying them on
Kubernetes. The synergy between microservice-based architecture and Kubernetes is very
powerful. This book covers all angles. It explains the concepts behind microservices and
Kubernetes, discusses real-world concerns and trade-offs, takes you through the
development of fully fledged microservice-based systems, shows you best practices, and
provides ample recommendations.

This book covers an amazing amount of ground in great depth and with working code to
illustrate. You will learn how to design a microservice-based architecture, build
microservices, test the microservices you've built, and package them as Docker images.
Then, you will learn how to deploy your system as a collection of Docker images to
Kubernetes and manage it there.

Along the way, you will become familiar with most important trends to be aware of, such
as automated continuous integration / continuous delivery (CI/CD) , gRPC-based
microservices, serverless computing, and service meshes.

By the end of this book, you will have gained a lot of knowledge and hands-on experience
with planning, developing, and operating large-scale cloud-native systems using
microservice-based architecture deployed on Kubernetes.

Who this book is for

This book is targeted at software developers and DevOps engineers who want to be at the
forefront of large-scale software engineering. It will help if you have experience with large-
scale software systems that are deployed using containers on more than one machine and
are developed by several teams.

What this book covers

Chapter 1, Introduction to Kubernetes for Developers, introduces you to Kubernetes. You will
receive a whirlwind tour of Kubernetes and get an idea of how well it aligns with
microservices.

Preface

Chapter 2, Getting Started with Microservices, discusses various aspects, patterns, and
approaches to common problems in microservice-based systems and how they compare to
other common architectures, such as monoliths and large services.

Chapter 3, Delinkcious — the Sample Application, explores why we should choose Go as the
programming language of Delinkcious; then we will look at Go kit.

Chapter 4, Setting Up the CI/CD Pipeline, teaches you about the problem the CI/CD pipeline
solves, covers the different options for CI/CD pipelines for Kubernetes, and finally looks at
building a CI/CD pipeline for Delinkcious.

Chapter 5, Configuring Microservices with Kubernetes, moves you into the practical and real-
world area of microservices configuration. Also, we will discuss Kubernetes-specific
options and, in particular, ConfigMaps.

Chapter 6, Securing Microservices on Kubernetes, examines how to secure your microservices
on Kubernetes in depth. We will also discuss the pillars that act as the foundation of
microservice security on Kubernetes.

Chapter 7, Talking to the World — APIs and Load Balancers, sees us open Delinkcious to the
world and let users interact with it from outside the cluster. Also, we will add a gRPC-
based news service that users can hit up to get news about other users they follow. Finally,
we will add a message queue that lets services communicate in a loosely coupled manner.

Chapter 8, Working with Stateful Services, delves into the Kubernetes storage model. We will
also extend the Delinkcious news service to store its data in Redis, instead of in memory.

Chapter 9, Running Serverless Tasks on Kubernetes, dives into one of the hottest trends in
cloud-native systems: serverless computing (also known as Function as a Service, or FaaS).
Also, we'll cover other ways to do serverless computing in Kubernetes.

Chapter 10, Testing Microservices, covers the topic of testing and its various flavors: unit
testing, integration testing, and all kinds of end-to-end testing. We also delve into how
Delinkcious tests are structured.

Chapter 11, Deploying Microservices, deals with two related, yet separate, themes:
production deployments and development deployments.

Chapter 12, Monitoring, Logging, and Metrics, focuses on the operational side of running a
large-scale distributed system on Kubernetes, as well as on how to design the system and
what to take into account to ensure a top-notch operational posture.

Chapter 13, Service Mesh — Working with Istio, reviews the hot topic of service meshes and,
in particular, Istio. This is exciting because service meshes are a real game changer.

[2]

Preface

Chapter 14, The Future of Microservices and Kubernetes, covers the topics of Kubernetes and
microservices, and will help us learn how to decide when it's the right time to adopt and
invest in newer technologies.

To get the most out of this book

Any software requirements are either listed at the beginning of each chapter in the Technical
requirements section, or, if the installation of a particular piece of software is part of the
material of the chapter, then any instructions you need will be contained within the chapter
itself. Most of the installations are software components that are installed into the
Kubernetes cluster. This is an important part of the hands-on nature of the book.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Microservices-with-Kubernetes. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

[3]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789805468_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Note that I made sure it's executable via chmod +x."

A block of code is set as follows:

version: 2
jobs:
build:
docker:
- image: circleci/golang:1.11
- image: circleci/postgres:9.6-alpine

Any command-line input or output is written as follows:

$ tree -L 2

}—— LICENSE

}—— README.md

}—— build.sh

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can sync it by selecting Sync from the ACTIONS dropdown."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

Introduction to Kubernetes for
Developers

In this chapter, we will introduce you to Kubernetes. Kubernetes is a big platform and it's
difficult to do justice to it in just one chapter. Luckily, we have a whole book to explore it.
Don't worry if you feel a little overwhelmed. I'll mention many concepts and capabilities
briefly. In later chapters, we will cover many of these in detail, as well as the connections
and interactions between those Kubernetes concepts. To spice things up and get hands-on
early, you will also create a local Kubernetes cluster (Minikube) on your machine. This
chapter will cover the following topics:

Kubernetes in a nutshell

The Kubernetes architecture

Kubernetes and microservices

Creating a local cluster

Technical requirements

In this chapter, you will need the following tools:

e Docker
e Kubectl
e Minikube

Introduction to Kubernetes for Developers Chapter 1

Installing Docker

To install Docker, follow the instructions here: https://docs.docker.com/install/
#supported-platforms. I will use Docker for macOS.

Installing kubectl

To install kubectl, follow the instructions here: https://kubernetes.io/docs/tasks/
tools/install-kubectl/.

Kubectl is the Kubernetes CLI and we will use it extensively throughout the book.

Installing Minikube

To install Minikube, follow the instructions here: https://kubernetes.io/docs/tasks/

tools/install-minikube/.

Note that you need to install a hypervisor too. For the macOS, I find VirtualBox the most
reliable. You may prefer another hypervisor, such as HyperKit. There will be more detailed
instructions later when you get to play with Minikube.

The code

¢ The code for the chapter is available here: https://github.com/
PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/
Chapter01

¢ There is another Git repository for the Delinkcious sample application that we
will build together: https://github.com/the-gigi/delinkcious

Kubernetes in a nutshell

In this section, you'll get a sense of what Kubernetes is all about, its history, and how it
became so popular.

[7]

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious

Introduction to Kubernetes for Developers Chapter 1

Kubernetes - the container orchestration
platform

The primary function of Kubernetes is deploying and managing a large number of
container-based workloads on a fleet of machines (physical or virtual). This means that
Kubernetes provides the means to deploy containers to the cluster. It makes sure to comply
with various scheduling constraints and pack the containers efficiently into the cluster
nodes. In addition, Kubernetes automatically watches your containers and restarts them if
they fail. Kubernetes will also relocate workloads off problematic nodes to other nodes.
Kubernetes is an extremely flexible platform. It relies on a provisioned infrastructure layer
of compute, memory, storage, and networking, and, with these resources, it works its
magic.

The history of Kubernetes

Kubernetes and the entire cloud-native scene is moving at breakneck speed, but let's take a
moment to reflect on how we got here. It will be a very short journey because Kubernetes
came out of Google in June 2014, just a few years ago. When Docker became popular, it
changed how people package, distribute, and deploy software. But, it soon became
apparent that Docker doesn't scale on its own for large distributed systems. A few
orchestration solutions became available, such as Apache Mesos, and later, Docker's own
swarm. But, they never measured up to Kubernetes. Kubernetes was conceptually based on
Google's Borg system. It brought together the design and technical excellence of a decade of
Google engineering, but it was a new open source project. At OSCON 2015, Kubernetes 1.0
was released and the floodgates opened. The growth of Kubernetes, its ecosystem, and the
community behind it, was as impressive as its technical excellence.

Kubernetes means helmsman in Greek. You'll notice many nautical terms in the names of
Kubernetes-related projects.

The state of Kubernetes

Kubernetes is now a household name. The DevOps world pretty much equates container
orchestration with Kubernetes. All major cloud providers offer managed Kubernetes
solutions. It is ubiquitous in enterprise and in startup companies. While Kubernetes is still
young and innovation keeps happening, it is all happening in a very healthy way. The core
is rock solid, battle tested, and used in production across lots and lots of companies. There
are very big players collaborating and pushing Kubernetes forward, such as Google
(obviously), Microsoft, Amazon, IBM, and VMware.

[8]

Introduction to Kubernetes for Developers Chapter 1

The Cloud Native Computing Foundation (CNCF) open source organization offers
certification. Every 3 months, a new Kubernetes release comes out, which is the result of a
collaboration between hundreds of volunteers and paid engineers. There is a large
ecosystem surrounding the main project of both commercial and open source projects. You
will see later how Kubernetes' flexible and extensible design encourages this ecosystem and
helps in integrating Kubernetes into any cloud platform.

Understanding the Kubernetes architecture

Kubernetes is a marvel of software engineering. The architecture and design of Kubernetes
are a big part in its success. Each cluster has a control plane and data plane. The control
plane consists of several components, such as an API server, a metadata store for keeping
the state of a cluster, and multiple controllers that are responsible for managing the nodes
in the data plane and providing access to users. The control plane in production will be
distributed across multiple machines for high availability and robustness. The data plane
consists of multiple nodes, or workers. The control plane will deploy and run your pods
(groups of containers) on these nodes, and then watch for changes and respond.

Here is a diagram that illustrates the overall architecture:

. Master :
. TN T :
| Kube Cloud |
E Controller Controller E .
! Manager Manager .
- - J
)
Kube :;Fe
Scheduler
Server
-

s S IR

|

Introduction to Kubernetes for Developers Chapter 1

Let's review in detail the control plane and the data plane, as well as kubectl, which is the
command-line tool you use to interact with the Kubernetes cluster.

The control plane

The control plane consists of several components:

e API server

The etcd metadata store
Scheduler

Controller manager

¢ Cloud controller manager

Let's examine the role of each component.

The API server

The kube-api-server is a massive REST server that exposes the Kubernetes API to the
world. You can have multiple instances of the API server in your control plane for high-
availability. The API server keeps the cluster state in etcd.

The etcd store

The complete cluster is stored in etcd (https://coreos.com/etcd/), a consistent and
reliable, distributed key-value store. The etcd store is an open source project (developed by
CoreOS, originally).

It is common to have three or five instances of etcd for redundancy. If you lose the data in
your etcd store, you lose your cluster.

The scheduler

The kube-scheduler is responsible for scheduling pods to worker nodes. It implements a
sophisticated scheduling algorithm that takes a lot of information into account, such as
resource availability on each node, various constraints specified by the user, types of
available nodes, resource limits and quotas, and other factors, such as affinity, anti-affinity,
tolerations, and taints.

[10]

https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/

Introduction to Kubernetes for Developers Chapter 1

The controller manager

The kube-controller manager is a single process that contains multiple controllers for
simplicity. These controllers watch for events and changes to the cluster and respond
accordingly:

¢ Node controller: Responsible for noticing and responding when nodes go down.

¢ Replication controller: This makes sure that there is the correct number of pods
for each replica set or replication controller object.

¢ Endpoints controller: This assigns for each service an endpoints object that lists
the service's pods.

e Service account and token controllers: These initialize new namespaces with
default service accounts and corresponding API access tokens.

The data plane

The data plane is the collection of the nodes in the cluster that run your containerized
workloads as pods. The data plane and control plane can share physical or virtual
machines. This happens, of course, when you run a single node cluster, such as Minikube.
But, typically, in a production-ready deployment, the data plane will have its own nodes.
There are several components that Kubernetes installs on each node in order to
communicate, watch, and schedule pods: kubelet, kube-proxy, and the container runtime
(for example, the Docker daemon).

The kubelet

The kubelet is a Kubernetes agent. It's responsible for talking to the API server and for
running and managing the pods on the node. Here are some of the responsibilities of the
kubelet:

¢ Downloading pod secrets from the API server

¢ Mounting volumes
¢ Running the pod container via the Container Runtime Interface (CRI)

¢ Reporting the status of the node and each pod
¢ Probe container liveness

[11]

Introduction to Kubernetes for Developers Chapter 1

The kube proxy

The kube proxy is responsible for the networking aspects of the node. It operates as a local
front for services and can forward TCP and UDP packets. It discovers the IP addresses of
services via DNS or environment variables.

The container runtime

Kubernetes eventually runs containers, even if they are organized in pods. Kubernetes
supports different container runtimes. Originally, only Docker was supported. Now,
Kubernetes runs containers through an interface called CRI, which is based on gRPC.

container '
runtime 7

Each container runtime that implements CRI can be used on a node controlled by the
kubelet, as shown in the preceding diagram.

CRI
protobuf

Kubectl

Kubectl is a tool you should get very comfortable with. It is your command-line

interface (CLI) to your Kubernetes cluster. We will use kubectl extensively throughout the
book to manage and operate Kubernetes. Here is a short list of the capabilities kubectl puts
literally at your fingertips:

Cluster management

Deployment
Troubleshooting and debugging
¢ Resource management (Kubernetes objects)

¢ Configuration and metadata

Just type kubect1 to get a complete list of all the commands and kubectl <command> --
help for more detailed info on specific commands.

[12]

Introduction to Kubernetes for Developers Chapter 1

Kubernetes and microservices — a perfect
match

Kubernetes is a fantastic platform with amazing capabilities and a wonderful ecosystem.
How does it help you with your system? As you'll see, there is a very good alignment
between Kubernetes and microservices. The building blocks of Kubernetes, such as
namespaces, pods, deployments, and services, map directly to important microservices
concepts and an agile software development life cycle (SDLC). Let's dive in.

Packaging and deploying microservices

When you employ a microservice-based architecture, you'll have lots of microservices.
Those microservices, in general, may be developed independently, and deployed
independently. The packaging mechanism is simply containers. Every microservice you
develop will have a Dockerfile. The resulting image represents the deployment unit for that
microservice. In Kubernetes, your microservice image will run inside a pod (possibly
alongside other containers). But an isolated pod, running on a node, is not very resilient.
The kubelet on the node will restart the pod's container if it crashes, but if something
happens to the node itself, the pod is gone. Kubernetes has abstractions and resources that
build on the pod.

ReplicaSets are sets of pods with a certain number of replicas. When you create a
ReplicaSet, Kubernetes will make sure that the correct number of pods you specify always
run in the cluster. The deployment resource takes it a step further and provides an
abstraction that exactly aligns with the way you consider and think about microservices.
When you have a new version of a microservice ready, you will want to deploy it. Here is a
Kubernetes deployment manifest:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

[13]

Introduction to Kubernetes for Developers Chapter 1

app: nginx
spec:
containers:
— name: nginx
image: nginx:1.15.4
ports:
— containerPort: 80

The file can be found at https://github.com/the-gigi/hands—on-microservices-with-
kubernetes-code/blob/master/chl/nginx—-deployment.yaml.

This is a YAML file (https://yaml.org/) that has some fields that are common to all
Kubernetes resources, and some fields that are specific to deployments. Let's break this
down piece by piece. Almost everything you learn here will apply to other resources:

¢ The apiversion field marks the Kubernetes resources version. A specific
version of the Kubernetes API server (for example, V1.13.0) can work with
different versions of different resources. Resource versions have two parts: an
API group (in this case, apps) and a version number (v1). The version number
may include alpha or beta designations:

apiVersion: apps/vl

e The kind field specifies what resource or API object we are dealing with. You
will meet many kinds of resources in this chapter and later:

kind: Deployment

e The metadata section contains the name of the resource (nginx) and a set of
labels, which are just key-value string pairs. The name is used to refer to this
particular resource. The labels allow for operating on a set of resources that share
the same label. Labels are very useful and flexible. In this case, there is just one
label (app: nginx):

metadata:
name: nginx

labels:
app: nginx

[14]

https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/

Introduction to Kubernetes for Developers Chapter 1

e Next, we have a spec field. This is a ReplicaSet spec. You could create a
ReplicaSet directly, but it would be static. The whole purpose of deployments is
to manage its set of replicas. What's in a ReplicaSet spec? Obviously, it contains
the number of replicas (3). It has a selector with a set of matchLabels (also
app: nginx), and it has a pod template. The ReplicaSet will manage pods that
have labels that match matchLabels:

spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:

e Let's have a look at the pod template. The template has two parts: metadata and
a spec. The metadata is where you specify the labels. The spec describes the
containers in the pod. There may be one or more containers in a pod. In this
case, there is just one container. The key field for a container is the image (often a
Docker image), where you packaged your microservice. That's the code we want
to run. There is also a name (nginx) and a set of ports:

metadata:
labels:
app: nginx
spec:
containers:
— name: nginx
image: nginx:1.15.4
ports:
- containerPort: 80

There are more fields that are optional. If you want to dive in deeper, check out the API
reference for the deployment resource at https://kubernetes.io/docs/reference/
generated/kubernetes-api/vl1.13/#deployment-vi-apps.

[15]

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps

Introduction to Kubernetes for Developers Chapter 1

Exposing and discovering microservices

We deployed our microservice with a deployment. Now, we need to expose it, so that it can
be used by other services in the cluster and possibly also make it visible outside the cluster.
Kubernetes provides the service resource for that purpose. Kubernetes services are
backed up by pods, identified by labels:

apiVersion: vl
kind: Service
metadata:
name: nginx
labels:
app: nginx
spec:
ports:
- port: 80
protocol: TCP
selector:
app: nginx

Services discover each other inside the cluster, using DNS or environment variables. This is
the default behavior. But, if you want to make a service accessible to the world, you will
normally set an ingress object or a load balancer. We will explore this topic in detail later.

Securing microservices

Kubernetes was designed for running large-scale critical systems, where security is of
paramount concern. Microservices are often more challenging to secure than monolithic
systems because there is so much internal communication across many boundaries. Also,
microservices encourage agile development, which leads to a constantly changing system.
There is no steady state you can secure once and be done with it. You must constantly
adapt the security of the system to the changes. Kubernetes comes pre-packed with several
concepts and mechanisms for secure development, deployment, and operation of your
microservices. You still need to employ best practices, such as principle of least privilege,
security in depth, and minimizing blast radius. Here are some of the security features of
Kubernetes.

[16]

Introduction to Kubernetes for Developers Chapter 1

Namespaces

Namespaces let you isolate different parts of your cluster from each other. You can create as
many namespaces as you want and scope many resources and operations to their
namespace, including limits, and quotas. Pods running in a namespace can only access
directly their own namespace. To access other namespaces, they must go through public
APIs.

Service accounts

Service accounts provide identity to your microservices. Each service account will have
certain privileges and access rights associated with its account. Service accounts are pretty
simple:

apiVersion: vl
kind: ServiceAccount
metadata:
name: custom-service-account

You can associate service accounts with a pod (for example, in the pod spec of a
deployment) and the microservices that run inside the pod will have that identity and all
the privileges and restrictions associated with that account. If you don't assign a service
account, then the pod will get the default service account of its namespace. Each service
account is associated with a secret used to authenticate it.

Secrets

Kubernetes provides secret management capabilities to all microservices. The secrets can be
encrypted at rest on etcd (since Kubernetes 1.7), and are always encrypted on the wire (over
HTTPS). Secrets are managed per namespace. Secrets are mounted in pods as either files
(secret volumes) or environment variables. There are multiple ways to create secrets.
Secrets can contain two maps: data and stringData. The type of values in the data map
can be arbitrary, but must be base64-encoded. Refer to the following, for example:

apiVersion: vl

kind: Secret

metadata:
name: custom-secret

type: Opaque

data:
username: YWRtaWd=
password: MWYyZDF1MmU2N2Rm

[17]

Introduction to Kubernetes for Developers Chapter 1

Here is how a pod can load secrets as a volume:

apiVersion: vl
kind: Pod
metadata:
name: db
spec:
containers:
- name: mypod
image: postgres
volumeMounts:
- name: db_creds
mountPath: "/etc/db_creds"
readOnly: true
volumes:
- name: foo
secret:
secretName: custom-secret

The end result is that the DB credentials secrets that are managed outside the pod by
Kubernetes show up as a regular file inside the pod accessible through the path
/etc/db_creds.

Secure communication

Kubernetes utilizes client-side certificates to fully authenticate both sides of any external
communication (for example, kubectl). All communication to the Kubernetes API from
outside should be over HTTP. Internal cluster communication between the API server and
the kubelet on the node is over HTTPS too (the kubelet endpoint). But, it doesn't use a client
certificate by default (you can enable it).

Communication between the API server and nodes, pods, and services is, by default, over
HTTP and is not authenticated. You can upgrade them to HTTPS, but note that the client
certificate is checked, so don't run your worker nodes on public networks.

Network policies

In a distributed system, beyond securing each container, pod, and node, it is critical to also
control communication over the network. Kubernetes supports network policies, which
give you full flexibility to define and shape the traffic and access across the cluster.

[18]

Introduction to Kubernetes for Developers Chapter 1

Authenticating and authorizing microservices

Authentication and authorization are also related to security, by limiting access to trusted
users and to limited aspects of Kubernetes. Organizations have a variety of ways to
authenticate their users. Kubernetes supports many of the common authentication schemes,
such as X.509 certificates, and HTTP basic authentication (not very secure), as well as an
external authentication server via webhook that gives you ultimate control over the
authentication process. The authentication process just matches the credentials of a request
with an identity (either the original or an impersonated user). What that user is allowed to
do is controlled by the authorization process. Enter RBAC.

Role-based access control

Role-based access control (RBAC) is not required! You can perform authorization using
other mechanisms in Kubernetes. However, it is a best practice. RBAC is based on two
concepts: role and binding. A role is a set of permissions on resources defined as rules.
There are two types of roles: Role, which applies to a single namespace, and ClusterRole,
which applies to all namespaces in a cluster.

Here is a role in the default namespace that allows the getting, watching, and listing of all
pods. Each role has three components: API groups, resources, and verbs:

kind: Role
apiVersion: rbac.authorization.k8s.io/vl
metadata:

namespace: default

name: pod-reader

rules:

- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get", "watch", "list"]

Cluster roles are very similar, except there is no namespace field because they apply to all
namespaces.

A binding is associating a list of subjects (users, user groups, or service accounts) with a
role. There are two types of binding, RoleBinding and ClusterRoleBinding, which
correspond to Role and ClusterRole.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: pod-reader

namespace: default

[19]

Introduction to Kubernetes for Developers Chapter 1

subjects:
- kind: User
name: gigi # Name is case sensitive
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role # must be Role or ClusterRole
name: pod-reader # must match the name of the Role or ClusterRole you
bind to
apiGroup: rbac.authorization.k8s.io

It's interesting that you can bind a ClusterRole to a subject in a single namespace. This is
convenient for defining roles that should be used in multiple namespaces, once as a cluster
role, and then binding them to specific subjects in specific namespaces.

The cluster role binding is similar, but must bind a cluster role and always applies to the
whole cluster.

Note that RBAC is used to grant access to Kubernetes resources. It can
regulate access to your service endpoints, but you may still need fine-
grained authorization in your microservices.

Upgrading microservices

Deploying and securing microservices is just the beginning. As you develop and evolve
your system, you'll need to upgrade your microservices. There are many important
considerations regarding how to go about it that we will discuss later (versioning, rolling
updates, blue-green, and canary). Kubernetes provides direct support for many of these
concepts out of the box and the ecosystem built on top of it to provide many flavors and
opinionated solutions.

The goal is often zero downtime and safe rollback if a problem occurs. Kubernetes
deployments provide the primitives, such as updating a deployment, pausing a roll-out,
and rolling back a deployment. Specific workflows are built on these solid foundations.
The mechanics of upgrading a service typically involve upgrading its image to a new
version and sometimes changes to its support resources and access: volumes, roles, quotas,
limits, and so on.

[20]

Introduction to Kubernetes for Developers Chapter 1

Scaling microservices

There are two aspects to scaling a microservice with Kubernetes. The first aspect is scaling
the number of pods backing up a particular microservice. The second aspect is the total
capacity of the cluster. You can easily scale a microservice explicitly by updating the
number of replicas of a deployment, but that requires constant vigilance on your part. For
services that have large variations in the volume of requests they handle over long periods
(for example, business hours versus off hours or week days versus weekends), it might take
a lot of effort. Kubernetes provides horizontal pod autoscaling, which is based on CPU,
memory, or custom metrics, and can scale your service up and down automatically.

Here is how to scale our nginx deployment that is currently fixed at three replicas to go
between 2 and 5, depending on the average CPU usage across all instances:

apiVersion: autoscaling/vl
kind: HorizontalPodAutoscaler
metadata:
name: nginx
namespace: default
spec:
maxReplicas: 5
minReplicas: 2
targetCPUUtilizationPercentage: 90
scaleTargetRef:
apivVersion: vl
kind: Deployment
name: nginx

The outcome is that Kubernetes will watch CPU utilization of the pods that belong to the
nginx deployment. When the average CPU over a certain period of time (5 minutes, by
default) exceeds 90%, it will add more replicas until the maximum of 5, or until utilization
drops below 90%. The HPA can scale down too, but will always maintain a minimum of
two replicas, even if the CPU utilization is zero.

Monitoring microservices

Your microservices are deployed and running on Kubernetes. You can update the version
of your microservices whenever it is needed. Kubernetes takes care of healing and scaling
automatically. However, you still need to monitor your system and keep track of errors and
performance. This is important for addressing problems, but also for informing you on
potential improvements, optimizations, and cost cutting.

[21]

Introduction to Kubernetes for Developers Chapter 1

There are several categories of information that are relevant and that you should monitor:

e Third-party logs

Application logs

Application errors
Kubernetes events

o Metrics

When considering a system composed of multiple microservices and multiple supporting
components, the number of logs will be substantial. The solution is central logging, where
all the logs go to a single place where you can slice and dice at your will. Errors can be
logged, of course, but often it is useful to report errors with additional metadata, such as
stack trace, and review them in their own dedicated environment (for example, sentry or
rollbar). Metrics are useful for detecting performance and system health problems or trends
over time.

Kubernetes provides several mechanisms and abstractions for monitoring your
microservices. The ecosystem provides a number of useful projects too.

Logging

There are several ways to implement central logging with Kubernetes:

¢ Have a logging agent that runs on every node
e Inject a logging sidecar container to every application pod
e Have your application send its logs directly to a central logging service

There are pros and cons to each approach. But, the main thing is that Kubernetes supports
all approaches and makes container and pod logs available for consumption.

Refer to https://kubernetes.io/docs/concepts/cluster—
administration/logging/#cluster-level-logging-architectures for
an in-depth discussion.

[22]

https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures

Introduction to Kubernetes for Developers Chapter 1

Metrics

Kubernetes comes with cAdvisor (https://github.com/google/cadvisor), which is a tool
for collecting container metrics integrated into the kubelet binary. Kubernetes used to
provide a metrics server called heapster that required additional backends and a UI. But,
these days, the best in class metrics server is the open source Prometheus project. If you run
Kubernetes on Google's GKE, then Google Cloud Monitoring is a great option that doesn't
require additional components to be installed in your cluster. Other cloud providers also
have integration with their monitoring solutions (for example, CloudWatch on EKS).

Creating a local cluster

One of the strengths of Kubernetes as a deployment platform is that you can create a local
cluster and, with relatively little effort, have a realistic environment that is very close to
your production environment. The main benefit is that developers can test their
microservices locally and collaborate with the rest of the services in the cluster. When your
system is comprised of many microservices, the more significant tests are often integration
tests and even configuration and infrastructure tests, as opposed to unit tests. Kubernetes
makes that kind of testing much easier and requires much less brittle mocking.

In this section, you will install a local Kubernetes cluster and some additional projects, and
then have some fun exploring it using the invaluable kubectl command-line tool.

Installing Minikube

Minikube is a single node Kubernetes cluster that you can install anywhere. I used macOS
here, but, in the past, I used it successfully on Windows too. Before installing Minikube
itself, you must install a hypervisor. I prefer HyperKit:

$ curl -LO
https://storage.googleapis.com/minikube/releases/latest/docker-machine-driv
er-hyperkit \

&& chmod +x docker-machine-driver-hyperkit \

&& sudo mv docker-machine-driver-hyperkit /usr/local/bin/ \

&& sudo chown root:wheel /usr/local/bin/docker-machine-driver-hyperkit \

&& sudo chmod u+s /usr/local/bin/docker-machine-driver-hyperkit

[23]

https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor

Introduction to Kubernetes for Developers Chapter 1

But, I've run into trouble with HyperKit from time to time. If you can't overcome the issues,
I suggest using VirtualBox as the hypervisor instead. Run the following command to install
VirtualBox via Homebrew:

$ brew cask install virtualbox

Now, you can install Minikube itself. Homebrew is the best way to go again:

brew cask install minikube

If you're not on macOS, follow the official instructions here: https://kubernetes.io/docs/
tasks/tools/install-minikube/

You must turn off any VPN before starting Minikube with HyperKit. You
can restart your VPN after Minikube has started.

Minikube supports multiple versions of Kubernetes. At the moment, the default version is
1.10.0, but 1.13.0 is already out and supported, so let's use that version:

$ minikube start —--vm-driver=hyperkit --kubernetes-version=v1.13.0

If you're using VirtualBox as your hypervisor, you don't need to specify ——vm-driver:

$ minikube start —--kubernetes-version=v1.13.0

You should see the following:

$ minikube start —--kubernetes-version=v1.13.0
Starting local Kubernetes v1.13.0 cluster...
Starting VM...
Downloading Minikube ISO
178.88 MB / 178.88 MB []
100.00% Os
Getting VM IP address...
EO0111 07:47:46.013804 18969 start.go:211] Error parsing version semver:
Version string empty
Moving files into cluster...
Downloading kubeadm v1.13.0
Downloading kubelet v1.13.0
Finished Downloading kubeadm v1.13.0
Finished Downloading kubelet v1.13.0
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
Stopping extra container runtimes...

[24]

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Introduction to Kubernetes for Developers Chapter 1

Starting cluster components...

Verifying kubelet health ...

Verifying apiserver health ...Kubectl is now configured to use the cluster.
Loading cached images from config file.

Everything looks great. Please enjoy minikube!

Minikube will automatically download the Minikube VM (178.88 MB) if
it's the first time you are starting your Minikube cluster.

At this point, your Minikube cluster is ready to go.

Troubleshooting Minikube

If you run into some trouble (for example, if you forgot to turn off your VPN), try to delete
your Minikube installation and restart it with verbose logging;:

$ minikube delete

$ rm -rf ~/.minikube

$ minikube start —--vm-driver=hyperkit —--kubernetes-version=v1.13.0 —--
logtostderr —--v=3

If your Minikube installation just hangs (maybe waiting for SSH), you might have to reboot
to unstick it. If that doesn't help, try the following:

sudo mv /var/db/dhcpd_leases /var/db/dhcpd_leases.old
sudo touch /var/db/dhcpd_leases

Then, reboot again.

Verifying your cluster

If everything is OK, you can check your Minikube version:

$ minikube version
minikube version: v0.31.0

Minikube has many other useful commands. Just type minikube to see the list of
commands and flags.

[25]

Introduction to Kubernetes for Developers Chapter 1

Playing with your cluster

Minikube is running, so let's have some fun. Your kubectl is going to serve you well in this
section. Let's start by examining our node:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 4m v1.13.0

Your cluster already has some pods and services running. It turns out that Kubernetes is
dogfooding and many of its own services are plain services and pods. But, those pods and
services run in namespaces. Here are all the namespaces:

$ kubectl get ns

NAME STATUS AGE
default Active 18m
kube-public Active 18m
kube-system Active 18m

To see all the services in all the namespaces, you can use the -~—all-namespaces flag:

$ kubectl get svc —-all-namespaces

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE
default kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 19m
kube-system kube-dns ClusterIP 10.96.0.10 <none> 53/UDP, 53/TCP 19m
kube-system kubernetes—-dashboard ClusterIP 10.111.39.46 <none>

80/TCP 18m

The Kubernetes API server, itself, is running as a service in the default namespace and then
we have kube-dns and the kubernetes-dashboard running in the kube-system

hamespace.

To explore the dashboard, you can run the dedicated Minikube command, minikube
dashboard. You can also use kubect 1, which is more universal and will work on any
Kubernetes cluster:

$ kubectl port-forward deployment/kubernetes-dashboard 9090

[26]

Introduction to Kubernetes for Developers

Chapter 1

Then, browse to http://localhost: 9090 and you will see the following dashboard:

<« c @

%% Most Visited @ Getting Started [Rumble React 2 Mastering Kubernet.

Workloads Statuses

Daemon Sets

Daemon Sets

Q kubernetes-dashboard kube-system

Q coredns kube-system
Pods
Name Namespace

@& vller-deploy-6fadncede7-dsv)) Kkube-system
Q etcd-minikube kube-system

@& kube-apiserver-minikube kube-system

@ localhost:9090/#!/o\

version: v1.10.0

k8s-app: kube-dns

Node

minikube

minikube

minikube

sw?namespace=_al

Deployments

Name Namespace Labels Pod
Q kube-proxy kube-system k8s-app: kube-proxy 1/1
Deployments

Name Namespace Labels
Q tiller-deploy kube-system app:helm name: tiller

Age =

3 hours

addonmanager.kubernetes.io/mode: Recon.

kubernetes.io/minikube-addons: dashboard

tatus

Running

Running

Running

1/1

1/1

z/2

Pods

mages

k8s.gerio/kube-proxy:v1.13.0

-

Age

42 minutes

3 hours

3 hours

Age +
42 minutes
3 hours

3 hours

Replica Sets

nages

k8s.gerio/coredns:1.2.6

gerio/kubernetes-helm/tillerv2.11.0

k8s.gcrio/kubernetes-dashboard-amd64.v1.1

Installing Helm

Helm is the Kubernetes package manager. It doesn't come with Kubernetes, so you have to
install it. Helm has two components: a server-side component called tiller, and a CLI

called helm.

[27]

Introduction to Kubernetes for Developers Chapter 1

Let's install he1m locally first, using Homebrew:

$ brew install kubernetes-helm

Then, properly initialize both the server and client type:

$ helm init
SHELM HOME has been configured at /Users/gigi.sayfan/.helm.

Tiller (the Helm server—side component) has been installed into your
Kubernetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow
unauthenticated users' policy.

To prevent this, run “helm init’ with the —--tiller-tls-verify flag.
For more information on securing your installation see:
https://docs.helm.sh/using_helm/#securing-your-helm-installation
Happy Helming!

With Helm in place, you can easily install all kinds of goodies in your Kubernetes cluster.
There are currently 275 chars (the Helm term for a package) in the stable chart repository:

$ helm search | wec -1
275

For example, check out all the releases tagged with the db type:

$ helm search db

NAME CHART VERSION APP VERSION

DESCRIPTION

stable/cockroachdb 2.0.6 2.1.1

CockroachDB is a scalable, survivable, strongly-consisten...
stable/hlf-couchdb 1.0.5 0.4.9 CouchDB
instance for Hyperledger Fabric (these charts are...

stable/influxdb 1.0.0 1.7 Scalable
datastore for metrics, events, and real-time ana...

stable/kubedb 0.1.3 0.8.0-beta.2 DEPRECATED
KubeDB by AppsCode - Making running production...

stable/mariadb 5.2.3 10.1.37 Fast,
reliable, scalable, and easy to use open-source rel...

stable/mongodb 4.9.1 4.0.3 NoSQL
document-oriented database that stores JSON-like do...
stable/mongodb-replicaset 3.8.0 3.6 NoSQL
document-oriented database that stores JSON-like do...
stable/percona-xtradb-cluster 0.6.0 5.7.19 free,
fully compatible, enhanced, open source drop-in rep...
stable/prometheus-couchdb-exporter 0.1.0 1.0 A Helm

chart to export the metrics from couchdb in Promet...

[28]

Introduction to Kubernetes for Developers Chapter 1

stable/rethinkdb 0.2.0 0.1.0 The open-—
source database for the realtime web

jenkins-x/cb-app-slack 0.0.1 A Slack
App for CloudBees Core

stable/kapacitor 1.1.0 1.5.1 InfluxDB's
native data processing engine. It can process

stable/lamp 0.1.5 5.7 Modular
and transparent LAMP stack chart supporting PHP-F...

stable/postgresql 2.7.6 10.6.0 Chart for
PostgreSQL, an object-relational database manag...

stable/phpmyadmin 2.0.0 4.8.3 phpMyAdmin
is an mysqgl administration frontend

stable/unifi 0.2.1 5.9.29 Ubiquiti

Network's Unifi Controller

We will use Helm a lot throughout the book.

Summary

In this chapter, you received a whirlwind tour of Kubernetes and got an idea of how well it
aligns with microservices. The extensible architecture of Kubernetes empowers a large
community of enterprise organizations, startup companies, and open source organizations
to collaborate and create an ecosystem around Kubernetes that multiplies its benefits and
ensures its staying power. The concepts and abstractions built into Kubernetes are very
well suited for microservice-based systems. They support every phase of the SDLC, from
development, through testing, and deployments, and all the way to monitoring and
troubleshooting. The Minikube project lets every developer run a local Kubernetes cluster,
which is great for experimenting with Kubernetes itself, as well as testing locally in an
environment that is very similar to the production environment. The Helm project is a
fantastic addition to Kubernetes and provides great value as the de facto package
management solution. In the next chapter, we will dive into the world of microservices and
learn why they are the best approach for developing complex and fast-moving distributed
systems that run in the cloud.

Further reading

e If you want to learn more about Kubernetes, I recommend my book, Mastering
Kubernetes — Second Edition, published by Packt: https://www.packtpub.com/
application-development/mastering-kubernetes—-second-edition

[29]

https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition

Getting Started with
Microservices

In the previous chapter, you learned what Kubernetes is all about, and how it is well suited
as a platform for developing, deploying, and managing microservices, and even played a
little with your own local Kubernetes cluster. In this chapter, we are going to talk about
microservices in general and why they are the best way to build complex systems. We will
also discuss various aspects, patterns, and approaches that address common problems in
microservice-based systems and how they compare to other common architectures, such as
monolith and large services.

We will cover a lot of material in this chapter:

e Programming in the small — less is more
¢ Making your microservice autonomous
e Employing interfaces and contracts

¢ Exposing your service via APIs

e Using client libraries

¢ Managing dependencies

¢ Orchestrating microservices

¢ Taking advantage of ownership

¢ Understanding Conway's law

¢ Troubleshooting across multiple services
¢ Utilizing shared service libraries

¢ Choosing a source control strategy

¢ Creating a data strategy

Getting Started with Microservices Chapter 2

Technical requirements

In this chapter, you'll see some code examples using Go. I recommend that you install Go
and try to build and run the code examples yourself.

Installing Go with Homebrew on macOS

On macOS, I recommend using Homebrew:

$ brew install go

Next, make sure the go command is available:

$ 1ls -la ‘which go®
lrwxr-xr-x 1 gigi.sayfan admin 26 Nov 17 09:03 /usr/local/bin/go —>
../Cellar/go/1.11.2/bin/go

To see all the options, just type go. Also, make sure that you define GOPATH in your
.bashrec file and add $GOPATH/bin to your path.

Go comes with the Go CLI that provides many capabilities, but you may want to install
additional tools. Check out https://awesome—-go.com/.

Installing Go on other platforms

On other platforms, follow the official instructions here: https://golang.org/doc/
install.

The code

You can find the code for this chapter here: https://github.com/PacktPublishing/Hands—

On-Microservices-with-Kubernetes/tree/master/Chapter02.

Programming in the small - less is more

Think about the time you learned to program. You wrote little programs that accepted
simple input, did a little processing, and produced some output. Life was good. You could
hold the entire program in your head.

[31]

https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02

Getting Started with Microservices Chapter 2

You understood every line of code. Debugging and troubleshooting was easy. For example,
consider a program to convert temperatures between Celsius and Fahrenheit:

package main

import (
n fmt n
"OS "
"strconv"

func celsius2fahrenheit (t floato6d4) floato6d {
return 9.0/5.0*t + 32

func fahrenheit2celsius(t floato64) floato6d {
return (¢t - 32) * 5.0 / 9.0

func usage () {

fmt.Println ("Usage: temperature_converter <mode> <temperature>")

fmt.Println ()

fmt.Println ("This program converts temperatures between Celsius and
Fahrenheit")

fmt.Println("'mode' is either 'c2f' or 'f2c'")

fmt.Println (" 'temperature' is a floating point number to be converted
according to mode")

os.Exit (1)

}
func main () {
if len(os.Args) != 3 {
usage ()
}
mode := os.Args[1l]
if mode != "f2c¢" && mode != "c2f" {
usage ()
}
t, err := strconv.ParseFloat (os.Args([2], 64)
if err != nil {
usage ()

3
var converted float64
if mode == "f2c¢" {
converted = fahrenheit2celsius (t)
} else {
converted = celsius2fahrenheit (t)

[32]

Getting Started with Microservices Chapter 2

}

fmt .Println (converted)

}

This program is pretty simple. It does a decent job of validating its input and displaying
usage information if something goes wrong. The actual computation the program does is
just two lines of code that convert the temperature, but it is 45 lines long. There aren't even
any comments. Yet, those 45 lines are pretty readable and easy to test. There aren't any
third-party dependencies (just the Go standard library). There is no IO (files, databases,
network). There is no need for authentication or authorization. There is no need to rate limit
calls. There is no logging, no metrics collection. There is no versioning, health checks, or
configuration. There is no deployment to multiple environments and no monitoring in
production.

Now, consider integrating this simple program into a big enterprise system. You'll have to
take into account many of these aspects. Other parts of the system will start using the
temperature conversion functionality. Suddenly, the simplest operations might have
cascading impacts. Changes to other parts of the system might affect the temperature

converter:
Service Configuration
Discovery
' .

% Temperature Logging
[)
D

Reporting

Converter

High
Availability

istributed
Tracing

Backup
Restore

[33]

Getting Started with Microservices Chapter 2

This jump in complexity is natural. Large enterprise systems have many requirements. The
promise of microservices is that by following proper architectural guidelines and
established patterns, the additional complexity can be neatly packaged and used across
many small microservices that work together to accomplish the system goals. Ideally,
service developers can be shielded from the encompassing system most of the time.
However, it takes a lot of effort to provide the right degree of isolation and still also allow
for testing and debugging in the context of the entire system.

Making your microservice autonomous

One of the best ways to fight complexity is to make your microservice autonomous. An
autonomous service is a service that doesn't depend on other services in the system or
third-party services. An autonomous service manages its own state and can be largely
unaware of the rest of the system.

I like to think of autonomous microservices as similar to immutable functions. Autonomous
services never change the state of other components in the system. The benefit of such
services is that their complexity remains the same, regardless of how the rest of the system
evolves and however they are being used by other services.

Employing interfaces and contracts

Interfaces are one of the best tools a software engineer can use. Once you expose something
as an interface, you can freely change the implementation behind it. Interfaces are a
construct that's being used within a single process. They are extremely useful for testing
interactions with other components, which are plentiful in microservice-based systems.
Here is one of the interfaces of our sample application:

type UserManager interface {
Register (user User) error
Login (username string, authToken string) (session string, err error)
Logout (username string, session string) error

[34]

Getting Started with Microservices Chapter 2

The UserManager interface defines a few methods, their inputs, and outputs. However, it
doesn't specify the semantics. For example, what happens if the Login () method is called
for an already logged-in user? Is it an error? Is the previous session terminated and a new
session created? Is it returning the existing session without an error (idempotent
approach)? These kinds of questions are answered by contracts. Contracts are difficult to
specify fully and Go doesn't provide any support for contracts. But, contracts are important
and they always exist, even if only implicitly.

Some languages don't support interfaces as a first-class syntactic construct
of the language. However, it is very easy to accomplish the same effect.
Languages with dynamic typing, such as Python, Ruby, and JavaScript,
allow you to pass any object that satisfies the set of attributes and methods
used by the caller. Static languages, such as C and C++, get by with sets of
function pointers (C) or structs with only pure virtual functions (C++).

Exposing your service via APls

Microservices interact with each other and sometimes with the outside world over the
network. A service exposes its capabilities through an API. I like to think of APIs as over-
the-wire interfaces. Programming language interfaces use the syntax of the language they
are written in (for example, Go's interface type). Modern network APIs also use some high-
level representation. The foundation is UDP and TCP. However, microservices will
typically expose their capabilities over web transports, such as HTTP (REST, GraphQL,
SOAP), HTTP/2 (gRPC), or, in some cases, WebSockets. Some services may imitate other
wire protocols, such as memcached, but this is useful in special situations. In 2019, there is
really no reason to build your own custom protocol directly over TCP/UDP or use
proprietary and language-specific protocols. Approaches such as Java RMI, .NET remoting,
DCOM, and CORBA are better left in the past, unless you need to support some legacy
code base.

There are two categories of microservices, which are as follows:

e Internal microservices are only accessible to other microservices running
typically in the same network/cluster and those services can expose more
specialized APIs because you're in control of both services and their clients (other
services).

¢ External services are open to the world and often need to be consumed from web
browsers or clients using multiple languages.

[35]

Getting Started with Microservices Chapter 2

The benefit of using standard network APIs over standard language-agnostic transports is
that it enables the polyglot promise of microservices. Each service may be implemented in
its own programming language (for example, one service in Go and another in Python) and
they may even migrate to a completely different language later (Rust, anyone?) without
disruption, as all these services interact through the network API. We will examine later the
polyglot approach and its trade-offs.

Using client libraries

Interfaces are very convenient to work with. You operate within your programming
language environments, calling methods with native data types. Working with network
APIs is different. You need to use a network library, depending on the transport. You need
to serialize your payload and responses and deal with network errors, disconnects, and
timeouts. The client library pattern encapsulates the remote service and all these decisions
and presents you with a standard interface that, as a client of the service, you just call. The
client library behind the scenes will take care of all the ceremony involved with invoking a
network API. The law of leaky abstractions (https://www.joelonsoftware.com/2002/11/
11/the-law-of-leaky-abstractions/) says that you can't really hide the network.
However, you can hide it pretty effectively from the consumer service and configure it
properly with policies regarding timeouts, retries, and caching.

One of the greatest selling points of gRPC is that it generates a client
library for you.

Managing dependencies

Modern systems have a lot of dependencies. Managing them effectively is a big part of the
software development life cycle (SDLC). There are two kinds of dependencies:

e Libraries/packages (linked to the running service process)
e Remote services (accessible over the network)

[36]

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

Getting Started with Microservices Chapter 2

Each of these dependencies can be internal or third party. You manage libraries or packages
through your language's package management system. Go had no official package
management system for a long time and several solutions, such as Glide and Dep, came
along. These days (Go 1.12), Go modules are the official solution.

You manage remote services through the discovery of endpoints and tracking API

versions. The difference between internal dependencies and third-party dependencies is the
velocity of change. Internal dependencies will change much faster. With microservices,
you'll have other microservices you depend on. Versioning and keeping track of the
contracts behind the APIs become very important aspects of development.

Coordinating microservices

When comparing a monolith system with a microservice-based system, one thing is clear.
There is more of everything. The individual microservices are simpler and it's much easier
to reason, modify, and troubleshoot individual services. But, understanding the whole
system, making changes across multiple services, and debugging problems are more
challenging. Many more interactions also happen over the network between separate
microservices, where, with a monolith, these interactions would occur within the same
process. It means that to benefit from microservices, you need a disciplined approach, you
need to apply best practices, and have good tools at your disposal.

The uniformity versus flexibility trade-off

Let's say you have a hundred microservices, but they are all very small and very similar.
They all use the same data store (for example, the same type of relational database). They
are all configured in the same way (for example, a configuration file). They all report errors
and logs to a centralized log server. They are all implemented using the same programming
language (for example, Go). Typically, the system will handle several use cases. Each use
case will involve some subset of these hundred microservices. There will also be some
generic microservices that are used in most use cases (for example, an authorization
service). Then, it may not be that difficult to understand the system as a whole, given some
good documentation. You can look at each use case separately and, when you extend the
system and add more use cases, and maybe grow to a thousand microservices, the
complexity remains bounded:

[371]

Getting Started with Microservices Chapter 2
Service 1 Service 2 Service 3 DI::> Service N
S—T — — S—
PostgresSQL PostgresSQL PostgresSQL PostgresSQL

A good analogy is files and directories. Suppose you organize your music by genre, artist,
and song. Initially, you had three genres, 20 artists, and 200 songs. Then, you expanded
everything and now have 10 genres, 50 artists, and 3,000 songs. The organization is still the
same old hierarchy of genre/artist/song. It's true that at some point when you scale, the
sheer scale can present new problems. For example, with music, when you have so much
music that it doesn't fit on your hard disk, you need a qualitatively different solution (for
example, keep it in the cloud). The same is true for microservices, but the divide and
conquer approach works well. If you reach internet-scale—Amazon, Google,
Facebook—then, yes, you'll need much more elaborate solutions for every aspect.

But, with uniform microservices, you sacrifice a number of benefits. For example, teams
and developers may be forced to use a programming language that is not best for the task,
or they'll have to abide by strict operational standards of logging and error reporting, even
for small non-critical internal services.

You need to understand the pros and cons of uniform versus diverse microservices. There
is a spectrum ranging from totally uniform microservices to a jungle of anything goes,
where each microservice is a unique snowflake. Your responsibility is to find the sweet spot
along this spectrum for your system.

Taking advantage of ownership

Since microservices are small. A single developer can own a whole microservice and
understand it completely. Other developers may also be familiar with it, but even if just a
single developer is familiar with a service, it should be relatively simple and painless for a
new developer to take over because the scope is so limited and ideally similar.

[38]

Getting Started with Microservices Chapter 2

Sole ownership can be very powerful. The developer needs to communicate with the other
developers and teams though the service APL but can iterate very fast on the
implementation. You may still want other developers on the team to review the internal
design and implementation, but even in the extreme case that the owner works completely
on their own with no supervision, the potential damage is limited because the scope of each
microservice is small and it interacts with the rest of the system through well-defined APIs.

The differences in productivity can be jaw-dropping.

Understanding Conway's law

Conway's law is defined as follows:

"Organizations which design systems ... are constrained to produce designs which are
copies of the communication structures of these organizations.”

This means the structure of the system will reflect the structure of the team building it. A
famous variation by Eric Raymond is this:

"If you have four groups building a compiler you'll get a 4-pass compiler.”

This is very insightful and I've personally witnessed it time and again in many different
organizations. This is very relevant to microservice-based systems. With lots of small
microservices, you don't need a dedicated team for each microservice. There will be some
higher-level groups of microservices that work together to produce some aspect of the
system. Now, the question is how to think about the high-level structure. There are three
main options:

e Vertical
e Horizontal
e Matrix

Microservices can be very important in this regard. By being small autonomous
components, they support all structures. But, what is even more important is when
organizations need to transition from one approach to another. The usual trajectory is:
horizontal | vertical | matrix.

The organization can perform those transitions with much less friction if the software
follows a microservice-based architecture. It can even be a deciding factor. Even an
organization that doesn't follow microservice-based architecture decides to stay with an
inappropriate structure because the risk and effort of breaking the monolith is too high.

[39]

Getting Started with Microservices Chapter 2

Vertical

The vertical approach takes a slice of functionality of the system that comprises multiple
microservices and a team is fully responsible for that functionality, from design to
implementation, through deployment and maintenance. Teams operate as silos and
communication between them is typically limited and formal. This approach favors aspects
of microservices, such as the following;:

e Polyglot

e Flexibility

¢ Independently moving pieces

¢ End-to-end ownership

e Less formal contracts within the vertical slice

¢ Easy-to-scale to more vertical slices (just form another team)

e Difficult to apply changes across vertical slices, especially as the number of
vertical slices scales

This approach is common in very large organizations due to its scalability advantages. It
also requires a lot of creativity and effort to make improvements across the board. There
will be duplication of effort between the silos. Aiming for complete reuse and coordination
is futile. The trick with the vertical approach is to find the sweet spot, where common
functionality is packaged in a way that can be used by multiple silos, but without requiring
explicit coordination.

Horizontal

The horizontal approach looks at the system as a layered architecture. The team structure is
organized along those layers. There may be a frontend group, backend group, and a
DevOps group. Each group is responsible for all the aspects in their layer. Vertical
functionality is implemented by a collaboration between different groups across all layers.
This approach is more suitable for smaller organizations with a small numbers of products
(sometimes just one).

The nice thing about the horizontal approach is that the organization can build expertise
and share knowledge across entire horizontal layers. Typically, organizations start with a
horizontal organization and, as they grow and then expand to more products, or possibly
spread across multiple geographic locations, they divide into a more vertical structure.
Within each silo, the structure is usually horizontal.

[40]

Getting Started with Microservices Chapter 2

Matrix

The matrix organization is the most complicated. You have your vertical silos, but the
organization recognizes that the amount of duplication and variation between the silos
waste resources and also makes transferring people between vertical silos challenging if
they diversify too much. With a matrix organization, in addition to the vertical silos, there
are also cross-cutting groups that work with all vertical silos and try to bring some level of
consistency, uniformity, and order. For example, the organization may dictate that all
vertical silos must deploy their software to the cloud on AWS. In this case, there may be a
cloud platform group that is managed outside the vertical silos and provides guidance,
tooling, and other shared services for all the vertical silos. Security is another good
example. Many organizations consider security an area that must be managed centrally and
can't be left to the whims of each silo.

Troubleshooting across multiple services

Since most of the functions of the system will involve interactions between multiple
microservices, it's important to be able to follow a request coming in across all those
microservices and various data stores. One of the best ways to accomplish this is
distributed tracing, where you tag each request and can follow it from beginning to end.

The subtleties of debugging distributed systems in general and microservice-based ones
take a lot of expertise. Consider the following aspects along the path of a single request
through the system:

¢ The microservices processing the request may use different programming
languages.

¢ The microservices may expose APIs using different transports/protocols.

¢ Requests may be part of asynchronous workflows that involve waiting in queues
and/or periodical processing.

¢ The persistent state of the request may be spread across many independent data
stores controlled by different microservices.

When you need to debug a problem across the entire swath of microservices in the system,
the autonomous nature of each microservice becomes a hindrance. You must build explicit
support to be able to gain system-level visibility by aggregating internal information from
multiple microservices.

[41]

Getting Started with Microservices Chapter 2

Utilizing shared service libraries

If you choose the uniform microservices approach, it is very useful to have a shared library
(or several libraries) that all services use and implement many cross-cutting concerns, such
as the following;:

¢ Configuration
¢ Secret management
e Service discovery

API wrapping

e Logging
e Distributed tracing

This library may implement whole workflows, such as authentication and authorization,
that interact with other microservices or third-party dependencies and do the heavy lifting
for each microservice. This way, the microservice is only responsible for using these
libraries properly and implements its own functionality.

This approach can work even if you choose the polyglot path and support multiple
languages. You can implement this library for all the supported languages and the services
themselves can be implemented in different languages.

However, there are costs associated with the maintenance and evolution of shared libraries
and the rate of adopting them by all microservices. A real danger is that different
microservices will use many versions of the shared libraries and cause subtle (or not so
subtle) problems when services using different versions of the shared library try to
communicate.

The service mesh approach that we will explore later in the book can provide some answers
to this issue.

Choosing a source control strategy

This is a very interesting scenario. There are two main approaches: monorepo and multiple
repos. Let's explore the pros and cons of each.

[42]

Getting Started with Microservices Chapter 2

Monorepo

In the monorepo approach, your entire code base is in a single source control repository. It
is very easy to perform operations over the entire code base. Whenever you make a change,
it is reflected immediately in your entire code base. Versioning is pretty much off the table.
That's great for keeping all your code in sync. But, if you do need to upgrade some parts of
your systems incrementally, you'll need to come up with workarounds, such as creating a
separate copy with your new changes. Also, the fact that your source code is always in sync
doesn't mean that your deployed services are all using the latest version. If you always
deploy all your services at once, you're pretty much building a monolith. Note that you
may still have multiple repos if you contribute to third-party open source projects (even if
you only use upstream versions after your changes were merged).

Another big issue with monorepo is that you might need a lot of custom tooling to manage
your multi repo. Large companies, such as Google and Microsoft, use the multi-repo
approach. They have special needs and the custom tooling aspect doesn't deter them. I'm
on the fence if the multi-repo approach is appropriate for smaller organizations. However,
I'll use a monorepo for the Delinkcious —the demo application—so, we will get to explore
it together and form an opinion. A major downside is that many modern CI/CD tool chains
use GitOps, which trigger changes in source control repos. When there is just one
monorepo, you lose the one-to-one mapping between a source control repo and a
microservice.

Multiple repos

The multiple repos approach is exactly the opposite. Each project, and often each library,
has a separate source control repository. Projects consume each other just like third-party
libraries. There are several advantages to this approach:

Clear physical boundaries between projects and services.

One-to-one mapping of source control repositories and services or projects.

It is easy to map deployments of services to source control repositories.
Uniform treatment of all dependencies—internal and third party.

[43]

Getting Started with Microservices Chapter 2

However, there are significant costs to this approach, especially as the number of services
and projects grows and the dependency graphs between them become more complicated:

¢ Applying changes often requires changes across multiple repositories.

¢ You often need to maintain multiple versions of a repository, as different services
depend on different services.

e Itis difficult to apply cross-cutting changes across all repositories.

Hybrid

The hybrid approach involves using a small number of repositories. Each repository
contains multiple services and projects. Each repository is isolated from the other
repositories, but within each repo, multiple services and projects can be developed in
lockstep. This approach balances the pros and cons of monorepo and multiple repos. It may
be useful when there are clear organizational boundaries and often geographical
boundaries. For example, if a company has multiple product lines that are completely
independent, it may be a good idea to break each product line into its own monorepo.

Creating a data strategy

One the most important responsibilities of a software system is to manage data. There are
many types of data, and most of the data, should survive any failure of the system or you
should be able to reconstruct it. Data often has complex relationships with other data. This
is very explicit with relational databases, but exists in other types of data, too. Monoliths
typically use large data stores that keep all the related data and, as a result, can perform
queries and transactions over the entire set of data. Microservices are different. Each
microservice is autonomous and responsible for its data. However, the system as a whole
needs to query and operate over data that is now stored in many independent data stores
and managed by many different services. Let's examine how to address this challenge using
best practices.

One data store per microservice

The one data store per microservice is a crucial element of the microservice architecture.
The moment two microservices can access directly the same data store, they are tightly
coupled and are no longer independent. There are a few important nuances to understand.
It may be OK for multiple microservices to use the same database instance, but they must
not share the same logical database.

[44]

Getting Started with Microservices Chapter 2

The database instance is a resource provisioning concern. In some cases, the team
developing the microservice is responsible for provisioning its data stores too. In this case,
the wise move may be to have physically separate DB instances for each microservice and
not just logical ones. Note that when using cloud data stores, the microservice developer is
not in control and unaware of the physical configuration of the data store.

We agree that two microservices shouldn't share the same data store. But, what about a
single microservice managing two or more data stores? This is generally also frowned
upon. If your design calls for two separate data stores, it's better to dedicate a microservice
to each one:

Service 1 Service 2 Service 3 Service 4

PostgresSQL

D [

PostgresSQL PostgresSQL

N~

Good! One Store Per Service Bad! Shared Data Store

There is one common exception—you may want to manage an in-memory data store
(cache) and a persistent data store by the same microservice. The workflow is that the
service is writing to the persistent store and the cache and serving queries from the cache.
The cache is either refreshed periodically, or based on change notification, or when there is
a cache miss.

But, even in this case, it may be a better design to have a separate centralized cache, such as
Redis managed by a separate microservice. Remember that each microservice may have
multiple instances in a large system that serves many users.

Another reason to abstract away the physical configuration and provisioning of data stores
from the microservices themselves is that those configurations may be different in different
environments. Your production environment may have physically separate data stores for
each microservice, but, in your development environment, it may be better to have just one
physical database instance with lots of small logical databases.

[45]

Getting Started with Microservices Chapter 2

Running distributed queries

We agree that each microservice should have its own data store. This means that the overall
state of the system will be distributed across multiple data stores, accessible only from their
own microservices. Most interesting queries will involve data available in multiple data
stores. Each consumer could just access all these microservices and aggregate all the data to
satisfy their query. However, that is sub-optimal for several reasons:

e Consumers are intimately aware of how data is managed by the system.

e Consumers need to get access to each and every service that stores data relevant
to the query.

¢ Changing the architecture might require changes to a lot of consumers.

There are two common solutions to address this issue: CQRS and API composition. The
cool thing about it is that the services that enable both solutions have the same AP, so it is
possible to switch from one solution to another, or even mix and match without impacting
users. This means that some queries will be serviced by CQRS and others by API
composition, all implemented by the same service. Overall, I recommend to start with API
composition and transition to CQRS only if the proper conditions exist and benefits are
compelling, due to its much higher complexity.

Employing Command Query Responsibility Segregation

With Command Query Responsibility Segregation (CQRS), the data from the various
microservices is aggregated to a new read-only data store that is designed to answer
specific queries. The meaning of the name is that you separate (segregate) the responsibility
of updating data (commands) from the responsibility of reading data (queries). Different
services are in charge of those activities. It is often implemented by watching for changes to
all data stores and requires a change notification system in place. You could use polling too,
but that's often undesirable. This solution shines when there are known queries that are
used often.

Here is an illustration of CQRS in action. The CQRS service (responsible for queries)
receives a change notification from the three microservices (responsible for updates) and
aggregates them into its own data store.

[46]

Getting Started with Microservices Chapter 2

When a query comes, the CQRS service responds by accessing its own aggregated view
without hitting the microservices:

by
G\(\a(\%e

Query Change 2
CQRS Service 2
Service

Ch
&
Service 3

Service 1

Aggregate
View

The pros are as follows:

¢ Queries don't interfere with updating the primary data store.
¢ The aggregator service exposes an API that is tailored to specific queries.

e It's easier to change the way data is managed behind the scenes without
impacting consumers.

¢ Quick response time.
The cons are as follows:

e It adds complexity to the system.
e It duplicates the data.
e Partial views require explicit treatment.

Employing APl composition

The API composition approach is much more lightweight. On the surface, it looks just like
the CQRS solution. It exposes an API that can answer well-known queries across multiple
microservices. The difference is that it doesn't keep its own data store. Whenever a request
comes in, it will access the individual microservices that contain the data, compose the
results, and return them. This solution shines when the system doesn't support event
notification for data changes and when the load of running queries against the primary
data store is acceptable.

[47]

Getting Started with Microservices Chapter 2

Here is an illustration of API composition in action, where a query to an API composer
service is translated under the covers to queries to three microservices:

Q\)eﬂ bS Service 1

Query Query 2
AP Service 2
Composer

Ql/e
3
N Service 3

The pros are as follows:

Lightweight solution.

The aggregator service exposes an API that is tailored to specific queries.

Results are always up to date.

No architectural requirements, such as event notification.
The cons are as follows:

e The failure of any service will fail the query. This requires policy decisions
around retries and timeouts.

¢ A high number of queries might impact primary data stores.

Using sagas to manage transactions across
multiple services

The API composer and CQRS patterns provide adequate solutions for distributed queries
when everything works well. However, maintaining distributed data integrity is a complex
problem. If you store all your data in a single relational database and specify proper
constraints in your schema, then you can rely on the database engine to take care of data
integrity. The situation is very different with multiple microservices maintaining your data
in isolated data stores (relational or non-relational). Data integrity is essential, but it must
be maintained by your code. The saga pattern addresses this concern. Before diving into the
saga pattern, let's understand data integrity in general.

[48]

Getting Started with Microservices Chapter 2

Understanding ACID

A common measure of data integrity is that all transactions that modify data have the
ACID properties:

e Atomic: All operations in the transaction succeed or they all fail.

¢ Consistent: The state of the data complies with all constraints before and after
the transaction.

e Isolated: Concurrent transactions behave as if serialized.
e Durable: When a transaction completes successfully, the results are persisted.

The ACID properties are not specific to relational databases, but often used in that context,
mostly because the relational schemas, with their formal constraints, provide a convenient
measure of consistency. The isolation property often has serious performance implications
and may be relaxed in some systems that prefer high-performance and eventual
consistency.

The durability property is pretty obvious. There is no point going to all the trouble if your
data can't be safely persisted. There are different levels of persistence:

e Persistence to disk: Can survive restart of the node, but no disk failure

Redundant memory on multiple nodes: Can survive restart of a node and disk
failure, but not temporary failure of all the nodes

Redundant disks: Can survive the failure of a disk

Geo-distributed replicas: Can survive a whole data center being down
Backups: Cheaper to store a lot of information, but slower to restore and often
lags behind real time

The atomicity requirement is also a no-brainer. Nobody likes partial changes, which can
violate data integrity and break the system in unpredictable ways that are difficult to
troubleshoot.

Understanding the CAP theorem

The CAP theorem states that a distributed system can't have all three properties at the same
time:

¢ Consistency
e Availability
e Partition resiliency

[49]

Getting Started with Microservices Chapter 2

In practice, you get to pick if you want a CP system or AP system. A CP system (consistent
and partition resilient) is always consistent and will not serve queries or make changes if
there is a network partitioning between components. It will function only when the system
is fully connected. This obviously means that you don't have availability. On the other
hand, an AP system (available and partition resilient) is always available and can operate
in split-brain fashion. When the system splits, each part may continue to operate normally,
but the system will be inconsistent because each part is unaware of transactions happening
in the other part.

AP systems are often referred to as eventually consistent systems because, when
connectivity is restored, some reconciliation process ensures the entire system syncs up
again. An interesting variant is frozen systems, where, when a network partitioning occurs,
they degrade gracefully and both parts continue to serve queries, but reject all
modifications to the system. Note that there is no guarantee that, at the moment of
partitioning, both parts are consistent because some transactions in one part may still not be
replicated to the other part. Often, it is good enough because the divergence between the
split part is small and will not increase over time because new changes are rejected.

Applying the saga pattern to microservices

Relational databases can provide ACID compliance for distributed systems through
algorithms, such as two-phase commit and control over all the data. The two-phase commit
algorithm works in two phases: prepare and commit. However, the services that participate
in the distributed transaction must share the same database. That doesn't work for
microservices that manage their own databases.

Enter the saga pattern. The basic idea of the saga pattern is that there is centralized
management of the operations across all the microservices and that, for each operation,
there is a compensating operation that will be executed if, for some reason, the entire
transaction can't be completed. This achieves the atomicity property of ACID. But, the
changes on each microservice are visible immediately and not only at the end of the entire
distributed transaction. This violates the consistency and isolation properties. This is not a
problem if you design your system as AP, also known as, eventually consistent. But, it
requires your code to be aware of it and be able to work with data that may be partially
inconsistent or stale. In many cases, this is an acceptable compromise.

How does a saga work? A saga is a set of operations and corresponding compensating
operations on microservices. When an operation fails, its compensating operation and the
compensating operations of all the previous operations are called in reverse order to roll
back the entire state of the system.

[50]

Getting Started with Microservices Chapter 2

Sagas are not trivial to implement because the compensating operations might fail too. In
general, the transient state must be persistent and marked as such and a lot of metadata
must be stored to enable reliable rollback. A good practice is to have an out-of-band process
run frequently and clean up failed sagas that didn't manage to complete all their
compensating operations in real time.

A good way to think about sagas is as workflows. Workflows are cool because they enable
long processes that even involve humans and not just software.

Summary

In this chapter, we covered a lot of ground. We discussed the basic principle of
microservices—Iless is more—and how breaking down your system to many small and self-
contained microservices can help it scale. We also discussed the challenges that face
developers utilizing the microservices architecture. We provided a slew of concepts,
options, best practices, and pragmatic advice on architecting microservice-based systems.
At this point, you should appreciate the flexibility that microservices offer, but also be a
little apprehensive of the many ways you can choose to utilize them.

In the rest of the book, we will explore the terrain in detail and together build a
microservice-based system using some of the best available frameworks and tools and
deploy it on Kubernetes. In the next chapter, you'll meet Delinkcious—our sample
application—that will serve as a hands-on laboratory. You will also get a glimpse into Go-
kit, a microservice-based framework for constructing Go microservices.

Further reading

If you are interested in microservices, I recommend the following article as a starting
pOil’lt: https://www.martinfowler.com/

[51]

https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/

Delinkcious - the Sample
Application

Delinkcious is a Delicious (https://en.wikipedia.org/wiki/Delicious_

(website)) wannabe. Delicious used to be an internet hit that managed links for users. It
was acquired by Yahoo, was bounced around, and sold multiple times. It was eventually
purchased by Pinboard, which runs a similar service and intends to shut down Delicious
soon.

Delinkcious allows users store URLs in cool places on the web, tag them, and query them in
various ways. Throughout this book, Delinkcious will serve as a live lab to demonstrate
many microservices and Kubernetes concepts, as well as features in the context of a real-
world application. The focus will be on the backend, so there will be no snazzy frontend
web application or mobile app. I'll leave those as the dreaded exercise for you.

In this chapter, we will understand why I chose Go as the programming language of
Delinkcious, and then look at Go kit — an excellent Go microservice toolkit that I'll use to
build Delinkcious. Then, we will dissect the different aspects of Delinkcious itself using the
social graph service as a running example.

We will be covering the following topics:

o The Delinkcious microservices
¢ The Delinkcious data storage

o The Delinkcious API

e The Delinkcious client libraries

https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)

Delinkcious - the Sample Application Chapter 3

Technical requirements

If you have followed along with this book so far, you will have already installed Go. I
recommend installing a good Go IDE to follow the code in this chapter since there will be a
lot to go through. Let's go through a couple of good options.

Visual Studio Code

Visual Studio Code, also known as VS Code (https://code.visualstudio.com/docs/
languages/go), is an open source IDE from Microsoft. It isn't Go-specific but has deep
integration with Go via a dedicated and sophisticated Go extension. It is considered the
best free Go IDE.

GolLand

JetBrains' GoLand (https://www.jetbrains.com/go/) is my personal favorite. It follows the
great tradition of Intelli] IDEA, PyCharm, and other great IDEs. This is a paid version with
a 30-day free trial. There is no Community Edition, unfortunately. If you can afford it, I
highly recommend it. If you can't or don't want to pay for an IDE (totally reasonable), check
out the other options.

LitelIDE

LiteIDE or LiteIDE X (https://github.com/visualfc/liteide) is a very interesting open
source project. It is one of the earliest Go IDEs and it predates both GoLand and the Go
extension for VS Code. I used it in the early days and was surprised by its quality. I
eventually dropped it due to difficulties with interactive debugging via the GNU Project
Debugger (GDB). It is actively developed, has a lot of contributors, and supports all the
latest and greatest Go features, including Go 1.1 and the Go modules. You can now debug
using Delve, which is the best of class Go debugger.

[53]

https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide

Delinkcious - the Sample Application Chapter 3

Other options

If you're a die-hard command-line person and don't like IDEs at all, you have options
available. Most programming and text editors have some form of Go support. The Go wiki
(https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins) has a big list of IDEs
and text editor plugins, so go and check that out.

The code

In this chapter, there are no code files since you'll just be getting to know the Delinkcious
application:

e Itis hosted in its own GitHub repository, which can be found at: https://
github.com/the-gigi/delinkcious.

e Check out the v0.1 Tags | Releases: https://github.com/the-gigi/
delinkcious/releases/tag/v0.1.

¢ Clone it and use your favorite IDE or text editor to follow up.

e Remember that the general code examples for this book are in another GitHub
repository: https://github.com/PacktPublishing/Hands-On-Microservices—

with-Kubernetes/.

Choosing Go for Delinkcious

I wrote and shipped production backend code in many fine languages such as C/C++,
Python, C#, and, of course, Go. I also used a few not-so-fine languages, but let's leave those
out of the discussion. I decided to use Go as the programming language for Delinkcious
because it is a superb language for microservices:

¢ Go compiles to a single binary with no external dependencies (awesome for
simple Dockerfiles).

¢ Go is very readable and easy to learn.

¢ Go has excellent support for network programming and concurrency.

¢ Go is the implementation language of many cloud-native data stores, queues,
and frameworks (including Docker and Kubernetes).

[54]

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/

Delinkcious - the Sample Application Chapter 3

You may argue that microservices are supposed to be language agnostic and that I
shouldn't focus on one language. This is true, but my goal is to be very hands-on in this
book and dive deep into all the fine details of building microservices on Kubernetes. To do
that, I had to make specific choices and stick to them. Trying to get the same level of depth
in multiple languages would have been futile. That being said, the microservice boundaries
are very clear (one of the advantages of microservices) and you can see how implementing
a microservice in another language will present a few issues to the rest of the system.

Getting to know Go kit

You can write your microservices from scratch (in Go or any other language) and they will
interact with each other just fine through their APIs. However, in a real-world system, there
will be a large number of shared and/or cross-cutting concerns that you want to be
consistent:

¢ Configuration

¢ Secret management
¢ Central logging

e Metrics

¢ Authentication

¢ Authorization

e Security

¢ Distributed tracing
e Service discovery

In practice, microservices in most large production systems will need to comply with
certain policies for those concerns.

Enter Go kit (https://gokit.io/). Go kit takes a very modular approach to the
microservices space. It provides a high degree of separation of concerns, a recommended
approach for structuring your microservice, and a lot of flexibility. As the website says, Few
opinions, lightly held.

[551]

https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/

Delinkcious - the Sample Application Chapter 3

Structuring microservices with Go kit

Go kit is all about best practices. Your business logic is implemented as pure Go libraries
that only deal with interfaces and Go structs. All the complex aspects involved in APIs,
serialization, routing, and networking will be relegated to clearly separate layers that are
taking advantage of Go kit concepts and infrastructures such as transports, endpoints, and
services. This makes for a great development experience, where you can evolve and test
your application code in the simplest environment possible. Here is the interface for one of
Delinkcious' services — the social graph. Note that it is in plain Go. There is no notion of
API, microservice, or even Go kit imports:

type SocialGraphManager interface {
Follow(followed string, follower string) error
Unfollow (followed string, follower string) error

GetFollowing (username string) (map[string]bool, error)
GetFollowers (username string) (map[string]bool, error)

}

The implementation of this interface resides in a Go package that is still completely agnostic
of Go kit or even the fact it is being used in a microservice:

package social_graph_manager

import (
"errors"
om "github.com/the-gigi/delinkcious/pkg/object_model"

type SocialGraphManager struct {
store om.SocialGraphManager

func (m *SocialGraphManager) Follow(followed string, follower string) (err
error) A

func (m *SocialGraphManager) Unfollow(followed string, follower string)
(err error) A

func (m *SocialGraphManager) GetFollowing (username string)
(map[string]bool, error) {

[561]

Delinkcious - the Sample Application Chapter 3

func (m *SocialGraphManager) GetFollowers (username string)
(map[string]bool, error) {

}

A good way to think of a Go kit service is as an onion with different layers. At the core is
your business logic and layered on top are various concerns such as routing, rate limiting,
logging, and metrics, which are eventually exposed to other services or the world over

transports:

Transport
Operational metrics
Balancing and limiting

Business analytics

Application logging

Service metrics

Business logic

Go kit primarily supports RPC-style communication by using a request-response model.

Understanding transports

One of the biggest concerns about microservices is that they interact with each other and
clients over a network; that is, at least an order of magnitude more complicated than calling
methods inside the same process. Go kit provides explicit support for the networking
aspect of microservices through the transport concept.

[571

Delinkcious - the Sample Application Chapter 3

A Go kit transport encapsulates all the complexity and integrates with other Go kit
constructs such as requests, responses, and endpoints. Go kit officially supports the
following transports out of the box:

e HTTP
e gRPC
e Thrift
e net/rpc

However, there are several more transports in its GitHub repository, including AMQP and
NATS transports for message queuing and pub/sub. One cool thing about Go kit transports
is that you can expose the same service through multiple transports without changing your
code.

Understanding endpoints

A Go kit microservice is really just a set of endpoints. Each endpoint corresponds to one
method in your service interface. An endpoint is always associated with at least one
transport and a handler that you implement to service the request. The Go kit endpoints
support the RPC style of communication and have request and response structs.

Here is the factory function for the Follow () method endpoint:

func makeFollowEndpoint (svc om.SocialGraphManager) endpoint.Endpoint {

return func(_ context.Context, request interface{}) (interface{}, error)
{
req := request. (followRequest)
err := svc.Follow(reqg.Followed, reqg.Follower)
res := followResponse{}
if err !'= nil {
res.Err = err.Error ()

}

return res, nil

}

I will explain what's going on here soon. For now, just note that it accepts an svc argument
of the om. SocialGraphManager type, which is an interface, and it invokes its Follow ()
method.

[581]

Delinkcious - the Sample Application Chapter 3

Understanding services

This is where your code plugs into the system. When the endpoint is called, it invokes the
corresponding method in your service implementation to do all the work. All the hard
work of encoding and decoding requests and responses is done by the endpoint wrapper.
You can focus on your application logic using the best abstractions that make sense.

Here is the implementation of the SocialGraphManager function's Follow () method:

func (m *SocialGraphManager) Follow(followed string, follower string) (err

error) {

if followed == "" || follower == "" {
err = errors.New("followed and follower can't be empty")
return

}

return m.store.Follow(followed, follower)

Understanding middleware

Go kit is composable, as demonstrated in the preceding onion diagram. In addition to the
mandatory transports, endpoints, and services, Go kit uses the decorator pattern to
optionally wrap services and endpoints with cross-cutting concerns, such as the following;:

Resiliency (for example, retries with exponential backoff)
Authentication and authorization

Logging

Metrics collection

Distributed tracing

Service discovery

Rate limiting

This approach of a solid core with a small number of abstractions, such as transports,
endpoints, and services, that can be extended using a uniform mechanism of middleware is
easy to comprehend and work with. Go kit strikes the right balance between providing
enough built-in functionality for middleware and leaving the floor open to your needs. For
example, when running on Kubernetes, service discovery is taken care of for you. It's great
that you don't have to work around Go kit in this case. Features and capabilities that you
don't absolutely need are optional.

[591]

Delinkcious - the Sample Application Chapter 3

Understanding clients

In chapter 2, Getting Started with Microservices, we discussed the client library principle of
microservices. A microservice that talks to another microservice ideally utilizes a client
library that's exposed through an interface. Go kit provides excellent support and
guidelines for writing such client libraries. The using microservice simply receives an
interface. It is actually totally agnostic to the fact it is talking to another service. For (almost)
all intents and purposes, the remote service could be running in the same process. This is
excellent for testing or for refactoring services and breaking a slightly too large service into
two separate services.

Go kit has client endpoints that are similar to service endpoints but work in the opposite
direction. Service endpoints decode requests, delegate work to the service, and encode
responses. Client endpoints encode requests, invoke the remote service over the network,
and decode the response.

Here is what the Follow () method of the client looks like:

func (s EndpointSet) Follow(followed string, follower string) (err error) {

resp, err := s.FollowEndpoint (context.Background(),
FollowRequest{Followed: followed, Follower: follower})
if err != nil {

return err

}

response := resp. (SimpleResponse)
if response.Err != "" {

err = errors.New(response.Err)
}
return

Generating the boilerplate

The clean separation of concerns and neat architectural layering of Go kit has a price. The
price is a lot of boring, mind-numbing, and error-prone boilerplate code for translating
requests and responses between different structs and method signatures. It is useful to see
and understand how Go kit can support strongly-typed interfaces in a generic way, but for
large-scale projects, the preferred solution is to generate all the boilerplate from the Go
interfaces and data types. There are several projects for this task, including one under
development by Go kit itself called kitgen (https://github.com/go-kit/kit/tree/
master/cmd/kitgen).

[60]

https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen

Delinkcious - the Sample Application Chapter 3

It is considered experimental at the moment. I'm a big fan of code generation and highly
recommend it. However, in the following sections, we will look at a lot of manual
boilerplate code to make it clear what's going on and avoid any magic.

Introducing the Delinkcious directory
structure

The Delinkcious system at this stage of initial development consists of three services:

¢ Link service
¢ User service
¢ Social graph service

The high-level directory structure includes the following sub directories:

e cmd

* pkg

® svC

The root directory also includes some common files such as README . md and the important
go.mod and go. sum files to support the Go modules. I use the monorepo approach here, so
the entire Delinkcious system will live in this directory structure and is considered a single
Go module, albeit with many packages:

$ tree -L 1

}—— LICENSE
}—— README.md

b—— go.mod
b—— go.sum
F—— cmd
—— pkg

L— svec

The cmd subdirectory

The cmd subdirectory contains various tools and commands to support development and
operations, as well as end-to-end tests that involve multiple actors, services, or external
dependencies; for example, testing a microservice via its client library.

[61]

Delinkcious - the Sample Application Chapter 3

At the moment, it only contains a single end-to-end test for the social graph service:

$ tree cmd
cmd
L social_graph_service_e2e
L social_graph_service_e2e.go

The pkg subdirectory

The pkg subdirectory is where all the packages live. It includes the implementation of the
microservices, the client libraries, the abstract object model, other support packages, and
unit tests. The bulk of the code is in the form of Go packages that are simple to develop and
test before they are bundled into actual microservices:

$ tree pkg
pkg
}—— 1ink_manager
| j—— abstract_link_store.go
| j—— db_link_store.go
| j—— db_link_store_test.go
| —— in_memory_ link_store.go
| }—— 1ink_manager.go
| L 1ink_manager_suite_test.go
—— 1ink_manager_client
| L client.go
—— object_model
| }—— README.md
| —— interfaces.go
| L types.go
—— social_graph client
| j—— client.go
| L endpoints.go
}—— social_graph_manager
| }—— db_scoial_graph_store.go
}—— db_social_graph_manager_test.go
in_memory_social_graph_manager_test.go
in_memory_social_graph_store.go
social_graph_manager.go
social_graph_manager_suite_test.go
L user_manager
I— db_user_manager_test.go
}—— db_user_store.go
}—— in_memory_user_manager.go
I— in_memory_user_manager_test.go
—— in_memory_ user_store.go
L user_manager_suite_test.go

T

[62]

Delinkcious - the Sample Application Chapter 3

The svc subdirectory

The svc subdirectory is where the Delinkcious microservices live. Each microservice is a
separate binary with its own main package. delinkcious_service is a public umbrella
service that follows the API gateway (https://microservices.io/patterns/apigateway.
html) pattern:

$ tree svc

sve

—— delinkcious_service
| L—— README.md

—— 1link_service

| j—— 1link_service.go
| L—— transport.go
—— social_graph_service
| —— social_graph_service.go
| L—— transport.go
L—— user_service

}—— transport.go
L—— user_service.go

Introducing the Delinkcious microservices

Let's examine the Delinkcious services in detail and peel the onion. We'll actually work our
way from the inside out, starting with the service layer and going through the endpoints all
the way to the transports.

There are three different services:

e Link service
e User service
e Social graph service

Together, they collaborate to provide the functionality of Delinkcious, which is to manage
links for users and keep track of their social graph (followed/follower relationships).

[63]

https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html

Delinkcious - the Sample Application Chapter 3

The object model

The object model is the collection of all the interfaces and related data types that are
implemented by the services. I chose to put all of them in a single package:
github.com/the-gigi/delinkcious/pkg/object_model. It contains two

files: interfaces.go and types.go.

The interfaces.go file contains the interfaces for the three Delinkcious services:

package object_model

type LinkManager interface {
GetLinks (request GetLinksRequest) (GetLinksResult, error)
AddLink (request AddLinkRequest) error
Updatelink (request UpdatelLinkRequest) error
Deletelink (username string, url string) error

type UserManager interface {
Register (user User) error
Login (username string, authToken string) (session string, err error)
Logout (username string, session string) error

type SocialGraphManager interface {
Follow(followed string, follower string) error
Unfollow (followed string, follower string) error

GetFollowing (username string) (mapl[stringlbool, error)
GetFollowers (username string) (map[stringlbool, error)

type LinkManagerEvents interface {
OnLinkAdded (username string, link *Link)
OnLinkUpdated (username string, link *Link)
OnLinkDeleted (username string, url string)

}

The types. go file contains the structs that are used in the signatures of the various
interface methods:

package object_model
import "time"

type Link struct {
Url string

[64]

Delinkcious - the Sample Application Chapter 3

Title string
Description string

Tags map [string]bool
CreatedAt time.Time

UpdatedAt time.Time

type GetLinksRequest struct {

UrlRegex string
TitleRegex string
DescriptionRegex string
Username string
Tag string
StartToken string

type GetLinksResult struct {
Links [1Link
NextPageToken string

type AddLinkRequest struct {

Url string
Title string
Description string
Username string
Tags map [string]bool

type UpdatelinkRequest struct {

Url string
Title string
Description string
Username string
AddTags map [string]bool

RemoveTags map[string]bool

type User struct {
Email string
Name string

}

The object_model package is just using basic Go types, standard library types
(time.Time), and user-defined types for the Delinkcious domain. It is all pure Go. At this
level, there is no dependency or awareness of networking, APIs, microservices, or Go kit.

[65]

Delinkcious - the Sample Application Chapter 3

The service implementation

The next layer is implementing the service interfaces as simple Go packages. At this point,
each service has its own package:

e github.com/the-gigi/delinkcious/pkg/link_manager
e github.com/the-gigi/delinkcious/pkg/user_manager
e github.com/the-gigi/delinkcious/pkg/social_graph_manager

Note that these are Go package names and not URLs.

Let's examine the social_graph_manager package. It imports the object_model
package as om because it needs to implement the om. SocialGraphManager interface. It
defines a st ruct called SocialGraphManager that has a field called store of

the om. SocialGraphManager type. So, the interface of the store field is identical to the
interface of the manager in this case:

package social_graph_manager

import (

"errors"

om "github.com/the-gigi/delinkcious/pkg/object_model"
)

type SocialGraphManager struct {
store om.SocialGraphManager

}

This may be a little confusing. The idea is that the st ore field implements the same
interface so that the top-level manager can implement some validation logic and delegate
the heavy lifting to the store. You will see this in action soon.

In addition, the fact that the store field is an interface allows us to use different stores that
implement the same interface. This is very useful. The NewSocialGraphManager ()
function accepts a store field that must not be nil, and then returns a new instance of
SocialGraphManager with the provided store:

func NewSocialGraphManager (store om.SocialGraphManager)
(om.SocialGraphManager, error) A
if store == nil {
return nil, errors.New("store can't be nil")
}

return &SocialGraphManager{store: store}, nil

[66]

Delinkcious - the Sample Application Chapter 3

The SocialGraphManager struct itself is pretty simple. It performs some validity checks
and then delegates the work to its store:

func (m *SocialGraphManager) Follow(followed string, follower string) (err
error) {

if followed == "" || follower == "" {
err = errors.New("followed and follower can't be empty")
return

return m.store.Follow(followed, follower)

func (m *SocialGraphManager) Unfollow(followed string, follower string)
(err error) A

if followed == "" || follower == "" {
err = errors.New("followed and follower can't be empty")
return

return m.store.Unfollow(followed, follower)

func (m *SocialGraphManager) GetFollowing (username string)
(map[string]bool, error) {
return m.store.GetFollowing (username)

func (m *SocialGraphManager) GetFollowers (username string)
(map[string]bool, error) {
return m.store.GetFollowers (username)

}

The social graph manager is a pretty simple library. Let's continue peeling the onion and
look at the service itself, which lives under the svc subdirectory: https://github.com/the-

gigi/delinkcious/tree/master/svc/social_graph_service.

Let's start with the social_graph_service.go file. We'll go over the main parts that are
similar for most services. The file lives in the service package, which is a convention I use.
It imports several important packages:

package service

import (
httptransport "github.com/go-kit/kit/transport/http"
"github.com/gorilla/mux"
sgm "github.com/the-gigi/delinkcious/pkg/social_graph_manager"

[671]

https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service

Delinkcious - the Sample Application Chapter 3

"log"
"net/http"
)

The Go kit ht tp transport package is necessary for services that use the HTTP transport.
The gorilla/mux package provides top-notch routing capabilities.
social_graph_manager is the implementation of the service that does all the heavy
lifting. The 1og package is for logging, and the net /http package is for serving HTTP
since it's an HTTP service.

There is just one function called Run () . It starts by creating a data store for the social graph
manager and then creates the social graph manager itself, passing it the store field. So, the
functionality of social_graph_manager is implemented in the package, but the service
is responsible for making the policy decisions and passing a configured data store. If
anything goes wrong at this point, the service just exits with a 1og.Fatal () call because
there is no way to recover at this early stage:

func Run () {

store, err := sgm.NewDbSocialGraphStore ("localhost", 5432, "postgres",
"postgres")

if err != nil {

log.Fatal (err)
}
svc, err := sgm.NewSocialGraphManager (store)
if err != nil {
log.Fatal (err)
}

The next part is constructing the handler for each endpoint. This is done by calling the
NewsServer () function of the HTTP transport for each endpoint. The parameters are the
Endpoint factory function, which we will review soon, a request decoder function, and the

response encoder function. For HTTP services, it is common for requests and responses to
be encoded as JSON:

followHandler := httptransport.NewServer (
makeFollowEndpoint (svc),
decodeFollowRequest,
encodeResponse,

)

unfollowHandler := httptransport.NewServer (
makeUnfollowEndpoint (svc),
decodeUnfollowRequest,

encodeResponse,

[68]

Delinkcious - the Sample Application Chapter 3

getFollowingHandler := httptransport.NewServer (
makeGetFollowingEndpoint (svc),
decodeGetFollowingRequest,
encodeResponse,

)

getFollowersHandler := httptransport.NewServer (
makeGetFollowersEndpoint (svc),
decodeGetFollowersRequest,
encodeResponse,

)

At this point, we have SocialGraphManager properly initialized and the handlers for all

the endpoints. It's time to expose them to the world via the gorilla router. Each endpoint
is associated with a route and a method. In this case, the follow and unfollow operations
use the POST method and the following and followers operations use the GET method:

r := mux.NewRouter ()

r.Methods ("POST") .Path ("/follow") .Handler (followHandler)

r.Methods ("POST") .Path ("/unfollow") .Handler (unfollowHandler)

r.Methods ("GET") .Path ("/following/{username}") .Handler (getFollowingHandler)
r.Methods ("GET") .Path ("/followers/{username}") .Handler (getFollowersHandler)

The last part is just passing the configured router to the ListenAndServe () method of the
standard HTTP package. This service is hardcoded to listen on port 9090. Later on in this
book, we will see how to configure things in a flexible and more industrial-strength way:

log.Println("Listening on port 9090...")
log.Fatal (http.ListenAndServe (":9090", r))

Implementing the support functions

As you may recall, the social graph implementation in the pkg/social_graph_manager
package is completely transport agnostic. It implements the SocialGraphManager
interface in terms of Go and couldn't care less whether the payload is JSON or protobuf and
coming over the wire through HTTP, gRPC, Thrift, or any other method. The service is
responsible for translation, encoding, and decoding. These support functions are
implemented in the transport.go file.

[69]

Delinkcious - the Sample Application Chapter 3

For each endpoint, there are three functions, which are the input to the HTTP transport's
NewServer () function of Go kit:

¢ The Endpoint factory function
e The request decoder

e The response encoder

Let's start with the Endpoint factory function, which is the most interesting. Let's use the
GetFollowing () operation as an example. The makeGetFollowingEndpoint () function
takes a SocialGraphManager interface as input (as you saw earlier, in practice, it will be
the implementation in pkg/social_graph_manager). It returns a generic
endpoint.Endpoint function, which a function that takes a Context and a generic
request and returns a generic response and error:

type Endpoint func(ctx context.Context, request interface{}) (response
interface{}, err error)

The job of the makeGetFollowingEndpoint () method is to return a function that
complies with this signature. It returns such a function that, in its implementation, takes the
generic request (the empty interface) and type before asserting it to a concrete request, that
is, getByUsernameRequest:

reqg := request. (getByUsernameRequest)

This is a key concept. We cross the boundary from a generic object, which could be from
anything to a strongly typed struct. This ensures that, even though the Go kit endpoints
operate in terms of empty interfaces, the implementation of our microservice is type
checked. If the request doesn't contain the right fields, it panics. I could also check whether
it's possible to do the type assert and return an error instead of panicking, which might be
more appropriate in some contexts:

req, ok := request. (getByUsernameRequest)
if lok {

}

Let's take a look at the request itself. It is simply a struct with a single string field called
Username. It has the JSON struct tag, which is optional in this case because the JSON
package can automatically work with field names that differ from the actual JSON just by
case like (Username versus username):

type getByUsernameRequest struct {
Username string "~ json:"username"’

}

[70]

Delinkcious - the Sample Application Chapter 3

Note that the request type is get ByUsernameRequest and not getFollowingRequest, as
you may expect in order to be consistent with the operation it is supporting. The reason for
this is that I actually use the same request for multiple endpoints. The GetFollowers ()
operation also requires a username, and getByUsernameRequest serves both
GetFollowing()andGetFollowers(L

At this point, we have the username from the request and we can invoke the
GetFollowing () method of the underlying implementation:

followingMap, err := svc.GetFollowing(reqg.Username)

The result is a map of the users that the requested user is following and the standard error.
However, this is an HTTP endpoint, so the next step is to package this information into the
getFollowingResponse struct:

type getFollowingResponse struct {
Following map[stringlbool " Json:"following"®
Err string ‘Jjson:"err"®

}

The following map can be translated into a JSON map of st ring->bool. However, there is
no direct equivalent to the Go error interface. The solution is to encode the error as a string
(viaerr.Error ()), where an empty string represents no error:

res := getFollowingResponse{Following: followingMap}
if err !'= nil {
res.Err = err.Error ()

}

Here is the entire function:

func makeGetFollowingEndpoint (svc om.SocialGraphManager) endpoint.Endpoint
{
return func(_ context.Context, request interface{}) (interface{}, error)

reqg := request. (getByUsernameRequest)
followingMap, err := svc.GetFollowing(reqg.Username)
res := getFollowingResponse{Following: followingMap}
if err != nil {

res.Err = err.Error ()
}

return res, nil

[71]

Delinkcious - the Sample Application Chapter 3

Now, let's take a look at the decodeGetFollowingRequest () function. It accepts the
standard http.Request object. It needs to extract the username from the request and
return a getByUsernameRequest struct that the endpoint can use later. At the HTTP
request level, the username will be a part of the request path. The function will parse the
path, extract the username, prepare the request, and return it or an error if anything goes
wrong (for example, no username is provided):

func decodeGetFollowingRequest (_ context.Context, r *http.Request)
(interface{}, error) {

parts := strings.Split (r.URL.Path, "/")
username := parts[len(parts)-1]
if username == "" || username == "following" {

return nil, errors.New("user name must not be empty")

}
request := getByUsernameRequest{Username: username}
return request, nil

The last support function is the encodeResonse () function. In theory, each endpoint can
have its own custom response encoding function. However, in this case, I am using a
single generic function that knows how to encode all the responses into JSON:

func encodeResponse (_ context.Context, w http.ResponseWriter, response
interface{}) error {
return json.NewEncoder (w) .Encode (response)

}

This requires all the response structs to be JSON serializable, which was taken care of by
translating the Go error interface into a string by the endpoint implementation.

Invoking the API via a client library

The social graph manager is now accessible through an HTTP REST API. Here is a quick
local demo. First, I will launch the Postgres DB (I have a Docker image called postgres),
which is used as the data store, and then I will run the service itself in the service
directory, thatis, delinkcious/svc/social_graph_service:

$ docker restart postgres
$ go run main.go

2018/12/31 10:41:23 Listening on port 9090...

[72]

Delinkcious - the Sample Application Chapter 3

Let's add a couple of follower/following relationships by invoking the /follow endpoint. I
will use the excellent HTTPie (https://httpie.org/), which is a better curl in my honest
opinion. However, you can use curl if you prefer:

$ http POST http://localhost:9090/follow followed=liat follower=gigi
HTTP/1.1 200 OK

Content-Length: 11

Content-Type: text/plain; charset=utf-8

Date: Mon, 31 Dec 2018 09:19:01 GMT

{

"arr": ""

}

$ http POST http://localhost:9090/follow followed=guy follower=gigi
HTTP/1.1 200 OK

Content-Length: 11

Content-Type: text/plain; charset=utf-8

Date: Mon, 31 Dec 2018 09:19:01 GMT

{

"arr": ""

}

These two calls made the gigi user follow the 1iat and guy users. Let's use the
/following endpoint to verify this:

$ http GET http://localhost:9090/following/gigi
HTTP/1.1 200 OK

Content-Length: 37

Content-Type: text/plain; charset=utf-8

Date: Mon, 31 Dec 2018 09:37:21 GMT

{
"err": "",
"following": {
"guy": true
"liat": true
}
}

The JSON response has an empty error, and the following map contains the guy and
liat users, as expected.

[73]

https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/

Delinkcious - the Sample Application Chapter 3

While a REST APl is cool, we can do better. Instead of forcing the caller to understand the
URL schema of our service and decode and encode JSON payloads, why not provide a
client library that does all of that? This is especially true for internal microservices that all
talk to each other using a small number of languages, and in many cases, just one language.
The service and client can share the same interface and, maybe even some common types.
In addition, Go kit provides support for client-side endpoints that are pretty similar to
service-side endpoints. This translates directly into a very streamlined end-to-end
developer experience, where you just stay in the programming language space. All the
endpoints, transports, encoding, and decoding can remain hidden as an implementation
detail for the most part.

The social graph service provides a client library that lives in the
pkg/social_graph_client package. The client.go file is similar to the
social_graph_service.go file and is responsible for creating a set of endpoints in the
NewClient () function and returning the SocialGraphManager interface. The
NewClient () function takes the base URL as an argument and then constructs a set of
client endpoints using Go kit's NewClient () function of the HTTP transport. Each
endpoint requires a URL, a method (GET or POST, in this case), a request encoder, and
a response decoder. It's like a mirror image of the service. Then, it assigns the client
endpoints to the EndpointSet struct, which can expose them through the
SocialGraphManager interface:

func NewClient (baseURL string) (om.SocialGraphManager, error) {
// Quickly sanitize the instance string.
if !strings.HasPrefix (baseURL, "http") {

baseURL = "http://" + baseURL
}
u, err := url.Parse (baseURL)
if err != nil {

return nil, err

}

followEndpoint := httptransport.NewClient (
"POST",
copyURL (u, "/follow"),
encodeHTTPGenericRequest,
decodeSimpleResponse) .Endpoint ()

unfollowEndpoint := httptransport.NewClient (
"POST",
copyURL (u, "/unfollow"),
encodeHTTPGenericRequest,
decodeSimpleResponse) .Endpoint ()

[74]

Delinkcious - the Sample Application Chapter 3

getFollowingEndpoint := httptransport.NewClient (
n GETII ,
copyURL (u, "/following"),
encodeGetByUsernameRequest,
decodeGetFollowingResponse) .Endpoint ()

getFollowersEndpoint := httptransport.NewClient (
n GETII ,
copyURL (u, "/followers"),
encodeGetByUsernameRequest,
decodeGetFollowersResponse) .Endpoint ()

// Returning the EndpointSet as an interface relies on the
// EndpointSet implementing the Service methods. That's Jjust a simple
bit
// of glue code.
return EndpointSet{
FollowEndpoint: followEndpoint,
UnfollowEndpoint: unfollowEndpoint,
GetFollowingEndpoint: getFollowingEndpoint,
GetFollowersEndpoint: getFollowersEndpoint,
}, nil

}

The EndpointSet struct is defined in the endpoints. go file. It contains the endpoints
themselves, which are functions, and it implements the SocialGraphManager method,
where it delegates the work to the endpoint's functions:

type EndpointSet struct {
FollowEndpoint endpoint.Endpoint
UnfollowEndpoint endpoint.Endpoint
GetFollowingEndpoint endpoint.Endpoint
GetFollowersEndpoint endpoint.Endpoint
}

Let's examine the EndpointsSet struct's GetFollowing () method. It accepts the username
as a string, and then it calls the endpoint with a getByUserNameRequest that's populated
with the input username. If calling the endpoint function returned an error, it just bails out.
Otherwise, it does type assertion to convert the generic response into a
getFollowingResponse struct. If its error string wasn't empty, it creates a Go error from
it. Eventually, it returns the following users from the response as a map:

func (s EndpointSet) GetFollowing(username string) (following
map [string]bool, err error) {

resp, err := s.GetFollowingEndpoint (context.Background(),
getByUserNameRequest {Username: username})

if err != nil {

[75]

Delinkcious - the Sample Application Chapter 3

return
}
response := resp. (getFollowingResponse)
if response.Err != "" {

err = errors.New(response.Err)

}
following = response.Following
return

Storing data

We've seen how Go kit and our own code take an HTTP request with a JSON payload,
translate it into a Go struct, invoke the service implementation, and encode the response as
a JSON to return to the caller. Now, let's take a deeper look at the persistent storage of the
data. The social graph manager is responsible for maintaining the followed/follower
relationships between users. There are many options for storing such data, including
relational databases, key-value stores, and, of course, graph databases, which may be the
most natural. I chose to use a relational database at this stage because it is familiar, reliable,
and can support the following necessary operations well:

Follow

Unfollow

Get followers

Get following

However, if we later discover that we prefer a different data store or extend the relational
DB with some caching mechanism, it will be very easy to do so because the data store of the
social graph manager is hidden behind an interface. It is actually using the very same
interface, that is, SocialGraphManager. As you may remember, the social graph manager
package accepts a store argument of the SocialGraphManager type in its factory function:

func NewSocialGraphManager (store om.SocialGraphManager)
(om.SocialGraphManager, error) {
if store == nil {
return nil, errors.New("store can't be nil")
3

return &SocialGraphManager{store: store}, nil

[76]

Delinkcious - the Sample Application Chapter 3

Since the social graph manager interacts with its data store through this interface, changing
implementations can be done without any code changes to the social graph manager itself.
I will take advantage of this for unit testing, where I use an in-memory data store that is
easy to set up, can be quickly populated with test data, and allows me to run tests locally.

Let's look at the in-memory social graph data store, which can be found
at https://github.com/the—gigi/delinkcious/blob/master/pkg/
social_graph_manager/in_memory_social_graph_store.go

It has very few dependencies — just the SocialGraphManager interface and the standard
errors package. It defines a SocialUser struct, which contains a username and the names
of the users it is following, as well as the names of the users that they are followed by:

package social_graph_manager

import (
"errors"
om "github.com/the-gigi/delinkcious/pkg/object_model™"

type Followers map[string]bool
type Following map[string]bool

type SocialUser struct {
Username string
Followers Followers
Following Following

func NewSocialUser (username string) (user *SocialUser, err error) {
if username == "" {
err = errors.New("user name can't be empty")
return

user = &SocialUser{Username: username, Followers: Followers{},
Following: Following{}}
return

[77]

https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go

Delinkcious - the Sample Application Chapter 3

The data store itself is a struct called InMemorySocialGraphStore that contains a map
between usernames and the corresponding SocialUser struct:

type SocialGraph map[string] *SocialUser

type InMemorySocialGraphStore struct {
socialGraph SocialGraph

func NewInMemorySocialGraphStore () om.SocialGraphManager {
return &InMemorySocialGraphStore({
socialGraph: SocialGraph{},

}

This is all pretty pedestrian. The InMemorySocialGraphStore struct implements the
SocialGraphManager interface methods. For example, here is the Follow () method:

func (m *InMemorySocialGraphStore) Follow(followed string, follower string)
(err error) A

followedUser := m.socialGraph[followed]

if followedUser == nil {
followedUser, _ = NewSocialUser (followed)
m.socialGraph[followed] = followedUser

if followedUser.Followers[follower] {
return errors.New ("already following")

followedUser.Followers[follower] = true
followerUser := m.socialGraph[follower]
if followerUser == nil {
followerUser, _ = NewSocialUser (follower)
m.socialGraph[follower] = followerUser
}
followerUser.Following[followed] = true
return

[78]

Delinkcious - the Sample Application Chapter 3

At this point, there is no need to focus on how it works too much. The main point I want to
get across is that by using interfaces as abstractions, you can get a lot of flexibility and clean
separation of concerns that helps a lot when you want to develop specific parts of the
system or a service during testing. If you want to make significant changes, such as
changing your underlying data stores or using multiple data stores interchangeably, then
having an interface in place is a life saver.

Summary

In this chapter, you got a close look at the Go kit toolkit, the overall Delinkcious system and
its microservices, and got to drill down into the social graph component of Delinkcious.
The main theme of this chapter is that Go kit provides clean abstractions, such as services,
endpoints and transports, and generic functionality for breaking microservices into layers.
Then, you add your code for a consistent system of loosely-coupled yet cohesive
microservices. You also followed the path of a request from the client, all the way to the
service and back through all the layers. At this point, you should have a general grasp of
how Go kit helps shape the Delinkcious architecture and how it would benefit any other
system. You may be a little overwhelmed by all of this information, but remember that the
complexity it neatly packaged and that you can ignore it most of the time, focus on your
application, and just reap the benefits.

In the next chapter, we'll address a very critical part of any modern microservices-based
system — the CI/CD pipeline. We'll create a Kubernetes cluster, configure CircleCl, deploy
the Argo CD continuous delivery solution, and see how to deploy Delinkcious on
Kubernetes.

Further reading

Let's refer to the following references:

e To learn more about Go kit, check out https://gokit.io/.

¢ To better understand the SOLID design principles that Delinkcious utilizes,
check out https://en.wikipedia.org/wiki/SOLID.

[79]

https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID

Setting Up the CI/CD Pipeline

In a microservice-based system, there are many moving parts. Kubernetes is a rich platform
that provides a lot of building blocks for your system. Managing and deploying all of these
components reliably and predictably requires a high level of organization and automation.
Enter the CI/CD pipeline.

In this chapter, we will understand the problem the CI/CD pipeline solves, cover the
different options for CI/CD pipelines for Kubernetes, and finally build a CI/CD pipeline for
Delinkcious.

In this chapter, we will discuss the following topics:

¢ Understanding a CI/CD pipeline
Options for Kubernetes CI/CD pipelines
GitOps

Automated CI/CD

Building your images with CircleCI

Setting up continuous delivery for Delinkcious

Technical requirements

In this chapter, you will work with CircleCI and Argo CD. I will show you how to install
Argo CD in the Kubernetes cluster later. To set up CircleCl, for free, follow Getting started
instructions on their website at https://circleci.com/docs/2.0/getting-started/.

https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/

Setting Up the CI/CD Pipeline Chapter 4

The code

The Delinkcious release for this chapter can be found at https://github.com/the-gigi/

delinkcious/releases/tag/v0.2.

We will be working on the main Delinkcious code base, so there are no code snippets or
examples.

Understanding a CI/CD pipeline

The development life cycle of software systems goes from code, through testing, generating
artifacts, even more testing, and eventually, deployment to production. The basic idea is
that whenever a developer commits changes to their source control system (for example,
GitHub), these changes are detected by the continuous integration (CI) system, which
immediately runs the tests.

This is often followed by a review by peers and merging the code changes (or a pull
request) from a feature branch or development branch into the master. In the context of
Kubernetes, the CI system is also responsible for building the Docker images for the
services and pushing them to the image registry. At this point, we have Docker images that
contain new code. This is where the CD system comes in.

When a new image becomes available, the continuous delivery (CD) system will deploy it
to the target environment(s). CD is the process of ensuring that the overall system is in a
desired state, which is done though provisioning and deployments. Sometimes,
deployment can occur as a result of configuration change if the system doesn't support
dynamic configuration. We will discuss configuration in great detail in Chapter 5,
Configuring Microservices with Kubernetes.

So, a CI/CD pipeline is a set of tools that detect code changes and can take them all the way
to production according to the processes and policies of the organization. It is typically the
responsibility of DevOps engineers to build and maintain this pipeline, and it is used
heavily by developers.

Every organization and company (or even different groups within the same company) will
have a specific process. In one of my first jobs, my first task was to replace a Perl-based
build system (that's what CI/CD pipelines were called back then) with lots of recursive
makefiles that nobody understood any more. That build system had to run code generation
steps on Windows using some modeling software, compile and run C++ unit tests on two
flavors of Unix (including an embedded flavor) using two different toolchains, and trigger
open CVS. I chose Python and had to create everything from scratch.

[81]

https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2

Setting Up the CI/CD Pipeline Chapter 4

It was fun, but very specific to this company. It's common to think of CI/CD pipelines as a
workflow of steps driven by events.

The following diagram demonstrates a simple CI/CD pipeline:

Developer Source Control Cl Server Image Registry CD Server K8S Cluster

|
‘ GitHub - - Docker ‘ Argo - Kubernetes

The stages in this pipeline function as follows:

1. The developer commits their changes to GitHub (source control)
2. The CI server runs the tests, builds a Docker image, and pushes the image to
DockerHub (image registry)

3. The Argo CD server detects that there is a new image available and deploys to
the Kubernetes cluster

Now that we have understood the CI/CD pipeline, let's examine a specific CI/CD pipeline
choice.

Options for the Delinkcious CI/CD pipeline

Choosing a CI/CD pipeline for your system is a major decision. When I faced this decision
for Delinkcious, I looked into several alternatives. There isn't an obvious choice here.
Kubernetes is moving fast and the tooling and processes struggle to catch up. I evaluated a
few choices and settled on CircleCI for continuous integration and Argo CD for continuous
delivery. I initially considered a one-stop shop for the entire CI/CD pipeline and, after
reviewing some options, I decided that I preferred to consider them as two separate entities
and chose a different solution for CI and CD. Let's briefly review some of these options
(there are many, many more):

e Jenkins X

e Spinnaker

Travis CI and CircleCI
Tekton

Argo CD

Rolling your own

[82]

Setting Up the CI/CD Pipeline Chapter 4

Jenkins X

Jenkins X was my first choice and favorite. I read some articles and watched some
presentations that made me want to like it. It provides all the features you want, including
some advanced capabilities:

e Automated CI/CD

¢ Environment promotion via GitOps

e Pull request preview environments

¢ Automatic feedback on your commit and pull requests

Under the cover, it utilizes Jenkins, which is a mature, albeit complex, product. The premise
of Jenkins X is that it will mask the complexity of Jenkins and provide a Kubernetes-specific
streamlined workflow.

I was disappointed by a couple of issues when I tried to actually use Jenkins X:

e It doesn't work out of the box and troubleshooting is complicated.
e Itis very opinionated.
e It doesn't support the monorepo approach well (or at all).

I tried to make it work for a while, but after reading about other people's experiences and
seeing the lack of response in the Jenkins X slack community channels, I was turned off
Jenkins X. I still like the idea, but it really has to be super stable before I try it again.

Spinnaker

Spinnaker is an open source CI/CD solution from Netflix. It has many benefits, including
the following:

e It has been adopted by many companies.
e It has a lot of integration with other products.
e It supports a lot of best practices.

The downsides of Spinnaker are as follows:

e It is alarge and complicated system.
e It has a steep learning curve.
e It is not Kubernetes-specific.

[83]

Setting Up the CI/CD Pipeline Chapter 4

In the end, I decided to skip on Spinnaker — not because of any fault of Spinnaker itself, but
because I don't have experience with it. I didn't want to learn such a large product from
scratch while developing Delinkcious itself and writing this book. You may very well find
that Spinnaker is the right CI/CD solution for you.

Travis Cl and CircleClI

I prefer to separate the CI solution from the CD solution. Conceptually, the role of the CI
process is to generate a container image and push it to a registry. It doesn't need to be
aware of Kubernetes at all. The CD solution, on the other hand, must be Kubernetes-aware,
and it ideally runs inside the cluster.

For CI, I considered Travis CI and CircleCI. Both provide free CI services for open source
projects. I settled on CircleCI because it is more feature-complete and has a nicer UI, which
is important. I'm sure Travis CI would work well too. I use Travis CI in some of my other
open source projects. It's important to note that the CI part of the pipeline is completely
Kubernetes-agnostic. The end result is a Docker image in an image registry. This Docker
image can be used for other purposes and not necessarily deployed in a Kubernetes cluster.

Tekton

Tekton is a very interesting project. It is Kubernetes-native and has great abstractions of
steps, tasks, runs, and pipelines. It is relatively young, but seems very promising. It was
also selected as one of the inaugural projects of the CD Foundation: https://cd.

foundation/projects/.
It will be interesting to see how it evolves.
The advantages of Tekton are as follows:

¢ Modern design and clean conceptual model

¢ Supported by the CD foundation

e Built on top of prow (the CI/CD solution of Kubernetes itself)
¢ Kubernetes-native solution

The disadvantages of Tekton are as follows:

e It's still fairly new and unstable.
e It doesn't have all the features and capabilities of other solutions.

[84]

https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/

Setting Up the CI/CD Pipeline Chapter 4

Argo CD

The CD solution, as opposed to the CI solution, is very specific to Kubernetes. I picked
Argo CD for several reasons:

¢ Kubernetes-aware

¢ Implemented on top of a general-purpose workflow engine (Argo)
Great Ul

¢ Runs on your Kubernetes cluster

e Implemented in Go (not that important, but I like it)
Argo CD has a number of disadvantages, too:

e [tisn't a member of the CD foundation or the CNCF (less recognition in the
community).

e Intuit, the primary company behind it, is not a major cloud-native powerhouse.

Argo CD is a young project that comes from Intuit, who acquired the original developers of
the Argo project — Applatix. I really like its architecture and, when I tried it, everything
worked like a charm.

Rolling your own

I briefly considered creating my own simple CI/CD pipeline. The operations are not
complicated. For the purpose of this book, I didn't need a very reliable solution, and it
would have been easy to explain exactly what happens at each step. However, with the
reader in mind, I decided that it was best to use existing tools that can be utilized directly
and also save me time developing a poor CI/CD solution.

At this point, you should have a good idea of the different options for CI/CD solutions on
Kubernetes. We reviewed most of the popular solutions and chose CircleCI and Argo CD as
the best fit for the Delinkcious CI/CD solution. Next, we'll discuss the hot new trend of
GitOps.

[85]

Setting Up the CI/CD Pipeline Chapter 4

GitOps

GitOps is a new buzzword, although the concept is not very new. It is another variant of
Infrastructure as Code. The basic idea is that your code, configuration, and the resources it
requires should all be described and stored in a source control repository where they are
version controlled. Whenever you push a change to the repository, your CI/CD solution
will respond and take the correct action. Even rollbacks can be initiated just by reverting to
a previous version in your repository. The repository doesn't have to be Git, of course, but
GitOps sounds way better than Source Control Ops, and most people use Git anyway, so
here we are.

Both CircleCI and Argo CD fully support and advocate the GitOps model. When your git
push code changes, CircleCI will trigger on it and start building the correct images. When
you git push changes to the Kubernetes manifests, Argo CD will trigger and deploy those
changes to your Kubernetes cluster.

Now that we're clear on what GitOps is, we can start implementing the continuous
integration part of the pipeline for Delinkcious. We will use CircleCI to build Docker
images from source code.

Building your images with CircleCl

Let's dive in and look at the Delinkcious CI pipeline. We will go over each step in the
continuous integration process, which includes the following;:

e Reviewing the source tree

¢ Configuring the CI pipeline

Understanding the build script

Dockerizing a Go service with a multi-stage Dockerfile

Exploring the CircleCI user interface

[86]

Setting Up the CI/CD Pipeline Chapter 4

Reviewing the source tree

Continuous integration is about building and testing stuff. The first step is to understand
what needs to be built and tested in Delinkcious. Let's have another look at the Delinkcious
source tree:

$ tree -L 2

|—— LICENSE

—— README.md

—— build.sh

b—— cmd

| —— link_service_e2e

| }—— social_graph_service_e2e
| L user_service_e2e

b—— go.mod

b—— go.sum

F— pkg

| —— db_util

| —— link_manager

| —— link_manager_client
| —— object_model

| j—— social_graph_client
| }—— social_graph_manager
| —— user_client

|

L—— user_manager
L— svec

—— api_gateway_service
—— 1link_service
—— social_graph_service
L— user_service

The pkg directory contains packages that are used by services and commands. We should
run the unit tests of these packages. The svc directory contains our microservices. We
should build those services, package each one in a properly versioned Docker image, and
push those images to DockerHub (the image registry). The cmd directory currently contains
end-to-end tests. Those are designed to run locally and don't need to be built by the CI
pipeline (this can be changed if you want to add end-to-end tests to our testing processes).

[871]

Setting Up the CI/CD Pipeline Chapter 4

Configuring the CI pipeline
CircleCl is configured by a single YAML file with a standard name and location, that
is, <root directory>/.circleci/config.yaml:

version: 2
jobs:
build:
docker:
- image: circleci/golang:1.11
- image: circleci/postgres:9.6-alpine
environment: # environment variables for primary container
POSTGRES_USER: postgres
working_directory: /go/src/github.com/the-gigi/delinkcious

steps:
— checkout
- run:
name: Get all dependencies
command: |
go get -v ./...
go get —u github.com/onsi/ginkgo/ginkgo
go get —-u github.com/onsi/gomega/...
- run:

name: Test everything
command: ginkgo -r -race -failFast -progress
- setup_remote_docker:
docker_layer_caching: true
- run:
name: build and push Docker images
shell: /bin/bash
command: |
chmod +x ./build.sh
./build.sh

[881]

Setting Up the CI/CD Pipeline Chapter 4

Let's break it apart and understand what's going on. The first part specifies the build job,
and below that are the necessary Docker images (golang and postgres) and their
environment. Then, we have the working directory, where the build commands should be

executed:

version: 2

jobs:

build:

docker:

— image: circleci/golang:1.11

- image: circleci/postgres:9.6-alpine

environment: # environment variables for primary container
POSTGRES_USER: postgres
working_directory: /go/src/github.com/the-gigi/delinkcious

The next part is the build steps. The first step is just checkout. In the CircleCI U], I
associated the project with the Delinkcious GitHub repository so that it knows where to
checkout from. If the repository is not public, then you'll need to provide an access token,
too. The second step is a run command that gets all the Go dependencies of Delinkcious:

steps:
— checkout
- run:
name: Get all dependencies
command: |
go get -v ./...
go get -u github.com/onsi/ginkgo/ginkgo
go get -u github.com/onsi/gomega/...

I 'had to explicitly go get the ginkgo framework and the gomega library
because they are imported using Golang dot notation, which makes them
invisible to go get ./....

Once we have all the dependencies, we can run the tests. I am using the ginkgo test
framework in this case:
— run:

name: Test everything
command: ginkgo -r -race -failFast -progress

[891]

Setting Up the CI/CD Pipeline Chapter 4

The next section is where it builds and pushes the Docker images. Since it requires access to
the Docker daemon, it needs special setup via the setup_remote_docker step. The
docker_layer_caching option is used to make everything more efficient and faster by
reusing previous layers. The actual build out and push is handled by the build. sh script,
which we will look at in the next section. Note that I made sure it's executable via chmod
+x:

- setup_remote_docker:
docker_layer_caching: true
- run:
name: build and push Docker images
shell: /bin/bash
command: |
chmod +x ./build.sh
./build.sh

I'm just scratching the surface here. There is much more to CircleCI, with orbs for reusable
configuration, workflows, triggers, and artifacts.

Understanding the build.sh script

The build. sh script is available at https://github.com/the-gigi/delinkcious/blob/
master/build.sh.

Let's examine it bit by bit. There are several best practices we will follow here. First, it's a

good idea to add a shebang with the path of the binary that will execute your script — that
is, if you know where it is located. If you try to write a cross-platform script that works on
many different platforms, you may need to rely on the path or other techniques. set -eo
pipefail will fail out immediately (even in the middle of a pipe) if anything goes wrong.

This is highly recommended for production environments:

#!/bin/bash

set —eo pipefail

[90]

https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh

Setting Up the CI/CD Pipeline Chapter 4

The next few lines just set some variables for directories and the tags for the Docker images.
There are two tags: STABLE_TAB and TAG. The STABLE_TAG tag has a major and minor
version and doesn't change in every build. The TAG includes the CIRCLE_BUILD_NUM
provided by CircleCI and is incremented in every build. This means that the TAG is always
unique. This is considered a best practice for tagging and versioning images:

IMAGE_PREFIX='glgl'
STABLE_TAG='0.2"

TAG="${STABLE_TAG}.${CIRCLE_BUILD_NUM}"
ROOT_DIR="S$ (pwd) "
SVC_DIR="${ROOT_DIR}/svc"

Next, we go to the svc directory, which is the parent directory of all our services, and log in
to DockerHub using the environment variables we set in the CircleCI project.

cd $SVC_DIR
docker login -u $DOCKERHUB_USERNAME -p $DOCKERHUB_PASSWORD

Now, we get to the main event. The script iterates over all the subdirectories of the svc
directory looking for Dockerfile.If it finds a Dockerfile, it builds an image, tags it
using a combination of service name and both TAG and STABLE_TAG, and finally pushes the
tagged images to the registry:

cd "${SVC_DIR}/Ssvc"
if [[! —-f Dockerfile]]; then
continue
fi
UNTAGGED_IMAGE=S (echo "${IMAGE_PREFIX}/delinkcious—${svc}" | sed -e
's/_/-/g' —e 's/-service//g'")
STABLE_IMAGE="${UNTAGGED_IMAGE}:${STABLE_TAG}"
IMAGE="${UNTAGGED_IMAGE}:${TAG}"
docker build -t "$SIMAGE"
docker tag "${IMAGE}" "${STABLE_IMAGE}"
docker push "${IMAGE}"
docker push "${STABLE_IMAGE}"
done
cd $ROOT_DIR

[91]

Setting Up the CI/CD Pipeline Chapter 4

Dockerizing a Go service with a multi-stage
Dockerfile

The Docker images you build in a microservice system are very important. You will build
many of them, and each one many, many times. These images will also be shipped back
and forth over the wire, and they present a target for attackers. With this in mind, it makes
sense to build images that have the following properties:

e Lightweight
e Present minimal attack surface

This can be done by using a proper base image. For example, Alpine is very popular due to
its small footprint. However, nothing beats the scratch base image. With Go-based
microservices, you can literally create an image that just contains your service binary. Let's
continue peeling the onion and look into the Dockerfile of one of the services. Spoiler alert:
they are all virtually identical, and just differ in terms of their service names.

You can find the Dockerfile of 1ink_service at https://github.com/

the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile

We are using the multi-stage Dockerfile here. We will build the image using the standard
Golang image. The arcane magic in the last line is what it takes to build a truly static and
self-contained Golang binary that doesn't require a dynamic runtime library:

FROM golang:1.11 AS builder
ADD ./main.go main.go

ADD ./service service

Fetch dependencies

RUN go get -d -v

Build image as a truly static Go binary
RUN CGO_ENABLED=0 GOOS=linux go build -o /link_service -a -tags netgo -
ldflags '-s -w'

[92]

https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile

Setting Up the CI/CD Pipeline

Chapter 4

We then copy the final binary into a scratch base image and create the smallest and most
secure image possible. We exposed the 7070 port, which is the port the service listens on:

FROM scratch
MAINTAINER Gigi Sayfan <the.gigi@gmail.com>

COPY —-from=builder /link_service /app/link_service

EXPOSE 7070
ENTRYPOINT ["/app/link_service"]

Exploring the CircleCl Ul

CircleCI has a very friendly Ul Here, you can set various project settings, explore your
builds, and drill down into specific builds. Remember that we used a monorepo approach
and that, in the build. sh file, we took care of building multiple services. From CircleCI's
point of view, Delinkcious is a single cohesive project. Here is the project's view of
Delinkcious, which displays the recent builds:

& success

& SUCCESS

& SUCCESS

& success

@ FaLED

& success

& success

@ FALED

master #23

. Added Dockerfile + k8s manifests for link service

master #22

. Added Dockerfile + k8s manifests for user service

master #21

Q reset tag to 8.1

master #20

. move build.sh out of .circleci

master #19

Q hide build.sh in .circleci

master #18

’ figure out bash options

master #17

. debug build.sh

master #16

Q debug build.sh

workflow

build

workflow

build

workflow

build

workflow

build

r workflow

workflow

build

workflow

build

 workflow

build

1 day ago

1 day ago

8 days ago

8 days ago

8 days ago

8 days ago

8 days ago

8 days ago

My jobs All jobs
02:13
2.8
9affebs
01:57
2.8
9636686
01:18
2.8
dad259e
01:34
2.8
a599d85
00:48
2.8
dbabbe3
01:39
2.8
17c976a
00:35
2.8
b15eb2@
00:31
2.8
85c2eed

[93]

Setting Up the CI/CD Pipeline

Chapter 4

Let's drill down into a successful build. All is well and green:

Jobs » the-gigi » delinkcious » master » 23 (build)

Previous: Parallelism Workflow:

1day ago (02:13) 22

Queued: Resources: @

2CPU/4096MB

Context: @

Ixoutofdx 00:00 waiting +00:01 in queue workflow N/A

COMMITS
Gigi 9aff@b5 Added Dockerfile + k8s manifests for link service
Test Summary Queue (00:01) Artifacts Configuration

Set Up Test Summary

Show containers: All (1)

Suceessful (1) Failed (0

2.8 G Rerun workflow v o

Triggered by
Gigi Sayfan (pushed 9aff0bs)

Timing Parameters

Spin up Environment

Container circleci/postgres:9.6-alpine

Checkout code

Get all dependencies

Test everything

Setup a remote Docker engine

build and push Docker images

— — — — — ——
< @ 7 ¥ ¥ ¥ ¥

00:01

02:12

00:04

00:10

00:10

00:02

01:43

You can even expand any step and check the console output. Here's the output of the test

stage:

I $ Checkout code
| $ Getall dependencies

%2 Test everything

$ #!/bin/bash -eo pipefail
ginkgo -r -race -failFast -progress

| $ Setup a remote Docker engine

| » build and push Docker images

00:04

00:10

00:10

Exit code: 8

00:02

01:43

[94]

Setting Up the CI/CD Pipeline Chapter 4

This is cool, but it's even more useful when things go wrong and you need to figure out
why. For example, at one point, I tried to hide the build. sh script inside the .circleci
directory next to the config.yaml file, but it wasn't added to the Docker context and
produced the following error:

Jobs » the-gigi » delinkcious » master » 19 (build) 2.8 C Rerun workflow v &
Test Summary Queue (00:02) Artifacts Configuration Timing Parameters

Show containers: All (1) Successful (0) Failed (1)

] o

Spin up Environment 00-04

Container circleci/postgres:9.6-alpine<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>