

Hands-On Microservices
with Kubernetes

Build, deploy, and manage scalable microservices
on Kubernetes

Gigi Sayfan

BIRMINGHAM - MUMBAI

Hands-On Microservices with Kubernetes
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Amitendra Pathak
Senior Editor: Rahul Dsouza
Technical Editor: Prachi Sawant
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Jayalaxmi Raja

First published: July 2019

Production reference: 1050719

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-546-8

www.packtpub.com

http://www.packtpub.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Gigi Sayfan is a principal software architect at Helix – a bioinformatics and genomics start-
up – and author of Mastering Kubernetes, published by Packt. He has been developing
software professionally for more than 20 years in domains as diverse as instant messaging,
morphing, chip-fabrication process control, embedded multimedia applications for games
consoles, and brain-inspired machine learning. He has written production code in many
programming languages including Go, Python, C#, Java, Delphi, JavaScript, and even
Cobol and PowerBuilder, for operating systems such as Windows, Linux, macOS, Lynx,
and Sony PlayStation. His technical expertise covers databases, low-level networking,
unorthodox user interfaces, and the general SDLC.

About the reviewers
Guang Ya Liu is a senior technical staff member for IBM Cloud Private and is currently
focused on cloud computing, container technology, and distributed computing. He is also a
member of the IBM Academy of Technology. He was an OpenStack Magnum Core member
from 2015 to 2017, and now serves as an Istio maintainer, Kubernetes member, Kubernetes
Federation V2 maintainer, Apache Mesos committer, and PMC member.

Shashidhar Soppin is a senior software architect with over 18 years' experience in IT. He
has worked on virtualization, storage, the cloud and cloud architecture, OpenStack,
machine learning, deep learning, and Docker container technologies. Primarily, his focus is
on building new approaches and solutions for enterprise customers. He is an avid author of
open source technologies (OSFY), a blogger (LinuxTechi), and a holder of patents. He
graduated from BIET, Davangere, India. In his free time, he loves to travel and read books.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Kubernetes for Developers 6
Technical requirements 6

Installing Docker 7
Installing kubectl 7
Installing Minikube 7
The code 7

Kubernetes in a nutshell 7
Kubernetes – the container orchestration platform 7
The history of Kubernetes 8
The state of Kubernetes 8

Understanding the Kubernetes architecture 9
The control plane 10

The API server 10
The etcd store 10
The scheduler 10
The controller manager 11

The data plane 11
The kubelet 11
The kube proxy 12
The container runtime 12
Kubectl 12

Kubernetes and microservices – a perfect match 13
Packaging and deploying microservices 13
Exposing and discovering microservices 16
Securing microservices 16

Namespaces 17
Service accounts 17
Secrets 17
Secure communication 18
Network policies 18

Authenticating and authorizing microservices 19
Role-based access control 19

Upgrading microservices 20
Scaling microservices 21
Monitoring microservices 21
Logging 22
Metrics 23

Creating a local cluster 23
Installing Minikube 23

Troubleshooting Minikube 25

Table of Contents

[ii]

Verifying your cluster 25
Playing with your cluster 26
Installing Helm 27

Summary 29
Further reading 29

Chapter 2: Getting Started with Microservices 30
Technical requirements 31

Installing Go with Homebrew on macOS 31
Installing Go on other platforms 31
The code 31

Programming in the small – less is more 31
Making your microservice autonomous 34
Employing interfaces and contracts 34
Exposing your service via APIs 35
Using client libraries 36
Managing dependencies 36
Coordinating microservices 37

The uniformity versus flexibility trade-off 37
Taking advantage of ownership 38
Understanding Conway's law 39

Vertical 40
Horizontal 40
Matrix 40

Troubleshooting across multiple services 41
Utilizing shared service libraries 42
Choosing a source control strategy 42

Monorepo 43
Multiple repos 43
Hybrid 44

Creating a data strategy 44
One data store per microservice 44
Running distributed queries 46

Employing Command Query Responsibility Segregation 46
Employing API composition 47

Using sagas to manage transactions across multiple services 48
Understanding ACID 49
Understanding the CAP theorem 49
Applying the saga pattern to microservices 50

Summary 51
Further reading 51

Chapter 3: Delinkcious - the Sample Application 52
Technical requirements 53

Visual Studio Code 53

Table of Contents

[iii]

GoLand 53
LiteIDE 53
Other options 54
The code 54

Choosing Go for Delinkcious 54
Getting to know Go kit 55

Structuring microservices with Go kit 56
Understanding transports 57
Understanding endpoints 58
Understanding services 59
Understanding middleware 59
Understanding clients 60
Generating the boilerplate 60

Introducing the Delinkcious directory structure 61
The cmd subdirectory 61
The pkg subdirectory 62
The svc subdirectory 63

Introducing the Delinkcious microservices 63
The object model 64
The service implementation 66
Implementing the support functions 69
Invoking the API via a client library 72

Storing data 76
Summary 79
Further reading 79

Chapter 4: Setting Up the CI/CD Pipeline 80
Technical requirements 80

The code 81
Understanding a CI/CD pipeline 81
Options for the Delinkcious CI/CD pipeline 82

Jenkins X 83
Spinnaker 83
Travis CI and CircleCI 84
Tekton 84
Argo CD 85
Rolling your own 85

GitOps 86
Building your images with CircleCI 86

Reviewing the source tree 87
Configuring the CI pipeline 88
Understanding the build.sh script 90
Dockerizing a Go service with a multi-stage Dockerfile 92
Exploring the CircleCI UI 93
Considering future improvements 95

Table of Contents

[iv]

Setting up continuous delivery for Delinkcious 96
Deploying a Delinkcious microservice 96
Understanding Argo CD 98

Argo CD is built on Argo 98
Argo CD utilizes GitOps 98

Getting started with Argo CD 99
Configuring Argo CD 101

Using sync policies 103
Exploring Argo CD 103

Summary 108
Further reading 109

Chapter 5: Configuring Microservices with Kubernetes 110
Technical requirements 110

The code 111
What is configuration all about? 111

Configuration and secrets 112
Managing configuration the old-fashioned way 112

Convention over configuration 112
Command-line flags 113
Environment variables 114
Configuration files 115

INI format 115
XML format 116
JSON format 117
YAML format 117
TOML format 118
Proprietary formats 119

Hybrid configuration and defaults 121
Twelve factor app configuration 122

Managing configuration dynamically 122
Understanding dynamic configuration 123

When is dynamic configuration useful? 123
When should you avoid dynamic configuration? 124

Remote configuration store 124
Remote configuration service 125

Configuring microservices with Kubernetes 125
Working with Kubernetes ConfigMaps 126

Creating and managing ConfigMaps 130
Applying advanced configuration 136

Kubernetes custom resources 137
Service discovery 140

Summary 140
Further reading 141

Chapter 6: Securing Microservices on Kubernetes 142
Technical requirements 143

Table of Contents

[v]

The code 143
Applying sound security principles 143
Differentiating between user accounts and service accounts 146

User accounts 146
Service accounts 147

Managing secrets with Kubernetes 150
Understanding the three types of Kubernetes secret 151
Creating your own secrets 152
Passing secrets to containers 153
Building a secure pod 154

Managing permissions with RBAC 156
Controlling access with authentication, authorization, and
admission 160

Authenticating microservices 160
Authorizing microservices 164
Admitting microservices 165

Hardening your Kubernetes cluster using security best practices 165
Securing your images 165

Always pull images 165
Scan for vulnerabilities 166
Update your dependencies 166
Pinning the versions of your base images 166
Using minimal base images 166

Dividing and conquering your network 167
Safeguarding your image registry 169
Granting access to Kubernetes resources as needed 170
Using quotas to minimize the blast radius 171

Units for requests and limits 173
Implementing security contexts 173
Hardening your pods with security policies 175
Hardening your toolchain 176

Authentication of admin user via JWT tokens 176
Authorization via RBAC 176
Secure communication over HTTPS 177
Secret and credentials management 177
Audits 177
Cluster RBAC 177

Summary 177
Further reading 178

Chapter 7: Talking to the World - APIs and Load Balancers 179
Technical requirements 179

The code 180
Getting familiar with Kubernetes services 180

Service types in Kubernetes 182
East-west versus north-south communication 183

Table of Contents

[vi]

Understanding ingress and load balancing 184
Providing and consuming a public REST API 184

Building a Python-based API gateway service 184
Implementing social login 185
Routing traffic to internal microservices 188
Utilizing base Docker images to reduce build time 189

Adding ingress 190
Verifying that the API gateway is available outside the cluster 191

Finding the Delinkcious URL 191
Getting an access token 192
Hitting the Delinkcious API gateway from outside the cluster 194

Providing and consuming an internal gRPC API 196
Defining the NewsManager interface 196
Implementing the news manager package 196
Exposing NewsManager as a gRPC service 199

Defining the gRPC service contract 200
Generating service stubs and client libraries with gRPC 201
Using Go-kit to build the NewsManager service 202
Implementing the gRPC transport 203

Sending and receiving events via a message queue 206
What is NATS? 206
Deploying NATS in the cluster 207
Sending link events with NATS 208
Subscribing to link events with NATS 211
Handling link events 213

Understanding service meshes 214
Summary 215
Further reading 215

Chapter 8: Working with Stateful Services 216
Technical requirements 216

The code 217
Abstracting storage 217

The Kubernetes storage model 217
Storage classes 218
Volumes, persistent volumes, and provisioning 218
Persistent volume claims 219

In-tree and out-of-tree storage plugins 222
Understanding CSI 223

Standardizing on CSI 225
Storing data outside your Kubernetes cluster 225
Storing data inside your cluster with StatefulSets 226

Understanding a StatefulSet 226
StatefulSet components 228
Pod identity 230
Orderliness 230

When should you use a StatefulSet? 231

Table of Contents

[vii]

Comparing deployment and StatefulSets 231
Reviewing a large StatefulSet example 231

A quick introduction to Cassandra 232
Deploying Cassandra on Kubernetes using StatefulSets 233

Achieving high performance with local storage 236
Storing your data in memory 236
Storing your data on a local SSD 237

Using relational databases in Kubernetes 237
Understanding where the data is stored 237
Using a deployment and service 238
Using a StatefulSet 239
Helping the user service locate StatefulSet pods 239
Managing schema changes 241

Using non-relational data stores in Kubernetes 242
An introduction to Redis 242

Persisting events in the news service 243
Summary 247
Further reading 247

Chapter 9: Running Serverless Tasks on Kubernetes 248
Technical requirements 248

The code 250
Serverless in the cloud 250

Microservices and serverless functions 251
Modeling serverless functions in Kubernetes 252

Functions as code 252
Functions as containers 252

Building, configuring, and deploying serverless functions 252
Invoking serverless functions 253

Link checking with Delinkcious 253
Designing link checks 253
Implementing link checks 256

Serverless link checking with Nuclio 259
A quick introduction to Nuclio 260
Creating a link checker serverless function 261
Deploying the link checker function with nuctl 264
Deploying a function using the Nuclio dashboard 266
Invoking the link-checker function directly 267
Triggering link checking in LinkManager 268

Other Kubernetes serverless frameworks 269
Kubernetes Jobs and CronJobs 269
KNative 270
Fission 271
Kubeless 271
OpenFaas 272

Summary 272

Table of Contents

[viii]

Further reading 273

Chapter 10: Testing Microservices 274
Technical requirements 275
Unit testing 275

Unit testing with Go 275
Unit testing with Ginkgo and Gomega 278
Delinkcious unit testing 279

Designing for testability 279
The art of mocking 280

Bootstrapping your test suite 282
Implementing the LinkManager unit tests 282

Should you test everything? 284
Integration testing 285

Initializing a test database 286
Running services 286
Running the actual test 287
Implementing database test helpers 288
Implementing service test helpers 292

Checking errors 292
Running a local service 293
Stopping a local service 293

Local testing with Kubernetes 294
Writing a smoke test 294

Running the test 297
Telepresence 298

Installing Telepresence 299
Running a local link service via Telepresence 299
Attaching to the local link service with GoLand for live debugging 301

Isolating tests 302
Test clusters 303

Cluster per developer 303
Dedicated clusters for system tests 304

Test namespaces 304
Writing multi-tenant systems 304

Cross namespace/cluster 304
End-to-end testing 305

Acceptance testing 305
Regression testing 306
Performance testing 306

Managing test data 307
Synthetic data 307
Manual test data 307
Production snapshot 308

Summary 308
Further reading 309

Table of Contents

[ix]

Chapter 11: Deploying Microservices 310
Technical requirements 311

The code 311
Kubernetes deployments 311
Deploying to multiple environments 313
Understanding deployment strategies 317

Recreating deployment 317
Rolling updates 318
Blue-green deployment 320

Adding deployment – the blue label 322
Updating the link-manager service to match blue pods only 323
Prefixing the description of each link with [green] 324
Bumping the version number 324
Letting CircleCI build the new image 325
Deploying the new (green) version 326
Verifying that the service now uses the green pods to serve requests 328

Canary deployments 329
Employing a basic canary deployment for Delinkcious 331
Using canary deployments for A/B testing 335

Rolling back deployments 335
Rolling back standard Kubernetes deployments 336
Rolling back blue-green deployments 337
Rolling back canary deployments 337
Dealing with a rollback after a schema, API, or payload change 338

Managing versions and dependencies 339
Managing public APIs 339
Managing cross-service dependencies 340
Managing third-party dependencies 341
Managing your infrastructure and toolchain 342

Local development deployments 342
Ko 343
Ksync 347
Draft 349
Skaffold 350
Tilt 353

Summary 360
Further reading 361

Chapter 12: Monitoring, Logging, and Metrics 362
Technical requirements 363

The code 363
Self-healing with Kubernetes 363

Container failures 364
Node failure 366
Systemic failures 366

Autoscaling a Kubernetes cluster 367

Table of Contents

[x]

Horizontal pod autoscaling 367
Using the horizontal pod autoscaler 368

Cluster autoscaling 370
Vertical pod autoscaling 371

Provisioning resources with Kubernetes 373
What resources should you provision? 373
Defining container limits 374
Specifying resource quotas 376
Manual provisioning 377
Utilizing autoscaling 377
Rolling your own automated provisioning 377

Getting performance right 378
Performance and user experience 379
Performance and high availability 379
Performance and cost 379
Performance and security 380

Logging 380
What should you log? 381
Logging versus error reporting 381
The quest for the perfect Go logging interface 381
Logging with Go-kit 382

Setting up a logger with Go-kit 382
Using a logging middleware 384

Centralized logging with Kubernetes 387
Collecting metrics on Kubernetes 388

Introducing the Kubernetes metrics API 388
Understanding the Kubernetes metrics server 389
Using Prometheus 391

Deploying Prometheus into the cluster 391
Recording custom metrics from Delinkcious 396

Alerting 400
Embracing component failure 400
Grudgingly accepting system failure 401
Taking human factors into account 401

Warnings versus alerts 401
Considering severity levels 402
Determining alert channels 402
Fine-tuning noisy alerts 402

Utilizing the Prometheus alert manager 403
Configuring alerts in Prometheus 404

Distributed tracing 404
Installing Jaeger 405
Integrating tracing into your services 407

Summary 409
Further reading 409

Table of Contents

[xi]

Chapter 13: Service Mesh - Working with Istio 410
Technical requirements 410

The code 412
What is a service mesh? 412

Comparing monoliths to microservices 412
Using a shared library to manage the cross-cutting concerns of
microservices 413
Using a service mesh to manage the cross-cutting concerns of
microservices 414
Understanding the relationship between Kubernetes and a service mesh 415

What does Istio bring to the table? 416
Getting to know the Istio architecture 416

Envoy 417
Pilot 418
Mixer 418
Citadel 419
Galley 419

Managing traffic with Istio 419
Routing requests 420
Load balancing 420
Handling failures 421
Injecting faults for testing 423
Doing canary deployments 423

Securing your cluster with Istio 424
Understanding Istio identity 425
Authenticating users with Istio 425
Authorizing requests with Istio 426

Enforcing policies with Istio 429
Collecting metrics with Istio 429
When should you avoid Istio? 431

Delinkcious on Istio 432
Removing mutual authentication between services 432
Utilizing better canary deployments 435
Automatic logging and error reporting 436
Accommodating NATS 438
Examining the Istio footprint 439

Alternatives to Istio 441
Linkerd 2.0 442
Envoy 442
HashiCorp Consul 442
AWS App Mesh 443
Others 443
The no mesh option 443

Summary 443
Further reading 444

Chapter 14: The Future of Microservices and Kubernetes 445

Table of Contents

[xii]

The future of microservices 446
Microservices versus serverless functions 446
Microservices, containers, and orchestration 447
gRPC and gRPC-Web 447
GraphQL 448
HTTP/3 is coming 448

The future of Kubernetes 449
Kubernetes extensibility 450

Abstracting the container runtime 450
Abstracting networking 451
Abstracting storage 451
The cloud provider interface 452

Service mesh integration 453
Serverless computing on Kubernetes 454
Kubernetes and VMs 455

gVisor 456
Firecracker 456
Kata containers 456

Cluster autoscaling 457
Using operators 457
Federation 459

Summary 460
Further reading 461

Other Books You May Enjoy 462

Index 465

Preface
Hands-On Microservices with Kubernetes is the book you have been waiting for. It will walk
you though the parallel paths of developing microservices and deploying them on
Kubernetes. The synergy between microservice-based architecture and Kubernetes is very
powerful. This book covers all angles. It explains the concepts behind microservices and
Kubernetes, discusses real-world concerns and trade-offs, takes you through the
development of fully fledged microservice-based systems, shows you best practices, and
provides ample recommendations.

This book covers an amazing amount of ground in great depth and with working code to
illustrate. You will learn how to design a microservice-based architecture, build
microservices, test the microservices you've built, and package them as Docker images.
Then, you will learn how to deploy your system as a collection of Docker images to
Kubernetes and manage it there.

Along the way, you will become familiar with most important trends to be aware of, such
as automated continuous integration / continuous delivery (CI/CD) , gRPC-based
microservices, serverless computing, and service meshes.

By the end of this book, you will have gained a lot of knowledge and hands-on experience
with planning, developing, and operating large-scale cloud-native systems using
microservice-based architecture deployed on Kubernetes.

Who this book is for
This book is targeted at software developers and DevOps engineers who want to be at the
forefront of large-scale software engineering. It will help if you have experience with large-
scale software systems that are deployed using containers on more than one machine and
are developed by several teams.

What this book covers
Chapter 1, Introduction to Kubernetes for Developers, introduces you to Kubernetes. You will
receive a whirlwind tour of Kubernetes and get an idea of how well it aligns with
microservices.

Preface

[2]

Chapter 2, Getting Started with Microservices, discusses various aspects, patterns, and
approaches to common problems in microservice-based systems and how they compare to
other common architectures, such as monoliths and large services.

Chapter 3, Delinkcious – the Sample Application, explores why we should choose Go as the
programming language of Delinkcious; then we will look at Go kit.

Chapter 4, Setting Up the CI/CD Pipeline, teaches you about the problem the CI/CD pipeline
solves, covers the different options for CI/CD pipelines for Kubernetes, and finally looks at
building a CI/CD pipeline for Delinkcious.

Chapter 5, Configuring Microservices with Kubernetes, moves you into the practical and real-
world area of microservices configuration. Also, we will discuss Kubernetes-specific
options and, in particular, ConfigMaps.

Chapter 6, Securing Microservices on Kubernetes, examines how to secure your microservices
on Kubernetes in depth. We will also discuss the pillars that act as the foundation of
microservice security on Kubernetes.

Chapter 7, Talking to the World – APIs and Load Balancers, sees us open Delinkcious to the
world and let users interact with it from outside the cluster. Also, we will add a gRPC-
based news service that users can hit up to get news about other users they follow. Finally,
we will add a message queue that lets services communicate in a loosely coupled manner.

Chapter 8, Working with Stateful Services, delves into the Kubernetes storage model. We will
also extend the Delinkcious news service to store its data in Redis, instead of in memory.

Chapter 9, Running Serverless Tasks on Kubernetes, dives into one of the hottest trends in
cloud-native systems: serverless computing (also known as Function as a Service, or FaaS).
Also, we'll cover other ways to do serverless computing in Kubernetes.

Chapter 10, Testing Microservices, covers the topic of testing and its various flavors: unit
testing, integration testing, and all kinds of end-to-end testing. We also delve into how
Delinkcious tests are structured.

Chapter 11, Deploying Microservices, deals with two related, yet separate, themes:
production deployments and development deployments.

Chapter 12, Monitoring, Logging, and Metrics, focuses on the operational side of running a
large-scale distributed system on Kubernetes, as well as on how to design the system and
what to take into account to ensure a top-notch operational posture.

Chapter 13, Service Mesh – Working with Istio, reviews the hot topic of service meshes and,
in particular, Istio. This is exciting because service meshes are a real game changer.

Preface

[3]

Chapter 14, The Future of Microservices and Kubernetes, covers the topics of Kubernetes and
microservices, and will help us learn how to decide when it's the right time to adopt and
invest in newer technologies.

To get the most out of this book
Any software requirements are either listed at the beginning of each chapter in the Technical
requirements section, or, if the installation of a particular piece of software is part of the
material of the chapter, then any instructions you need will be contained within the chapter
itself. Most of the installations are software components that are installed into the
Kubernetes cluster. This is an important part of the hands-on nature of the book.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Microservices- with- Kubernetes. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789805468_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Note that I made sure it's executable via chmod +x."

A block of code is set as follows:

version: 2
jobs:
 build:
 docker:
 - image: circleci/golang:1.11
 - image: circleci/postgres:9.6-alpine

Any command-line input or output is written as follows:

$ tree -L 2
.
├── LICENSE
├── README.md
├── build.sh

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We can sync it by selecting Sync from the ACTIONS dropdown."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789805468_ColorImages.pdf

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction to Kubernetes for

Developers
In this chapter, we will introduce you to Kubernetes. Kubernetes is a big platform and it's
difficult to do justice to it in just one chapter. Luckily, we have a whole book to explore it.
Don't worry if you feel a little overwhelmed. I'll mention many concepts and capabilities
briefly. In later chapters, we will cover many of these in detail, as well as the connections
and interactions between those Kubernetes concepts. To spice things up and get hands-on
early, you will also create a local Kubernetes cluster (Minikube) on your machine. This
chapter will cover the following topics:

Kubernetes in a nutshell
The Kubernetes architecture
Kubernetes and microservices
Creating a local cluster

Technical requirements
In this chapter, you will need the following tools:

Docker
Kubectl
Minikube

Introduction to Kubernetes for Developers Chapter 1

[7]

Installing Docker
To install Docker, follow the instructions here: https:/ /docs. docker. com/ install/
#supported-platforms. I will use Docker for macOS.

Installing kubectl
To install kubectl, follow the instructions here: https:/ /kubernetes. io/ docs/ tasks/
tools/install-kubectl/ .

Kubectl is the Kubernetes CLI and we will use it extensively throughout the book.

Installing Minikube
To install Minikube, follow the instructions here: https:/ /kubernetes. io/ docs/ tasks/
tools/install-minikube/ .

Note that you need to install a hypervisor too. For the macOS, I find VirtualBox the most
reliable. You may prefer another hypervisor, such as HyperKit. There will be more detailed
instructions later when you get to play with Minikube.

The code
The code for the chapter is available here: https:/ /github. com/
PacktPublishing/ Hands- On- Microservices- with- Kubernetes/ tree/ master/
Chapter01

There is another Git repository for the Delinkcious sample application that we
will build together: https:/ /github. com/the- gigi/ delinkcious

Kubernetes in a nutshell
In this section, you'll get a sense of what Kubernetes is all about, its history, and how it
became so popular.

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter01
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious

Introduction to Kubernetes for Developers Chapter 1

[8]

Kubernetes – the container orchestration
platform
The primary function of Kubernetes is deploying and managing a large number of
container-based workloads on a fleet of machines (physical or virtual). This means that
Kubernetes provides the means to deploy containers to the cluster. It makes sure to comply
with various scheduling constraints and pack the containers efficiently into the cluster
nodes. In addition, Kubernetes automatically watches your containers and restarts them if
they fail. Kubernetes will also relocate workloads off problematic nodes to other nodes.
Kubernetes is an extremely flexible platform. It relies on a provisioned infrastructure layer
of compute, memory, storage, and networking, and, with these resources, it works its
magic.

The history of Kubernetes
Kubernetes and the entire cloud-native scene is moving at breakneck speed, but let's take a
moment to reflect on how we got here. It will be a very short journey because Kubernetes
came out of Google in June 2014, just a few years ago. When Docker became popular, it
changed how people package, distribute, and deploy software. But, it soon became
apparent that Docker doesn't scale on its own for large distributed systems. A few
orchestration solutions became available, such as Apache Mesos, and later, Docker's own
swarm. But, they never measured up to Kubernetes. Kubernetes was conceptually based on
Google's Borg system. It brought together the design and technical excellence of a decade of
Google engineering, but it was a new open source project. At OSCON 2015, Kubernetes 1.0
was released and the floodgates opened. The growth of Kubernetes, its ecosystem, and the
community behind it, was as impressive as its technical excellence.

Kubernetes means helmsman in Greek. You'll notice many nautical terms in the names of
Kubernetes-related projects.

The state of Kubernetes
Kubernetes is now a household name. The DevOps world pretty much equates container
orchestration with Kubernetes. All major cloud providers offer managed Kubernetes
solutions. It is ubiquitous in enterprise and in startup companies. While Kubernetes is still
young and innovation keeps happening, it is all happening in a very healthy way. The core
is rock solid, battle tested, and used in production across lots and lots of companies. There
are very big players collaborating and pushing Kubernetes forward, such as Google
(obviously), Microsoft, Amazon, IBM, and VMware.

Introduction to Kubernetes for Developers Chapter 1

[9]

The Cloud Native Computing Foundation (CNCF) open source organization offers
certification. Every 3 months, a new Kubernetes release comes out, which is the result of a
collaboration between hundreds of volunteers and paid engineers. There is a large
ecosystem surrounding the main project of both commercial and open source projects. You
will see later how Kubernetes' flexible and extensible design encourages this ecosystem and
helps in integrating Kubernetes into any cloud platform.

Understanding the Kubernetes architecture
Kubernetes is a marvel of software engineering. The architecture and design of Kubernetes
are a big part in its success. Each cluster has a control plane and data plane. The control
plane consists of several components, such as an API server, a metadata store for keeping
the state of a cluster, and multiple controllers that are responsible for managing the nodes
in the data plane and providing access to users. The control plane in production will be
distributed across multiple machines for high availability and robustness. The data plane
consists of multiple nodes, or workers. The control plane will deploy and run your pods
(groups of containers) on these nodes, and then watch for changes and respond.

Here is a diagram that illustrates the overall architecture:

Introduction to Kubernetes for Developers Chapter 1

[10]

Let's review in detail the control plane and the data plane, as well as kubectl, which is the
command-line tool you use to interact with the Kubernetes cluster.

The control plane
The control plane consists of several components:

API server
The etcd metadata store
Scheduler
Controller manager
Cloud controller manager

Let's examine the role of each component.

The API server
The kube-api-server is a massive REST server that exposes the Kubernetes API to the
world. You can have multiple instances of the API server in your control plane for high-
availability. The API server keeps the cluster state in etcd.

The etcd store
The complete cluster is stored in etcd (https:/ /coreos. com/ etcd/), a consistent and
reliable, distributed key-value store. The etcd store is an open source project (developed by
CoreOS, originally).

It is common to have three or five instances of etcd for redundancy. If you lose the data in
your etcd store, you lose your cluster.

The scheduler
The kube-scheduler is responsible for scheduling pods to worker nodes. It implements a
sophisticated scheduling algorithm that takes a lot of information into account, such as
resource availability on each node, various constraints specified by the user, types of
available nodes, resource limits and quotas, and other factors, such as affinity, anti-affinity,
tolerations, and taints.

https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/

Introduction to Kubernetes for Developers Chapter 1

[11]

The controller manager
The kube-controller manager is a single process that contains multiple controllers for
simplicity. These controllers watch for events and changes to the cluster and respond
accordingly:

Node controller: Responsible for noticing and responding when nodes go down.
Replication controller: This makes sure that there is the correct number of pods
for each replica set or replication controller object.
Endpoints controller: This assigns for each service an endpoints object that lists
the service's pods.
Service account and token controllers: These initialize new namespaces with
default service accounts and corresponding API access tokens.

The data plane
The data plane is the collection of the nodes in the cluster that run your containerized
workloads as pods. The data plane and control plane can share physical or virtual
machines. This happens, of course, when you run a single node cluster, such as Minikube.
But, typically, in a production-ready deployment, the data plane will have its own nodes.
There are several components that Kubernetes installs on each node in order to
communicate, watch, and schedule pods: kubelet, kube-proxy, and the container runtime
(for example, the Docker daemon).

The kubelet
The kubelet is a Kubernetes agent. It's responsible for talking to the API server and for
running and managing the pods on the node. Here are some of the responsibilities of the
kubelet:

Downloading pod secrets from the API server
Mounting volumes
Running the pod container via the Container Runtime Interface (CRI)
Reporting the status of the node and each pod
Probe container liveness

Introduction to Kubernetes for Developers Chapter 1

[12]

The kube proxy
The kube proxy is responsible for the networking aspects of the node. It operates as a local
front for services and can forward TCP and UDP packets. It discovers the IP addresses of
services via DNS or environment variables.

The container runtime
Kubernetes eventually runs containers, even if they are organized in pods. Kubernetes
supports different container runtimes. Originally, only Docker was supported. Now,
Kubernetes runs containers through an interface called CRI, which is based on gRPC.

Each container runtime that implements CRI can be used on a node controlled by the
kubelet, as shown in the preceding diagram.

Kubectl
Kubectl is a tool you should get very comfortable with. It is your command-line
interface (CLI) to your Kubernetes cluster. We will use kubectl extensively throughout the
book to manage and operate Kubernetes. Here is a short list of the capabilities kubectl puts
literally at your fingertips:

Cluster management
Deployment
Troubleshooting and debugging
Resource management (Kubernetes objects)
Configuration and metadata

Just type kubectl to get a complete list of all the commands and kubectl <command> --
help for more detailed info on specific commands.

Introduction to Kubernetes for Developers Chapter 1

[13]

Kubernetes and microservices – a perfect
match
Kubernetes is a fantastic platform with amazing capabilities and a wonderful ecosystem.
How does it help you with your system? As you'll see, there is a very good alignment
between Kubernetes and microservices. The building blocks of Kubernetes, such as
namespaces, pods, deployments, and services, map directly to important microservices
concepts and an agile software development life cycle (SDLC). Let's dive in.

Packaging and deploying microservices
When you employ a microservice-based architecture, you'll have lots of microservices.
Those microservices, in general, may be developed independently, and deployed
independently. The packaging mechanism is simply containers. Every microservice you
develop will have a Dockerfile. The resulting image represents the deployment unit for that
microservice. In Kubernetes, your microservice image will run inside a pod (possibly
alongside other containers). But an isolated pod, running on a node, is not very resilient.
The kubelet on the node will restart the pod's container if it crashes, but if something
happens to the node itself, the pod is gone. Kubernetes has abstractions and resources that
build on the pod.

ReplicaSets are sets of pods with a certain number of replicas. When you create a
ReplicaSet, Kubernetes will make sure that the correct number of pods you specify always
run in the cluster. The deployment resource takes it a step further and provides an
abstraction that exactly aligns with the way you consider and think about microservices.
When you have a new version of a microservice ready, you will want to deploy it. Here is a
Kubernetes deployment manifest:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:

Introduction to Kubernetes for Developers Chapter 1

[14]

 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.15.4
 ports:
 - containerPort: 80

The file can be found at https:/ /github. com/ the- gigi/ hands- on-microservices- with-
kubernetes-code/ blob/ master/ ch1/ nginx- deployment. yaml.

This is a YAML file (https:/ /yaml. org/) that has some fields that are common to all
Kubernetes resources, and some fields that are specific to deployments. Let's break this
down piece by piece. Almost everything you learn here will apply to other resources:

The apiVersion field marks the Kubernetes resources version. A specific
version of the Kubernetes API server (for example, V1.13.0) can work with
different versions of different resources. Resource versions have two parts: an
API group (in this case, apps) and a version number (v1). The version number
may include alpha or beta designations:

apiVersion: apps/v1

The kind field specifies what resource or API object we are dealing with. You
will meet many kinds of resources in this chapter and later:

kind: Deployment

The metadata section contains the name of the resource (nginx) and a set of
labels, which are just key-value string pairs. The name is used to refer to this
particular resource. The labels allow for operating on a set of resources that share
the same label. Labels are very useful and flexible. In this case, there is just one
label (app: nginx):

metadata:
 name: nginx
 labels:
 app: nginx

https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://github.com/the-gigi/hands-on-microservices-with-kubernetes-code/blob/master/ch1/nginx-deployment.yaml
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/

Introduction to Kubernetes for Developers Chapter 1

[15]

Next, we have a spec field. This is a ReplicaSet spec. You could create a
ReplicaSet directly, but it would be static. The whole purpose of deployments is
to manage its set of replicas. What's in a ReplicaSet spec? Obviously, it contains
the number of replicas (3). It has a selector with a set of matchLabels (also
app: nginx), and it has a pod template. The ReplicaSet will manage pods that
have labels that match matchLabels:

spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 ...

Let's have a look at the pod template. The template has two parts: metadata and
a spec. The metadata is where you specify the labels. The spec describes the
containers in the pod. There may be one or more containers in a pod. In this
case, there is just one container. The key field for a container is the image (often a
Docker image), where you packaged your microservice. That's the code we want
to run. There is also a name (nginx) and a set of ports:

metadata:
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: nginx:1.15.4
 ports:
 - containerPort: 80

There are more fields that are optional. If you want to dive in deeper, check out the API
reference for the deployment resource at https:/ /kubernetes. io/docs/ reference/
generated/kubernetes- api/ v1. 13/ #deployment- v1-apps.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#deployment-v1-apps

Introduction to Kubernetes for Developers Chapter 1

[16]

Exposing and discovering microservices
We deployed our microservice with a deployment. Now, we need to expose it, so that it can
be used by other services in the cluster and possibly also make it visible outside the cluster.
Kubernetes provides the Service resource for that purpose. Kubernetes services are
backed up by pods, identified by labels:

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 protocol: TCP
 selector:
 app: nginx

Services discover each other inside the cluster, using DNS or environment variables. This is
the default behavior. But, if you want to make a service accessible to the world, you will
normally set an ingress object or a load balancer. We will explore this topic in detail later.

Securing microservices
Kubernetes was designed for running large-scale critical systems, where security is of
paramount concern. Microservices are often more challenging to secure than monolithic
systems because there is so much internal communication across many boundaries. Also,
microservices encourage agile development, which leads to a constantly changing system.
There is no steady state you can secure once and be done with it. You must constantly
adapt the security of the system to the changes. Kubernetes comes pre-packed with several
concepts and mechanisms for secure development, deployment, and operation of your
microservices. You still need to employ best practices, such as principle of least privilege,
security in depth, and minimizing blast radius. Here are some of the security features of
Kubernetes.

Introduction to Kubernetes for Developers Chapter 1

[17]

Namespaces
Namespaces let you isolate different parts of your cluster from each other. You can create as
many namespaces as you want and scope many resources and operations to their
namespace, including limits, and quotas. Pods running in a namespace can only access
directly their own namespace. To access other namespaces, they must go through public
APIs.

Service accounts
Service accounts provide identity to your microservices. Each service account will have
certain privileges and access rights associated with its account. Service accounts are pretty
simple:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: custom-service-account

You can associate service accounts with a pod (for example, in the pod spec of a
deployment) and the microservices that run inside the pod will have that identity and all
the privileges and restrictions associated with that account. If you don't assign a service
account, then the pod will get the default service account of its namespace. Each service
account is associated with a secret used to authenticate it.

Secrets
Kubernetes provides secret management capabilities to all microservices. The secrets can be
encrypted at rest on etcd (since Kubernetes 1.7), and are always encrypted on the wire (over
HTTPS). Secrets are managed per namespace. Secrets are mounted in pods as either files
(secret volumes) or environment variables. There are multiple ways to create secrets.
Secrets can contain two maps: data and stringData. The type of values in the data map
can be arbitrary, but must be base64-encoded. Refer to the following, for example:

apiVersion: v1
kind: Secret
metadata:
 name: custom-secret
type: Opaque
data:
 username: YWRtaW4=
 password: MWYyZDFlMmU2N2Rm

Introduction to Kubernetes for Developers Chapter 1

[18]

Here is how a pod can load secrets as a volume:

apiVersion: v1
kind: Pod
metadata:
 name: db
spec:
 containers:
 - name: mypod
 image: postgres
 volumeMounts:
 - name: db_creds
 mountPath: "/etc/db_creds"
 readOnly: true
 volumes:
 - name: foo
 secret:
 secretName: custom-secret

The end result is that the DB credentials secrets that are managed outside the pod by
Kubernetes show up as a regular file inside the pod accessible through the path
/etc/db_creds.

Secure communication
Kubernetes utilizes client-side certificates to fully authenticate both sides of any external
communication (for example, kubectl). All communication to the Kubernetes API from
outside should be over HTTP. Internal cluster communication between the API server and
the kubelet on the node is over HTTPS too (the kubelet endpoint). But, it doesn't use a client
certificate by default (you can enable it).

Communication between the API server and nodes, pods, and services is, by default, over
HTTP and is not authenticated. You can upgrade them to HTTPS, but note that the client
certificate is checked, so don't run your worker nodes on public networks.

Network policies
In a distributed system, beyond securing each container, pod, and node, it is critical to also
control communication over the network. Kubernetes supports network policies, which
give you full flexibility to define and shape the traffic and access across the cluster.

Introduction to Kubernetes for Developers Chapter 1

[19]

Authenticating and authorizing microservices
Authentication and authorization are also related to security, by limiting access to trusted
users and to limited aspects of Kubernetes. Organizations have a variety of ways to
authenticate their users. Kubernetes supports many of the common authentication schemes,
such as X.509 certificates, and HTTP basic authentication (not very secure), as well as an
external authentication server via webhook that gives you ultimate control over the
authentication process. The authentication process just matches the credentials of a request
with an identity (either the original or an impersonated user). What that user is allowed to
do is controlled by the authorization process. Enter RBAC.

Role-based access control
Role-based access control (RBAC) is not required! You can perform authorization using
other mechanisms in Kubernetes. However, it is a best practice. RBAC is based on two
concepts: role and binding. A role is a set of permissions on resources defined as rules.
There are two types of roles: Role, which applies to a single namespace, and ClusterRole,
which applies to all namespaces in a cluster.

Here is a role in the default namespace that allows the getting, watching, and listing of all
pods. Each role has three components: API groups, resources, and verbs:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default
 name: pod-reader
rules:
- apiGroups: [""] # "" indicates the core API group
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Cluster roles are very similar, except there is no namespace field because they apply to all
namespaces.

A binding is associating a list of subjects (users, user groups, or service accounts) with a
role. There are two types of binding, RoleBinding and ClusterRoleBinding, which
correspond to Role and ClusterRole.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: pod-reader
 namespace: default

Introduction to Kubernetes for Developers Chapter 1

[20]

subjects:
- kind: User
 name: gigi # Name is case sensitive
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role # must be Role or ClusterRole
 name: pod-reader # must match the name of the Role or ClusterRole you
bind to
 apiGroup: rbac.authorization.k8s.io

It's interesting that you can bind a ClusterRole to a subject in a single namespace. This is
convenient for defining roles that should be used in multiple namespaces, once as a cluster
role, and then binding them to specific subjects in specific namespaces.

The cluster role binding is similar, but must bind a cluster role and always applies to the
whole cluster.

Note that RBAC is used to grant access to Kubernetes resources. It can
regulate access to your service endpoints, but you may still need fine-
grained authorization in your microservices.

Upgrading microservices
Deploying and securing microservices is just the beginning. As you develop and evolve
your system, you'll need to upgrade your microservices. There are many important
considerations regarding how to go about it that we will discuss later (versioning, rolling
updates, blue-green, and canary). Kubernetes provides direct support for many of these
concepts out of the box and the ecosystem built on top of it to provide many flavors and
opinionated solutions.

The goal is often zero downtime and safe rollback if a problem occurs. Kubernetes
deployments provide the primitives, such as updating a deployment, pausing a roll-out,
and rolling back a deployment. Specific workflows are built on these solid foundations.
The mechanics of upgrading a service typically involve upgrading its image to a new
version and sometimes changes to its support resources and access: volumes, roles, quotas,
limits, and so on.

Introduction to Kubernetes for Developers Chapter 1

[21]

Scaling microservices
There are two aspects to scaling a microservice with Kubernetes. The first aspect is scaling
the number of pods backing up a particular microservice. The second aspect is the total
capacity of the cluster. You can easily scale a microservice explicitly by updating the
number of replicas of a deployment, but that requires constant vigilance on your part. For
services that have large variations in the volume of requests they handle over long periods
(for example, business hours versus off hours or week days versus weekends), it might take
a lot of effort. Kubernetes provides horizontal pod autoscaling, which is based on CPU,
memory, or custom metrics, and can scale your service up and down automatically.

Here is how to scale our nginx deployment that is currently fixed at three replicas to go
between 2 and 5, depending on the average CPU usage across all instances:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: nginx
 namespace: default
spec:
 maxReplicas: 5
 minReplicas: 2
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: v1
 kind: Deployment
 name: nginx

The outcome is that Kubernetes will watch CPU utilization of the pods that belong to the
nginx deployment. When the average CPU over a certain period of time (5 minutes, by
default) exceeds 90%, it will add more replicas until the maximum of 5, or until utilization
drops below 90%. The HPA can scale down too, but will always maintain a minimum of
two replicas, even if the CPU utilization is zero.

Monitoring microservices
Your microservices are deployed and running on Kubernetes. You can update the version
of your microservices whenever it is needed. Kubernetes takes care of healing and scaling
automatically. However, you still need to monitor your system and keep track of errors and
performance. This is important for addressing problems, but also for informing you on
potential improvements, optimizations, and cost cutting.

Introduction to Kubernetes for Developers Chapter 1

[22]

There are several categories of information that are relevant and that you should monitor:

Third-party logs
Application logs
Application errors
Kubernetes events
Metrics

When considering a system composed of multiple microservices and multiple supporting
components, the number of logs will be substantial. The solution is central logging, where
all the logs go to a single place where you can slice and dice at your will. Errors can be
logged, of course, but often it is useful to report errors with additional metadata, such as
stack trace, and review them in their own dedicated environment (for example, sentry or
rollbar). Metrics are useful for detecting performance and system health problems or trends
over time.

Kubernetes provides several mechanisms and abstractions for monitoring your
microservices. The ecosystem provides a number of useful projects too.

Logging
There are several ways to implement central logging with Kubernetes:

Have a logging agent that runs on every node
Inject a logging sidecar container to every application pod
Have your application send its logs directly to a central logging service

There are pros and cons to each approach. But, the main thing is that Kubernetes supports
all approaches and makes container and pod logs available for consumption.

Refer to https:/ /kubernetes. io/docs/ concepts/ cluster-
administration/ logging/ #cluster- level- logging- architectures for
an in-depth discussion.

https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures

Introduction to Kubernetes for Developers Chapter 1

[23]

Metrics
Kubernetes comes with cAdvisor (https:/ /github. com/ google/ cadvisor), which is a tool
for collecting container metrics integrated into the kubelet binary. Kubernetes used to
provide a metrics server called heapster that required additional backends and a UI. But,
these days, the best in class metrics server is the open source Prometheus project. If you run
Kubernetes on Google's GKE, then Google Cloud Monitoring is a great option that doesn't
require additional components to be installed in your cluster. Other cloud providers also
have integration with their monitoring solutions (for example, CloudWatch on EKS).

Creating a local cluster
One of the strengths of Kubernetes as a deployment platform is that you can create a local
cluster and, with relatively little effort, have a realistic environment that is very close to
your production environment. The main benefit is that developers can test their
microservices locally and collaborate with the rest of the services in the cluster. When your
system is comprised of many microservices, the more significant tests are often integration
tests and even configuration and infrastructure tests, as opposed to unit tests. Kubernetes
makes that kind of testing much easier and requires much less brittle mocking.

In this section, you will install a local Kubernetes cluster and some additional projects, and
then have some fun exploring it using the invaluable kubectl command-line tool.

Installing Minikube
Minikube is a single node Kubernetes cluster that you can install anywhere. I used macOS
here, but, in the past, I used it successfully on Windows too. Before installing Minikube
itself, you must install a hypervisor. I prefer HyperKit:

$ curl -LO
https://storage.googleapis.com/minikube/releases/latest/docker-machine-driv
er-hyperkit \
 && chmod +x docker-machine-driver-hyperkit \
 && sudo mv docker-machine-driver-hyperkit /usr/local/bin/ \
 && sudo chown root:wheel /usr/local/bin/docker-machine-driver-hyperkit \
 && sudo chmod u+s /usr/local/bin/docker-machine-driver-hyperkit

https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/google/cadvisor

Introduction to Kubernetes for Developers Chapter 1

[24]

But, I've run into trouble with HyperKit from time to time. If you can't overcome the issues,
I suggest using VirtualBox as the hypervisor instead. Run the following command to install
VirtualBox via Homebrew:

$ brew cask install virtualbox

Now, you can install Minikube itself. Homebrew is the best way to go again:

brew cask install minikube

If you're not on macOS, follow the official instructions here: https:/ /kubernetes. io/ docs/
tasks/tools/install- minikube/ .

You must turn off any VPN before starting Minikube with HyperKit. You
can restart your VPN after Minikube has started.

Minikube supports multiple versions of Kubernetes. At the moment, the default version is
1.10.0, but 1.13.0 is already out and supported, so let's use that version:

$ minikube start --vm-driver=hyperkit --kubernetes-version=v1.13.0

If you're using VirtualBox as your hypervisor, you don't need to specify --vm-driver:

$ minikube start --kubernetes-version=v1.13.0

You should see the following:

$ minikube start --kubernetes-version=v1.13.0
Starting local Kubernetes v1.13.0 cluster...
Starting VM...
Downloading Minikube ISO
 178.88 MB / 178.88 MB [==]
100.00% 0s
Getting VM IP address...
E0111 07:47:46.013804 18969 start.go:211] Error parsing version semver:
Version string empty
Moving files into cluster...
Downloading kubeadm v1.13.0
Downloading kubelet v1.13.0
Finished Downloading kubeadm v1.13.0
Finished Downloading kubelet v1.13.0
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
Stopping extra container runtimes...

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Introduction to Kubernetes for Developers Chapter 1

[25]

Starting cluster components...
Verifying kubelet health ...
Verifying apiserver health ...Kubectl is now configured to use the cluster.
Loading cached images from config file.

Everything looks great. Please enjoy minikube!

Minikube will automatically download the Minikube VM (178.88 MB) if
it's the first time you are starting your Minikube cluster.

At this point, your Minikube cluster is ready to go.

Troubleshooting Minikube
If you run into some trouble (for example, if you forgot to turn off your VPN), try to delete
your Minikube installation and restart it with verbose logging:

$ minikube delete
$ rm -rf ~/.minikube
$ minikube start --vm-driver=hyperkit --kubernetes-version=v1.13.0 --
logtostderr --v=3

If your Minikube installation just hangs (maybe waiting for SSH), you might have to reboot
to unstick it. If that doesn't help, try the following:

sudo mv /var/db/dhcpd_leases /var/db/dhcpd_leases.old
sudo touch /var/db/dhcpd_leases

Then, reboot again.

Verifying your cluster
If everything is OK, you can check your Minikube version:

$ minikube version
minikube version: v0.31.0

Minikube has many other useful commands. Just type minikube to see the list of
commands and flags.

Introduction to Kubernetes for Developers Chapter 1

[26]

Playing with your cluster
Minikube is running, so let's have some fun. Your kubectl is going to serve you well in this
section. Let's start by examining our node:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 4m v1.13.0

Your cluster already has some pods and services running. It turns out that Kubernetes is
dogfooding and many of its own services are plain services and pods. But, those pods and
services run in namespaces. Here are all the namespaces:

$ kubectl get ns
NAME STATUS AGE
default Active 18m
kube-public Active 18m
kube-system Active 18m

To see all the services in all the namespaces, you can use the --all-namespaces flag:

$ kubectl get svc --all-namespaces
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 19m
kube-system kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 19m
kube-system kubernetes-dashboard ClusterIP 10.111.39.46 <none>
80/TCP 18m

The Kubernetes API server, itself, is running as a service in the default namespace and then
we have kube-dns and the kubernetes-dashboard running in the kube-system
namespace.

To explore the dashboard, you can run the dedicated Minikube command, minikube
dashboard. You can also use kubectl, which is more universal and will work on any
Kubernetes cluster:

$ kubectl port-forward deployment/kubernetes-dashboard 9090

Introduction to Kubernetes for Developers Chapter 1

[27]

Then, browse to http://localhost:9090 and you will see the following dashboard:

Installing Helm
Helm is the Kubernetes package manager. It doesn't come with Kubernetes, so you have to
install it. Helm has two components: a server-side component called tiller, and a CLI
called helm.

Introduction to Kubernetes for Developers Chapter 1

[28]

Let's install helm locally first, using Homebrew:

$ brew install kubernetes-helm

Then, properly initialize both the server and client type:

$ helm init
$HELM_HOME has been configured at /Users/gigi.sayfan/.helm.

Tiller (the Helm server-side component) has been installed into your
Kubernetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow
unauthenticated users' policy.
To prevent this, run `helm init` with the --tiller-tls-verify flag.
For more information on securing your installation see:
https://docs.helm.sh/using_helm/#securing-your-helm-installation
Happy Helming!

With Helm in place, you can easily install all kinds of goodies in your Kubernetes cluster.
There are currently 275 chars (the Helm term for a package) in the stable chart repository:

$ helm search | wc -l
275

For example, check out all the releases tagged with the db type:

$ helm search db
NAME CHART VERSION APP VERSION
DESCRIPTION
stable/cockroachdb 2.0.6 2.1.1
CockroachDB is a scalable, survivable, strongly-consisten...
stable/hlf-couchdb 1.0.5 0.4.9 CouchDB
instance for Hyperledger Fabric (these charts are...
stable/influxdb 1.0.0 1.7 Scalable
datastore for metrics, events, and real-time ana...
stable/kubedb 0.1.3 0.8.0-beta.2 DEPRECATED
KubeDB by AppsCode - Making running production...
stable/mariadb 5.2.3 10.1.37 Fast,
reliable, scalable, and easy to use open-source rel...
stable/mongodb 4.9.1 4.0.3 NoSQL
document-oriented database that stores JSON-like do...
stable/mongodb-replicaset 3.8.0 3.6 NoSQL
document-oriented database that stores JSON-like do...
stable/percona-xtradb-cluster 0.6.0 5.7.19 free,
fully compatible, enhanced, open source drop-in rep...
stable/prometheus-couchdb-exporter 0.1.0 1.0 A Helm
chart to export the metrics from couchdb in Promet...

Introduction to Kubernetes for Developers Chapter 1

[29]

stable/rethinkdb 0.2.0 0.1.0 The open-
source database for the realtime web
jenkins-x/cb-app-slack 0.0.1 A Slack
App for CloudBees Core
stable/kapacitor 1.1.0 1.5.1 InfluxDB's
native data processing engine. It can process ...
stable/lamp 0.1.5 5.7 Modular
and transparent LAMP stack chart supporting PHP-F...
stable/postgresql 2.7.6 10.6.0 Chart for
PostgreSQL, an object-relational database manag...
stable/phpmyadmin 2.0.0 4.8.3 phpMyAdmin
is an mysql administration frontend
stable/unifi 0.2.1 5.9.29 Ubiquiti
Network's Unifi Controller

We will use Helm a lot throughout the book.

Summary
In this chapter, you received a whirlwind tour of Kubernetes and got an idea of how well it
aligns with microservices. The extensible architecture of Kubernetes empowers a large
community of enterprise organizations, startup companies, and open source organizations
to collaborate and create an ecosystem around Kubernetes that multiplies its benefits and
ensures its staying power. The concepts and abstractions built into Kubernetes are very
well suited for microservice-based systems. They support every phase of the SDLC, from
development, through testing, and deployments, and all the way to monitoring and
troubleshooting. The Minikube project lets every developer run a local Kubernetes cluster,
which is great for experimenting with Kubernetes itself, as well as testing locally in an
environment that is very similar to the production environment. The Helm project is a
fantastic addition to Kubernetes and provides great value as the de facto package
management solution. In the next chapter, we will dive into the world of microservices and
learn why they are the best approach for developing complex and fast-moving distributed
systems that run in the cloud.

Further reading
If you want to learn more about Kubernetes, I recommend my book, Mastering
Kubernetes – Second Edition, published by Packt: https:/ /www. packtpub. com/
application- development/ mastering- kubernetes- second- edition

https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition

2
Getting Started with

Microservices
In the previous chapter, you learned what Kubernetes is all about, and how it is well suited
as a platform for developing, deploying, and managing microservices, and even played a
little with your own local Kubernetes cluster. In this chapter, we are going to talk about
microservices in general and why they are the best way to build complex systems. We will
also discuss various aspects, patterns, and approaches that address common problems in
microservice-based systems and how they compare to other common architectures, such as
monolith and large services.

We will cover a lot of material in this chapter:

Programming in the small – less is more
Making your microservice autonomous
Employing interfaces and contracts
Exposing your service via APIs
Using client libraries
Managing dependencies
Orchestrating microservices
Taking advantage of ownership
Understanding Conway's law
Troubleshooting across multiple services
Utilizing shared service libraries
Choosing a source control strategy
Creating a data strategy

Getting Started with Microservices Chapter 2

[31]

Technical requirements
In this chapter, you'll see some code examples using Go. I recommend that you install Go
and try to build and run the code examples yourself.

Installing Go with Homebrew on macOS
On macOS, I recommend using Homebrew:

$ brew install go

Next, make sure the go command is available:

$ ls -la `which go`
lrwxr-xr-x 1 gigi.sayfan admin 26 Nov 17 09:03 /usr/local/bin/go ->
../Cellar/go/1.11.2/bin/go

To see all the options, just type go. Also, make sure that you define GOPATH in your
.bashrc file and add $GOPATH/bin to your path.

Go comes with the Go CLI that provides many capabilities, but you may want to install
additional tools. Check out https:/ / awesome- go. com/ .

Installing Go on other platforms
On other platforms, follow the official instructions here: https:/ /golang. org/ doc/
install.

The code
You can find the code for this chapter here: https:/ / github. com/ PacktPublishing/ Hands-
On-Microservices-with- Kubernetes/ tree/ master/ Chapter02.

Programming in the small – less is more
Think about the time you learned to program. You wrote little programs that accepted
simple input, did a little processing, and produced some output. Life was good. You could
hold the entire program in your head.

https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://awesome-go.com/
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter02

Getting Started with Microservices Chapter 2

[32]

You understood every line of code. Debugging and troubleshooting was easy. For example,
consider a program to convert temperatures between Celsius and Fahrenheit:

package main

import (
 "fmt"
 "os"
 "strconv"
)

func celsius2fahrenheit(t float64) float64 {
 return 9.0/5.0*t + 32
}

func fahrenheit2celsius(t float64) float64 {
 return (t - 32) * 5.0 / 9.0
}

func usage() {
 fmt.Println("Usage: temperature_converter <mode> <temperature>")
 fmt.Println()
 fmt.Println("This program converts temperatures between Celsius and
Fahrenheit")
 fmt.Println("'mode' is either 'c2f' or 'f2c'")
 fmt.Println("'temperature' is a floating point number to be converted
according to mode")
 os.Exit(1)
}

func main() {
 if len(os.Args) != 3 {
 usage()
 }
 mode := os.Args[1]
 if mode != "f2c" && mode != "c2f" {
 usage()
 }

 t, err := strconv.ParseFloat(os.Args[2], 64)
 if err != nil {
 usage()
 }
 var converted float64
 if mode == "f2c" {
 converted = fahrenheit2celsius(t)
 } else {
 converted = celsius2fahrenheit(t)

Getting Started with Microservices Chapter 2

[33]

 }
 fmt.Println(converted)
}

This program is pretty simple. It does a decent job of validating its input and displaying
usage information if something goes wrong. The actual computation the program does is
just two lines of code that convert the temperature, but it is 45 lines long. There aren't even
any comments. Yet, those 45 lines are pretty readable and easy to test. There aren't any
third-party dependencies (just the Go standard library). There is no IO (files, databases,
network). There is no need for authentication or authorization. There is no need to rate limit
calls. There is no logging, no metrics collection. There is no versioning, health checks, or
configuration. There is no deployment to multiple environments and no monitoring in
production.

Now, consider integrating this simple program into a big enterprise system. You'll have to
take into account many of these aspects. Other parts of the system will start using the
temperature conversion functionality. Suddenly, the simplest operations might have
cascading impacts. Changes to other parts of the system might affect the temperature
converter:

Getting Started with Microservices Chapter 2

[34]

This jump in complexity is natural. Large enterprise systems have many requirements. The
promise of microservices is that by following proper architectural guidelines and
established patterns, the additional complexity can be neatly packaged and used across
many small microservices that work together to accomplish the system goals. Ideally,
service developers can be shielded from the encompassing system most of the time.
However, it takes a lot of effort to provide the right degree of isolation and still also allow
for testing and debugging in the context of the entire system.

Making your microservice autonomous
One of the best ways to fight complexity is to make your microservice autonomous. An
autonomous service is a service that doesn't depend on other services in the system or
third-party services. An autonomous service manages its own state and can be largely
unaware of the rest of the system.

I like to think of autonomous microservices as similar to immutable functions. Autonomous
services never change the state of other components in the system. The benefit of such
services is that their complexity remains the same, regardless of how the rest of the system
evolves and however they are being used by other services.

Employing interfaces and contracts
Interfaces are one of the best tools a software engineer can use. Once you expose something
as an interface, you can freely change the implementation behind it. Interfaces are a
construct that's being used within a single process. They are extremely useful for testing
interactions with other components, which are plentiful in microservice-based systems.
Here is one of the interfaces of our sample application:

type UserManager interface {
 Register(user User) error
 Login(username string, authToken string) (session string, err error)
 Logout(username string, session string) error
}

Getting Started with Microservices Chapter 2

[35]

The UserManager interface defines a few methods, their inputs, and outputs. However, it
doesn't specify the semantics. For example, what happens if the Login() method is called
for an already logged-in user? Is it an error? Is the previous session terminated and a new
session created? Is it returning the existing session without an error (idempotent
approach)? These kinds of questions are answered by contracts. Contracts are difficult to
specify fully and Go doesn't provide any support for contracts. But, contracts are important
and they always exist, even if only implicitly.

Some languages don't support interfaces as a first-class syntactic construct
of the language. However, it is very easy to accomplish the same effect.
Languages with dynamic typing, such as Python, Ruby, and JavaScript,
allow you to pass any object that satisfies the set of attributes and methods
used by the caller. Static languages, such as C and C++, get by with sets of
function pointers (C) or structs with only pure virtual functions (C++).

Exposing your service via APIs
Microservices interact with each other and sometimes with the outside world over the
network. A service exposes its capabilities through an API. I like to think of APIs as over-
the-wire interfaces. Programming language interfaces use the syntax of the language they
are written in (for example, Go's interface type). Modern network APIs also use some high-
level representation. The foundation is UDP and TCP. However, microservices will
typically expose their capabilities over web transports, such as HTTP (REST, GraphQL,
SOAP), HTTP/2 (gRPC), or, in some cases, WebSockets. Some services may imitate other
wire protocols, such as memcached, but this is useful in special situations. In 2019, there is
really no reason to build your own custom protocol directly over TCP/UDP or use
proprietary and language-specific protocols. Approaches such as Java RMI, .NET remoting,
DCOM, and CORBA are better left in the past, unless you need to support some legacy
code base.

There are two categories of microservices, which are as follows:

Internal microservices are only accessible to other microservices running
typically in the same network/cluster and those services can expose more
specialized APIs because you're in control of both services and their clients (other
services).
External services are open to the world and often need to be consumed from web
browsers or clients using multiple languages.

Getting Started with Microservices Chapter 2

[36]

The benefit of using standard network APIs over standard language-agnostic transports is
that it enables the polyglot promise of microservices. Each service may be implemented in
its own programming language (for example, one service in Go and another in Python) and
they may even migrate to a completely different language later (Rust, anyone?) without
disruption, as all these services interact through the network API. We will examine later the
polyglot approach and its trade-offs.

Using client libraries
Interfaces are very convenient to work with. You operate within your programming
language environments, calling methods with native data types. Working with network
APIs is different. You need to use a network library, depending on the transport. You need
to serialize your payload and responses and deal with network errors, disconnects, and
timeouts. The client library pattern encapsulates the remote service and all these decisions
and presents you with a standard interface that, as a client of the service, you just call. The
client library behind the scenes will take care of all the ceremony involved with invoking a
network API. The law of leaky abstractions (https:/ /www. joelonsoftware. com/ 2002/ 11/
11/the-law-of-leaky- abstractions/) says that you can't really hide the network.
However, you can hide it pretty effectively from the consumer service and configure it
properly with policies regarding timeouts, retries, and caching.

One of the greatest selling points of gRPC is that it generates a client
library for you.

Managing dependencies
Modern systems have a lot of dependencies. Managing them effectively is a big part of the
software development life cycle (SDLC). There are two kinds of dependencies:

Libraries/packages (linked to the running service process)
Remote services (accessible over the network)

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

Getting Started with Microservices Chapter 2

[37]

Each of these dependencies can be internal or third party. You manage libraries or packages
through your language's package management system. Go had no official package
management system for a long time and several solutions, such as Glide and Dep, came
along. These days (Go 1.12), Go modules are the official solution.

You manage remote services through the discovery of endpoints and tracking API
versions. The difference between internal dependencies and third-party dependencies is the
velocity of change. Internal dependencies will change much faster. With microservices,
you'll have other microservices you depend on. Versioning and keeping track of the
contracts behind the APIs become very important aspects of development.

Coordinating microservices
When comparing a monolith system with a microservice-based system, one thing is clear.
There is more of everything. The individual microservices are simpler and it's much easier
to reason, modify, and troubleshoot individual services. But, understanding the whole
system, making changes across multiple services, and debugging problems are more
challenging. Many more interactions also happen over the network between separate
microservices, where, with a monolith, these interactions would occur within the same
process. It means that to benefit from microservices, you need a disciplined approach, you
need to apply best practices, and have good tools at your disposal.

The uniformity versus flexibility trade-off
Let's say you have a hundred microservices, but they are all very small and very similar.
They all use the same data store (for example, the same type of relational database). They
are all configured in the same way (for example, a configuration file). They all report errors
and logs to a centralized log server. They are all implemented using the same programming
language (for example, Go). Typically, the system will handle several use cases. Each use
case will involve some subset of these hundred microservices. There will also be some
generic microservices that are used in most use cases (for example, an authorization
service). Then, it may not be that difficult to understand the system as a whole, given some
good documentation. You can look at each use case separately and, when you extend the
system and add more use cases, and maybe grow to a thousand microservices, the
complexity remains bounded:

Getting Started with Microservices Chapter 2

[38]

A good analogy is files and directories. Suppose you organize your music by genre, artist,
and song. Initially, you had three genres, 20 artists, and 200 songs. Then, you expanded
everything and now have 10 genres, 50 artists, and 3,000 songs. The organization is still the
same old hierarchy of genre/artist/song. It's true that at some point when you scale, the
sheer scale can present new problems. For example, with music, when you have so much
music that it doesn't fit on your hard disk, you need a qualitatively different solution (for
example, keep it in the cloud). The same is true for microservices, but the divide and
conquer approach works well. If you reach internet-scale—Amazon, Google,
Facebook—then, yes, you'll need much more elaborate solutions for every aspect.

But, with uniform microservices, you sacrifice a number of benefits. For example, teams
and developers may be forced to use a programming language that is not best for the task,
or they'll have to abide by strict operational standards of logging and error reporting, even
for small non-critical internal services.

You need to understand the pros and cons of uniform versus diverse microservices. There
is a spectrum ranging from totally uniform microservices to a jungle of anything goes,
where each microservice is a unique snowflake. Your responsibility is to find the sweet spot
along this spectrum for your system.

Taking advantage of ownership
Since microservices are small. A single developer can own a whole microservice and
understand it completely. Other developers may also be familiar with it, but even if just a
single developer is familiar with a service, it should be relatively simple and painless for a
new developer to take over because the scope is so limited and ideally similar.

Getting Started with Microservices Chapter 2

[39]

Sole ownership can be very powerful. The developer needs to communicate with the other
developers and teams though the service API, but can iterate very fast on the
implementation. You may still want other developers on the team to review the internal
design and implementation, but even in the extreme case that the owner works completely
on their own with no supervision, the potential damage is limited because the scope of each
microservice is small and it interacts with the rest of the system through well-defined APIs.

The differences in productivity can be jaw-dropping.

Understanding Conway's law
Conway's law is defined as follows:

"Organizations which design systems ... are constrained to produce designs which are
copies of the communication structures of these organizations."

This means the structure of the system will reflect the structure of the team building it. A
famous variation by Eric Raymond is this:

"If you have four groups building a compiler you'll get a 4-pass compiler."

This is very insightful and I've personally witnessed it time and again in many different
organizations. This is very relevant to microservice-based systems. With lots of small
microservices, you don't need a dedicated team for each microservice. There will be some
higher-level groups of microservices that work together to produce some aspect of the
system. Now, the question is how to think about the high-level structure. There are three
main options:

Vertical
Horizontal
Matrix

Microservices can be very important in this regard. By being small autonomous
components, they support all structures. But, what is even more important is when
organizations need to transition from one approach to another. The usual trajectory is:
horizontal | vertical | matrix.

The organization can perform those transitions with much less friction if the software
follows a microservice-based architecture. It can even be a deciding factor. Even an
organization that doesn't follow microservice-based architecture decides to stay with an
inappropriate structure because the risk and effort of breaking the monolith is too high.

Getting Started with Microservices Chapter 2

[40]

Vertical
The vertical approach takes a slice of functionality of the system that comprises multiple
microservices and a team is fully responsible for that functionality, from design to
implementation, through deployment and maintenance. Teams operate as silos and
communication between them is typically limited and formal. This approach favors aspects
of microservices, such as the following:

Polyglot
Flexibility
Independently moving pieces
End-to-end ownership
Less formal contracts within the vertical slice
Easy-to-scale to more vertical slices (just form another team)
Difficult to apply changes across vertical slices, especially as the number of
vertical slices scales

This approach is common in very large organizations due to its scalability advantages. It
also requires a lot of creativity and effort to make improvements across the board. There
will be duplication of effort between the silos. Aiming for complete reuse and coordination
is futile. The trick with the vertical approach is to find the sweet spot, where common
functionality is packaged in a way that can be used by multiple silos, but without requiring
explicit coordination.

Horizontal
The horizontal approach looks at the system as a layered architecture. The team structure is
organized along those layers. There may be a frontend group, backend group, and a
DevOps group. Each group is responsible for all the aspects in their layer. Vertical
functionality is implemented by a collaboration between different groups across all layers.
This approach is more suitable for smaller organizations with a small numbers of products
(sometimes just one).

The nice thing about the horizontal approach is that the organization can build expertise
and share knowledge across entire horizontal layers. Typically, organizations start with a
horizontal organization and, as they grow and then expand to more products, or possibly
spread across multiple geographic locations, they divide into a more vertical structure.
Within each silo, the structure is usually horizontal.

Getting Started with Microservices Chapter 2

[41]

Matrix
The matrix organization is the most complicated. You have your vertical silos, but the
organization recognizes that the amount of duplication and variation between the silos
waste resources and also makes transferring people between vertical silos challenging if
they diversify too much. With a matrix organization, in addition to the vertical silos, there
are also cross-cutting groups that work with all vertical silos and try to bring some level of
consistency, uniformity, and order. For example, the organization may dictate that all
vertical silos must deploy their software to the cloud on AWS. In this case, there may be a
cloud platform group that is managed outside the vertical silos and provides guidance,
tooling, and other shared services for all the vertical silos. Security is another good
example. Many organizations consider security an area that must be managed centrally and
can't be left to the whims of each silo.

Troubleshooting across multiple services
Since most of the functions of the system will involve interactions between multiple
microservices, it's important to be able to follow a request coming in across all those
microservices and various data stores. One of the best ways to accomplish this is
distributed tracing, where you tag each request and can follow it from beginning to end.

The subtleties of debugging distributed systems in general and microservice-based ones
take a lot of expertise. Consider the following aspects along the path of a single request
through the system:

The microservices processing the request may use different programming
languages.
The microservices may expose APIs using different transports/protocols.
Requests may be part of asynchronous workflows that involve waiting in queues
and/or periodical processing.
The persistent state of the request may be spread across many independent data
stores controlled by different microservices.

When you need to debug a problem across the entire swath of microservices in the system,
the autonomous nature of each microservice becomes a hindrance. You must build explicit
support to be able to gain system-level visibility by aggregating internal information from
multiple microservices.

Getting Started with Microservices Chapter 2

[42]

Utilizing shared service libraries
If you choose the uniform microservices approach, it is very useful to have a shared library
(or several libraries) that all services use and implement many cross-cutting concerns, such
as the following:

Configuration
Secret management
Service discovery
API wrapping
Logging
Distributed tracing

This library may implement whole workflows, such as authentication and authorization,
that interact with other microservices or third-party dependencies and do the heavy lifting
for each microservice. This way, the microservice is only responsible for using these
libraries properly and implements its own functionality.

This approach can work even if you choose the polyglot path and support multiple
languages. You can implement this library for all the supported languages and the services
themselves can be implemented in different languages.

However, there are costs associated with the maintenance and evolution of shared libraries
and the rate of adopting them by all microservices. A real danger is that different
microservices will use many versions of the shared libraries and cause subtle (or not so
subtle) problems when services using different versions of the shared library try to
communicate.

The service mesh approach that we will explore later in the book can provide some answers
to this issue.

Choosing a source control strategy
This is a very interesting scenario. There are two main approaches: monorepo and multiple
repos. Let's explore the pros and cons of each.

Getting Started with Microservices Chapter 2

[43]

Monorepo
In the monorepo approach, your entire code base is in a single source control repository. It
is very easy to perform operations over the entire code base. Whenever you make a change,
it is reflected immediately in your entire code base. Versioning is pretty much off the table.
That's great for keeping all your code in sync. But, if you do need to upgrade some parts of
your systems incrementally, you'll need to come up with workarounds, such as creating a
separate copy with your new changes. Also, the fact that your source code is always in sync
doesn't mean that your deployed services are all using the latest version. If you always
deploy all your services at once, you're pretty much building a monolith. Note that you
may still have multiple repos if you contribute to third-party open source projects (even if
you only use upstream versions after your changes were merged).

Another big issue with monorepo is that you might need a lot of custom tooling to manage
your multi repo. Large companies, such as Google and Microsoft, use the multi-repo
approach. They have special needs and the custom tooling aspect doesn't deter them. I'm
on the fence if the multi-repo approach is appropriate for smaller organizations. However,
I'll use a monorepo for the Delinkcious —the demo application—so, we will get to explore
it together and form an opinion. A major downside is that many modern CI/CD tool chains
use GitOps, which trigger changes in source control repos. When there is just one
monorepo, you lose the one-to-one mapping between a source control repo and a
microservice.

Multiple repos
The multiple repos approach is exactly the opposite. Each project, and often each library,
has a separate source control repository. Projects consume each other just like third-party
libraries. There are several advantages to this approach:

Clear physical boundaries between projects and services.
One-to-one mapping of source control repositories and services or projects.
It is easy to map deployments of services to source control repositories.
Uniform treatment of all dependencies—internal and third party.

Getting Started with Microservices Chapter 2

[44]

However, there are significant costs to this approach, especially as the number of services
and projects grows and the dependency graphs between them become more complicated:

Applying changes often requires changes across multiple repositories.
You often need to maintain multiple versions of a repository, as different services
depend on different services.
It is difficult to apply cross-cutting changes across all repositories.

Hybrid
The hybrid approach involves using a small number of repositories. Each repository
contains multiple services and projects. Each repository is isolated from the other
repositories, but within each repo, multiple services and projects can be developed in
lockstep. This approach balances the pros and cons of monorepo and multiple repos. It may
be useful when there are clear organizational boundaries and often geographical
boundaries. For example, if a company has multiple product lines that are completely
independent, it may be a good idea to break each product line into its own monorepo.

Creating a data strategy
One the most important responsibilities of a software system is to manage data. There are
many types of data, and most of the data, should survive any failure of the system or you
should be able to reconstruct it. Data often has complex relationships with other data. This
is very explicit with relational databases, but exists in other types of data, too. Monoliths
typically use large data stores that keep all the related data and, as a result, can perform
queries and transactions over the entire set of data. Microservices are different. Each
microservice is autonomous and responsible for its data. However, the system as a whole
needs to query and operate over data that is now stored in many independent data stores
and managed by many different services. Let's examine how to address this challenge using
best practices.

One data store per microservice
The one data store per microservice is a crucial element of the microservice architecture.
The moment two microservices can access directly the same data store, they are tightly
coupled and are no longer independent. There are a few important nuances to understand.
It may be OK for multiple microservices to use the same database instance, but they must
not share the same logical database.

Getting Started with Microservices Chapter 2

[45]

The database instance is a resource provisioning concern. In some cases, the team
developing the microservice is responsible for provisioning its data stores too. In this case,
the wise move may be to have physically separate DB instances for each microservice and
not just logical ones. Note that when using cloud data stores, the microservice developer is
not in control and unaware of the physical configuration of the data store.

We agree that two microservices shouldn't share the same data store. But, what about a
single microservice managing two or more data stores? This is generally also frowned
upon. If your design calls for two separate data stores, it's better to dedicate a microservice
to each one:

There is one common exception—you may want to manage an in-memory data store
(cache) and a persistent data store by the same microservice. The workflow is that the
service is writing to the persistent store and the cache and serving queries from the cache.
The cache is either refreshed periodically, or based on change notification, or when there is
a cache miss.

But, even in this case, it may be a better design to have a separate centralized cache, such as
Redis managed by a separate microservice. Remember that each microservice may have
multiple instances in a large system that serves many users.

Another reason to abstract away the physical configuration and provisioning of data stores
from the microservices themselves is that those configurations may be different in different
environments. Your production environment may have physically separate data stores for
each microservice, but, in your development environment, it may be better to have just one
physical database instance with lots of small logical databases.

Getting Started with Microservices Chapter 2

[46]

Running distributed queries
We agree that each microservice should have its own data store. This means that the overall
state of the system will be distributed across multiple data stores, accessible only from their
own microservices. Most interesting queries will involve data available in multiple data
stores. Each consumer could just access all these microservices and aggregate all the data to
satisfy their query. However, that is sub-optimal for several reasons:

Consumers are intimately aware of how data is managed by the system.
Consumers need to get access to each and every service that stores data relevant
to the query.
Changing the architecture might require changes to a lot of consumers.

There are two common solutions to address this issue: CQRS and API composition. The
cool thing about it is that the services that enable both solutions have the same API, so it is
possible to switch from one solution to another, or even mix and match without impacting
users. This means that some queries will be serviced by CQRS and others by API
composition, all implemented by the same service. Overall, I recommend to start with API
composition and transition to CQRS only if the proper conditions exist and benefits are
compelling, due to its much higher complexity.

Employing Command Query Responsibility Segregation
With Command Query Responsibility Segregation (CQRS), the data from the various
microservices is aggregated to a new read-only data store that is designed to answer
specific queries. The meaning of the name is that you separate (segregate) the responsibility
of updating data (commands) from the responsibility of reading data (queries). Different
services are in charge of those activities. It is often implemented by watching for changes to
all data stores and requires a change notification system in place. You could use polling too,
but that's often undesirable. This solution shines when there are known queries that are
used often.

Here is an illustration of CQRS in action. The CQRS service (responsible for queries)
receives a change notification from the three microservices (responsible for updates) and
aggregates them into its own data store.

Getting Started with Microservices Chapter 2

[47]

When a query comes, the CQRS service responds by accessing its own aggregated view
without hitting the microservices:

The pros are as follows:

Queries don't interfere with updating the primary data store.
The aggregator service exposes an API that is tailored to specific queries.
It's easier to change the way data is managed behind the scenes without
impacting consumers.
Quick response time.

The cons are as follows:

It adds complexity to the system.
It duplicates the data.
Partial views require explicit treatment.

Employing API composition
The API composition approach is much more lightweight. On the surface, it looks just like
the CQRS solution. It exposes an API that can answer well-known queries across multiple
microservices. The difference is that it doesn't keep its own data store. Whenever a request
comes in, it will access the individual microservices that contain the data, compose the
results, and return them. This solution shines when the system doesn't support event
notification for data changes and when the load of running queries against the primary
data store is acceptable.

Getting Started with Microservices Chapter 2

[48]

Here is an illustration of API composition in action, where a query to an API composer
service is translated under the covers to queries to three microservices:

The pros are as follows:

Lightweight solution.
The aggregator service exposes an API that is tailored to specific queries.
Results are always up to date.
No architectural requirements, such as event notification.

The cons are as follows:

The failure of any service will fail the query. This requires policy decisions
around retries and timeouts.
A high number of queries might impact primary data stores.

Using sagas to manage transactions across
multiple services
The API composer and CQRS patterns provide adequate solutions for distributed queries
when everything works well. However, maintaining distributed data integrity is a complex
problem. If you store all your data in a single relational database and specify proper
constraints in your schema, then you can rely on the database engine to take care of data
integrity. The situation is very different with multiple microservices maintaining your data
in isolated data stores (relational or non-relational). Data integrity is essential, but it must
be maintained by your code. The saga pattern addresses this concern. Before diving into the
saga pattern, let's understand data integrity in general.

Getting Started with Microservices Chapter 2

[49]

Understanding ACID
A common measure of data integrity is that all transactions that modify data have the
ACID properties:

Atomic: All operations in the transaction succeed or they all fail.
Consistent: The state of the data complies with all constraints before and after
the transaction.
Isolated: Concurrent transactions behave as if serialized.
Durable: When a transaction completes successfully, the results are persisted.

The ACID properties are not specific to relational databases, but often used in that context,
mostly because the relational schemas, with their formal constraints, provide a convenient
measure of consistency. The isolation property often has serious performance implications
and may be relaxed in some systems that prefer high-performance and eventual
consistency.

The durability property is pretty obvious. There is no point going to all the trouble if your
data can't be safely persisted. There are different levels of persistence:

Persistence to disk: Can survive restart of the node, but no disk failure
Redundant memory on multiple nodes: Can survive restart of a node and disk
failure, but not temporary failure of all the nodes
Redundant disks: Can survive the failure of a disk
Geo-distributed replicas: Can survive a whole data center being down
Backups: Cheaper to store a lot of information, but slower to restore and often
lags behind real time

The atomicity requirement is also a no-brainer. Nobody likes partial changes, which can
violate data integrity and break the system in unpredictable ways that are difficult to
troubleshoot.

Understanding the CAP theorem
The CAP theorem states that a distributed system can't have all three properties at the same
time:

Consistency
Availability
Partition resiliency

Getting Started with Microservices Chapter 2

[50]

In practice, you get to pick if you want a CP system or AP system. A CP system (consistent
and partition resilient) is always consistent and will not serve queries or make changes if
there is a network partitioning between components. It will function only when the system
is fully connected. This obviously means that you don't have availability. On the other
hand, an AP system (available and partition resilient) is always available and can operate
in split-brain fashion. When the system splits, each part may continue to operate normally,
but the system will be inconsistent because each part is unaware of transactions happening
in the other part.

AP systems are often referred to as eventually consistent systems because, when
connectivity is restored, some reconciliation process ensures the entire system syncs up
again. An interesting variant is frozen systems, where, when a network partitioning occurs,
they degrade gracefully and both parts continue to serve queries, but reject all
modifications to the system. Note that there is no guarantee that, at the moment of
partitioning, both parts are consistent because some transactions in one part may still not be
replicated to the other part. Often, it is good enough because the divergence between the
split part is small and will not increase over time because new changes are rejected.

Applying the saga pattern to microservices
Relational databases can provide ACID compliance for distributed systems through
algorithms, such as two-phase commit and control over all the data. The two-phase commit
algorithm works in two phases: prepare and commit. However, the services that participate
in the distributed transaction must share the same database. That doesn't work for
microservices that manage their own databases.

Enter the saga pattern. The basic idea of the saga pattern is that there is centralized
management of the operations across all the microservices and that, for each operation,
there is a compensating operation that will be executed if, for some reason, the entire
transaction can't be completed. This achieves the atomicity property of ACID. But, the
changes on each microservice are visible immediately and not only at the end of the entire
distributed transaction. This violates the consistency and isolation properties. This is not a
problem if you design your system as AP, also known as, eventually consistent. But, it
requires your code to be aware of it and be able to work with data that may be partially
inconsistent or stale. In many cases, this is an acceptable compromise.

How does a saga work? A saga is a set of operations and corresponding compensating
operations on microservices. When an operation fails, its compensating operation and the
compensating operations of all the previous operations are called in reverse order to roll
back the entire state of the system.

Getting Started with Microservices Chapter 2

[51]

Sagas are not trivial to implement because the compensating operations might fail too. In
general, the transient state must be persistent and marked as such and a lot of metadata
must be stored to enable reliable rollback. A good practice is to have an out-of-band process
run frequently and clean up failed sagas that didn't manage to complete all their
compensating operations in real time.

A good way to think about sagas is as workflows. Workflows are cool because they enable
long processes that even involve humans and not just software.

Summary
In this chapter, we covered a lot of ground. We discussed the basic principle of
microservices—less is more—and how breaking down your system to many small and self-
contained microservices can help it scale. We also discussed the challenges that face
developers utilizing the microservices architecture. We provided a slew of concepts,
options, best practices, and pragmatic advice on architecting microservice-based systems.
At this point, you should appreciate the flexibility that microservices offer, but also be a
little apprehensive of the many ways you can choose to utilize them.

In the rest of the book, we will explore the terrain in detail and together build a
microservice-based system using some of the best available frameworks and tools and
deploy it on Kubernetes. In the next chapter, you'll meet Delinkcious—our sample
application—that will serve as a hands-on laboratory. You will also get a glimpse into Go-
kit, a microservice-based framework for constructing Go microservices.

Further reading
If you are interested in microservices, I recommend the following article as a starting
point: https://www. martinfowler. com/

https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/
https://www.martinfowler.com/

3
Delinkcious - the Sample

Application
Delinkcious is a Delicious (https:/ /en. wikipedia. org/wiki/ Delicious_
(website)) wannabe. Delicious used to be an internet hit that managed links for users. It
was acquired by Yahoo, was bounced around, and sold multiple times. It was eventually
purchased by Pinboard, which runs a similar service and intends to shut down Delicious
soon.

Delinkcious allows users store URLs in cool places on the web, tag them, and query them in
various ways. Throughout this book, Delinkcious will serve as a live lab to demonstrate
many microservices and Kubernetes concepts, as well as features in the context of a real-
world application. The focus will be on the backend, so there will be no snazzy frontend
web application or mobile app. I'll leave those as the dreaded exercise for you.

In this chapter, we will understand why I chose Go as the programming language of
Delinkcious, and then look at Go kit – an excellent Go microservice toolkit that I'll use to
build Delinkcious. Then, we will dissect the different aspects of Delinkcious itself using the
social graph service as a running example.

We will be covering the following topics:

The Delinkcious microservices
The Delinkcious data storage
The Delinkcious API
The Delinkcious client libraries

https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)
https://en.wikipedia.org/wiki/Delicious_(website)

Delinkcious - the Sample Application Chapter 3

[53]

Technical requirements
If you have followed along with this book so far, you will have already installed Go. I
recommend installing a good Go IDE to follow the code in this chapter since there will be a
lot to go through. Let's go through a couple of good options.

Visual Studio Code
Visual Studio Code, also known as VS Code (https:/ /code. visualstudio. com/ docs/
languages/go), is an open source IDE from Microsoft. It isn't Go-specific but has deep
integration with Go via a dedicated and sophisticated Go extension. It is considered the
best free Go IDE.

GoLand
JetBrains' GoLand (https:/ /www. jetbrains. com/ go/) is my personal favorite. It follows the
great tradition of IntelliJ IDEA, PyCharm, and other great IDEs. This is a paid version with
a 30-day free trial. There is no Community Edition, unfortunately. If you can afford it, I
highly recommend it. If you can't or don't want to pay for an IDE (totally reasonable), check
out the other options.

LiteIDE
LiteIDE or LiteIDE X (https:/ /github. com/ visualfc/ liteide) is a very interesting open
source project. It is one of the earliest Go IDEs and it predates both GoLand and the Go
extension for VS Code. I used it in the early days and was surprised by its quality. I
eventually dropped it due to difficulties with interactive debugging via the GNU Project
Debugger (GDB). It is actively developed, has a lot of contributors, and supports all the
latest and greatest Go features, including Go 1.1 and the Go modules. You can now debug
using Delve, which is the best of class Go debugger.

https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://code.visualstudio.com/docs/languages/go
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://www.jetbrains.com/go/
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide
https://github.com/visualfc/liteide

Delinkcious - the Sample Application Chapter 3

[54]

Other options
If you're a die-hard command-line person and don't like IDEs at all, you have options
available. Most programming and text editors have some form of Go support. The Go wiki
(https://github.com/ golang/ go/ wiki/ IDEsAndTextEditorPlugins) has a big list of IDEs
and text editor plugins, so go and check that out.

The code
In this chapter, there are no code files since you'll just be getting to know the Delinkcious
application:

It is hosted in its own GitHub repository, which can be found at: https:/ /
github.com/ the- gigi/ delinkcious.
Check out the v0.1 Tags | Releases: https:/ /github. com/ the-gigi/
delinkcious/ releases/ tag/ v0. 1.
Clone it and use your favorite IDE or text editor to follow up.
Remember that the general code examples for this book are in another GitHub
repository: https:/ /github. com/PacktPublishing/ Hands- On-Microservices-
with-Kubernetes/ .

Choosing Go for Delinkcious
I wrote and shipped production backend code in many fine languages such as C/C++,
Python, C#, and, of course, Go. I also used a few not-so-fine languages, but let's leave those
out of the discussion. I decided to use Go as the programming language for Delinkcious
because it is a superb language for microservices:

Go compiles to a single binary with no external dependencies (awesome for
simple Dockerfiles).
Go is very readable and easy to learn.
Go has excellent support for network programming and concurrency.
Go is the implementation language of many cloud-native data stores, queues,
and frameworks (including Docker and Kubernetes).

https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/the-gigi/delinkcious/releases/tag/v0.1
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/

Delinkcious - the Sample Application Chapter 3

[55]

You may argue that microservices are supposed to be language agnostic and that I
shouldn't focus on one language. This is true, but my goal is to be very hands-on in this
book and dive deep into all the fine details of building microservices on Kubernetes. To do
that, I had to make specific choices and stick to them. Trying to get the same level of depth
in multiple languages would have been futile. That being said, the microservice boundaries
are very clear (one of the advantages of microservices) and you can see how implementing
a microservice in another language will present a few issues to the rest of the system.

Getting to know Go kit
You can write your microservices from scratch (in Go or any other language) and they will
interact with each other just fine through their APIs. However, in a real-world system, there
will be a large number of shared and/or cross-cutting concerns that you want to be
consistent:

Configuration
Secret management
Central logging
Metrics
Authentication
Authorization
Security
Distributed tracing
Service discovery

In practice, microservices in most large production systems will need to comply with
certain policies for those concerns.

Enter Go kit (https:/ /gokit. io/). Go kit takes a very modular approach to the
microservices space. It provides a high degree of separation of concerns, a recommended
approach for structuring your microservice, and a lot of flexibility. As the website says, Few
opinions, lightly held.

https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/

Delinkcious - the Sample Application Chapter 3

[56]

Structuring microservices with Go kit
Go kit is all about best practices. Your business logic is implemented as pure Go libraries
that only deal with interfaces and Go structs. All the complex aspects involved in APIs,
serialization, routing, and networking will be relegated to clearly separate layers that are
taking advantage of Go kit concepts and infrastructures such as transports, endpoints, and
services. This makes for a great development experience, where you can evolve and test
your application code in the simplest environment possible. Here is the interface for one of
Delinkcious' services – the social graph. Note that it is in plain Go. There is no notion of
API, microservice, or even Go kit imports:

type SocialGraphManager interface {
 Follow(followed string, follower string) error
 Unfollow(followed string, follower string) error

 GetFollowing(username string) (map[string]bool, error)
 GetFollowers(username string) (map[string]bool, error)
}

The implementation of this interface resides in a Go package that is still completely agnostic
of Go kit or even the fact it is being used in a microservice:

package social_graph_manager

import (
 "errors"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

type SocialGraphManager struct {
 store om.SocialGraphManager
}

func (m *SocialGraphManager) Follow(followed string, follower string) (err
error) {
 ...
}

func (m *SocialGraphManager) Unfollow(followed string, follower string)
(err error) {
 ...
}

func (m *SocialGraphManager) GetFollowing(username string)
(map[string]bool, error) {
 ...
}

Delinkcious - the Sample Application Chapter 3

[57]

func (m *SocialGraphManager) GetFollowers(username string)
(map[string]bool, error) {
 ...
}

A good way to think of a Go kit service is as an onion with different layers. At the core is
your business logic and layered on top are various concerns such as routing, rate limiting,
logging, and metrics, which are eventually exposed to other services or the world over
transports:

Go kit primarily supports RPC-style communication by using a request-response model.

Understanding transports
One of the biggest concerns about microservices is that they interact with each other and
clients over a network; that is, at least an order of magnitude more complicated than calling
methods inside the same process. Go kit provides explicit support for the networking
aspect of microservices through the transport concept.

Delinkcious - the Sample Application Chapter 3

[58]

A Go kit transport encapsulates all the complexity and integrates with other Go kit
constructs such as requests, responses, and endpoints. Go kit officially supports the
following transports out of the box:

HTTP
gRPC
Thrift
net/rpc

However, there are several more transports in its GitHub repository, including AMQP and
NATS transports for message queuing and pub/sub. One cool thing about Go kit transports
is that you can expose the same service through multiple transports without changing your
code.

Understanding endpoints
A Go kit microservice is really just a set of endpoints. Each endpoint corresponds to one
method in your service interface. An endpoint is always associated with at least one
transport and a handler that you implement to service the request. The Go kit endpoints
support the RPC style of communication and have request and response structs.

Here is the factory function for the Follow() method endpoint:

func makeFollowEndpoint(svc om.SocialGraphManager) endpoint.Endpoint {
 return func(_ context.Context, request interface{}) (interface{}, error)
{
 req := request.(followRequest)
 err := svc.Follow(req.Followed, req.Follower)
 res := followResponse{}
 if err != nil {
 res.Err = err.Error()
 }
 return res, nil
 }
}

I will explain what's going on here soon. For now, just note that it accepts an svc argument
of the om.SocialGraphManager type, which is an interface, and it invokes its Follow()
method.

Delinkcious - the Sample Application Chapter 3

[59]

Understanding services
This is where your code plugs into the system. When the endpoint is called, it invokes the
corresponding method in your service implementation to do all the work. All the hard
work of encoding and decoding requests and responses is done by the endpoint wrapper.
You can focus on your application logic using the best abstractions that make sense.

Here is the implementation of the SocialGraphManager function's Follow() method:

func (m *SocialGraphManager) Follow(followed string, follower string) (err
error) {
 if followed == "" || follower == "" {
 err = errors.New("followed and follower can't be empty")
 return
 }

 return m.store.Follow(followed, follower)
}

Understanding middleware
Go kit is composable, as demonstrated in the preceding onion diagram. In addition to the
mandatory transports, endpoints, and services, Go kit uses the decorator pattern to
optionally wrap services and endpoints with cross-cutting concerns, such as the following:

Resiliency (for example, retries with exponential backoff)
Authentication and authorization
Logging
Metrics collection
Distributed tracing
Service discovery
Rate limiting

This approach of a solid core with a small number of abstractions, such as transports,
endpoints, and services, that can be extended using a uniform mechanism of middleware is
easy to comprehend and work with. Go kit strikes the right balance between providing
enough built-in functionality for middleware and leaving the floor open to your needs. For
example, when running on Kubernetes, service discovery is taken care of for you. It's great
that you don't have to work around Go kit in this case. Features and capabilities that you
don't absolutely need are optional.

Delinkcious - the Sample Application Chapter 3

[60]

Understanding clients
In Chapter 2, Getting Started with Microservices, we discussed the client library principle of
microservices. A microservice that talks to another microservice ideally utilizes a client
library that's exposed through an interface. Go kit provides excellent support and
guidelines for writing such client libraries. The using microservice simply receives an
interface. It is actually totally agnostic to the fact it is talking to another service. For (almost)
all intents and purposes, the remote service could be running in the same process. This is
excellent for testing or for refactoring services and breaking a slightly too large service into
two separate services.

Go kit has client endpoints that are similar to service endpoints but work in the opposite
direction. Service endpoints decode requests, delegate work to the service, and encode
responses. Client endpoints encode requests, invoke the remote service over the network,
and decode the response.

Here is what the Follow() method of the client looks like:

func (s EndpointSet) Follow(followed string, follower string) (err error) {
 resp, err := s.FollowEndpoint(context.Background(),
FollowRequest{Followed: followed, Follower: follower})
 if err != nil {
 return err
 }
 response := resp.(SimpleResponse)

 if response.Err != "" {
 err = errors.New(response.Err)
 }
 return
}

Generating the boilerplate
The clean separation of concerns and neat architectural layering of Go kit has a price. The
price is a lot of boring, mind-numbing, and error-prone boilerplate code for translating
requests and responses between different structs and method signatures. It is useful to see
and understand how Go kit can support strongly-typed interfaces in a generic way, but for
large-scale projects, the preferred solution is to generate all the boilerplate from the Go
interfaces and data types. There are several projects for this task, including one under
development by Go kit itself called kitgen (https:/ /github. com/ go- kit/ kit/tree/
master/cmd/kitgen).

https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen
https://github.com/go-kit/kit/tree/master/cmd/kitgen

Delinkcious - the Sample Application Chapter 3

[61]

It is considered experimental at the moment. I'm a big fan of code generation and highly
recommend it. However, in the following sections, we will look at a lot of manual
boilerplate code to make it clear what's going on and avoid any magic.

Introducing the Delinkcious directory
structure
The Delinkcious system at this stage of initial development consists of three services:

Link service
User service
Social graph service

The high-level directory structure includes the following sub directories:

cmd

pkg

svc

The root directory also includes some common files such as README.md and the important
go.mod and go.sum files to support the Go modules. I use the monorepo approach here, so
the entire Delinkcious system will live in this directory structure and is considered a single
Go module, albeit with many packages:

$ tree -L 1
.
├── LICENSE
├── README.md
├── go.mod
├── go.sum
├── cmd
├── pkg
└── svc

The cmd subdirectory
The cmd subdirectory contains various tools and commands to support development and
operations, as well as end-to-end tests that involve multiple actors, services, or external
dependencies; for example, testing a microservice via its client library.

Delinkcious - the Sample Application Chapter 3

[62]

At the moment, it only contains a single end-to-end test for the social graph service:

$ tree cmd
cmd
└── social_graph_service_e2e
 └── social_graph_service_e2e.go

The pkg subdirectory
The pkg subdirectory is where all the packages live. It includes the implementation of the
microservices, the client libraries, the abstract object model, other support packages, and
unit tests. The bulk of the code is in the form of Go packages that are simple to develop and
test before they are bundled into actual microservices:

$ tree pkg
pkg
├── link_manager
│ ├── abstract_link_store.go
│ ├── db_link_store.go
│ ├── db_link_store_test.go
│ ├── in_memory_link_store.go
│ ├── link_manager.go
│ └── link_manager_suite_test.go
├── link_manager_client
│ └── client.go
├── object_model
│ ├── README.md
│ ├── interfaces.go
│ └── types.go
├── social_graph_client
│ ├── client.go
│ └── endpoints.go
├── social_graph_manager
│ ├── db_scoial_graph_store.go
│ ├── db_social_graph_manager_test.go
│ ├── in_memory_social_graph_manager_test.go
│ ├── in_memory_social_graph_store.go
│ ├── social_graph_manager.go
│ └── social_graph_manager_suite_test.go
└── user_manager
 ├── db_user_manager_test.go
 ├── db_user_store.go
 ├── in_memory_user_manager.go
 ├── in_memory_user_manager_test.go
 ├── in_memory_user_store.go
 └── user_manager_suite_test.go

Delinkcious - the Sample Application Chapter 3

[63]

The svc subdirectory
The svc subdirectory is where the Delinkcious microservices live. Each microservice is a
separate binary with its own main package. delinkcious_service is a public umbrella
service that follows the API gateway (https:/ /microservices. io/patterns/ apigateway.
html) pattern:

$ tree svc
svc
├── delinkcious_service
│ └── README.md
├── link_service
│ ├── link_service.go
│ └── transport.go
├── social_graph_service
│ ├── social_graph_service.go
│ └── transport.go
└── user_service
 ├── transport.go
 └── user_service.go

Introducing the Delinkcious microservices
Let's examine the Delinkcious services in detail and peel the onion. We'll actually work our
way from the inside out, starting with the service layer and going through the endpoints all
the way to the transports.

There are three different services:

Link service
User service
Social graph service

Together, they collaborate to provide the functionality of Delinkcious, which is to manage
links for users and keep track of their social graph (followed/follower relationships).

https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html

Delinkcious - the Sample Application Chapter 3

[64]

The object model
The object model is the collection of all the interfaces and related data types that are
implemented by the services. I chose to put all of them in a single package:
github.com/the-gigi/delinkcious/pkg/object_model. It contains two
files: interfaces.go and types.go.

The interfaces.go file contains the interfaces for the three Delinkcious services:

package object_model

type LinkManager interface {
 GetLinks(request GetLinksRequest) (GetLinksResult, error)
 AddLink(request AddLinkRequest) error
 UpdateLink(request UpdateLinkRequest) error
 DeleteLink(username string, url string) error
}

type UserManager interface {
 Register(user User) error
 Login(username string, authToken string) (session string, err error)
 Logout(username string, session string) error
}

type SocialGraphManager interface {
 Follow(followed string, follower string) error
 Unfollow(followed string, follower string) error

 GetFollowing(username string) (map[string]bool, error)
 GetFollowers(username string) (map[string]bool, error)
}

type LinkManagerEvents interface {
 OnLinkAdded(username string, link *Link)
 OnLinkUpdated(username string, link *Link)
 OnLinkDeleted(username string, url string)
}

The types.go file contains the structs that are used in the signatures of the various
interface methods:

package object_model

import "time"

type Link struct {
 Url string

Delinkcious - the Sample Application Chapter 3

[65]

 Title string
 Description string
 Tags map[string]bool
 CreatedAt time.Time
 UpdatedAt time.Time
}

type GetLinksRequest struct {
 UrlRegex string
 TitleRegex string
 DescriptionRegex string
 Username string
 Tag string
 StartToken string
}

type GetLinksResult struct {
 Links []Link
 NextPageToken string
}

type AddLinkRequest struct {
 Url string
 Title string
 Description string
 Username string
 Tags map[string]bool
}

type UpdateLinkRequest struct {
 Url string
 Title string
 Description string
 Username string
 AddTags map[string]bool
 RemoveTags map[string]bool
}

type User struct {
 Email string
 Name string
}

The object_model package is just using basic Go types, standard library types
(time.Time), and user-defined types for the Delinkcious domain. It is all pure Go. At this
level, there is no dependency or awareness of networking, APIs, microservices, or Go kit.

Delinkcious - the Sample Application Chapter 3

[66]

The service implementation
The next layer is implementing the service interfaces as simple Go packages. At this point,
each service has its own package:

github.com/the-gigi/delinkcious/pkg/link_manager

github.com/the-gigi/delinkcious/pkg/user_manager

github.com/the-gigi/delinkcious/pkg/social_graph_manager

Note that these are Go package names and not URLs.

Let's examine the social_graph_manager package. It imports the object_model
package as om because it needs to implement the om.SocialGraphManager interface. It
defines a struct called SocialGraphManager that has a field called store of
the om.SocialGraphManager type. So, the interface of the store field is identical to the
interface of the manager in this case:

package social_graph_manager

import (
 "errors"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

type SocialGraphManager struct {
 store om.SocialGraphManager
}

This may be a little confusing. The idea is that the store field implements the same
interface so that the top-level manager can implement some validation logic and delegate
the heavy lifting to the store. You will see this in action soon.

In addition, the fact that the store field is an interface allows us to use different stores that
implement the same interface. This is very useful. The NewSocialGraphManager()
function accepts a store field that must not be nil, and then returns a new instance of
SocialGraphManager with the provided store:

func NewSocialGraphManager(store om.SocialGraphManager)
(om.SocialGraphManager, error) {
 if store == nil {
 return nil, errors.New("store can't be nil")
 }
 return &SocialGraphManager{store: store}, nil
}

Delinkcious - the Sample Application Chapter 3

[67]

The SocialGraphManager struct itself is pretty simple. It performs some validity checks
and then delegates the work to its store:

func (m *SocialGraphManager) Follow(followed string, follower string) (err
error) {
 if followed == "" || follower == "" {
 err = errors.New("followed and follower can't be empty")
 return
 }

 return m.store.Follow(followed, follower)
}

func (m *SocialGraphManager) Unfollow(followed string, follower string)
(err error) {
 if followed == "" || follower == "" {
 err = errors.New("followed and follower can't be empty")
 return
 }

 return m.store.Unfollow(followed, follower)
}

func (m *SocialGraphManager) GetFollowing(username string)
(map[string]bool, error) {
 return m.store.GetFollowing(username)
}

func (m *SocialGraphManager) GetFollowers(username string)
(map[string]bool, error) {
 return m.store.GetFollowers(username)
}

The social graph manager is a pretty simple library. Let's continue peeling the onion and
look at the service itself, which lives under the svc subdirectory: https:/ /github. com/ the-
gigi/delinkcious/tree/ master/ svc/ social_ graph_ service.

Let's start with the social_graph_service.go file. We'll go over the main parts that are
similar for most services. The file lives in the service package, which is a convention I use.
It imports several important packages:

package service

import (
 httptransport "github.com/go-kit/kit/transport/http"
 "github.com/gorilla/mux"
 sgm "github.com/the-gigi/delinkcious/pkg/social_graph_manager"

https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service
https://github.com/the-gigi/delinkcious/tree/master/svc/social_graph_service

Delinkcious - the Sample Application Chapter 3

[68]

 "log"
 "net/http"
)

The Go kit http transport package is necessary for services that use the HTTP transport.
The gorilla/mux package provides top-notch routing capabilities.
social_graph_manager is the implementation of the service that does all the heavy
lifting. The log package is for logging, and the net/http package is for serving HTTP
since it's an HTTP service.

There is just one function called Run(). It starts by creating a data store for the social graph
manager and then creates the social graph manager itself, passing it the store field. So, the
functionality of social_graph_manager is implemented in the package, but the service
is responsible for making the policy decisions and passing a configured data store. If
anything goes wrong at this point, the service just exits with a log.Fatal() call because
there is no way to recover at this early stage:

func Run() {
 store, err := sgm.NewDbSocialGraphStore("localhost", 5432, "postgres",
"postgres")
 if err != nil {
 log.Fatal(err)
 }
 svc, err := sgm.NewSocialGraphManager(store)
 if err != nil {
 log.Fatal(err)
 }

The next part is constructing the handler for each endpoint. This is done by calling the
NewServer() function of the HTTP transport for each endpoint. The parameters are the
Endpoint factory function, which we will review soon, a request decoder function, and the
response encoder function. For HTTP services, it is common for requests and responses to
be encoded as JSON:

followHandler := httptransport.NewServer(
 makeFollowEndpoint(svc),
 decodeFollowRequest,
 encodeResponse,
)

unfollowHandler := httptransport.NewServer(
 makeUnfollowEndpoint(svc),
 decodeUnfollowRequest,
 encodeResponse,
)

Delinkcious - the Sample Application Chapter 3

[69]

getFollowingHandler := httptransport.NewServer(
 makeGetFollowingEndpoint(svc),
 decodeGetFollowingRequest,
 encodeResponse,
)

getFollowersHandler := httptransport.NewServer(
 makeGetFollowersEndpoint(svc),
 decodeGetFollowersRequest,
 encodeResponse,
)

At this point, we have SocialGraphManager properly initialized and the handlers for all
the endpoints. It's time to expose them to the world via the gorilla router. Each endpoint
is associated with a route and a method. In this case, the follow and unfollow operations
use the POST method and the following and followers operations use the GET method:

r := mux.NewRouter()
r.Methods("POST").Path("/follow").Handler(followHandler)
r.Methods("POST").Path("/unfollow").Handler(unfollowHandler)
r.Methods("GET").Path("/following/{username}").Handler(getFollowingHandler)
r.Methods("GET").Path("/followers/{username}").Handler(getFollowersHandler)

The last part is just passing the configured router to the ListenAndServe() method of the
standard HTTP package. This service is hardcoded to listen on port 9090. Later on in this
book, we will see how to configure things in a flexible and more industrial-strength way:

log.Println("Listening on port 9090...")
log.Fatal(http.ListenAndServe(":9090", r))

Implementing the support functions
As you may recall, the social graph implementation in the pkg/social_graph_manager
package is completely transport agnostic. It implements the SocialGraphManager
interface in terms of Go and couldn't care less whether the payload is JSON or protobuf and
coming over the wire through HTTP, gRPC, Thrift, or any other method. The service is
responsible for translation, encoding, and decoding. These support functions are
implemented in the transport.go file.

Delinkcious - the Sample Application Chapter 3

[70]

For each endpoint, there are three functions, which are the input to the HTTP transport's
NewServer() function of Go kit:

The Endpoint factory function
The request decoder
The response encoder

Let's start with the Endpoint factory function, which is the most interesting. Let's use the
GetFollowing() operation as an example. The makeGetFollowingEndpoint() function
takes a SocialGraphManager interface as input (as you saw earlier, in practice, it will be
the implementation in pkg/social_graph_manager). It returns a generic
endpoint.Endpoint function, which a function that takes a Context and a generic
request and returns a generic response and error:

type Endpoint func(ctx context.Context, request interface{}) (response
interface{}, err error)

The job of the makeGetFollowingEndpoint() method is to return a function that
complies with this signature. It returns such a function that, in its implementation, takes the
generic request (the empty interface) and type before asserting it to a concrete request, that
is, getByUsernameRequest:

req := request.(getByUsernameRequest)

This is a key concept. We cross the boundary from a generic object, which could be from
anything to a strongly typed struct. This ensures that, even though the Go kit endpoints
operate in terms of empty interfaces, the implementation of our microservice is type
checked. If the request doesn't contain the right fields, it panics. I could also check whether
it's possible to do the type assert and return an error instead of panicking, which might be
more appropriate in some contexts:

req, ok := request.(getByUsernameRequest)
if !ok {
 ...
}

Let's take a look at the request itself. It is simply a struct with a single string field called
Username. It has the JSON struct tag, which is optional in this case because the JSON
package can automatically work with field names that differ from the actual JSON just by
case like (Username versus username):

type getByUsernameRequest struct {
 Username string `json:"username"`
}

Delinkcious - the Sample Application Chapter 3

[71]

Note that the request type is getByUsernameRequest and not getFollowingRequest, as
you may expect in order to be consistent with the operation it is supporting. The reason for
this is that I actually use the same request for multiple endpoints. The GetFollowers()
operation also requires a username, and getByUsernameRequest serves both
GetFollowing() and GetFollowers().

At this point, we have the username from the request and we can invoke the
GetFollowing() method of the underlying implementation:

followingMap, err := svc.GetFollowing(req.Username)

The result is a map of the users that the requested user is following and the standard error.
However, this is an HTTP endpoint, so the next step is to package this information into the
getFollowingResponse struct:

type getFollowingResponse struct {
 Following map[string]bool `json:"following"`
 Err string `json:"err"`
}

The following map can be translated into a JSON map of string->bool. However, there is
no direct equivalent to the Go error interface. The solution is to encode the error as a string
(via err.Error()), where an empty string represents no error:

res := getFollowingResponse{Following: followingMap}
if err != nil {
 res.Err = err.Error()
}

Here is the entire function:

func makeGetFollowingEndpoint(svc om.SocialGraphManager) endpoint.Endpoint
{
 return func(_ context.Context, request interface{}) (interface{}, error)
{
 req := request.(getByUsernameRequest)
 followingMap, err := svc.GetFollowing(req.Username)
 res := getFollowingResponse{Following: followingMap}
 if err != nil {
 res.Err = err.Error()
 }
 return res, nil
 }
}

Delinkcious - the Sample Application Chapter 3

[72]

Now, let's take a look at the decodeGetFollowingRequest() function. It accepts the
standard http.Request object. It needs to extract the username from the request and
return a getByUsernameRequest struct that the endpoint can use later. At the HTTP
request level, the username will be a part of the request path. The function will parse the
path, extract the username, prepare the request, and return it or an error if anything goes
wrong (for example, no username is provided):

func decodeGetFollowingRequest(_ context.Context, r *http.Request)
(interface{}, error) {
 parts := strings.Split(r.URL.Path, "/")
 username := parts[len(parts)-1]
 if username == "" || username == "following" {
 return nil, errors.New("user name must not be empty")
 }
 request := getByUsernameRequest{Username: username}
 return request, nil

The last support function is the encodeResonse() function. In theory, each endpoint can
have its own custom response encoding function. However, in this case, I am using a
single generic function that knows how to encode all the responses into JSON:

func encodeResponse(_ context.Context, w http.ResponseWriter, response
interface{}) error {
 return json.NewEncoder(w).Encode(response)
}

This requires all the response structs to be JSON serializable, which was taken care of by
translating the Go error interface into a string by the endpoint implementation.

Invoking the API via a client library
The social graph manager is now accessible through an HTTP REST API. Here is a quick
local demo. First, I will launch the Postgres DB (I have a Docker image called postgres),
which is used as the data store, and then I will run the service itself in the service
directory, that is, delinkcious/svc/social_graph_service:

$ docker restart postgres
$ go run main.go

2018/12/31 10:41:23 Listening on port 9090...

Delinkcious - the Sample Application Chapter 3

[73]

Let's add a couple of follower/following relationships by invoking the /follow endpoint. I
will use the excellent HTTPie (https:/ /httpie. org/), which is a better curl in my honest
opinion. However, you can use curl if you prefer:

$ http POST http://localhost:9090/follow followed=liat follower=gigi
HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain; charset=utf-8
Date: Mon, 31 Dec 2018 09:19:01 GMT

{
 "err": ""
}

$ http POST http://localhost:9090/follow followed=guy follower=gigi
HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain; charset=utf-8
Date: Mon, 31 Dec 2018 09:19:01 GMT

{
 "err": ""
}

These two calls made the gigi user follow the liat and guy users. Let's use the
/following endpoint to verify this:

$ http GET http://localhost:9090/following/gigi
HTTP/1.1 200 OK
Content-Length: 37
Content-Type: text/plain; charset=utf-8
Date: Mon, 31 Dec 2018 09:37:21 GMT

{
 "err": "",
 "following": {
 "guy": true
 "liat": true
 }
}

The JSON response has an empty error, and the following map contains the guy and
liat users, as expected.

https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/
https://httpie.org/

Delinkcious - the Sample Application Chapter 3

[74]

While a REST API is cool, we can do better. Instead of forcing the caller to understand the
URL schema of our service and decode and encode JSON payloads, why not provide a
client library that does all of that? This is especially true for internal microservices that all
talk to each other using a small number of languages, and in many cases, just one language.
The service and client can share the same interface and, maybe even some common types.
In addition, Go kit provides support for client-side endpoints that are pretty similar to
service-side endpoints. This translates directly into a very streamlined end-to-end
developer experience, where you just stay in the programming language space. All the
endpoints, transports, encoding, and decoding can remain hidden as an implementation
detail for the most part.

The social graph service provides a client library that lives in the
pkg/social_graph_client package. The client.go file is similar to the
social_graph_service.go file and is responsible for creating a set of endpoints in the
NewClient() function and returning the SocialGraphManager interface. The
NewClient() function takes the base URL as an argument and then constructs a set of
client endpoints using Go kit's NewClient() function of the HTTP transport. Each
endpoint requires a URL, a method (GET or POST, in this case), a request encoder, and
a response decoder. It's like a mirror image of the service. Then, it assigns the client
endpoints to the EndpointSet struct, which can expose them through the
SocialGraphManager interface:

func NewClient(baseURL string) (om.SocialGraphManager, error) {
 // Quickly sanitize the instance string.
 if !strings.HasPrefix(baseURL, "http") {
 baseURL = "http://" + baseURL
 }
 u, err := url.Parse(baseURL)
 if err != nil {
 return nil, err
 }

 followEndpoint := httptransport.NewClient(
 "POST",
 copyURL(u, "/follow"),
 encodeHTTPGenericRequest,
 decodeSimpleResponse).Endpoint()

 unfollowEndpoint := httptransport.NewClient(
 "POST",
 copyURL(u, "/unfollow"),
 encodeHTTPGenericRequest,
 decodeSimpleResponse).Endpoint()

Delinkcious - the Sample Application Chapter 3

[75]

 getFollowingEndpoint := httptransport.NewClient(
 "GET",
 copyURL(u, "/following"),
 encodeGetByUsernameRequest,
 decodeGetFollowingResponse).Endpoint()

 getFollowersEndpoint := httptransport.NewClient(
 "GET",
 copyURL(u, "/followers"),
 encodeGetByUsernameRequest,
 decodeGetFollowersResponse).Endpoint()

 // Returning the EndpointSet as an interface relies on the
 // EndpointSet implementing the Service methods. That's just a simple
bit
 // of glue code.
 return EndpointSet{
 FollowEndpoint: followEndpoint,
 UnfollowEndpoint: unfollowEndpoint,
 GetFollowingEndpoint: getFollowingEndpoint,
 GetFollowersEndpoint: getFollowersEndpoint,
 }, nil
}

The EndpointSet struct is defined in the endpoints.go file. It contains the endpoints
themselves, which are functions, and it implements the SocialGraphManager method,
where it delegates the work to the endpoint's functions:

type EndpointSet struct {
 FollowEndpoint endpoint.Endpoint
 UnfollowEndpoint endpoint.Endpoint
 GetFollowingEndpoint endpoint.Endpoint
 GetFollowersEndpoint endpoint.Endpoint
}

Let's examine the EndpointSet struct's GetFollowing() method. It accepts the username
as a string, and then it calls the endpoint with a getByUserNameRequest that's populated
with the input username. If calling the endpoint function returned an error, it just bails out.
Otherwise, it does type assertion to convert the generic response into a
getFollowingResponse struct. If its error string wasn't empty, it creates a Go error from
it. Eventually, it returns the following users from the response as a map:

func (s EndpointSet) GetFollowing(username string) (following
map[string]bool, err error) {
 resp, err := s.GetFollowingEndpoint(context.Background(),
getByUserNameRequest{Username: username})
 if err != nil {

Delinkcious - the Sample Application Chapter 3

[76]

 return
 }

 response := resp.(getFollowingResponse)
 if response.Err != "" {
 err = errors.New(response.Err)
 }
 following = response.Following
 return
}

Storing data
We've seen how Go kit and our own code take an HTTP request with a JSON payload,
translate it into a Go struct, invoke the service implementation, and encode the response as
a JSON to return to the caller. Now, let's take a deeper look at the persistent storage of the
data. The social graph manager is responsible for maintaining the followed/follower
relationships between users. There are many options for storing such data, including
relational databases, key-value stores, and, of course, graph databases, which may be the
most natural. I chose to use a relational database at this stage because it is familiar, reliable,
and can support the following necessary operations well:

Follow
Unfollow
Get followers
Get following

However, if we later discover that we prefer a different data store or extend the relational
DB with some caching mechanism, it will be very easy to do so because the data store of the
social graph manager is hidden behind an interface. It is actually using the very same
interface, that is, SocialGraphManager. As you may remember, the social graph manager
package accepts a store argument of the SocialGraphManager type in its factory function:

func NewSocialGraphManager(store om.SocialGraphManager)
(om.SocialGraphManager, error) {
 if store == nil {
 return nil, errors.New("store can't be nil")
 }
 return &SocialGraphManager{store: store}, nil
}

Delinkcious - the Sample Application Chapter 3

[77]

Since the social graph manager interacts with its data store through this interface, changing
implementations can be done without any code changes to the social graph manager itself.
I will take advantage of this for unit testing, where I use an in-memory data store that is
easy to set up, can be quickly populated with test data, and allows me to run tests locally.

Let's look at the in-memory social graph data store, which can be found
at https:/ / github. com/ the- gigi/ delinkcious/ blob/ master/ pkg/
social_ graph_ manager/ in_ memory_ social_ graph_ store. go.

It has very few dependencies – just the SocialGraphManager interface and the standard
errors package. It defines a SocialUser struct, which contains a username and the names
of the users it is following, as well as the names of the users that they are followed by:

package social_graph_manager

import (
 "errors"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

type Followers map[string]bool
type Following map[string]bool

type SocialUser struct {
 Username string
 Followers Followers
 Following Following
}

func NewSocialUser(username string) (user *SocialUser, err error) {
 if username == "" {
 err = errors.New("user name can't be empty")
 return
 }

 user = &SocialUser{Username: username, Followers: Followers{},
Following: Following{}}
 return
}

https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go
https://github.com/the-gigi/delinkcious/blob/master/pkg/social_graph_manager/in_memory_social_graph_store.go

Delinkcious - the Sample Application Chapter 3

[78]

The data store itself is a struct called InMemorySocialGraphStore that contains a map
between usernames and the corresponding SocialUser struct:

type SocialGraph map[string]*SocialUser

type InMemorySocialGraphStore struct {
 socialGraph SocialGraph
}

func NewInMemorySocialGraphStore() om.SocialGraphManager {
 return &InMemorySocialGraphStore{
 socialGraph: SocialGraph{},
 }
}

This is all pretty pedestrian. The InMemorySocialGraphStore struct implements the
SocialGraphManager interface methods. For example, here is the Follow() method:

func (m *InMemorySocialGraphStore) Follow(followed string, follower string)
(err error) {
 followedUser := m.socialGraph[followed]
 if followedUser == nil {
 followedUser, _ = NewSocialUser(followed)
 m.socialGraph[followed] = followedUser
 }

 if followedUser.Followers[follower] {
 return errors.New("already following")
 }

 followedUser.Followers[follower] = true

 followerUser := m.socialGraph[follower]
 if followerUser == nil {
 followerUser, _ = NewSocialUser(follower)
 m.socialGraph[follower] = followerUser
 }

 followerUser.Following[followed] = true

 return

Delinkcious - the Sample Application Chapter 3

[79]

At this point, there is no need to focus on how it works too much. The main point I want to
get across is that by using interfaces as abstractions, you can get a lot of flexibility and clean
separation of concerns that helps a lot when you want to develop specific parts of the
system or a service during testing. If you want to make significant changes, such as
changing your underlying data stores or using multiple data stores interchangeably, then
having an interface in place is a life saver.

Summary
In this chapter, you got a close look at the Go kit toolkit, the overall Delinkcious system and
its microservices, and got to drill down into the social graph component of Delinkcious.
The main theme of this chapter is that Go kit provides clean abstractions, such as services,
endpoints and transports, and generic functionality for breaking microservices into layers.
Then, you add your code for a consistent system of loosely-coupled yet cohesive
microservices. You also followed the path of a request from the client, all the way to the
service and back through all the layers. At this point, you should have a general grasp of
how Go kit helps shape the Delinkcious architecture and how it would benefit any other
system. You may be a little overwhelmed by all of this information, but remember that the
complexity it neatly packaged and that you can ignore it most of the time, focus on your
application, and just reap the benefits.

In the next chapter, we'll address a very critical part of any modern microservices-based
system – the CI/CD pipeline. We'll create a Kubernetes cluster, configure CircleCI, deploy
the Argo CD continuous delivery solution, and see how to deploy Delinkcious on
Kubernetes.

Further reading
Let's refer to the following references:

To learn more about Go kit, check out https:/ /gokit. io/ .
To better understand the SOLID design principles that Delinkcious utilizes,
check out https:/ /en. wikipedia. org/ wiki/ SOLID.

https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://gokit.io/
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID

4
Setting Up the CI/CD Pipeline

In a microservice-based system, there are many moving parts. Kubernetes is a rich platform
that provides a lot of building blocks for your system. Managing and deploying all of these
components reliably and predictably requires a high level of organization and automation.
Enter the CI/CD pipeline.

In this chapter, we will understand the problem the CI/CD pipeline solves, cover the
different options for CI/CD pipelines for Kubernetes, and finally build a CI/CD pipeline for
Delinkcious.

In this chapter, we will discuss the following topics:

Understanding a CI/CD pipeline
Options for Kubernetes CI/CD pipelines
GitOps
Automated CI/CD
Building your images with CircleCI
Setting up continuous delivery for Delinkcious

Technical requirements
In this chapter, you will work with CircleCI and Argo CD. I will show you how to install
Argo CD in the Kubernetes cluster later. To set up CircleCI, for free, follow Getting started
instructions on their website at https:/ / circleci. com/docs/ 2. 0/getting- started/ .

https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/
https://circleci.com/docs/2.0/getting-started/

Setting Up the CI/CD Pipeline Chapter 4

[81]

The code
The Delinkcious release for this chapter can be found at https:/ / github. com/ the- gigi/
delinkcious/releases/ tag/ v0. 2.

We will be working on the main Delinkcious code base, so there are no code snippets or
examples.

Understanding a CI/CD pipeline
The development life cycle of software systems goes from code, through testing, generating
artifacts, even more testing, and eventually, deployment to production. The basic idea is
that whenever a developer commits changes to their source control system (for example,
GitHub), these changes are detected by the continuous integration (CI) system, which
immediately runs the tests.

This is often followed by a review by peers and merging the code changes (or a pull
request) from a feature branch or development branch into the master. In the context of
Kubernetes, the CI system is also responsible for building the Docker images for the
services and pushing them to the image registry. At this point, we have Docker images that
contain new code. This is where the CD system comes in.

When a new image becomes available, the continuous delivery (CD) system will deploy it
to the target environment(s). CD is the process of ensuring that the overall system is in a
desired state, which is done though provisioning and deployments. Sometimes,
deployment can occur as a result of configuration change if the system doesn't support
dynamic configuration. We will discuss configuration in great detail in Chapter 5,
Configuring Microservices with Kubernetes.

So, a CI/CD pipeline is a set of tools that detect code changes and can take them all the way
to production according to the processes and policies of the organization. It is typically the
responsibility of DevOps engineers to build and maintain this pipeline, and it is used
heavily by developers.

Every organization and company (or even different groups within the same company) will
have a specific process. In one of my first jobs, my first task was to replace a Perl-based
build system (that's what CI/CD pipelines were called back then) with lots of recursive
makefiles that nobody understood any more. That build system had to run code generation
steps on Windows using some modeling software, compile and run C++ unit tests on two
flavors of Unix (including an embedded flavor) using two different toolchains, and trigger
open CVS. I chose Python and had to create everything from scratch.

https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2
https://github.com/the-gigi/delinkcious/releases/tag/v0.2

Setting Up the CI/CD Pipeline Chapter 4

[82]

It was fun, but very specific to this company. It's common to think of CI/CD pipelines as a
workflow of steps driven by events.

The following diagram demonstrates a simple CI/CD pipeline:

The stages in this pipeline function as follows:

The developer commits their changes to GitHub (source control)1.
The CI server runs the tests, builds a Docker image, and pushes the image to2.
DockerHub (image registry)
The Argo CD server detects that there is a new image available and deploys to3.
the Kubernetes cluster

Now that we have understood the CI/CD pipeline, let's examine a specific CI/CD pipeline
choice.

Options for the Delinkcious CI/CD pipeline
Choosing a CI/CD pipeline for your system is a major decision. When I faced this decision
for Delinkcious, I looked into several alternatives. There isn't an obvious choice here.
Kubernetes is moving fast and the tooling and processes struggle to catch up. I evaluated a
few choices and settled on CircleCI for continuous integration and Argo CD for continuous
delivery. I initially considered a one-stop shop for the entire CI/CD pipeline and, after
reviewing some options, I decided that I preferred to consider them as two separate entities
and chose a different solution for CI and CD. Let's briefly review some of these options
(there are many, many more):

Jenkins X
Spinnaker
Travis CI and CircleCI
Tekton
Argo CD
Rolling your own

Setting Up the CI/CD Pipeline Chapter 4

[83]

Jenkins X
Jenkins X was my first choice and favorite. I read some articles and watched some
presentations that made me want to like it. It provides all the features you want, including
some advanced capabilities:

Automated CI/CD
Environment promotion via GitOps
Pull request preview environments
Automatic feedback on your commit and pull requests

Under the cover, it utilizes Jenkins, which is a mature, albeit complex, product. The premise
of Jenkins X is that it will mask the complexity of Jenkins and provide a Kubernetes-specific
streamlined workflow.

I was disappointed by a couple of issues when I tried to actually use Jenkins X:

It doesn't work out of the box and troubleshooting is complicated.
It is very opinionated.
It doesn't support the monorepo approach well (or at all).

I tried to make it work for a while, but after reading about other people's experiences and
seeing the lack of response in the Jenkins X slack community channels, I was turned off
Jenkins X. I still like the idea, but it really has to be super stable before I try it again.

Spinnaker
Spinnaker is an open source CI/CD solution from Netflix. It has many benefits, including
the following:

It has been adopted by many companies.
It has a lot of integration with other products.
It supports a lot of best practices.

The downsides of Spinnaker are as follows:

It is a large and complicated system.
It has a steep learning curve.
It is not Kubernetes-specific.

Setting Up the CI/CD Pipeline Chapter 4

[84]

In the end, I decided to skip on Spinnaker – not because of any fault of Spinnaker itself, but
because I don't have experience with it. I didn't want to learn such a large product from
scratch while developing Delinkcious itself and writing this book. You may very well find
that Spinnaker is the right CI/CD solution for you.

Travis CI and CircleCI
I prefer to separate the CI solution from the CD solution. Conceptually, the role of the CI
process is to generate a container image and push it to a registry. It doesn't need to be
aware of Kubernetes at all. The CD solution, on the other hand, must be Kubernetes-aware,
and it ideally runs inside the cluster.

For CI, I considered Travis CI and CircleCI. Both provide free CI services for open source
projects. I settled on CircleCI because it is more feature-complete and has a nicer UI, which
is important. I'm sure Travis CI would work well too. I use Travis CI in some of my other
open source projects. It's important to note that the CI part of the pipeline is completely
Kubernetes-agnostic. The end result is a Docker image in an image registry. This Docker
image can be used for other purposes and not necessarily deployed in a Kubernetes cluster.

Tekton
Tekton is a very interesting project. It is Kubernetes-native and has great abstractions of
steps, tasks, runs, and pipelines. It is relatively young, but seems very promising. It was
also selected as one of the inaugural projects of the CD Foundation: https:/ / cd.
foundation/projects/ .

It will be interesting to see how it evolves.

The advantages of Tekton are as follows:

Modern design and clean conceptual model
Supported by the CD foundation
Built on top of prow (the CI/CD solution of Kubernetes itself)
Kubernetes-native solution

The disadvantages of Tekton are as follows:

It's still fairly new and unstable.
It doesn't have all the features and capabilities of other solutions.

https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/
https://cd.foundation/projects/

Setting Up the CI/CD Pipeline Chapter 4

[85]

Argo CD
The CD solution, as opposed to the CI solution, is very specific to Kubernetes. I picked
Argo CD for several reasons:

Kubernetes-aware
Implemented on top of a general-purpose workflow engine (Argo)
Great UI
Runs on your Kubernetes cluster
Implemented in Go (not that important, but I like it)

Argo CD has a number of disadvantages, too:

It isn't a member of the CD foundation or the CNCF (less recognition in the
community).
Intuit, the primary company behind it, is not a major cloud-native powerhouse.

Argo CD is a young project that comes from Intuit, who acquired the original developers of
the Argo project – Applatix. I really like its architecture and, when I tried it, everything
worked like a charm.

Rolling your own
I briefly considered creating my own simple CI/CD pipeline. The operations are not
complicated. For the purpose of this book, I didn't need a very reliable solution, and it
would have been easy to explain exactly what happens at each step. However, with the
reader in mind, I decided that it was best to use existing tools that can be utilized directly
and also save me time developing a poor CI/CD solution.

At this point, you should have a good idea of the different options for CI/CD solutions on
Kubernetes. We reviewed most of the popular solutions and chose CircleCI and Argo CD as
the best fit for the Delinkcious CI/CD solution. Next, we'll discuss the hot new trend of
GitOps.

Setting Up the CI/CD Pipeline Chapter 4

[86]

GitOps
GitOps is a new buzzword, although the concept is not very new. It is another variant of
Infrastructure as Code. The basic idea is that your code, configuration, and the resources it
requires should all be described and stored in a source control repository where they are
version controlled. Whenever you push a change to the repository, your CI/CD solution
will respond and take the correct action. Even rollbacks can be initiated just by reverting to
a previous version in your repository. The repository doesn't have to be Git, of course, but
GitOps sounds way better than Source Control Ops, and most people use Git anyway, so
here we are.

Both CircleCI and Argo CD fully support and advocate the GitOps model. When your git
push code changes, CircleCI will trigger on it and start building the correct images. When
you git push changes to the Kubernetes manifests, Argo CD will trigger and deploy those
changes to your Kubernetes cluster.

Now that we're clear on what GitOps is, we can start implementing the continuous
integration part of the pipeline for Delinkcious. We will use CircleCI to build Docker
images from source code.

Building your images with CircleCI
Let's dive in and look at the Delinkcious CI pipeline. We will go over each step in the
continuous integration process, which includes the following:

Reviewing the source tree
Configuring the CI pipeline
Understanding the build script
Dockerizing a Go service with a multi-stage Dockerfile
Exploring the CircleCI user interface

Setting Up the CI/CD Pipeline Chapter 4

[87]

Reviewing the source tree
Continuous integration is about building and testing stuff. The first step is to understand
what needs to be built and tested in Delinkcious. Let's have another look at the Delinkcious
source tree:

$ tree -L 2
.
├── LICENSE
├── README.md
├── build.sh
├── cmd
│ ├── link_service_e2e
│ ├── social_graph_service_e2e
│ └── user_service_e2e
├── go.mod
├── go.sum
├── pkg
│ ├── db_util
│ ├── link_manager
│ ├── link_manager_client
│ ├── object_model
│ ├── social_graph_client
│ ├── social_graph_manager
│ ├── user_client
│ └── user_manager
└── svc
 ├── api_gateway_service
 ├── link_service
 ├── social_graph_service
 └── user_service

The pkg directory contains packages that are used by services and commands. We should
run the unit tests of these packages. The svc directory contains our microservices. We
should build those services, package each one in a properly versioned Docker image, and
push those images to DockerHub (the image registry). The cmd directory currently contains
end-to-end tests. Those are designed to run locally and don't need to be built by the CI
pipeline (this can be changed if you want to add end-to-end tests to our testing processes).

Setting Up the CI/CD Pipeline Chapter 4

[88]

Configuring the CI pipeline
CircleCI is configured by a single YAML file with a standard name and location, that
is, <root directory>/.circleci/config.yaml:

version: 2
jobs:
 build:
 docker:
 - image: circleci/golang:1.11
 - image: circleci/postgres:9.6-alpine
 environment: # environment variables for primary container
 POSTGRES_USER: postgres
 working_directory: /go/src/github.com/the-gigi/delinkcious
 steps:
 - checkout
 - run:
 name: Get all dependencies
 command: |
 go get -v ./...
 go get -u github.com/onsi/ginkgo/ginkgo
 go get -u github.com/onsi/gomega/...
 - run:
 name: Test everything
 command: ginkgo -r -race -failFast -progress
 - setup_remote_docker:
 docker_layer_caching: true
 - run:
 name: build and push Docker images
 shell: /bin/bash
 command: |
 chmod +x ./build.sh
 ./build.sh

Setting Up the CI/CD Pipeline Chapter 4

[89]

Let's break it apart and understand what's going on. The first part specifies the build job,
and below that are the necessary Docker images (golang and postgres) and their
environment. Then, we have the working directory, where the build commands should be
executed:

version: 2
jobs:
 build:
 docker:
 - image: circleci/golang:1.11
 - image: circleci/postgres:9.6-alpine
 environment: # environment variables for primary container
 POSTGRES_USER: postgres
 working_directory: /go/src/github.com/the-gigi/delinkcious

The next part is the build steps. The first step is just checkout. In the CircleCI UI, I
associated the project with the Delinkcious GitHub repository so that it knows where to
checkout from. If the repository is not public, then you'll need to provide an access token,
too. The second step is a run command that gets all the Go dependencies of Delinkcious:

steps:
- checkout
- run:
 name: Get all dependencies
 command: |
 go get -v ./...
 go get -u github.com/onsi/ginkgo/ginkgo
 go get -u github.com/onsi/gomega/...

I had to explicitly go get the ginkgo framework and the gomega library
because they are imported using Golang dot notation, which makes them
invisible to go get ./....

Once we have all the dependencies, we can run the tests. I am using the ginkgo test
framework in this case:

- run:
 name: Test everything
 command: ginkgo -r -race -failFast -progress

Setting Up the CI/CD Pipeline Chapter 4

[90]

The next section is where it builds and pushes the Docker images. Since it requires access to
the Docker daemon, it needs special setup via the setup_remote_docker step. The
docker_layer_caching option is used to make everything more efficient and faster by
reusing previous layers. The actual build out and push is handled by the build.sh script,
which we will look at in the next section. Note that I made sure it's executable via chmod
+x:

- setup_remote_docker:
 docker_layer_caching: true
- run:
 name: build and push Docker images
 shell: /bin/bash
 command: |
 chmod +x ./build.sh
 ./build.sh

I'm just scratching the surface here. There is much more to CircleCI, with orbs for reusable
configuration, workflows, triggers, and artifacts.

Understanding the build.sh script
The build.sh script is available at https:/ /github. com/ the-gigi/ delinkcious/ blob/
master/build.sh.

Let's examine it bit by bit. There are several best practices we will follow here. First, it's a
good idea to add a shebang with the path of the binary that will execute your script – that
is, if you know where it is located. If you try to write a cross-platform script that works on
many different platforms, you may need to rely on the path or other techniques. set -eo
pipefail will fail out immediately (even in the middle of a pipe) if anything goes wrong.

This is highly recommended for production environments:

#!/bin/bash

set -eo pipefail

https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh
https://github.com/the-gigi/delinkcious/blob/master/build.sh

Setting Up the CI/CD Pipeline Chapter 4

[91]

The next few lines just set some variables for directories and the tags for the Docker images.
There are two tags: STABLE_TAB and TAG. The STABLE_TAG tag has a major and minor
version and doesn't change in every build. The TAG includes the CIRCLE_BUILD_NUM
provided by CircleCI and is incremented in every build. This means that the TAG is always
unique. This is considered a best practice for tagging and versioning images:

IMAGE_PREFIX='g1g1'
STABLE_TAG='0.2'

TAG="${STABLE_TAG}.${CIRCLE_BUILD_NUM}"
ROOT_DIR="$(pwd)"
SVC_DIR="${ROOT_DIR}/svc"

Next, we go to the svc directory, which is the parent directory of all our services, and log in
to DockerHub using the environment variables we set in the CircleCI project.

cd $SVC_DIR
docker login -u $DOCKERHUB_USERNAME -p $DOCKERHUB_PASSWORD

Now, we get to the main event. The script iterates over all the subdirectories of the svc
directory looking for Dockerfile. If it finds a Dockerfile, it builds an image, tags it
using a combination of service name and both TAG and STABLE_TAG, and finally pushes the
tagged images to the registry:

cd "${SVC_DIR}/$svc"
 if [[! -f Dockerfile]]; then
 continue
 fi
 UNTAGGED_IMAGE=$(echo "${IMAGE_PREFIX}/delinkcious-${svc}" | sed -e
's/_/-/g' -e 's/-service//g')
 STABLE_IMAGE="${UNTAGGED_IMAGE}:${STABLE_TAG}"
 IMAGE="${UNTAGGED_IMAGE}:${TAG}"
 docker build -t "$IMAGE" .
 docker tag "${IMAGE}" "${STABLE_IMAGE}"
 docker push "${IMAGE}"
 docker push "${STABLE_IMAGE}"
done
cd $ROOT_DIR

Setting Up the CI/CD Pipeline Chapter 4

[92]

Dockerizing a Go service with a multi-stage
Dockerfile
The Docker images you build in a microservice system are very important. You will build
many of them, and each one many, many times. These images will also be shipped back
and forth over the wire, and they present a target for attackers. With this in mind, it makes
sense to build images that have the following properties:

Lightweight
Present minimal attack surface

This can be done by using a proper base image. For example, Alpine is very popular due to
its small footprint. However, nothing beats the scratch base image. With Go-based
microservices, you can literally create an image that just contains your service binary. Let's
continue peeling the onion and look into the Dockerfile of one of the services. Spoiler alert:
they are all virtually identical, and just differ in terms of their service names.

You can find the Dockerfile of link_service at https:/ /github. com/
the-gigi/ delinkcious/ blob/ master/ svc/ link_ service/ Dockerfile.

We are using the multi-stage Dockerfile here. We will build the image using the standard
Golang image. The arcane magic in the last line is what it takes to build a truly static and
self-contained Golang binary that doesn't require a dynamic runtime library:

FROM golang:1.11 AS builder
ADD ./main.go main.go
ADD ./service service
Fetch dependencies
RUN go get -d -v

Build image as a truly static Go binary
RUN CGO_ENABLED=0 GOOS=linux go build -o /link_service -a -tags netgo -
ldflags '-s -w' .

https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/Dockerfile

Setting Up the CI/CD Pipeline Chapter 4

[93]

We then copy the final binary into a scratch base image and create the smallest and most
secure image possible. We exposed the 7070 port, which is the port the service listens on:

FROM scratch
MAINTAINER Gigi Sayfan <the.gigi@gmail.com>
COPY --from=builder /link_service /app/link_service
EXPOSE 7070
ENTRYPOINT ["/app/link_service"]

Exploring the CircleCI UI
CircleCI has a very friendly UI. Here, you can set various project settings, explore your
builds, and drill down into specific builds. Remember that we used a monorepo approach
and that, in the build.sh file, we took care of building multiple services. From CircleCI's
point of view, Delinkcious is a single cohesive project. Here is the project's view of
Delinkcious, which displays the recent builds:

Setting Up the CI/CD Pipeline Chapter 4

[94]

Let's drill down into a successful build. All is well and green:

You can even expand any step and check the console output. Here's the output of the test
stage:

Setting Up the CI/CD Pipeline Chapter 4

[95]

This is cool, but it's even more useful when things go wrong and you need to figure out
why. For example, at one point, I tried to hide the build.sh script inside the .circleci
directory next to the config.yaml file, but it wasn't added to the Docker context and
produced the following error:

Considering future improvements
The Dockerfiles are pretty much duplicates, and there are some assumptions that can be
parameterized. In the Kubernetes ecosystem, there are some interesting projects that help to
address these concerns. Some of the solutions are for local development and can
automatically generate the necessary Dockerfiles, while others are more targeted toward
consistent and uniform production setups. We will look into some of these in later chapters.
In this chapter, I want to keep it simple and avoid overwhelming you with too many
options and layers of indirection.

Setting Up the CI/CD Pipeline Chapter 4

[96]

Another opportunity for improvement is to test and build only services that have changed
(or their dependencies have changed). As it stands, the build.sh script always builds all
the images and tags them all with the same tags.

So far, we've built a complete CI pipeline using CircleCI and Docker. The next phase is to
set up Argo CD as a continuous delivery pipeline.

Setting up continuous delivery for
Delinkcious
With continuous integration in CircleCI under our belt, we can turn our attention to
continuous delivery. First, we'll see what it takes to deploy a Delinkcious microservice to a
Kubernetes cluster, then we'll look into Argo CD itself, and finally, we'll set up complete
continuous delivery for Delinkcious via Argo CD.

Deploying a Delinkcious microservice
Each Delinkcious microservice has a set of Kubernetes resources defined in YAML
manifests in its k8s subdirectory. Here is the link service k8s directory:

]$ tree k8s
k8s
├── db.yaml
└── link_manager.yaml

The link_manager.yaml file contains two resources: the Kubernetes deployment and the
Kubernetes service. The Kubernetes deployment is as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: link-manager
 labels:
 svc: link
 app: manager
spec:
 replicas: 1
 selector:
 matchLabels:
 svc: link
 app: manager
 template:

Setting Up the CI/CD Pipeline Chapter 4

[97]

 metadata:
 labels:
 svc: link
 app: manager
 spec:
 containers:
 - name: link-manager
 image: g1g1/delinkcious-link:0.2
 ports:
 - containerPort: 8080

The Kubernetes service is as follows:

apiVersion: v1
kind: Service
metadata:
 name: link-manager
spec:
 ports:
 - port: 8080
 selector:
 svc: link
 app: manager

The db.yaml file describes the database the link service uses to persist its state. Both can be
deployed via kubectl in a single command by passing the k8s directory to kubectl
apply:

$ kubectl apply -f k8s
deployment.apps "link-db" created
service "link-db" created
deployment.apps "link-manager" created
service "link-manager" created

The main difference between kubectl create and kubectl apply is that
create will return an error if a resource already exists.

Deploying from the command line with kubectl is nice, but our goal is to automate the
process. Let's understand this.

Setting Up the CI/CD Pipeline Chapter 4

[98]

Understanding Argo CD
Argo CD is an open source continuous delivery solution for Kubernetes. It was created by
Intuit and adopted by many other companies, including Google, NVIDIA, Datadog, and
Adobe. It has an impressive set of features, which are as follows:

Automated deployment of apps to specific target environments
CLI and web visualization of applications and differences between the desired
and live states
Hooks for supporting advanced deployment patterns (blue/green and canary)
Support for multiple config management tools (plain YAML, ksonnet, kustomize,
Helm, and so on)
Continuous monitoring of all deployed applications
Manual or automated sync of applications to the desired state
Rollback to any application state that's committed in the Git repository
Health assessment for all the components of the application
SSO integration
GitOps webhook integration (GitHub, GitLab, and BitBucket)
Service account/access key management for integration with CI pipelines
Audit trails for application events and API calls

Argo CD is built on Argo
Argo CD is a specialized CD pipeline, but it is built on the solid Argo workflow engine. I
like this layered approach a lot, where you have a robust general-purpose foundation for
the problem of orchestrating a workflow composed of steps and then build on top of it with
CD-specific features and capabilities.

Argo CD utilizes GitOps
Argo CD adheres to the GitOps approach. The basic principle is that the state of your
system is stored in Git. Argo CD manages your live state versus the desired state by
examining Git diffs and using Git primitives to roll back and reconcile the live state.

Setting Up the CI/CD Pipeline Chapter 4

[99]

Getting started with Argo CD
Argo CD follows best practices and expects to be installed in a dedicated namespace on
your Kubernetes cluster:

$ kubectl create namespace argocd
$ kubectl apply -n argocd -f
https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install
.yaml

Let's see what was created. Argo CD installed four types of objects: pods, services,
deployments, and replica sets. Here are the pods:

$ kubectl get all -n argocd
NAME READY STATUS RESTARTS AGE
pod/argocd-application-controller-7c5cf86b76-2cp4z 1/1 Running 1 1m
pod/argocd-repo-server-74f4b4845-hxzw7 1/1 Running 0 1m
pod/argocd-server-9fc58bc5d-cjc95 1/1 Running 0 1m
pod/dex-server-8fdd8bb69-7dlcj 1/1 Running 0 1m

Here are the services:

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S)
service/argocd-application-controller ClusterIP 10.106.22.145 <none>
8083/TCP
service/argocd-metrics ClusterIP 10.104.1.83 <none>
8082/TCP
service/argocd-repo-server ClusterIP 10.99.83.118 <none>
8081/TCP
service/argocd-server ClusterIP 10.103.35.4 <none>
80/TCP,443/TCP
service/dex-server ClusterIP 10.110.209.247 <none>
5556/TCP,5557/TCP

Setting Up the CI/CD Pipeline Chapter 4

[100]

Here are the deployments:

NAME DESIRED CURRENT UP-TO-
DATE AVAILABLE AGE
deployment.apps/argocd-application-controller 1 1 1
1 1m
deployment.apps/argocd-repo-server 1 1 1
1 1m
deployment.apps/argocd-server 1 1 1
1 1m
deployment.apps/dex-server 1 1 1
1 1m

Finally, here are the replica sets:

NAME DESIRED
CURRENT READY AGE
replicaset.apps/argocd-application-controller-7c5cf86b76 1 1
1 1m
replicaset.apps/argocd-repo-server-74f4b4845 1 1
1 1m
replicaset.apps/argocd-server-9fc58bc5d 1 1
1 1m
replicaset.apps/dex-server-8fdd8bb69 1 1
1 1m

However, Argo CD also installs two custom resource definitions (CRDs):

$ kubectl get crd
NAME AGE
applications.argoproj.io 7d
appprojects.argoproj.io 7d

CRDs allow various projects to extend the Kubernetes API and add their own domain
objects, as well as controllers to monitor them and other Kubernetes resources. Argo CD
adds the concepts of an application and project to the world of Kubernetes. Soon, you will
see how they integrate for the purposes of continuous delivery with built-in Kubernetes
resources such as deployments, services, and pods. Let's get started:

Install the Argo CD CLI:1.

$ brew install argoproj/tap/argocd

Port-forward to access the Argo CD server:2.

$ kubectl port-forward -n argocd svc/argocd-server 8080:443

Setting Up the CI/CD Pipeline Chapter 4

[101]

The initial password for the admin user is the name of the Argo CD server:3.

$ kubectl get pods -n argocd -l app.kubernetes.io/name=argocd-
server -o name | cut -d'/' -f 2

Log in to the server:4.

$ argocd login :8080

If it complains about an insecure login, just confirm by pressing y:5.

WARNING: server certificate had error: tls: either ServerName or
InsecureSkipVerify must be specified in the tls.Config. Proceed
insecurely (y/n)?

Alternatively, to skip the warning, type in the following:6.

argocd login --insecure :8080

Then, you can change the password.

If you store your password in an environment variable (for example,7.
ARGOCD_PASSWORD), then you can have a one-liner so that you can log in with no
further questions being asked:

argocd login --insecure --username admin --password
$ARGOCD_PASSWORD :8080

Configuring Argo CD
Remember to port-forward the argocd-server:

$ kubectl port-forward -n argocd svc/argocd-server 8080:443

Then, you can just browse to https://localhost:8080 and provide the admin user's
password to log in:

Setting Up the CI/CD Pipeline Chapter 4

[102]

Configuring Argo CD is a pleasure. Its UI is very pleasant and easy to work with. It
supports the Delinkcious monorepo out of the box, and there are no assumptions that each
Git repository contains one application or project.

It will ask you for a Git repository to watch for changes, a Kubernetes cluster (defaults to
the cluster it is installed on), and then it will try to detect the manifests in the repository.
Argo CD supports multiple manifest formats and templates, such as Helm, ksonnet, and
kustomize. We will introduce some of these fine tools later in this book. To keep things
simple, we have configured each application with the directory that contains its raw k8s
YAML manifests, which Argo CD also supports.

When all is said and done, the Argo CD is ready to go!

Setting Up the CI/CD Pipeline Chapter 4

[103]

Using sync policies
By default, Argo CD detects when an application's manifests are out of sync, but doesn't
sync automatically. This is a good default. In some cases, more tests need to run in
dedicated environments before pushing changes to production. In other cases, a human
must be in the loop. However, in many other cases, it's OK to automatically deploy changes
to the cluster immediately and without human intervention. The fact that Argo CD follows
GitOps also makes it very easy to sync back to any previous version (including the last
one).

For Delinkcious, I chose auto sync because it is a demo project and the consequences of
deploying a bad version are negligible. This can be done in the UI or from the CLI:

argocd app set <APPNAME> --sync-policy automated

The auto sync policy doesn't guarantee that the application will always be in sync. There
are limitations that govern the auto sync process, which are as follows:

Applications in error state will not attempt automated sync.
Argo CD will attempt only a single auto sync for a specific commit SHA and
parameters.
If auto sync failed for whatever reason, it will not attempt it again.
You can't roll back an application with auto sync.

In all of these cases, you either have to make a change to the manifests to trigger another
auto sync or sync manually. To roll back (or, in general, sync to a previous version), you
must turn auto sync off.

Argo CD offers another policy for pruning resources on deployment. When an existing
resource no longer exists in Git, Argo CD will not delete it by default. This is a safety
mechanism that's used to avoid destroying critical resources if someone makes a mistake
while editing Kubernetes manifests. However, if you know what you're doing (for example,
for stateless applications), you can turn on automatic pruning:

argocd app set <APPNAME> --auto-prune

Exploring Argo CD
Now that we have logged in and configured Argo CD, let's explore it a little bit. I really like
the UI, but you can do everything from the command line or through a REST API, too, if
you want to access it programmatically.

Setting Up the CI/CD Pipeline Chapter 4

[104]

I already configured Argo CD with the three Delinkcious microservices. Each service is
considered an application in Argo CD speak. Let's take a look at the Applications view:

There are a few interesting things here. Let's talk about each one:

The project is an Argo CD concept for grouping applications.
The namespace is the Kubernetes namespace where the application should be
installed.

Setting Up the CI/CD Pipeline Chapter 4

[105]

The cluster is the Kubernetes cluster, that
is, https://kubernetes.default.svc and this is the cluster where Argo CD
is installed.
The status tells you if the current application is in sync with its YAML manifests
in the Git repository.
The health tells you if the application is OK.
The repository is the application's Git repository.
The path is the relative path within the repository where the k8s YAML
manifests live (Argo CD monitors this directory for changes).

Here is what you get from the argocd CLI:

$ argocd app list
NAME CLUSTER NAMESPACE PROJECT
STATUS HEALTH SYNCPOLICY CONDITIONS
link-manager https://kubernetes.default.svc default default
OutOfSync Healthy Auto-Prune <none>
social-graph-manager https://kubernetes.default.svc default default
Synced Healthy Auto-Prune <none>
user-manager https://kubernetes.default.svc default default
Synced Healthy Auto-Prune <none>

As you can see (both in the UI and in the CLI), link-manager is out of sync. We can sync it
by selecting Sync from the ACTIONS dropdown:

Setting Up the CI/CD Pipeline Chapter 4

[106]

Alternatively, you can do this from the CLI:

$ argocd app sync link-manager

One of the coolest things about the UI is how it presents all the k8s resources associated
with an application. By clicking on the social-graph-manager application, we get the
following view:

We can see the application itself, the services, the deployments, and the pods, including
how many pods are running. This is actually a filtered view and, if we want to, we can add
the replica sets associated with each deployment and the endpoints of each service to the
display. However, these aren't interesting most of the time, so Argo CD doesn't display
them by default.

Setting Up the CI/CD Pipeline Chapter 4

[107]

We can click on a service and view a SUMMARY of its information, including the
MANIFEST:

Setting Up the CI/CD Pipeline Chapter 4

[108]

For pods, we can even check the logs, as shown in the following screenshot, all from the
comfort of the Argo CD UI:

Argo CD can already take you a long way. However, it has a lot more to offer, and we will
dive into these offerings later on in this book.

Summary
In this chapter, we discussed the importance of a CI/CD pipeline for a microservices-based
distributed system. We reviewed some CI/CD options for Kubernetes and settled on a
combination of CircleCI for the CI part (code change | Docker image) and Argo CD for the
CD part (k8s manifest change | deployed application).

We also covered the best practices for building Docker images using multi-stage builds, the
k8s YAML manifests for Postgres DB, and the deployment and service k8s resources.
Then, we installed Argo CD in the cluster, configured it to build all our microservices, and
explored the UI and the CLI. At this point, you should have a clear understanding of the
concept of CI/CD and how important it is, the pros and cons of various solutions, and how
to choose the best option for your system.

However, there is much more to come. In later chapters, we will improve our CI/CD
pipeline with additional tests, security checks, and advanced multi-environment
deployment options.

In the next chapter, we will turn out attention to configuring our services. Configuration is
a huge part of developing complex systems that need to be developed, tested, and
deployed by large teams. We will explore various conventional configuration options, such
as command-line arguments, environment variables, and configuration files, as well as
more dynamic configuration options and the special configuration features of Kubernetes.

Setting Up the CI/CD Pipeline Chapter 4

[109]

Further reading
You can refer to the following sources for more information regarding what was covered in
this chapter:

Here are some good resources to expand your knowledge of the CI/CD options
on Kubernetes. First and foremost, here are the two projects I use for the
Delinkcious CI/CD solution:

CircleCI: https:/ /circleci. com/ docs/

Argo: https:/ / argoproj. github. io/ docs/ argo- cd/ docs/

Then, there's this free mini ebook about CI/CD with Kubernetes:
https:/ / thenewstack. io/ ebooks/ kubernetes/ ci- cd- with-
kubernetes/

Finally, here are a couple of the other options I discarded for Delinkcious, but
may be a good option for you:

Jenkins X: https:/ /jenkins- x.io/

Spinnaker: https:/ /www. spinnaker. io/

https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://argoproj.github.io/docs/argo-cd/docs/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://jenkins-x.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/
https://www.spinnaker.io/

5
Configuring Microservices with

Kubernetes
In this chapter, we're moving into the practical and real-world area of microservices
configuration. Configuration is a big part of building complex distributed systems. In
general, configuration concerns any aspect of the system that the code should be aware of,
but that isn't encoded in the code itself. Here are the topics we will discuss in this chapter:

What is configuration all about?
Managing configuration the old-fashioned way
Managing configuration dynamically
Configuring microservices with Kubernetes

By the end of this chapter, you will have a solid understanding of the value of
configuration. You will also have learned the many ways to configure software both
statically and dynamically, as well as the special configuration options that Kubernetes
provides (one of its best features). You will have also gained the insights and knowledge to
benefit from the flexibility and control Kubernetes provides you as a developer and
operator.

Technical requirements
In this chapter, we will look at a lot of Kubernetes manifests and will extend the capabilities
of Delinkcious. There will be no need to install anything new.

Configuring Microservices with Kubernetes Chapter 5

[111]

The code
As usual, the code is split between two Git repositories:

You can find the code samples at https:/ /github. com/PacktPublishing/ Hands-
On-Microservices- with- Kubernetes/ tree/ master/ Chapter05

You can find the updated Delinkcious application at https:/ /github. com/the-
gigi/delinkcious/ releases/ tag/v0. 3

What is configuration all about?
Configuration is a very overloaded term. Let's define it clearly for our purpose here:
configuration mostly refers to operational data that's needed for computation. The
configuration may be different between environments. Here are some typical configuration
items:

Service discovery
Support testing
Environment-specific metadata
Secrets
Third-party configuration
Feature flags
Timeouts
Rate limits
Various defaults

In general, the code that processes the input data utilizes configuration data to control
operational aspects of the computation, but not algorithmic aspects. There are special cases
where, via configuration, you can switch between different algorithms at runtime, but that's
crossing into gray areas. Let's keep it simple for our purposes.

When considering configuration, it's important to think about who is supposed to create
and update the configuration data. It may or may not be the developer of the code—for
example, rate limits may be determined by a DevOps team member, but feature flags will
be set by the developer. Also, in different environments, different people may modify the
same value. You'll typically have the most restrictions in production.

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter05
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3
https://github.com/the-gigi/delinkcious/releases/tag/v0.3

Configuring Microservices with Kubernetes Chapter 5

[112]

Configuration and secrets
Secrets are credentials that are used to access databases and other services (internal and/or
external). Technically, they are configuration data, but in practice, because of their
sensitivity, they often need to be encrypted at rest and controlled more carefully. It is
common to have secrets stored and managed separately from regular configurations.

In this chapter, we will consider only nonsensitive configuration. In the next chapter, we
will discuss secrets in detail. Kubernetes also separates configuration from secrets at the
API level.

Managing configuration the old-fashioned
way
When I say the old-fashioned way, I mean pre-Kubernetes static configuration. But as you'll
see, the old-fashioned way is sometimes the best way, and is often well supported by
Kubernetes too. Let's go over the various ways to configure a program, consider their pros
and cons, and when they are appropriate. The configuration mechanisms we will cover
here are as follows:

No configuration (convention over configuration)
Command-line arguments
Environment variables
Configuration files

While Delinkcious is implemented mostly in Go, we will use different programming
languages to demonstrate the configuration options just for fun and variety.

Convention over configuration
Sometimes, you don't really need configuration; the program can just make some decisions,
document them, and that's that. For example, the name of the directory of the output file
could be configurable, but the program can just decide that it's going to output and that's
that. The upside of this approach is that it is very predictable: you don't have to think about
configuration, and just by reading the code of the program, you know exactly what it does
and where everything is supposed to be. The operators have very little work to do. The
downside is that if more flexibility is needed, you have no recourse (for example, maybe
there isn't enough space on the volume the program is running on).

Configuring Microservices with Kubernetes Chapter 5

[113]

Note that convention over configuration doesn't mean that there is no configuration at all. It
means that you can reduce the amount of configuration when using convention.

Here is a little Rust program that prints the Fibonacci sequence up to 100 to the screen. By
convention, it makes the decision that it will not go over 100. You can't configure it to print
more or fewer numbers without changing the code:

fn main() {
 let mut a: u8 = 0;
 let mut b: u8 = 1;
 println!("{}", a);
 while b <= 100 {
 println!("{}", b);
 b = a + b;
 a = b - a;
 }
}

Output:

0
1
1
2
3
5
8
13
21
34
55
89

Command-line flags
Command-line flags or arguments are a staple of programming. When you run your
program, you provide arguments that the program uses to configure itself. There are pros
and cons of using them:

Pros:
Very flexible
Familiar and available in every programming language
There are established best practices for short and long options
Works well with interactive usage documentation

Configuring Microservices with Kubernetes Chapter 5

[114]

Cons:
Arguments are always strings
Need to quote arguments that contain spaces
Difficult to deal with multiline arguments
Restrictions on the number of command-line arguments
Restrictions on the size of each argument

Command-line arguments are often used for input in addition to
configuration. The boundaries between input and configuration can be a
little murky sometimes. In most cases, it doesn't really matter, but it can
make it confusing to users that just want to pass their input to a program
through a command-line argument and are presented with a large and
confusing array of configuration options.

Here is a little Ruby program that writes the Fibonacci sequence up to a number that's
provided as a command-line argument:

if __FILE__ == $0
 limit = Integer(ARGV[0])
 a = 0
 b = 1
 puts a
 while b < limit
 puts b
 b = a + b
 a = b - a
 end
end

Environment variables
Environment variables are another favorite. They are useful when your program runs in an
environment that may be set up by another program (or a shell script). Environment
variables are typically inherited from the parent environment. They are also used for
running interactive programs when the user always wants to provide the same option (or
set of options) to the program. Instead of typing a long command line with the same
options again and again, it is much more convenient to set an environment variable once
(maybe even in your profile) and just run the program with no arguments. A good example
is the AWS CLI, which allows you to specify many configuration options as environment
variables (for example, AWS_DEFAULT_REGION or AWS_PROFILE).

Configuring Microservices with Kubernetes Chapter 5

[115]

Here is a little Python program that writes the Fibonacci sequence up to a number that is
provided as an environment variable. Note that the FIB_LIMIT environment variable is
read as a string and the program has to convert it into an integer:

import os

limit = int(os.environ['FIB_LIMIT'])
a = 0
b = 1
print(a)
while b < limit:
 print(b)
 b = a + b
 a = b - a

Configuration files
Configuration files are particularly useful when you have a lot of configuration data,
especially when that data has a hierarchical structure. In most cases, it would be too
overwhelming to configure an application with tens or even hundreds of options via
command-line arguments or environment variables. Configuration files have another
advantage, which is that you can chain multiple configuration files. Often, applications
have a search path where they look for configuration files, such as /etc/conf, and then the
home directory and then the current directory. This provides a lot of flexibility since you
have common configuration while you're also able to override some parts per user or per
run.

Configuration files are great! You should think about what format is best for your use case.
There are many options. Configuration file formats follow trends, and every few years a
new star shines. Let's review some of the older formats, as well as some of the newer ones.

INI format
INI files were once all the rage on Windows. INI stands for initialization. Mucking around
with windows.ini and system.ini to get something working was very common in the
eighties. The format itself was very simple and included sections with sets of key–value
pairs and comments. Here is a simple INI file:

[section]
a=1
b=2

Configuring Microservices with Kubernetes Chapter 5

[116]

; here is a comment
[another_section]
c=3
d=4
e=5

The Windows API has functions for reading and writing INI files, so a lot of Windows
applications used them as their configuration files.

XML format
XML (https://www. w3. org/ XML/) is a W3C standard that was very popular in the nineties.
It stands for eXtensible Markup Language, and it was used for everything: data,
documents, APIs (SOAP), and, of course, configuration files. It is very verbose, and its main
claim to fame is that it is self-describing and contains its own metadata. XML had schemas
and many standards built on top of it. At some point, people thought that it would replace
HTML (remember XHTML?). That's all in the past now. Here is a sample XML
configuration file:

<?xml version="1.0" encoding="UTF-8"?>
 <startminimized value="False">
 <width value="1024">
 <height value = "768">
 <dummy />
 <plugin>
 <name value="Show Warning Message Box">
 <dllfile value="foo.dll">
 <method value = "warning">
 </plugin>
 <plugin>
 <name value="Show Error Message Box">
 <dllfile value="foo.dll">
 <method value = "error">
 </plugin>
 <plugin>
 <name value="Get Random Number">
 <dllfile value="bar.dll">
 <method value = "random">
 </plugin>
</xml>

https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/XML/

Configuring Microservices with Kubernetes Chapter 5

[117]

JSON format
JSON (https://json. org/) stands for JavaScript Object Notation. It became popular with
the growth of dynamic web applications and REST APIs. Its conciseness compared to XML
was a breath of fresh air, and it quickly took over the industry. Its claim to fame is that it
translates one-to-one to JavaScript objects. Here is a simple JSON file:

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
],
 "gender": {
 "type": "male"
 }
}

I personally never liked JSON as a configuration file format; it doesn't support comments, it
is unnecessarily strict about extra commas at the end of arrays, and serializing dates and
times to JSON is always a struggle. It is also pretty verbose, with all the quotes,
parentheses, and the need to escape many characters (although it is not as bad as XML).

YAML format
You've seen a lot of YAML (https:/ /yaml. org/) already in this book, since the Kubernetes
manifests are often written as YAML. YAML is a superset of JSON, but it also provides a
much more concise syntax that is extremely human readable, as well as many more
features, such as references, the autodetection of types, and support for aligned multiline
values.

https://json.org/
https://json.org/
https://json.org/
https://json.org/
https://json.org/
https://json.org/
https://json.org/
https://json.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/
https://yaml.org/

Configuring Microservices with Kubernetes Chapter 5

[118]

Here is a sample YAML file with more fancy features than you typically see in a normal
Kubernetes manifest:

sequencer protocols for Laser eye surgery

- step: &id001 # defines anchor label &id001
 instrument: Lasik 3000
 pulseEnergy: 5.4
 pulseDuration: 12
 repetition: 1000
 spotSize: 1mm

- step: &id002
 instrument: Lasik 3000
 pulseEnergy: 5.0
 pulseDuration: 10
 repetition: 500
 spotSize: 2mm
- step: *id001 # refers to the first step (with anchor
&id001)
- step: *id002 # refers to the second step
- step:
 <<: *id001
 spotSize: 2mm # redefines just this key, refers rest
from &id001
- step: *id002

YAML is not as popular as JSON, but it slowly gathered momentum. Big projects such as
Kubernetes and AWS CloudFormation use YAML (alongside JSON, because it's a superset)
as their configuration format. CloudFormation added YAML support later; Kubernetes
started with YAML.

It is currently my favorite configuration file format; however, YAML has its gotchas and
critics, especially when you're using some of its more advanced features.

TOML format
Enter TOML (https:/ /github. com/ toml- lang/ toml)—Tom's Obvious Minimal
Language. TOML is like an INI file on steroids. It is the least known of all the formats, but it
has started to gain momentum since it is used by Cargo, Rust's package manager. TOML is
between JSON and YAML on the expressiveness spectrum. It supports autodetected data
types and comments, but it's not as powerful as YAML. That said, it is the easiest for
humans to read and write. It supports nesting mostly via dot notation as opposed to
indentation.

https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

Configuring Microservices with Kubernetes Chapter 5

[119]

Here is an example of a TOML file; see how readable it is:

This is how to comment in TOML.

title = "A TOML Example"

[owner]
name = "Gigi Sayfan"
dob = 1968-09-28T07:32:00-08:00 # First class dates

Simple section with various data types
[kubernetes]
api_server = "192.168.1.1"
ports = [80, 443]
connection_max = 5000
enabled = true

Nested section
[servers]

 # Indentation (tabs and/or spaces) is optional
 [servers.alpha]
 ip = "10.0.0.1"
 dc = "dc-1"

 [servers.beta]
 ip = "10.0.0.2"
 dc = "dc-2"

[clients]
data = [["gamma", "delta"], [1, 2]]

Line breaks are OK when inside arrays
hosts = [
 "alpha",
 "omega"
]

Proprietary formats
Some applications just come up with their own formats. Here is a sample configuration file
for an Nginx web server:

user www www; ## Default: nobody
worker_processes 5; ## Default: 1
error_log logs/error.log;
pid logs/nginx.pid;

Configuring Microservices with Kubernetes Chapter 5

[120]

worker_rlimit_nofile 8192;

events {
 worker_connections 4096; ## Default: 1024
}

http {
 include conf/mime.types;
 include /etc/nginx/proxy.conf;
 include /etc/nginx/fastcgi.conf;
 index index.html index.htm index.php;

 default_type application/octet-stream;
 log_format main '$remote_addr - $remote_user [$time_local] $status '
 '"$request" $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 access_log logs/access.log main;
 sendfile on;
 tcp_nopush on;
 server_names_hash_bucket_size 128; # this seems to be required for some
vhosts

 server { # php/fastcgi
 listen 80;
 server_name domain1.com www.domain1.com;
 access_log logs/domain1.access.log main;
 root html;

 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:1025;
 }
 }
}

I don't recommend inventing yet another poorly conceived configuration format for your
application. Between JSON, YAML, and TOML you should find the sweet spot between
expressiveness, human readability, and familiarity. Also, there are libraries in all languages
to parse and compose those familiar formats.

Don't invent your own configuration format!

Configuring Microservices with Kubernetes Chapter 5

[121]

Hybrid configuration and defaults
So far, we have reviewed the primary configuration mechanisms:

Convention over configuration
Command-line arguments
Environment variables
Configuration files

These mechanisms are not mutually exclusive. Many applications will support some and
even all of them. Very often, there will be a configuration resolution mechanism where a
configuration file has a standard name and location, but you will still be able to specify a
different configuration file via an environment variable and override even that for a specific
run using a command-line argument. You don't have to look very far. Kubectl is a program
that looks for its configuration file in $HOME/.kube by default; you can specify a different
file via the KUBECONFIG environment variable. You can specify a special config file for a
particular command by passing the --config command-line flag.

Speaking of which, kubectl uses YAML as its configuration format as well. Here is my
Minikube configuration file:

$ cat ~/.kube/config
apiVersion: v1
clusters:
- cluster:
 certificate-authority: /Users/gigi.sayfan/.minikube/ca.crt
 server: https://192.168.99.121:8443
 name: minikube
contexts:
- context:
 cluster: minikube
 user: minikube
 name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
 user:
 client-certificate: /Users/gigi.sayfan/.minikube/client.crt
 client-key: /Users/gigi.sayfan/.minikube/client.key

Configuring Microservices with Kubernetes Chapter 5

[122]

Kubectl supports multiple clusters/contexts in the same config file. You can switch between
them via kubectl use-context; however, many people who work regularly with
multiple clusters don't like to keep them all in the same config file, and prefer to have a
separate file for each cluster and then switch between them using the KUBECONFIG
environment variable or by passing --config on the command-line.

Twelve factor app configuration
Heroku was one of the pioneers of cloud platform as a service. In 2011, they published the
12 factor methodology for building web applications. It's a pretty solid approach, and was
very innovative at the time. It also happened to be the best way to build applications that
could be deployed easily on Heroku itself.

For our purposes, the most interesting part of their website is the config
section, which can be found at https:/ / 12factor. net/ config.

In short, they recommend that web services and applications always store the configuration
in environment variables. This is a safe but somewhat limited guideline. It means that the
service has to be restarted whenever a configuration changes, and suffers from the general
limitations of environment variables.

Later, we will see how Kubernetes supports configuration as environment variables and
configuration as configuration files, as well as a few special twists. But first, let's discuss
dynamic configuration.

Managing configuration dynamically
So far, the configuration options we have discussed have been static. You have to restart
and, in some cases (such as with embedded configuration files), redeploy your service to
change its configuration. The nice thing about restarting your service when the
configuration changes is that you don't have to worry about the impact of the new
configuration changes on the in-memory state and the processing of in-flight requests
because you're starting from scratch; however, the downside is that you lose all your in-
flight requests (unless you are using a graceful shutdown) and any warmed-up caches or
one-time initialization work, which could be substantial. You can mitigate this somewhat,
though, by using rolling updates and blue-green deployments.

https://12factor.net/config
https://12factor.net/config
https://12factor.net/config
https://12factor.net/config
https://12factor.net/config
https://12factor.net/config
https://12factor.net/config
https://12factor.net/config
https://12factor.net/config

Configuring Microservices with Kubernetes Chapter 5

[123]

Understanding dynamic configuration
Dynamic configuration means that the service keeps running with the same code and the
same in-memory state, but it can detect that the configuration has changed, and will
dynamically adjust its behavior according to the new configuration. From the operator's
perspective, when the configuration needs to change, they can just update the central
configuration store and don't need to force a restart/redeployment of a service whose code
didn't change.

It's important to understand that this is not a binary choice; some configuration may be
static, and when it changes, you must restart the service, but some other configuration
items may be dynamic.

Since dynamic configuration can change the behavior of the system in a way that is not
captured by source control, it's a common practice to keep a history and audit of who
changed what and when. Let's look at when you should use dynamic configuration and
when you shouldn't!

When is dynamic configuration useful?
Dynamic configuration is useful in the following cases:

If you just have a single instance of your service, then restarting means a mini-
outage
If you have feature flags that you want to switch back and forth quickly
If you have services where initialization or dropping in-flight requests is
expansive
If your service doesn't support advanced deployment strategies, such as rolling
updates, or blue-green or canary deployments
When redeploying a new configuration file may pull in unrelated code changes
from source control that are not ready for deployment yet

Configuring Microservices with Kubernetes Chapter 5

[124]

When should you avoid dynamic configuration?
However, dynamic configuration is not a panacea for all situations. If you want to play it
totally safe, then restarting your service when configuration changes makes things easier to
comprehend and analyze. That being said, microservices are often simple enough that you
can grasp all the implications of configuration changes.

In the following situations, it may be better to avoid dynamic configuration:

Regulated services where configuration change must go through a vetting and
approval process
Critical services where the low risk of static configuration trumps any benefit of
dynamic configuration
A dynamic configuration mechanism doesn't exist and the benefits don't justify
the development of such a mechanism
Existing system with a large number of services where the benefits of migration
to a dynamic configuration doesn't justify the cost
Advanced deployment strategies provide the benefits of dynamic configuration
with static configuration and restarts/redeployments
The added complexity of keeping track of and auditing configuration changes is
too high

Remote configuration store
One of the options for dynamic configuration is a remote configuration store. All service
instances can periodically query the configuration store, check whether the configuration
has changed, and read the new configuration when it does. Possible options include the
following:

Relational databases (Postgres, MySQL)
Key–value stores (Etcd, Redis)
Shared filesystems (NFS, EFS)

Configuring Microservices with Kubernetes Chapter 5

[125]

In general, if all/most of your services already work with a particular type of store, it is
often simpler to put your dynamic configuration there. An anti-pattern is to store the
configuration in the same store as the service-persistent store. The problem here is that the
configuration will be spread across multiple data stores, and some configuration changes
are central. It will be difficult to manage, keep track of, and audit configuration changes
across all services.

Remote configuration service
A more advanced approach is to create a dedicated configuration service. The purpose of
this service is to provide a one-stop shop for all configuration needs. Each service
will only have access to its configuration, and it's easy to implement control mechanisms
for each and every configuration change. The downside of a configuration service is that
you need to build it and maintain it. It can become a single point of failure (SPOF) too, if
you're not careful.

So far, we have covered the many options for system configurations in great detail. Now,
it's time to study what Kubernetes brings to the table.

Configuring microservices with Kubernetes
With Kubernetes or any container orchestrator, you have an interesting mix of
configuration options. Kubernetes runs your containers for you. There is no way to set
different environment options and command-line arguments for a specific run because
Kubernetes decides when and where to run your container. What you can do is embed
configuration files in your Docker image or change the command it is running; however,
that means baking a new image for each configuration change and deploying it to your
cluster. It's not the end of the world, but it's a heavyweight operation. You can also use the
dynamic configuration options I mentioned earlier:

Remote configuration store
Remote configuration service

However, Kubernetes has some very neat tricks when it comes to dynamic configuration.
The most innovative dynamic configuration mechanism is ConfigMaps. You can also get
much fancier with custom resources. Let's dive in.

Configuring Microservices with Kubernetes Chapter 5

[126]

Working with Kubernetes ConfigMaps
ConfigMaps are Kubernetes resources that are managed by Kubernetes per namespace, and
can be referenced by any pod or container. Here is the ConfigMap for the link-manager
service:

apiVersion: v1
kind: ConfigMap
metadata:
 name: link-service-config
 namespace: default
data:
 MAX_LINKS_PER_USER: "10"
 PORT: "8080"

The link-manager deployment resource imports it into the pod by using the envFrom
key:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: link-manager
 labels:
 svc: link
 app: manager
spec:
 replicas: 1
 selector:
 matchLabels:
 svc: link
 app: manager
 template:
 metadata:
 labels:
 svc: link
 app: manager
 spec:
 containers:
 - name: link-manager
 image: g1g1/delinkcious-link:0.2
 ports:
 - containerPort: 8080
 envFrom:
 - configMapRef:
 name: link-manager-config

Configuring Microservices with Kubernetes Chapter 5

[127]

The effect of this is that the key–value pairs in the ConfigMap's data section are projected
as environment variables when the link-manager service runs:

MAX_LINKS_PER_PAGE=10
PORT=9090

Let's see how Argo CD visualizes that the link-manager service has a ConfigMap. Note
the top box named link-service-config:

Configuring Microservices with Kubernetes Chapter 5

[128]

You can even drill down and inspect the ConfigMap itself from the Argo CD UI by clicking
on the ConfigMap box. Very slick:

Configuring Microservices with Kubernetes Chapter 5

[129]

Note that since the ConfigMap is consumed as environment variables, this is static
configuration. If you want to change any of it, you'll need to restart the service. In
Kubernetes, this can be done in a couple of ways:

Killing the pods (the replica set of the deployment will create new pods)
Deleting and recreating the deployment (this has the same effect, but you don't
need to kill pods explicitly)
Applying some other change and redeploying

Let's see how the code uses it. This code can be found
at svc/link_manager/service/link_manager_service.go:

port := os.Getenv("PORT")
if port == "" {
 port = "8080"
}

maxLinksPerUserStr := os.Getenv("MAX_LINKS_PER_USER")
if maxLinksPerUserStr == "" {
 maxLinksPerUserStr = "10"
}

The os.Getenv() standard library function gets PORT and MAX_LINKS_PER_USER from
the environment. This is great because it allows us to test the service outside of the
Kubernetes cluster and still configure it properly. For example, the link service end-to-end
test—which is designed for local testing outside of Kubernetes—sets the environment
variables before launching the social graph manager and the link-manager services:

func runLinkService(ctx context.Context) {
 // Set environment
 err := os.Setenv("PORT", "8080")
 check(err)

 err = os.Setenv("MAX_LINKS_PER_USER", "10")
 check(err)

 runService(ctx, ".", "link_service")
}

func runSocialGraphService(ctx context.Context) {
 err := os.Setenv("PORT", "9090")
 check(err)

 runService(ctx, "../social_graph_service", "social_graph_service")
}

https://github.com/the-gigi/delinkcious/blob/14c91f1c675dea9729d80876a3798897b925712a/svc/link_service/service/link_service.go#L37

Configuring Microservices with Kubernetes Chapter 5

[130]

Now that we've looked at how Delinkcious uses ConfigMaps, let's move on to the nuts and
bolts of working with ConfigMaps.

Creating and managing ConfigMaps
Kubernetes gives you multiple ways to create ConfigMaps:

From command-line values
From one or more files
From a whole directory
By directly creating a ConfigMap YAML manifest

In the end, all ConfigMaps are a set of key–value pairs. What the keys and values are
depends on the method of creating the ConfigMap. When playing with ConfigMaps, I find
it useful to use the --dry-run flag so that I can see what ConfigMap will be created before
committing to actually creating it. Let's look at some examples. Here is how to create a
ConfigMap from command-line arguments:

$ kubectl create configmap test --dry-run --from-literal=a=1 --from-
literal=b=2 -o yaml
apiVersion: v1
data:
 a: "1"
 b: "2"
kind: ConfigMap
metadata:
 creationTimestamp: null
 name: test

This method should be used mostly for playing around with ConfigMaps. You have to
specify each config item individually with a cumbersome --from-literal argument.

Creating a ConfigMap from a file is a much more viable method. It works well with the
GitOps concept, where you can keep a history of the source configuration files that are used
to create your ConfigMaps. We can create a very simple YAML file called comics.yaml:

superhero: Doctor Strange
villain: Thanos

Configuring Microservices with Kubernetes Chapter 5

[131]

Next, let's create a ConfigMap from this file using the following command (well, just a dry
run):

$ kubectl create configmap file-config --dry-run --from-file comics.yaml -o
yaml

apiVersion: v1
data:
 comics.yaml: |+
 superhero: Doctor Strange
 villain: Thanos

kind: ConfigMap
metadata:
 creationTimestamp: null
 name: file-config

What's interesting here is that the entire contents of the file are mapped to a single key:
comics.yaml. The value is the entire contents of the file. The |+ in YAML means that the
following multiline block is one value. If we add additional --from-file arguments, then
each file will have its own key in the ConfigMap. Similarly, if the argument to --from-
file is a directory, then each file in the directory becomes a key in the ConfigMap.

Finally, let's look at a manually constructed ConfigMap. It's not that difficult to do this: just
add a bunch of key–value pairs under the data section:

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config
 namespace: default
data:
 SUPERHERO: Superman
 VILLAIN: Lex Luthor

Here, we created dedicated SUPERHERO and VILLAIN keys.

Let's see how pods can consume these ConfigMaps. The pod gets its environment from
the env-config ConfigMap. It executes a command that watches the values of
the SUPERHERO and VILLAIN environment variables and every two seconds echos the
current values:

apiVersion: v1
kind: Pod
metadata:
 name: some-pod

Configuring Microservices with Kubernetes Chapter 5

[132]

spec:
 containers:
 - name: some-container
 image: busybox
 command: ["/bin/sh", "-c", "watch 'echo \"superhero: $SUPERHERO
villain: $VILLAIN\"'"]
 envFrom:
 - configMapRef:
 name: env-config
 restartPolicy: Never

The ConfigMap must be created before the pod is started!

$ kubectl create -f env-config.yaml
configmap "env-config" created

$ kubectl create -f some-pod.yaml
pod "some-pod" created

The kubectl command is super useful for checking the output:

$ kubectl logs -f some-pod

Every 2s: echo "superhero: $SUPERHERO villain: $VILLAIN" 2019-02-08
20:50:39

superhero: Superman villain: Lex Luthor

As expected, the values match the ConfigMap. But what happens if we change the
ConfigMap? The kubectl edit configmap command lets you update an existing
ConfigMap in your editor:

$ kubectl edit configmap env-config

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving
this file will be
reopened with the relevant failures.
#
apiVersion: v1
data:
 SUPERHERO: Batman
 VILLAIN: Joker
kind: ConfigMap
metadata:
 creationTimestamp: 2019-02-08T20:49:37Z
 name: env-config
 namespace: default

Configuring Microservices with Kubernetes Chapter 5

[133]

 resourceVersion: "874765"
 selfLink: /api/v1/namespaces/default/configmaps/env-config
 uid: 0c83dee5-2be3-11e9-9999-0800275914a6

configmap "env-config" edited

We've changed the superhero and villain to Batman and Joker. Let's verify the changes:

$ kubectl get configmap env-config -o yaml

apiVersion: v1
data:
 SUPERHERO: Batman
 VILLAIN: Joker
kind: ConfigMap
metadata:
 creationTimestamp: 2019-02-08T20:49:37Z
 name: env-config
 namespace: default
 resourceVersion: "875323"
 selfLink: /api/v1/namespaces/default/configmaps/env-config
 uid: 0c83dee5-2be3-11e9-9999-0800275914a6

The new values are there. Let's check our pod logs. Nothing should change because the pod
consumes the ConfigMap as environment variables that can't be changed from the outside
while the pod is running:

$ kubectl logs -f some-pod

Every 2s: echo "superhero: $SUPERHERO villain: $VILLAIN" 2019-02-08
20:59:22

superhero: Superman villain: Lex Luthor

However, if we delete and recreate the pod, the picture is different:

$ kubectl delete -f some-pod.yaml
pod "some-pod" deleted

$ kubectl create -f some-pod.yaml
pod "some-pod" created

$ kubectl logs -f some-pod

Every 2s: echo "superhero: $SUPERHERO villain: $VILLAIN" 2019-02-08
21:45:47

superhero: Batman villain: Joker

Configuring Microservices with Kubernetes Chapter 5

[134]

I saved the best for last. Let's look at some dynamic configuration in action. The pod named
some-other-pod is consuming the ConfigMap called file-config as a file. First, it
creates a volume called config-volume that gets populated from the file-config
ConfigMap. Then, this volume is mounted into /etc/config. The command that's
running is simply watching the /etc/config/comics file:

apiVersion: v1
kind: Pod
metadata:
 name: some-other-pod
spec:
 containers:
 - name: some-container
 image: busybox
 command: ["/bin/sh", "-c", "watch \"cat /etc/config/comics\""]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: file-config
 restartPolicy: Never

Here is the file-config ConfigMap:

apiVersion: v1
kind: ConfigMap
metadata:
 name: file-config
 namespace: default
data:
 comics: |+
 superhero: Doctor Strange
 villain: Thanos

It has a key called comics (the filename), and the value is a multiline YAML string with
superhero and villain entries (Doctor Strange and Thanos). When all is said and done,
the contents of the comics key under the ConfigMap data section will be mounted inside
the container as the /etc/config/comics file.

Let's verify this:

$ kubectl create -f file-config.yaml
configmap "file-config" created

$ kubectl create -f some-other-pod.yaml

Configuring Microservices with Kubernetes Chapter 5

[135]

pod "some-other-pod" created

$ kubectl logs -f some-other-pod

Every 2s: cat /etc/config/comics 2019-02-08 22:15:08

superhero: Doctor Strange
villain: Thanos

This is looking good so far. Now for the main attraction. Let's change the contents of the
ConfigMap to the superhero Wonder Woman and villain Medusa. We'll use the kubectl
apply command this time instead of deleting and recreating the ConfigMap. The
ConfigMap is updated properly, but we also get a warning for our efforts (it's OK to ignore
this):

$ kubectl apply -f file-config.yaml
Warning: kubectl apply should be used on resource created by either kubectl
create --save-config or kubectl apply
configmap "file-config" configured

$ kubectl get configmap file-config -o yaml
apiVersion: v1
data:
 comics: |+
 superhero: Super Woman
 villain: Medusa

kind: ConfigMap
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"v1","data":{"comics":"superhero: Super Woman\nvillain:
Medusa\n\n"},"kind":"ConfigMap","metadata":{"annotations":{},"name":"file-
config","namespace":"default"}}
 creationTimestamp: 2019-02-08T22:14:01Z
 name: file-config
 namespace: default
 resourceVersion: "881662"
 selfLink: /api/v1/namespaces/default/configmaps/file-config
 uid: d6e892f4-2bee-11e9-9999-0800275914a6

Note the preceding annotation. It's interesting that it stores the last
applied change, which is available in the data and not the previous values
for historical context.

Configuring Microservices with Kubernetes Chapter 5

[136]

Now, let's check the logs again without restarting the pod!

$ kubectl logs -f some-other-pod

Every 2s: cat /etc/config/comics 2019-02-08 23:02:58

superhero: Super Woman
villain: Medusa

Yes, this has been a great success! The pod now prints the updated configuration
information with no need to restart.

In this section, we have demonstrated how dynamic configuration works using
ConfigMaps mounted as files. Let's look at what we should do when the configuration
needs of large-scale systems are developed by multiple teams over long periods of time.

Applying advanced configuration
For large-scale systems with lots of services and lots of configuration, you may want to
have services that consume multiple ConfigMaps. This is separate from the fact that a
single ConfigMap may contain multiple files, directories, and literal values, in any
combination. For example, each service may have its own specific configuration, but it
might also use some shared libraries that need to be configured as well. In this scenario,
you can have one ConfigMap for the shared library and a separate ConfigMap for each
service. In this case, the services will consume both their ConfigMap and the shared
library's ConfigMap.

Another common scenario is to have different configuration for different environments
(development, staging, and production). Since in Kubernetes each environment typically
has its own namespace, you need to be creative here. ConfigMaps are scoped to their
namespace. This means that even if your configuration across environments is identical,
you still need to create a copy in each namespace. There are various solutions that you can
use to manage this proliferation of configuration files and Kubernetes manifests in general.
I will not get into the details of these, and will just mention some of the more popular
options here in no particular order:

Helm: https:/ /helm. sh/

Kustomize: https:/ /kustomize. io/

Jsonnet: https:/ /jsonnet. org/ articles/ kubernetes. html

Ksonnet: https:/ /github. com/ ksonnet/ ksonnet (not maintained anymore)

https://helm.sh/
https://helm.sh/
https://helm.sh/
https://helm.sh/
https://helm.sh/
https://helm.sh/
https://helm.sh/
https://helm.sh/
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://jsonnet.org/articles/kubernetes.html
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet
https://github.com/ksonnet/ksonnet

Configuring Microservices with Kubernetes Chapter 5

[137]

You can also build some tooling yourself to do this. In the next section, we'll look at another
alternative, which is very cool but more complicated—custom resources.

Kubernetes custom resources
Kubernetes is a very extensible platform. You can add your own resources to the
Kubernetes API and enjoy all the benefits of the API machinery, including kubectl support
to manage them. Yes, it's that good. The first thing you need to do is define a custom
resource, also known as a CRD. The definition will specify endpoints on the Kubernetes
API, the version, scope, kind, and the names that are used to interact with resources of this
new type.

Here is a superheroes CRD:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 # name must match the spec fields below, and be in the form:
<plural>.<group>
 name: superheros.example.org
spec:
 # group name to use for REST API: /apis/<group>/<version>
 group: example.org
 # list of versions supported by this CustomResourceDefinition
 versions:
 - name: v1
 # Each version can be enabled/disabled by Served flag.
 served: true
 # One and only one version must be marked as the storage version.
 storage: true
 # either Namespaced or Cluster
 scope: Cluster
 names:
 # plural name to be used in the URL: /apis/<group>/<version>/<plural>
 plural: superheros
 # singular name to be used as an alias on the CLI and for display
 singular: superhero
 # kind is normally the CamelCased singular type. Your resource
manifests use this.
 kind: SuperHero
 # shortNames allow shorter string to match your resource on the CLI
 shortNames:
 - hr

Configuring Microservices with Kubernetes Chapter 5

[138]

Custom resources are available from all namespaces. The scope is relevant when
constructing the URL from which it will be available and when deleting all objects from a
namespace (a namespace scope CRD will be deleted with its namespace).

Let's create some superhero resources. The antman superhero has the same API version
and kind that is defined in the superheroes CRD. It has a name in metadata, and spec is
totally open. You can define whatever fields you want there. In this case, the fields are
superpower and size:

apiVersion: "example.org/v1"
kind: SuperHero
metadata:
 name: antman
spec:
 superpower: "can shrink"
 size: "tiny"

Let's check out the Hulk. It's very similar, but also has a color field in its spec:

apiVersion: "example.org/v1"
kind: SuperHero
metadata:
 name: hulk
spec:
 superpower: "super strong"
 size: "big"
 color: "green"

Let's create the whole gang, starting with the CRD itself:

$ kubectl create -f superheros-crd.yaml
customresourcedefinition.apiextensions.k8s.io "superheros.example.org"
created

$ kubectl create -f antman.yaml
superhero.example.org "antman" created

$ kubectl create -f hulk.yaml
superhero.example.org "hulk" created

Now let's examine them with kubectl. We can use the short name, hr, here:

$ kubectl get hr
NAME AGE
antman 5m
hulk 5m

Configuring Microservices with Kubernetes Chapter 5

[139]

We can also check the details of the superheroes:

$ kubectl get superhero hulk -o yaml
apiVersion: example.org/v1
kind: SuperHero
metadata:
 creationTimestamp: 2019-02-09T09:58:32Z
 generation: 1
 name: hulk
 namespace: default
 resourceVersion: "932374"
 selfLink: /apis/example.org/v1/namespaces/default/superheros/hulk
 uid: 4256d27b-2c51-11e9-9999-0800275914a6
spec:
 color: green
 size: big
 superpower: super strong

This is cool, but what can you do with custom resources? Well, a lot. If you think about it,
you get a free CRUD API with CLI support and reliable persistent storage. Just invent your
object model and create, get, list, update, and delete as many custom resources as you want.
But it goes much further: you can have your own controller that watches over your custom
resources and takes action when needed. This is actually how Argo CD works, as you can
see from the following command:

$ kubectl get crd -n argocd
NAME AGE
applications.argoproj.io 20d
appprojects.argoproj.io 20d

How does that help with configuration? Since custom resources are available across the
cluster, you can use them for shared configuration across namespaces. CRDs can serve as
centralized remote configuration services, as we discussed earlier in the Dynamic
configuration section, but you don't need to implement anything yourself. Another option is
to create a controller that watches over these CRDs and then copies them to proper
ConfigMaps for each namespace automatically. You are only limited by your imagination
with Kubernetes. The bottom line is that for large complicated systems where managing
configuration is a large endeavor, Kubernetes gives you tools to scale your configuration.
Let's turn our attention to one aspect of configuration that often causes a lot of difficulties
on other systems—service discovery.

Configuring Microservices with Kubernetes Chapter 5

[140]

Service discovery
Kubernetes has built-in support for service discovery, without any additional work having
to be done on your part. Each service has an endpoints resource that Kubernetes keeps up
to date with the addresses of all the backing pods for that service. Here are the endpoints
for a single node Minikube cluster. Note how each pod has its own IP address, even though
there is only one physical node. This demonstrates the vaunted flat networking model of
Kubernetes. Only the Kubernetes API server has a public IP address:

$ kubectl get endpoints
NAME ENDPOINTS AGE
kubernetes 192.168.99.122:8443 27d
link-db 172.17.0.13:5432 16d
link-manager 172.17.0.10:8080 16d
social-graph-db 172.17.0.8:5432 26d
social-graph-manager 172.17.0.7:9090 19d
user-db 172.17.0.12:5432 18d
user-manager 172.17.0.9:7070 18d

Normally, you don't deal directly with the endpoints resource. Each service is
automatically exposed to other services in the cluster via both DNS and environment
variables.

If you deal with the discovery of external services running outside the Kubernetes cluster,
then you're on your own. A good approach could be to add them to a ConfigMap and
update it when those external services need to change. If you need to manage secret
credentials to access those external services (which is very likely), it's best to put those in
Kubernetes secrets, which we will cover in the next chapter.

Summary
In this chapter, we discussed everything related to configuration, not including secret
management. First, we considered classic configuration, and then we looked at dynamic
configuration, focusing on remote configure stores and remote configuration services.

Configuring Microservices with Kubernetes Chapter 5

[141]

Next, we discussed Kubernetes-specific options and in particular ConfigMaps. We went
over all the ways a ConfigMap can be created and managed. We also saw how a pod can
consume a ConfigMap as either environment variables (static configuration) or as
configuration files in mounted volumes that get updated automatically when the
corresponding ConfigMap is modified by an operator. Finally, we looked at even more
powerful options, such as custom resources, and discussed the special yet very important
case of service discovery. At this point, you should have a clear picture of configuration in
general, and the available options to configure microservices either traditionally or in
Kubernetes-specific ways.

In the next chapter, we will look at the crucial topic of security. Microservice-based systems
that are deployed in Kubernetes clusters often provide essential services and manage
critical data. Securing both the data and the system itself is, in many cases, a top priority.
Kubernetes provides multiple mechanisms across different layers to assist in building
secure systems when following best practices.

Further reading
Here are some resources for you to use so that you can understand the fine details of the
concepts and mechanisms we discussed in this chapter:

12 Factor Apps: https:/ /12factor. net/

Program Configuration in Python: http:/ / www.drdobbs. com/ open- source/
program- configuration- in- python/ 240169310

Building a dynamic configuration service: https:/ /www. compose. com/
articles/ building- a-dynamic- configuration- service- with- etcd- and-
python/

Extending Kubernetes (video): https:/ / www.youtube. com/ watch? v=
qVZnU8rXAEU

https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
http://www.drdobbs.com/open-source/program-configuration-in-python/240169310
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.compose.com/articles/building-a-dynamic-configuration-service-with-etcd-and-python/
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU

6
Securing Microservices on

Kubernetes
In this chapter, we will examine how to secure your microservices on Kubernetes in depth.
This is a broad topic and we will focus on the aspects that are most relevant to developers
who are building and deploying microservices in a Kubernetes cluster. You must be very
rigorous with security because your adversaries will actively try to find cracks, infiltrate
your system, access sensitive information, run botnets, steal your data, corrupt your data,
destroy your data, and make your system unavailable. Security should be designed into the
system and not sprinkled on top as an afterthought. We will address this by covering
general security principles and best practices before delving into the security mechanisms
that Kubernetes puts at your disposal.

In this chapter, we will cover the following topics:

Applying sound security principles
Differentiating between user accounts and service accounts
Managing secrets with Kubernetes
Managing permissions with RBAC
Controlling access with authentication, authorization, and admission
Hardening Kubernetes by using security best practices

Securing Microservices on Kubernetes Chapter 6

[143]

Technical requirements
In this chapter, we will look at a lot of Kubernetes manifests, and make Delinkcious more
secure. There is no need to install anything new.

The code
The code is split between two Git repositories:

You can find the code samples here: https:/ /github. com/ PacktPublishing/
Hands-On- Microservices- with- Kubernetes/ tree/ master/ Chapter06

You can find the updated Delinkcious application here: https:/ / github. com/
the-gigi/ delinkcious/ releases/ tag/ v0. 4

Applying sound security principles
There are many universal principles. Let's review the most important principles and
understand how they assist in preventing attacks and making attacks more difficult, thus
minimizing the damage caused by any attack and assisting in recovering from these
attacks:

Defense in depth: Defense in depth means multiple and redundant layers of
security. The purpose is to make it difficult for an attacker to compromise your
system. Multi-factor authentication is a great example. You have a username and
password, but you must also type in a one-time code that's sent to your phone. If
an attacker discovers your credentials, but doesn't have access to your phone,
they won't be able to log in to the system and wreak havoc. There are multiple
benefits to defense in depth, such as the following:

Make your system more secure
Make the cost of breaking your security too high for an attacker to
even try
Better protection from non-malicious mistakes

Principle of least privilege: The principle of least privilege is similar to the
famous need to know basis from the spy world. You can't divulge what you don't
know. You can't compromise what you have no access to. Any agent can be
compromised. Limiting privileges just to the necessary ones will minimize
damage if a breach occurs and will help in the auditing, mitigation, and analysis
of incidents.

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter06
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4
https://github.com/the-gigi/delinkcious/releases/tag/v0.4

Securing Microservices on Kubernetes Chapter 6

[144]

Minimize the attack surface: This principle is very clear. The smaller your attack
surface is, the easier it is to protect it. Please keep the following things in mind:

Don't expose APIs that you don't need
Don't keep data that you don't use
Don't provide different ways to perform the same task

The most secure code is code that's not written. It's also the most efficient and
bug-free code. Consider the business value of each new feature you want to add
very carefully. When migrating to some new technology or system, make sure not
to leave legacy items behind. In addition to preventing many attack vectors, when
a breach does occur the smaller attack surface will help a lot in terms of focusing
the investigation and finding the root cause.

Minimize the blast radius: Take it as a given that your system will be
compromised or may have already been compromised. However, there are
different levels of threat. Minimizing the blast radius means that compromised
components can't easily reach out to other components and spread throughout
our system. It also means that the resources that are available to those
compromised components don't exceed the needs of the legitimate workload that
is supposed to run there.
Trust no one: Here is a partial list of entities you shouldn't trust:

Your users
Your partners
Vendors
Your cloud provider
Open source developers
Your developers
Your admins
Yourself
Your security

When we say don't trust, we don't mean that necessarily in a malicious way.
Everyone is fallible and honest mistakes can be just as detrimental as targeted
attacks. The great thing about the Trust no one principle is that you don't have to
make a judgement call. The same approach of minimal trust will help you prevent
and mitigate mistakes and attacks.

Securing Microservices on Kubernetes Chapter 6

[145]

Be conservative: The Lindy effect says that for some non-perishable things, the
longer they exist, the longer you can expect them to exist. For example, if a
restaurant exists for 20 years, you can expect it to exist for many more years,
whereas a brand new restaurant that has just opened is much more likely to shut
down within a short period of time. This is very true for software and
technology. The latest JavaScript framework may have the lifetime expectancy of
a fruit fly, but something like jQuery will be around for a while. From a security
standpoint, there are other benefits from using more mature and battle-hardened
software whose security has undergone a baptism of fire. It's often better to learn
from other people's experiences. Take the following things into account:

Don't upgrade to the latest and greatest (unless explicitly fixing a
security vulnerability).
Prefer stability over ability.
Prefer simplicity over power.

This goes hand in hand with the trust no one principle. Don't trust new shiny stuff
and don't trust newer versions of your current dependencies. Of course,
microservices and Kubernetes are relatively new technologies and the ecosystem
is evolving fast. In this case, I assume that you've made a decision that the overall
benefits of these innovations and their current status are mature enough to build
on.

Be vigilant: Security is not a one-shot thing. You have to actively keep working
on it. The following are globally some ongoing activities you should perform and
processes you should follow:

Patch your systems regularly.
Rotate your secrets.
Use short-lived keys, tokens, and certificates.
Follow up on CVEs.
Audit everything.
Test the security of your systems.

Be ready: When the inevitable breach happens, be ready and ensure you do or
have done the following:

Set up an incident management protocol.
Follow your protocol.
Plug the holes.
Restore system security.
Perform post-mortem for security incidents.
Evaluate and learn.

Securing Microservices on Kubernetes Chapter 6

[146]

Update your process, tools, and security to improve your security
posture.

Do not write your own crypto: A lot of people are excited about crypto and/or
are disappointed when a strong crypto impacts performance. Contain your
excitement and/or disappointment. Let the experts do crypto. It's much harder
than it seems and the stakes are too high.

Now that we're clear about the general principles of good security, let's look at what
Kubernetes offers in terms of security.

Differentiating between user accounts and
service accounts
Accounts are a central concept in Kubernetes. Every request to the Kubernetes API server
must originate from a particular account that the API server will authenticate, authorize,
and admit before going through with it. There are two types of account:

User accounts
Service accounts

Let's examine both account types and understand the differences and when it's appropriate
to use each one.

User accounts
User accounts are for humans (cluster administrators or developers) who typically operate
Kubernetes from the outside via kubectl or programmatically. End users shouldn't have
Kubernetes user accounts, only application-level user accounts. This is unrelated to
Kubernetes. Remember, Kubernetes manages your containers for you – it has no idea
what's going on inside and what your application is actually doing.

Your user credentials are stored in the ~/.kube/config file. If you are working with
multiple clusters, then you may have multiple clusters, users, and contexts in your
~/.kube/config file. Some people prefer to have a separate config file for each cluster and
switch between them using the KUBECONFIG environment variable. This is up to you. The
following is my config file for a local Minikube cluster:

apiVersion: v1
clusters:

Securing Microservices on Kubernetes Chapter 6

[147]

- cluster:
 certificate-authority: /Users/gigi.sayfan/.minikube/ca.crt
 server: https://192.168.99.123:8443
 name: minikube
contexts:
- context:
 cluster: minikube
 user: minikube
 name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
 user:
 client-certificate: /Users/gigi.sayfan/.minikube/client.crt
 client-key: /Users/gigi.sayfan/.minikube/client.key

As you can see in the preceding code block, this is a YAML file that follows the conventions
of typical Kubernetes resources, although it's not an object you can create in your cluster.
Note that everything is plural: clusters, contexts, users. In this case, there is just one cluster
and one user. However, you can create multiple contexts that are a combination of clusters
and users so that you have multiple users with different privileges in the same cluster, or
even multiple clusters in the same Minikube configuration file. current-context
determines the target of each operation of kubectl (which cluster to access with what user
credentials). User accounts have cluster-scope, which means that we can access resources in
any namespace.

Service accounts
Service accounts are a different story. Each pod has a service account associated with it, and
all the workloads running in this pod use that service account as their identity. Service
accounts are scoped to a namespace. When you create a pod (directly or via a deployment),
you may specify a service account. If you create a pod without specifying a service account,
then the namespace's default service account is used. Each service account has a secret
associated with it for talking to the API server.

The following block shows the default service account in the default namespace:

$ kubectl get sa default -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: 2019-01-11T15:49:27Z

Securing Microservices on Kubernetes Chapter 6

[148]

 name: default
 namespace: default
 resourceVersion: "325"
 selfLink: /api/v1/namespaces/default/serviceaccounts/default
 uid: 79e17169-15b8-11e9-8591-0800275914a6
secrets:
- name: default-token-td5tz

The service account can have more than one secret. We will talk about secrets very soon.
The service account allows the code running in the pod to talk to the API server.

You can fetch a token and CA certificate from:
/var/run/secrets/kubernetes.io/serviceaccount and then construct a REST HTTP
request by passing these credentials via an authorization header. For example, the
following code block shows a request to list pods in the default namespace:

TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
CA_CERT=$(cat /var/run/secrets/kubernetes.io/serviceaccount/ca.crt)
URL="https://${KUBERNETES_SERVICE_HOST}:${KUBERNETES_SERVICE_PORT}"

curl --cacert "$CERT" -H "Authorization: Bearer $TOKEN"
"$URL/api/v1/namespaces/default/pods"
{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {

 },
 "status": "Failure",
 "message": "pods is forbidden: User
\"system:serviceaccount:default:default\" cannot list resource \"pods\" in
API group \"\" in the namespace \"default\"",
 "reason": "Forbidden",
 "details": {
 "kind": "pods"
 },
 "code": 403
}

The result is 403 forbidden. The default service account is not allowed to list the pods, and
actually it's not allowed to do anything. In the Authorization section, we will see how to
grant privileges to service accounts.

If you don't feel comfortable with manually constructing curl requests, you can also do it
programmatically via the client library. I created a Python-based Docker image that
includes the official Python client (https:/ /github. com/ kubernetes- client/ python)
library for Kubernetes and a few other goodies, such as vim, IPython, and HTTPie.

https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python

Securing Microservices on Kubernetes Chapter 6

[149]

Here is the Dockerfile that builds the image:

FROM python:3

RUN apt-get update -y
RUN apt-get install -y vim
RUN pip install kubernetes \
 httpie \
 ipython

CMD bash

I uploaded it to DockerHub as g1g1/py-kube:0.2. Now, we can run it as a pod in the
cluster and have a nice troubleshooting or interactive exploration session:

$ kubectl run trouble -it --image=g1g1/py-kube:0.2 bash

Executing the preceding command will drop you into a command-line prompt where you
can do whatever you want with Python, IPython, HTTPie, and of course the Kubernetes
Python client package that's available. Here is how we can list the pods in the default
namespace from Python:

ipython
Python 3.7.2 (default, Feb 6 2019, 12:04:03)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.2.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from kubernetes import client, config
In [2]: config.load_incluster_config()
In [3]: api = client.CoreV1Api()
In [4]: api.list_namespaced_pod(namespace='default')

The result will be similar – a Python exception – because the default account is forbidden to
list pods. Note that, if your pod doesn't need to access the API server (very common), you
can make it explicit by setting automountServiceAccountToken: false.

This can be done at the service account level or in the pod spec. This way, even if
something or someone outside your control adds permissions to the service account at a
later date, since there is no token mounted, the pod will fail to authenticate to the API
server and will not get unintended access. Delinkcious services currently have no need to
access the API server, so by following the principle of least privilege, we can add this to
their spec in the deployment.

Securing Microservices on Kubernetes Chapter 6

[150]

Here is how you can create a service account for the LinkManager (without access to the
API server) and add it to the deployment:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: link-manager
 automountServiceAccountToken: false

apiVersion: apps/v1
kind: Deployment
metadata:
 name: link-manager
 labels:
 svc: link
 app: manager
spec:
 replicas: 1
 selector:
 matchLabels:
 svc: link
 app: manager
 serviceAccountName: link-manager
...

Before granting our service account super powers using RBAC, let's review how
Kubernetes manages secrets. Kubernetes stores secrets in etcd by default. It is possible to
integrate etcd with third-party solutions, but in this section we will focus on vanilla
Kubernetes. Secrets should be encrypted at rest and in transit, and etcd has supported this
since version 3.

Now that we understand how accounts work in Kubernetes, let's see how to manage
secrets.

Managing secrets with Kubernetes
Before granting our service account super powers using RBAC, let's review how
Kubernetes manages secrets. Kubernetes stores secrets in etcd (https:/ /coreos. com/ etcd/)
by default. There are different types of secret Kubernetes can manage. Let's look at the
various secret types and then create our own secrets and pass them to containers. Finally,
we'll build a secure pod together.

https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/
https://coreos.com/etcd/

Securing Microservices on Kubernetes Chapter 6

[151]

Understanding the three types of Kubernetes
secret
There are three distinct types of secret:

Service account API token (credentials for talking to the API server)
Registry secret (credentials for pulling images from private registries)
Opaque secret (your secrets that Kubernetes knows nothing about)

The service account API token is built-in for each service account (unless you specified
automountServiceAccountToken: false). Here is the secret for the service account
API token for the link-manager:

$ kubectl get secret link-manager-token-zgzff | grep link-manager-token
link-manager-token-zgzff kubernetes.io/service-account-token 3 20h

The pull secrets image is a little more complicated. Different private registries behave
differently and require different secrets. Also, some private registries require that you
refresh your tokens often. Let's look at an example with DockerHub. DockerHub lets you
have a single private repository by default. I converted py-kube into a private repository,
as shown in the following screenshot:

I deleted the local Docker image. To pull it, I need to create a registry secret:

$ kubectl create secret docker-registry private-dockerhub \
 --docker-server=docker.io \
 --docker-username=g1g1 \
 --docker-password=$DOCKER_PASSWORD \
 --docker-email=$DOCKER_EMAIL
secret "private-dockerhub" created

Securing Microservices on Kubernetes Chapter 6

[152]

$ kubectl get secret private-dockerhub
NAME TYPE DATA AGE
private-dockerhub kubernetes.io/dockerconfigjson 1 16s

The last type of secret is Opaque and is the most interesting type of secret. You store your
sensitive information in opaque secrets that Kubernetes doesn't touch. It just provides you
with a robust and secure store for your secrets and an API for creating, reading, and
updating those secrets. You can create opaque secrets in many ways, such as the following:

From literal values
From a file or directory
From an env file (key-value pairs in separate lines)
Create a YAML manifest with kind

This is very similar to ConfigMaps. Now, let's create some secrets.

Creating your own secrets
One of the simplest and most useful ways to create secrets is via a simple env file that
contains key-value pairs:

a=1
b=2

We can create a secret by using the -o yaml flag (YAML output format) to see what was
created:

$ kubectl create secret generic generic-secrets --from-env-file=generic-
secrets.txt -o yaml

apiVersion: v1
data:
 a: MQ==
 b: Mg==
kind: Secret
metadata:
 creationTimestamp: 2019-02-16T21:37:38Z
 name: generic-secrets
 namespace: default
 resourceVersion: "1207295"
 selfLink: /api/v1/namespaces/default/secrets/generic-secrets
 uid: 14e1db5c-3233-11e9-8e69-0800275914a6
type: Opaque

Securing Microservices on Kubernetes Chapter 6

[153]

The type is Opaque and the returned values are base64-encoded. To fetch the values and
decode them, you can use the following command:

$ echo -n $(kubectl get secret generic-secrets -o jsonpath="{.data.a}") |
base64 -D
1

The jsonpath output format lets you drill-down into specific parts of the object. You can
also use jq (https:/ /stedolan. github. io/jq/) if you prefer.

Note that secrets are not stored or transmitted; they are just encrypted or
encoded in base-64, which anyone can decode. When you create a secret
using your user account (or get secrets), you get back the base-64 encoded
representation of the decrypted secret. However, it is encrypted at rest on
disk and also encrypted in transit since you communicate with the
Kubernetes API server over HTTPS.

Now that we have understood how to create secrets, we will make them available to
workloads that are running in containers.

Passing secrets to containers
There are many ways to pass secrets to containers, such as the following:

You can bake secrets into the container image.
You can pass them into environment variables.
You can mount them as files.

The most secure way is to mount your secrets as files. When you bake your secret into the
image, anyone with access to the image can retrieve your secrets. When you pass your
secrets as environment variables, they can be viewed via docker inspect, kubectl
describe pod, and by child processes if you don't clean up the environment. In addition,
it is common to log your entire environment when reporting an error, which takes
discipline from all your developers to sanitize and redact secrets. Mounted files don't suffer
from these weaknesses, but note that anyone who can kubectl exec into your container
can examine any mounted files, including secrets, if you don't manage permissions
carefully.

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Securing Microservices on Kubernetes Chapter 6

[154]

Let's create a secret from a YAML manifest. When choosing this method, it's your
responsibility to base64-encode the values:

$ echo -n top-secret | base64
dG9wLXNlY3JldA==

$ echo -n bottom-secret | base64
Ym90dG9tLXNlY3JldA==

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: generic-secrets2
 namespace: default
data:
 c: dG9wLXNlY3JldA==
 d: Ym90dG9tLXNlY3JldA==

Let's create the new secrets and verify that they were created successfully by getting them
using kubectl get secret:

$ kubectl create -f generic-secrets2.yaml
secret "generic-secrets2" created

$ echo -n $(kubectl get secret generic-secrets2 -o jsonpath="{.data.c}") |
base64 -d
top-secret

$ echo -n $(kubectl get secret generic-secrets2 -o jsonpath="{.data.d}") |
base64 -d
bottom-secret

Now that we know how to create opaque/generic secrets and pass them to containers, let's
connect all the dots and build a secure pod.

Building a secure pod
The pod has a custom service that doesn't need to talk to the API server (so there's no need
to auto-mount a service account token); instead, the pod offers imagePullSecret to pull
our private repository and also has some generic secrets mounted as a file.

Securing Microservices on Kubernetes Chapter 6

[155]

Let's get started and learn how to build a secure pod:

The first step is the custom service account. Here is the YAML manifest:1.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: service-account
automountServiceAccountToken: false

Let's create it:

$ kubectl create -f service-account.yaml
serviceaccount "service-account" created

Now, we'll attach it to our pod and also set the imagePullSecret we created2.
earlier. There's a lot going on here. I attached a custom service account, created a
secret volume that references the generic-secrets2 secret, then a volume
mount that mounts it into /etc/generic-secrets2; finally, I
set imagePullSecrets to the private-dockerhub secret:

apiVersion: v1
kind: Pod
metadata:
 name: trouble
spec:
 serviceAccountName: service-account
 containers:
 - name: trouble
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
 volumeMounts:
 - name: generic-secrets2
 mountPath: "/etc/generic-secrets2"
 readOnly: true
 imagePullSecrets:
 - name: private-dockerhub
 volumes:
 - name: generic-secrets2
 secret:
 secretName: generic-secrets2

Next, we can create our pod and start playing around:3.

$ kubectl create -f pod-with-secrets.yaml
pod "trouble" created

Securing Microservices on Kubernetes Chapter 6

[156]

Kubernetes was able to pull the image from the private repository. We expect no API server
token (there shouldn't be /var/run/secrets/kubernetes.io/serviceaccount/), and
our secrets should be mounted as files in /etc/generic-secrets2. Let's verify this by
starting an interactive shell using kubectl exec -it and check that the service account
file doesn't exist, but that the generic secrets c and d do:

$ kubectl exec -it trouble bash

ls /var/run/secrets/kubernetes.io/serviceaccount/
ls: cannot access '/var/run/secrets/kubernetes.io/serviceaccount/':
No such file or directory

cat /etc/generic-secrets2/c
top-secret

cat /etc/generic-secrets2/d
bottom-secret

Yay, it works!

Here, we focused a lot on managing custom secrets and built a secure pod that can't access
the Kubernetes API server, but often you need to carefully manage the access of different
entities have to the Kubernetes API server. Kubernetes has a well-defined role-based access
control model (also known as RBAC). Let's see it in action.

Managing permissions with RBAC
RBAC is a mechanism that's used to manage access to Kubernetes resources. With effect
from Kubernetes 1.8, RBAC is considered stable. Start the API server with --
authorization-mode=RBAC to enable it. RBAC works as follows when a request to the
API server comes in:

First, it authenticates the request via the user credentials or service account1.
credentials of the caller (returns 401 unauthorized if it fails).
Next, it checks the RBAC policies to verify whether the requester is authorized to2.
perform the operation on the target resource (returns 403 forbidden if it fails).
Finally, it runs through an admission controller that may reject or modify the3.
request for various reasons.

Securing Microservices on Kubernetes Chapter 6

[157]

The RBAC model consists of identities (user and service accounts), resources (Kubernetes
objects), verbs (standard actions such as get, list, and create), roles, and role bindings.
Delinkcious services don't need to access the API server, so they don't need access.
However, Argo CD, the continuous delivery solution, definitely needs access as it deploys
our services and all related objects.

Let's look at the following snippet from a role and understand it in detail. You can find the
source here: https:/ /github. com/ argoproj/ argo- cd/blob/ master/ manifests/ install.
yaml#L116:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 labels:
 app.kubernetes.io/component: server
 app.kubernetes.io/name: argo-cd
 name: argocd-server
rules:
- apiGroups:
 - ""
 resources:
 - secrets
 - configmaps
 verbs:
 - create
 - get
 - list
 ...
- apiGroups:
 - argoproj.io
 resources:
 - applications
 - appprojects
 verbs:
 - create
 - get
 - list
 ...
- apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
 - list

https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116
https://github.com/argoproj/argo-cd/blob/master/manifests/install.yaml#L116

Securing Microservices on Kubernetes Chapter 6

[158]

A role has rules. Each rule assigns a list of allowed verbs to each API group and resources
within that API group. For example, for the empty API group (indicates the core API
group) and the configmaps and secrets resources, the Argo CD server can apply all of
these verbs:

- apiGroups:
 - ""
 resources:
 - secrets
 - configmaps
 verbs:
 - create
 - get
 - list
 - watch
 - update
 - patch
 - delete

The argoproj.io API group and the applications and appprojects resources (both
are CRDs defined by Argo CD) have another list of verbs. Finally, for the events resource
of the core group, it can only use the create or list verb:

- apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
- list

An RBAC role applies only to the namespace it was created in. This means that the fact that
Argo CD can do anything with configmaps and secrets is not too scary if it's created in a
dedicated namespace. As you may recall, I installed Argo CD on the cluster in a namespace
called argocd.

However, similar to a role, RBAC also has a ClusterRole where the permissions that are
listed are allowed across the cluster. Argo CD has cluster roles too. For example, argocd-
application-controller has the following cluster role:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 labels:
 app.kubernetes.io/component: application-controller
 app.kubernetes.io/name: argo-cd

Securing Microservices on Kubernetes Chapter 6

[159]

 name: argocd-application-controller
rules:
- apiGroups:
 - '*'
 resources:
 - '*'
 verbs:
 - '*'
- nonResourceURLs:
 - '*'
 verbs:
- '*'

This pretty much gives access to anything on the cluster. It is equivalent to not having
RBAC at all. I'm not sure why the Argo CD application controller needs such global access.
My guess is that it's just easier to get access to anything than explicitly list everything if it's
a big list. However, this is not the best practice from a security standpoint.

Roles and cluster roles are just a list of permissions. To make it all work, you need to bind a
role to a set of accounts. That's where role bindings and cluster role bindings come into
play. Role bindings only work in their namespace. You can role-bind both a role and a
cluster role (in which case the cluster role will be active in the target namespace only). Here
is an example:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 labels:
 app.kubernetes.io/component: application-controller
 app.kubernetes.io/name: argo-cd
 name: argocd-application-controller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: argocd-application-controller
subjects:
- kind: ServiceAccount
name: argocd-application-controller

A cluster role binding applies across the cluster and can bind a cluster role only (because a
role is restricted to its namespace).

Now that we understand how to control access to Kubernetes resources using RBAC, let's
move on to controlling access to our own microservices.

Securing Microservices on Kubernetes Chapter 6

[160]

Controlling access with authentication,
authorization, and admission
Kubernetes has an interesting access control model that goes above and beyond standard
access control. For your microservices, it provides the troika of authentication,
authorization, and admission. You're probably familiar with authentication (who is
calling?) and authorization (what is the caller allowed to do?). Admission is not as
common. It can be used for a more dynamic situation where a request may be rejected, even
if the caller is properly authenticated and authorized.

Authenticating microservices
Service accounts and RBAC are a good solution to manage identity and access for
Kubernetes objects. However, in a microservice architecture, there will be a lot of
communication between microservices. This communication happens inside the cluster and
may be considered less prone to attacks. But the defense in depth principle guides us to
encrypt, authenticate, and manage this communication as well. There are several
approaches here. The most robust approach requires your own private key infrastructure
(PKI) and certificate authority (CA) that can deal with issuing, revoking, and updating
certificates as service instances come and go. This is pretty complicated (if you use a cloud
provider, they may provide it for you). A somewhat simpler approach is to utilize
Kubernetes secrets and create shared secrets between each of the two services that can talk
to each other. Then, when a request comes in, we can check whether the calling service
passed the correct secret, which authenticates it.

Let's create a mutual secret for link-manager and graph-manager (remember that it
must be base64-encoded):

$ echo -n "social-graph-manager: 123" | base64
c29jaWFsLWdyYXBoLW1hbmFnZXI6IDEyMw==

Then, we will create a secret for link-manager, as follows:

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: mutual-auth
 namespace: default
data:
 mutual-auth.yaml: c29jaWFsLWdyYXBoLW1hbmFnZXI6IDEyMw==

Securing Microservices on Kubernetes Chapter 6

[161]

Never commit secrets to source control. I have done it here for educational
purposes only.

To see the value of the secret using kubectl and the jsonpath format, you need to escape
the dot in mutual-auth.yaml:

$ kubectl get secret link-mutual-auth -o "jsonpath={.data['mutual-
auth\.yaml']}" | base64 -D
social-graph-manager: 123

We'll repeat the process for social-graph-manager:

$ echo -n "link-manager: 123" | base64
bGluay1tYW5hZ2VyOiAxMjM=

Then, we will create a secret for social-graph-manager, as follows:

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: mutual-auth
 namespace: default
data:
 mutual-auth.yaml: bGluay1tYW5hZ2VyOiAxMjM=

At this point, link-manager and social-graph-manager have a shared secret that we
can mount to the respective pods. Here is the pod spec in the link-manager deployment
that mounts the secret from a volume into /etc/delinkcious. The secret will show up as
the mutual-auth.yaml file:

spec:
 containers:
 - name: link-manager
 image: g1g1/delinkcious-link:0.3
 imagePullPolicy: Always
 ports:
 - containerPort: 8080
 envFrom:
 - configMapRef:
 name: link-manager-config
 volumeMounts:
 - name: mutual-auth
 mountPath: /etc/delinkcious
 readOnly: true

Securing Microservices on Kubernetes Chapter 6

[162]

 volumes:
 - name: mutual-auth
 secret:
 secretName: link-mutual-auth

We can apply the same convention to all services. The result is that each pod will have a file
called /etc/delinkcious/mutual-auth.yaml with the tokens of all the services it needs
to talk to. Based on this convention, we created a little package called auth_util that reads
the file, populates a couple of maps, and exposes a couple of functions for mapping and
matching callers and tokens. The auth_util package expects the file itself to be a YAML
file with key-value pairs in the format of <caller>: <token>.

Here are the declarations and maps:

package auth_util

import (
 _ "github.com/lib/pq"
 "gopkg.in/yaml.v2"
 "io/ioutil"
 "os"
)

const callersFilename = "/etc/delinkcious/mutual-auth.yaml"

var callersByName = map[string]string{}
var callersByToken = map[string][]string{}

The init() function reads the file (unless the env variable, DELINKCIOUS_MUTUAL_AUTH,
is set to false), unmarshals it into the callersByName map, and then iterates over it and
populates the reverse callersByToken map, where the tokens are the keys and the callers
are the values (with possible duplicates):

func init() {
 if os.Getenv("DELINKCIOUS_MUTUAL_AUTH") == "false" {
 return
 }

 data, err := ioutil.ReadFile(callersFilename)
 if err != nil {
 panic(err)
 }
 err = yaml.Unmarshal(data, callersByName)
 if err != nil {
 panic(err)
 }

Securing Microservices on Kubernetes Chapter 6

[163]

 for caller, token := range callersByName {
 callersByToken[token] = append(callersByToken[token], caller)
 }
}

Finally, the GetToken() and HasCaller() functions provide the external interface to the
package that's used by services and clients that communicate with each other:

func GetToken(caller string) string {
 return callersByName[caller]
}

func HasCaller(caller string, token string) bool {
 for _, c := range callersByToken[token] {
 if c == caller {
 return true
 }
 }

 return false
}

Let's see how the link service calls the GetFollowers() method of the social graph service.
The GetFollowers() method extracts the authentication token from the environment and
compares it to the token that's provided in the headers (this is only known to the link
service) to verify that the caller is really the link service. As usual, the core logic doesn't
change. The entire authentication scheme is isolated to the transport and client layers. Since
the social graph service uses the HTTP transport, the client stores the token in a header
called Delinkcious-Caller-Service. It gets the token from the auth_util package via
the GetToken() function without knowing anything about where the secret is coming
from (in our case, the Kubernetes secret is mounted as a file):

// encodeHTTPGenericRequest is a transport/http.EncodeRequestFunc that
// JSON-encodes any request to the request body. Primarily useful in a
client.
func encodeHTTPGenericRequest(_ context.Context, r *http.Request, request
interface{}) error {
 var buf bytes.Buffer
 if err := json.NewEncoder(&buf).Encode(request); err != nil {
 return err
 }
 r.Body = ioutil.NopCloser(&buf)

 if os.Getenv("DELINKCIOUS_MUTUAL_AUTH") != "false" {
 token := auth_util.GetToken(SERVICE_NAME)
 r.Header["Delinkcious-Caller-Token"] = []string{token}
 }

Securing Microservices on Kubernetes Chapter 6

[164]

 return nil
}

On the service side, the social graph service transport layer ensures that Delinkcious-
Caller-Token exists and that it contains the token of a valid caller:

func decodeGetFollowersRequest(_ context.Context, r *http.Request)
(interface{}, error) {
 if os.Getenv("DELINKCIOUS_MUTUAL_AUTH") != "false" {
 token := r.Header["Delinkcious-Caller-Token"]
 if len(token) == 0 || token[0] == "" {
 return nil, errors.New("Missing caller token")
 }

 if !auth_util.HasCaller("link-manager", token[0]) {
 return nil, errors.New("Unauthorized caller")
 }
 }
 parts := strings.Split(r.URL.Path, "/")
 username := parts[len(parts)-1]
 if username == "" || username == "followers" {
 return nil, errors.New("user name must not be empty")
 }
 request := getByUsernameRequest{Username: username}
 return request, nil
}

The beauty of this mechanism is that we keep all the gnarly plumbing stuff of parsing files
and extracting headers from HTTP requests in the transport layer and keep the core logic
pristine.

In Chapter 13, Service Mesh – Working with Istio, we will look at another solution for
authenticating microservices using a service mesh. Now, let's move on to authorizing
microservices.

Authorizing microservices
Authorizing microservices can be very simple or very complicated. In the simplest case, if a
calling microservice is authenticated, then it is authorized to perform any operation.
However, sometimes, this is not enough and you need very sophisticated and fine-grained
authorization, depending on other request parameters. For example, in a company I used to
work at, I developed an authorization scheme for a sensor network with both spatial and
temporal dimensions. Users could query the data, but they might be limited to certain
cities, buildings, floors, or rooms.

Securing Microservices on Kubernetes Chapter 6

[165]

If they requested data from a location they were not authorized to query, their request was
rejected. They were also limited by time range and couldn't query outside their designated
time range.

For Delinkcious, you can imagine that users may be limited to viewing their own links and
the links of users they follow (if approved).

Admitting microservices
Authentication and authorization are very well-known and familiar mechanisms for access
control (although not easy to implement robustly). Admission is yet another step that
follows authorization. Even if a request is authenticated and authorized, it may not be
possible to satisfy the request at the moment. This could be due to a rate limit or some other
intermittent issue on the server side. Kubernetes implements additional capabilities, such as
mutating requests as part of admission. For your own microservices, it may not be needed.

So far, we have discussed accounts, secrets, and access control. However, there's still a lot of
work to be done in order to get closer to a secure and hardened cluster.

Hardening your Kubernetes cluster using
security best practices
In this section, we will cover various best practices and we'll see how close Delinkcious gets
to getting it right.

Securing your images
One of the top priorities is making sure that the images that you deploy to the cluster are
secure. There are several good guidelines to follow here.

Always pull images
In the container spec, there is an optional key called ImagePullPolicy. The default is
IfNotPresent. There are a few problems with this default, as follows:

If you use tags such as latest (you shouldn't), then you will not pick up updated
images.

Securing Microservices on Kubernetes Chapter 6

[166]

You may have conflicts with other tenants on the same node.
Other tenants on the same node can run your images.

Kubernetes has an admission controller called AlwaysPullImages that sets the
ImagePullPolicy of every pod to AlwaysPullImages. This prevents all the issues at the
expense of pulling images, even if they are present and you had the right to use them. You
turn on this admission controller by adding it to the list of enabled admission controllers
that are passed to kube-apiserver via the --enable-admission-controllers flag.

Scan for vulnerabilities
Vulnerabilities in your code or dependencies allow attackers to get access to your system.
The national vulnerability database (https:/ /nvd. nist. gov/) is a good place to learn about
new vulnerabilities and processes for managing them, such as the Security Content
Automation Protocol (SCAP).

Open-source solutions such as Claire (https:/ /github. com/ coreos/ clair) and Anchore
(https://anchore. com/ kubernetes/) are available, as well as commercial solutions. Many
image registries provide scanning services too.

Update your dependencies
Keep your dependencies up-to-date, especially if they fix known vulnerabilities. This is
where you need to find the right balance between being vigilant and being conservative.

Pinning the versions of your base images
Pinning versions of base images is critical for ensuring repeatable builds. If your base image
version is not specified, you will pick up the latest version, which may or may not be what
you want.

Using minimal base images
The principle of minimizing the attack surface exhorts you to use as many minimal base
images as possible; the smaller and more restricted, the better. In addition to these security
benefits, you also enjoy faster pulling and pushing (although layers should make it relevant
only when upgrading your base image). Alpine is a very popular base image. Delinkcious
services take this approach to the extreme and use the SCRATCH image as a base image.

https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/
https://anchore.com/kubernetes/

Securing Microservices on Kubernetes Chapter 6

[167]

Pretty much the entire service is just the Go executable, and that's it. It's small, fast, and
secure, but you pay for it when you need to troubleshoot issues and there are no tools to
help you.

If we follow all of these guidelines, our images will be secure, but we should still apply the
basic principles of least privilege and zero trust, and minimize the blast radius at the
network level. If a container, pod, or node somehow gets compromised, they shouldn't be
allowed to reach another part of the network except what's needed by the workloads
running on these components. This is where namespaces and network policies come into
the picture.

Dividing and conquering your network
In addition to authentication as part of defense in depth, you can ensure that services talk
to each other only if they're supposed to by utilizing namespaces and network policies.
Namespaces are a very intuitive yet powerful concept. However, on their own, they don't
prevent pods in the same cluster from communicating with each other. In Kubernetes, all
the pods in a cluster share the same flat networking address space. This is one of the great
simplifications of the Kubernetes networking module. Your pods can be on the same nodes
or a different node – it doesn't matter.

Each pod will have its own IP address (even if multiple pods run on the same physical
node or VM with a single IP address). This is where network policies come into the picture.
A network policy is basically a set of rules that specify both intra-cluster communication
between pods (east-west traffic), as well as communication between services in the cluster
and the outside world (north-south traffic). If no network policy is specified, all incoming
traffic (ingress) is allowed by default on all the ports of every pod. From a security
perspective, this is unacceptable.

Let's start by blocking all ingress and later open up selectively as needed:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress

Note that network policies work at the pod level. You specify pods with labels, which is
one of the primary reasons why you should properly group your pods using meaningful
labels.

Securing Microservices on Kubernetes Chapter 6

[168]

Before applying this policy, it's good to know that it works from the troubleshooting pod,
as shown in the following code block:

http GET http://$SOCIAL_GRAPH_MANAGER_SERVICE_HOST:9090/following/gigi

HTTP/1.1 200 OK
Content-Length: 37
Content-Type: text/plain; charset=utf-8
Date: Mon, 18 Feb 2019 18:00:52 GMT

{
 "err": "",
 "following": {
 "liat": true
 }
}

However, after applying the deny-all policy, we get a timeout error, as follows:

http GET http://$SOCIAL_GRAPH_MANAGER_SERVICE_HOST:9090/following/gigi

http: error: Request timed out (30s).

Now that all the pods are isolated, let's allow social-graph-manager to talk to its
database. Here is a network policy that allows only social-graph-manager to access
social-graph-db on port 5432:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-social-graph-db
 namespace: default
spec:
 podSelector:
 matchLabels:
 svc: social-graph
 app: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 svc: social-graph
 app: manger
 ports:
 - protocol: TCP
 port: 5432

Securing Microservices on Kubernetes Chapter 6

[169]

And the following additional policy allows ingress to social-graph-manager on port
9090 from the link-manager, as shown in the following code:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-link-to-social-graph
 namespace: default
spec:
 podSelector:
 matchLabels:
 svc: social-graph
 app: manager
 ingress:
 - from:
 - podSelector:
 matchLabels:
 svc: link
 app: manger
 ports:
 - protocol: TCP
 port: 9090

In addition to the security benefits, the network policies serve as live documentation to the
flow of information across the system. You can tell exactly which services talk to which
other services, as well as external services.

We have gotten our network under control. Now, it's time to turn our attention to our
image registry. After all, this is where we get our images, which we give a lot of
permissions to.

Safeguarding your image registry
It is highly recommended to use private image registries. If you have proprietary code, then
you must not publish your containers with public access because reverse-engineering your
images will grant attackers access. However, there are other reasons for this too. You get
better control over (and auditing of) pulling and pushing images from the registry.

Securing Microservices on Kubernetes Chapter 6

[170]

There are two options here:

Use a private registry managed by a third party like AWS, Google, Microsoft, or
Quay.
Use your own private registry.

The first option makes sense if you deploy your system on a cloud platform that has good
integration with its own image registry or if you don't manage your own registry in the
sprint of cloud-native computing and you prefer to let a third party such as Quay do it for
you.

The second option (running your own container registry) may be best if you need extra
control over all the images, including base images and dependencies.

Granting access to Kubernetes resources as
needed
The principle of least privilege directs you to grant access to Kubernetes resources only to
services that actually need it (for example, Argo CD). RBAC is a great option here since
everything is locked down by default and you can explicitly add privileges. However,
beware of falling into the trap of giving wildcard access to everything just to get over
difficulties with RBAC configuration. For example, let's take a look at a cluster role with the
following rule:

rules:
- apiGroups:
 - '*'
 resources:
 - '*'
 verbs:
 - '*'
- nonResourceURLs:
 - '*'
 verbs:
- '*'

This is worse than disabling RBAC because it gives you a false sense of security. Another
option for a more dynamic situation is dynamic authentication, authorization, and
admission control via webhooks and external servers. Those give you the ultimate
flexibility.

Securing Microservices on Kubernetes Chapter 6

[171]

Using quotas to minimize the blast radius
Limits and quotas are a Kubernetes mechanism where you can control various limited
resources such as CPU and memory which are allocated to clusters, pods, and containers.
They are very useful for multiple reasons:

Performance.
Capacity planning.
Cost management.
They help Kubernetes schedule pods based on resource utilization.

When your workloads operate within a budget, everything becomes more predictable and
easier to reason about, although you have to do the leg work of figuring out how many
resources are actually needed and adjust this as time goes by. This is not as bad as it sounds
since, with horizontal pod autoscaling, you can let Kubernetes dynamically adjust the
number of pods for a service, even if each pod has a very strict quota.

From a security perspective, if an attacker gains access to a workload running on your
cluster, it limits the amount of physical resources it can use. One of the most common
attacks these days is just saturating targets with crypto currency mining. Similar types of
attacks are fork bombs, which just consume all the available resources by having a rogue
process replicate itself uncontrollably. Network policies limit the blast radius of
compromised workloads by limiting access to other pods on the network. Resource quotas
minimize the blast radius from utilizing the resources on the hosting node of the
compromised pod.

There are several types of quota, such as the following:

Compute quota (CPU and memory)
Storage quota (disks and external storage)
 Objects (Kubernetes object)
Extended resources (non-Kubernetes resources like GPUs)

Resource quotas are quite nuanced. There are several concepts you need to understand,
such as units and scopes, as well as the difference between requests and limits. I'll explain
the basics and demonstrate them by adding resource quotas for the Delinkcious user
service. A resource quota is allocated for container, so you add it to the container spec as
follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-manager

Securing Microservices on Kubernetes Chapter 6

[172]

 labels:
 svc: user
 app: manager
spec:
 replicas: 1
 selector:
 matchLabels:
 svc: user
 app: manager
 template:
 metadata:
 labels:
 svc: user
 app: manager
 spec:
 containers:
 - name: user-manager
 image: g1g1/delinkcious-user:0.3
 imagePullPolicy: Always
 ports:
 - containerPort: 7070
 resources:
 requests:
 memory: 64Mi
 cpu: 250m
 limits:
 memory: 64Mi
 cpu: 250m

There are two sections under resources:

Requests: Requests are what the container requests in order to start. If
Kubernetes can't satisfy a request for a particular resource, it will not start the
pod. Your workload can be sure that it will have that much CPU and memory
allocated to it throughout its life, and you can take it to the bank.

In the preceding block, I specified a request of 64Mi of memory and 250m units of
CPU (see the following section for an explanation of these units).

Limits: Limits are the ceiling for resources a workload may have access to. A
container that exceeds its memory limits might be killed and the entire pod may
be evicted from the node. Kubernetes will restart the container if killed and
reschedule the pod if evicted, like it does with any type of failure. If a container
exceeds its CPU limits, it will not be killed and may even get away with it for a
while but, since the CPU is much easier to control, it will probably just not get all
the CPU it requests and will sleep a lot to remain within its limits.

Securing Microservices on Kubernetes Chapter 6

[173]

It is often the best approach to specify requests as limits, like I did for the user manager.
The workload knows that it already has all the resources it will ever need and doesn't have
to worry about trying to get closer to the limit in the presence of other hungry neighbors on
the same node who may all compete for the same resource pool.

While resources are specified per container, when pods have multiple containers, it's
important to consider the total resource requests of the entire pod (the sum of all the
container requests). The reason for this is that pods are always scheduled as one unit. If you
have a pod that has 10 containers, with each one asking for 2 Gib of memory, then it means
that your pod requires a node with 20 Gib of free memory.

Units for requests and limits
You can use the following suffixes for memory requests and limits: E, P, T, G, M, and K.
You can also use the power of two suffixes (which are always a little larger), that is, Ei, Pi,
Ti, Gi, Mi, and Ki. You can also just use integers, including the exponent notation for bytes.

The following are approximately the same: 257,988,979, 258e6, 258M, and 246Mi. CPU units
are relative to the hosting environment, as follows:

1 AWS vCPU
1 GCP Core
1 Azure vCore
1 IBM vCPU
1 hyperthread on a bare-metal Intel processor with hyperthreading

You can request CPU in fractions of resolutions of 0.001. A more convenient method is to
use milliCPU and just integers with the m suffix; for example, 100 m is 0.1 CPU.

Implementing security contexts
Sometimes, pods and containers need escalated privileges or access to the node. This will
be very rare for your application workloads. However, when necessary, Kubernetes has the
concept of a security context that encapsulates and allows you to configure multiple Linux
security concepts and mechanisms. This is critical from a security perspective because you
open up a tunnel out of the container world into the host machine.

Securing Microservices on Kubernetes Chapter 6

[174]

Here is a list of some mechanisms that are covered by security contexts:

Allowing (or forbidding) privilege escalation
Access control via user IDs and group IDs (runAsUser, runAsGroup)
Capabilities as opposed to unrestricted root access
Using AppArmor and seccomp profiles
SELinux configuration

There are many details and interactions that are beyond the scope of this book. I'll just share
an example of SecurityContext:

apiVersion: v1
kind: Pod
metadata:
 name: secure-pod
spec:
 containers:
 - name: some-container
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
 securityContext:
 runAsUser: 2000
 allowPrivilegeEscalation: false
 capabilities:
 add: ["NET_ADMIN", "SYS_TIME"]
 seLinuxOptions:
 level: "s0:c123,c456"

The security policy does different things, such as setting the user ID inside the container to
2000 and not allowing privilege escalation (getting root), as follows:

$ kubectl exec -it secure-pod bash

I have no name!@secure-pod:/$ whoami
whoami: cannot find name for user ID 2000

I have no name!@secure-pod:/$ sudo su
bash: sudo: command not found

Security contexts are a very good way to centralize the security aspects of a pod or
container, but in a large cluster where you potentially install third-party packages such as
helm charts, it's difficult to ensure that every pod and container gets the right security
context. That's where pod security policies come into the picture.

Securing Microservices on Kubernetes Chapter 6

[175]

Hardening your pods with security policies
A pod security policy allows you set a global policy that applies to all newly created pods.
It is enforced as part of the admission stage of access control. The pod security policy can
create a security context for pods with no security context or reject pod creation and
updating if they have a security context that doesn't match the policy. Here is a security
policy that will prevent pods from getting a privileged status that allows access to host
devices:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: disallow-privileged-access
spec:
 privileged: false
 allowPrivilegeEscalation: false
 # required fields.
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 volumes:
 - '*'

Here are some good policies to enforce (if you don't need the capabilities):

Read-only root filesystem
Control mounting host volumes
Prevent privileged access and escalation

Last but not least, let's make sure that the tools we will use to work with our Kubernetes
cluster are secure as well.

Securing Microservices on Kubernetes Chapter 6

[176]

Hardening your toolchain
Delinkcious is pretty well-contained. The main tool it uses is Argo CD. Argo CD, which can
potentially cause a lot of damage, is running inside the cluster and pulls from GitHub.
However, it has a lot of permissions. Before I decided to use Argo CD as the continuous
delivery solution for Delinkcious, I reviewed it seriously from a security perspective. The
Argo CD developers did a great job of thinking how to make Argo CD secure. They made
sensible choices, implemented them, and documented how to run Argo CD securely. Here
are the security features that Argo CD provides:

Authentication of the admin user via JWT tokens
Authorization via RBAC
Secure communication over HTTPS
Secret and credential management
Audits
Cluster RBAC

Let's take a look at them briefly.

Authentication of admin user via JWT tokens
Argo CD has a built-in admin user. All other users must use Single-Sign on (SSO).
Authentication to the Argo CD server always uses JSON Web Token (JWT). Admin
user credentials are converted into JWT too.

It also supports automation via the
/api/v1/projects/{project}/roles/{role}/token endpoint, which generates
automation tokens that are issued and signed by Argo CD itself. These tokens are limited in
scope and expire pretty fast.

Authorization via RBAC
Argo CD authorizes requests by mapping the user's JWT group claims to RBAC roles. This
is a very nice combination of industry-standard authentication with the Kubernetes
authorization model via RBAC.

Securing Microservices on Kubernetes Chapter 6

[177]

Secure communication over HTTPS
All communication to/from Argo CD, as well as between its own components, is done over
HTTPS/TLS.

Secret and credentials management
Argo CD needs to manage a lot of sensitive information, such as the following:

Kubernetes secrets
Git credentials
OAuth2 client credentials
Credentials to external clusters (when not installed in the cluster)

Argo CD makes sure to keep all of these secrets to itself. It never leaks them by returning
them in responses or logging them. All API responses and logs are scrubbed and redacted.

Audits
You can audit most of the activity just by looking at git commit logs, which triggers
everything in Argo CD. However, Argo CD also sends various events to capture in-cluster
activity for additional visibility. This combination is powerful.

Cluster RBAC
By default, Argo CD uses a cluster-wide admin role. This isn't necessary.
The recommendation is to restrict its write privileges only to the namespaces it needs to
manage.

Summary
In this chapter, we took a serious look at a serious topic: security. Microservice-based
architectures and Kubernetes make the most sense to large-scale enterprise-distributed
systems that support mission-critical objectives and often manage sensitive information. On
top of the challenges of developing and evolving such complex systems, we must be aware
that such systems present very enticing targets to attackers.

Securing Microservices on Kubernetes Chapter 6

[178]

We must use a rigorous process and best practices to protect the system, the users, and the
data. From here, we covered security principles and best practices, and we also saw how
they support each other and how Kubernetes dedicates a lot of effort to allowing them to
develop and operate our system securely.

We also discussed the pillars that act as the foundation of microservice security on
Kubernetes: the triple A of authentication/authorization/admission, secure communication
inside and outside the cluster, strong secret management (encrypted at rest and in transit),
and layered security policies.

At this point, you should have a clear understanding of the security mechanisms that are at
your disposal and enough information to decide how to integrate them into your system.
Security is never complete, but utilizing best practices will allow you to find the right
balance between security and the other requirements of your system at each point in time.

In the next chapter, we will finally open Delinkcious to the World! We will look at public
APIs, load balancers, and the important considerations for performance and security that
we need to be aware of.

Further reading
There are many good resources for Kubernetes security. I've collected some very good
external resources that will aid you in your journey:

Kubernetes security: https:/ /kubernetes- security. info/

Microsoft SDL practices: https:/ /www. microsoft. com/ en-us/
securityengineering/ sdl/ practices

The following Kubernetes documentation pages expand on a lot of the topics we have
covered in this chapter:

Network Policies: https:/ /kubernetes. io/ docs/ concepts/ services-
networking/ network- policies/

Resource Quotas: https:/ / kubernetes. io/ docs/ concepts/ policy/ resource-
quotas/

Configure a Security Context for a Pod or Container: https:/ /kubernetes. io/
docs/tasks/ configure- pod- container/ security- context/

https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://kubernetes-security.info/
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

7
Talking to the World - APIs and

Load Balancers
In this chapter, we're finally going to open Delinkcious to the world and let users interact
with it from outside the cluster. This is important because Delinkcious users can't access
the internal services running inside the cluster. We're going to significantly expand the
capabilities of Delinkcious by adding a Python-based API gateway service and expose it to
the world (including social login). We'll add a gRPC-based news service that users can hit
to get news about other users they follow. Finally, we will add a message queue that lets
services communicate in a loosely coupled manner.

In this chapter, we will cover the following topics:

Getting familiar with Kubernetes services
East-west versus north-south communication
Understanding ingress and load balancing
Providing and consuming a public REST API
Providing and consuming an internal gRPC API
Sending and receiving events via a message queue
Preparing for service meshes

Technical requirements
In this chapter, we will add a Python service to Delinkcious. There is no need to install
anything new. We will build a Docker image for the Python service later.

Talking to the World - APIs and Load Balancers Chapter 7

[180]

The code
You can find the updated Delinkcious application here: https:/ / github. com/ the- gigi/
delinkcious/releases/ tag/ v0. 5

Getting familiar with Kubernetes services
Pods (one or more containers bundled together) are the units of work in Kubernetes.
Deployments make sure that there are enough pods running. However, individual pods are
ephemeral. Kubernetes services are where the action is and how you can expose your pods
as a coherent service to other services in the cluster or even externally to the world. A
Kubernetes service provides a stable identity and typically maps 1:1 to an application
service (which may be a microservice or a traditional fat service). Let's look at all the
services:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
api-gateway LoadBalancer 10.103.167.102 <pending> 80:31965/TCP
6m2s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
25m
link-db ClusterIP 10.107.131.61 <none> 5432/TCP
8m53s
link-manager ClusterIP 10.109.32.254 <none> 8080/TCP
8m53s
news-manager ClusterIP 10.99.206.183 <none> 6060/TCP
7m45s
news-manager-redis ClusterIP None <none> 6379/TCP
7m45s
social-graph-db ClusterIP 10.106.164.24 <none> 5432/TCP
8m38s
social-graph-manager ClusterIP 10.100.107.79 <none> 9090/TCP
8m37s
user-db ClusterIP None <none> 5432/TCP
8m10s
user-manager ClusterIP 10.108.45.93 <none> 7070/TCP
8m10s

You've seen how the Delinkcious microservices are deployed using Kubernetes services
and how they can discover and call each other through the environment variables
Kubernetes provides. Kubernetes also provides DNS-based discovery.

https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5
https://github.com/the-gigi/delinkcious/releases/tag/v0.5

Talking to the World - APIs and Load Balancers Chapter 7

[181]

Each service can be accessed inside the cluster via the DNS name:

<service name>.<namespace>.svc.cluster.local

I prefer to use environment variables because it allows me to run the services outside of
Kubernetes for testing.

Here is how to find the IP address of the social-graph-manager service using both
environment variables and DNS:

$ dig +short social-graph-manager.default.svc.cluster.local
10.107.162.99

$ env | grep SOCIAL_GRAPH_MANAGER_SERVICE_HOST
SOCIAL_GRAPH_MANAGER_SERVICE_HOST=10.107.162.99

Kubernetes associates a service with its backing pods by specifying a label selector. For
example, as shown in the following code, news-service is backed by pods that have the
svc: link and app: manager labels:

spec:
 replicas: 1
 selector:
 matchLabels:
 svc: link
 app: manager

Then, Kubernetes manages the IP addresses of all the pods that match the label selector
using an endpoints resource, as follows:

$ kubectl get endpoints
NAME ENDPOINTS
AGE
api-gateway 172.17.0.15:5000
1d
kubernetes 192.168.99.137:8443
51d
link-db 172.17.0.19:5432
40d
.
.
.
social-graph-db 172.17.0.16:5432
50d
social-graph-manager 172.17.0.18:9090
43d

Talking to the World - APIs and Load Balancers Chapter 7

[182]

The endpoints resource always keeps an up-to-date list of the IP addresses and ports of all
the backing pods of a service. When pods are added, removed, or recreated with another IP
address and port, the endpoints resource is updated. Now, let's see what types of services
are available in Kubernetes.

Service types in Kubernetes
Kubernetes services always have a type. It's important to understand when to use each type
of service. Let's go over the various service types and the differences between them:

ClusterIP (default): The ClusterIP type means that the service is only accessible
inside the cluster. This is the default, and it's perfect for microservices to
communicate with each other. For testing purposes, you can expose such services
using kube-proxy or port-forwarding. It is also a good way to view the
Kubernetes dashboard or other UIs of internal services, such as Argo CD in
Delinkcious.

If you don't specify a type of ClusterIP, set the ClusterIP to None.

NodePort: A service that's of the NodePort type is exposed to the world through
a dedicated port on all the nodes. You can access the service through <Node
IP>:<NodePort>. The NodePort will be selected from a range you can control
via --service-node-port-range to the Kubernetes API server if you run it
yourself (by default, this is 30000-32767).

You can also explicitly specify NodePort in your service definition. If you have a
lot of services exposed via node ports that you specify, you'll have to manage
those ports carefully to avoid conflicts. When a request comes into any node
though the dedicated NodePort, the kubelet will take care of forwarding it to a
node that has one of the backing pods on it (you can find it via endpoints).

LoadBalancer: This type of service is most common when your Kubernetes
cluster runs on a cloud platform that provides load balancer support. Although
there are Kubernetes-aware load balancers for on-premise clusters too, the
external load balancer will be in charge of accepting external requests and
routing them through the service to the backing pods. There are often cloud
provider-specific intricacies such as special annotations or having to create dual
services to handle internal and external requests. We will use the LoadBalancer
type to expose Delinkcious to the world of minikube, which provides a load
balancer emulation.

Talking to the World - APIs and Load Balancers Chapter 7

[183]

ExternalName: These services just resolve requests to the service to an externally
provided DNS name. This is useful if your services need to talk to external
services not running in the cluster, but you still want to be able to find them as if
they were Kubernetes services. This may be useful if you plan to migrate those
external services to the cluster at some point.

Now that we understand what services are all about, let's discuss the differences between
cross-service communication inside the cluster and exposing services outside the cluster.

East-west versus north-south
communication
East-west communication is when services/pods/containers communicate with each other
inside the cluster. As you may recall, Kubernetes exposes all the services inside the cluster
via both DNS and environment variables. This solves the service discovery problem inside
the cluster. It is up to you to impose further restrictions via network policies or other
mechanisms. For example, in Chapter 5, Configuring Microservices with Kubernetes, we
established mutual authentication between the link service and the social graph service.

North-south communication is about exposing services to the world. In theory, you could
expose just your services via NodePort, but this approach is beset by numerous problems,
including the following:

You have to deal with secure/encrypted transport yourself
You can't control which pods will actually service requests
You have to either let Kubernetes choose random ports for your services or
manage port conflicts carefully
Only one service can be exposed via each port (for example, the coveted port 80
can't be reused)

The production approved methods for exposing your services are used via an ingress
controller and/or a load balancer.

Talking to the World - APIs and Load Balancers Chapter 7

[184]

Understanding ingress and load balancing
The ingress concept in Kubernetes is about controlling access to your services and
potentially providing additional features, such as the following:

SSL termination
Authentication
Routing to multiple services

There is an ingress resource that defines routing rules for other relevant information, and
there is also an ingress controller that reads all the ingress resources defined in the cluster
(across all namespaces). The ingress resource receives all the requests and routes to the
target services that distribute them to the backing pods. The ingress controller serves as a
cluster-wide software load balancer and router. Often, there will be a hardware load
balancer that sits in front of the cluster and sends all traffic to the ingress controller.

Let's go ahead and put all of these concepts together and expose Delinkcious to the world
by adding a public API gateway.

Providing and consuming a public REST API
In this section, we will build a whole new service in Python (API gateway) to demonstrate
that Kubernetes is really language-agnostic. Then, we will add user authentication via
OAuth2 and expose the API gateway service externally.

Building a Python-based API gateway service
The API gateway service is designed to receive all requests from outside the cluster and
route them to the proper services. Here is the directory's structure:

$ tree
 .
 ├── Dockerfile
 ├── README.md
 ├── api_gateway_service
 │ ├── __init__.py
 │ ├── api.py
 │ ├── config.py
 │ ├── news_client.py
 │ ├── news_client_test.py
 │ ├── news_pb2.py

Talking to the World - APIs and Load Balancers Chapter 7

[185]

 │ ├── news_pb2_grpc.py
 │ └── resources.py
 ├── k8s
 │ ├── api_gateway.yaml
 │ ├── configmap.yaml
 │ └── secrets.yaml
 ├── requirements.txt
 ├── run.py
 └── tests
 └── api_gateway_service_test.py

This is a little different from the Go services. The code is under the api_gateway_service
directory, which is also a Python package. The Kubernetes resources are under the k8s
subdirectory, and there is a tests subdirectory too. In the top directory, the run.py file is
the entry point, as defined in the Dockerfile. The main() function in run.py invokes the
app.run() method of the app that's imported from the api.py module:

import os
from api_gateway_service.api import app

def main():
 port = int(os.environ.get('PORT', 5000))
 login_url = 'http://localhost:{}/login'.format(port)
 print('If you run locally, browse to', login_url)
 host = '0.0.0.0'
 app.run(host=host, port=port)

if __name__ == "__main__":
 main()

The api.py module is responsible for creating the app, hooking up the routing, and
implementing social login.

Implementing social login
The api-gateway service utilizes several Python packages to assist in implementing social
login via GitHub. Later, we will cover the user flow, but first, we will take a look at the
code that implements it. The login() method is reaching out to GitHub and requesting
authorization to the current user, who must be logged in to GitHub and give authorization
to Delinkcious.

Talking to the World - APIs and Load Balancers Chapter 7

[186]

The logout() method just removed the access token from the current session. The
authorized() method is getting called by GitHub as a redirect after a successful login
attempt and provides an access token that is displayed for the user in their browser. This
access token must be passed as a header to all future requests to the API gateway:

@app.route('/login')
def login():
 callback = url_for('authorized', _external=True)
 result = app.github.authorize(callback)
 return result

@app.route('/login/authorized')
def authorized():
 resp = app.github.authorized_response()
 if resp is None:
 # return 'Access denied: reason=%s error=%s' % (
 # request.args['error'],
 # request.args['error_description']
 #)
 abort(401, message='Access denied!')
 token = resp['access_token']
 # Must be in a list or tuple because github auth code extracts the
first
 user = app.github.get('user', token=(token,))
 user.data['access_token'] = token
 return jsonify(user.data)

@app.route('/logout')
def logout():
 session.pop('github_token', None)
 return 'OK'

When a user is passing a valid access token, Delinkcious can retrieve their name and email
from GitHub. If the access token is missing or invalid, the request will be rejected with a
401 access denied error. This happens in the _get_user() function in resources.py:

def _get_user():
 """Get the user object or create it based on the token in the session

 If there is no access token abort with 401 message
 """
 if 'Access-Token' not in request.headers:
 abort(401, message='Access Denied!')

 token = request.headers['Access-Token']
 user_data = github.get('user', token=dict(access_token=token)).data

Talking to the World - APIs and Load Balancers Chapter 7

[187]

 if 'email' not in user_data:
 abort(401, message='Access Denied!')

 email = user_data['email']
 name = user_data['name']

 return name, email

The GitHub object is created and initialized in the create_app() function of the api.py
module. First, it imports a few third-party libraries, that is, Flask, OAuth, and Api class:

import os

from flask import Flask, url_for, session, jsonify
from flask_oauthlib.client import OAuth
from flask_restful import Api, abort
from . import resources
from .resources import Link

Then, it initializes the Flask app with a GitHub Oauth provider:

def create_app():
 app = Flask(__name__)
 app.config.from_object('api_gateway_service.config')
 oauth = OAuth(app)
 github = oauth.remote_app(
 'github',
 consumer_key=os.environ['GITHUB_CLIENT_ID'],
 consumer_secret=os.environ['GITHUB_CLIENT_SECRET'],
 request_token_params={'scope': 'user:email'},
 base_url='https://api.github.com/',
 request_token_url=None,
 access_token_method='POST',
 access_token_url='https://github.com/login/oauth/access_token',
 authorize_url='https://github.com/login/oauth/authorize')
 github._tokengetter = lambda: session.get('github_token')
 resources.github = app.github = github

Finally, it sets the routing map and stores the initialized app object:

api = Api(app)
 resource_map = (
 (Link, '/v1.0/links'),
)

 for resource, route in resource_map:
 api.add_resource(resource, route)

Talking to the World - APIs and Load Balancers Chapter 7

[188]

 return app

app = create_app()

Routing traffic to internal microservices
The main job of the API gateway service is to implement the API gateway pattern we
discussed in Chapter 2, Getting Started with Microservices. For example, here is how it routes
the get links requests to the proper method of the link microservice.

The Link class is derived from the Resource base class. It gets the host and port from the
environment and constructs the base URL.

The get() method is called when a GET request for the links endpoint comes in. It
extracts the username from the GitHub token in the _get_user() function and parses the
query part of the request URL for the other parameter. Then, it makes its own request to the
link manager service:

class Link(Resource):
 host = os.environ.get('LINK_MANAGER_SERVICE_HOST', 'localhost')
 port = os.environ.get('LINK_MANAGER_SERVICE_PORT', '8080')
 base_url = 'http://{}:{}/links'.format(host, port)

 def get(self):
 """Get all links

 If user doesn't exist create it (with no goals)
 """
 username, email = _get_user()
 parser = RequestParser()
 parser.add_argument('url_regex', type=str, required=False)
 parser.add_argument('title_regex', type=str, required=False)
 parser.add_argument('description_regex', type=str, required=False)
 parser.add_argument('tag', type=str, required=False)
 parser.add_argument('start_token', type=str, required=False)
 args = parser.parse_args()
 args.update(username=username)
 r = requests.get(self.base_url, params=args)

 if not r.ok:
 abort(r.status_code, message=r.content)

 return r.json()

Talking to the World - APIs and Load Balancers Chapter 7

[189]

Utilizing base Docker images to reduce build time
When we built Go microservices for Delinkcious, we used the scratch image as the base and
just copied the Go binary. The images are super lightweight, at less than 10 MB. However,
the API gateway is almost 500 MB, even when using python:alpine, which is much
lighter than the standard Debian-based Python image:

$ docker images | grep g1g1.*0.3
g1g1/delinkcious-user 0.3 07bcc08b1d73 38 hours ago
6.09MB
g1g1/delinkcious-social-graph 0.3 0be0e9e55689 38 hours ago
6.37MB
g1g1/delinkcious-news 0.3 0ccd600f2190 38 hours ago
8.94MB
g1g1/delinkcious-link 0.3 9fcd7aaf9a98 38 hours ago
6.95MB
g1g1/delinkcious-api-gateway 0.3 d5778d95219d 38 hours ago
493MB

In addition, the API gateway needs to build some bindings to native libraries. Installing the
C/C++ toolchain and then building the native libraries takes a long time (more than 15
minutes). Docker shines here with reusable layers and base images. We can put all the
heavyweight stuff into a separate base image at
svc/shared/docker/python_flask_grpc/Dockerfile:

FROM python:alpine
RUN apk add build-base
COPY requirements.txt /tmp
WORKDIR /tmp
RUN pip install -r requirements.txt

The requirements.txt file contains the dependencies for Flask applications that execute
social login and need to consume a gRPC service (more on this later):

requests-oauthlib==1.1.0
Flask-OAuthlib==0.9.5
Flask-RESTful==0.3.7
grpcio==1.18.0
grpcio-tools==1.18.0

Talking to the World - APIs and Load Balancers Chapter 7

[190]

With all of this in place, we can build the base image, and then the API gateway Dockerfile
can be based on it. The following is the super-simple build script at
svc/shared/docker/python_flask_grpc/build.sh that builds the base image and
pushes it to DockerHub:

IMAGE=g1g1/delinkcious-python-flask-grpc:0.1
docker build . -t $IMAGE
docker push $IMAGE

Let's take a look at the Dockerfile for the API gateway service at
svc/api_gateway_service/Dockerfile. It is based on our base image. Then, it copies
the api_gate_service directory, exposes the 5000 port, and executes the run.py script:

FROM g1g1/delinkcious-python-flask-grpc:0.1
MAINTAINER Gigi Sayfan "the.gigi@gmail.com"
COPY . /api_gateway_service
WORKDIR /api_gateway_service
EXPOSE 5000
ENTRYPOINT python run.py

The benefit is that as long as the heavy base image doesn't change, then making changes to
the actual API service gateway code will result in lightning fast Docker image builds. We're
talking a few seconds compared to 15 minutes. At this point, we have a nice and quick
build-test-debug-deploy for the API gateway service. Now is a good time to add ingress to
the cluster.

Adding ingress
On Minikube, you must enable the ingress add-on:

$ minikube addons enable ingress
 ingress was successfully enabled

On other Kubernetes clusters, you may want to install your own favorite ingress controller
(such as Contour, Traefik, or Ambassador).

The following code is for the ingress manifest for the API gateway service. By using this
pattern, our entire cluster will have a single ingress that funnels every request to our API
gateway service, which will route it to the proper internal service:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: api-gateway
 annotations:

Talking to the World - APIs and Load Balancers Chapter 7

[191]

 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: delinkcio.us
 http:
 paths:
 - path: /*
 backend:
 serviceName: api-gateway
 servicePort: 80

The single ingress service is simple and effective. On most cloud platforms, you pay per
ingress resource, since a load balancer is created for each ingress resource. You can scale the
number of API gateway instances easily since it is totally stateless.

Minikube does a lot of magic under the covers with networking,
simulating load balancers, and tunneling traffic. I don't recommend using
Minikube to test ingress to the cluster. Instead, we will use a service of the
LoadBalancer type and access it through the Minikube cluster IP.

Verifying that the API gateway is available
outside the cluster
Delinkcious uses GitHub as a social login provider. You must have a GitHub account to
follow along.

The user flow is as follows:

Find the Delinkcious URL (on Minikube, this will change frequently).1.
Log in and get an access token.2.
Hit the Delinkcious API gateway from outside the cluster.3.

Let's dive in and go over this in detail.

Finding the Delinkcious URL
In a production cluster, you'll have a well-known DNS name configured and a load
balancer hooked up to that name. With Minikube, we can get the API gateway service URL
using the following command:

$ minikube service api-gateway --url
http://192.168.99.138:31658

Talking to the World - APIs and Load Balancers Chapter 7

[192]

It's convenient to store it in an environment variable for interactive use with commands, as
follows:

$ export DELINKCIOUS_URL=$(minikube service api-gateway --url)

Getting an access token
Here are the steps for getting an access token:

Now that we have the API gateway URL, we can browse to the login endpoint,1.
that is, http://192.168.99.138:31658/login. If you're signed into your
GitHub account, you'll see the following dialog box:

Next, if this is the first time your logging in to Delinkcious, GitHub will ask you2.
to authorize Delinkcious to get access to your email and name:

Talking to the World - APIs and Load Balancers Chapter 7

[193]

If you approve of this, then you'll be redirected to a page that will show you a lot3.
of information about your GitHub profile, but, most importantly, provide you
with an access token, as shown in the following screenshot:

Let's store the access token in an environment variable, too:

$ export DELINKCIOUS_TOKEN=def7de18d9c05ce139e37140871a9d16fd37ea9d

Now that we have all the information we need to access Delinkcious from the outside, let's
take it for a test drive.

Talking to the World - APIs and Load Balancers Chapter 7

[194]

Hitting the Delinkcious API gateway from outside the
cluster
We'll use HTTPie to hit the API gateway endpoint at ${DELINKCIOUS_URL}/v1.0/links.
To authenticate, we must provide the access token as a header, that is, "Access-Token:
${DELINKCIOUS_TOKEN}".

Starting with a clean slate, let's verify that there are no links whatsoever:

$ http "${DELINKCIOUS_URL}/v1.0/links" "Access-Token: ${DELINKCIOUS_TOKEN}"
HTTP/1.0 200 OK
Content-Length: 27
Content-Type: application/json
Date: Mon, 04 Mar 2019 00:52:18 GMT
Server: Werkzeug/0.14.1 Python/3.7.2

{
 "err": "",
 "links": null
}

Alright – so far, so good. Let's add a couple of links by sending a POST request to the
/v1.0/links endpoint. Here is the first link:

$ http POST "${DELINKCIOUS_URL}/v1.0/links" "Access-Token:
${DELINKCIOUS_TOKEN}" url=http://gg.com title=example
HTTP/1.0 200 OK
Content-Length: 12
Content-Type: application/json
Date: Mon, 04 Mar 2019 00:52:49 GMT
Server: Werkzeug/0.14.1 Python/3.7.2

{
 "err": ""
}

And here is the second link:

$ http POST "${DELINKCIOUS_URL}/v1.0/links" "Access-Token:
${DELINKCIOUS_TOKEN}" url=http://gg2.com title=example
HTTP/1.0 200 OK
Content-Length: 12
Content-Type: application/json
Date: Mon, 04 Mar 2019 00:52:49 GMT
Server: Werkzeug/0.14.1 Python/3.7.2

{

Talking to the World - APIs and Load Balancers Chapter 7

[195]

 "err": ""
}

No errors. That's great. By getting the links again, we can see the new links we just added:

$ http "${DELINKCIOUS_URL}/v1.0/links" "Access-Token: ${DELINKCIOUS_TOKEN}"
HTTP/1.0 200 OK
Content-Length: 330
Content-Type: application/json
Date: Mon, 04 Mar 2019 00:52:52 GMT
Server: Werkzeug/0.14.1 Python/3.7.2

{
 "err": "",
 "links": [
 {
 "CreatedAt": "2019-03-04T00:52:35Z",
 "Description": "",
 "Tags": null,
 "Title": "example",
 "UpdatedAt": "2019-03-04T00:52:35Z",
 "Url": "http://gg.com"
 },
 {
 "CreatedAt": "2019-03-04T00:52:48Z",
 "Description": "",
 "Tags": null,
 "Title": "example",
 "UpdatedAt": "2019-03-04T00:52:48Z",
 "Url": "http://gg2.com"
 }
]
}

We have successfully established an end-to-end flow, including user authentication, thus
hitting a Python API gateway service that talks to a Go microservice via its internal HTTP
REST API and stores information in a relational DB. Now, let's up the ante and add yet
another service.

This time, it will be a Go microservice that uses a gRPC transport.

Talking to the World - APIs and Load Balancers Chapter 7

[196]

Providing and consuming an internal gRPC
API
The service we will implement in this section is called the news service. Its job is to keep
track of link events, such as link added or link updated, and return new events to users.

Defining the NewsManager interface
This interface exposes a single GetNews() method. Users may invoke it and receive a list of
link events from users they follow. Here is the Go interface and related structs. It doesn't
get much simpler: a single method with a request struct with username and token fields,
as well as a result struct. The resulting struct contains a list of Event structs with the
following information: EventType, Username, Url, and Timestamp:

type NewsManager interface {
 GetNews(request GetNewsRequest) (GetNewsResult, error)
}

type GetNewsRequest struct {
 Username string
 StartToken string
}

type Event struct {
 EventType EventTypeEnum
 Username string
 Url string
 Timestamp time.Time
}

type GetNewsResult struct {
 Events []*Event
 NextToken string
}

Implementing the news manager package
The implementation of the core logic service is in pkg/news_manager. Let's take a look at
the new_manager.go file. The NewsManager struct has an InMemoryNewsStore called
eventStore that implements the GetNews() method for the NewsManager interface. It
delegates the work of actually fetching the news to the store.

Talking to the World - APIs and Load Balancers Chapter 7

[197]

However, it is aware of pagination and takes care of converting the token from a string into
an integer to match the store preferences:

package news_manager

import (
 "errors"
 "github.com/the-gigi/delinkcious/pkg/link_manager_events"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
 "strconv"
 "time"
)

type NewsManager struct {
 eventStore *InMemoryNewsStore
}

func (m *NewsManager) GetNews(req om.GetNewsRequest) (resp
om.GetNewsResult, err error) {
 if req.Username == "" {
 err = errors.New("user name can't be empty")
 return
 }

 startIndex := 0
 if req.StartToken != "" {
 startIndex, err := strconv.Atoi(req.StartToken)
 if err != nil || startIndex < 0 {
 err = errors.New("invalid start token: " +
req.StartToken)
 return resp, err
 }
 }

 events, nextIndex, err := m.eventStore.GetNews(req.Username,
startIndex)
 if err != nil {
 return
 }

 resp.Events = events
 if nextIndex != -1 {
 resp.NextToken = strconv.Itoa(nextIndex)
 }

 return
}

Talking to the World - APIs and Load Balancers Chapter 7

[198]

The store is very basic and just keeps a map between usernames and all their events, as
follows:

package news_manager

import (
 "errors"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

const maxPageSize = 10

// User events are a map of username:userEvents
type userEvents map[string][]*om.Event

// InMemoryNewsStore manages a UserEvents data structure
type InMemoryNewsStore struct {
 userEvents userEvents
}

func NewInMemoryNewsStore() *InMemoryNewsStore {
 return &InMemoryNewsStore{userEvents{}}
}

The store implements its own GetNews() method (a different signature from the
interface method). It just returns the requested slice for the target user based on the start
index and the maximum page size:

func (m *InMemoryNewsStore) GetNews(username string, startIndex int)
(events []*om.Event, nextIndex int, err error) {
 userEvents := m.userEvents[username]
 if startIndex > len(userEvents) {
 err = errors.New("Index out of bounds")
 return
 }

 pageSize := len(userEvents) - startIndex
 if pageSize > maxPageSize {
 pageSize = maxPageSize
 nextIndex = startIndex + maxPageSize
 } else {
 nextIndex = -1
 }

 events = userEvents[startIndex : startIndex+pageSize]
 return
}

Talking to the World - APIs and Load Balancers Chapter 7

[199]

It also has a method for adding new events:

func (m *InMemoryNewsStore) AddEvent(username string, event *om.Event) (err
error) {
 if username == "" {
 err = errors.New("user name can't be empty")
 return
 }

 if event == nil {
 err = errors.New("event can't be nil")
 return
 }

 if m.userEvents[username] == nil {
 m.userEvents[username] = []*om.Event{}
 }

 m.userEvents[username] = append(m.userEvents[username], event)
 return
}

Now that we've implemented the core logic of storing and providing news to users, let's
look at how to expose this functionality as a gRPC service.

Exposing NewsManager as a gRPC service
Before diving into the gRPC implementation of the news service, let's see what all the fuss
is about. The gRPC is a collection of a wire protocol, payload format, conceptual
framework, and code generation facilities for interconnecting services and applications. It
originated in Google (hence the g in gRPC) and is a highly performant and mature RPC
framework. It has many things going for it, such as the following:

Cross-platform
Wide spread adoption by industry
Idiomatic client libraries for all relevant programming languages
Extremely efficient wire protocols
Google protocol buffers for strongly typed contracts
HTTP/2 support enables bi-directional streaming
Highly extensible (customize your own authentication, authorization, load
balancing, and health checking)
Excellent documentation

Talking to the World - APIs and Load Balancers Chapter 7

[200]

The bottom line is that for internal microservices, it is superior in almost every way to
HTTP-based REST APIs.

For Delinkcious, it's a great fit because Go-kit, which we selected as our microservice
framework, has great support for gRPC.

Defining the gRPC service contract
gRPC requires that you define a contract for your service in a special DSL inspired by
protocol buffers. It is pretty intuitive and lets gRPC generate a lot of boilerplate code for
you. I chose to locate the contract and the generated code in a separate top-level directory
called pb (common short name for protocol buffers) because different parts of the
generated code will be used by services and consumers. In these cases, it is often best to put
the shared code in a separate location and not arbitrarily throw it into the service or the
client.

Here is the pb/new-service/pb/news.proto file:

syntax = "proto3";
package pb;

import "google/protobuf/timestamp.proto";

service News {
 rpc GetNews(GetNewsRequest) returns (GetNewsResponse) {}
}

message GetNewsRequest {
 string username = 1;
 string startToken = 2;
}

enum EventType {
 LINK_ADDED = 0;
 LINK_UPDATED = 1;
 LINK_DELETED = 2;
}

message Event {
 EventType eventType = 1;
 string username = 2;
 string url = 3;
 google.protobuf.Timestamp timestamp = 4;
}

Talking to the World - APIs and Load Balancers Chapter 7

[201]

message GetNewsResponse {
 repeated Event events = 1;
 string nextToken = 2;
 string err = 3;
}

We don't need to go over the syntax and meaning of each and every line. The short version
is that requests and responses are always messages. Service-level errors need to be
embedded in the response message. Other errors, such as network or invalid payloads, will
be reported separately. One interesting tidbit is that, in addition to primitive data types and
embedded messages, you can use other high-level types, such as the
google.protobuf.Timestamp data type. This elevates the abstraction level significantly
and brings the benefits of strong typing for things such as dates and timestamps that you
always have to serialize and deserialize yourself when working with JSON over
HTTP/REST.

The service definition is cool, but we need some actual code to connect the dots. Let's see
how gRPC can help with this task.

Generating service stubs and client libraries with gRPC
The gRPC model is used to generate both service stubs and client libraries using a tool
called protoc. We need to generate both Go code for the news service itself and Python
code for the API gateway that consumes it.

You can generate news.pb.go by running the following command:

protoc --go_out=plugins=grpc:. news.proto

You can generate news_pb2.py and news_pb2_grpc.py by running the
following command:

python -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=.
news.proto

At this point, both the Go client code and Python client code can be used to call the news
service from Go code or from Python code.

Talking to the World - APIs and Load Balancers Chapter 7

[202]

Using Go-kit to build the NewsManager service
Here is the implementation of the service itself in news_service.go. It looks very similar
to an HTTP service. Let's dissect the important sections. First, it imports some libraries,
including the generated gRPC code in pb/news-service-pb, pkg/news_manager, and a
general gRPC library called google.golang.org/grpc. At the beginning of the Run()
function, it gets the service port to listen from the environment:

package service

import (
 "fmt"
 "github.com/the-gigi/delinkcious/pb/news_service/pb"
 nm "github.com/the-gigi/delinkcious/pkg/news_manager"
 "google.golang.org/grpc"
 "log"
 "net"
 "os"
)

func Run() {
 port := os.Getenv("PORT")
 if port == "" {
 port = "6060"
 }

Now, we need to create a standard TCP listener on the target port:

listener, err := net.Listen("tcp", ":"+port)
 if err != nil {
 log.Fatal(err)
 }

Furthermore, we have to connect to a NATS message queue service. We'll discuss this in
detail in the next section:

natsHostname := os.Getenv("NATS_CLUSTER_SERVICE_HOST")
 natsPort := os.Getenv("NATS_CLUSTER_SERVICE_PORT")

Here comes the main initialization code. It instantiates a new news manager, creates a new
gRPC server, creates a news manager object, and registers the news manager with the
gRPC server. The pb.RegisterNewsManager() method was generated by gRPC from the
news.proto file:

svc, err := nm.NewNewsManager(natsHostname, natsPort)
 if err != nil {
 log.Fatal(err)

Talking to the World - APIs and Load Balancers Chapter 7

[203]

 }

 gRPCServer := grpc.NewServer()
 newsServer := newNewsServer(svc)
 pb.RegisterNewsServer(gRPCServer, newsServer)

Finally, the gRPC server starts listening on the TCP listener:

fmt.Printf("News service is listening on port %s...\n", port)
 err = gRPCServer.Serve(listener)
 fmt.Println("Serve() failed", err)
}

Implementing the gRPC transport
The last piece of the puzzle is implementing the gRPC transport in the transport.go file.
It is similar, conceptually, to the HTTP transport, but there are a few details that are
different. Let's break it down so it's clear how all the pieces fit together.

First, all the relevant packages are imported, including the gRPC transport from go-kit.
Note that in news_service.go, there is no mention of go-kit anywhere. You can definitely
implement a gRPC service directly in Go with the general gRPC libraries. However, here,
go-kit will help make this much easier via its service and endpoints concepts:

package service

import (
 "context"
 "github.com/go-kit/kit/endpoint"
 grpctransport "github.com/go-kit/kit/transport/grpc"
 "github.com/golang/protobuf/ptypes/timestamp"
 "github.com/the-gigi/delinkcious/pb/news_service/pb"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

The newEvent() function is a helper that adopts om.Event from our abstract object model
to the gRPC-generated event object. The most important part is translating the event type
and the timestamp:

func newEvent(e *om.Event) (event *pb.Event) {
 event = &pb.Event{
 EventType: (pb.EventType)(e.EventType),
 Username: e.Username,
 Url: e.Url,
 }

Talking to the World - APIs and Load Balancers Chapter 7

[204]

 seconds := e.Timestamp.Unix()
 nanos := (int32(e.Timestamp.UnixNano() - 1e9*seconds))
 event.Timestamp = ×tamp.Timestamp{Seconds: seconds, Nanos:
nanos}
 return
}

Decoding the request and encoding the response is pretty trivial – there's no need to
serialize or deserialize any JSON code:

func decodeGetNewsRequest(_ context.Context, r interface{}) (interface{},
error) {
 request := r.(*pb.GetNewsRequest)
 return om.GetNewsRequest{
 Username: request.Username,
 StartToken: request.StartToken,
 }, nil
}

func encodeGetNewsResponse(_ context.Context, r interface{}) (interface{},
error) {
 return r, nil
}

Creating the endpoint is similar to the HTTP transport you've seen with other services. It
invokes the actual service implementation and then translates the response and handles
errors, if there are any:

func makeGetNewsEndpoint(svc om.NewsManager) endpoint.Endpoint {
 return func(_ context.Context, request interface{}) (interface{},
error) {
 req := request.(om.GetNewsRequest)
 r, err := svc.GetNews(req)
 res := &pb.GetNewsResponse{
 Events: []*pb.Event{},
 NextToken: r.NextToken,
 }
 if err != nil {
 res.Err = err.Error()
 }
 for _, e := range r.Events {
 event := newEvent(e)
 res.Events = append(res.Events, event)
 }
 return res, nil
 }
}

Talking to the World - APIs and Load Balancers Chapter 7

[205]

The handler implements the gRPC news interface from the code generated:

type handler struct {
 getNews grpctransport.Handler
}

func (s *handler) GetNews(ctx context.Context, r *pb.GetNewsRequest)
(*pb.GetNewsResponse, error) {
 _, resp, err := s.getNews.ServeGRPC(ctx, r)
 if err != nil {
 return nil, err
 }

 return resp.(*pb.GetNewsResponse), nil
}

The newNewsServer() function ties everything together. It returns a gRPC handler
wrapped in a Go-kit handler that hooks up the endpoint, the request decoder, and the
response encoder:

func newNewsServer(svc om.NewsManager) pb.NewsServer {
 return &handler{
 getNews: grpctransport.NewServer(
 makeGetNewsEndpoint(svc),
 decodeGetNewsRequest,
 encodeGetNewsResponse,
),
 }
}

This may seem very confusing, with all the layers and nested functions, but the bottom line
is that you have to write very little glue code (and can generate it, which is ideal) and end
up with a very clean, safe (strongly typed), and efficient gRPC service.

Now that we have a gRPC news service that can serve the news, let's see how we can feed it
the news.

Talking to the World - APIs and Load Balancers Chapter 7

[206]

Sending and receiving events via a message
queue
The news service needs to store link events for each user. The link service knows when
links are added, updated, or deleted by different users. One approach to solve this problem
is to add another API to the news service and have the link service invoke this API and
notify the news service for each relevant event. However, this approach creates a tight
coupling between the link service and the news service. The link service doesn't really care
about the news service since it doesn't need anything from it. Instead, let's go for a loosely-
coupled solution. The link service will just send events to a general-purpose message queue
service. Then, independently, the news service will subscribe to receive messages from that
messages queue. There are several benefits to this approach, as follows:

No need for more complicated service code
Fits perfectly with the interaction model of event notification
Easy to add additional listeners to the same events without changing the code

The terms that I used here, that is, message, event, and notification, are interchangeable. The
idea is that a source has some information to share with the world in a fire-and-forget way.

It doesn't need to know who is interested in the information (this could be nobody or
multiple listeners) and whether it was processed successfully. Delinkcious uses the NATS
messaging system for loosely coupled communication between services.

What is NATS?
NATS (https:// nats. io/) is an open source message queue service. It is a Cloud Native
Computing Foundation (CNCF) project that's implemented in Go and is considered one of
the top contenders when you need a message queue in Kubernetes. NATS supports
multiple models of message passing, such as the following:

Publish-subscribe
Request-reply
Queueing

NATS is very versatile and can be used for many use cases. It can also run in a highly
available cluster. For Delinkcious, we will use the publish-subscribe model. The following
diagram illustrates the pub-sub message passing model. A publisher publishes a message
and all the subscribers receive the same message:

https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/

Talking to the World - APIs and Load Balancers Chapter 7

[207]

Let's deploy NATS in our cluster.

Deploying NATS in the cluster
First, let's install the NATS operator (https:/ /github. com/ nats- io/nats- operator). The
NATS operator helps you to manage NATS clusters in Kubernetes. Here are the commands
to install it:

$ kubectl apply -f
https://github.com/nats-io/nats-operator/releases/download/v0.4.5/00-prereq
s.yaml
$ kubectl apply -f
https://github.com/nats-io/nats-operator/releases/download/v0.4.5/10-deploy
ment.yaml

The NATS operator provides a NatsCluster Custom Resource Definition (CRD) that we
will use to deploy NATS in our Kubernetes cluster. Don't get confused by this NATS cluster
within the Kubernetes cluster relationship. This is really nice since we can deploy the NATS
cluster just like built-in Kubernetes resources. Here is the YAML manifest that's available in
svc/shared/k8s/nats_cluster.yaml:

apiVersion: nats.io/v1alpha2
kind: NatsCluster
metadata:
 name: nats-cluster
spec:
 size: 1
 version: "1.3.0"

Let's deploy it using kubectl and verify that it was deployed properly:

$ kubectl apply -f nats_cluster.yaml
natscluster.nats.io "nats-cluster" configured

https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator
https://github.com/nats-io/nats-operator

Talking to the World - APIs and Load Balancers Chapter 7

[208]

$ kubectl get svc -l app=nats
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nats-cluster ClusterIP 10.102.48.27 <none> 4222/TCP 5d
nats-cluster-mgmt ClusterIP None <none>
6222/TCP,8222/TCP,7777/TCP 5d

This looks good. The nats-cluster service listening on port 4222 is the NATS server. The
other service is a management service. Let's send some events to the NATS server.

Sending link events with NATS
As you may recall, we defined a LinkManagerEvents interface in our object model:

type LinkManagerEvents interface {
 OnLinkAdded(username string, link *Link)
 OnLinkUpdated(username string, link *Link)
 OnLinkDeleted(username string, url string)
}

The LinkManager package receives this event link in its NewLinkManager() method:

func NewLinkManager(linkStore LinkStore,
 socialGraphManager om.SocialGraphManager,
 eventSink om.LinkManagerEvents,
 maxLinksPerUser int64) (om.LinkManager, error) {
 if linkStore == nil {
 return nil, errors.New("link store")
 }

 if eventSink != nil && socialGraphManager == nil {
 msg := "social graph manager can't be nil if event sink is
not nil"
 return nil, errors.New(msg)
 }

 return &LinkManager{
 linkStore: linkStore,
 socialGraphManager: socialGraphManager,
 eventSink: eventSink,
 maxLinksPerUser: maxLinksPerUser,
 }, nil
}

Talking to the World - APIs and Load Balancers Chapter 7

[209]

Later, when a link is added, updated, or deleted, LinkManager will call the corresponding
OnLinkXXX() method. For example, when AddLink() is called, the OnLinkAdded()
method is called on the sink for each follower:

if m.eventSink != nil {
 followers, err :=
m.socialGraphManager.GetFollowers(request.Username)
 if err != nil {
 return err
 }

 for follower := range followers {
 m.eventSink.OnLinkAdded(follower, link)
 }
 }

This is great, but how are these events going to get to the NATS server? That's where the
link service comes into the picture. When instantiating the LinkManager object, it will pass
a dedicated event sender object as the sink that implements LinkManagerEvents.
Whenever it receives an event such as OnLinkAdded() or OnLinkUpdated(), it publishes
the event to the NATS server on the link-events subject. It ignores the
OnLinkDeleted() event for now. This object lives in pkg/link_manager_events
package/sender.go:

package link_manager_events

import (
 "github.com/nats-io/go-nats"
 "log"

 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

type eventSender struct {
 hostname string
 nats *nats.EncodedConn
}

Here is the implementation of the OnLinkAdded(), OnLinkUpdated(), and
OnLinkDeleted() methods:

func (s *eventSender) OnLinkAdded(username string, link *om.Link) {
 err := s.nats.Publish(subject, Event{om.LinkAdded, username, link})
 if err != nil {
 log.Fatal(err)
 }

Talking to the World - APIs and Load Balancers Chapter 7

[210]

}

func (s *eventSender) OnLinkUpdated(username string, link *om.Link) {
 err := s.nats.Publish(subject, Event{om.LinkUpdated, username,
link})
 if err != nil {
 log.Fatal(err)
 }
}

func (s *eventSender) OnLinkDeleted(username string, url string) {
 // Ignore link delete events
}

The NewEventSender() factory function accepts the URL of the NATS service it will send
the events to and returns a LinkManagerEvents interface that can serve as a sink for
LinkManager:

func NewEventSender(url string) (om.LinkManagerEvents, error) {
 ec, err := connect(url)
 if err != nil {
 return nil, err
 }
 return &eventSender{hostname: url, nats: ec}, nil
}

Now, all the link service has to do is figure out the URL for the NATS server. Since the
NATS server runs as a Kubernetes service, its hostname and port are available through
environment variables, just like the Delinkcious microservices. The following is the relevant
code from the Run() function of the link service:

natsHostname := os.Getenv("NATS_CLUSTER_SERVICE_HOST")
 natsPort := os.Getenv("NATS_CLUSTER_SERVICE_PORT")

 var eventSink om.LinkManagerEvents
 if natsHostname != "" {
 natsUrl := natsHostname + ":" + natsPort
 eventSink, err = nats.NewEventSender(natsUrl)
 if err != nil {
 log.Fatal(err)
 }
 } else {
 eventSink = &EventSink{}
 }

 svc, err := lm.NewLinkManager(store, socialGraphClient, eventSink,
maxLinksPerUser)

Talking to the World - APIs and Load Balancers Chapter 7

[211]

 if err != nil {
 log.Fatal(err)
 }

At this point, whenever a new link is added or updated for a user, LinkManager will
invoke the OnLinkAdded() or OnLinkUpdated() method for each of the followers, which
will result in that event being sent to the NATS server on the link-events topic, where all
the subscribers will receive it and can handle it. The next step is for the news service to
subscribe to these events.

Subscribing to link events with NATS
The news service uses the Listen() function from
pkg/link_manager_events/listener.go. It accepts the NATS server URL and an event
sink that implements the LinkManagerEvents interface. It connects to the NATS server
and then subscribes to the link-events subject. This is the same subject that the event
sender is sending those events to:

package link_manager_events

import (
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

func Listen(url string, sink om.LinkManagerEvents) (err error) {
 conn, err := connect(url)
 if err != nil {
 return
 }

 conn.Subscribe(subject, func(e *Event) {
 switch e.EventType {
 case om.LinkAdded:
 {
 sink.OnLinkAdded(e.Username, e.Link)
 }
 case om.LinkUpdated:
 {
 sink.OnLinkAdded(e.Username, e.Link)
 }
 default:
 // Ignore other event types
 }
 })

Talking to the World - APIs and Load Balancers Chapter 7

[212]

 return
}

Now, let's look at the nats.go file that defines the link-events subject, as well as the
connect() function that's used by both the event sender and the Listen() function. The
connect function uses the go-nats client to establish a connection and then wraps it with a
JSON encoder, which allows it to send and receive Go structs that get serialized
automatically. This is pretty neat:

package link_manager_events

import "github.com/nats-io/go-nats"

const subject = "link-events"

func connect(url string) (encodedConn *nats.EncodedConn, err error) {
 conn, err := nats.Connect(url)
 if err != nil {
 return
 }

 encodedConn, err = nats.NewEncodedConn(conn, nats.JSON_ENCODER)
 return
}

The news service calls the Listen() function in its NewNewsManager() factory function.
First, it instantiates the news manager object that implements LinkManagerEvents. Then,
if composes a NATS server URL if a NATS hostname was provided and calls the
Listen() function, thereby passing the news manager object as the sink:

func NewNewsManager(natsHostname string, natsPort string) (om.NewsManager,
error) {
 nm := &NewsManager{eventStore: NewInMemoryNewsStore()}
 if natsHostname != "" {
 natsUrl := natsHostname + ":" + natsPort
 err := link_manager_events.Listen(natsUrl, nm)
 if err != nil {
 return nil, err
 }
 }

 return nm, nil
}

The next step is to do something with the incoming events.

Talking to the World - APIs and Load Balancers Chapter 7

[213]

Handling link events
The news manager was subscribed to link events by the NewNewsManager() function, and
the result is that those events will arrive as calls on OnLinkAdded() and
OnlinkUpdated() (delete link events are ignored). The news manager creates an Event
object that's defined in the abstract object model, populates it with EventType, Username,
Url, and Timestamp, and then calls the event store's AddEvent() function. Here is the
OnLinkAdded() method:

func (m *NewsManager) OnLinkAdded(username string, link *om.Link) {
 event := &om.Event{
 EventType: om.LinkAdded,
 Username: username,
 Url: link.Url,
 Timestamp: time.Now().UTC(),
 }
 m.eventStore.AddEvent(username, event)
}

Here is the OnLinkUpdated() method:

func (m *NewsManager) OnLinkUpdated(username string, link *om.Link) {
 event := &om.Event{
 EventType: om.LinkUpdated,
 Username: username,
 Url: link.Url,
 Timestamp: time.Now().UTC(),
 }
 m.eventStore.AddEvent(username, event)
}

Let's see what the store does in its AddEvent() method. It's pretty simple: the subscribed
user is located in the userEvents map. If they don't exist yet, then an empty entry is
created and the new event added. If the target user calls GetNews(), they'll receive the
events that have been collected for them:

func (m *InMemoryNewsStore) AddEvent(username string, event *om.Event) (err
error) {
 if username == "" {
 err = errors.New("user name can't be empty")
 return
 }
 if event == nil {
 err = errors.New("event can't be nil")
 return
 }

Talking to the World - APIs and Load Balancers Chapter 7

[214]

 if m.userEvents[username] == nil {
 m.userEvents[username] = []*om.Event{}
 }
 m.userEvents[username] = append(m.userEvents[username], event)
 return
}

That concludes our coverage of the news service and its interactions with the link manager
via the NATS service. This is an application of the command query responsibility
segregation (CQRS) pattern we discussed in Chapter 2, Getting Started with Microservices.
Here is what the Delinkcious system looks like now:

Now that we understand how events are handled in Delinkcious, let's take a quick look at
service meshes.

Understanding service meshes
A service mesh is another layer of management that's running in your cluster. We will look
into service meshes and Istio in particular in Chapter 13, Service Mesh – Working with Istio.
At this point, I just want to mention that a service mesh often takes the role of the ingress
controller too.

Talking to the World - APIs and Load Balancers Chapter 7

[215]

One of the primary reasons to use a service mesh for ingress is that the built-in ingress
resource, being very generic, is limited and suffers from multiple issues, such as the
following:

No good way to validate the rules
Ingress resources can conflict with one other
Working with specific ingress controllers is often complicated and requires
custom annotations

Summary
In this chapter, we accomplished many tasks and connected all the dots. In particular, we
implemented two microservices design patterns (API gateway and CQRS), added a whole
new service implemented in Python (including a split Docker base image), added a gRPC
service, added an open source message queue system (NATS) to our cluster and integrated
it with pub-sub message passing, and, finally, opened up our cluster to the world and
demonstrated end-to-end interaction by adding and fetching links from Delinkcious.

At this point, Delinkcious can be considered Alpha-grade software. It's functional, but not
even close to production ready. In the next chapter, we will start making Delinkcious more
robust by taking care of the most valuable commodity of any software system – the data.
Kubernetes provides many facilities for managing data and stateful services that we will
put to good use.

Further reading
You can refer to the following sources for more information regarding what was covered in
this chapter:

The Kubernetes service: https://kubernetes.io/docs/concepts/services-
networking/service/

Exposing your app as a service: https:/ /kubernetes. io/ docs/ tutorials/
kubernetes- basics/ expose/ expose- intro/

Building Oauth apps: https:/ /developer. github. com/ apps/ building- oauth-
apps/

High-performance gRPC: https:/ /grpc. io/
http://www. devx. com/ architect/ high- performance- services- with- grpc. html

NATS message broker: https:/ /nats. io/

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
http://www.devx.com/architect/high-performance-services-with-grpc.html
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/
https://nats.io/

8
Working with Stateful Services

So far, everything was fun and games. We built services, deployed them to Kubernetes, and
ran commands and queries against these services. We enabled Kubernetes to have those
services up and running by scheduling pods on deployment or if anything went wrong.
This works great for stateless services that can just run anywhere. In the real world,
distributed systems manage important data. If a database stores its data on the host
filesystem and that host goes down, you (or Kubernetes) can't just start a fresh instance of
the database on a new node because the data will be lost.

In general, you keep your data from getting lost by redundancy; you keep multiple copies,
store backups, utilize append-only logs, and more. Kubernetes assists by providing a whole
storage model with concepts and related resources, such as volumes, volume claims, and
StatefulSets.

In this chapter, we will dive deeper into the Kubernetes storage model. We will also extend
the Delinkcious news service to store its data in Redis instead of in memory. We will cover
the following topics:

Abstracting storage
Storing data outside your Kubernetes cluster
Storing data inside your Kubernetes cluster with StatefulSets
Achieving high performance with local storage
Using relational databases in Kubernetes
Using non-relational data stores in Kubernetes

Technical requirements
In this chapter, we will examine a number of Kubernetes manifests, work with different
storage options, and extend Delinkcious to support a new data store. There is no need to
install anything new.

Working with Stateful Services Chapter 8

[217]

The code
The code is split between two Git repositories, as follows:

You can find the code samples at https:/ /github. com/PacktPublishing/ Hands-
On-Microservices- with- Kubernetes/ tree/ master/ Chapter08

You can find the updated Delinkcious application at https:/ /github. com/the-
gigi/delinkcious/ releases/ tag/v0. 6

Abstracting storage
At its core, Kubernetes is an orchestration engine used for managing containerized
workloads. Note that, here, the keyword is containerized. Kubernetes doesn't care what the
workloads are as long as they are packaged in containers; it knows how to handle them.
Initially, Kubernetes only supported Docker images, and then, later, it added support for
other runtimes. Then, Kubernetes 1.5 introduced the Container Runtime Interface (CRI),
and gradually pushed the explicit support for other runtimes out of tree. Here, Kubernetes
no longer cared about which container runtime was actually deployed on the nodes and
just needed to work with the CRI.

A similar story unfolded with networking, where the Container Networking Interface
(CNI) was defined early. The life of Kubernetes was simple. It was left to different
networking solutions to provide their CNI plugins. Storage, however, was different (until it
wasn't). In the following subsections, we'll go over the Kubernetes storage model,
understand the differences between in-tree and out-of-tree storage plugins, and, finally,
learn about the Container Storage Interface (CSI), which provides a neat solution for
storage in Kubernetes.

The Kubernetes storage model
The Kubernetes storage model consists of several concepts: storage classes, volumes,
persistent volumes, and persistent volume claims. Let's examine how these concepts
interact to allow containerized workloads access to storage during execution.

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter08
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6
https://github.com/the-gigi/delinkcious/releases/tag/v0.6

Working with Stateful Services Chapter 8

[218]

Storage classes
The storage class is a way of describing the available types of storage that can be
provisioned. Often, there is a default storage class that is used when provisioning a volume
without specifying a particular storage class. Here is the standard storage class in
Minikube, which stores data on the host (that is, the hosting node):

$ kubectl get storageclass
NAME PROVISIONER AGE
standard (default) k8s.io/minikube-hostpath 65d

Different storage classes have different parameters tied to the actual backing storage.
Volume provisioners know how to use the parameters of their storage classes. The storage
class metadata includes the provisioner, as follows:

$ kubectl get storageclass -o jsonpath='{.items[0].provisioner}'
k8s.io/minikube-hostpath

Volumes, persistent volumes, and provisioning
A volume in Kubernetes has an explicit lifetime that coincides with its pod. When the pod
goes away, so does the storage. There are many types of volumes that are very useful.
We've already seen a few examples, such as ConfigMap and secret volumes. But there are
other volume types that are used for reading and writing.

You can take a look at the full list of volume types here: https:/ /
kubernetes. io/ docs/ concepts/ storage/ volumes/ #types- of-volumes.

Kubernetes also supports the concept of persistent volumes. These volumes must be
provisioned by system administrators, and they are not managed by Kubernetes itself.
When you want to store data persistently, then you use persistent volumes. Administrators
can statically provision persistent volumes ahead of time. The process involves
administrators provisioning external storage and creating a PersistentVolume
Kubernetes object that users can consume.

Dynamic provisioning is the process of creating volumes on the fly. Users request storage
and this is created dynamically. Dynamic provisioning depends on storage classes. Users
can specify a particular storage class, otherwise, the default storage class (if it exists) will be
used. All Kubernetes cloud providers support dynamic provisioning. Minikube supports it
too (the backing store is the localhost filesystem).

https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes

Working with Stateful Services Chapter 8

[219]

Persistent volume claims
So, the cluster administrator either provisions some persistent volumes or, alternatively, the
cluster supports dynamic provisioning. We can now claim some storage for our workload
by creating a persistent volume claim. But, first, it's important to understand the difference
between ephemeral and persistent storage. We'll create an ephemeral file in a pod, restart
the pod, and check that the file vanished. Then, we'll do the same thing again, but, this
time, write the file to the persistent storage and check that the file still exists once the pod is
restarted.

Before we start, let me share some convenient shell functions and aliases that I created in
order to quickly launch an interactive session in specific pods. A Kubernetes deployment
generates random pod names. For example, for the trouble deployment, the current pod
name is trouble-6785b4949b-84x22:

$ kubectl get po | grep trouble
trouble-6785b4949b-84x22 1/1 Running 1 2h

This is not a very memorable name, and it also changes whenever the pod is restarted
(automatically by the deployment). Unfortunately, the kubectl exec command requires
an exact pod name to run commands. I created a little shell function called
get_pod_name_by_label(), which returns a pod name based on a label. Since labels from
the pod template don't change, this is a good way to discover pod names. However, there
may be multiple pods from the same deployment with the same labels. We just need any
kind of pod, so we can simply pick the first. Here is the function, and I aliased it to kpn so
that it's easier to use:

get_pod_name_by_label ()
 {
 kubectl get po -l $1 -o custom-columns=NAME:.metadata.name | tail +2 |
uniq
 }

alias kpn='get_pod_name_by_label'

For example, the trouble deployment pods can have a label called run=trouble. Here is
how to find the actual pod name:

$ get_pod_name_by_label run=trouble
trouble-6785b4949b-84x22

Working with Stateful Services Chapter 8

[220]

Using this function, I created an alias called trouble, which launches an interactive bash
session in the trouble pod:

$ alias trouble='kubectl exec -it $(get_pod_name_by_label run=trouble)
bash'

Now, we can connect to the trouble pod and start working in it:

$ trouble
root@trouble-6785b4949b-84x22:/#

This was a long digression, but it's a very useful technique. Now, let's get back to our plan
and create an ephemeral file, as follows:

root@trouble-6785b4949b-84x22:/# echo "life is short" > life.txt
root@trouble-6785b4949b-84x22:/# cat life.txt
life is short

Now, let's kill the pod. The trouble deployment will schedule a new trouble pod, as
follows:

$ kubectl delete pod $(get_pod_name_by_label run=trouble)
pod "trouble-6785b4949b-84x22" deleted

$ get_pod_name_by_label run=trouble
trouble-6785b4949b-n6cmj

When we access the new pod, we discover that life.txt vanished as expected:

$ trouble
root@trouble-6785b4949b-n6cmj:/# cat life.txt
cat: life.txt: No such file or directory

That's understandable because it was stored in the filesystem of the container. The next step
is to have the trouble pod claim some persistent storage. Here is a persistent volume
claim that provisions one gibibyte dynamically:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: some-storage
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 volumeMode: Filesystem

Working with Stateful Services Chapter 8

[221]

Here is the YAML manifest for the entire trouble deployment that consumes this claim as
a volume and mounts it to the container:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: trouble
 labels:
 run: trouble
spec:
 replicas: 1
 selector:
 matchLabels:
 run: trouble
 template:
 metadata:
 labels:
 run: trouble
 spec:
 containers:
 - name: trouble
 image: g1g1/py-kube:0.2
 imagePullPolicy: Always
 command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
 volumeMounts:
 - name: keep-me
 mountPath: "/data"
 imagePullSecrets:
 - name: private-dockerhub
 volumes:
 - name: keep-me
 persistentVolumeClaim:
 claimName: some-storage

The keep-me volume is based on the some-storage persistent volume claim:

volumes:
- name: keep-me
 persistentVolumeClaim:
 claimName: some-storage

The volume is mounted to the /data directory inside the container:

volumeMounts:
- name: keep-me
 mountPath: "/data"

Working with Stateful Services Chapter 8

[222]

Now, let's write something to /data, as follows:

$ trouble
root@trouble-64554479d-tszlb:/# ls /data
root@trouble-64554479d-tszlb:/# cd /data/
root@trouble-64554479d-tszlb:/data# echo "to infinity and be-yond!" >
infinity.txt
root@trouble-64554479d-tszlb:/data# cat infinity.txt
to infinity and beyond!

The final state is to delete the pod and, when a new pod is created, verify whether
the infinity.txt file is still in /data:

$ kubectl delete pod trouble-64554479d-tszlb
pod "trouble-64554479d-tszlb" deleted

$ trouble
root@trouble-64554479d-mpl24:/# cat /data/infinity.txt
to infinity and beyond!

Yay, it works! A new pod was created and the persistent storage with the infinity.txt
file was mounted to the new container.

Persistent volumes can also be used to share information directly between multiple
instances of the same image because the same persistence storage will be mounted to all
containers using the same persistent storage claim.

In-tree and out-of-tree storage plugins
There are two types of storage plugins: in-tree and out-of-tree. In-tree means that these
storage plugins are part of Kubernetes itself. In the volume clause, you refer to them by
name. For example, here, a Google Compute Engine (GCE) persistent disk is configured by
name. Kubernetes explicitly knows that such a volume has fields such as pdName and
fsType:

volumes:
 - name: test-volume
 gcePersistentDisk:
 pdName: my-data-disk
 fsType: ext4

Working with Stateful Services Chapter 8

[223]

Take a look at the complete list of in-tree storage plugins at: https:/ /
kubernetes. io/ docs/ concepts/ storage/ persistent- volumes/ #types-
of-persistent- volumes.

There are several other specialized volume types, such as emptyDir, local, downwardAPI,
and hostPath, that you can read more about. The concept of in-tree plugins is somewhat
cumbersome. It bloats Kubernetes and requires changing Kubernetes itself whenever a
provider wants to improve their storage plugin or introduce a new one.

This is where out-of-tree plugins come into the picture. The idea is that Kubernetes defines
a standard storage interface and a standard way of providing plugins to implement the
interface in a running cluster. Then, it's the job of the cluster administrator to make sure
that the proper out-of-tree plugins are available.

There are two types of out-of-tree plugins that Kubernetes supports: FlexVolume and CSI.
FlexVolume is old and deprecated. I will not go into detail about FlexVolume, except to
recommend that you don't use it.

For more detail, you can refer to the following link: https:/ / kubernetes.
io/docs/ concepts/ storage/ volumes/ #flexVolume

The big star of storage is the CSI. Let's drill down and understand how CSI works and what
a huge improvement it is.

Understanding CSI
CSI was designed to address all the issues with in-tree plugins and the cumbersome aspects
of FlexVolume plugins. What makes CSI so enticing to storage providers is that it is not a
Kubernetes-only standard, but an industry-wide standard. It allows storage providers to
write a single driver for their storage solution and become immediately compatible with a
broad range of container orchestration platforms such as Docker, Cloud Foundry, Mesos,
and, of course, Kubernetes.

You can find the official specification at https:/ / github. com/ container-
storage- interface/ spec.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://kubernetes.io/docs/concepts/storage/volumes/#flexVolume
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec

Working with Stateful Services Chapter 8

[224]

The Kubernetes team provides three components that are sidecar containers and provide
generic CSI support for any CSI storage provider. These components are as follows:

Driver registrar
External provisioner
External attacher

Their job is to interface with the kubelet as well as the API server. The storage provider will
typically package these sidecar containers along with their storage driver implementation
in a single pod that can be deployed as a Kubernetes DaemonSet on all nodes.

Here is a diagram that demonstrates the interaction between all the pieces:

It is pretty complicated, but this complication is necessary to separate concerns, allow the
Kubernetes team to do a lot of the heavy lifting, and leave storage providers to focus on
their storage solution. As far as users and developers are concerned, this is all completely
transparent. They continue to interact with storage through the same Kubernetes storage
abstractions of storage classes, volumes, and persistent volume claims.

Working with Stateful Services Chapter 8

[225]

Standardizing on CSI
CSI is superior to in-tree plugins (and FlexVolume plugins). However, the current situation
of a hybrid, where you can use either in-tree plugins (or FlexVolume plugins) or CSI
plugins is suboptimal. The Kubernetes team has a detailed plan to migrate in-tree plugins
to CSI.

You can find out more about this detailed plan at https:/ /github. com/
kubernetes/ community/ blob/ master/ contributors/ design- proposals/
storage/ csi- migration. md.

Storing data outside your Kubernetes
cluster
Kubernetes is not a closed system. Workloads running inside a Kubernetes cluster can
access storage running outside the cluster. This is most appropriate when you migrate an
existing application that is already in storage, and configured and operated outside of
Kubernetes. In this case, it is a wise move to do it gradually. First, move the workloads to
run as containers managed by Kubernetes. These containers will be configured with
endpoints to data stores that live outside the cluster. Later, you can consider whether it is
worth the effort to bring this external storage into the fold.

There are some other use cases where it makes sense to use out-of-cluster storage, such as
the following:

Your storage cluster uses some exotic hardware, or the networking doesn't have
a mature in-tree or CSI plugin (hopefully, as CSI becomes the gold standard, this
will become rare).
You run Kubernetes through a cloud provider and it's going to be too expensive,
too risky, and/or too slow to migrate all the data.
Other applications in your organization use the same storage cluster and it is
often impractical and non-economical to migrate all the applications and systems
in your organization to Kubernetes.
Due to regulatory requirements, you must retain control of your data.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/csi-migration.md

Working with Stateful Services Chapter 8

[226]

There are several downsides to managing storage outside of Kubernetes:

Security (you need to provide network access from your workloads to a separate
storage cluster).
You must implement the scaling, availability, monitoring, and configuration of
your storage cluster.
When things change on the storage cluster side, you often need to make
corresponding configuration changes on the Kubernetes side.
You might suffer performance or latency overhead due to extra network hops
and/or authentication, authorization, or encryption.

Storing data inside your cluster with
StatefulSets
It's best to store data within your Kubernetes cluster. This provides a uniform one-stop
shop to manage your workloads and all the resources they depend on (excluding third-
party external services). Additionally, you get to integrate your storage with your
streamlined monitoring, which is very important. We will discuss monitoring in depth in a
future chapter. However, running out of disk space is the bane of many system
administrators. But there is a problem if you store data on a node and your data store pods
get rescheduled to a different node, and the data it expects to be available is not there. The
Kubernetes designers realized that the ephemeral pod philosophy doesn't work for storage.
You could try to manage it yourself using pod-node affinity and other mechanisms that
Kubernetes provides, but it's much better to use StatefulSet, which is a specific solution for
managing storage-aware services in Kubernetes.

Understanding a StatefulSet
At its core, a StatefulSet is a controller that manages a set of pods with some extra
properties, such as ordering and uniqueness. The StatefulSet allows its set of pods to be
deployed and scaled, while preserving their special properties. StatefulSets reached general
availability (GA) status in Kubernetes 1.9. You can think of a StatefulSet as a souped-up
deployment. Let's take a look at a sample StatefulSet for the user service, which uses a
relational PostgresDB as its data store:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: user-db

Working with Stateful Services Chapter 8

[227]

spec:
 selector:
 matchLabels:
 svc: user
 app: postgres
 serviceName: user-db
 replicas: 1
 template:
 metadata:
 labels:
 svc: user
 app: postgres
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: nginx
 image: postgres:11.1-alpine
 ports:
 - containerPort: 5432
 env:
 - name: POSTGRES_DB
 value: user_manager
 - name: POSTGRES_USER
 value: postgres
 - name: POSTGRES_PASSWORD
 value: postgres
 - name: PGDATA
 value: /data/user-db

 volumeMounts:
 - name: user-db
 mountPath: /data/user-db
 volumeClaimTemplates:
 - metadata:
 name: user-db
 spec:
 accessModes: ["ReadWriteOnce"]
 # storageClassName: <custom storage class>
 resources:
 requests:
 storage: 1Gi

There is a lot going on here, but it's all a composition of familiar concepts. Let's break it
down into its components.

Working with Stateful Services Chapter 8

[228]

StatefulSet components
The StatefulSet is comprised of three main parts, as follows:

StatefulSet metadata and definition: The StatefulSet metadata and definition are
pretty similar to a deployment. You have the standard API version, kind, and
metadata name; then, spec, which includes a selector for the pods (which must
match the pod template selectors that will come next), the number of replicas
(just one, in this case), and the major difference compared with a deployment,
that is, serviceName:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: user-db
spec:
 selector:
 matchLabels:
 svc: user
 app: postgres
 replicas: 1
 serviceName: user-db

A StatefulSet must have a headless service associated with the StatefulSet to
manage the network identity of the pods. The service name is user-db in this
case; here it is for completeness:

apiVersion: v1
kind: Service
metadata:
 name: user-db
spec:
 ports:
 - port: 5432
 clusterIP: None
 selector:
 svc: user
 app: postgres

Working with Stateful Services Chapter 8

[229]

A pod template: The next part is a standard pod template. The PGDATA
environment variable (/data/user-db), which tells postgres where to read and
write its data, must be the same as the mount path of the user-db volume
(/data/user-db) or a subdirectory. This is where we wire up the data store
with the underlying storage:

template:
 metadata:
 labels:
 svc: user
 app: postgres
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: nginx
 image: postgres:11.1-alpine
 ports:
 - containerPort: 5432
 env:
 - name: POSTGRES_DB
 value: user_manager
 - name: POSTGRES_USER
 value: postgres
 - name: POSTGRES_PASSWORD
 value: postgres
 - name: PGDATA
 value: /data/user-db
 volumeMounts:
 - name: user-db
 mountPath: /data/user-db

Volume claim templates: The last part is the volume claim templates. Note that
this is plural; some data stores may require multiple types of volumes (for
example, for logging or caching) that require their own persistent claims. In this
case, one persistent claim is enough:

volumeClaimTemplates:
- metadata:
 name: user-db
 spec:
 accessModes: ["ReadWriteOnce"]
 # storageClassName: <custom storage class>
 resources:
 requests:
 storage: 1Gi

Working with Stateful Services Chapter 8

[230]

Now is a good time to dive deeper and gain an understanding of the special properties of
StatefulSets and why they are important.

Pod identity
StatefulSet pods have a stable identity that includes the following triplet: a stable network
identity, an ordinal index, and stable storage. These always go together; the name of each
pod is <statefulset name>-<ordinal>.

The headless service associated with the StatefulSet provides the stable network identity.
The service DNS name will be as follows:

<service name>.<namespace>.svc.cluster.local

Each pod, X, will have a stable DNS name as follows:

<statefulset name>-<ordinal>.<service name>.<namespace>.svc.cluster.local

For example, the first pod of the user-db StatefulSet will be called the following:

user-db-0.user-db.default.svc.cluster.local

Additionally, StatefulSet pods automatically get assigned a label, as follows:

statefulset.kubernetes.io/pod-name=<pod-name>

Orderliness
Each pod in a StatefulSet gets an ordinal index. But, what is this for? Well, some data stores
rely on the orderly sequence of initialization. The StatefulSet ensures that when the
StatefulSet pods are initialized, scaled up, or scaled down, it is always done in order.

In Kubernetes 1.7, the orderliness restriction was relaxed. For data stores that don't require
orderliness, it makes sense to allow for parallel operations on multiple pods in the
StatefulSet. This can be specified in the podPolicy field. The values allowed are
OrderedReady for the default orderly behavior, or parallel for the relaxed parallel mode,
where pods can be launched or terminated while other pods are still launching or
terminating.

Working with Stateful Services Chapter 8

[231]

When should you use a StatefulSet?
You should use a StatefulSet when you manage your data store yourself in the cloud and
require good control over the storage your data store uses. The primary use case is for
distributed data stores, but a StatefulSet is useful even if your data store has just one
instance or pod. The stable pod identity with the stable attached storage is well worth it,
although orderliness, of course, is not required. If your data store is backed up by a shared
storage layer such as NFS, then a StatefulSet might not be necessary.

Additionally, this may be common sense, but if you don't manage the data store yourself,
then you don't need to worry about the storage layer and you don't need to define your
own StatefulSets. For example, if you run your system on AWS and use S3, RDS,
DynamoDB, and Redshift, then you don't really need a StatefulSet.

Comparing deployment and StatefulSets
Deployments are designed to manage any sets of pods. They can also be used to manage
the pods of a distributed data store. StatefulSets were specifically designed to support the
needs of distributed data stores. However, the special properties of ordering and
uniqueness are not always necessary. Let's compare deployments to StatefulSets and see for
ourselves:

Deployments don't have associated storage, whereas StatefulSets do.
Deployments have no associated service, whereas StatefulSets do.
Deployment pods have no DNS name, whereas StatefulSet pods do.
Deployments launch and terminate pods in any order, whereas StatefulSets
follow a prescribed order (by default).

I recommend that you stick to deployments unless your distributed data store requires the
special properties of StatefulSets. If you just need a stable identity, and not an ordered
launch and shutdown, then use podPolicy=Parallel.

Reviewing a large StatefulSet example
Cassandra (https:/ / cassandra. apache. org/) is an interesting distributed data store that I
have a lot of experience with. It is very powerful, but it requires a lot of knowledge to
operate properly and develop against. It is also a great use case for StatefulSets. Let's
quickly review Cassandra and learn how to deploy it in Kubernetes. Note that we will not
use Cassandra in Delinkcious.

https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/

Working with Stateful Services Chapter 8

[232]

A quick introduction to Cassandra
Cassandra is an Apache open source project. It's a columnar data store and is very well
suited for managing time series data. I've used it to collect and manage data from a
network of thousands of air quality sensors for more than three years.

Cassandra has an interesting modeling approach, but, here, we care about storage.
Cassandra is highly available, linearly scalable, and very reliable (no SPOF) via
redundancy. Cassandra nodes share responsibility for the data (which is partitioned
through the distributed hash table, or DHT). Multiple copies of the data are spread across
multiple nodes (this is typically three or five).

In this way, if a Cassandra node goes down, then there are two other nodes that have the
same data and can respond to queries. All nodes are the same; there are no masters and no
slaves. The nodes constantly chat with each other through a gossip protocol and, when new
nodes join the cluster, Cassandra redistributes the data among all the nodes. Here is a
diagram that shows how data is distributed across the Cassandra cluster:

You can think of the nodes as a ring and the DHT algorithm hashes each wide row (the unit
of work) and assigns it to the N nodes (depending on the replication factor of the cluster).
With that kind of precise placement of individual rows in specific nodes, you can see how
the stable identity and, potentially, the ordering properties of a StatefulSet can come in
handy.

Let's explore what it takes to deploy a Cassandra cluster as a StatefulSet in Kubernetes.

Working with Stateful Services Chapter 8

[233]

Deploying Cassandra on Kubernetes using StatefulSets
Here is a truncated version that includes the parts we should focus on.

The first part includes apiVersion, kind, metadata, and spec, as we've seen before. The
name is cassandra, and the label is app: cassandra. In spec, the serviceName name is
also cassandra, and there are three replicas:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: cassandra
 labels:
 app: cassandra
 spec:
 serviceName: cassandra
 replicas: 3
 selector:
 matchLabels:
 app: cassandra

The pod template has a matching label of app: cassandra. The container is named
cassandra, too, and uses a Google sample image with the always pull policy.
Here, terminationGraceInSeconds is set to 1,800 seconds (that is, 30 minutes). That's the
time that the StatefulSet will allow the pod to try and recover if it becomes unresponsive.
Cassandra has a lot of redundancy built in, so it's okay to let a node attempt recovery for 30
minutes. I removed a lot of ports, environment variables, and readiness checks (the
ellipses). The volume mount is called cassandra-data, and its path is /cassandra_data.
That's where Cassandra stores its data files:

template:
 metadata:
 labels:
 app: cassandra
 spec:
 terminationGracePeriodSeconds: 1800
 containers:
 - name: cassandra
 image: gcr.io/google-samples/cassandra:v13
 imagePullPolicy: Always
 ...
 volumeMounts:
 - name: cassandra-data
 mountPath: /cassandra_data

Working with Stateful Services Chapter 8

[234]

Finally, the volume claim template defines the persistent storage that matches the volume
mounted in the container with the name cassandra-data. The storage class, fast, is not
shown here, but it is typically local storage on the same node that runs the Cassandra pod.
The storage size is one gibibyte:

volumeClaimTemplates:
- metadata:
 name: cassandra-data
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: fast
 resources:
 requests:
 storage: 1Gi

This should all look very familiar to you at this point. However, there's more successful
Cassandra deployment to discover. If you recall, Cassandra has no master; Cassandra
nodes talk to each other constantly using the gossip protocol.

But how do Cassandra nodes find each other? Enter the seed provider; whenever a new
node is added to the cluster, it is configured with the IP addresses of some seed nodes (in
this case, 10.0.0.1, 10.0.0.2, and 10.0.0.3). It starts exchanging messages with these
seed nodes, which inform the new node of other Cassandra nodes in the cluster, as well as
notifying all the other existing nodes that a new node has joined the cluster. In this way,
each node in the cluster can very quickly know about every other node in the cluster.

Here is a section from a typical Kubernetes config file (cassandra.yaml) that defines the
seed provider. In this case, it's just a simple list of IP addresses:

seed_provider:
 - class_name: SEED_PROVIDER
 parameters:
 # seeds is actually a comma-delimited list of addresses.
 # Ex: "<ip1>,<ip2>,<ip3>"
 - seeds: "10.0.0.1,10.0.0.2,10.0.0.3,"

The seed provider can be a custom class, too. This is a very nice extensible design. In
Kubernetes, it is necessary because the original seed nodes may be moved around and get
new IP addresses.

To address this, there is a custom KubernetesSeedProvider class that talks to the
Kubernetes API server and can always return the IP addresses of the seed nodes at the time
of the query. Cassandra is implemented in Java, and so is the custom seed provider that
implements the SeedProvider Java interface.

Working with Stateful Services Chapter 8

[235]

We're not going to dissect this code in detail. The main thing to note is that it interfaces
with a native Go library called cassandra-seed.so, and then it uses it to get the
Kubernetes endpoints of the Cassandra service:

package io.k8s.cassandra;

import java.io.IOException;
import java.net.InetAddress;
import java.util.Collections;
import java.util.List;
import java.util.Map;

...

 /**
 * Create new seed provider
 *
 * @param params
 */
 public KubernetesSeedProvider(Map<String, String> params) {
 }

...
 }
 }

private static String getEnvOrDefault(String var, String def) {
 String val = System.getenv(var);
...
 static class Endpoints {
 public List<InetAddress> ips;
 }
 }

The complete source code can be found at https:/ /github. com/
kubernetes/ examples/ blob/master/ cassandra/ java/ src/ main/ java/ io/
k8s/cassandra/ KubernetesSeedProvider. java.

That's the magic that connects Cassandra to Kubernetes and allows them to work together.
Now that we've seen how a complicated distributed data store can be deployed in
Cassandra, let's take a look at local storage, which graduated to GA in Kubernetes 1.14.

https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java
https://github.com/kubernetes/examples/blob/master/cassandra/java/src/main/java/io/k8s/cassandra/KubernetesSeedProvider.java

Working with Stateful Services Chapter 8

[236]

Achieving high performance with local
storage
Let's now discuss the affinity between compute and storage. There is an interesting
relationship between speed, capacity, persistence, and cost. When your data lives near your
processor, you can start working on it immediately, as opposed to fetching it over the
network. That's the promise of local storage.

There are two primary ways to store your data locally: in memory and on local drives.
However, there are nuances; memory is the fastest, SSD drives are about 4 times slower
than memory, and spinning disks are roughly 20 times slower than SSD drives (https:/ /
gist.github.com/ jboner/ 2841832).

Let's consider both of these following options:

Storing your data in memory
Storing your data on a local SSD

Storing your data in memory
The highest performance, as far as read and write latency and throughput is concerned, is
when you keep your data in memory. There are different memory types and caches, but the
bottom line is that memory is super fast. However, memory has significant downsides too,
such as the following:

A node has much more limited memory compared to disks (that is, it requires
more machines to store the same amount of data).
Memory is very expensive.
Memory is ephemeral.

There are some use cases where you require your entire dataset in memory. In these cases,
either the dataset is very small, or you can split it across multiple machines. If the data is
important and can't be easily generated, then you can address the ephemeral nature of
memory in the following two ways:

Keep a persistent copy.
Redundancy (that is, keep data in memory across multiple machines and
potentially geodistributed).

https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832

Working with Stateful Services Chapter 8

[237]

Storing your data on a local SSD
A local SSD is not as fast as memory, but it is very fast. Of course, you can always combine
in-memory caching too (any respectable data store will use memory caching to its
advantage). Using an SSD is appropriate when you require fast performance, but your
working set doesn't fit in memory or, alternatively, you don't want to pay the premium of
large memory when you can get by with a much cheaper, yet still very fast, SSD. For
example, Cassandra recommends using local SSD storage as the backing store for its data.

Using relational databases in Kubernetes
So far, we've used a relational database in all our services, but, as we will soon discover, we
didn't have real persistence. First, we'll look at where the data is stored, and then we'll
explore how durable it is. Finally, we'll migrate one of the databases to use a StatefulSet for
proper persistence and durability.

Understanding where the data is stored
For PostgreSQL, there is a data directory; this directory can be set using the PGDATA
environment variable. By default, it is set to /var/lib/postgresql/data:

$ kubectl exec -it link-db-6b9b64db5-zp59g env | grep PGDATA
PGDATA=/var/lib/postgresql/data

Let's take a look at what this directory contains:

$ kubectl exec -it link-db-6b9b64db5-zp59g ls /var/lib/postgresql/data
PG_VERSION pg_multixact pg_tblspc
base pg_notify pg_twophase
global pg_replslot pg_wal
pg_commit_ts pg_serial pg_xact
pg_dynshmem pg_snapshots post-gresql.auto.conf
pg_hba.conf pg_stat postgresql.conf
pg_ident.conf pg_stat_tmp postmaster.opts
pg_logical pg_subtrans postmaster.pid

However, the data directory can be ephemeral or persistent depending on how it was
mounted to the container.

Working with Stateful Services Chapter 8

[238]

Using a deployment and service
With a service fronting your database pods, you can easily access the data. When a
database pod is killed, it will be restarted by the deployment. However, since the pod can
be scheduled on a different node, it is up to you to make sure that it has access to the
storage where the actual data is. Otherwise, it will just start empty and you'll lose all the
data. This is a development-only setup, and how most Delinkcious services keep their
data – by running a PostgresDB container that is only as persistent as its pod. It turns out
that the data is stored in the Docker container itself running inside the pod.

In Minikube, I can inspect the Docker container directly by first SSH-ing into the node,
finding the ID of the postgres container, and then inspecting it (that is, only if the relevant
information is displayed):

$ minikube ssh
_ _
_ _ () ()
___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ` _ `\| |/' _ `\| || , < () ()| '_`\ /'__`\
| () () || || () || || |\`\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)`___/'(_,__/'`____)

$ docker ps -f name=k8s_postgres_link-db -q
409d4a52a7f5

$ docker inspect -f "{{json .Mounts}}" 409d4a52a7f5 | jq .[1]
{
"Type": "volume",
"Name": "f9d090d6defba28f0c0bfac8ab7935d189332478d0bf03def6175f5c0a2e93d7",
 "Source":
"/var/lib/docker/volumes/f9d090d6defba28f0c0bfac8ab7935d189332478d0bf03def6
175f5c0a2e93d7/_data",
"Destination": "/var/lib/postgresql/data",
"Driver": "local",
"Mode": "",
"RW": true,
"Propagation": ""
}

This means that, if the container goes away (for example, if we upgrade to a new version)
and certainly if the node goes away, then all our data disappears.

Working with Stateful Services Chapter 8

[239]

Using a StatefulSet
With a StatefulSet, the situation is different. The data directory is mounted to the container,
but the storage itself is managed externally. As long as the external storage is reliable and
redundant, our data is safe, regardless of what happens to specific containers, pods, and
nodes. We've previously mentioned how to define a StatefulSet for the user database using
a headless service. However, consuming the storage of the StatefulSet can be a little
challenging. The headless service attached to a StatefulSet has no cluster IP. So, how would
the user service connect to its database? Well, we will have to help it.

Helping the user service locate StatefulSet pods
The headless user-db service has no cluster IP, as follows:

$ kubectl get svc user-db
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
user-db ClusterIP None <none> 5432/TCP 4d

However, it does have endpoints, which are the IP addresses in the cluster of all the pods
that back the service:

$ kubectl get endpoints user-db
NAME ENDPOINTS AGE
user-db 172.17.0.25:5432 4d

This is a good option; endpoints are not exposed through environment variables, such as a
service with a cluster IP (<service name>_SERVICE_HOST and <service
name>_SERVICE_PORT). So, for a service to find the endpoints of a headless service, they'll
have to query the Kubernetes API directly. While that's possible, it adds unnecessary
coupling between the service and Kubernetes. We won't be able to run the service outside
of Kubernetes for testing because it relies on the Kubernetes API. However, we can trick the
user service and populate USER_DB_SERVICE_HOST and USER_DB_SERVICE_PORT using a
config map.

The idea is that StatefulSet pods have a stable DNS name. For the user database, there is
one pod whose DNS name is user-db-0.user-db.default.svc.cluster.local.
Inside the troubleshooter container shell, we can verify that the DNS name indeed resolves
to the user database endpoint, 172.17.0.25, by running the dig command:

root@trouble-64554479d-zclxc:/# dig +short us-er-db-0.user-
db.default.svc.cluster.local
172.17.0.25

Working with Stateful Services Chapter 8

[240]

Now, we can take this stable DNS name and assign it to USER_DB_SERVICE_HOST in a
config map for the user-manager service:

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-manager-config
 namespace: default
data:
 USER_DB_SERVICE_HOST: "us-er-db-0.user-db.default.svc.cluster.local"
 USER_DB_SERVICE_PORT: "5432"

Once this config map is applied, the user service will be able to locate the user database pod
of the StatefulSet through the environment variables. Here is the code that uses these
environment variables from pkg/db_util/db_util.go:

func GetDbEndpoint(dbName string) (host string, port int, err error) {
 hostEnvVar := strings.ToUpper(dbName) + "_DB_SERVICE_HOST"
 host = os.Getenv(hostEnvVar)
 if host == "" {
 host = "localhost"
 }

portEnvVar := strings.ToUpper(dbName) + "_DB_SERVICE_PORT"
 dbPort := os.Getenv(portEnvVar)
 if dbPort == "" {
 dbPort = "5432"
 }

port, err = strconv.Atoi(dbPort)
 return
 }

The user service calls it in its Run() function to initialize its database store:

func Run() {
 dbHost, dbPort, err := db_util.GetDbEndpoint("user")
 if err != nil {
 log.Fatal(err)
 }

store, err := sgm.NewDbUserStore(dbHost, dbPort, "postgres", "postgres")
 if err != nil {
 log.Fatal(err)
 }
 ...
 }

Working with Stateful Services Chapter 8

[241]

Now, let's take a look at how to address the problem of managing schema changes.

Managing schema changes
One of the most challenging topics when working with relational databases is managing
the SQL schema. When the schema changes, the change may be backward compatible (by
adding a column) or non-backward compatible (by splitting a table into two separate
tables). When the schema changes, we need to migrate our database, but also migrate the
code that is affected by the schema change.

If you can afford a short downtime, then the process can be very simple, as follows:

Shut down all the impacted services and perform DB migration.1.
Deploy a new code that knows how to work with the new schema.2.
Everything just works.3.

However, if you need to keep the system running, you'll have to go through a more
complicated process by breaking the schema change into multiple backward-compatible
changes, including corresponding code changes.

For example, when splitting a table into two tables, the following process can be performed:

Keep the original table.1.
Add the two new tables.2.
Deploy code that writes both to the old table and the new tables and can read3.
from all of the tables.
Migrate all the data from the old table to the new tables.4.
Deploy a code change that reads only from the new tables (which have all the5.
data now).
Delete the old table.6.

Relational databases are very useful; however, sometimes, the correct solution is a non-
relational data store.

Working with Stateful Services Chapter 8

[242]

Using non-relational data stores in
Kubernetes
Kubernetes and StatefulSets are not limited or even geared toward relational data stores.
Non-relational (also known as NoSQL) data stores are very useful for many use cases. One
of the most versatile and popular in-memory data stores is Redis. Let's get to know Redis
and examine how to migrate the Delinkcious news service to use Redis instead of storing
events in ephemeral memory.

An introduction to Redis
Redis is often described as a data structure server. Since it keeps the entire data store in
memory, it can perform many advanced operations on the data efficiently. The price you
pay, of course, is that you have to keep all of the data in memory. This is possible only for
small datasets and, even then, it's expensive. If you don't access most of your data, keeping
it in memory is a huge waste. Redis can be used as a fast, distributed cache for hot data; so,
even if you can't use it as a distributed cache for your entire dataset in memory, you can
still use Redis for the hot data (which is frequently used). Redis also supports clusters
where the data is shared across multiple nodes, so it's able to handle very large datasets too.
Redis has an impressive list of features, including the following:

It provides multiple data structures such as lists, hashes, sets, sorted sets,
bitmaps, streams, and geospatial indexes.
It provides atomic operations on many data structures.
It supports transactions.
It supports auto-eviction with TTL.
It supports LRU eviction.
It enables pub/sub.
It allows optional persistence to the disk.
It allows optional appending of operations to the journal.
It provides Lua scripting.

Now, let's take a look at how Delinkcious uses Redis.

Working with Stateful Services Chapter 8

[243]

Persisting events in the news service
The news service provisions a Redis instance as a StatefulSet, as follows:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: news-manager-redis
spec:
 serviceName: news-manager-redis
 replicas: 1
 selector:
 matchLabels:
 app: redis
 svc: news-manager
 template:
 metadata:
 labels:
 app: redis
 svc: news-manager
 spec:
 containers:
 - name: redis-primary
 image: redis:5.0.3-alpine
 imagePullPolicy: Always
 ports:
 - containerPort: 6379
 name: redis
 volumeMounts:
 - name: news-manager-redis
 mountPath: /data
 volumeClaimTemplates:
 - metadata:
 name: news-manager-redis
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

It is supported by a headless service:

apiVersion: v1
kind: Service
metadata:
 name: news-manager-redis
 labels:
 app: redis

Working with Stateful Services Chapter 8

[244]

 svc: news-manager
spec:
 selector:
 app: redis
 svc: news-manager
 type: None
 ports:
 - port: 6379
 name: redis

We can use the same trick of injecting the DNS name of the Redis pod through environment
variables using a config map:

apiVersion: v1
kind: ConfigMap
metadata:
 name: news-manager-config
 namespace: default
data:
 PORT: "6060"
 NEWS_MANAGER_REDIS_SERVICE_HOST: "news-manager-redis-0.news-manager-
redis.default.svc.cluster.local"
 USER_DB_SERVICE_PORT: "6379"

With the provisioning out of the way, let's take a look at how the code is accessing Redis. In
the Run() function of the news service, if the environment variables for Redis are not
empty, then it will create a new Redis store:

redisHostname := os.Getenv("NEWS_MANAGER_REDIS_SERVICE_HOST")
redisPort := os.Getenv("NEWS_MANAGER_REDIS_SERVICE_PORT")

var store nm.Store
if redisHostname == "" {
store = nm.NewInMemoryNewsStore()
} else {
address := fmt.Sprintf("%s:%s", redisHostname, redisPort)
store, err = nm.NewRedisNewsStore(address)
if err != nil {
log.Fatal(err)
}
}

Working with Stateful Services Chapter 8

[245]

The NewRedisNewStore() function is defined in
pkg/new_manager/redis_news_store. It creates a new Redis client (from the go-redis
library). It also calls the client's Ping() method to ensure that Redis is up and running and
is reachable:

package news_manager

import (
 "github.com/go-redis/redis"
 "github.com/pelletier/go-toml"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

// RedisNewsStore manages a UserEvents data structure
 type RedisNewsStore struct {
 redis *redis.Client
 }

func NewRedisNewsStore(address string) (store Store, err error) {
 client := redis.NewClient(&redis.Options{
 Addr: address,
 Password: "", // use empty password for simplicity. should come from a
secret in production
 DB: 0, // use default DB
 })

_, err = client.Ping().Result()
 if err != nil {
 return
 }

store = &RedisNewsStore{redis: client}
 return
 }

RedisNewsStore stores the events in a Redis list, which is serialized to TOML. This is all
implemented in AddEvent(), as follows:

func (m *RedisNewsStore) AddEvent(username string, event *om.Event) (err
error) {
 t, err := toml.Marshal(*event)
 if err != nil {
 return
 }
err = m.redis.RPush(username, t).Err()
 return
 }

Working with Stateful Services Chapter 8

[246]

RedisNewsStore implements the GetNews() method to fetch events in order. First, it
calculates the start and end indexes to query the event list based on the starting index and
the maximum page size. Then, it gets the results, which are serialized to TOML,
unmarshals them into the om.Event struct, and appends them to the result list of events.
Finally, it computes the next index to fetch (-1 if there are no more events):

const redisMaxPageSize = 10

func (m *RedisNewsStore) GetNews(username string, startIndex int) (events
[]*om.Event, nextIndex int, err error) {
 stop := startIndex + redisMaxPageSize - 1
 result, err := m.redis.LRange(username, int64(startIndex),
int64(stop)).Result()
 if err != nil {
 return
 }

for _, t := range result {
 var event om.Event
 err = toml.Unmarshal([]byte(t), &event)
 if err != nil {
 return
 }

events = append(events, &event)
 }

if len(result) == redisMaxPageSize {
 nextIndex = stop + 1
 } else {
 nextIndex = -1
 }

return
 }

At this point, you should have a good grasp of a non-relational data store, including when
to use them and how to integrate Redis as a data store for your services.

Working with Stateful Services Chapter 8

[247]

Summary
In this chapter, we dealt with the very important topic of storage and real-world data
persistence. We learned about the Kubernetes storage model, the common storage interface,
and StatefulSets. Then, we discussed how to manage relational and non-relational data in
Kubernetes and migrated several Delinkcious services to use proper persistent storage
through StatefulSets, including how to provide data store endpoints for StatefulSet pods.
Finally, we implemented a non-ephemeral data store for the news service using Redis. At
this point, you should have a clear idea of how Kubernetes manages storage and is able to
choose the proper data stores for your system, as well as integrate them into your
Kubernetes cluster and with your services.

In the next chapter, we will explore the exciting domain of serverless computing. We'll
consider when the serverless model is useful, discuss current solutions for Kubernetes, and
extend Delinkcious with some serverless tasks.

Further reading
You can refer to the following references for more information:

CSI: https:/ /medium. com/ google- cloud/ understanding- the-container-
storage- interface- csi- ddbeb966a3b

StatefulSet: https:/ / kubernetes. io/ docs/ concepts/ workloads/ controllers/
statefulset/

Cassandra: https:/ /cassandra. apache. org/

Redis: http:/ /redis. io/

Latency numbers every programmer should know: https:/ /gist. github. com/
jboner/2841832

https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
http://redis.io/
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832

9
Running Serverless Tasks on

Kubernetes
In this chapter, we will dive into one of the hottest trends in cloud-native systems:
serverless computing (also known as Function as a Service, or FaaS). We will explain what
serverless means (spoiler alert: it means more than one thing) and how it compares to
microservices. We will implement and deploy a cool new feature for Delinkcious, known as
link checking, using the Nuclio serverless framework. Finally, we'll briefly cover other
ways to do serverless computing in Kubernetes.

The following topics will be covered in this chapter:

Serverless in the cloud
Link checking with Delinkcious
Serverless link checking with Nuclio

Technical requirements
In this chapter, we'll install a serverless framework called Nuclio. First, let's create a
dedicated namespace as follows:

$ kubectl create namespace nuclio

Running Serverless Tasks on Kubernetes Chapter 9

[249]

This is a good security practice because Nuclio will not interfere with the rest of your
cluster. Next, we'll apply some role-based access control (RBAC) permissions. If you take a
look at the file (you should always check Kubernetes manifests before running them on
your cluster), you'll see that most of the permissions are limited to the Nuclio namespace
and there are a few cluster-wide permissions regarding custom resource definitions
(CRDs) that Nuclio itself creates; this is an excellent hygiene:

$ kubectl apply -f
https://raw.githubusercontent.com/nuclio/nuclio/master/hack/k8s/resources/n
uclio-rbac.yaml

Let's now deploy Nuclio itself; it creates a few CRDs, and deploys a controller and a
dashboard service. This is very economical and straightforward, as follows:

$ kubectl apply -f
https://raw.githubusercontent.com/nuclio/nuclio/master/hack/k8s/resources/n
uclio.yaml

Now, let's verify the installation by checking that the controller and the dashboard pods are
running successfully:

$ kubectl get pods --namespace nuclio
 NAME READY STATUS RESTARTS AGE
 nuclio-controller-556774b65-mtvmm 1/1 Running 0 22m
 nuclio-dashboard-67ff7bb6d4-czvxp 1/1 Running 0 22m

The dashboard is nice, but it is more appropriate for ad hoc exploration. For more serious
production use, it is better to use the nuctl CLI. The next step is to download and install
nuctl from https:/ /github. com/ nuclio/ nuclio/ releases.

Then, copy the executable to your path to create symlink nuctl, as follows:

$ cd /usr/local/bin
$ curl -LO
https://github.com/nuclio/nuclio/releases/download/1.1.2/nuctl-1.1.2-darwin
-amd64
$ ln -s nuctl-1.1.2-darwin-amd64 nuctl

https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases
https://github.com/nuclio/nuclio/releases

Running Serverless Tasks on Kubernetes Chapter 9

[250]

Finally, let's create an image pull secret so that Nuclio can deploy functions to our cluster:

$ kubectl create secret docker-registry registry-credentials -n nuclio \
 --docker-username g1g1 \
 --docker-password $DOCKERHUB_PASSWORD \
 --docker-server registry.hub.docker.com \
 --docker-email the.gigi@gmail.com

secret "registry-credentials" created

You can also use other registries with the proper credentials; in Minikube, you can even use
a local registry. However, we'll use the Docker Hub registry for consistency.

The code
The code is split between two Git repositories, as follows:

You can find the code samples at https:/ /github. com/PacktPublishing/ Hands-
On-Microservices- with- Kubernetes/ tree/ master/ Chapter09

You can find the updated Delinkcious application at https:/ /github. com/the-
gigi/delinkcious/ releases/ tag/v0. 7

Serverless in the cloud
People have two different definitions for serverless in the cloud, especially in the context of
Kubernetes. The first meaning is that you don't have to manage the nodes for your cluster.
Some good examples of this concept include AWS Fargate (https:/ /aws. amazon. com/
fargate/) and Azure Container Instances (ACI) (https:/ / azure. microsoft. com/ en-us/
services/container- instances/). The second meaning of serverless is that your code is
not deployed as a long-running service, but is packaged as a function that can be invoked
or triggered in different ways on demand. Some good examples of this concept include
AWS Lambda, and Google Cloud Functions.

Let's understand the commonalities and differences between services and serverless
functions.

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter09
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://github.com/the-gigi/delinkcious/releases/tag/v0.7
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/

Running Serverless Tasks on Kubernetes Chapter 9

[251]

Microservices and serverless functions
The same code can often run either as a microservice or as a serverless function. The
difference is mostly operational. Let's compare the operational attributes of microservices
and serverless functions, as follows:

Microservices Serverless functions
• Always running (it can scale down to at least one).
• Can expose multiple endpoints (such as HTTP and
gRPC).
• Requires that you implement the request handling and
routing yourself.
• Can listen to events.
• Service instances can maintain in-memory caches,
long-term connections, and sessions.
• In Kubernetes, microservices are represented directly
by the service object.

• Runs on demand (theoretically; it can scale down to zero).
• Exposes a single endpoint (usually HTTP).
• Can be triggered by events or get an automatic endpoint.
• Often has severe limitations on resource usage and
maximum runtime.
• Sometimes, it might have a cold start (that is, when scaling
up from zero).
• In Kubernetes, there is no native serverless function
concept (Jobs and CronJobs come close).

This should provide you with some relatively good guidance on when to use microservices
and when to use serverless functions. A microservice is the right choice in the following
cases:

Your workload needs to run non-stop, or almost non-stop.
Each request runs for a long time and can't be supported by serverless function
limitations.
The workload uses a local state between invocations that can't be easily moved to
an external data store.

However, if you have workloads that run infrequently for a relatively short time, then you
may prefer to use a serverless function.

There are a few other engineering considerations to bear in mind. For example, services are
more familiar and often have various support libraries. Developers may be more
comfortable with services and prefer to have a single paradigm for deploying code to your
system. In particular, in Kubernetes, there is a large selection of serverless functions options
and it can be difficult to choose the right one. On the other hand, serverless functions often
support agile and lightweight deployment models, where developers can just put some
code together and it magically starts running on the cluster because the serverless function
solution takes care of all the business of packaging and deploying it.

Running Serverless Tasks on Kubernetes Chapter 9

[252]

Modeling serverless functions in Kubernetes
At the end of the day, Kubernetes runs containers, so you know your serverless function
will be packaged as a container. However, there are two primary ways to represent
serverless functions in Kubernetes. The first one is just as code; here, developers,
essentially, provide a function in some form (as a file or by pushing to a Git repository). The
second one is to build it as an actual container. The developer builds a regular container
and the serverless framework takes care of scheduling it and running it as a function.

Functions as code
The benefit of this approach is that, as a developer, you completely sidestep the whole
business of building images, tagging them, pushing them to a registry, and deploying them
to the cluster with all the Kubernetes ceremony around it (that is, deployment, service,
ingress, and NetworkPolicy). It's great for ad hoc exploration and one-off jobs too.

Functions as containers
Here, as a developer, you are on familiar ground. You build a container using your regular
process and you just deploy it later to the cluster as a serverless function. It is still more
lightweight than a regular service because you only need to implement a function in your
container and not a fully-fledged HTTP or gRPC server or register to listen for some events.
You get all that for the serverless functions solution.

Building, configuring, and deploying serverless
functions
You have implemented your serverless function and now you want to deploy it to the
cluster. Regardless of whether you build your serverless function (if it's a container) or
whether you provide it as a function, you typically also need to configure it in some way.
The configuration may contain information such as scaling limits, where the function code
is located, and how to invoke and trigger it. Then, the next step is to deploy the function to
the cluster. It may be a one-time deployment through a CLI or web UI, or, alternatively, it
may be integrated with your CI/CD pipeline. This depends mostly on whether your
serverless function is part of your main application or whether it is something you launch
in an ad hoc manner for troubleshooting or manual cleanup tasks.

Running Serverless Tasks on Kubernetes Chapter 9

[253]

Invoking serverless functions
Once a serverless function is deployed in the cluster, it will be dormant. There will be a
controller that runs constantly ready to invoke or trigger functions. The controller should
take very few resources and just listen for incoming requests or events to trigger functions.
In Kubernetes, if you need to invoke functions from outside the cluster, there will probably
be some additional ingress configuration. However, the most common use case is to invoke
functions internally and expose a fully-fledged service to the world.

Now that we understand what serverless functions are all about, let's add some serverless
function capabilities to Delinkcious.

Link checking with Delinkcious
Delinkcious is a link management system. Links – or, as they are known officially, uniform
resource identifiers (URIs) – are really just a pointer to a particular resource. There could
be two issues with links, such as the following:

They may be broken (that is, they point to a non-existent resource).
They may point to a bad resource (such as a phishing or virus-injecting site, hate
speech, or child pornography).

Checking links and maintaining the status of each link is an important aspect of link
management. Let's start by designing the way Delinkcious will perform link checking.

Designing link checks
Let's consider link checking in the context of Delinkcious. We should consider the current
state as a future improvement. Here are some assumptions:

Links can be temporarily or permanently broken.
Link checking may be a heavyweight operation (especially if analyzing content).
The status of a link may change at any time (that is, a valid link can suddenly
break if the resource that it's pointing to is deleted).

Specifically, Delinkcious links are stored redundantly per user. If two users add the same
link, it will be stored for each user separately. This means that, if link checking happens
when a link is added, and if N users add the same link, then it will be checked each time.
This is not very efficient, especially for popular links that many users may add and that can
all benefit from a single check.

Running Serverless Tasks on Kubernetes Chapter 9

[254]

Consider the following case, which is even worse:

N users add the link, L.
The link check for L passed for all those N users.
Another user, N+1, adds the same link, L, which is now broken (for example, the
hosting company removed the page).
Only the last user, N+1, will have the correct status of the link, L, as invalid.
All previous N users will still assume that the link is valid.

Since we want, in this chapter, to focus on serverless functions, we will accept these
limitations in the way in which Delinkcious stores links for each user. A more efficient and
robust design in the future could be as follows:

Store all the links independent of the users.
Users that add a link will have an association to that link.
Link checking will automatically reflect the latest status of a link for all users.

When it comes to designing a link check, let's consider some of the following options for
checking links when adding a new link:

When adding a link, just run the link checking code in the link service.
When adding a link, call a separate link checking service.
When adding a link, invoke a link checking serverless function.
When adding a link, keep it in pending status, which periodically runs checks on
all recently added links.

Additionally, since links can break at anytime, it may be useful to run link checks
periodically for existing links.

Let's consider the first option, that is, running the link check inside the link manager. While
it has the benefit of simplicity, it also suffers from several problems, such as the following:

If link checking takes too long (for example, if the target is unreachable or the
content takes a long time to classify), then it will delay the response to the user
adding the link or it can even time out.
Even if the actual link checking is done asynchronously, it still ties up resources
of the link service in unpredictable ways.
There is no easy way to schedule periodic checks or ad hoc checks of links
without making serious changes to the link manager.
Conceptually, link checking is a separate responsibility to link management and
shouldn't live in the same microservice.

Running Serverless Tasks on Kubernetes Chapter 9

[255]

Let's consider the second option, that is, implementing a dedicated link checking service.
This option addresses most of the issues as the first option, but it may be overkill. That said,
it is not the best option when there is no need to check links very often; for example, if the
majority of added links are checked or if link checking happens only periodically.
Additionally, for implementing a service for a single operation, checking links seems like
overkill for a service.

This leaves us with the third and fourth options, and both can be implemented effectively
using a serverless function solution, as shown in the following diagram.

Let's start with the following simple design:

The link manager will invoke a serverless function when adding a new link.
The new link will initially be in a pending state.
The serverless function will only check whether the link is reachable.
The serverless function will send an event through the NATS system, which the
link manager will subscribe to.
The link manager will update the link status from pending to valid or invalid when
it receives the event.

Here is a diagram that describes this flow:

With a solid design in place, let's go ahead and implement and integrate it with
Delinkcious.

Running Serverless Tasks on Kubernetes Chapter 9

[256]

Implementing link checks
At this stage, we will implement the link checking functionality independent of serverless
functions. Let's start with our object model and add the Status field to our link object with
the possible values of pending, valid, and invalid. We define an alias type here called
LinkStatus, and constants for the values. However, note that it is not a strongly typed
enum like other languages; it is really just a string:

const (
 LinkStatusPending = "pending"
 LinkStatusValid = "valid"
 LinkStatusInvalid = "invalid"
)

 type LinkStatus = string

 type Link struct {
 Url string
 Title string
 Description string
 Status LinkStatus
 Tags map[string]bool
 CreatedAt time.Time
 UpdatedAt time.Time
 }

Let's also define a CheckLinkRequest object that will come in handy later. Note that each
request is per specific user and includes the link's URL:

type CheckLinkRequest struct {
 Username string
 Url string
 }

Now, let's define an interface that LinkManager will implement to get notified when a link
has been checked. The interface is very simple and has a single method that informs the
receiver (LinkManager, in our case) of the user, the URL, and the link status:

type LinkCheckerEvents interface {
 OnLinkChecked(username string, url string, status LinkStatus)
 }

Let's create a new package, pkg/link_checker, to isolate this functionality. It has a single
CheckLink() function that accepts a URL and uses the built-in Go HTTP client to call its
HEAD HTTP method.

Running Serverless Tasks on Kubernetes Chapter 9

[257]

If the result is less than 400, it is considered a success, otherwise, it returns the HTTP status
as an error:

package link_checker

 import (
 "errors"
 "net/http"
)

 // CheckLinks tries to get the headers of the target url and returns error
if it fails
 func CheckLink(url string) (err error) {
 resp, err := http.Head(url)
 if err != nil {
 return
 }
 if resp.StatusCode >= 400 {
 err = errors.New(resp.Status)
 }
 return
 }

The HEAD method, which just returns a few headers, is an effective way to check whether
a link is reachable because, even for very large resources, the headers will be a small
amount of data. Obviously, this is not good enough if we want to extend link checks to
scanning and analyzing the content, but it will do for now.

According to our design, when the link checking is complete, LinkManager should receive
an event through NATS with the check result. This is very similar to the news service
listening to link events (such as the link added and the link updated events). Let's
implement another package, link_checker_events, for the NATS integration, which will
allow us to send and subscribe to link checking events. First, we need an event object that
contains the username, the URL, and the link status:

package link_checker_events

 import (
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

 type Event struct {
 Username string
 Url string
 Status om.LinkStatus
 }

Running Serverless Tasks on Kubernetes Chapter 9

[258]

Then, we need to be able to send events through NATS. The eventSender object
implements the LinkCheckerEvents interface. Whenever it receives a call, it creates
link_checker_events.Event and publishes it to NATS:

package link_checker_events

 import (
 "github.com/nats-io/go-nats"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
 "log"
)

 type eventSender struct {
 hostname string
 nats *nats.EncodedConn
 }

 func (s *eventSender) OnLinkChecked(username string, url string, status
om.LinkStatus) {
 err := s.nats.Publish(subject, Event{username, url, status})
 if err != nil {
 log.Fatal(err)
 }
 }

 func NewEventSender(url string) (om.LinkCheckerEvents, error) {
 ec, err := connect(url)
 if err != nil {
 return nil, err
 }
 return &eventSender{hostname: url, nats: ec}, nil
 }

The reason the event is defined in the link_checker_events package and not in the
general Delinkcious object model is that this event is just created for the purpose of
interfacing though NATS with the link checker listener that is also implemented in this
package. There is no need to expose this event outside the package (except for letting NATS
serialize it). In the Listen() method, the code connects to the NATS server and subscribes
to NATS in a queue (which means that only one listener will handle each event, even if
multiple subscribers subscribe to the same queue).

Running Serverless Tasks on Kubernetes Chapter 9

[259]

When the listener function that is subscribed to the queue receives an event from NATS, it
forwards it to the event sink that implements om.LinkCheckerEvents (while ignoring the
link deletion events):

package link_manager_events

 import (
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

 func Listen(url string, sink om.LinkManagerEvents) (err error) {
 conn, err := connect(url)
 if err != nil {
 return
 }

 conn.QueueSubscribe(subject, queue, func(e *Event) {
 switch e.EventType {
 case om.LinkAdded:
 {
 sink.OnLinkAdded(e.Username, e.Link)
 }
 case om.LinkUpdated:
 {
 sink.OnLinkUpdated(e.Username, e.Link)
 }
 default:
 // Ignore other event types
 }
 })

 return
 }

If you followed closely, you may have noticed that there is one key piece missing, which we
described in our design, that is, invoking the link checking. Everything is wired up and
ready to check links, but nobody is actually calling the link checker. This is where
LinkManager comes in to invoke the serverless function.

Serverless link checking with Nuclio
Before we dive into LinkManager and close the loop of link checking in Delinkcious, let's
get familiar with Nuclio (https:/ / nuclio. io/) and explore how it provides a serverless
function solution that works very well for Delinkcious.

https://nuclio.io/
https://nuclio.io/
https://nuclio.io/
https://nuclio.io/
https://nuclio.io/
https://nuclio.io/
https://nuclio.io/
https://nuclio.io/

Running Serverless Tasks on Kubernetes Chapter 9

[260]

A quick introduction to Nuclio
Nuclio is a polished, open source platform for high-performance serverless functions. It
was developed by Iguazio and supports multiple platforms, such as Docker, Kubernetes,
GKE, and Iguazio itself. We obviously care about Kubernetes, but it's interesting to note
that Nuclio can be used on other platforms too. It has the following features:

It can build functions from the source code or provide your own container.
It is a very clean, conceptual model.
It has great integration with Kubernetes.
It uses a CLI called nuctl.
It has a web dashboard if you want to play with it interactively.
It has a slew of methods to deploy, manage, and invoke your serverless
functions.
It offers GPU support.
It is a managed solution with 24/7 support (this is paid).

Finally, it has a super cool logo! You can view the logo here:

Let's now build and deploy our link checking capability into Delinkcious using Nuclio.

Running Serverless Tasks on Kubernetes Chapter 9

[261]

Creating a link checker serverless function
The first step is creating a serverless function; there are two components here:

The function code
The function configuration

Let's create a dedicated directory called fun for storing serverless functions. Serverless
functions don't really fit into any of our existing categories; that is, they are not plain
packages, they are not services, and they are not commands. We can put the function code
and its configuration as a YAML file under the link_checker subdirectory. Later, if we
decide to model additional capabilities as serverless functions, then we can create
additional subdirectories for each function as follows:

$ tree fun
 fun
 └── link_checker
 ├── function.yaml
 └── link_checker.go

The function itself is implemented in link_checker.go. The link_checker function is
responsible for checking a link when triggered and publishing an event to NATS with the
results. Let's break it down piece by piece, starting with the imports and constants. Our
function will utilize the Nuclio GO SDK, which provides a standard signature that we will
look at later. It also imports our Delinkcious packages: the object_model, the
link_checker, and the link_checker_events packages.

Here, we also define the NATS URL based on the well-known Kubernetes DNS name. Note
that the natsUrl constant includes the namespace (by default). The link_checker
serverless function will run in the Nuclio namespace, but will send events to the NATS
server running in the default namespace.

This is not a problem; namespaces are not isolated from each other at the network level
(unless you explicitly create a network policy):

package main

 import (
 "encoding/json"
 "errors"
 "fmt"
 "github.com/nuclio/nuclio-sdk-go"
 "github.com/the-gigi/delinkcious/pkg/link_checker"
 "github.com/the-gigi/delinkcious/pkg/link_checker_events"
 om "github.com/the-gigi/delinkcious/pkg/object_model"

Running Serverless Tasks on Kubernetes Chapter 9

[262]

)

 const natsUrl = "nats-cluster.default.svc.cluster.local:4222"

Implementing a Nuclio serverless function (in Go) means implementing a handler function
with a certain signature. The function accepts a Nuclio context and a Nuclio event object.
Both are defined in the Nuclio GO SDK. The handler function returns an empty interface
(which can pretty much return anything). However, there is a standard Nuclio response
object for the HTTP-invoked functions that we use here. The Nuclio event has a GetBody()
message that can be used to get the input to the function.

Here, we unmarshal it using the standard JSON encoder in CheckLinkRequest from the
Delinkcious object model. This is the contract between whoever invokes the link_checker
function and the function itself. Since Nuclio provides a generic signature, we must validate
the input that was provided in the body. If it wasn't, then the json.Unmarshal() call will
fail and the function will return a 400 (that is, a bad request) error:

func Handler(context *nuclio.Context, event nuclio.Event) (interface{},
error) { r := nuclio.Response{ StatusCode: 200, ContentType:
"application/text", }

body := event.GetBody()
 var e om.CheckLinkRequest
 err := json.Unmarshal(body, &e)
 if err != nil {
 msg := fmt.Sprintf("failed to unmarshal body: %v", body)
 context.Logger.Error(msg)

 r.StatusCode = 400
 r.Body = []byte(fmt.Sprintf(msg))
 return r, errors.New(msg)

 }

Additionally, if the unmarshaling succeeded but the resulting CheckLinkRequest has an
empty username or empty URL, it is still an invalid input and the function will return a 400
error as well:

username := e.Username
 url := e.Url
 if username == "" || url == "" {
 msg := fmt.Sprintf("missing USERNAME ('%s') and/or URL ('%s')",
username, url)
 context.Logger.Error(msg)

 r.StatusCode = 400

Running Serverless Tasks on Kubernetes Chapter 9

[263]

 r.Body = []byte(msg)
 return r, errors.New(msg)
 }

At this point, the function validated the input, we got a username and a URL, and it's ready
to check whether the link itself is valid. All it takes is to call the CheckLink() function of
the pkg/link_checker package that we implemented earlier. The status is initialized to
LinkStatusValid and, if the check returns an error, then the status is set to
LinkStatusInvalid as follows:

status := om.LinkStatusValid
err = link_checker.CheckLink(url)
if err != nil {
status = om.LinkStatusInvalid
 }

However, don't get confused! The pkg/link_checker package is a package that
implements the CheckLink() function. In comparison, fun/link_checker is a Nuclio
serverless function that calls CheckLink().

The link was checked and we have its status; it's now time to publish the result through
NATS. Again, we've already done all the hard work in pkg/link_checker_events. The
function creates a new event sender using the natsUrl constant. If it failed, then the
function returns an error. If the sender was created properly, it invokes its
OnLinkChecked() method with the username, the URL, and the status. Finally, it returns
the Nuclio response (initialized to 200 OK) and no error, as follows:

 sender, err := link_checker_events.NewEventSender(natsUrl)
 if err != nil {
 context.Logger.Error(err.Error())

 r.StatusCode = 500
 r.Body = []byte(err.Error())
 return r, err
 }

 sender.OnLinkChecked(username, url, status)
 return r, nil

The code is only half the story, however. Let's review the function configuration in
fun/link_checker/function.yaml. It looks just like a standard Kubernetes resource
and this is no coincidence.

Running Serverless Tasks on Kubernetes Chapter 9

[264]

You can take a look at the full specification at https:/ /nuclio. io/ docs/
latest/ reference/ function- configuration- reference/ .

In the following code block, we specify the API version, the kind (NuclioFunction), and
then the spec. We have a description filled, the runtime field says Golang, and the handler
defines the package and function name that implements the handler function. We also
specify the minimum and maximum replicas, which, in this case, are both 1. Note that
Nuclio doesn't provide a way to scale to zero. There will always be at least one replica of
each deployed function waiting to be triggered. The only custom part of the configuration
is the build command to install the ca-certificates package. This uses the Alpine
Linux Package Manager (APK) system. This is necessary because the link checker needs to
check HTTPS links too, and that requires root CA certificates:

apiVersion: "nuclio.io/v1beta1"
 kind: "NuclioFunction"
 spec:
 description: >
 A function that connects to NATS, checks incoming links and publishes
LinkValid or LinkInvalid events.
 runtime: "golang"
 handler: main:Handler
 minReplicas: 1
 maxReplicas: 1
 build:
 commands:
 - apk --update --no-cache add ca-certificates

All right! We created a link checker serverless function and a configuration; let's now
deploy it to our cluster.

Deploying the link checker function with nuctl
When Nuclio deploys a function, it actually builds a Docker image and pushes it to a
registry. Here, we'll use the Docker Hub registry; so, first, let's log in:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
 Username: g1g1
 Password:
 Login Succeeded

https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/
https://nuclio.io/docs/latest/reference/function-configuration-reference/

Running Serverless Tasks on Kubernetes Chapter 9

[265]

The function name must follow DNS naming rules, so the "" marks in link_checker are
not acceptable. Instead, we'll name the function link-checker and run the nuctl deploy
command, as follows:

$ cd fun/link_checker
$ nuctl deploy link-checker -n nuclio -p . --registry g1g1

 nuctl (I) Deploying function {"name": "link-checker"}
 nuctl (I) Building {"name": "link-checker"}
 nuctl (I) Staging files and preparing base images
 nuctl (I) Pulling image {"imageName": "quay.io/nuclio/handler-builder-
golang-onbuild:1.1.2-amd64-alpine"}
 nuctl (I) Building processor image {"imageName": "processor-link-
checker:latest"}
 nuctl (I) Pushing image {"from": "processor-link-checker:latest", "to":
"g1g1/processor-link-checker:latest"}
 nuctl (I) Build complete {"result": {"Image":"processor-link-
checker:latest"...}}
 nuctl (I) Function deploy complete {"httpPort": 31475}

Note that the documentation for deploying a function with nuctl to the Docker Hub
registry is incorrect at the time of writing. I opened a GitHub issue (https:/ /github. com/
nuclio/nuclio/issues/ 1181) for the Nuclio team. Hopefully, it will be fixed by the time
you read this.

The function was deployed to the Nuclio namespace, as follows:

$ kubectl get nucliofunctions -n nuclio
 NAME AGE
 link-checker 42m

The best way to see all the configuration is to use nuctl again:

$ nuctl get function -n nuclio -o yaml
 metadata:
 name: link-checker
 namespace: nuclio
 spec:
 alias: latest
 build:
 path: .
 registry: g1g1
 timestamp: 1554442452
 description: |
A function with a configuration that connects to NATS, listens to LinkAdded
events, check the links and send LinkValid or LinkInvalid events.

https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181
https://github.com/nuclio/nuclio/issues/1181

Running Serverless Tasks on Kubernetes Chapter 9

[266]

 handler: main:Handler
 image: g1g1/processor-link-checker:latest
 imageHash: "1554442427312071335"
 maxReplicas: 1
 minReplicas: 1
 platform: {}
 readinessTimeoutSeconds: 30
 replicas: 1
 resources: {}
 runRegistry: g1g1
 runtime: golang
 serviceType: NodePort
 targetCPU: 75
 version: -1

As you can see, it borrows a lot from our function.yaml configuration file.

We have successfully deployed our function using the nuctl CLI, which is great for
developers and CI/CD systems. Let's now take a look at how to deploy a function using the
Nuclio web UI.

Deploying a function using the Nuclio dashboard
Nuclio has a cool web UI dashboard. The Nuclio dashboard is very well done; it is installed
as a service in our cluster. First, we need to do a little port forwarding before we can access
it:

$ kubectl port-forward -n nuclio $(kubectl get pods -n nuclio -l
nuclio.io/app=dashboard -o jsonpath='{.items[0].metadata.name}') 8070

Next, we can browse to localhost:8070 and play with the dashboard. The dashboard
allows you to view, deploy, and test (or invoke) serverless functions directly from a single
screen. This is great for ad hoc exploration.

Running Serverless Tasks on Kubernetes Chapter 9

[267]

Here, I slightly modified the hello example function (in Python) and even tested it with
the text, Yeah, it works!:

Once the function is deployed in the cluster, we can invoke it in different ways.

Invoking the link-checker function directly
Invoking the function using nuctl is very simple. We need to provide the function name
(link-checker), the namespace, the cluster IP address, and the body, which is the input to
the function:

nuctl invoke link-checker -n nuclio --external-ips $(mk ip)

Running Serverless Tasks on Kubernetes Chapter 9

[268]

Triggering link checking in LinkManager
Using nuctl is nice when you develop your functions and want a quick edit-deploy-debug
cycle. However, in production, you will want to either invoke the function by using an
HTTP endpoint or one of the triggers. For Delinkcious, the simplest way is by having
LinkManager directly hit the HTTP endpoint. This happens when a new link is added to
the AddLink() method of LinkManager. It simply calls triggerLinkCheck with the
username and URL, as follows:

func (m *LinkManager) AddLink(request om.AddLinkRequest) (err error) {
 ...

 // Trigger link check asynchronously (don't wait for result)
 triggerLinkCheck(request.Username, request.Url)
 return
 }

It's important that the AddLink() method doesn't have to wait for the link check to
complete. If you remember, the link will be stored immediately with a pending status. Later,
when the check is complete, the status will be changed to either valid or invalid. To
accomplish this, the triggerLinkCheck() function runs a goroutine that returns control
immediately.

The goroutine, in the meantime, prepares om.CheckLinkRequest, which the handler of
the link_checker serverless function is expecting. It serializes it into JSON
via json.Marshal() and, using the Go built-in HTTP client, it sends a POST request to the
link checker function URL in the Nuclio namespace (it has no problem hitting HTTP
endpoints in another namespace). Here, we just ignore any errors; if something goes wrong,
then the link will stay in the pending state and we can decide what to do about it later:

// Nuclio functions listen by default on port 8080 of their service IP
 const link_checker_func_url =
"http://link-checker.nuclio.svc.cluster.local:8080"

func triggerLinkCheck(username string, url string) {
 go func() {
 checkLinkRequest := &om.CheckLinkRequest{Username: username, Url:
url}
 data, err := json.Marshal(checkLinkRequest)
 if err != nil {
 return
 }

Running Serverless Tasks on Kubernetes Chapter 9

[269]

 req, err := http.NewRequest("POST", link_checker_func_url,
bytes.NewBuffer(data))
 req.Header.Set("Content-Type", "application/json")
 client := &http.Client{}
 resp, err := client.Do(req)
 if err != nil {
 return
 }
 defer resp.Body.Close()
 }()
 }

We did a lot of work here, but we kept everything loosely coupled and ready for extension.
It would be very easy to add more sophisticated link checking logic in order to trigger link
checking as a NATS event instead of directly hitting an HTTP endpoint, or even replace the
Nuclio serverless function with a completely different serverless function solution. Let's
briefly take a look at the other options in the following section.

Other Kubernetes serverless frameworks
AWS Lambda functions made serverless functions in the cloud very popular. Kubernetes is
not a fully-fledged serverless function primitive, but it gets pretty close with the Job and
CronJob resources. In addition to this, a plethora of serverless function solutions were
developed by the community (Nuclio being one of them). Here are some of the more
popular and mature options that we will see in the following subsections:

Kubernetes Jobs and CronJobs
KNative
Fission
Kubeless
OpenFaas

Kubernetes Jobs and CronJobs
Kubernetes deployments and services are all about creating a set of long-running pods that
are supposed to run indefinitely. A Kubernetes Job is all about running one or more pods
until one of them completes successfully. When you create a Job, it looks very much like a
deployment, except that the restart policy should be Never.

Running Serverless Tasks on Kubernetes Chapter 9

[270]

Here is a Kubernetes Job that prints Yeah, it works in a Job!!! from Python:

apiVersion: batch/v1
kind: Job
metadata:
 name: yeah-it-works
spec:
 template:
 spec:
 containers:
 - name: yeah-it-works
 image: python:3.6-alpine
 command: ["python", "-c", "print('Yeah, it works in a Job!!!')"]
 restartPolicy: Never

I can now run this Job, watch it complete, and check the logs, as follows:

$ kubectl create -f job.yaml
 job.batch/yeah-it-works created

 $ kubectl get po | grep yeah-it-works
 yeah-it-works-flzl5 0/1 Completed 0 116s

 $ kubectl logs yeah-it-works-flzl5
 Yeah, it works in a Job!!!

This is almost a serverless function. Of course, it doesn't come with all the bells and
whistles, but the core functionality is there: launch a container, run it to completion, and get
back the results.

A Kubernetes CronJob is similar to a Job, except that it gets triggered on a schedule. If you
don't want to incur additional dependencies on a third-party serverless function
framework, then you can build a basic solution on top of the Kubernetes Job and CronJob
objects.

KNative
KNative (https:/ /cloud. google. com/ knative/) is a relative newcomer to the serverless
functions scene, but I actually predict that it will become the mainstream go-to solution,
and there are several reasons for this, such as the following:

It is a strong solution that can scale to zero (unlike Nuclio).
It can build images in-cluster (using Kaniko).
It is Kubernetes-specific.

https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/

Running Serverless Tasks on Kubernetes Chapter 9

[271]

It has the cloud of Google behind it and is available on GKE via Cloud Run
(https:/ / cloud. google. com/ blog/ products/ serverless/ announcing- cloud-
run-the- newest- member- of- our- serverless- compute- stack).
It uses the Istio service mesh as a foundation, and Istio is becoming very
important (more on that in Chapter 13, Service Mesh – Working with Istio).

KNative has three separate components, as follows:

Building
Serving
Eventing

It is designed to be very pluggable so that you bring your own builder or event sources.
The build component is in charge of going from the source to the image. The serving
component is responsible for scaling the number of containers needed to handle the load. It
can scale up as more load is generated, or down, including all the way to zero. The eventing
component is related to producing and consuming events in your serverless functions.

Fission
Fission (https://fission. io/) is an open source serverless framework from Platform9 that
supports multiple languages, such as Python, NodeJS, Go, C#, and PHP. It can be extended
to support other languages. It keeps a pool of containers ready to go, so new function
invocations have very low latency at the expense of not scaling to zero when there is no
load. What makes Fission special is its ability to compose and chain functions through
Fission workflows (https:/ /fission. io/ workflows/). This is similar to AWS step
functions; other interesting features of Fission include the following:

It can integrate with Istio for monitoring.
It can incorporate logs into the CLI through Fluentd integration (Fluentd is
automatically installed as a DaemonSet).
It offers Prometheus integration for metrics collection and dashboard visibility.

Kubeless
Kubeless is another Kubernetes-native framework from Bitnami. It uses a conceptual model
of functions, triggers, and runtimes, which are implemented using Kubernetes CRDs that
are configured through ConfigMaps. Kubeless uses Kubernetes deployments for function
pods, and Horizontal Pod Autoscaler (HPA) for autoscaling.

https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/
https://fission.io/workflows/

Running Serverless Tasks on Kubernetes Chapter 9

[272]

This means that Kubeless doesn't scale to zero because HPA doesn't scale to zero at the
moment. One of Kubeless's primary claims to fame is its excellent UI.

OpenFaas
OpenFaas (https:/ /www. openfaas. com/) is one of the earliest FaaS projects. It can run on
Kubernetes or Docker Swarm. Since it's cross-platform, it does a lot of things in a generic
and non-Kubernetes way. For example, it can scale to zero by using its own management
for function containers. It also supports many languages and even plain binaries as
functions.

It also has the OpenFaaS Cloud project, which is a complete GitOps-based CI/CD pipeline
to manage your serverless functions. Similar to other serverless function projects, OpenFaas
has its own CLI and UI for management and deployment.

Summary
In this chapter, we introduced link checking to Delinkcious and we did it in style! We
discussed the serverless scene, including its two common meanings; that is, not dealing
with instances, nodes, or servers, and cloud functions as a service. We then implemented a
loosely coupled solution within Delinkcious for link checking, which took advantage of our
NATS messaging system to distribute events when links are checked. Then, we covered
Nuclio in some detail and used it to close the loop and let the LinkManager initiate link
checks on a serverless function and get notified later to update the link status.

Finally, we surveyed many other solutions and frameworks for serverless functions on
Kubernetes. At this point, you should have a solid understanding of what serverless
computing and serverless functions are all about. You should be able to make an informed
decision about whether your systems and projects can benefit from serverless functions and
which solution is the best. It's clear that the benefits are real, and that it's not a fad that will
disappear. I anticipate that the serverless solutions in Kubernetes will consolidate (possibly
around KNative) and become a cornerstone of most Kubernetes deployments, even if they
are not part of core Kubernetes.

In the next chapter, we will go back to the basics and explore one of my favorite subjects,
that is, testing. Testing can make or break large projects and there are many lessons to
apply in the context of microservices and Kubernetes.

https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openfaas.com/

Running Serverless Tasks on Kubernetes Chapter 9

[273]

Further reading
You can refer to the following references for more information:

Nuclio documentation: https:/ /nuclio. io/ docs/ latest

Kubernetes (Jobs – Run to Completion): https:/ /kubernetes. io/ docs/
concepts/ workloads/ controllers/ jobs- run- to- completion/

CronJob: https:/ /kubernetes. io/docs/ concepts/ workloads/ controllers/
cron-jobs/

KNative: https:/ /cloud. google. com/ knative/

Fission: https:/ / fission. io/

Kubeless: https:/ /kubeless. io/

OpenFaas: https:/ /www. openfaas. com

https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://nuclio.io/docs/latest
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://fission.io/
https://kubeless.io/
https://kubeless.io/
https://kubeless.io/
https://kubeless.io/
https://kubeless.io/
https://kubeless.io/
https://kubeless.io/
https://kubeless.io/
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com

10
Testing Microservices

Software is the most complex thing humans create. Most programmers can't write 10 lines
of code without any errors occurring. Now, take this common knowledge and consider
what it takes to write a distributed system made of tens, hundreds, or thousands of
interacting components that have been designed and implemented by large teams using
lots of third-party dependencies, lots of data-driven logic, and lots of configuration. Over
time, many of the original architects and engineers that built the system might have left the
organization or moved to a different role. Requirements change, new technologies are
reintroduced, and better practices are discovered. The system must evolve to meet all of
these changes.

The bottom line is that you have zero chance of building a working non-trivial system
without rigorous testing. Proper tests are the skeleton that ensures that your system works
as expected and immediately identifies problems when you introduce a breaking change
before it makes in into production. A microservices-based architecture introduces some
unique challenges for testing since many of the workflows touch upon multiple
microservices and it may be difficult to control the test conditions across all the relevant
microservices and data stores. Kubernetes introduces its own testing challenges since it
does so much under the covers, which takes more work to create predictable and repeatable
tests.

We will demonstrate all these types of tests within Delinkcious. In particular, we will focus
on local testing with Kubernetes. Then, we'll discuss the important issue of isolation, which
allows us to run end-to-end tests without impacting our production environments. Finally,
we'll see how to deal with data-intensive tests.

Testing Microservices Chapter 10

[275]

The following topics will be covered in this chapter:

Unit testing
Integration testing
Local testing with Kubernetes
Isolation
End to end testing
Managing test data

Technical requirements
The code is split between two Git repositories:

You can find the code samples here: https:/ /github. com/ PacktPublishing/
Hands-On- Microservices- with- Kubernetes/ tree/ master/ Chapter10

You can find the updated Delinkcious application here: https:/ / github. com/
the-gigi/ delinkcious/ releases/ tag/ v0. 8

Unit testing
Unit testing is the easiest type of testing to incorporate into your codebase, yet it brings a lot
of value. When I say it's the easiest, I take it for granted that you can use best practices such
as proper abstraction, separation of concerns, dependency injection, and so on. There is
nothing easy about trying to test a spaghetti codebase!

Let's talk briefly about unit testing in Go, the Ginkgo test framework, and then review some
unit tests in Delinkcious.

Unit testing with Go
Go is a modern language and recognizes the importance of testing. Go encourages that for
each foo.go file you have, to have foo_test.go. It also provides the testing package, and
the Go tool has a test command. Let's look at a simple example. Here is a foo.go file that
contains the safeDivide() function. This function divides integers and returns a result
and an error.

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter10
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8
https://github.com/the-gigi/delinkcious/releases/tag/v0.8

Testing Microservices Chapter 10

[276]

If the denominator is non-zero, it returns no error, but if the denominator is zero, it returns
a division by zero error:

package main

 import "errors"

 func safeDivide(a int, b int) (int, error) {
 if b == 0 {
 return 0, errors.New("division by zero")
 }

 return a / b, nil
 }

Note that Go division uses integer division when both operands are integers. This is done
so that the result of dividing two integers is always the whole part (the fractional part is
discarded). For example, 6/4 returns 1.

Here is a Go unit test in a file called foo_test.go that tests both non-zero and zero
denominators and uses the testing package. Each test function accepts a pointer to
the testing.T object. When a test fails, it calls the Errorf() method of the T object:

package main

 import (
 "testing"
)

func TestExactResult(t *testing.T) {
 result, err := safeDivide(8, 4)
 if err != nil {
 t.Errorf("8 / 4 expected 2, got error %v", err)
 }

 if result != 2 {
 t.Errorf("8 / 4 expected 2, got %d", result)
 }
}

func TestIntDivision(t *testing.T) {
 result, err := safeDivide(14, 5)
 if err != nil {
 t.Errorf("14 / 5 expected 2, got error %v", err)
 }

 if result != 2 {

Testing Microservices Chapter 10

[277]

 t.Errorf("14 / 5 expected 2, got %d", result)
 }
}

func TestDivideByZero(t *testing.T) {
 result, err := safeDivide(77, 0)
 if err == nil {
 t.Errorf("77 / 0 expected 'division by zero' error, got
result %d", result)
 }

 if err.Error() != "division by zero" {
 t.Errorf("77 / 0 expected 'division by zero' error, got
this error instead %v", err)
 }
}

Now, to run the tests, we can use the go test -v command. It is part of the standard Go
tool:

$ go test -v
=== RUN TestExactResult
--- PASS: TestExactResult (0.00s)
=== RUN TestIntDivision
--- PASS: TestIntDivision (0.00s)
=== RUN TestDivideByZero
--- PASS: TestDivideByZero (0.00s)
PASS
ok github.com/the-gigi/hands-on-microservices-with-kubernetes-
code/ch10 0.010s

Nice – all the tests pass. We can also see how long it took to run the tests. Let's introduce an
intentional bug. Now, safeDivide subtracts instead of divides:

package main

 import "errors"

 func safeDivide(a int, b int) (int, error) {
 if b == 0 {
 return 0, errors.New("division by zero")
 }

 return a - b, nil
}

Testing Microservices Chapter 10

[278]

We only expect the divide by zero test to pass:

$ go test -v
=== RUN TestExactResult
--- FAIL: TestExactResult (0.00s)
 foo_test.go:14: 8 / 4 expected 2, got 4
=== RUN TestIntDivision
--- FAIL: TestIntDivision (0.00s)
 foo_test.go:25: 14 / 5 expected 2, got 9
=== RUN TestDivideByZero
--- PASS: TestDivideByZero (0.00s)
FAIL
exit status 1
FAIL github.com/the-gigi/hands-on-microservices-with-kubernetes-
code/ch10 0.009s

We got exactly what we expected.

There is a lot more to the testing package. The T object has additional methods you can
use. There are facilities for benchmarks and for common setups. However, overall, due to
the ergonomics of the testing package, it's not ideal to have call methods on the T object. It
can also be difficult to manage a complex and hierarchical set of tests using the testing
package without additional tooling on top of it. This is exactly where Ginkgo comes into
the picture. Let's get to know Ginkgo. Delinkcious uses Ginkgo for its unit tests.

Unit testing with Ginkgo and Gomega
Ginkgo (https://github. com/ onsi/ ginkgo) is a behavior-driven development (BDD)
testing framework. It still uses the testing package under the covers, but allows you to write
tests using a much nicer syntax. It also pairs well with Gomega (https:/ /github. com/
onsi/gomega), which is an excellent assertions library. Here is what you get with Ginkgo
and Gomega:

Write BDD-style tests
Arbitrary nested blocks (Describe, Context, When)
Good setup/teardown support (BeforeEach, AfterEach, BeforeSuite,
AfterSuite)
Focus on one test only or match by regex
Skip tests by regex
Parallelism
Integration with coverage and benchmarking

https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/ginkgo
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega
https://github.com/onsi/gomega

Testing Microservices Chapter 10

[279]

Let's see how Delinkcious uses Ginkgo and Gomega for its unit tests.

Delinkcious unit testing
We'll use LinkManager from the link_manager package as an example. It has pretty
sophisticated interactions: it allows you to manage a data store, hit another microservice
(social graph service), trigger a serverless function (link checker), and respond to link check
events. This sounds like a very diverse set of dependencies, but as you'll see, by designing
for testability, it is possible to achieve a high level of testing without too much complexity.

Designing for testability
Proper testing starts a long time before you write your test. Even if you practice test-driven
design (TDD) and you write your tests before the implementation, you still need to design
the interface of the code you want to test before you write the test (otherwise what
functions or methods will the test invoke?). With Delinkcious, we took a very deliberate
approach with abstractions, layers, and separation of concerns. All our hard work is going
to pay off now.

Let's look at LinkManager and just consider its dependencies:

package link_manager

 import (
 "bytes"
 "encoding/json"
 "errors"
 "github.com/the-gigi/delinkcious/pkg/link_checker_events"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
 "log"
 "net/http"
)

As you can see, LinkManager depends on the Delinkcious object model abstract package,
link_checker_events, and standard Go packages. LinkManager doesn't depend on the
implementation of any other Delinkcious component or on any third-party dependency.
During testing, we can provide alternative (mock) implementations for all the dependencies
and have total control of the test environment and the result. We'll see how we can go
about doing this in the next section.

Testing Microservices Chapter 10

[280]

The art of mocking
Ideally, an object should have all its dependencies injected when it is created. Let's look at
the NewLinkManager() function:

func NewLinkManager(linkStore LinkStore,
 socialGraphManager om.SocialGraphManager,
 natsUrl string,
 eventSink om.LinkManagerEvents,
 maxLinksPerUser int64) (om.LinkManager, error) {
 ...
 }

This is almost the ideal situation. We get interfaces to the link store, social graph manager,
and to the event sink. However, there are two dependencies that are not injected here:
link_checker_events and the built-in net/http package. Let's start with mocking the
link store, the social graph manager, and the link manager event sink, and then consider the
more difficult cases.

LinkStore is an interface that's defined internally:

package link_manager

 import (
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

 type LinkStore interface {
 GetLinks(request om.GetLinksRequest) (om.GetLinksResult, error)
 AddLink(request om.AddLinkRequest) (*om.Link, error)
 UpdateLink(request om.UpdateLinkRequest) (*om.Link, error)
 DeleteLink(username string, url string) error
 SetLinkStatus(username, url string, status om.LinkStatus) error
 }

In the pkg/link_manager/mock_social_graph_manager.go file, we can find a mock
social graph manager that implements om.SocialGraphManager and always returns the
followers that were provided to the newMockSocialGraphManager() function from the
GetFollowers() method. This is a great way to reuse the same mock for different tests
that require different canned responses from GetFollowers(). The reason the other
methods just return nil is that they are not called by LinkManager, so there's no need to
provide an actual response:

package link_manager
type mockSocialGraphManager struct { followers map[string]bool }

Testing Microservices Chapter 10

[281]

func (m *mockSocialGraphManager) Follow(followed string, follower string)
error { return nil }

func (m *mockSocialGraphManager) Unfollow(followed string, follower string)
error { return nil }

func (m *mockSocialGraphManager) GetFollowing(username string)
(map[string]bool, error) { return nil, nil }

func (m *mockSocialGraphManager) GetFollowers(username string)
(map[string]bool, error) { return m.followers, nil }

func newMockSocialGraphManager(followers []string) *mockSocialGraphManager
{ m := &mockSocialGraphManager{ map[string]bool{}, } for _, f := range
followers { m.followers[f] = true }

return m

}

The event sink is a little different. We are interested in verifying that when various
operations, such as AddLink(), are called, LinkManager properly notifies the event sink.
In order to do that, we can create a test event sink that implements the
om.LinkManagerEvents interface and keeps track of events coming its way. Here is the
code in the pkg/link_manager/test_event_sink.go file. The testEventSink struct
keeps a map for each event type, where the keys are username and the values are a list of
links. It updates these maps in response to the various events:

package link_manager

import (om "github.com/the-gigi/delinkcious/pkg/object_model")

type testEventsSink struct { addLinkEvents map[string][]om.Link
updateLinkEvents map[string][]om.Link deletedLinkEvents map[string][]string
}

func (s testEventsSink) OnLinkAdded(username string, link om.Link) { if
s.addLinkEvents[username] == nil { s.addLinkEvents[username] = []*om.Link{}
} s.addLinkEvents[username] = append(s.addLinkEvents[username], link) }

func (s testEventsSink) OnLinkUpdated(username string, link om.Link) { if
s.updateLinkEvents[username] == nil { s.updateLinkEvents[username] =
[]*om.Link{} } s.updateLinkEvents[username] =
append(s.updateLinkEvents[username], link) }

func (s *testEventsSink) OnLinkDeleted(username string, url string) { if
s.deletedLinkEvents[username] == nil { s.deletedLinkEvents[username] =

Testing Microservices Chapter 10

[282]

[]string{} } s.deletedLinkEvents[username] =
append(s.deletedLinkEvents[username], url) }

func newLinkManagerEventsSink() testEventsSink { return &testEventsSink{
map[string][]om.Link{}, map[string][]*om.Link{}, map[string][]string{}, } }

Now that we've got our mocks in place, let's create the Ginkgo test suite.

Bootstrapping your test suite
Ginkgo builds on top of Go's testing package, which is convenient because you can run
your Ginkgo tests with just go test, although Ginkgo also provides a CLI called Ginkgo
with more options. To bootstrap a test suite for a package, run the ginkgo bootstrap
command. It will generate a file called <package>_suite_test.go. The file wires up all
the Ginkgo tests to the standard Go testing, and also imports the ginkgo and gomega
packages. Here is the test suite file for the link_manager package:

package link_manager
import ("testing"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
func TestLinkManager(t *testing.T) { RegisterFailHandler(Fail) RunSpecs(t,
"LinkManager Suite") }

With the test suite file in place, we can start writing some unit tests.

Implementing the LinkManager unit tests
Let's look at the test for getting and adding links. There is a lot going on there. This is all in
the pkg/link_manager/in_memory_link_manager_test.go file. First, let's set the
scene by importing ginkgo, gomega, and the delinkcious object model:

package link_manager
import (. "github.com/onsi/ginkgo" . "github.com/onsi/gomega" om
"github.com/the-gigi/delinkcious/pkg/object_model")

The Ginkgo Describe block describes all the tests in the file and defines variables that will
be used by multiple tests:

var _ = Describe("In-memory link manager tests", func() { var err error var
linkManager om.LinkManager var socialGraphManager mockSocialGraphManager
var eventSink testEventsSink

Testing Microservices Chapter 10

[283]

The BeforeEach() function is called before each test. It creates a fresh mock social graph
manager with liat as the only follower, a new event sink, and initializes the new
LinkManager with these dependencies, as well as an in-memory link store, thus utilizing
the dependency injection practice:

BeforeEach(func() {
 socialGraphManager = newMockSocialGraphManager([]string{"liat"})
 eventSink = newLinkManagerEventsSink()
 linkManager, err = NewLinkManager(NewInMemoryLinkStore(),
 socialGraphManager,
 "",
 eventSink,
 10)
 Ω(err).Should(BeNil())
 })

Here is the actual test. Note the BDD style of defining tests that read like English, It should
add and get link. Let's break it down piece by piece; first, the test makes sure that there are no
existing links for the "gigi" user by calling GetLinks() and asserting that the result is
empty by using Gomega's Ω operator:

It("should add and get links", func() {
 // No links initially
 r := om.GetLinksRequest{
 Username: "gigi",
 }
 res, err := linkManager.GetLinks(r)
 Ω(err).Should(BeNil())
 Ω(res.Links).Should(HaveLen(0))

The next part is about adding a link and just making sure that no errors occurred:

 // Add a link
 r2 := om.AddLinkRequest{
 Username: "gigi",
 Url: "https://golang.org/",
 Title: "Golang",
 Tags: map[string]bool{"programming": true},
 }
 err = linkManager.AddLink(r2)
 Ω(err).Should(BeNil())

Now, the test calls GetLinks() and expects the link that was just added to be returned:

 res, err = linkManager.GetLinks(r)
 Ω(err).Should(BeNil())
 Ω(res.Links).Should(HaveLen(1))

Testing Microservices Chapter 10

[284]

 link := res.Links[0]
 Ω(link.Url).Should(Equal(r2.Url))
 Ω(link.Title).Should(Equal(r2.Title))

Finally, the test makes sure that the event sink recorded the OnLinkAdded() call for
follower "liat":

 // Verify link manager notified the event sink about a single added
event for the follower "liat"
 Ω(eventSink.addLinkEvents).Should(HaveLen(1))
 Ω(eventSink.addLinkEvents["liat"]).Should(HaveLen(1))
 Ω(*eventSink.addLinkEvents["liat"][0]).Should(Equal(link))
 Ω(eventSink.updateLinkEvents).Should(HaveLen(0))
 Ω(eventSink.deletedLinkEvents).Should(HaveLen(0))
 })

This is a pretty typical unit test that performs the following tasks:

Controls the test environment
Mocks dependencies (social graph manager)
Provides recording placeholders for outgoing interactions (test event sink records
link manager events)
Executes the code under test (get links and add links)
Verifies the responses (no links at first; one link is returned after it is added)
Verifies any outgoing interactions (the event sink received the OnLinkAdded()
event)

We didn't test error cases here, but it's easy to add. You add bad inputs and check the code
under the test that returned the expected error.

Should you test everything?
The answer is no! Testing provides a lot of value, but has costs too. The marginal value of
adding tests is decreasing. Testing everything is difficult, if not impossible. Considering that
testing takes time to develop, it can slow down changes to the system (you need to update
the tests), and the tests might need to change when dependencies change. Testing also takes
time and resources to run, which can slow down the edit-test-deploy cycle. Also, tests can
have bugs too. Finding the sweet spot of how much testing you need is a judgement call.

Testing Microservices Chapter 10

[285]

Unit tests are very valuable, but they are not enough. This is especially true for
microservice-based architectures where there are a lot of small components that may work
independently, but fail to work together to accomplish the goals of the system. This is
where integration tests come in.

Integration testing
Integration testing is a test that includes multiple components that interact with each other.
Integration tests means testing complete subsystems without or very little mocking.
Delinkcious has several integration tests focused on particular services. These tests are not
automated Go tests. They don't use Ginkgo or the standard Go testing. They are executable
programs that panic on error. These programs are designed to test cross-service interaction
and how a service integrates with third-party components such as actual data stores. For
example, the link_manager_e2e test performs the following steps:

Starts the social graph service and the link service as local processes1.
Starts a Postgres DB in a Docker container2.
Runs the test against the link service3.
Verifies the results4.

Let's see how it all plays out. The list of imports includes the Postgres Golang driver
(lib/pq), several Delinkcious packages, and a couple of standard Go packages (context,
log, and os). Note that pq is imported as a dash. This means that the pq name is
unavailable. The reason to import a library in such an unnamed mode is that it just needs to
run some initialization code and is not accessed externally. Specifically, pq registers a Go
driver with the standard Go database/sql library:

package main
import ("context" _ "github.com/lib/pq" "github.com/the-
gigi/delinkcious/pkg/db_util" "github.com/the-
gigi/delinkcious/pkg/link_manager_client" om "github.com/the-
gigi/delinkcious/pkg/object_model" . "github.com/the-
gigi/delinkcious/pkg/test_util" "log" "os")

Let's look at some of the functions that are used to set up the test environments, starting
with initializing the database.

Testing Microservices Chapter 10

[286]

Initializing a test database
The initDB() function calls the RunLocalDB() function by passing the name of the
database (link_manager). This is important because if you're starting from fresh, it needs
to create the database too. Then, to make sure that the test always runs from scratch, it
deletes the tags and links tables, as follows:

func initDB() { db, err := db_util.RunLocalDB("link_manager") Check(err)
tables := []string{"tags", "links"}
 for _, table := range tables {
 err = db_util.DeleteFromTableIfExist(db, table)
 Check(err)
 }
}

Running services
The test has two separate functions to run the services. These functions are very similar.
They set environment variables and call the RunService() function, which we will dive
into soon. Both services depend on the value of the PORT environment variable, and it
needs to be different for each of the services. This means that it is imperative that we launch
the services sequentially and not in parallel. Otherwise, a service might end up listening on
the wrong port:

func runLinkService(ctx context.Context) {
 // Set environment
 err := os.Setenv("PORT", "8080")
 Check(err)

 err = os.Setenv("MAX_LINKS_PER_USER", "10")
 Check(err)

 RunService(ctx, ".", "link_service")
 }

 func runSocialGraphService(ctx context.Context) {
 err := os.Setenv("PORT", "9090")
 Check(err)

 RunService(ctx, "../social_graph_service", "social_graph_service")
 }

Testing Microservices Chapter 10

[287]

Running the actual test
The main() function is the driver of the entire test. It turns on the mutual authentication
between the link manager and the social graph manager, initializes the database, and runs
the services (as long as the RUN_XXX_SERVICE environment variable is true):

func main() {
 // Turn on authentication
 err := os.Setenv("DELINKCIOUS_MUTUAL_AUTH", "true")
 Check(err)

 initDB()

 ctx := context.Background()
 defer KillServer(ctx)

 if os.Getenv("RUN_SOCIAL_GRAPH_SERVICE") == "true" {
 runSocialGraphService(ctx)
 }

 if os.Getenv("RUN_LINK_SERVICE") == "true" {
 runLinkService(ctx)
 }

Now it's ready to actually run the test. It uses the link manager client to connect to port
8080 on the localhost, which is where the link service is running. Then, it calls the
GetLinks() method, prints the result (should be empty), adds a link by calling
AddLink(), calls GetLinks() again, and prints the results (should be one link):

// Run some tests with the client
 cli, err := link_manager_client.NewClient("localhost:8080")
 Check(err)

 links, err := cli.GetLinks(om.GetLinksRequest{Username: "gigi"})
 Check(err)
 log.Print("gigi's links:", links)

 err = cli.AddLink(om.AddLinkRequest{Username: "gigi",
 Url: "https://github.com/the-gigi",
 Title: "Gigi on Github",
 Tags: map[string]bool{"programming": true}})
 Check(err)

 links, err = cli.GetLinks(om.GetLinksRequest{Username: "gigi"})
 Check(err)
 log.Print("gigi's links:", links)

Testing Microservices Chapter 10

[288]

This integration test is not automated. It is designed for interactive use where the
developer can run and debug individual services. If an error occurs, it immediately bails
out. The results of each operation are simply printed to the screen.

The rest of the test checks the UpdateLink() and DeleteLink() operations:

 err = cli.UpdateLink(om.UpdateLinkRequest{Username: "gigi",
 Url: "https://github.com/the-gigi",
 Description: "Most of my open source code is here"},
)

 Check(err)
 links, err = cli.GetLinks(om.GetLinksRequest{Username: "gigi"})
 Check(err)
 log.Print("gigi's links:", links)

 err = cli.DeleteLink("gigi", "https://github.com/the-gigi")
 Check(err)
 Check(err)
 links, err = cli.GetLinks(om.GetLinksRequest{Username: "gigi"})
 Check(err)
 log.Print("gigi's links:", links)
 }

The fact that the test is conducted through the link manager client library ensures that the
entire chain is working from client to service to dependent services and their data stores.

Let's review some test helper functions, which are very useful when we are trying to test
and debug complex interactions between microservices locally.

Implementing database test helpers
Before diving into the code, let's consider what we want to accomplish. We want a local
empty database to be created. We want to launch it as a Docker container, but only if it's
not running already. In order to do that, we need to check whether a Docker container is
running already, if we should restart it, or if we should run a new one. Then, we will try to
connect to the target database and create it if it doesn't exist. The service will be responsible
for creating the schema if needed because the generic DB utilities know nothing about the
database schema of specific services.

Testing Microservices Chapter 10

[289]

The db_util.go file in the db_util package contains all the helpers functions. First, let's
review the imports that include the standard Go database/sql package and squirrel – a
fluent-style Go library to generate SQL (but not an ORM). The Postgres driver library – pq –
is imported as well:

package db_util

 import (
 "database/sql"
 "fmt"
 sq "github.com/Masterminds/squirrel"
 _ "github.com/lib/pq"
 "log"
 "os"
 "os/exec"
 "strconv"
 "strings"
)

The dbParams struct contains the information that's needed to connect to the database, and
the defaultDbParams() function is convenient for getting a struct that's populated with
default values:

type dbParams struct {
 Host string
 Port int
 User string
 Password string
 DbName string
 }

 func defaultDbParams() dbParams {
 return dbParams{
 Host: "localhost",
 Port: 5432,
 User: "postgres",
 Password: "postgres",
 }
 }

You can call the connectToDB() function by passing the information from the dbParams
struct. If everything goes OK, you'll get back a handle to the database (*sql.DB) that you
can then use to access the database later:

func connectToDB(host string, port int, username string, password string,
dbName string) (db *sql.DB, err error) {
 mask := "host=%s port=%d user=%s password=%s dbname=%s

Testing Microservices Chapter 10

[290]

sslmode=disable"
 dcn := fmt.Sprintf(mask, host, port, username, password, dbName)
 db, err = sql.Open("postgres", dcn)
 return
 }

With all the preliminaries out of the way, let's see how the RunLocalDB() function works.
First, it runs a docker ps -f name=postgres command, which lists the running Docker
containers named postgres (there can only be one):

func RunLocalDB(dbName string) (db *sql.DB, err error) {
 // Launch the DB if not running
 out, err := exec.Command("docker", "ps", "-f", "name=postgres", "--
format", "{{.Names}}").CombinedOutput()
 if err != nil {
 return
 }

If the output is empty, it means there is no such container running, so it tries to restart the
container in case it has stopped. If that fails too, it just runs a new container of the
postgres:alpine image, exposing the standard 5432 port to the local host. Note the -z
flag. It tells Docker to run the container in detached (non-blocking) mode, which allows the
function to continue. If it fails to run the new container for any reason, it gives up and
returns an error:

 s := string(out)
 if s == "" {
 out, err = exec.Command("docker", "restart",
"postgres").CombinedOutput()
 if err != nil {
 log.Print(string(out))
 _, err = exec.Command("docker", "run", "-d", "--name",
"postgres",
 "-p", "5432:5432",
 "-e", "POSTGRES_PASSWORD=postgres",
 "postgres:alpine").CombinedOutput()

 }
 if err != nil {
 return
 }
 }

Testing Microservices Chapter 10

[291]

At this point, we are running a Postgres DB running in a container. We can use the
defaultDBParams() function and call the EnsureDB() function, which we will examine
next:

p := defaultDbParams()
 db, err = EnsureDB(p.Host, p.Port, p.User, p.Password, dbName)
 return
}

To ensure that the DB is ready, we need to connect to the Postgres DB of the postgres
instance. Each postgres instance has several built-in databases, including the postgres
database. The Postgres DB of the postgres instance can be used to get information and
metadata about the instance. In particular, we can query the pg_database table to check if
the target database exists. If it doesn't exist, we can create it by executing the CREATE
database <db name> command. Finally, we connect to the target database and return its
handle. As usual, if anything goes wrong, we return an error:

// Make sure the database exists (creates it if it doesn't)

func EnsureDB(host string, port int, username string, password string,
dbName string) (db *sql.DB, err error) { // Connect to the postgres DB
postgresDb, err := connectToDB(host, port, username, password, "postgres")
if err != nil { return }

// Check if the DB exists in the list of databases
 var count int
 sb := sq.StatementBuilder.PlaceholderFormat(sq.Dollar)
 q := sb.Select("count(*)").From("pg_database").Where(sq.Eq{"datname":
dbName})
 err = q.RunWith(postgresDb).QueryRow().Scan(&count)
 if err != nil {
 return
 }

 // If it doesn't exist create it
 if count == 0 {
 _, err = postgresDb.Exec("CREATE database " + dbName)
 if err != nil {
 return
 }
 }

 db, err = connectToDB(host, port, username, password, dbName)
 return
}

Testing Microservices Chapter 10

[292]

That was a deep dive into automatically setting up a database for local tests. It's very handy
in many situations, even beyond microservices.

Implementing service test helpers
Let's look at some of the helper functions for testing services. The test_util package is
very basic and uses Go standard packages as dependencies:

package test_util

import ("context" "os" "os/exec")

It provides an error checking function and two functions to run and stop services.

Checking errors
One of the annoying things about Go is the explicit error checking you have to do all time.
The following snippet is very common; we call a function that returns a result and an error,
check the error, and if it's not nil, we do something (often, we just return):

...
 result, err := foo()
 if err != nil {
 return err
 }
...

The Check() function makes this a little more concise by deciding that it will just panic and
exit the program (or the current Go routine). This is an acceptable choice in a testing
scenario where you want to bail out once any failure is encountered:

func Check(err error) { if err != nil { panic(err) } }

The previous snippet can be shortened to the following:

...
 result, err := foo()
 Check(err)
...

If you have code that needs to check many errors, then these small savings accumulate.

Testing Microservices Chapter 10

[293]

Running a local service
One of the most important helper functions is RunService(). Microservices often depend
on other microservices. When testing a service, the test code often needs to run the
dependent services. Here, the code builds a Go service in its target directory and executes
it:

// Build and run a service in a target directory
func RunService(ctx context.Context, targetDir string, service string) {
 // Save and restore later current working dir
 wd, err := os.Getwd()
 Check(err)
 defer os.Chdir(wd)

 // Build the server if needed
 os.Chdir(targetDir)
 _, err = os.Stat("./" + service)
 if os.IsNotExist(err) {
 _, err := exec.Command("go", "build", ".").CombinedOutput()
 Check(err)
 }

 cmd := exec.CommandContext(ctx, "./"+service)
 err = cmd.Start()
 Check(err)
}

Running a service is important, but cleaning up at the end of the test by stopping all the
services that were started by the test is important too.

Stopping a local service
Stopping a service is as simple as calling the Done() method of the context. It can be used
to signal completion to any code that uses contexts:

func StopService(ctx context.Context) { ctx.Done() }

As you can see, there is a lot of work involved in running Delinkcious, or even just a few
parts of Delinkcious locally without the help of Kubernetes. When Delinkcious is running,
it's great for debugging and troubleshooting, but creating and maintaining this setup is
tedious and error-prone.

Also, even if all the integration tests work, they don't fully replicate the Kubernetes cluster,
and there may be many failure modes that are not captured. Let's see how we can do local
testing with Kubernetes itself.

Testing Microservices Chapter 10

[294]

Local testing with Kubernetes
One of the hallmarks of Kubernetes is that the same cluster can run anywhere. For real-
world systems, it's not always trivial if you use services that are not available locally or are
prohibitively slow or expensive to access locally. The trick is to find a good spot between
high fidelity and convenience.

Let's write a smoke test that takes Delinkcious through the primary workflow of getting
links, adding links, and checking their status.

Writing a smoke test
The Delinkcious smoke test is not an automated one. It can be, but it will require special
setup to make it work in the CI/CD environment. For real-world production systems, I
highly recommend that you have an automated smoke test (and other tests, too).

The code is in the cmd/smoke_test directory and consists of a single file, smoke.go. It
exercises Delinkcious though the REST API that's exposed by the API gateway. We could
write this test in any language because there is no client library. I chose to use Go for
consistency and to highlight how to consume a raw REST API from Go, working directly
with URLs, query strings, and JSON payload serialization. I also used the Delinkcious
object model link as a convenient serialization target.

The test expects a local Minikube cluster where Delinkcious is installed to be up and
running. Here is the flow of the test:

Delete our test link to start fresh.1.
Get links (and print them).2.
Add a test link.3.
Get links again (the new link should have a pending status).4.
Wait a couple of seconds.5.
Get links one more time (the new link should have a valid status now).6.

This simple smoke test goes through a significant portion of Delinkcious functionality, such
as the following:

Hitting the API gateway for multiple endpoints (GET links, POST new link,
DELETE link).
Verifying the caller identity (via access token).
The API gateway will forward the requests to the link manager service.

Testing Microservices Chapter 10

[295]

The link manager service will trigger the link checker serverless function.
The link checker will notify the link manager via NATS about the status of the
new link.

Later, we can extend the test to create social relationships, which will involve the social
graph manager, as well as checking the news service. This will establish a comprehensive
end-to-end test. For smoke test purposes, the aforementioned workflow is just fine.

Let's start with the list of imports, which includes a lot of standard Go libraries, as well as
the Delinkcious object_model (for the Link struct) package and the test_util package
(for the Check() function). We could easily avoid these dependencies, but they are familiar
and convenient:

package main

import ("encoding/json" "errors" "fmt" om "github.com/the-
gigi/delinkcious/pkg/object_model" . "github.com/the-
gigi/delinkcious/pkg/test_util" "io/ioutil" "log" "net/http" net_url
"net/url" "os" "os/exec" "time")

The next part defines a few variables. delinkciousUrl will be initialized later.
delinkciousToken should be available in the environment, and httpClient is the
standard Go HTTP client that we will use to call the Delinkcious REST API:

var (delinkciousUrl string delinkciousToken =
os.Getenv("DELINKCIOUS_TOKEN") httpClient = http.Client{})

With the preliminaries out of the way, we can focus on the test itself. It is surprisingly
simple and looks pretty much like the high-level description of the smoke test. It gets the
Delinkcious URL from Minikube using the following command:

$ minikube service api-gateway --url http://192.168.99.161:30866

Then, it calls the DeleteLink(), GetLinks(), and AddLink() functions, as follows:

func main() { tempUrl, err := exec.Command("minikube", "service", "api-
gateway", "--url").CombinedOutput() delinkciousUrl =
string(tempUrl[:len(tempUrl)-1]) + "/v1.0" Check(err)

// Delete link
 deleteLink("https://github.com/the-gigi")

 // Get links
 getLinks()

 // Add a new link

Testing Microservices Chapter 10

[296]

 addLink("https://github.com/the-gigi", "Gigi on Github")

 // Get links again
 getLinks()

 // Wait a little and get links again
 time.Sleep(time.Second * 3)
 getLinks()

}

The GetLinks() function constructs the proper URL, creates a new HTTP request, adds
the authentication token as a header (as required by the API gateway social login
authentication), and hits the /links endpoint. When the response comes back, it checks the
status code and bails out if there was an error. Otherwise, it deserializes the response's
body into the om.GetLinksResult struct and prints the links:

func getLinks() { req, err := http.NewRequest("GET",
string(delinkciousUrl)+"/links", nil) Check(err)

req.Header.Add("Access-Token", delinkciousToken)
 r, err := httpClient.Do(req)
 Check(err)

 defer r.Body.Close()

 if r.StatusCode != http.StatusOK {
 Check(errors.New(r.Status))
 }

 var glr om.GetLinksResult
 body, err := ioutil.ReadAll(r.Body)

 err = json.Unmarshal(body, &glr)
 Check(err)

 log.Println("======= Links =======")
 for _, link := range glr.Links {
 log.Println(fmt.Sprintf("title: '%s', url: '%s', status: '%s'",
link.Title, link.Url, link.Status))
 }

}

Testing Microservices Chapter 10

[297]

The addLink() function is very similar except that it uses the POST method and just
checks that the response has an OK status. The function takes a URL and a title and
constructs a URL (including encoding the query string) to comply with the API gateway
specification. If the status is not OK, it will use the contents of the body as an error message:

func addLink(url string, title string) { params := net_url.Values{}
params.Add("url", url) params.Add("title", title) qs := params.Encode()

log.Println("===== Add Link ======")
 log.Println(fmt.Sprintf("Adding new link - title: '%s', url: '%s'", title,
url))

 url = fmt.Sprintf("%s/links?%s", delinkciousUrl, qs)
 req, err := http.NewRequest("POST", url, nil)
 Check(err)

 req.Header.Add("Access-Token", delinkciousToken)
 r, err := httpClient.Do(req)
 Check(err)
 if r.StatusCode != http.StatusOK {
 defer r.Body.Close()
 bodyBytes, err := ioutil.ReadAll(r.Body)
 Check(err)
 message := r.Status + " " + string(bodyBytes)
 Check(errors.New(message))
 }

}

Great! Now, let's see the test in action.

Running the test
Before running the test, we should export DELINKCIOUS_TOKEN and make sure that
Minikube is running:

$ minikube status host: Running kubelet: Running apiserver: Running
kubectl: Correctly Configured: pointing to minikube-vm at 192.168.99.160

To run the test, we just type the following:

$ go run smoke.go

Testing Microservices Chapter 10

[298]

The results are printed to the console. There was already one invalid link, that
is, http://gg.com. Then, the test added the new link, that
is, https://github.com/the-gigi. The new link's status was initially pending and then,
after a couple of seconds when the link check succeeded, it became valid:

2019/04/19 10:03:48 ======= Links ======= 2019/04/19 10:03:48 title: 'gg',
url: 'http://gg.com', status: 'invalid' 2019/04/19 10:03:48 ===== Add Link
====== 2019/04/19 10:03:48 Adding new link - title: 'Gigi on Github', url:
'https://github.com/the-gigi' 2019/04/19 10:03:49 ======= Links =======
2019/04/19 10:03:49 title: 'gg', url: 'http://gg.com', status: 'invalid'
2019/04/19 10:03:49 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'pending' 2019/04/19 10:03:52
======= Links ======= 2019/04/19 10:03:52 title: 'gg', url:
'http://gg.com', status: 'invalid' 2019/04/19 10:03:52 title: 'Gigi on
Github', url: 'https://github.com/the-gigi', status: 'valid'

Telepresence
Telepresence (https:/ / www. telepresence. io/) is a special tool. It lets you run a service
locally as if it's running inside your Kubernetes cluster. Why is that interesting? Consider
the smoke test we just implemented. If we detect a failure, we would like to do the
following three things:

Find the root cause.
Fix it.
Verify that the fix works.

Since we discovered the failure only when running the smoke test on our Kubernetes
cluster, it is probably a failure that is not detected by our local unit tests. The normal way to
find the root cause (other than reviewing the code offline) is to add a bunch of logging
statements, add experimental debug code, comment out irrelevant sections and deploy the
modified code, rerun the smoke test, and try to get a sense about what's broken.

Deploying modified code to a Kubernetes cluster typically involves the following steps:

Modifying the code1.
Pushing the modified code to a Git repository (pollute your Git history with2.
changes that are only used for debugging)
Building an image (often requires running various tests)3.
Pushing the new image to an image registry4.
Deploying the new image to the cluster5.

https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/
https://www.telepresence.io/

Testing Microservices Chapter 10

[299]

This process is cumbersome and doesn't encourage ad hoc exploration and quick edit-
debug-fix cycles. There are tools we will explore in Chapter 11, Deploying Microservices, that
can skip pushing to the Git repository and automatically building your images for you, but
the image is still built and deployed to the cluster.

With Telepresence, you just make changes to the code locally, and Telepresence makes sure
that your local service becomes a full-fledged member of your cluster. It sees the same
environment and Kubernetes resources, it can communicate with other services though the
internal network, and for all intents and purposes it is part of the cluster.

Telepresence accomplishes this by installing a proxy inside the cluster that reaches out and
talks to your local service. This is pretty ingenious. Let's install Telepresence and start
playing with it.

Installing Telepresence
The installation of Telepresence requires the FUSE filesystem:

brew cask install osxfuse

Then, we can install Telepresence itself:

brew install datawire/blackbird/telepresence

Running a local link service via Telepresence
Let's run the link manager service locally via Telepresence. First, to demonstrate that it is
really the local service that is running, we can modify the service code. For example, we can
print a message when getting links, that is, "**** Local link service here!
calling GetLinks() ****".

Let's add it to the GetLinks endpoint in svc/link_service/service/transport.go:

func makeGetLinksEndpoint(svc om.LinkManager) endpoint.Endpoint { return
func(_ context.Context, request interface{}) (interface{}, error) {
fmt.Println("**** Local link service here! calling GetLinks() ****") req :=
request.(om.GetLinksRequest) result, err := svc.GetLinks(req) res :=
getLinksResponse{} for _, link := range result.Links { res.Links =
append(res.Links, newLink(link)) } if err != nil { res.Err = err.Error()
return res, err } return res, nil } }

Testing Microservices Chapter 10

[300]

Now, we can build the local link service (with flags recommended by Telepresence) and
swap the link-manager deployment with the local service:

$ cd svc/service/link_service
$ go build -gcflags "all=-N -l" .

$ telepresence --swap-deployment link-manager --run ./link_service
T: How Telepresence uses sudo:
https://www.telepresence.io/reference/install#dependencies
T: Invoking sudo. Please enter your sudo password.
Password:
T: Starting proxy with method 'vpn-tcp', which has the following
limitations: All processes are affected, only one telepresence can run per
machine, and you can't use other VPNs. You may need to add cloud hosts and
headless services with --also-proxy.
T: For a full list of method limitations see
https://telepresence.io/reference/methods.html
T: Volumes are rooted at $TELEPRESENCE_ROOT. See
https://telepresence.io/howto/volumes.html for details.
T: Starting network proxy to cluster by swapping out Deployment link-
manager with a proxy
T: Forwarding remote port 8080 to local port 8080.

T: Guessing that Services IP range is 10.96.0.0/12. Services started after
this point will be inaccessible if are outside this range; restart
telepresence if you can't access a new Service.
T: Setup complete. Launching your command.
2019/04/20 01:17:06 DB host: 10.100.193.162 DB port: 5432
2019/04/20 01:17:06 Listening on port 8080...

Note that Telepresence requires sudo privileges when you swap a deployment for the
following tasks:

Modifying your local network (via sshuttle and pf/iptables) for the vpn-
tcp method that's used for Go programs
Running the docker command (for some configurations on Linux)
Mounting the remote filesystem for access in a Docker container

Testing Microservices Chapter 10

[301]

To test our new changes, let's run the smoke test again:

$ go run smoke.go
2019/04/21 00:18:50 ======= Links ======= 2019/04/21 00:18:50 ===== Add
Link ====== 2019/04/21 00:18:50 Adding new link - title: 'Gigi on Github',
url: 'https://github.com/the-gigi' 2019/04/21 00:18:50 ======= Links
======= 2019/04/21 00:18:50 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'pending' 2019/04/21 00:18:54
======= Links ======= 2019/04/21 00:18:54 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'valid'

Looking at the our local service output, we can see that it was indeed invoked when the
smoke test ran:

**** Local link service here! calling GetLinks() ****
**** Local link service here! calling GetLinks() ****

As you may recall, the smoke test exercises the API gateway in the cluster, so the fact that
our local service was invoked shows that it is indeed running in the cluster. One interesting
fact is that the output of our local service is NOT captured by Kubernetes logs. If we search
the logs, we find nothing. The following command generates no output:

$ kubectl logs svc/link-manager | grep "Local link service here"

Now, let's see what it takes to attach the GoLand debugger to the running local service.

Attaching to the local link service with GoLand for live
debugging
This is the holy grail of debugging! We will be connecting to our local link service using the
GoLand interactive debugger while it's running as part of the Kubernetes cluster. It doesn't
get better than that. Let's get started:

First, follow the instructions here to get ready for attaching to a local Go process1.
with GoLand: https:/ /blog. jetbrains. com/ go/ 2019/ 02/06/ debugging- with-
goland-getting- started/ #debugging- a-running- application- on- the- local-
machine.
Then, click the Run | Attach to Process menu option in GoLand, which will2.
bring the following dialog box:

https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine
https://blog.jetbrains.com/go/2019/02/06/debugging-with-goland-getting-started/#debugging-a-running-application-on-the-local-machine

Testing Microservices Chapter 10

[302]

Unfortunately, when GoLand attaches to the process (successfully), Telepresence
mistakenly thinks that the local service has exited and tears down the tunnel to the
Kubernetes cluster and its own control process.

The local link service keeps running, but it's not connected to the cluster anymore. I opened
a GitHub issue for the Telepresence team: https:/ /github. com/telepresenceio/
telepresence/issues/ 1003.

I later contacted the Telepresence developers, dived into the code, and contributed a fix that
was merged recently.

See the following PR (Adding support for attaching a debugger to processes under
Telepresence): https:/ / github. com/ telepresenceio/ telepresence/ pull/ 1005.

If you're using VS Code for Go programming, you can try your luck by
following the information here: https:/ /github. com/Microsoft/ vscode-
go/wiki/ Debugging- Go- code- using- VS-Code.

So far, we have written a standalone smoke test and used Telepresence to be able to debug
locally services that are part of our Kubernetes cluster. It doesn't get any better for
interactive development. The next section will deal with test isolation.

Isolating tests
Isolation is a key topic with tests. The core idea is that, in general, your tests should be
isolated from your production environment, or even isolated from other shared
environments. If tests are not isolated, then changes the tests make can impact these
environments and vice versa (external changes to these environments can break tests that
make assumptions). Another level of isolation is between tests. If your tests run in parallel
and make changes to the same resources, then various race conditions can occur and tests
can interfere with each other and cause false negatives.

https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/issues/1003
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/telepresenceio/telepresence/pull/1005
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code
https://github.com/Microsoft/vscode-go/wiki/Debugging-Go-code-using-VS-Code

Testing Microservices Chapter 10

[303]

This can happen if tests don't run in parallel, but neglecting to clean up test A can make
changes that break test B. Another case where isolation can help is when multiple teams or
developers want to test incompatible changes. If two developers make incompatible
changes to a shared environment, at least one of them will experience failures. There are
various levels of isolation and they often have inverse relation to cost – more isolated tests
are more expensive to set up.

Let's consider the following isolation approaches:

Test clusters
Test namespaces
Cross namespace/ cluster

Test clusters
Cluster-level isolation is the highest form of isolation. You run your tests in clusters that are
totally independent of your production cluster. The challenge with this approach is how to
keep your test cluster/clusters in sync with your production cluster. On the software side,
this may not be too difficult with a good CI/CD system, but populating and migrating data
is often pretty complicated.

There are two forms of test clusters:

Each developer gets their own cluster.
Dedicated clusters for performing system tests.

Cluster per developer
Creating a cluster per developer is the ultimate level of isolation. The developer doesn't
have to worry about breaking other people's code or being impacted by other people's
code. However, there are some significant downsides for this approach, such as the
following:

It is often too expensive to provision a full-fledged cluster for each developer.
The provisioned cluster often doesn't have high fidelity with the production
system.
You will generally still need another integration environment to reconcile
changes from multiple teams/developers.

Testing Microservices Chapter 10

[304]

With Kubernetes, it may be possible to utilize Minikube as a local cluster per developer and
avoid many of the downsides.

Dedicated clusters for system tests
Creating dedicated clusters for system tests is a great way to consolidate changes and test
them one more time before deploying to production. The test cluster can run more rigorous
tests, depend on external resources, and interact with third-party services. Such test clusters
are expensive resources, and you must manage them carefully.

Test namespaces
Test namespaces are a lightweight form of isolation. They can run side-by-side next to the
production system and reuse some of the resources of the production environment (for
example, the control plane). It can be much easier to sync data, and on Kubernetes, in
particular, writing a custom controller to sync and audit the test namespace against the
production namespace is a good option.

The downside of test namespaces is the reduced level of isolation. By default, services in
different namespaces can still talk to each other. If your system is already using multiple
namespaces, then you have to be extremely careful to keep tests isolated from production.

Writing multi-tenant systems
Multi-tenant systems are systems where totally isolated entities share the same physical or
virtual resources. Kubernetes namespaces provide several mechanisms to support this. You
can define network policies that prevent connectivity between namespaces (except for
interaction with the Kubernetes API server). You can define resource quotas and limits per
namespace to prevent rogue namespaces from hogging all the cluster resources. If your
system is already set up for multi-tenancy, you can treat a test namespace as just another
tenant.

Cross namespace/cluster
Sometimes, your system is deployed into multiple coordinated namespaces or even
multiple clusters. Under these circumstances, you'll need to pay more attention on how to
design tests that mimic the same architecture, yet be careful that tests don't interact with
production namespaces or clusters.

Testing Microservices Chapter 10

[305]

End-to-end testing
End-to-end tests are very important for complex distributed systems. The smoke test we
wrote for Delinkcious is one example of an end-to-end test, but there are several other
categories. End-to-end tests often run against a dedicated environment such as a staging
environment, but in some cases they run against the production environment itself (with a
lot of attention). Since end-to-end tests typically take a long time to run and may be slow
and expansive to set up, it is not common to run them for every commit. Instead, it is
common to run them periodically (every night, every weekend, or every month) or ad hoc
(for example, before an important release). There are several categories of end-to-end tests.

We will explore some of the most important categories in the following sections, such as the
following:

Acceptance testing
Regression testing
Performance testing

Acceptance testing
Acceptance testing is a form of testing that verifies that the system behaves as expected. It is
up to the system stakeholder to decide what is considered as acceptable. It could be as
simple as a smoke test or as elaborate as testing all the possible paths through the code, all
failure modes, and all side effects (for example, which messages are written to log files).
One of the main benefits of a good battery of acceptance tests is that it is a forcing function
for describing your system in terms that make sense for non-engineer stakeholders, such as
product managers and top management. The ideal situation (I've never seen in it practice)
is that business stakeholders will be able to write and maintain acceptance tests themselves.

This is close in spirit to visual programming. I personally believe that all automated testing
should be written and maintained by the developers, but your mileage may vary.
Delinkcious currently exposes just a REST API and doesn't have a user facing web
application. Most systems these days have web applications that become the acceptance test
boundary. It is common to run acceptance tests in the browser. There are many good
frameworks. If you prefer to stay with Go, Agouti (https:/ /agouti. org/) is a great choice.
It has tight integration with Ginkgo and Gomega and can drive the browser though
PhantomJS, Selenium, or ChromeDriver.

https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/

Testing Microservices Chapter 10

[306]

Regression testing
Regression testing is a good option when you just want to make sure that the new system
doesn't deviate from the behavior of the current system. If you have comprehensive
acceptance tests, then you just have to make sure that the new version of your system
passes all the acceptance tests, just like the previous version did. However, if your
acceptance tests coverage is lacking, you can get some form of confidence by bombarding
the current system and the new system with the same inputs and verify that the outputs are
identical. This can be done with fuzz testing too, where you generate random inputs.

Performance testing
Performance testing is a large topic. Here, the goal is to measure the performance of the
system and not the correctness of its responses. That being said, errors can significantly
influence performance. Consider the following error handling options:

Return immediately when an error is encountered
Retry five times and sleep for one second between tries

Now, given these two strategies, consider a request that usually takes about two seconds to
process. A large number of errors for this request on a naive performance test will increase
performance when using the first strategy (because requests will not be processed and
return immediately), but will reduce performance when using the second strategy (requests
will be retried for five seconds before failing).

Microservices architectures often utilize asynchronous processing, queues, and other
mechanisms that can make it challenging to measure the actual performance of the system.
In addition, a lot of networking calls are involved, which might be volatile.

In addition, performance is not just about response time. It can include CPU and memory
utilization, a number of external API calls, access to network storage, and so on.
Performance is also tightly related to availability and cost. In a complex cloud-native
distributed system, performance tests can often inform and guide architectural decisions.

As you can see, end-to-end testing is quite a complicated issue and must be considered
with great care, because both the value and the costs of end-to-end tests are not trivial. One
of the most difficult resources to manage with end-to-end tests is the test data.

Let's take a look at some of the approaches for managing test data, their pros, and their
cons.

Testing Microservices Chapter 10

[307]

Managing test data
With Kubernetes, it is relatively easy to deploy a lot of software, including software made
of many components, as in typical microservice architectures. However, data is much less
dynamic. There are different ways to generate and maintain test data. Different tactics of
test data management are appropriate for different types of end-to-end tests. Let's look into
synthetic data, manual test data, and production snapshots.

Synthetic data
Synthetic data is test data that you generate programmatically. The pros and cons are as
follows:

Pros:
Easy to control and update because it is generated
programmatically
Easy to create bad data to test error handling
Easy to create a lot of data

Cons:
You have to write code to generate it.
It can get out of sync with the format of actual data.

Manual test data
Manual test data is similar to synthetic data, but you create it manually. The pros and cons
are as follows:

Pros:
Ultimate control, including verifying what the out should be
Can be based on example data and tweaked lightly
Easy to start quickly (no need to write and maintain code)
No need to filter or deanonymize

Cons:
Tedious and error-prone
Difficult to generate a lot of test data
Difficult to generate related data across multiple microservices
Have to manually update when the data format changes

Testing Microservices Chapter 10

[308]

Production snapshot
A production snapshot is literally recording real data and using it to populate your test
system. The pros and cons are as follows:

Pros:
High fidelity to real data
Recollection ensures test data is always in sync with production
data

Cons:
Need to filter and anonymize sensitive data
Data might not support all testing scenarios (for example, error
handling)
Might be difficult to collect all relevant data

Summary
In this chapter, we covered the topic of testing and its various flavors: unit testing,
integration testing, and all kinds of end-to-end testing. We also dived deep into how
Delinkcious tests are structured. We explored the link manager unit tests, added a new
smoke test, and introduced Telepresence for expediting the edit-test-debug life cycle
against a real Kubernetes cluster while modifying the code locally.

That being said, testing is a spectrum that has costs, and just blindly adding more and more
tests doesn't make your system better or higher quality. There are many important trade-
offs between quantity and quality of tests, such as the time it takes to develop and maintain
the tests, the time and resources it takes to run the tests, and the number and complexity of
problems that tests detect early. You should have enough context to make those tough
decisions for your system and choose the testing strategies that will work best for you.

It's also important to remember that testing evolves with the system, and the level of testing
often has to be ratcheted up when the stakes are higher, even for the same organization. If
you're a hobbyist developer that has a Beta product out there with a few users that just play
with it at home, you may not be as rigorous in your testing (unless it saves you
development time). However, as your company grows and gathers more users that use
your product for mission-critical applications, the impact of problems in your code might
require much more stringent testing.

Testing Microservices Chapter 10

[309]

In the next chapter, we will look at various deployment use cases and situations for
Delinkcious. Kubernetes and its ecosystem provides many interesting options and tools.
We will consider both robust deployment to production as well as quick developer-focused
scenarios.

Further reading
You can refer to the following references for more information regarding what was covered
in this chapter:

The Go Programming Language Package testing: https:/ / golang. org/ pkg/
testing/

Ginkgo: http:/ /onsi. github. io/ ginkgo/

Gomega: http:/ /onsi. github. io/gomega/

Agouti: https:/ /agouti. org/

Telepresence: https:/ / telepresence. io

https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/ginkgo/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
http://onsi.github.io/gomega/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://agouti.org/
https://telepresence.io
https://telepresence.io
https://telepresence.io
https://telepresence.io
https://telepresence.io
https://telepresence.io
https://telepresence.io

11
Deploying Microservices

In this chapter, we will deal with two related, yet separate themes: production deployments
and development deployments. The concerns, processes, and tools that are used for these
two areas are very different. In both cases, the goal is to deploy new software to the cluster,
but everything else is different. With production deployments, it's desirable to keep the
system stable, be able to have a predictable build and deployment experience, and most
importantly, to identify and be able to roll back bad deployments. With development
deployments, it's desirable to have isolated deployments for each developer, a fast
turnaround, and the ability to avoid cluttering source control or the continuous
integration / continuous deployment (CI/CD) system (including image registries) with
temporary development versions. Due to this, divergent emphasis is beneficial to isolate
production deployments from development deployments.

In this chapter, we will cover the following topics:

Kubernetes deployments
Deploying to multiple environments
Understanding deployment strategies (rolling updates, blue-green deployment,
canary deployment)
Rolling back deployments
Managing versions and upgrades
Local development deployments

Deploying Microservices Chapter 11

[311]

Technical requirements
In this chapter, we will install many tools, including the following:

KO
Ksync
Draft
Skaffold
Tilt

There is no need to install them ahead of time.

The code
The code is split between two Git repositories:

You can find the code samples here: https:/ /github. com/ PacktPublishing/
Hands-On- Microservices- with- Kubernetes/ tree/ master/ Chapter11

You can find the updated Delinkcious application here: https:/ / github. com/
the-gigi/ delinkcious/ releases/ tag/ v0. 9

Kubernetes deployments
We talked about deployments briefly in Chapter 1, Introduction to Kubernetes for Developers,
and we've used Kubernetes deployments in almost every chapter. However, before diving
into more sophisticated patterns and strategies, it will be useful to review the basic building
blocks and the relationships between Kubernetes deployments, Kubernetes services, and
scaling or autoscaling.

Deployments are Kubernetes resources that manage pods via a ReplicaSet. A Kubernetes
ReplicaSet is a group of pods that are identified by a common set of labels with a certain
number of replicas. The connection between the ReplicaSet to its pods is the
ownerReferences field in the pod's metadata. The ReplicaSet controller ensures that the
correct number of replicas are always running. If a pod dies for whatever reason, the
ReplicaSet controller will schedule a new pod in its place. The following diagram illustrates
this relationship:

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter11
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9
https://github.com/the-gigi/delinkcious/releases/tag/v0.9

Deploying Microservices Chapter 11

[312]

Deployment and ReplicaSet

We can also observe the ownership chain in the metadata with kubectl. First, let's get the
name of the social graph manager pod and find the name of its ReplicaSet owner from the
ownerReferences metadata:

$ kubectl get po -l svc=social-graph,app=manager
NAME READY STATUS RESTARTS AGE
social-graph-manager-7d84ffc5f7-bst7w 1/1 Running 53 20d

 $ kubectl get po social-graph-manager-7d84ffc5f7-bst7w -o
jsonpath="{.metadata.ownerReferences[0]['name']}"
 social-graph-manager-7d84ffc5f7

 $ kubectl get po social-graph-manager-7d84ffc5f7-bst7w -o
jsonpath="{.metadata.ownerReferences[0]['kind']}"
 ReplicaSet

Next, we'll get the name of the deployment that owns the ReplicaSet:

$ kubectl get rs social-graph-manager-7d84ffc5f7 -o
jsonpath="{.metadata.ownerReferences[0]['name']}"
 graph-manager

 $ kubectl get rs social-graph-manager-7d84ffc5f7 -o
jsonpath="{.metadata.ownerReferences[0]['kind']}"
 Deployment

So, if the ReplicaSet controller takes care of managing the number of pods, what does the
Deployment object add? The Deployment object encapsulates the concept of a deployment,
including a deployment strategy and rollout history. It also provides deployment-oriented
operations such as updating a deployment and rolling back a deployment, which we will
look at later.

Deploying Microservices Chapter 11

[313]

Deploying to multiple environments
In this section, we will create a staging environment for Delinkcious in a new staging
namespace. The staging namespace will be a full-fledged copy of the default namespace
that will serve as our production environment.

First, let's create the namespace:

$ kubectl create ns staging
namespace/staging created

Then, in Argo CD, we can create a new project called staging:

Argo CD staging project

Deploying Microservices Chapter 11

[314]

Now, we need to configure all our services so that Argo CD can sync them to the staging
environment. This can be a little tedious to do in the UI now that we have a substantial
amount of services. Instead, we will use the Argo CD CLI and a Python 3 program called
bootstrap_staging.py to automate the process. The program expects the following:

The staging namespace has been created.
The Argo CD CLI is installed and in the path.
The Argo CD service is available through the localhost on port 8080.
The Argo CD admin password is configured as the environment variable.

To expose Argo CD on the localhost at port 80, we can run the following command:

kubectl port-forward -n argocd svc/argocd-server 8080:443

Let's break down the program and understand how it works. This is a good foundation
where you can develop your own custom CI/CD solutions by automating CLI tools. The
only dependencies are Python's standard library modules: subprocess (allows you to run
command-line tools) and os (for accessing environment variables). Here, we only need to
run the Argo CD CLI.

The run() function hides all the implementation details and provides a convenient
interface where you just need to pass the arguments as a string. The run() function will
prepare a proper command list that can be passed to the subprocess module's
check_output() function, capture the output, and decode it from bytes to a string:

import os
 import subprocess

def run(cmd):
 cmd = ('argocd ' + cmd).split()
 output = subprocess.check_output(cmd)
 return output.decode('utf-8')

The login() function utilizes run(), gets the admin password from the environment, and
constructs the proper command string with all the necessary flags so that you can log in as
the admin user to Argo CD:

def login():
 host = 'localhost:8080'
 password = os.environ['ARGOCD_PASSWORD']
 cmd = f'login {host} --insecure --username admin --password
{password}'
 output = run(cmd)
 print(output)

Deploying Microservices Chapter 11

[315]

The get_apps() function takes a namespace and returns the relevant fields of the Argo CD
apps in it. This function will be used both on the default namespace and the staging
namespace. The function invokes the app list command, parses the output, and
populates a Python dictionary with the relevant information:

def get_apps(namespace):
 """ """
 output = run(f'app list -o wide')
 keys = 'name project namespace path repo'.split()
 apps = []
 lines = output.split('\n')
 headers = [h.lower() for h in lines[0].split()]
 for line in lines[1:]:
 items = line.split()
 app = {k: v for k, v in zip(headers, items) if k in keys}
 if app:
 apps.append(app)
 return apps

The create_project() function takes all the necessary information to create a new Argo
CD project. Note that multiple Argo CD projects can coexist in the same Kubernetes
namespace. It also allows access to all cluster resources, which is necessary to create
applications. Since we have already created the project in the Argo CD UI, there is no need
to use it in this program, but it's good to have it around in case we need to create more
projects in the future:

def create_project(project, cluster, namespace, description, repo):
 """ """
 cmd = f'proj create {project} --description {description} -d
{cluster},{namespace} -s {repo}'
 output = run(cmd)
 print(output)

 # Add access to resources
 cmd = f'proj allow-cluster-resource {project} "*" "*"'
 output = run(cmd)
 print(output)

The last generic function is called create_app(), and takes all the necessary information
for creating an Argo CD application. It assumes that Argo CD is running inside the
destination cluster, so --dest-server is always https://kubernetes.default.svc:

def create_app(name, project, namespace, repo, path):
 """ """
 cmd = f"""app create {name}-staging --project {project} --dest-server
https://kubernetes.default.svc

Deploying Microservices Chapter 11

[316]

 --dest-namespace {namespace} --repo {repo} --path {path}"""
 output = run(cmd)
 print(output)

The copy_apps_from_default_to_staging() function uses some of the functions we
declared earlier. It gets all the apps from the default namespace, iterates over them, and
creates the same app in the staging project and namespace:

def copy_apps_from_default_to_staging():
 apps = get_apps('default')

 for a in apps:
 create_app(a['name'], 'staging', 'staging', a['repo'], a['path'])

Finally, here's the main function:

def main():
 login()
 copy_apps_from_default_to_staging()

 apps = get_apps('staging')
 for a in apps:
 print(a)

 if __name__ == '__main__':
 main()

Now that we have two environments, let's consider some workflows and promotion
strategies. Whenever a change is pushed, GitHub CircleCI will detect it. If all the tests pass,
it will bake a new image for each service and push it to Docker Hub. The question is, what
should happen on the deployment side? Argo CD has sync policies, and we can configure
them to automatically sync/deploy whenever a new image is available on Docker Hub. For
example, a common practice is to automatically deploy to staging, deploying to production
only after various tests (for example, the smoke test) have passed on staging. The
promotion from staging to production may be automated or manual.

There is no one-size-fits-all answer. Even within the same organization, different
deployment policies and strategies are often employed for projects or services with
different sets of requirements.

Let's look at some of the more common deployment strategies and what use cases they
enable.

Deploying Microservices Chapter 11

[317]

Understanding deployment strategies
A deployment of a new version of a service in Kubernetes means replacing the N backing
pods of the service, which run version X with N backing pods running version X+1. There
are multiple ways to get from N pods running version X, to zero pods running version X
and N pods running version X+1. Kubernetes deployments support two strategies out of
the box: Recreate and RollingUpdate (the default strategy). Blue-green deployments
and canary deployments are two other popular strategies. Before diving into the various
deployment strategies, as well as their pros and cons, it's important to understand the
process of updating a deployment in Kubernetes.

A rollout of a new set of pods for a deployment happens if and only if the deployment
spec's pod template has changed. This typically happens when you change the image
version of the pod template or the set of labels for a container. Note that scaling a
deployment (increasing or decreasing its number of replicas) is not an update, so the
deployment strategy is not used. The same version of the image as the current running
pods will be used in any new pods that are added.

Recreating deployment
A trivial yet naive way to do this is to terminate all the pods running version X, and then
create a new deployment where the image version in the pod template spec is set to X+1.
There are a couple of problems with this approach:

The service will be unavailable until the new pods come online.
If the new version has issues, the service will be unavailable until the process is
reversed (ignoring errors and data corruption).

The Recreate deployment strategy is appropriate for development, or when you prefer to
have a short outage, but ensure that there is no mix of versions that are live at the same
time. The short outage may be acceptable, for example, if the service pulls its work from a
queue and there are no adverse consequences if the service is briefly down while upgrading
to a new version. Another situation is if you want to change the public API of the service or
one of its dependencies in a non-backward compatible way. In this case, the current pods
must be terminated in one fell swoop, and the new pods must be deployed. There are
solutions for multi-phase deployments of incompatible changes, but in some cases, it is
easier and acceptable to just cut the cord and pay the cost of a short outage.

Deploying Microservices Chapter 11

[318]

To enable this strategy, edit the deployment's manifest, change the strategy type to be
Recreate, and remove the rollingUpdate section (this is only allowed when the type is
RollingUpdate):

$ kubectl edit deployment user-manager
 deployment.extensions/user-manager edited

 $ kubectl get deployment user-manager -o yaml | grep strategy -A 1
 strategy:
 type: Recreate

For most services, it is desirable to have service continuity and zero downtime when
upgrading, as well as an instant rollback in case a problem is detected. The
RollingUpdate strategy addresses these situations.

Rolling updates
The default deployment strategy is RollingUpdate:

$ kubectl get deployment social-graph-manager -o yaml | grep strategy -A 4
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate

Rolling updates work as follows: the total number of pods (old and new) is going to be the
current replica count, plus the max surge. The deployment controller will start replacing
old pods with new pods, making sure not to exceed the limit. The max surge can be an
absolute number, such as 4, or a percentage, such as 25%. For example, if the number of
replicas for the deployment is 4 and the max surge is 25%, then an additional new pod can
be added, and one of the old pods can be terminated. maxUnavailable is the number of
pods that are below the replica count during a deployment.

Deploying Microservices Chapter 11

[319]

The following diagram illustrates how rolling updates work:

Rolling update

Rolling updates make sense when the new version is compatible with the current version.
The number of active pods that are ready to handle requests remains within a reasonable
range of the replica count that you specify using maxSurge and maxUnavailable, and
gradually, all the current pods are replaced with new pods. The overall service is not
disrupted.

Sometimes, however, you must replace all the pods at once, and for critical services that
must remain available, the Recreate strategy doesn't work. This is where blue-green
deployments come in.

Deploying Microservices Chapter 11

[320]

Blue-green deployment
Blue-green deployment is a well-known pattern. The idea is that you don't update the
existing deployment; instead, you create a brand new deployment with the new version.
Initially, your new version doesn't service traffic. Then, when you verify that the new
deployment is up and running (you can even run some smoke tests against it), you switch
all the traffic in one fell swoop from the current version to the new version. If you
encounter any problems after you switch to the new version, you can instantly switch all
the traffic back to the previous deployment, which is still up and running. When you are
confident that the new deployment is doing well, you can destroy the previous
deployment.

One of the greatest advantages of blue-green deployments is that they don't have to operate
at the level of a single Kubernetes deployment. This can be critical in a microservice
architecture where you must update multiple interacting services at the same time. If you
tried to do it just by updating multiple Kubernetes deployments at the same time, there
could be some services that have already been replaced and some that weren't (even if you
accept the cost of the Recreate strategy). If a single service experiences problems during
deployment, you now have to roll back all the other services. With blue-green deployments,
you are safe from these issues and are in total control of when you want to switch to the
new version across all services at once.

How do you switch from blue (current) to green (new)? The traditional approach that
works with Kubernetes is to do it at the load balancer level. Most systems that require such
a sophisticated deployment strategy will have a load balancer. When you use the load
balancer to switch traffic, your green deployment includes both a green Kubernetes
deployment and a green Kubernetes service, as well as any other resources if anything
needs to change, such as secrets and config maps. If you need to update multiple services,
then you'll have a collection of green resources that all refer to each other.

If you have an Ingress controller such as contour, then it can often be used to switch traffic
from blue to green and back, if necessary.

Deploying Microservices Chapter 11

[321]

The following diagram illustrates how blue-green deployments work:

Blue-green deployment

Let's do a single-service blue-green deployment for the link manager service. We'll call our
starting point blue, and we want to deploy the green version of link manager without
disruption. Here's the plan:

Add the deployment: blue label to the current link-manager deployment.1.
Update the link-manager service selector to match the deployment: blue2.
label.
Implement the new version of LinkManager that prefixes the description of each3.
link with the [green] string.

Deploying Microservices Chapter 11

[322]

Add the deployment: green label to the deployment's pod template spec.4.
Bump the version number.5.
Let CircleCI create a new version.6.
Deploy the new version as a separate deployment called green-link-manager.7.
Update the link-manager service selector to match the deployment: green8.
label.
Verify the description of the returned links from the service and include the9.
[green] prefix.

This may sound complicated, but just like many CI/CD processes, once you establish a
pattern, you can automate and build tooling around it. This lets you execute complex
workflows without human involvement, or inject human review and approval at important
junctures (for example, before really deploying to production). Let's go over the steps in
detail.

Adding deployment – the blue label
We can just edit the deployment and manually add deployment: blue, in addition to the
existing svc: link and app: manager labels:

$ kubectl edit deployment link-manager
deployment.extensions/link-manager edited

This will trigger a redeployment of the pods because we changed the labels. Let's verify
that the new pods have the deployment: blue label. Here is a pretty fancy kubectl
command that uses custom columns to display the name, the deployment label, and the IP
addresses of all the pods that match svc=link and app=manager.

As you can see, all three pods have the deployment:blue label, as expected:

$ kubectl get po -l svc=link,app=manager
 -o custom
columns="NAME:.metadata.name,DEPLOYMENT:.metadata.labels.deployment,IP:.sta
tus.podIP"
NAME DEPLOYMENT IP
link-manager-65d4998d47-chxpj blue 172.17.0.37
link-manager-65d4998d47-jwt7x blue 172.17.0.36
link-manager-65d4998d47-rlfhb blue 172.17.0.35

Deploying Microservices Chapter 11

[323]

We can even verify that the IP addresses match the endpoints of the link-manager
service:

$ kubectl get ep link-manager
 NAME ENDPOINTS AGE
 link-manager 172.17.0.35:8080,172.17.0.36:8080,172.17.0.37:8080 21d

Now that the pods are labeled with the blue label, we need to update the service.

Updating the link-manager service to match blue pods
only
The service, as you may recall, matches any pods with the svc: link and app:
manager labels:

$ kubectl get svc link-manager -o custom-columns=SELECTOR:.spec.selector
SELECTOR
map[app:manager svc:link]

By adding the deployment: blue label, we didn't interfere with the matching. However,
in preparation for our green deployment, we should make sure that the service only
matches the pods of the current blue deployment.

Let's add the deployment: blue label to the service's selector:

selector: app: manager svc: link deployment: blue

We can verify that it worked by using the following command:

$ kubectl get svc link-manager -o custom-columns=SELECTOR:.spec.selector
SELECTOR
map[app:manager deployment:blue svc:link]

Before we switch to the green version, let's make a change in the code to make it clear that's
it's a different version.

Deploying Microservices Chapter 11

[324]

Prefixing the description of each link with [green]
Let's do this in the transport layer of the link service.

The target file is https:/ / github. com/ the- gigi/ delinkcious/ blob/ master/ svc/link_
service/service/ transport. go#L26.

The change is very minimal. In the newLink() function, we will prefix the description with
the [green] string:

func newLink(source om.Link) link {
return link{
Url: source.Url,
Title: source.Title,
Description: "[green] " + source.Description,
Status: source.Status,
Tags: source.Tags,
CreatedAt: source.CreatedAt.Format(time.RFC3339),
UpdatedAt: source.UpdatedAt.Format(time.RFC3339), } }

In order to deploy our new green version, we need to create a new image. This requires
bumping the Delinkcious version number.

Bumping the version number
The Delinkcious version is maintained in the [build.sh] file at (https:/ / github. com/
the-gigi/delinkcious/ blob/ master/ build. sh#L6) that CircleCI is invoked from, that is,
the [.circleci/config.yml] file at (https:/ /github. com/ the- gigi/ delinkcious/
blob/master/.circleci/ config. yml#L28) file.

The STABLE_TAG variable controls the version numbers. The current version is 0.3. Let's
bump it up to 0.4:

#!/bin/bash
set -eo pipefail
IMAGE_PREFIX='g1g1' STABLE_TAG='0.4'
TAG="{CIRCLE_BUILD_NUM}" ...

OK. We bumped the version and we're ready to have CircleCI build a new image.

https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/svc/link_service/service/transport.go#L26
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/build.sh#L6
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28
https://github.com/the-gigi/delinkcious/blob/master/.circleci/config.yml#L28

Deploying Microservices Chapter 11

[325]

Letting CircleCI build the new image
Thanks to GitOps and our CircleCI automation, this step just involves pushing our changes
to GitHub. CircleCI detects the change, builds the new code, creates a new Docker image,
and pushes it to the Docker Hub registry. Here it is:

Docker Hub link service 0.4

Now that the new image has been built and pushed to the Docker Hub registry, we can
deploy it to the cluster as the green deployment.

Deploying Microservices Chapter 11

[326]

Deploying the new (green) version
OK – we've got our new delinkcious-link:0.4 image on Docker Hub. Let's deploy it to
the cluster. Remember that we want to deploy it side by side with our current (blue)
deployment, which is called link-manager. Let's create a new deployment called green-
link-manager. The differences it has to our blue deployment are as follows:

The name is green-link-manager.
The pod template spec has the deployment: green label.
The image version is 0.4.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: green-link-manager
 labels:
 svc: link
 app: manager
 deployment: green
spec:
 replicas: 3
 selector:
 matchLabels:
 svc: link
 app: manager
 deployment: green
 template:
 metadata:
 labels:
 svc: link
 app: manager
 deployment: green
 spec:
 serviceAccount: link-manager
 containers:
 - name: link-manager
 image: g1g1/delinkcious-link:0.4
 imagePullPolicy: Always
 ports:
 - containerPort: 8080
 envFrom:
 - configMapRef:
 name: link-manager-config
 volumeMounts:
 - name: mutual-auth
 mountPath: /etc/delinkcious

Deploying Microservices Chapter 11

[327]

 readOnly: true
 volumes:
 - name: mutual-auth
 secret:
 secretName: link-mutual-auth

Now, it's time to deploy:

$ kubectl apply -f green_link_manager.yaml
deployment.apps/green-link-manager created

Before we update the service to use the green deployment, let's review the cluster. As you
can see, we have the blue and green deployments running side by side:

$ kubectl get po -l svc=link,app=manager -o custom-
columns="NAME:.metadata.name,DEPLOYMENT:.metadata.labels.deployment"
NAME DEPLOYMENT
green-link-manager-5874c6cd4f-2ldfn green
green-link-manager-5874c6cd4f-mvm5v green
green-link-manager-5874c6cd4f-vcj9s green
link-manager-65d4998d47-chxpj blue
link-manager-65d4998d47-jwt7x blue
link-manager-65d4998d47-rlfhb blue

Updating the link-manager service to use the green
deployment
First, let's make sure that the service is still using the blue deployment. When we get a link
description, there shouldn't be any [green] prefix:

$ http "${DELINKCIOUS_URL}/v1.0/links" "Access-Token:
${DELINKCIOUS_TOKEN}"'
HTTP/1.0 200 OK
Content-Length: 214
Content-Type: application/json
Date: Tue, 30 Apr 2019 06:02:03 GMT
Server: Werkzeug/0.14.1 Python/3.7.2

{
 "err": "",
 "links": [
 {
 "CreatedAt": "2019-04-30T06:01:47Z",
 "Description": "nothing to see here...",
 "Status": "invalid",
 "Tags": null,

Deploying Microservices Chapter 11

[328]

 "Title": "gg",
 "UpdatedAt": "2019-04-30T06:01:47Z",
 "Url": "http://gg.com"
 }
]
}

The description is nothing to see here.... This time, instead of interactively editing
the service using kubectl edit, we will use the kubectl patch command to apply a
patch that will switch the deployment label from blue to green. Here is the patch
file – green-patch.yaml:

 spec:
 selector:
 deployment: green

Let's apply the patch:

$ kubectl patch service/link-manager --patch "$(cat green-patch.yaml)"
 service/link-manager patched

The last step is to verify that the service now uses the green deployment.

Verifying that the service now uses the green pods to
serve requests
Let's do this methodically, starting with the selector in the service:

$ kubectl get svc link-manager -o jsonpath="{.spec.selector.deployment}"
 green

OK – the selector is green. Let's get the links again and see if the [green] prefix shows up:

$ http "${DELINKCIOUS_URL}/v1.0/links" "Access-Token:
${DELINKCIOUS_TOKEN}"'

 HTTP/1.0 200 OK
 Content-Length: 221
 Content-Type: application/json
 Date: Tue, 30 Apr 2019 06:19:43 GMT
 Server: Werkzeug/0.14.1 Python/3.7.2

 {
 "err": "",
 "links": [
 {

Deploying Microservices Chapter 11

[329]

 "CreatedAt": "2019-04-30T06:01:47Z",
 "Description": "[green] nothing to see here...",
 "Status": "invalid",
 "Tags": null,
 "Title": "gg",
 "UpdatedAt": "2019-04-30T06:01:47Z",
 "Url": "http://gg.com"
 }
]
 }

Yes! The description is now [green] nothing to see here...

Now, we can get rid of the blue deployment and our service will continue running against
the green deployment:

$ kubectl delete deployment link-manager
 deployment.extensions "link-manager" deleted

 $ kubectl get po -l svc=link,app=manager
 NAME READY STATUS RESTARTS AGE
 green-link-manager-5874c6cd4f-2ldfn 1/1 Running 5 1h
 green-link-manager-5874c6cd4f-mvm5v 1/1 Running 5 1h
 green-link-manager-5874c6cd4f-vcj9s 1/1 Running 5 1h

We have successfully performed a blue-green deployment on Delinkcious. Let's discuss the
last pattern, that is, canary deployments.

Canary deployments
Canary deployments are another sophisticated deployment pattern. Consider the situation
of a massive distributed system with lots of users. You want to introduce a new version of
the service. You have tested this change to the best of your ability, but the production
system is too complex to mimic completely in a staging environment. As a result, you can't
be sure that your new version will not cause some problems. What do you do? You use
canary deployments. The idea is that some changes must be tested in production before you
can be reasonably sure they work as expected. The canary deployment patterns allow you
to limit the damage the new version might cause if something goes wrong.

Basic canary deployments on Kubernetes work by running the current version on most of
your pods, and just a small number of pods with the new version. Most of the requests will
be processed by the current version, and only a small proportion will be processed by the
new version.

Deploying Microservices Chapter 11

[330]

This assumes a round-robin load balancing algorithm (the default), or any other algorithm
that distributes requests more or less uniformly across all pods.

The following diagram illustrates what canary deployments look like:

Canary deployment

Note that canary deployments require that your current version and your new version can
coexist. For example, if your change involved a schema change, then your current and new
versions are incompatible, and naive canary deployment will not work.

The nice thing about the basic canary deployment is that it works using existing Kubernetes
objects and can be configured by an operator from the outside. There's no need for custom
code or installing additional components into your cluster. However, the basic canary
deployment has several limitations:

The granularity is K/N (the worst case is singletons where N = 1).
Can't control different percentages for different requests to the same service (for
example, canary deployments of read requests only).
Can't control all requests for a user who goes to the same version.

In some cases, these limitations are too severe and another solution is needed. Sophisticated
canary deployments typically utilize application-level knowledge. This can be done
through Ingress objects, a service mesh, or a dedicated application-level traffic shaper. We
will look at an example of this in Chapter 13, Service Mesh – Working with Istio.

It's time for a hands-on canary deployment of the link service.

Deploying Microservices Chapter 11

[331]

Employing a basic canary deployment for Delinkcious
Creating a canary deployment is very similar to blue-green deployment. Our link-
manager service currently runs the green deployment. This means that it has a selector
with deployment: green. Canaries are yellow, so we will create a new version of the
code that prefixes the link description with [yellow]. Let's aim for 10% of requests going
to the new version. In order to achieve this, we will scale the current versions to nine
replicas and add a deployment with one pod with the new version. Here is the canary
trick – we will drop the deployment label from the service selector. This means that it will
select both pods; that is, deployment: green and deployment: yellow. We could also
drop the labels from the deployments (because nobody is selecting based on this label), but
it's good to keep them around as metadata, and also in case we want to do another blue-
green deployment.

Here is the plan:

Build a new version of the code.1.
Create a deployment with a replica count of one for the new version, which is2.
labeled as deployment: yellow.
Scale the current green deployment to nine replicas.3.
Update the service to select for svc: link and app: manager (ignore4.
deployment: <color>).
Run multiple queries against the service and verify that the ratio of requests that5.
are being served by the canary deployment is 10%.

The code change is trivial: [green] -> [yellow]:

func newLink(source om.Link) link {
 return link{
 Url: source.Url,
 Title: source.Title,
 Description: "[green] " + source.Description,
 Status: source.Status,
 Tags: source.Tags,
 CreatedAt: source.CreatedAt.Format(time.RFC3339),
 UpdatedAt: source.UpdatedAt.Format(time.RFC3339),
 }
 }

Deploying Microservices Chapter 11

[332]

Then, we need to bump the version in build.sh from 0.4 to 0.5:

#!/bin/bash

 set -eo pipefail

 IMAGE_PREFIX='g1g1'
 STABLE_TAG='0.4'

 TAG="${STABLE_TAG}.${CIRCLE_BUILD_NUM}"
...

Once we push these changes to GitHub, CircleCI will build and push a new image to
DockerHub: g1g1/delinkcious-link:0.5.

At this point, we can create a deployment with the new 0.5 version, a single replica, and
updated labels. Let's call it yellow_link_manager.yaml:

apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: yellow-link-manager
 labels:
 svc: link
 app: manager
 deployment: yellow
 spec:
 replicas: 1
 selector:
 matchLabels:
 svc: link
 app: manager
 deployment: yellow
 template:
 metadata:
 labels:
 svc: link
 app: manager
 deployment: yellow
 spec:
 serviceAccount: link-manager
 containers:
 - name: link-manager
 image: g1g1/delinkcious-link:0.5
 imagePullPolicy: Always
 ports:
 - containerPort: 8080

Deploying Microservices Chapter 11

[333]

 envFrom:
 - configMapRef:
 name: link-manager-config
 volumeMounts:
 - name: mutual-auth
 mountPath: /etc/delinkcious
 readOnly: true
 volumes:
 - name: mutual-auth
 secret:
 secretName: link-mutual-auth

The next step is deploying our canary:

$ kubectl apply -f yellow_link_manager.yaml
 deployment.apps/yellow-link-manager created

Before changing the service to include the canary deployment, let's scale the green
deployment to 9 replicas so that it can receive 90% of the traffic once we activate our
canary:

$ kubectl scale --replicas=9 deployment/green-link-manager
 deployment.extensions/green-link-manager scaled

 $ kubectl get po -l svc=link,app=manager
 NAME READY STATUS RESTARTS AGE
 green-link-manager-5874c6cd4f-2ldfn 1/1 Running 10 15h
 green-link-manager-5874c6cd4f-9csxz 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-c5rqn 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-mvm5v 1/1 Running 10 15h
 green-link-manager-5874c6cd4f-qn4zj 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-r2jxf 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-rtwsj 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-sw27r 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-vcj9s 1/1 Running 10 15h
 yellow-link-manager-67847d6b85-n97b5 1/1 Running 4 6m20s

Alright, we have nine green pods and one yellow (canary) pod running. Let's update the
service to select just based on the svc: link and app: manager labels, which will include
all ten pods. We need to remove the deployment: green label.

The YAML patch file method we've used before doesn't work here, because it can only add
or update a label. We'll use a JSON patch this time with the remove operation and specify
the path to the deployment key in the selector.

Deploying Microservices Chapter 11

[334]

Note that before the patch, the selector had deployment: green, and that after the patch,
only svc: link and app: manager remain:

$ kubectl get svc link-manager -o custom-
columns=NAME:.metadata.name,SELECTOR:.spec.selector
 NAME SELECTOR
 link-manager map[app:manager deployment:green svc:link]

 $ kubectl patch svc link-manager --type=json -p='[{"op": "remove", "path":
"/spec/selector/deployment"}]'
 service/link-manager patched

 $ kubectl get svc link-manager -o custom-
columns=NAME:.metadata.name,SELECTOR:.spec.selector
 NAME SELECTOR
 link-manager map[app:manager svc:link]

It's showtime. We'll send 30 GET requests to Delinkcious and check the description:

$ for i in {1..30}
 > do
 > http "${DELINKCIOUS_URL}/v1.0/links" "Access-Token:
${DELINKCIOUS_TOKEN}" | jq .links[0].Description
 > done

 "[green] nothing to see here..."
 "[yellow] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[yellow] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[yellow] nothing to see here..."
 "[green] nothing to see here..."
 "[yellow] nothing to see here..."
 "[yellow] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."

Deploying Microservices Chapter 11

[335]

 "[green] nothing to see here..."
 "[yellow] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."
 "[green] nothing to see here..."

Interesting – we've got 24 green responses and 6 yellow responses. This is much higher
than expected (three yellow responses on average). I ran it a couple more times and got six
yellow responses again for the second run, and just one yellow response for the third run.
This is all running on Minikube, so load balancing may be a little special. Let's declare
victory.

Using canary deployments for A/B testing
Canary deployments can also be used to support A/B testing. We can deploy as many
versions as we want, as long as we have enough pods to juggle the load. Each version could
include special code to log the relevant data, and then you can gain insights and correlate
user behavior with specific versions. This is possible, but you'll probably have to build a lot
of tooling and conventions to make it usable. If A/B testing is an important part of your
design workflow, I recommend going with one of the established A/B testing solutions. The
A/B testing wheel is not worth reinventing, in my opinion.

Let's consider what to do when things go wrong and we need to get back to a working state
as soon as possible.

Rolling back deployments
When things go wrong in production after a deployment, the best-practice response is to
roll back the changes and get back to the last previous version known to work. The way
you go about this depends on the deployment pattern you've employed. Let's consider
them one by one.

Deploying Microservices Chapter 11

[336]

Rolling back standard Kubernetes deployments
Kubernetes deployments keep a history. For example, if we edit the user manager
deployment and set the image version to 0.5, then we can see that there are two revisions
now:

$ kubectl get po -l svc=user,app=manager -o
jsonpath="{.items[0].spec.containers[0].image}"
 g1g1/delinkcious-user:0.5

 $ kubectl rollout history deployment user-manager
 deployment.extensions/user-manager
 REVISION CHANGE-CAUSE
 1 <none>
 2 <none>

The CHANGE-CAUSE column is not recorded by default. Let's make another change to
version 0.4, but using the --record=true flag:

$ kubectl edit deployment user-manager --record=true
 deployment.extensions/user-manager edited

 $ kubectl rollout history deployment user-manager
 deployment.extensions/user-manager
 REVISION CHANGE-CAUSE
 1 <none>
 2 <none>
 3 kubectl edit deployment user-manager --record=true

OK. Let's roll back to the original 0.3 version. That would be revision 1. We can look at this
by using the rollout history command at specific revisions, too:

$ kubectl rollout history deployment user-manager --revision=1
 deployment.extensions/user-manager with revision #1
 Pod Template:
 Labels: app=manager
 pod-template-hash=6fb9878576
 svc=user
 Containers:
 user-manager:
 Image: g1g1/delinkcious-user:0.3
 Port: 7070/TCP
 Host Port: 0/TCP
 Limits:
 cpu: 250m
 memory: 64Mi
 Requests:

Deploying Microservices Chapter 11

[337]

 cpu: 250m
 memory: 64Mi
 Environment Variables from:
 user-manager-config ConfigMap Optional: false
 Environment: <none>
 Mounts: <none>
 Volumes: <none>

As you can see, revision 1 has version 0.3. The command to roll back is as follows:

$ kubectl rollout undo deployment user-manager --to-revision=1
 deployment.extensions/user-manager rolled back

 $ kubectl get deployment user-manager -o
jsonpath="{.spec.template.spec.containers[0].image}"
 g1g1/delinkcious-user:0.3

Rolling back will use the same mechanics of a rolling update, gradually replacing pods
until all the running pods have the correct version.

Rolling back blue-green deployments
Blue-green deployments are not supported directly by Kubernetes. Switching back from
green to blue (assuming that the blue deployment's pods are still running) is very simple.
You just change the Service selector and select deployment: blue instead of
deployment: green. The instant switch from blue to green and vice versa is the main
motivation for the blue-green deployment pattern, so it's no wonder that it's that easy. Once
you've switched back to blue, you can delete the green deployment and figure out what
went wrong.

Rolling back canary deployments
Canary deployments are arguably even simpler to roll back. The majority of your pods run
the tried and true version. The canary deployment's pods serve just a small amount of
requests. If you detect that something is wrong with the canary deployment, simply delete
the deployment. Your main deployment will keep serving incoming requests. If necessary
(for example, your canary deployment served a small but significant amount of traffic), you
can scale up your main deployment to make up for the canary pods that are no longer
there.

Deploying Microservices Chapter 11

[338]

Dealing with a rollback after a schema, API, or
payload change
The deployment strategy you choose often depends on the nature of the change the new
version introduces. For example, if your change involved a breaking database schema
change, such as splitting table A into two tables, B and C, then you can't simply deploy the
new version that reads to/writes from B and C. The database needs to be migrated first.
However, if you run into problems and want to roll back to the previous version, then
you'll have the same problem in the reverse direction. Your old version will try and read
from/write to table A, which doesn't exist anymore. The same issue can happen if you
change the format of a configuration file or payload on some network protocol. API
changes can break clients if you don't coordinate them.

The way to address those compatibility issues is to perform those changes across multiple
deployments, where each deployment is fully compatible with the previous deployment.
This takes some planning and work. Let's consider the case of splitting table A into tables B
and C. Suppose we're on version 1.0 and eventually want to end up with version 2.0.

Our first change will be marked as version 1.1. It will perform the following:

Create tables B and C (but leave table A in place).
Change the code to write to B and C.
Change the code to read from both A, B, and C and merge the results (old data
comes from A, while new data comes from B and C).
If data needs to be deleted, it is just marked as deleted instead.

We deploy version 1.1 and if we see that something is wrong, we will roll back to version
1.0. All our old data is still in table A, which version 1.0 is fully compatible with. We might
have lost or corrupted a small amount of data in tables B and C, but that's the price we have
to pay for not testing properly earlier. Version 1.1 could have been a canary deployment, so
only a small amount of requests have been lost.

Then, we discover the issues, fix them, and deploy version 1.2, which is just like how
version 1.1 writes to B and C, but reads from A, B, and C and doesn't delete data from A.

We observe for a while until we're confident that version 1.2 works as expected.

The next step is to migrate the data. We write the data in table A into tables B and C. The
active deployment, version 1.2, keeps reading from B and C and only merges missing data
from A. We still keep all the old data in A until we finish all code changes.

Deploying Microservices Chapter 11

[339]

At this point, all the data is in tables B and C. We deploy version 1.3, which ignores table A
and works fully against tables B and C.

We observe again, and can go back to version 1.2 if we encounter any problems with 1.3
and release version 1.4, 1.5, and so on. However, at some point, our code will work as
expected and then we can rename/retag the final version as 2.0, or just cut a new version
that is identical except for the version number.

The last step is to delete table A.

This can be a slow process that requires running a lot of tests whenever deploying a new
version, but it is necessary when you're making dangerous changes that have the potential
to corrupt your data.

Of course, you'll back up your data before starting, but for high-throughput systems, even
short outages during bad upgrades can be very costly.

The bottom line is that updates that include schema changes are complicated. The way to
manage it is to perform a multi-phase upgrade, where each phase is compatible with the
previous phase. You move forward only when you have proved that the current phase
works correctly. The benefit of the principle of a single microservice owning each data store
is that at least DB schema changes are constrained to a single service, and don't require
coordination across multiple services.

Managing versions and dependencies
Managing versions is a tricky topic. In microservice-based architecture, your microservices
may have many dependencies, as well as many clients, both internal and external. There
are several categories of versioned resources, and they all require different management
strategies and versioning schemes.

Managing public APIs
Public APIs are network APIs that are used outside the cluster, often by a large number of
users and/or developers who may or may not have a formal relationship with your
organization. Public APIs may require authentication, but sometimes may be anonymous.
The versioning scheme for public APIs typically involves just a major version, such as V1,
V2, and so on. The Kubernetes API is a good example of such a versioning scheme,
although it also has the concept of API groups and uses alpha and beta qualifiers because it
caters to developers.

Deploying Microservices Chapter 11

[340]

Delinkcious has a single public API that used the <major>.<minor> versioning scheme up
to this point:

 api = Api(app)
 resource_map = (
 (Link, '/v1.0/links'),
 (Followers, '/v1.0/followers'),
 (Following, '/v1.0/following'),
)

This is overkill, and a major version only is enough. Let's change it (and all the impacted
tests, of course):

 api = Api(app)
 resource_map = (
 (Link, '/v1/links'),
 (Followers, '/v1/followers'),
 (Following, '/v1/following'),
)

Note that we keep the same version, even when we make breaking changes during this
book. This is fine because there are no external users so far, so we have the liberty to change
our public API. However, once we officially release our application, we are obligated to
consider the burden on our users if we make breaking changes without changing the API
version. This is is a pretty bad anti-pattern.

Managing cross-service dependencies
Cross-service dependencies are often well defined and documented as internal APIs.
However, subtle changes to the implementation and/or to the contract can significantly
impact other services. For example, if we change the structs in object_model/types.go,
a lot of code might have to be modified. In a well-tested mono-repo, this is less of a problem
because the developer who makes the changes can ensure that all the relevant consumers
and tests were updated. Many systems are built out of multiple repositories, and it might
be challenging to identify all the consumers. In these cases, breaking changes can remain
and be discovered after deployment.

Delinkcious is a mono-repo, and it is actually not using any versioning scheme at all in the
URLs of its endpoints. Here is the social graph manager's API:

 r := mux.NewRouter()
 r.Methods("POST").Path("/follow").Handler(followHandler)
 r.Methods("POST").Path("/unfollow").Handler(unfollowHandler)

Deploying Microservices Chapter 11

[341]

r.Methods("GET").Path("/following/{username}").Handler(getFollowingHandler)

r.Methods("GET").Path("/followers/{username}").Handler(getFollowersHandler)

This approach is acceptable if you never intend to run multiple versions of the same
service. In large systems, this is not a scalable approach. There will always be some
consumers that don't want to upgrade to the latest and greatest immediately.

Managing third-party dependencies
There are three flavors of third-party dependencies:

Libraries and packages you build your software against (as discussed in Chapter
2, Getting Started with Microservices)
Third-party services that are accessed through an API by your code
Services you use to operate and run your system

For example, if you run your system in the cloud, then your cloud provider is a huge
dependency (Kubernetes can help mitigate risk). Another great example is using a third-
party service as your CI/CD solution.

When choosing a third-party dependency, you relinquish some (or a lot) control. You
should always consider what happens if the third-party dependency suddenly becomes
unavailable or unacceptable. There are many reasons why this can happen:

Open source project abandoned or loses steam
Third-party provider shuts down
Library has too many security vulnerabilities
Service has too many outages

Assuming that you've picked your dependencies wisely, let's consider two cases:

Upgrading to a new version of a library
Upgrading to a new API version of a third-party service

Every such upgrade requires the corresponding upgrade of any component (a library or
service) in your system that uses these dependencies. Typically, these upgrades shouldn't
modify the API of any of your services, nor the public interfaces of your libraries. They may
change the operational profile of your services (hopefully for the better, as in less memory,
more performance).

Deploying Microservices Chapter 11

[342]

Upgrading your services is a simple matter. You just deploy the new version of your
service that depends on the new third-party dependency and you're good to go. Changes to
third-party libraries can be a little more involved. You need to identify all of your libraries
that depend on this third-party library. Upgrade your libraries and then identify every
service that uses any of your (now-upgraded) libraries and upgrade those services too.

It is highly recommended to use semantic versioning for your libraries and packages.

Managing your infrastructure and toolchain
Your infrastructure and toolchain must be managed carefully too, and even versioned. In a
large system, your CI/CD pipeline will typically invoke various scripts that automate
important tasks, such as migrating databases, preprocessing data, and provisioning cloud
resources. These internal tools can change dramatically. Another important category in
container-based systems are the versions of your base images. The infrastructure of code
approach, combined with GitOps, advocates versioning and storing those aspects of your
system in your source control system (Git) as well.

So far, we've covered a lot of dark corners and difficult use cases regarding real-world
deployments and how to evolve and upgrade large systems safely and reliably. Let's get
back to the individual developer. There is a very different set of requirements and concerns
for developers that need a quick edit-test-debug cycle in the cluster.

Local development deployments
Developers want fast iterations. When I make a code change to some code, I want to run the
tests as soon as possible, and if something is wrong, to fix it as soon as possible. We've seen
how well this works with unit tests. However, when the system uses a microservice
architecture packaged as containers and deployed to a Kubernetes cluster, this is not
enough. To truly evaluate the impact of a change, we often have to build an image (which
may include updating Kubernetes manifests like Deployments, Secrets, and ConfigMaps)
and deploy it to the cluster. Developing locally against Minikube is awesome, but even
deploying to a local Minikube cluster takes time and effort. In Chapter 10, Testing
Microservices, we used Telepresence to great effect for interactive debugging. However,
Telepresence has its own quirks and downsides, and it's not always the best tool for the job.
In the following subsections, we'll cover several other alternatives that may be a better
choice in certain circumstances.

Deploying Microservices Chapter 11

[343]

Ko
Ko (https://github. com/ google/ ko) is a very interesting Go-specific tool. Its goal is to
streamline and hide the process of building images. The idea is that, in your Kubernetes
deployment, you replace the image path from the registry with a Go import path. Ko will
read this import path, build a Docker image for you, publish it to a registry (or locally if
using Minikube), and deploy it to your cluster. Ko provides ways to specify a base image
and include static data in the generated image.

Let's give it a try and discuss the experience later.

You can install Ko through the standard go get command:

go get github.com/google/ko/cmd/ko

Ko requires that you work in GOPATH. I don't typically work inside GOPATH for various
reasons (Delinkcious use Go modules that don't require GOPATH). To accommodate Ko, I
used the following code:

 $ export GOPATH=~/go
 $ mkdir -p ~/go/src/github.com/the-gigi
 $ cd ~/go/src/github.com/the-gigi
 $ ln -s ~/git/delinkcious delinkcious
 $ cd delinkcious
 $ go get -d ./...

Here, I have replicated the directory structure Go expects under GOPATH, including
replicating the path on GitHub to Delinkcious. Then, I got all the dependencies of
Delinkcious recursively using go get -d ./....

The last preparatory step is to set Ko for local development. When Ko builds an image, we
shouldn't push it to Docker Hub or any remote registry. We want a fast local loop. Ko
allows you to do this in various ways. One of the simplest ways is as follows:

export KO_DOCKER_REPO=ko.local

Other ways include a configuration file or passing the -L flag when running Ko.

Now, we can go ahead and use Ko. Here is the ko-link-manager.yaml file where the
image is replaced with the Go import path to the link manager service (github.com/the-
gigi/delinkcious/svc/link_service). Note that I changed imagePullPolicy from
Always to IfNotPresent.

https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko

Deploying Microservices Chapter 11

[344]

The Always policy is the secure and production-ready policy, but when working locally, it
will ignore the local Ko images and will instead pull from Docker Hub:

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: ko-link-manager
 labels:
 svc: link
 app: manager
 spec:
 replicas: 1
 selector:
 matchLabels:
 svc: link
 app: manager
 template:
 metadata:
 labels:
 svc: link
 app: manager
 spec:
 serviceAccount: link-manager
 containers:
 - name: link-manager
 image: "github.com/the-gigi/delinkcious/svc/link_service"
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8080
 envFrom:
 - configMapRef:
 name: link-manager-config
 volumeMounts:
 - name: mutual-auth
 mountPath: /etc/delinkcious
 readOnly: true
 volumes:
 - name: mutual-auth
 secret:
 secretName: link-mutual-auth

The next step is running Ko on this modified deployment manifest:

$ ko apply -f ko_link_manager.yaml
 2019/05/01 14:29:31 Building github.com/the-
gigi/delinkcious/svc/link_service
 2019/05/01 14:29:34 Using base gcr.io/distroless/static:latest for

Deploying Microservices Chapter 11

[345]

github.com/the-gigi/delinkcious/svc/link_service
 2019/05/01 14:29:34 No matching credentials were found, falling back on
anonymous
 2019/05/01 14:29:36 Loading
ko.local/link_service-1819ff5de960487aed3f9074cd43cc03:1c862ed08cf571c6a82a
3e4a1eb2d79dbe122fc4901e73f88b51f0731d4cd565
 2019/05/01 14:29:38 Loaded
ko.local/link_service-1819ff5de960487aed3f9074cd43cc03:1c862ed08cf571c6a82a
3e4a1eb2d79dbe122fc4901e73f88b51f0731d4cd565
 2019/05/01 14:29:38 Adding tag latest
 2019/05/01 14:29:38 Added tag latest
 deployment.apps/ko-link-manager configured

To test the deployment, let's run our smoke test:

 $ go run smoke.go
 2019/05/01 14:35:59 ======= Links =======
 2019/05/01 14:35:59 ===== Add Link ======
 2019/05/01 14:35:59 Adding new link - title: 'Gigi on Github', url:
'https://github.com/the-gigi'
 2019/05/01 14:36:00 ======= Links =======
 2019/05/01 14:36:00 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'pending', description: '[yellow] '
 2019/05/01 14:36:04 ======= Links =======
 2019/05/01 14:36:04 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'valid', description: '[yellow] '

Everything looks good. The link description contains the [yellow] prefix from our canary
deployment work. Let's change it to [ko] and see how fast Ko can redeploy:

func newLink(source om.Link) link {
 return link{
 Url: source.Url,
 Title: source.Title,
 Description: "[ko] " + source.Description,
 Status: source.Status,
 Tags: source.Tags,
 CreatedAt: source.CreatedAt.Format(time.RFC3339),
 UpdatedAt: source.UpdatedAt.Format(time.RFC3339),
 }
 }

Running Ko again on the modified code takes just 19 seconds, all the way to deployment in
the cluster. That's impressive:

$ ko apply -f ko_link_manager.yaml
 2019/05/01 14:39:37 Building github.com/the-
gigi/delinkcious/svc/link_service

Deploying Microservices Chapter 11

[346]

 2019/05/01 14:39:52 Using base gcr.io/distroless/static:latest for
github.com/the-gigi/delinkcious/svc/link_service
 2019/05/01 14:39:52 No matching credentials were found, falling back on
anonymous
 2019/05/01 14:39:54 Loading
ko.local/link_service-1819ff5de960487aed3f9074cd43cc03:1af7800585ca70a390da
7e68e6eef506513e0f5d08cabc05a51c453e366ededf
 2019/05/01 14:39:56 Loaded
ko.local/link_service-1819ff5de960487aed3f9074cd43cc03:1af7800585ca70a390da
7e68e6eef506513e0f5d08cabc05a51c453e366ededf
 2019/05/01 14:39:56 Adding tag latest
 2019/05/01 14:39:56 Added tag latest
 deployment.apps/ko-link-manager configured

The smoke test works and the description now contains the [ko] prefix instead of
[yellow], which proves that Ko works as advertised and indeed built a Docker container
very quickly and deployed it to the cluster:

$ go run smoke.go
 2019/05/01 22:12:10 ======= Links =======
 2019/05/01 22:12:10 ===== Add Link ======
 2019/05/01 22:12:10 Adding new link - title: 'Gigi on Github', url:
'https://github.com/the-gigi'
 2019/05/01 22:12:10 ======= Links =======
 2019/05/01 22:12:10 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'pending', description: '[ko] '
 2019/05/01 22:12:14 ======= Links =======
 2019/05/01 22:12:14 title: 'Gigi on Github', url:
'https://github.com/the-gigi', status: 'valid', description: '[ko] '

Let's take a look at the image that Ko built. In order to do that, we will ssh into the
Minikube node and check the Docker images:

$ mk ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
 /' _ ` _ `\| |/' _ `\| || , < () ()| '_`\ /'__`\
 | () () || || () || || |\`\ | (_) || |_))(___/
 (_) (_) (_)(_)(_) (_)(_)(_) (_)`___/'(_,__/'`____)

 $ docker images | grep ko
 ko.local/link_service-1819ff5de960487aed3f9074cd43cc03
1af7800585ca70a390da7e68e6eef506513e0f5d08cabc05a51c453e366ededf
9188384722a5 49 years ago 14.1MB
 ko.local/link_service-1819ff5de960487aed3f9074cd43cc03 latest
9188384722a5 49 years ago 14.1MB

Deploying Microservices Chapter 11

[347]

The image appears to have a creation date of the beginning of the Unix epoch (1970) for
some reason. Other than that, everything looks good. Note that the image is larger than our
normal link manager because Ko uses gcr.io/distroless/base:latest as a base image by
default, while Delinkcious uses the SCRATCH image. You can override the base image if
you want, using a .ko.yaml configuration file.

In short, Ko is easy to install, configure, and it works very well. Still, I find it too limited:

It is a Go-only tool.
You must have your code in GOPATH and use the standard Go directory structure
(obsolete with Go 1.11+ modules).
You have to modify your manifests (or create a copy with the Go import path).

It may be a good option to test new Go services before integrating them into your CI/CD
system.

Ksync
Ksync is a very interesting tool. It doesn't build images at all. It syncs files directly between
a local directory, and a remote directory inside a running container in your cluster. It
doesn't get more streamlined than that, especially if you sync to a local Minikube cluster.
This awesomeness comes with a price, though. Ksync works especially well for services
that are implemented using dynamic languages, such as Python and Node, that can hot-
reload the application when changes are synced. If your application doesn't do hot
reloading, Ksync can restart the container after each change. Let's get to work:

Installing Ksync is very simple, but remember to check what you are installing1.
before just piping it to bash!

curl https://vapor-ware.github.io/gimme-that/gimme.sh | bash

If you prefer, you can install it with a go command:

go get github.com/vapor-ware/ksync/cmd/ksync

We also need to start the cluster-side component of Ksync, which will create a2.
DaemonSet on every node to listen for changes and reflect them into running
containers:

ksync init

http://gcr.io/distroless/base:latest

Deploying Microservices Chapter 11

[348]

Now, we can tell Ksync to watch for changes. This is a blocking operation and3.
Ksync will watch forever. We can run it in a separate Terminal or tab:

ksync watch

The last part of the setup is to establish a mapping between a local directory and4.
a remote directory on a target pod or pods. As usual, we identify the pods via a
label selector. The only Delinkcious service that uses a dynamic language is the
API gateway, so we'll use this here:

cd svc/api_gateway_service ksync create --selector=svc=api-gateway
$PWD /api_gateway_service

We can test that Ksync works by modifying our API gateway. Let's add a Ksync5.
message to our get() method:

def get(self):
 """Get all links
 """
 username, email = _get_user()
 parser = RequestParser()
 parser.add_argument('url_regex', type=str, required=False)
 parser.add_argument('title_regex', type=str, required=False)
 parser.add_argument('description_regex', type=str,
required=False)
 parser.add_argument('tag', type=str, required=False)
 parser.add_argument('start_token', type=str, required=False)
 args = parser.parse_args()
 args.update(username=username)
 r = requests.get(self.base_url, params=args)

 if not r.ok:
 abort(r.status_code, message=r.content)

 result = r.json()
 result.update(ksync='Yeah, it works!')
 return result

A few seconds later, we will see the Yeah, it works! message from Ksync.6.
This is a great success:

$ http "${DELINKCIOUS_URL}/v1/links" "Access-Token:
${DELINKCIOUS_TOKEN}"'
HTTP/1.0 200 OK Content-Length: 249 Content-Type: application/json
Date: Thu, 02 May 2019 17:17:07 GMT Server: Werkzeug/0.14.1
Python/3.7.2
{ "err": "", "ksync": "Yeah, it works!", "links": [{ "CreatedAt":

Deploying Microservices Chapter 11

[349]

"2019-05-02T05:12:10Z", "Description": "[ko] ", "Status": "valid",
"Tags": null, "Title": "Gigi on Github", "UpdatedAt":
"2019-05-02T05:12:10Z", "Url": "https://github.com/the-gigi" }] }

To recap, Ksync is extremely streamlined and fast. I really like the fact that it doesn't bake
images, push them to a registry, and then deploy to the cluster. If all your workloads use a
dynamic language, then using Ksync is a no-brainer.

Draft
Draft is another tool from Microsoft (originally from Deis) that lets you quickly build
images without a Dockerfile. It uses standard buildpacks for various languages. It doesn't
seem like you can provide your own base image. This is a problem for two reasons:

Your service may be more than just code, and may depend on things that you set
up in the Dockerfile.
The base images that Draft uses are pretty big.

Draft depends on Helm, so you must have Helm installed on your cluster. The installation
is very versatile and supports many methods.

You can be sure that Draft works well on Windows, unlike many other tools in the cloud-
native area where Windows is a second-class citizen. This mindset is starting to change
since Microsoft, Azure, and AKS are prominent contributors to the Kubernetes ecosystem.
OK, let's take Draft for a test drive:

Installing draft on macOS (assuming you've installed Helm already) is as1.
simple as doing the following:

brew install azure/draft/draft

Let's configure Draft to push its images directly to Minikube (the same as Ko):2.

$ draft init
$ draft init Installing default plugins... Installation of default
plugins complete Installing default pack repositories...
Installation of default pack repositories complete $DRAFT_HOME has
been configured at /Users/gigi.sayfan/.draft. Happy Sailing!
$ eval $(minikube docker-env)

Deploying Microservices Chapter 11

[350]

As usual, let's add a prefix, [draft], to the description:

func newLink(source om.Link) link { return link{ Url: source.Url,
Title: source.Title, Description: "[draft]" + source.Description,
Status: source.Status, Tags: source.Tags, CreatedAt:
source.CreatedAt.Format(time.RFC3339), UpdatedAt:
source.UpdatedAt.Format(time.RFC3339), } }

Next, we let draft prepare by calling the draft create command and also3.
choosing the Helm release name using --app:

$ draft create --app draft-link-manager --> Draft detected Go
(67.381270%) --> Ready to sail

Finally, we can deploy to the cluster:4.

$ draft up
Draft Up Started: 'draft-link-manager': 01D9XZD650WS93T46YE4QJ3V70
draft-link-manager: Building Docker Image: SUCCESS (9.0060s) draft-
link-manager: Pushing Docker Image

Unfortunately, draft hung in the Pushing Docker Image stage. It worked for me in
the past, so perhaps it's a new issue with the latest versions.

Overall, draft is pretty simple, but too limited. The big images it creates and the
inability to provide your own base images are deal breakers. The documentation is
very sparse, too. I recommend using it only if you're on Windows and the other tools
don't work well enough.

Skaffold
Skaffold (https:/ /skaffold. dev/) is a very complete solution. It is very flexible, supports
both local development and integration with CI/CD, and has excellent documentation. Here
are some of the features of Skaffold:

Detect code changes, build image, push, and deploy.
Can sync source files to pods directly (just like Ksync).
It has a sophisticated conceptual model with builders, testers, deployers, tag
polices, and push strategies.

https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/

Deploying Microservices Chapter 11

[351]

You can customize every aspect.
Integrate with your CI/CD pipeline by running Skaffold from end to end, or use
specific stages as building blocks.
Per-environment configuration via profiles, user-level config, environment
variables, or command-line flags.
It is a client-side tool – there is no need to install anything in your cluster.
Automatically forward container ports to the local machine.
Aggregate logs from the deployed pods.

Here is a diagram that illustrates the workflow of Skaffold:

Skaffold

Deploying Microservices Chapter 11

[352]

Let's install Skaffold and take it for a ride:

$ brew install skaffold

Next, let's create a configuration file in the link_service directory. Skaffold will ask us
some questions about which Dockerfile to use for different elements, such as the database
and the service itself:

$ skaffold init ? Choose the dockerfile to build image postgres:11.1-alpine
None (image not built from these sources) ? Choose the dockerfile to build
image g1g1/delinkcious-link:0.6 Dockerfile WARN[0014] unused dockerfiles
found in repository: [Dockerfile.dev] apiVersion: skaffold/v1beta9 kind:
Config build: artifacts: - image: g1g1/delinkcious-link:0.6 deploy:
kubectl: manifests: - k8s/configmap.yaml - k8s/db.yaml -
k8s/link_manager.yaml - k8s/secrets.yaml
Do you want to write this configuration to skaffold.yaml? [y/n]: y
Configuration skaffold.yaml was written You can now run [skaffold build] to
build the artifacts or [skaffold run] to build and deploy or [skaffold dev]
to enter development mode, with auto-redeploy.

Let's try to build an image with Skaffold:

$ skaffold build Generating tags... - g1g1/delinkcious-link:0.6 ->
g1g1/delinkcious-link:0.6:v0.6-79-g6b178c6-dirty Tags generated in
2.005247255s Starting build... Found [minikube] context, using local docker
daemon. Building [g1g1/delinkcious-link:0.6]... Sending build context to
Docker daemon 10.75kB Complete in 4.717424985s FATA[0004] build failed:
building [g1g1/delinkcious-link:0.6]: build artifact: docker build: Error
response from daemon: invalid reference format

Oh, no – it fails. I did some searching and there is an open issue:

https://github.com/GoogleContainerTools/skaffold/issues/1749

Skaffold is a big solution. It does much more than just local development. It has a non-
trivial learning curve, too (for example, syncing files requires manually setting up each
directory and file type). If you like its model and you use it in your CI/CD solution, then it
makes sense to use it for local development as well. Definitely check it out and make up
your own mind. The fact that it can build images as well as directly sync files is a big plus if
you have a hybrid system similar to Delinkcious.

Deploying Microservices Chapter 11

[353]

Tilt
Last, but absolutely not least, is Tilt. Tilt is my favorite development tool by far. Tilt is also
very comprehensive and flexible. It is centered around a Tiltfile written in a language called
Starlark (https://github. com/ bazelbuild/ starlark/), which is a subset of Python. I was
hooked right way. What's special about Tilt is that it goes beyond just building an image
automatically and deploying it to the cluster or syncing files. It actually gives you a
complete live development environment that presents a lot of information, highlights
events and errors, and lets you drill down and understand what's happening in your
cluster. Let's get started.

Let's install Tilt and then get to business:

brew tap windmilleng/tap brew install windmilleng/tap/tilt

I wrote a Tiltfile for the link service that's very generic.

Get all the YAML files
script = """python -c 'from glob import glob;
print(",".join(glob("k8s/*.yaml")))'""" yaml_files =
str(local(script))[:-1] yaml_files = yaml_files.split(',') for f in
yaml_files: k8s_yaml(f)

Get the service name
script = """import os; print('-
'.join(os.getcwd().split("/")[-1].split("_")[:-1])""" name =
str(local(script))[:-1]
docker_build('g1g1/delinkcious-' + name, '.', dockerfile='Dockerfile.dev')

Let's break this down and analyze it. First, we need all the YAML files under the k8s
subdirectory. We could just hard code them, but where's the fun in that? Also, there will be
a different list of YAML files for different services. Skylark is Python-like, but you can't use
Python libraries. For example, the glob library is great for enumerating files with wildcards.
Here is the Python code to list all files with the .yaml suffix in the k8s subdirectory:

Python 3.7.3 (default, Mar 27 2019, 09:23:15) [Clang 10.0.1
(clang-1001.0.46.3)] on darwin Type "help", "copyright", "credits" or
"license" for more information. >>> from glob import glob >>>
glob("k8s/*.yaml") ['k8s/db.yaml', 'k8s/secrets.yaml',
'k8s/link_manager.yaml', 'k8s/configmap.yaml']

https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/
https://github.com/bazelbuild/starlark/

Deploying Microservices Chapter 11

[354]

We can't do that directly in Starlark, but we can use the local() function, which allows us
to run any command and capture the output. Therefore, we can execute the previous
Python code by running the Python interpreter with a little script through Tilt's local()
function:

script = """python -c 'from glob import glob;
print(",".join(glob("k8s/*.yaml")))'""" yaml_files =
str(local(script))[:-1]

There are a few extra details here. First, we convert the list of files returned from glob into a
comma-separated string. However, the local() function returns a Tilt object called Blob.
We just want a plain string, so we convert the blob into a string by wrapping the local()
call with the str() function. Finally, we remove the last character (the final [:-1]), which
is a newline (because we used Python's print() function).

The end result is that, in the yaml_files variable, we have a string that is a comma-
separated list of all the YAML manifests.

Next, we split this comma-separated string back into a Python/Starlark list of file names:

yaml_files = yaml_files.split(',')

For each of these files, we call Tilt's k8s_yaml() function. This function tells Tilt to monitor
these files for changes:

for f in yaml_files: k8s_yaml(f)

Next, we repeat the same trick as before and execute a Python one-liner that extracts the
service name from the current directory name. All the Delinkcious service directories
follow the same naming convention, that is, <service name>_service. This one-liner
splits the current directory, disposes of the last component (which is always service), and
joins the components back via - as a separator.

Now, we need to get the service name:

script = """import os; print('-
'.join(os.getcwd().split("/")[-1].split("_")[:-1]),""" name =
str(local(script))[:-1]

Deploying Microservices Chapter 11

[355]

Now that we have the service name, the final step is to build the image by calling Tilt's
docker_build() function. Remember that the naming convention for Docker images that
Delinkcious uses is g1g1/delinkcious-<service name>. I am also using a special
Dockerfile.dev here, which is different than the production Dockerfile, and is more
convenient for debugging and troubleshooting. If you don't specify a Docker file, then the
default is Dockerfile:

docker_build('g1g1/delinkcious-' + name, '.', dockerfile='Dockerfile.dev')

This may seem very complicated and convoluted, but the benefit is that I can drop this file
in any service directory and it will work as is.

For the link service, the equivalent hardcoded file would be as follows:

k8s_yam('k8s/db.yaml') k8s_yam('k8s/secrets.yaml')
k8s_yam('k8s/link_manager.yaml') k8s_yam(''k8s/configmap.yaml'')
docker_build('g1g1/delinkcious-link, '.', dockerfile='Dockerfile.dev')

That's not too bad, but every time you add a new manifest, you have to remember to
update your Tiltfile, and you'll need to keep a separate Tiltfile for each service.

Let's see Tilt in action. When we type tilt up, we will see the following text UI:

Tilt

Deploying Microservices Chapter 11

[356]

There are many things you can do in the Tilt console, including checking logs and
exploring errors. Tilt constantly displays updates and the status of the system, and always
attempts to surface the most useful information.

It's interesting to see that Tilt build images with its own tag:

$ kubectl get po link-manager-654959fd78-9rnnh -o
jsonpath="{.spec.containers[0].image}"
docker.io/g1g1/delinkcious-link:tilt-2b1afed5db0064f2

Let's make our standard change and see how Tilt reacts:

func newLink(source om.Link) link { return link{ Url: source.Url, Title:
source.Title, Description: "[tilt] " + source.Description, Status:
source.Status, Tags: source.Tags, CreatedAt:
source.CreatedAt.Format(time.RFC3339), UpdatedAt:
source.UpdatedAt.Format(time.RFC3339), } }

Tilt detected the change and built a new image, then promptly deployed it to the cluster:

$ http "${DELINKCIOUS_URL}/v1/links" "Access-Token: ${DELINKCIOUS_TOKEN}"
HTTP/1.0 200 OK Content-Length: 221 Content-Type: application/json Date:
Sat, 04 May 2019 07:38:32 GMT Server: Werkzeug/0.14.1 Python/3.7.2
{ "err": "", "links": [{ "CreatedAt": "2019-05-04T07:38:28Z",
"Description": "[tilt] nothing to see here...", "Status": "pending",
"Tags": null, "Title": "gg", "UpdatedAt": "2019-05-04T07:38:28Z", "Url":
"http://gg.com" }] }

Let's try our hand at some file syncing. We must run Flask in debug mode for hot reloading
to work. This is as simple as adding FLASK_DEBUG=1 to ENTRYPOINT in the Dockerfile:

FROM g1g1/delinkcious-python-flask-grpc:0.1 MAINTAINER Gigi Sayfan
"the.gigi@gmail.com" COPY . /api_gateway_service WORKDIR
/api_gateway_service EXPOSE 5000 ENTRYPOINT FLASK_DEBUG=1 python run.py

It's up to you to decide if you want a separate Dockerfile.dev file to use with Tilt, as we
used for the link service. Here is a Tiltfile for the API gateway service that uses the live
update facilities of Tilt:

Get all the YAML files
yaml_files = str(local("""python -c 'from glob import glob;
print(",".join(glob("k8s/*.yaml")))'"""))[:-1] yaml_files =
yaml_files.split(',') for f in yaml_files: k8s_yaml(f)

Deploying Microservices Chapter 11

[357]

Get the service name
script = """python -c 'import os; print("-
".join(os.getcwd().split("/")[-1].split("_")[:-1]))'""" name =
str(local(script))[:-1]
docker_build('g1g1/delinkcious-' + name, '.', live_update=[# when
requirements.txt changes, we need to do a full build
fall_back_on('requirements.txt'), # Map the local source code into the
container under /api_gateway_service sync('.', '/api_gateway_service'),])

At this point, we can run tilt up and hit the /links endpoint:

$ http "${DELINKCIOUS_URL}/v1/links" "Access-Token: ${DELINKCIOUS_TOKEN}"
HTTP/1.0 200 OK
Content-Length: 221
Content-Type: application/json
Date: Sat, 04 May 2019 20:39:42 GMT
Server: Werkzeug/0.14.1 Python/3.7.2
{
"err": "",
"links": [{
"CreatedAt": "2019-05-04T07:38:28Z",
"Description": "[tilt] nothing to see here...",
"Status": "pending",
"Tags": null,
"Title": "gg",
"UpdatedAt": "2019-05-04T07:38:28Z",
"Url": "http://gg.com"
}]
}

Tilt will show us the request and the successful 200 response:

Deploying Microservices Chapter 11

[358]

Tilt API gateway

Let's make a little change and see if tilt picks it up and syncs the code in the container. In
the resources.py file, let's add to the result of the GET links the key-value pair - tilt:
Yeah, sync works!!.

class Link(Resource): host = os.environ.get('LINK_MANAGER_SERVICE_HOST',
'localhost') port = os.environ.get('LINK_MANAGER_SERVICE_PORT', '8080')
base_url = 'http://{}:{}/links'.format(host, port)
def get(self):
 """Get all links
 """
 username, email = _get_user()
 parser = RequestParser()
 parser.add_argument('url_regex', type=str, required=False)
 parser.add_argument('title_regex', type=str, required=False)
 parser.add_argument('description_regex', type=str, required=False)
 parser.add_argument('tag', type=str, required=False)
 parser.add_argument('start_token', type=str, required=False)
 args = parser.parse_args()
 args.update(username=username)
 r = requests.get(self.base_url, params=args)

 if not r.ok:
 abort(r.status_code, message=r.content)
 r['tilt'] = 'Yeah, sync works!!!'
 return r.json()

Deploying Microservices Chapter 11

[359]

As you can see in the following screenshot, Tilt detected the code change in resources.py
and copied the new file into the container:

Tilt API gateway 2

Let's invoke the endpoint again and observe the results. It works as intended. We got the
expected key-value after the links in the result:

$ http "${DELINKCIOUS_URL}/v1/links" "Access-Token:
${DELINKCIOUS_TOKEN}"

HTTP/1.0 200 OK
Content-Length: 374
Content-Type: application/json
Date: Sat, 04 May 2019 21:06:13 GMT
Server: Werkzeug/0.14.1 Python/3.7.2
{
 "err": "",
"links":
[{
"CreatedAt": "2019-05-04T07:38:28Z",
"Description": "[tilt] nothing to see here...",
"Status": "pending",
"Tags": null,
"Title": "gg", "UpdatedAt":
"2019-05-04T07:38:28Z",

Deploying Microservices Chapter 11

[360]

"Url": "http://gg.com"
}],
"tilt": "Yeah,
sync works!!!"
}

Overall, Tilt is extremely well done. It's based on a solid conceptual model, is very well
executed, and it addresses the problems of local development better than any of the other
tools. Tiltfile and Starlark are powerful and concise. It supports both full-fledged Docker
builds and file syncing for dynamic languages.

Summary
In this chapter, we covered a broad swatch of topics related to deployments to Kubernetes.
We started with a deep dive into the Kubernetes deployment object and considered and
implemented deployments to multiple environments (for example, staging and
production). We delved into advanced deployment strategies like rolling updates, blue-
green deployments, and canary deployments, and experimented with all of them on
Delinkcious. Then, we looked at rolling back failed deployments and the crucial topic of
managing dependencies and versions. Later on, we switched gears into local development,
and surveyed multiple tools for fast iterations where you make changes to your code, and
they are automatically deployed to your cluster. We covered Ko, Ksync, Draft, Skaffold,
and my personal favorite, Tilt.

At this point, you should have a deep understanding of the various deployment strategies,
when to employ them on your system, and good hands-on experience with local
development tools for Kubernetes that you can integrate into your workflow.

In the next chapter, we will take it to the next level and get serious about monitoring our
system. We will look into failure modes, how to design self-healing systems, autoscaling,
provisioning, and performance. Then, we will consider logging, collecting metrics, and
distributed tracing.

Deploying Microservices Chapter 11

[361]

Further reading
Refer to the following links if you want to find out more about what was covered in this
chapter:

KO: https:/ /github. com/ google/ ko

Ksync: https:/ /vapor- ware. github. io/ksync/

Draft: https:/ /draft. sh/

Skaffold: https:/ / skaffold. dev/

Tilt: https:/ / docs. tilt. dev

https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://github.com/google/ko
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://vapor-ware.github.io/ksync/
https://draft.sh/
https://draft.sh/
https://draft.sh/
https://draft.sh/
https://draft.sh/
https://draft.sh/
https://draft.sh/
https://draft.sh/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://skaffold.dev/
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev
https://docs.tilt.dev

12
Monitoring, Logging, and

Metrics
In this chapter, we will focus on the operational side of running a large-scale distributed
system on Kubernetes, as well as on how to design the system and what to take into
account to ensure top-notch operational posture. That being said, things will always go
south and you must be ready to detect, troubleshoot, and respond as soon as possible. The
operational best practices that Kubernetes provides out of the box include the following:

Self-healing
Auto scaling
Resource management

However, the cluster administrator and the developers must understand how these
capabilities work, configure, and interact in order to understand them properly. There is
always a balancing act between high availability, robustness, performance, security, and
cost. It's also important to realize that all of these factors and the relationships between
them change over time and must be revisited and evaluated regularly.

This is where monitoring comes in. Monitoring is all about understanding what's going on
with your system. There are several sources of information that are relevant for different
purposes:

Logging: You explicitly log relevant information in your application code (and
libraries you use may log too).
Metrics: Collect detailed information about your system such as CPU, memory,
disk usage, disk I/O, network, and custom application metrics.
Tracing: Attach an ID to follow a request across multiple microservices.

In this chapter, we will see how Go-kit, Kubernetes, and the ecosystem enable and support
all the relevant use cases.

Monitoring, Logging, and Metrics Chapter 12

[363]

The following topics are covered in this chapter:

Self-healing with Kubernetes
Autoscaling a Kubernetes cluster
Provisioning resources with Kubernetes
Getting performance right
Logging
Collecting metrics on Kubernetes
Alerting
Distributed tracing

Technical requirements
In this chapter, we will install several components into the cluster:

Prometheus: A metrics and alerting solution
Fluentd: A central logging agent
Jaeger: A distributed tracing system

The code
The code is split between two Git repositories:

You can find the code samples here: https:/ /github. com/ PacktPublishing/
Hands-On- Microservices- with- Kubernetes/ tree/ master/ Chapter12

You can find the updated Delinkcious application here: https:/ / github. com/
the-gigi/ delinkcious/ releases/ tag/ v0. 10

Self-healing with Kubernetes
Self-healing is a very important property of large-scale systems made up of a myriad of
physical and virtual components. Microservice-based systems running on large Kubernetes
clusters are a prime example. Components can fail in multiple ways. The premise of self-
healing is that the overall system will not fail and will be able to automatically heal itself,
even if this causes it to operate in a reduced capacity temporarily.

https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Microservices-with-Kubernetes/tree/master/Chapter12
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10
https://github.com/the-gigi/delinkcious/releases/tag/v0.10

Monitoring, Logging, and Metrics Chapter 12

[364]

The building blocks of such reliable systems are as follows:

Redundancy
Observability
Auto-recovery

The basic premise is that every component might fail – machines crash, disks get corrupted,
network connections drop, configuration may get out of sync, new software releases have
bugs, third-party services have outages, and so on. Redundancy means there are no single
point of failures (SPOFs). You can run multiple replicas of many components, like nodes
and pods, write data to multiple data stores, and deploy your system in multiple data
centers, availability zones, or regions. You are even able to deploy your system on multiple
cloud platforms (especially if you use Kubernetes). There is a limit to redundancy, of
course. Total redundancy is very expansive. For example, running a complete redundant
system on both AWS and GKE is probably a luxury that very few companies can afford or
even need.

Observability is the ability to detect when things go wrong. You must monitor your system
and understand the signals you observe in order to detect abnormal situations. This is the
first step before remediation and recovery can take place.

The automated part of auto healing and recovery is not needed in theory. You could have a
team of operators watching a dashboard all day and take corrective action when they
identify a problem. In practice, this approach doesn't scale. Humans are slow to respond,
interpret, and act – not to mention that they are much more error-prone. That being said,
most automated solutions start with manual processes that get automated later as the cost
of repeated manual intervention becomes clear. If some issues happen only once in a blue
moon, then it may be OK to address those with manual intervention.

Let's discuss several failure modes and see how Kubernetes helps with all the pillars of self-
healing.

Container failures
Kubernetes runs containers inside pods. If a container dies for whatever reason, Kubernetes
will detect it and restart it right away by default. The behavior of Kubernetes can be
controlled by the restartPolicy file of the pod spec. The possible values are Always
(default), OnFailure, and Never. Note that the restart policy applies to all the containers in
the pod. There is no way to specify a restart policy per container. This seems a little short-
sighted as you may have multiple containers in a pod that require a different restart policy.

Monitoring, Logging, and Metrics Chapter 12

[365]

If a container keeps failing, it will enter a CrashOff. Let's see this in action by introducing
an intentional error to our API gateway:

import os
 from api_gateway_service.api import app
 def main():
 port = int(os.environ.get('PORT', 5000))
 login_url = 'http://localhost:{}/login'.format(port)
 print('If you run locally, browse to', login_url)
 host = '0.0.0.0'
 app.run(host=host, port=port)

 if __name__ == "__main__":
 raise RuntimeError('Failing on purpose to demonstrate
CrashLoopBackOff')
 main()

After performing a tilt up, we can see that the API gateway enters a CrashLoopBackOff
state. This means that it keeps failing and Kubernetes keep restarting it. The backoff part is
the delay between restart attempts. Kubernetes uses an exponential backoff delay starting
at 10 seconds and doubling every time, up to a maximum delay of 5 minutes:

Crash loop backoff

Monitoring, Logging, and Metrics Chapter 12

[366]

This approach is very useful because if the failure was transient, then Kubernetes would
self-heal by restarting the container until the transient issue went away. However, if the
problem were to persist, then the container status and the error logs are around and
provide observability that can be used by higher-level recovery processes or as a last resort
by a human operator or developer.

Node failure
When a node fails, all the pods on the node will become unavailable and Kubernetes will
schedule them to run on other nodes in the cluster. Assuming you design your system with
redundancy in place and the failed node is not a SPOF, the system should recover
automatically. If the cluster has just a few nodes, then the loss of a node can be significant
to the cluster's ability to handle traffic.

Systemic failures
Sometimes, systemic failures take place. Some of these are as follows:

Total networking failure (entire cluster is unreachable)
Data center outage
Availability zone outage
Region outage
Cloud provider outage

In these situations, you may not have redundancy by design (the cost-benefit ratio is not
economical). The system will be down. Users will experience an outage. The important
thing is not to lose or corrupt any data and be able to come back online as soon as the root
cause is addressed. However, if it is important for your organization to stay online at all
costs, Kubernetes will have options for you. The operative word is will, as in the future. The
work on this is conducted under a project called federation v2, (v1 was deprecated as it
suffered from too many problems.)

You will be able to bring up a complete Kubernetes cluster or even a set of clusters in a
different data center, a different availability zone, a different region, or even a different
cloud provider. You will be able to run, manage, and treat those physically distributed
clusters as a single logical cluster and, hopefully, fail over between those clusters
seamlessly.

If you want to implement this kind of cluster-level redundancy, you may consider building
it using the gardener (https:/ / gardener. cloud/) project.

https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/

Monitoring, Logging, and Metrics Chapter 12

[367]

Autoscaling a Kubernetes cluster
Autoscaling is all about adapting your system to demand. This can mean adding more
replicas to a deployment, expanding the capacity of existing nodes, or adding new nodes.
While scaling your cluster up or down is not a failure, it follows the same pattern as self-
healing. You can consider a cluster that is misaligned with demand as unhealthy. If the
cluster is underprovisioned, then requests are not handled or wait too long, which can lead
to timeouts or just poor performance. If the cluster is overprovisioned, then you're paying
for resources you don't need. In both cases, you can consider the cluster as unhealthy, even
if the pods and services themselves are up and running.

Just like with self-healing, you first need to detect that you need to scale your cluster, and
then you can take the correct action. There are several ways to scale your cluster capacity:
you can add more pods, you can add new nodes, and you can increase the capacity of
existing nodes. Let's review them in detail.

Horizontal pod autoscaling
The horizontal pod autoscaler is a controller that is designed to adjust the number of pods
in a deployment to match the load on those pods. The decision of whether a deployment
should be scaled up (add pods) or down (remove pods) is based on metrics. Out of the box,
the horizontal pod autoscaler supports CPU utilization, but custom metrics can be added
too. The cool thing about the horizontal autoscaler is that it sits on top of the standard
Kubernetes deployment and just adjusts its replica count. The deployment itself and the
pods are blissfully unaware that they are being scaled:

Horizontal pod autoscaler

Monitoring, Logging, and Metrics Chapter 12

[368]

The preceding diagram illustrates how the horizontal autoscaler works.

Using the horizontal pod autoscaler
We can use kubectl for autoscaling. Since the autoscaler relies on Heapster and the metrics
server, we need to enable them using the minikube addons command. We have already
enabled Heapster, so this should be good enough:

$ minikube addons enable metrics-server
 metrics-server was successfully enabled

We must also specify a CPU request in the pod spec of the deployment:

 resources:
 requests:
 cpu: 100m

As you may recall, a resource request is what Kubernetes promises it can provide to the
container if it is ever scheduled. This way, the horizontal pod autoscaler can ensure that it
will start a new pod only if it can provide this requested minimum of CPU to the new pod.

Let's introduce some code that will cause the social graph manager to waste a lot of CPU:

func wasteCPU() {
 fmt.Println("wasteCPU() here!")
 go func() {
 for {
 if rand.Int() % 8000 == 0 {
 time.Sleep(50 * time.Microsecond)
 }
 }
 }()
 }

Here, we are scaling the social graph manager between 1 and 5 pods based on CPU
utilization of 50%:

$ kubectl autoscale deployment social-graph-manager --cpu-percent=50 --
min=1 --max=5

Monitoring, Logging, and Metrics Chapter 12

[369]

After running a tilt up and deploying the CPU wasting code, the CPU utilization increased,
and more and more pods were created up to the maximum of five. Here is a screenshot of
the Kubernetes dashboard that shows the CPU, the pods, and the horizontal pod
autoscaler:

Hp dashboard

Let's review the horizontal pod autoscaler itself:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
social-graph-manager Deployment/social-graph-manager 138%/50% 1
5 5 12h

Monitoring, Logging, and Metrics Chapter 12

[370]

As you can see, the current load is 138% of CPU utilization, which means that more than
one CPU core is needed, which is greater than the 50%. Therefore, the social graph manager
will keep running five pods (the maximum that's allowed).

The horizontal pod autoscaler is a universal mechanism that has been part of Kubernetes
for a long time. It depends on internal components only for collecting metrics. We've
demonstrated the default CPU-based autoscaling here, but it can be configured to work
based on multiple custom metrics, too. Now is a good time to look at some other
autoscaling methods.

Cluster autoscaling
Pod autoscaling is a gift to developers and operators – there's no need for them to manually
scale services up and down or write their own half-based autoscaling scripts. Kubernetes
provides a robust solution that is well-designed, well-implemented, and battle tested.
However, that leaves the question of cluster capacity. If Kubernetes tries to add more pods
to your cluster, but the cluster is running at maximum capacity, then the pod autoscaler
will fail. On the other hand, if you over-provision your cluster just in case the pod
autoscaler needs to add a few more pods, then you're wasting money.

Enter the auto-scaler cluster (https:/ /github. com/kubernetes/ autoscaler/ tree/
master/cluster-autoscaler).

It is a Kubernetes project that has been generally available since Kubernetes 1.8. It works
with GCP, AWS, Azure, AliCloud, and BaiduCloud. If GKE, EKS, and AKS give you a
managed control plane (they take care of managing Kubernetes itself), then the cluster
autoscaler gives you a managed data plane. It will add or remove nodes from your cluster
based on your needs and your configuration.

The trigger for adjusting the size of the cluster is when Kubernetes can't schedule pods due
to insufficient resources. This works really well with the horizontal pod autoscaler.
Together, the combination gives you a truly elastic Kubernetes cluster that can grow and
shrink automatically (within bounds) to match the current load.

The cluster autoscaler is essentially very simple. It doesn't care why pods can't be
scheduled. It will add nodes to the cluster as long as pods can't be scheduled. It will remove
empty nodes or nodes that their pods can be rescheduled on other nodes. That being said, it
is not a completely mindless mechanism.

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Monitoring, Logging, and Metrics Chapter 12

[371]

It is aware of several Kubernetes concepts and takes them into account when deciding to
grow or shrink the cluster:

PodDisruptionBudgets
Overall resource constraints
Affinity and anti-affinity
Pod priorities and preemption

For example, if pods with best effort priority can't be scheduled, the cluster autoscaler will
not grow the cluster. In particular, it will not remove nodes that have one or more of these
properties:

Use local storage
Annotated with "cluster-autoscaler.kubernetes.io/scale-down-
disabled": "true"

Host pods annotated "cluster-autoscaler.kubernetes.io/safe-to-
evict": "false"

Host nodes with restrictive PodDisruptionBudget

The total time for adding a node is typically less than 5 minutes. The cluster autoscaler
scans for unscheduled pods every ten seconds and immediately provisions a new node if
necessary. However, the cloud provider takes 3-4 minutes to provide and attach the node to
the cluster.

Let's move on to another form of autoscaling: vertical pod autoscaling.

Vertical pod autoscaling
The vertical pod autoscaler is currently (Kubernetes 1.15) in its Beta stages. It takes on a
different task related to autoscaling – fine-tuning your CPU and memory requests.
Consider a pod that doesn't really do much and needs 100 MiB of memory, but it currently
requests 500 MiB. First of all, it's a net waste of 400 MiB of memory that is always allocated
to the pod and is never used. However, the impact can be much greater. Because the pod is
chunkier, it can prevent other pods from getting scheduled alongside it.

The vertical autoscaler addresses this problem by monitoring the actual CPU and memory
usage of pods and adjusting their requests automatically. It also requires that you install the
metrics server.

Monitoring, Logging, and Metrics Chapter 12

[372]

This is very cool. The vertical pod autoscaler works in several modes:

Initial: Assigns resource requests when the pod is created
Auto: Assigns resource requests when the pod is created and also updates them
during the pod's lifetime
Recreate: Similar to Auto, the pod always restarts when its resource requests
need to be updated
updatedOff: Doesn't modify the resource requests, but recommendations can be
viewed

At the moment, Auto works just like Recreate and restarts the pods on every change. In the
future, it will use an in-place update. Let's take the vertical autoscaler for a spin. The
installation is pretty rough and requires cloning the Git repository and running a shell
script (that runs many other shell scripts):

$ git clone https://github.com/kubernetes/autoscaler.git
$ cd autoscaler/vertical-pod-autoscaler/hack/
$./vpa-up.sh

It installs a service, two CRDs, and three pods:

$ kubectl -n kube-system get svc | grep vpa
vpa-webhook ClusterIP 10.103.169.18 <none> 443/TCP

$ kubectl -n kube-system get po | grep vpa
vpa-admission-controller-68c748777d-92hbg 1/1 Running 0 72s
vpa-recommender-6fc8c67d85-shh8g 1/1 Running 0 77s
vpa-updater-786b96955c-8mcrc 1/1 Running 0 78s

$ kubectl get crd | grep vertical
verticalpodautoscalercheckpoints.autoscaling.k8s.io 2019-05-08T04:58:24Z
verticalpodautoscalers.autoscaling.k8s.io 2019-05-08T04:58:24Z

Let's create a VPA configuration file for the link manager deployment. We'll set the mode to
Off so that it only recommends on proper values of CPU and memory requests, but doesn't
actually set them:

apiVersion: autoscaling.k8s.io/v1beta2
kind: VerticalPodAutoscaler
metadata:
 name: link-manager
spec:
 targetRef:
 apiVersion: "extensions/v1beta1"
 kind: Deployment
 name: link-manager

Monitoring, Logging, and Metrics Chapter 12

[373]

 updatePolicy:
 updateMode: "Off"

We can create it and examine the recommendations:

$ kubectl create -f link-manager-vpa.yaml
 verticalpodautoscaler.autoscaling.k8s.io/link-manager created

$ kubectl get vpa link-manager -o
jsonpath="{.status.recommendation.containerRecommendations[0].lowerBound}"
 map[cpu:25m memory:262144k]

$ kubectl get vpa link-manager -o
jsonpath="{.status.recommendation.containerRecommendations[0].target}"
 map[cpu:25m memory:262144k]

I don't recommend letting the vertical pod autoscaler loose on your system at this point. It
is still in flux and has some serious limitations. The biggest one is that it can't run side by
side with the horizontal pod autoscaler.

An interesting approach, if you want to utilize it to fine-tune your resource requests, is to
run it for a while on a test cluster that mimics your production cluster, turn off the
horizontal pod autoscaler, and see how well it does.

Provisioning resources with Kubernetes
Provisioning resources has traditionally been an operator or system administrator job.
However, with the DevOps approach, developers are often tasked with self-provisioning. If
the organization has a traditional IT department, they are often more concerned with what
permissions developers should have for provisioning and what global limits should they
set. In this section, we will look at the problem of resource provisioning from both
viewpoints.

What resources should you provision?
It's important to distinguish between Kubernetes resources and the underlying
infrastructure resources they depend on. For Kubernetes resources, the Kubernetes API is
the way to go. How you interact with the API is up to you, but I recommend that you
generate YAML files and run them through kubectl create or kubectl apply as part
of your CI/CD pipeline.

Monitoring, Logging, and Metrics Chapter 12

[374]

Commands like kubectl run and kubectl scale are useful for interactive exploration
of your cluster and running ad hoc tasks, but they go against the grain of declarative
infrastructure as code.

You could also directly hit the REST endpoints of the Kubernetes API or use a client library
if you have a very complex CI/CD workflow that you implement using some higher-level
programming language like Python. Even there, you can consider just invoking kubectl.

Let's move on to the infrastructure layer that your cluster is running on. The primary
resources are compute, memory, and storage. Nodes combine compute, memory, and local
storage. Shared storage is provisioned separately. In the cloud, you may use pre-
provisioned cloud storage. This means that your primary concern is to provision nodes and
external storage for your cluster. But that's not all. You also need to connect all these nodes
via a networking layer and consider permissions. The networking in a Kubernetes cluster is
taken care of most of the time by a CNI provider. The famous flat networking model where
each pod gets its own IP is one of the best features of Kubernetes and simplifies so many
things for developers.

Permissions and access are usually handled by role-based access control (RBAC) on
Kubernetes, as we discussed at length in Chapter 6, Securing Microservices with Kubernetes.

It's very important to impose reasonable quotas and limits on resources given that we strive
for automatic provisioning.

Defining container limits
On Kubernetes, we can define limits on CPU and memory per container. These ensure that
the container will not use more than the limit. It serves two primary purposes:

Prevents containers and pods on the same node from cannibalizing each other
Helps Kubernetes schedule pods in the most efficient way by knowing the
maximum amount of resources a pod will use

We've looked at limits from a security lens in Chapter 6, Securing Microservices on
Kubernetes. The emphasis was on controlling the blast radius. If a container is compromised,
it can utilize more than the limit of resources configured for it.

Monitoring, Logging, and Metrics Chapter 12

[375]

Here is an example of setting CPU and memory limits for the user-manager service. It
follows the best practice of setting both resource limits and resource requests to the same
values:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-manager
 labels:
 svc: user
 app: manager
spec:
 replicas: 1
 selector:
 matchLabels:
 svc: user
 app: manager
 template:
 metadata:
 labels:
 svc: user
 app: manager
 spec:
 containers:
 - name: user-manager
 image: g1g1/delinkcious-user:0.3
 imagePullPolicy: Always
 ports:
 - containerPort: 7070
 resources:
 requests:
 memory: 64Mi
 cpu: 250m
 limits:
 memory: 64Mi
 cpu: 250m

Setting container limits is very useful, but it doesn't help with the problem of runaway
allocation of many pods or other resources. This is where resource quotas come in.

Monitoring, Logging, and Metrics Chapter 12

[376]

Specifying resource quotas
Kubernetes lets you specify quotas per namespace. There are different types of quotas you
can set, for example, CPU, memory, and counts of various objects, including persistent
volume claims. Let's set some quotas for the default namespace of Delinkcious:

apiVersion: v1
kind: List
items:
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: awesome-quota
 spec:
 hard:
 cpu: "1000"
 memory: 200Gi
 pods: "100"

Here is the command to apply to quota:

$ kubectl create -f resource-quota.yaml
resourcequota/awesome-quota created

Now, we can check the resource quota objects for the actual usage and compare it to the
quota to see how close we are:

$ kubectl get resourcequota awesome-quota -o yaml | grep status -A 8
status:
 hard:
 cpu: 1k
 memory: 200Gi
 pods: "100"
 used:
 cpu: 350m
 memory: 64Mi
 pods: "10"

Obviously, this resource quota is far beyond the current utilization of the cluster. That's
fine. It doesn't allocate or reserve any resources. It just means that the quota is not very
restricting.

Monitoring, Logging, and Metrics Chapter 12

[377]

There are many more nuances and options for resource quotas. There are scopes that apply
the resource quota for resources with certain conditions or states (Terminating,
NotTerminating, BestEffort, and NotBestEffort). There are resources that are quota-
specific to certain priority classes. The gist is that you can get pretty granular and provide
resource quota policies to control the resource allocation in your cluster, even in the face of
mistakes in configuration or attacks.

At this point, we have got our bases covered with resource quotas and can move on to
actually provisioning resources. There are several ways to do this, and we may want to
employ some, if not all of them, for complicated systems.

Manual provisioning
Manual provisioning sounds like an anti-pattern, but in practice it is useful in several
situations; for example, if you are managing on-premises cluster where you physically have
to provision servers, wire them together, and install storage too. Another common use case
is during development when you want to develop your automated provisioning, but you
have an interactive experiment (probably not in production). However, even in production,
if you discover some misconfiguration or another issue, you may need to respond by
manually provisioning some resources to address the crisis.

Utilizing autoscaling
On the cloud, it is highly recommended to use the autoscaling solutions we discussed
earlier. The horizontal pod autoscaler is a no-brainer. The cluster autoscaler is great too, if
your cluster deals with a very dynamic workload and you don't want to overprovision on a
regular basis. The vertical autoscaler is probably best for fine-tuning your resource requests
at this point.

Rolling your own automated provisioning
If you have more sophisticated needs, you can always roll your own. Kubernetes
encourages both running your own controllers that can watch for different events and
respond by provisioning some resources or even running some tools locally, or as part of
your CI/CD pipeline, that check the state of the cluster and make some provisioning
decisions.

Monitoring, Logging, and Metrics Chapter 12

[378]

Once your cluster is properly provisioned, you should start thinking about performance.
Performance is interesting because there are so many trade-offs you need to take into
account.

Getting performance right
Performance is important for many reasons, which we will delve into soon. It is very
important to understand when is the right time to try and improve performance. My
guiding principle is: make it work, make it right, make it fast. That is, first, just get the
system to do whatever it needs to do, however slow and clunky. Then, clean up the
architecture and the code. Now, you are ready to take on performance and consider
refactoring, changes, and many other factors that can impact performance.

But there is a preliminary step for performance improvements, and that's profiling and
benchmarking. Trying to improve performance without measuring what you try to
improve is just like trying to make your code work correctly without writing any tests. Not
only is it futile, but, even if you actually got lucky and improved the performance, how
would you know without measurements?

Let's understand something about performance. It makes everything complicated.
However, it is often a necessary evil. Improving performance is important when it affects
the user experience or cost. To make things worse, improving the user experience often
comes at a cost. Finding the sweet spot is difficult. Unfortunately, the sweet spot doesn't
stay put. Your system evolves, the number of users grow, technologies change, and the
costs of your resources change. For example, a small social media startup has no business
building its own data centers, but a social media giant like Facebook now designs their own
custom servers to squeeze a little bit more performance and save costs. Scale changes a lot.

The bottom line is, that in order to make those decisions, you must understand how your
system works and be able to measure every component and the impact on the performance
of changes that have been made to your system.

Monitoring, Logging, and Metrics Chapter 12

[379]

Performance and user experience
The user experience is all about perceived performance. How fast do I see pretty pictures
on my screen after I click a button? Obviously, you can improve the real performance of
your system, buy faster hardware, run things in parallel, improve your algorithms, upgrade
your dependencies to newer and more performant versions, and so on. But, very often, it is
more about smarter architecture and doing less work by adding caches, providing
approximate results, and pushing work to the client. Then, there are methods like pre-
fetching, where you try to do work before it is needed in order to anticipate the user's
needs.

User experience decisions can significantly impact performance. Consider a chat program
where the clients constantly poll the server every second for every keystroke versus just
checking once every minute for new messages. That's a different user experience with a 60x
performance price tag.

Performance and high availability
One of the worst routine things that can happen on a system is a timeout. A timeout means
that the user will not get an answer on time. A timeout means that you did a lot of work
that is now wasted. You may have retry logic and the user will eventually get their answer,
but performance will take a hit. When your system and all its components are highly
available (as well as not overloaded), you can minimize the occurrence of timeouts. If your
system is very redundant, you can even send the same request multiple times to different
backends and, whenever one of them responds, you have the answer.

On the other hand, a highly available and redundant system sometimes requires syncing
with all the shards/backends (or at least a quorum) to make sure you have the latest, most
up-to-date answer. Of course, inserting or updating data is also more complicated and
often takes longer on a highly available system. If the redundancy is across multiple
availability zones, regions, or continents, it can add orders of magnitude to the response
time.

Performance and cost
Performance and cost have a very interesting relationship. There are many ways to improve
performance. Some of them reduce costs, like optimizing your code, compressing the data
you send, or pushing computation to the client. However, other ways to improve
performance increase the cost, like running on stronger hardware, replicating your data to
multiple locations close to your client, and pre-fetching unrequested data.

Monitoring, Logging, and Metrics Chapter 12

[380]

In the end, this is a business decision. Even win-win performance improvements are not
always like improving your algorithms is, at the high-priority. For example, you can invest
a lot of time in coming up with an algorithm that runs 10x faster than the previous
algorithm. But the computation time might be negligible in the overall time to process a
request because it's dominated by access to the database, serializing the data, and sending it
to the client. In this case, you just wasted time that could have been used for developing
something more useful, you potentially destabilized your code and introduced bugs, and
made your code harder to understand. Again, good metrics and profiling will help you
identify the hot spots in your system that are worth improvement performance-wise and
cost-wise.

Performance and security
Performance and security are generally at odds. Security typically pushes toward
encryption across the board, outside and inside the cluster. There are strong authentication
and authorization methods, may be necessary, but has performance overhead. However,
security sometimes indirectly helps performance by advocating to cut unnecessary features
and reduce the surface area of the system. This spartan approach that produces tighter
systems allows you to focus on a smaller target to improve performance. Typically, secure
systems don't just add arbitrary features that can hurt performance without careful
consideration.

Later, we will explore how to collect and use metrics with Kubernetes, but first let's take a
look at logging, which is another pillar of monitoring your system.

Logging
Logging is the ability to record messages during the operation of your system. Log
messages are typically structured and timestamped. They are often indispensable when
trying to diagnose problems and troubleshoot your system. They are also critical when
doing post-mortems and discovering root causes after the fact. In a large-scale distributed
system, there will be many components that log messages. Collecting, organizing, and
sifting through them is a non-trivial task. But first, let's consider what information is useful
to log.

Monitoring, Logging, and Metrics Chapter 12

[381]

What should you log?
This is the million dollar question. A simplistic approach is to log everything. You can never
have too much data, and it's difficult to predict what data you'll need when trying to figure
out what's wrong with your system. However, what does everything mean exactly? You
can obviously go too far. For example, you can log every call to every little function in your
code, including all the parameters, as well as the current state, or log the payload of every
network call. Sometimes, there are security and regulatory restrictions that prevent you
from logging certain data, like protected health information (PHI) and personally
identifiable information (PII). You'll need to understand your system well enough to
decide what kind of information is relevant for you. A good starting point is logging any
incoming requests and interactions between your microservices and between your
microservices and third-party services.

Logging versus error reporting
Errors are a special kind of information. There are errors that your code can handle (for
example, with retries or using some alternative). However, there are also errors that must
be handled as soon as possible or the system will suffer partial or complete outage. But
even errors that are not urgent sometimes require that you record a lot of information. You
could log errors just like any other information, but it is often worthwhile to record errors
to a dedicated error reporting service like Rollbar or Sentry. One of the crucial pieces of
information with errors is a stack trace that includes the state (local variables) of each frame
in the stack. For a production system, I recommend that you use a dedicated error reporting
service, in addition to just logging.

The quest for the perfect Go logging interface
Delinkcious is primarily implemented with Go, so let's talk about logging in Go. There is a
standard library Logger, which is a struct and not an interface. It is configurable, and you
can pass an io.Writer object when you create it. However, the methods of the Logger
struct are rigid and don't support log levels or structured logging. Also, the fact that there is
just one output writer may be a limitation in some cases. Here is the specification for the
standard Logger:

type Logger struct { ... } // Not an interface!

func New(out io.Writer, prefix string, flag int) *Logger

// flag controls date, time, µs, UTC, caller

Monitoring, Logging, and Metrics Chapter 12

[382]

// Log
func (l *Logger) Print(v ...interface{})
func (l *Logger) Printf(format string, v ...interface{})
func (l *Logger) Println(v ...interface{})

// Log and call os.Exit(1)
func (l *Logger) Fatal(v ...interface{})
func (l *Logger) Fatalf(format string, v ...interface{})
func (l *Logger) Fatalln(v ...interface{})

// Log and panic
func (l *Logger) Panic(v ...interface{})
func (l *Logger) Panicf(format string, v ...interface{})
func (l *Logger) Panicln(v ...interface{})

func (l *Logger) Output(calldepth int, s string) error

If you need those capabilities, you need to use another library that sits on top of the
standard library Logger. There are several packages that provide various flavors:

glog: https:/ / godoc. org/ github. com/ golang/ glog

logrus: https:/ / github. com/ Sirupsen/ logrus

loggo: https:/ / godoc. org/ github. com/ juju/ loggo

log15: https:/ / github. com/ inconshreveable/ log15

They address the interface, comparability, and playability in different ways. However,
we're using Go-kit, which has its own take on logging.

Logging with Go-kit
Go-kit has the simplest interface ever. There is just one method, Log(), that accepts a list of
keys and values that can be of any type:

type Logger interface {
 Log(keyvals ...interface{}) error
}

The basic idea here is that Go-kit has no opinions about how you log your messages. Do
you always add a timestamp? Do you have logging levels? What levels? The answers to all
these questions are up to you. You get a totally generic interface and you decide what key-
values you want to log.

https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://godoc.org/github.com/golang/glog
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://github.com/Sirupsen/logrus
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://godoc.org/github.com/juju/loggo
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15
https://github.com/inconshreveable/log15

Monitoring, Logging, and Metrics Chapter 12

[383]

Setting up a logger with Go-kit
OK. The interface is generic, but we need an actual logger object to work with. Go-kit
supports several writers and logger objects that generate familiar log formats like JSON,
logfmt, or logrus out of the box. Let's set up a logger with JSON formatter and a sync
writer. A sync writer is safe to use from multiple Go routines, and a JSON formatter
formats the key values into a JSON string. In addition, we can add some default fields, such
as the service name, which is where the log message is coming from in the source code and
the current timestamp. Since we may want to use the same logger specification from
multiple services, let's put it in a package all the services can use. One last thing is to add
also a Fatal() function that will forward to the standard log.Fatal() function. This
allows code that currently uses Fatal() to continue working without changes. Here is the
Delinkcious log package that contains a factory function for the logger and the Fatal()
function:

package log

import (
 kit_log "github.com/go-kit/kit/log"
 std_log "log"
 "os"
)

func NewLogger(service string) (logger kit_log.Logger) {
 w := kit_log.NewSyncWriter(os.Stderr)
 logger = kit_log.NewJSONLogger(w)
 logger = kit_log.With(logger, "service", service)
 logger = kit_log.With(logger, "timestamp", kit_log.DefaultTimestampUTC)
 logger = kit_log.With(logger, "called from", kit_log.DefaultCaller)

 return
}

func Fatal(v ... interface{}) {
 std_log.Fatal(v...)
}

Monitoring, Logging, and Metrics Chapter 12

[384]

The writer just writes to the standard error stream, which will be captured and sent to the
container logs on Kubernetes.

To see our logger in action, let's attach it to our link service.

Using a logging middleware
Let's think about where we want to instantiate our logger and then where we want to use it
and log messages. This is important because we need to make sure that the logger is
available to all the places in the code that need to log messages. A trivial approach is to just
add a logger parameter to all our interfaces and propagate the logger in this way. However,
this is very disruptive and will violate our clean object model. Logging is really an
implementation and operational detail. Ideally, it should not appear in our object model
types or interfaces. Also, it is a Go-kit type and, so far, we've managed to keep our object
model and even our domain packages totally oblivious to the fact that they are wrapped by
Go-kit. The Delinkcious services under SVC are the only part of the code that is Go-kit
aware.

Let's try to keep it this way. Go-kit provides the middleware concept, which allows us to
chain multiple middleware components in a loosely coupled way. All the middleware
components for a service implement the service interface, and a little shim allows Go-kit to
call them one after the other. Let's begin with the shim, which is just a function type that
accepts a LinkManager interface and returns a LinkManager interface:

type linkManagerMiddleware func(om.LinkManager) om.LinkManager

The logging_middleware.go file has a factory function called newLoggingMiddlware()
that takes a logger object and returns a function that matches linkManagerMiddleware.
That function, in turn, instantiates the loggingMiddelware struct, passing it the next
component in the chain and the logger:

// implement function to return ServiceMiddleware
func newLoggingMiddleware(logger log.Logger) linkManagerMiddleware {
 return func(next om.LinkManager) om.LinkManager {
 return loggingMiddleware{next, logger}
 }
}

Monitoring, Logging, and Metrics Chapter 12

[385]

This may be very confusing, but the basic idea is having the ability to chain arbitrary
middleware components that do some work and let the rest of the computation go on. The
reason that we have all these layers of indirection is that Go-kit doesn't know anything
about our types and interfaces, so we have to assist by writing this boilerplate code. As I
mentioned earlier, all of it can, and should be, auto-generated. Let's examine the
loggingMiddleware struct and its methods. The struct itself has a linkManager interface,
which is the next component in the chain and the logger object:

type loggingMiddleware struct {
 next om.LinkManager
 logger log.Logger
}

As a LinkManager middleware component, it must implement the LinkManager interface
methods. Here is the implementation of GetLinks(). It uses the logger to log a few values,
specifically, the method name, that is, GetLinks, the request object, the result, and the
duration. Then, it calls the GetLinks() method on the next component in the chain:

func (m loggingMiddleware) GetLinks(request om.GetLinksRequest) (result
om.GetLinksResult, err error) {
 defer func(begin time.Time) {
 m.logger.Log(
 "method", "GetLinks",
 "request", request,
 "result", result,
 "duration", time.Since(begin),
)
 }(time.Now())
 result, err = m.next.GetLinks(request)
 return
}

For simplicity, the other methods just call the next component in the chain doing anything:

func (m loggingMiddleware) AddLink(request om.AddLinkRequest) error {
 return m.next.AddLink(request)
}

func (m loggingMiddleware) UpdateLink(request om.UpdateLinkRequest) error {
 return m.next.UpdateLink(request)
}

func (m loggingMiddleware) DeleteLink(username string, url string) error {
 return m.next.DeleteLink(username, url)
}

Monitoring, Logging, and Metrics Chapter 12

[386]

The middleware chain concept is very powerful. The middleware can preprocess inputs
before passing them on to the next component, it can short circuit and return immediately
without calling the next component, or it can postprocess the result coming from the next
component.

Let's see the log output from the link service when running our smoke test. It looks a bit
messy for humans, but all the necessary information is there, clearly marked and ready for
large-scale analysis if needed. It's easy to grep and it's easy to use tools like jq to dig
deeper:

$ kubectl logs svc/link-manager
{"called from":"link_service.go:133","msg":"*** listening on
***","port":"8080","service":"link
manager","timestamp":"2019-05-13T02:44:42.588578835Z"}
{"called
from":"logging_middleware.go:25","duration":"1.526953ms","method":"GetLinks
","request":{"UrlRegex":"","TitleRegex":"","DescriptionRegex":"","Username"
:"Gigi
Sayfan","Tag":"","StartToken":""},"result":{"Links":[],"NextPageToken":""},
"service":"link manager","timestamp":"2019-05-13T02:45:05.302342532Z"}
{"called
from":"logging_middleware.go:25","duration":"591.148µs","method":"GetLinks"
,"request":{"UrlRegex":"","TitleRegex":"","DescriptionRegex":"","Username":
"Gigi
Sayfan","Tag":"","StartToken":""},"result":{"Links":[{"Url":"https://github
.com/the-gigi","Title":"Gigi on
Github","Description":"","Status":"pending","Tags":null,"CreatedAt":"2019-0
5-13T02:45:05.845411Z","UpdatedAt":"2019-05-13T02:45:05.845411Z"}],"NextPag
eToken":""},"service":"link
manager","timestamp":"2019-05-13T02:45:06.134842509Z"}
{"called
from":"logging_middleware.go:25","duration":"911.499µs","method":"GetLinks"
,"request":{"UrlRegex":"","TitleRegex":"","DescriptionRegex":"","Username":
"Gigi
Sayfan","Tag":"","StartToken":""},"result":{"Links":[{"Url":"https://github
.com/the-gigi","Title":"Gigi on
Github","Description":"","Status":"pending","Tags":null,"CreatedAt":"2019-0
5-13T02:45:05.845411Z","UpdatedAt":"2019-05-13T02:45:05.845411Z"}],"NextPag
eToken":""},"service":"link
manager","timestamp":"2019-05-13T02:45:09.438915897Z"}

Thanks to Go-kit, we have a strong and flexible logging mechanism in place. However,
manually fetching logs with kubectl logs doesn't scale. For real-world systems, we need
centralized log management.

Monitoring, Logging, and Metrics Chapter 12

[387]

Centralized logging with Kubernetes
In Kubernetes, containers write to the standard output and standard error streams.
Kubernetes makes those logs available (for example, via kubectl logs). You can even get
logs of the previous run of a container if it crashed by using kubectl logs -p, but, if the
pod is rescheduled, then its containers and their logs disappear. If the node itself crashes,
you'll lose the logs too. Even when all the logs are available for a cluster with a lot of
services, it is a non-trivial task to sift through the container logs and try to make sense of
the state of the system. Enter centralized logging. The idea is to have a log agent running,
either as a side container in each pod, or as daemon set on each node, listen to all the logs,
and ship them in real time to a centralized location where they can be aggregated, filtered,
and sorted. Of course, you can explicitly log from your containers directly to the centralized
logging service too.

The simplest and most robust approach in my opinion is the demon set. The cluster admin
makes sure that a log agent is installed on each node and that's it. There's no need to change
your pod spec to inject side containers, no need to depend on special libraries to
communicate with remote logging services. Your code writes to standard output and
standard error, and you're done. Most other services you may use, like web servers and
databases, can be configured to write to the standard output and standard error, too.

One of the most popular log agents on Kubernetes is Fluentd (https:/ /www. fluentd. org).
It is also a CNCF graduated project. You should use Fluentd unless you have a very good
reason to use another logging agent. Here is a diagram that illustrates how Fluentd fits into
Kubernetes as a DaemonSet that is deployed into each node, pulls all the logs of all the
pods, and sends them to a centralized log management system:

Fluentd

https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org

Monitoring, Logging, and Metrics Chapter 12

[388]

Let's talk about the log management system. In the open source world, the ELK stack –
ElasticSearch, LogStash, and Kibana – are a very popular combination. ElasticSearch stores
the logs and provides various ways to slice and dice them. LogStash is the log ingest
pipeline and Kibana is a powerful visualization solution. Fluentd can replace LogStash as
the logging agent, and you get the EFK stack – ElasticSearch. Fluentd and Kibana work
very well on Kubernetes. There's also Helm charts and the GitHub repository, which can
install EFK on your Kubernetes cluster in one click. However, you should also consider out
of cluster logging service. As we discussed previously, logs are very helpful for
troubleshooting and post mortems. If your cluster is in trouble, you might not be able to
access your logs at the time you need them the most. Fluentd can integrate with a plethora
of data outputs. Check the full list here: https:/ /www. fluentd. org/ dataoutputs. We've got
logging covered, so now it's time to talk about metrics.

Collecting metrics on Kubernetes
Metrics are a key component that enables many interesting use cases like self-healing,
autoscaling, and alerting. Kubernetes, as a distributed platform, has a very strong offering
around metrics, with a powerful yet generic and flexible metrics API.

Kubernetes always had support for metrics via cAdvisor (integrated into kube-proxy) and
Heapster (https:/ /github. com/ kubernetes- retired/ heapster). However, cAdvisor was
removed in Kubernetes 1.12 and Heapster was removed in Kubernetes 1.13. You can still
install them (like we did earlier on minikube using the Heapster add-on), but they aren't
part of Kubernetes and aren't recommended anymore. The new way to do metrics on
Kubernetes is by using the metrics API and the metrics server (https:/ /github. com/
kubernetes-incubator/ metrics- server).

Introducing the Kubernetes metrics API
The Kubernetes metrics API is very generic. It supports node and pod metrics, as well as
custom metrics. A metric has a usage field, a timestamp, and a window (the time range the
metric was collected in). Here is the API definition for node metrics:

// resource usage metrics of a node.
type NodeMetrics struct {
 metav1.TypeMeta
 metav1.ObjectMeta

 // The following fields define time interval from which metrics were
 // collected from the interval [Timestamp-Window, Timestamp].

https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://www.fluentd.org/dataoutputs
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server

Monitoring, Logging, and Metrics Chapter 12

[389]

 Timestamp metav1.Time
 Window metav1.Duration

 // The memory usage is the memory working set.
 Usage corev1.ResourceList
}

// NodeMetricsList is a list of NodeMetrics.
type NodeMetricsList struct {
 metav1.TypeMeta
 // Standard list metadata.
 // More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#types-ki
nds
 metav1.ListMeta

 // List of node metrics.
 Items []NodeMetrics
}

The usage field type is ResourceList, but it's actually a map of a resource name to a
quantity:

// ResourceList is a set of (resource name, quantity) pairs.
type ResourceList map[ResourceName]resource.Quantity

There are two other metrics-related APIs: the external metrics API and the custom metrics
API. They are designed for extending the Kubernetes metrics with arbitrary custom metrics
or metrics coming from outside Kubernetes, such as cloud providers monitoring. You can
annotate those additional metrics and use them for autoscaling.

Understanding the Kubernetes metrics server
The Kubernetes metric server is a modern replacement for Heapster and cAdvisor. It
implements the metrics API and provides the nodes and pods metrics. Those metrics are
used by the various autoscalers and by the Kubernetes scheduler itself when dealing with
best effort scenarios. Depending on your Kubernetes distribution, the metrics server may or
may not be installed. If you need to install it, you can use helm. For example, on AWS EKS,
you have to install the metrics server yourself using the following command (you can
choose any namespace):

helm install stable/metrics-server \
 --name metrics-server \
 --version 2.0.4 \
 --namespace kube-system

Monitoring, Logging, and Metrics Chapter 12

[390]

Typically, you don't interact with the metrics server directly. You can access the metrics
using the kubectl get --raw command:

$ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq .
{
 "kind": "NodeMetricsList",
 "apiVersion": "metrics.k8s.io/v1beta1",
 "metadata": {
 "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
 },
 "items": [
 {
 "metadata": {
 "name": "ip-192-168-13-100.ec2.internal",
 "selfLink":
"/apis/metrics.k8s.io/v1beta1/nodes/ip-192-168-13-100.ec2.internal",
 "creationTimestamp": "2019-05-17T20:05:29Z"
 },
 "timestamp": "2019-05-17T20:04:54Z",
 "window": "30s",
 "usage": {
 "cpu": "85887417n",
 "memory": "885828Ki"
 }
 }
]
}

In addition, you can use the very useful kubectl command, that is, kubectl top, which
gives you a quick overview of the performance of your nodes or pods:

$ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-192-168-13-100.ec2.internal 85m 4% 863Mi 11%

$ kubectl top pods
NAME CPU(cores) MEMORY(bytes)
api-gateway-795f7dcbdb-ml2tm 1m 23Mi
link-db-7445d6cbf7-2zs2m 1m 32Mi
link-manager-54968ff8cf-q94pj 0m 4Mi
nats-cluster-1 1m 3Mi
nats-operator-55dfdc6868-fj5j2 2m 11Mi
news-manager-7f447f5c9f-c4pc4 0m 1Mi
news-manager-redis-0 1m 1Mi
social-graph-db-7565b59467-dmdlw 1m 31Mi
social-graph-manager-64cdf589c7-4bjcn 0m 1Mi
user-db-0 1m 32Mi
user-manager-699458447-6lwjq 1m 1Mi

Monitoring, Logging, and Metrics Chapter 12

[391]

Note that as of Kubernetes 1.15 (current version at the time of writing) the Kubernetes
dashboard doesn't integrate with the metrics server for performance yet. It still requires
Heapster. I'm sure you will be able to work with the metrics-server soon.

The metrics-server is the standard Kubernetes metrics solution for CPU and memory, but, if
you want to go further and consider custom metrics, there is one obvious choice:
Prometheus. Unlike most things Kubernetes, where you have a plethora of options in the
metrics arena, Prometheus stands head and shoulders above all the other free and open
source options.

Using Prometheus
Prometheus (https:/ /prometheus. io/) is an open source and CNCF graduated project (the
second after Kubernetes itself). It is the de facto standard metrics collection solution for
Kubernetes. It has an impressive set of features, a large installation base on Kubernetes, and
an active community. Some of the prominent features are as follows:

A generic multi-dimensional data model where each metric is modeled as a time
series of key-value pairs
A powerful query language, called PromQL, that lets you generate reports,
graphs, and tables
A built-in alerting engine where alerts are defined and triggered by PromQL
queries
Powerful visualization – Grafana, console template language, and more
Many integrations with other infrastructure components beyond Kubernetes

Let's look at the following references:

Monitoring your Kubernetes Deployments with
Prometheus: https://supergiant.io/blog/monitoring-your-kubernetes-depl
oyments-with-prometheus/

Configure Kubernetes Autoscaling With Custom Metrics: https:/ /docs.
bitnami. com/ kubernetes/ how- to/configure- autoscaling- custom- metrics/

Deploying Prometheus into the cluster
Prometheus is a large project with many capabilities, options, and integrations. Deploying
it and managing it is not a trivial task. There a couple of projects that can help. The
Prometheus operator (https:/ /github. com/coreos/ prometheus- operator) provides a way
to deeply configure Prometheus using Kubernetes resources.

https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://supergiant.io/blog/monitoring-your-kubernetes-deployments-with-prometheus/
https://supergiant.io/blog/monitoring-your-kubernetes-deployments-with-prometheus/
https://supergiant.io/blog/monitoring-your-kubernetes-deployments-with-prometheus/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://docs.bitnami.com/kubernetes/how-to/configure-autoscaling-custom-metrics/
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator

Monitoring, Logging, and Metrics Chapter 12

[392]

The operator concept (https:/ / coreos. com/ blog/ introducing- operators. html) was
introduced in 2016 by CoreOS (who was acquired by RedHat, who was acquired by IBM).
A Kubernetes operator is a controller that is responsible for managing stateful applications
inside a cluster using Kubernetes CRDs. Operators, in practice, extend the Kubernetes API
to provide a seamless experience when managing foreign components like Prometheus.
Actually, the Prometheus operator was the first operator (along with the Etcd operator):

Prometheus operator

The kube-promethus (https:/ /github. com/ coreos/ kube- prometheus) project is built on
top of the Prometheus operator and adds the following:

Grafana visualization
A highly available Prometheus cluster
A highly available Alertmanager cluster
An adapter for the Kubernetes Metrics APIs
Kernel and OS metrics via the Prometheus node exporter
Various metrics on the state of Kubernetes objects via kube-state-metrics

The Prometheus operator brings the ability to launch a Prometheus instance into a
Kubernetes namespace, configure it, and target services via labels to the table.

For now, we'll just use helm to deploy a full-fledged installation of Prometheus:

$ helm install --name prometheus stable/prometheus
 This will create service accounts, RBAC roles, RBAC bindings, deployments,
services and even a daemon set. In addition it will print the following
information to connect to different components:

The Prometheus server can be accessed via port 80 on the following DNS
name from within your cluster: prometheus-
server.default.svc.cluster.local.

https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://coreos.com/blog/introducing-operators.html
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus
https://github.com/coreos/kube-prometheus

Monitoring, Logging, and Metrics Chapter 12

[393]

Get the Prometheus server URL by running the following commands in the same shell:

 export POD_NAME=$(kubectl get pods --namespace default -l
"app=prometheus,component=server" -o jsonpath="{.items[0].metadata.name}")
 kubectl --namespace default port-forward $POD_NAME 9090

The Prometheus alertmanager can be accessed via port 80 on the following DNS name
from within your cluster:

prometheus-alertmanager.default.svc.cluster.local

Get the Alertmanager URL by running the following commands in the same shell:

export POD_NAME=$(kubectl get pods --namespace default -l
"app=prometheus,component=alertmanager" -o
jsonpath="{.items[0].metadata.name}")
 kubectl --namespace default port-forward $POD_NAME 9093

The Prometheus pushgateway can be accessed via port 9091 on the following DNS name
from within your cluster:

 prometheus-pushgateway.default.svc.cluster.local

Get the PushGateway URL by running the following commands in the same shell:

 export POD_NAME=$(kubectl get pods --namespace default -l
"app=prometheus,component=pushgateway" -o
jsonpath="{.items[0].metadata.name}")
 kubectl --namespace default port-forward $POD_NAME 9091

Let's see what services were installed:

$ kubectl get svc -o name | grep prom
service/prometheus-alertmanager
service/prometheus-kube-state-metrics
service/prometheus-node-exporter
service/prometheus-pushgateway
service/prometheus-server

Everything seems in order. Let's follow the instructions and check out the Prometheus web
UI:

$ export POD_NAME=$(kubectl get pods --namespace default -l
"app=prometheus,component=server" -o jsonpath="{.items[0].metadata.name}")

$ kubectl port-forward $POD_NAME 9090
Forwarding from 127.0.0.1:9090 -> 9090
Forwarding from [::1]:9090 -> 9090

Monitoring, Logging, and Metrics Chapter 12

[394]

We can now browse to localhost:9090 and do some checks. Let's check the number of
goroutines in the cluster:

Prometheus web UI

Monitoring, Logging, and Metrics Chapter 12

[395]

The number of metrics that have been collected by Prometheus is mind-numbing. There are
hundreds of different built-in metrics. Check out how small the scroll thumb on the right is
when opening the metric selection dropdown:

Prometheus dropdown

There are way more metrics than you will ever need, but each one of them can be important
for some specific troubleshooting task.

Monitoring, Logging, and Metrics Chapter 12

[396]

Recording custom metrics from Delinkcious
OK: Prometheus is installed and collecting standard metrics automatically, but we want to
record our own custom metrics too. Prometheus works in pull mode. A service that want to
provide metrics needs to expose a /metrics endpoint (it is possible to push metrics to
Prometheus too, using its Push Gateway). Let's utilize the middleware concept of Go-kit
and add a metrics middleware that's similar to the logging middleware. We will take
advantage of the Go client library provided by Prometheus.

The client library provides several primitives like counter, summary, histogram, and gauge.
For the purpose of understanding how to record metrics from a Go service, we will
instrument each endpoint of the link service to record the number of requests (a counter),
as well as a summary of all requests (a summary). Let's start by providing factory functions
in a separate library called pkg/metrics. The library provides a convenient wrapper around
the Prometheus Go client. Go-kit has its own abstraction layer on top of the Prometheus Go
client, but it doesn't provide a lot of value, unless you plan to switch to another metrics
provider like statsd. This is unlikely for Delinkcious and probably for your system too.
The service name, metric name, and help string will be used to construct the fully qualified
metric name later:

package metrics

import (
 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promauto"
)

func NewCounter(service string, name string, help string)
prometheus.Counter {
 opts := prometheus.CounterOpts{
 Namespace: "",
 Subsystem: service,
 Name: name,
 Help: help,
 }
 counter := promauto.NewCounter(opts)
 return counter
}

func NewSummary(service string, name string, help string)
prometheus.Summary {
 opts := prometheus.SummaryOpts{
 Namespace: "",
 Subsystem: service,
 Name: name,
 Help: help,

Monitoring, Logging, and Metrics Chapter 12

[397]

 }

 summary := promauto.NewSummary(opts)
 return summary
}

The next step is to construct the middleware. It should look very familiar, as it is almost
identical to the logging middleware. The newMetricsMiddleware() function creates a
counter and a summary metrics for each endpoint and returns it as the generic
linkManagerMiddleware function we defined earlier (a function that accepts the next
middleware and returns itself to assemble a chain of components that all implement the
om.LinkManager interface):

package service

import (
 "github.com/prometheus/client_golang/prometheus"
 "github.com/the-gigi/delinkcious/pkg/metrics"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
 "strings"
 "time"
)

// implement function to return ServiceMiddleware
func newMetricsMiddleware() linkManagerMiddleware {
 return func(next om.LinkManager) om.LinkManager {
 m := metricsMiddleware{next,
 map[string]prometheus.Counter{},
 map[string]prometheus.Summary{}}
 methodNames := []string{"GetLinks", "AddLink", "UpdateLink",
"DeleteLink"}
 for _, name := range methodNames {
 m.requestCounter[name] = metrics.NewCounter("link",
strings.ToLower(name)+"_count",
 "count # of requests")
 m.requestLatency[name] = metrics.NewSummary("link",
strings.ToLower(name)+"_summary",
 "request summary in
milliseconds")

 }
 return m
 }

Monitoring, Logging, and Metrics Chapter 12

[398]

The metricsMiddleware struct stores the next middleware and two maps. One map is a
mapping of method names to Prometheus counters, while the other map is a mapping of
method names to Prometheus summaries. They are used by the LinkManager interface
methods to record metrics separately for each method:

type metricsMiddleware struct {
 next om.LinkManager
 requestCounter map[string]prometheus.Counter
 requestLatency map[string]prometheus.Summary
}

The middleware methods use the pattern of performing an action, which, in this case, is
recording metrics and then calling the next component. Here is the GetLinks() method:

func (m metricsMiddleware) GetLinks(request om.GetLinksRequest) (result
om.GetLinksResult, err error) {
 defer func(begin time.Time) {
 m.recordMetrics("GetLinks", begin)
 }(time.Now())
 result, err = m.next.GetLinks(request)
 return
}

The actual metric recording is done by the recordMetrics() method, which takes the
method name (GetLinks here) and beginning time. It is deferred until the end of the
GetLinks() method, which allows it to calculate the duration of the GetLinks() method
itself. It uses the counter and summary from the maps that match the method name:

func (m metricsMiddleware) recordMetrics(name string, begin time.Time) {
 m.requestCounter[name].Inc()
 durationMilliseconds := float64(time.Since(begin).Nanoseconds() *
1000000)
 m.requestLatency[name].Observe(durationMilliseconds)
}

At this point, we have our metrics middleware ready to go, but we still need to hook it up
to the middleware chain and expose it as the /metrics endpoint. Since we've done all the
preliminary work, these are just two lines in the link service's Run() method:

// Hook up the metrics middleware
svc = newMetricsMiddleware()(svc)

...

// Expose the metrics endpoint
r.Methods("GET").Path("/metrics").Handler(promhttp.Handler())

Monitoring, Logging, and Metrics Chapter 12

[399]

Now, we can query the /metrics endpoint and see our metrics being returned. Let's run
the smoke test three times and check the metrics of the GetLinks() and AddLink()
methods. As expected, the AddLink() method was called once per smoke test (three times
total) and the GetLinks() method was called three times per test and nine times total. We
can also see the help strings.

The summary quantiles are very useful when dealing with large datasets:

$ http http://localhost:8080/metrics | grep 'link_get\|add'

HELP link_addlink_count count # of requests
TYPE link_addlink_count counter
link_addlink_count 3
HELP link_addlink_summary request summary in milliseconds
TYPE link_addlink_summary summary
link_addlink_summary{quantile="0.5"} 2.514194e+12
link_addlink_summary{quantile="0.9"} 2.565382e+12
link_addlink_summary{quantile="0.99"} 2.565382e+12
link_addlink_summary_sum 7.438251e+12
link_addlink_summary_count 3
HELP link_getlinks_count count # of requests
TYPE link_getlinks_count counter
link_getlinks_count 9
HELP link_getlinks_summary request summary in milliseconds
TYPE link_getlinks_summary summary
link_getlinks_summary{quantile="0.5"} 5.91539e+11
link_getlinks_summary{quantile="0.9"} 8.50423e+11
link_getlinks_summary{quantile="0.99"} 8.50423e+11
link_getlinks_summary_sum 5.710272e+12
link_getlinks_summary_count 9

Custom metrics are great. However, beyond looking at a lot of numbers and graphs and
histograms and admiring your handiwork, the real value of metrics is to inform an
automated system or you about changes in the state of the system. That's where alerting
comes in.

Monitoring, Logging, and Metrics Chapter 12

[400]

Alerting
Alerting is super important for critical systems. You can plan and build resiliency features
as much as you want, but you will never build a failproof system. The right mindset for
building robust and reliable systems is to try to minimize failures, but also acknowledge
that failures will happen. When failures do happen, you need quick detection and have to
alert the right people so that they can investigate and address the problem. Note that I said
explicitly alerting people. If your system has self-healing capabilities, then you may be
interested in viewing a report of the issues that the system was able to rectify itself. I don't
consider those failures, because the system is designed to handle them. For example,
containers can crash as much as they want; the kubelet will keep restarting them. A
container crash is not considered a failure from a Kubernetes point of view. If your
application running inside the container is not designed to handle such crashes and
restarts, then you may want to configure an alert for this case, but that's your decision.

The main point I want to raise is that failure is a big word. Many things that could be
considered failures are processes running out of memory, a server crashing, a corrupted
disk, an intermittent or prolonged network outage, and a data center going offline.
However, if you design for it and put mitigating measures in place, they are not failures of
the system. The system will keep running as designed, possibly in a reduced capacity, but
still running. If those incidents happen a lot and degrade to the total throughput of the
system or the user experience in a significant way, you may want to investigate the root
causes and address them. This is all part of defining service-level objectives (SLOs) and
service-level agreements (SLAs). As long as you operate within your SLAs, the system is
not failing, even if multiple components are failing and even if a service doesn't meet its
SLO.

Embracing component failure
Embracing failure means recognizing that components will fail all the time in a large
system. This is not an unusual situation. You want to minimize component failures because
each failure has various costs, even if the system as a whole continues to work. But it will
happen. Most component failures can be handled either automatically or without urgency
by having redundancy in place. However, systems evolve all the time and most systems are
not in the perfect position where every component failure has mitigation in place for each
type of failure. As a result, theoretically preventable component failures might become
system failures. For example, if you write your logs to a local disk and you don't rotate
your log files, then, eventually, you'll run out of disk space (very common failure), and, if
the server using this disk is running some critical component with no redundancy, then
you've got a system failure on your hands.

Monitoring, Logging, and Metrics Chapter 12

[401]

Grudgingly accepting system failure
So, system failures will happen. Even the largest cloud providers have outages from time to
time. There are different levels of system failures, ranging from temporary short failure of a
non-critical subsystem, through to total outage of the entire system for a prolonged time, all
the way to massive data loss. An extreme example is when malicious attackers target a
company and all its backups, which can put it out of business. This is more related to
security, but it's good to understand the full spectrum of system failures.

Common approaches for dealing with system failures are redundancy, backups, and
compartmentalization. These are solid approaches, but are expensive, and, as we
mentioned earlier, will not prevent all failures. The next step after minimizing the
likelihood and impact of system failures is to plan for quick disaster recovery.

Taking human factors into account
Now, we're strictly in the domain of people responding to an actual incident. Some critical
systems may have 24/7 live monitoring by people watching the system state diligently and
ready to act. Most companies will have alerts based on various triggers. Note that, even if
you have live 24/7 monitoring for complex systems, you still need to surface alerts to the
people monitoring the system because, for such systems, there is typically a huge amount
of data and information that describe the current state.

Let's look at several aspects of a reasonable alerting plan that work well for people.

Warnings versus alerts
Let's consider our out of disk space situation again. This is a case were the state gets worse
over time. The disk space is gradually reduced as more and more data is logged to the log
files. If you've got nothing in place, you will discover that you've ran out of disk space
when an application starts to issue strange errors, often downstream from the actual failure,
and you'll have to trace it back to the source. I've been there and done that; it's no fun. A
better approach is to check the disk space regularly and raise an alert when it exceeds a
certain threshold (for example, 95%). But why wait until the situation becomes critical? In
such gradually worsening situations, it is much better to detect the problem early (for
example, 75%) and issue a warning through some mechanism. This will give the system
operator ample time to respond without causing an unnecessary crisis.

Monitoring, Logging, and Metrics Chapter 12

[402]

Considering severity levels
This brings us to alert severity levels. Different severity levels deserve different responses.
Different organizations may define their own levels. For example, PagerDuty has a 1-5 scale
that follows the DEFCON ladder. I personally prefer two levels for alerts: wake me up at 3
AM and it can wait to the morning. I like to think of severity levels in practical terms. What
kind of response or follow up do you perform for each severity level? If you always do the
same thing for severity levels 3 -5, then what's the benefits of classifying them as 3, 4, and 5
as opposed to just grouping them together into a single low-priority severity level?

Your situation may be different, so make sure that you consider all stakeholders.
Production incidents are not fun.

Determining alert channels
Alert channels are tightly coupled to severity levels. Let's consider the following options:

Wake-up call to on-call engineer
Instant message to a public channel
Email

Often, the same incident will be broadcasted to multiple channels. Obviously, the wake-up
call is the most intrusive, the instant message (for example, slack) may pop up as a
notification, but someone has to be around and look at it. The email is often more
informative in nature. It is common to combine multiple channels. For example, the on-call
engineer gets the wake up call, the team incident channel gets a message, and the group
manager gets and email.

Fine-tuning noisy alerts
Noisy alerts are a problem. If there are too many alerts – especially low-priority ones – then
there are two major problems:

It is distracting to all the people that get notified (especially to the poor engineer
being woke up in the middle of the night).
It might lead to people ignoring alerts.

You don't want to miss an important alert because of a lot of noisy low-priority alerts. Fine-
tuning your alerts is an art and an ongoing process.

Monitoring, Logging, and Metrics Chapter 12

[403]

I recommend reading and adopting My Philosophy on Alerting (https:/ / docs. google. com/
document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/ edit) by Rob Ewaschuk
(ex-Google site reliability engineer).

Utilizing the Prometheus alert manager
Alerts naturally feed off metrics. Prometheus, in addition to being a fantastic metrics
collector, also provides an alert manager. We've already installed it as part of the overall
Prometheus installation:

$ kubectl get svc prometheus-alertmanager
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus-alertmanager ClusterIP 10.100.109.90 <none> 80/TCP 24h

We're not going to configure any alerts because I don't want to be on call for Delinkcious.

The Alert manager has a conceptual model that includes the following:

Groupings
Integrations
Inhibition
Silences

Grouping deals with consolidating multiple signals into a single notification. For example,
if many of your services use AWS S3 and it suffers an outage, then a lot of services might
trigger alerts. But with grouping, you can configure the alert manager to send just one
notification.

Integrations are notification targets. The alert manager supports many targets out of the
box like email, PagerDuty, Slack, HipChat, PushOver, OpsGenie, VictoOps, and WeChat.
For all other integrations, the recommendation is to use the generic HTTP webhook
integration.

Inhibition is an interesting concept where you can skip sending notifications for alerts if
other alerts are already firing. This is another way on top of grouping to avoid sending
multiple notifications for the same high-level problem.

Silences are just a mechanism to temporarily mute some alerts. This is useful if your
alerting rules are not neatly configured with grouping and inhibitions, or even if some
valid alerts keep firing, but you are already handling the situation and you don't need more
notifications at the moment. You can configure silences in the web UI.

https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit

Monitoring, Logging, and Metrics Chapter 12

[404]

Configuring alerts in Prometheus
You can raise alerts by configuring rules in the Prometheus server configuration file. Those
alerts are handled by the alert manager which decides, based on its configuration, what to
do about them. Here is an example:

groups:
- name: link-manager
 rules:
 - alert: SlowAddLink
 expr: link_addlink_summary{quantile="0.5"} > 5
 for: 1m
 labels:
 severity: critical
 annotations:
 description: the AddLink() method takes more than 5 seconds for more
than half of the request in the last minute
 summary: the AddLink() method takes too long

The rule has an expression, which, if true, triggers the alert. There is a period of time (1
minute here) where the condition must be true, so that you can avoid triggering one-off
anomalies (if you so choose). There is severity associated with the alert and some
annotations.

With metrics and alerts covered, let's move on and see what to do when an alert fires and
we get notified of a problem.

Distributed tracing
The notifications that alert you that something is wrong can be as vague as Something is
wrong with the website. Well, that's not very useful for troubleshooting, detecting the root
cause, and fixing it. This is especially true for microservice-based architectures where every
user request can be handled by a large number of microservices and each component might
fail in interesting ways. There are several ways to try and narrow down the scope:

Look at recent deployments and configuration changes.
Check whether any of your third-party dependencies suffered an outage.
Consider similar issues if the root cause hasn't been fixed yet.

If you're lucky, you can just diagnose the problem right away. However, when debugging
large-scale distributed systems, you don't really want to rely on luck. It's much better to
have a methodical approach in place. Enter distributed tracing.

Monitoring, Logging, and Metrics Chapter 12

[405]

We will use the Jaeger (https:/ /www. jaegertracing. io/) distributed tracing system. It is
yet another CNCF project that started as an Uber open source project. The problems Jaeger
can help with are as follows:

Distributed transaction monitoring
Performance and latency optimization
Root cause analysis
Service dependency analysis
Distributed context propagation

Before we can use Jaeger, we need to install it into the cluster.

Installing Jaeger
The best way to install Jaeger is using the Jaeger-operator, so let's install the operator first:

$ kubectl create -f
https://raw.githubusercontent.com/jaegertracing/jaeger-operator/master/depl
oy/crds/jaegertracing_v1_jaeger_crd.yaml
customresourcedefinition.apiextensions.k8s.io/jaegers.jaegertracing.io
created
$ kubectl create -f
https://raw.githubusercontent.com/jaegertracing/jaeger-operator/master/depl
oy/service_account.yaml
serviceaccount/jaeger-operator created
$ kubectl create -f
https://raw.githubusercontent.com/jaegertracing/jaeger-operator/master/depl
oy/role.yaml
clusterrole.rbac.authorization.k8s.io/jaeger-operator created
$ kubectl create -f
https://raw.githubusercontent.com/jaegertracing/jaeger-operator/master/depl
oy/role_binding.yaml
clusterrolebinding.rbac.authorization.k8s.io/jaeger-operator created
$ kubectl create -f
https://raw.githubusercontent.com/jaegertracing/jaeger-operator/master/depl
oy/operator.yaml
deployment.apps/jaeger-operator created

https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

Monitoring, Logging, and Metrics Chapter 12

[406]

Once the operator has been installed, we can create a Jaeger instance using the following
manifest:

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-in-memory
spec:
 agent:
 strategy: DaemonSet

This is a simple in-memory instance. You can also create instances that are backed up by
Elasticsearch and Cassandra:

Jaeger UI

Jaeger has a very slick web UI that lets you drill down and explore distributed workflows.

Monitoring, Logging, and Metrics Chapter 12

[407]

Integrating tracing into your services
There are several steps here, but the gist of it is that you can think of tracing as another
form of middleware. The core abstraction is a span. A request spans multiple microservices,
and you record those spans and associate logs with them.

Here is the tracing middleware, which is similar to the logging middleware, except that it
starts a span for the GetLinks() method instead of logging. As usual, there is the factory
function that returns a linkManagerMiddleware function that calls the next middleware
in the chain. The factory function accepts a tracer, which can start and finish a span:

package service

import (
 "github.com/opentracing/opentracing-go"
 om "github.com/the-gigi/delinkcious/pkg/object_model"
)

func newTracingMiddleware(tracer opentracing.Tracer) linkManagerMiddleware
{
 return func(next om.LinkManager) om.LinkManager {
 return tracingMiddleware{next, tracer}
 }
}

type tracingMiddleware struct {
 next om.LinkManager
 tracer opentracing.Tracer
}

func (m tracingMiddleware) GetLinks(request om.GetLinksRequest) (result
om.GetLinksResult, err error) {
 defer func(span opentracing.Span) {
 span.Finish()
 }(m.tracer.StartSpan("GetLinks"))
 result, err = m.next.GetLinks(request)
 return
}

Monitoring, Logging, and Metrics Chapter 12

[408]

Let's add the following function to create a Jaeger tracer:

// createTracer returns an instance of Jaeger Tracer that samples
// 100% of traces and logs all spans to stdout.
func createTracer(service string) (opentracing.Tracer, io.Closer) {
 cfg := &jaegerconfig.Configuration{
 ServiceName: service,
 Sampler: &jargerconfig.SamplerConfig{
 Type: "const",
 Param: 1,
 },
 Reporter: &jaegerconfig.ReporterConfig{
 LogSpans: true,
 },
 }
 logger := jaegerconfig.Logger(jaeger.StdLogger)
 tracer, closer, err := cfg.NewTracer(logger)
 if err != nil {
 panic(fmt.Sprintf("ERROR: cannot create tracer: %v\n", err))
 }
 return tracer, closer
}

Then, the Run() function creates a new tracer and a tracing middleware that it hooks up to
the chain of middlewares:

// Create a tracer
 tracer, closer := createTracer("link-manager")
 defer closer.Close()

 ...

 // Hook up the tracing middleware
 svc = newTracingMiddleware(tracer)(svc)

After running the smoke test, we can search the logs for reports of spans. We expect three
spans since the smoke test calls GetLinks() three times:

$ kubectl logs svc/link-manager | grep span
2019/05/20 16:44:17 Reporting span 72bce473b1af5236:72bce473b1af5236:0:1
2019/05/20 16:44:18 Reporting span 6e9f45ce1bb0a071:6e9f45ce1bb0a071:0:1
2019/05/20 16:44:21 Reporting span 32dd9d1edc9e747a:32dd9d1edc9e747a:0:1

There is much more to tracing and Jaeger. This is barely starting to scratch the surface. I
encourage you to read more on it, experiment with it, and integrate it into your systems.

Monitoring, Logging, and Metrics Chapter 12

[409]

Summary
In this chapter, we covered a large number of topics, including self-healing, autoscaling,
logging, metrics, and distributed tracing. Monitoring a distributed system is tough. Just
installing and configuring the various monitoring services like Fluentd, Prometheus, and
Jaeger is a non-trivial project. Managing the interactions between them and how your
services support logging, instrumentation, and tracing adds another level of complexity.
We've seen how Go-kit, with its middleware concept, makes it somewhat easier to add
those operational concerns in a decoupled way from the core business logic. Once you have
all the monitoring for those systems in place, there's a new set of challenges to take into
account – how do you gain insights from all the data? How can you integrate it into your
alerting and incident response process? How can you continuously improve your
understanding of the system and improve your processes? These are all hard questions that
you'll have to answer for yourself, but you may find some guidance in the Further reading
section that follows.

In the next chapter, we will look at the exciting world of service meshes and Istio. Service
meshes are a true innovation that can really offload many operational concerns from the
services and let them focus on their core domain. However, a service mesh like Istio has a
large surface area and there is a significant learning curve to overcome. Do the benefits of
the service mesh compensate for the added complexity? We'll find out soon.

Further reading
Refer to the following links to find out more about what was covered in this chapter:

Kubernetes federation: https:/ /github. com/ kubernetes- sigs/ federation- v2

Kubernetes autoscaler: https:/ /github. com/ kubernetes/ autoscaler

The hunt for a logger interface: https:/ /go- talks. appspot. com/github. com/
ChrisHines/ talks/ structured- logging/ structured- logging. slide#1

Gradener: https:/ / gardener. cloud

Prometheus: https:/ / prometheus. io/ docs/ introduction/ overview/

Fluentd: https:/ /www. fluentd. org/

Cluster-level logging: https:/ /kubernetes. io/docs/ concepts/ cluster-
administration/ logging/ #cluster- level- logging- architectures

Monitoring best practices: https:/ /docs. google. com/ document/ d/
199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/ edit#

Jaeger: https:/ /github. com/ jaegertracing/ jaeger

https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://go-talks.appspot.com/github.com/ChrisHines/talks/structured-logging/structured-logging.slide#1
https://gardener.cloud
https://gardener.cloud
https://gardener.cloud
https://gardener.cloud
https://gardener.cloud
https://gardener.cloud
https://gardener.cloud
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://www.fluentd.org/
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://kubernetes.io/docs/concepts/cluster-administration/logging/#cluster-level-logging-architectures
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://docs.google.com/document/d/199PqyG3UsyXlwieHaqbGiWVa8eMWi8zzAn0YfcApr8Q/edit#
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger

13
Service Mesh - Working with

Istio
In this chapter, we will review the hot topic of service meshes and, in particular, Istio. This
is exciting because service meshes are a real game changer. They remove many complicated
tasks from services into independent proxies. This is a huge win, especially in a polyglot
environment, where different services are implemented in different programming
languages or if you need to migrate some legacy applications into your cluster.

We will cover the following topics in this chapter:

What a service mesh is
What Istio brings to the table
Delinkcious on Istio
Alternatives to Istio

Technical requirements
In this chapter, we will work with Istio. I chose to use Google Kubernetes Engine (GKE) in
this chapter because Istio can be enabled on GKE as an add-on and doesn't require you to
install it. This has the following two benefits:

It saves time on installation
It demonstrates that Delinkcious can run in the cloud and not just locally

Service Mesh - Working with Istio Chapter 13

[411]

To install Istio, you simply have to enable it in the GKE console and select an mTLS mode,
which is the mutual authentication between services. I chose permissive, which means that
the internal communication inside the cluster is not encrypted by default, and the services
will accept both encrypted and non-encrypted connections. You can override it per service.
For production clusters, I recommend using the strict mTLS mode, where all connections
must be encrypted:

Istio gets installed in its own istio-system namespace, as follows:

$ kubectl -n istio-system get po

NAME READY STATUS RESTARTS AGE
istio-citadel-6995f7bd9-69qhw 1/1 Running 0 11h
istio-cleanup-secrets-6xkjx 0/1 Completed 0 11h
istio-egressgateway-57b96d87bd-8lld5 1/1 Running 0 11h
istio-galley-6d7dd498f6-pm8zz 1/1 Running 0 11h
istio-ingressgateway-ddd557db7-b4mqq 1/1 Running 0 11h
istio-pilot-5765d76b8c-l9n5n 2/2 Running 0 11h
istio-policy-5b47b88467-tfq4b 2/2 Running 0 11h
istio-sidecar-injector-6b9fbbfcf6-vv2pt 1/1 Running 0 11h
istio-telemetry-65dcd9ff85-dxrhf 2/2 Running 0 11h
promsd-7b49dcb96c-cn49l 2/2 Running 1 11h

Service Mesh - Working with Istio Chapter 13

[412]

The code
You can find the updated Delinkcious application at https:/ /github. com/the- gigi/
delinkcious/releases/ tag/ v0. 11.

What is a service mesh?
Let's start by reviewing the problems microservices face compared to monoliths, see how
service mesh addresses them, and then you'll see why I'm so excited about them. When
designing and writing Delinkcious, the application code was fairly simple. We keep track of
users, their links, and their follower/following relationships. We also do some link checking
and store recent links in the news service. Finally, we expose all of this functionality
through an API.

Comparing monoliths to microservices
It would have been pretty easy to implement all this functionality in a single monolith. It
would also be pretty simple to deploy, monitor, and debug a Delinkcious monolith.
However, as Delinkcious grows in functionality, as well as users and the team developing
it, the downsides of monolith applications become much more pronounced. That's why we
embarked on this journey with the microservice-based approach. However, along the way,
we had to write a lot of code, install a lot of additional tools, and configure many
components that have nothing to do with the Delinkcious application itself. We wisely took
advantage of Kubernetes and Go kit to cleanly separate all of these additional concerns
from the Delinkcious domain code, but it was a lot of hard work.

For example, if security is a high priority, you would want to authenticate and authorize
inter-service calls in your system. We have done this in Delinkcious by introducing a
mutual secret between the link service and the social graph service. We have to configure a
secret, make sure it is accessible only to these two services, and add code to verify that each
call is coming from the correct service. Maintaining (for example, rotating secrets) and
evolving this across many services is not an easy task.

Another example of this is distributed tracing. In a monolith, the entire chain of calls can be
captured by a stack trace. In Delinkcious, you have to install a distributed tracing service,
such as Jaeger, and modify the code to record spans.

https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11
https://github.com/the-gigi/delinkcious/releases/tag/v0.11

Service Mesh - Working with Istio Chapter 13

[413]

Centralized logging in a monolith is trivial since the monolith is already a single centralized
entity.

The bottom line is that microservices bring a lot of benefits, but they are much harder to
manage and reign in.

Using a shared library to manage the cross-
cutting concerns of microservices
One of the most common approaches is to implement all these concerns in a library or a set
of libraries. All the microservices include or depend on the shared library that takes care of
all these cross-cutting aspects, such as configuration, logging, secret management, tracing,
rate limiting, and fault tolerance. This sounds great in theory; let the services deal with the
application domain and let a shared library or libraries deal with the common concerns.
Hystrix from Netflix is a great example of a Java library that takes care of managing latency
and fault tolerance. Finagle from Twitter is another good example of a Scala library
(targeting the JVM). Many organizations use a collection of such libraries and often write
their own.

In practice, however, this approach has severe downsides. The first issue is that, being a
programming language library, it is naturally implemented in a specific language (for
example, Java, in the case of Hystrix). Your system may have microservices in multiple
languages (even Delinkcious has both Go and Python services). Having microservices
implemented in different programming languages is one of the greatest benefits. A shared
library (or libraries) significantly hinders this aspect. This is because you end up with
several unappealing options, as follows:

You restrict all your microservices to a single programming language.
You maintain cross-language shared libraries for each programming language
you use that behaves the same.
You accept that different services will interact differently with your centralized
services (for example, different logging formats or missing tracing).

All of these options are pretty bad. But that's not the end of it; let's say you've picked a
combination of the preceding options. This will very likely include a significant amount of
custom code, because no off-the-shelve library will provide you with everything that you
need. Now, you want to update your shared code library. Since it's shared by all or most of
your services, this means you have to do an across-the-board upgrade of all your services.
However, it's likely that you can't just shut down your system and upgrade all the services
at once.

Service Mesh - Working with Istio Chapter 13

[414]

Instead, you'll have to do it in the form of a rolling update. Even blue-green deployment
can't be done instantly across multiple services. The problem is that, often, the shared code
is related to how you manage mutual secrets or authentication between services. For
example, if service A upgrades to the new version of the shared library and service B is still
on the previous version, they might not be able to communicate. This results in an outage,
which can cascade and impact many services. You can find a way to introduce changes in a
backward-compatible way, but this is more difficult and error-prone.

Okay, so shared libraries across all services are useful but hard to manage. Let's take a look
at how a service mesh can help.

Using a service mesh to manage the cross-
cutting concerns of microservices
A service mesh is a set of intelligent proxies and additional control infrastructure
components. The proxies are deployed on every node in your cluster. The proxies intercept
all communication between the services and can do a lot of work on your behalf that
previously had to be done by the service (or a shared library used by the service). Some of
the responsibilities of a service mesh are as follows:

Reliable delivery of requests between services through retries and automatic
failovers
Latency-aware load balancing
Route requests based on flexible and dynamic routing rules (this is also known as
traffic shaping)
Circuit breaking through deadlines
Service-to-service authentication and authorization
Report metrics and support for distributed tracing

All of these capabilities are important for many large-scale cloud-native applications.
Offloading them from the services is a huge win. Features such as smart traffic shaping
require building dedicated and reliable services without a service mesh.

Service Mesh - Working with Istio Chapter 13

[415]

The following diagram illustrates how a service mesh is embedded into a Kubernetes
cluster:

Service meshes sound revolutionary indeed. Let's take a look at how they fit into
Kubernetes.

Understanding the relationship between
Kubernetes and a service mesh
At first glance, the service mesh sounds very similar to Kubernetes itself. Kubernetes
deploys the kubelet and the kube-proxy into each node and the service mesh deploys its
own proxy. Kubernetes has a control plane that kubelet/kube-proxy interacts with, and the
service mesh has its own control plane that the mesh proxies interact with.

Service Mesh - Working with Istio Chapter 13

[416]

I like to think of a service mesh as a complement to Kubernetes. Kubernetes is primarily in
charge of scheduling pods and providing it with the flat networking model and service
discovery, so different pods and services can communicate with each other. This is where
the service mesh takes over and manages this service-to-service communication in a much
more fine-grained way. There is a thin layer of overlap in responsibilities around load
balancing and network policies but, overall, the service mesh is a great complement to
Kubernetes.

It's also important to realize that these two amazing technologies don't depend on each
other. Obviously, you can run a Kubernetes cluster without a service mesh. Additionally,
many service meshes can work with other non-Kubernetes platforms, such as Mesos,
Nomad, Cloud Foundry, and Consul-based deployments.

Now that we understand what a service mesh is, let's take a look at a specific example.

What does Istio bring to the table?
Istio is a service mesh that was originally developed by Google, IBM, and Lyft. It was
introduced in mid-2017 and took off like a rocket. It brings a coherent model with a control
and data plane, is built around the Envoy proxy, has a lot of momentum, and already
serves as the foundation for additional projects. It is, of course, open source and a Cloud
Native Computing Foundation (CNCF) project. In Kubernetes, each Envoy proxy is
injected as a sidecar container to each pod that participates in the mesh.

Let's explore the Istio architecture, and then dive into the services that it provides.

Getting to know the Istio architecture
Istio is a large framework that provides a lot of capabilities, and it has multiple parts that
interact with each other and with Kubernetes components (mostly indirectly and
unobtrusively). It is divided into a control plane and a data plane. The data plane is a set of
proxies (one per pod). Their control plane is a set of components that are responsible for
configuring the proxies and collecting telemetry of data.

Service Mesh - Working with Istio Chapter 13

[417]

The following diagram illustrates the different parts of Istio, how they are related to each
other, and what information is exchanged between them:

Let's go a little deeper into each component, starting with the Envoy proxy.

Envoy
Envoy is a high-performance proxy that's implemented in C++. It was developed by Lyft
and functions as the data plane of Istio, but it is also an independent CNCF project and can
be used on its own. For each pod in the service mesh, Istio injects (either automatically or
through the istioctl CLI) an Envoy side container that does the heavy lifting:

Proxy HTTP, HTTP/2, and gRPC traffic between pods
Sophisticated load balancing
mTLS termination
HTTP/2 and gRPC proxies
Providing service health
Circuit breaking for unhealthy services

Service Mesh - Working with Istio Chapter 13

[418]

Percent-based traffic shaping
Injecting faults for testing
Detailed metrics

The Envoy proxy controls all the incoming and outgoing communication to its pod. It is, by
far, the most important component of Istio. The configuration of Envoy is not trivial, and
this is a large part of what the Istio control plane deals with.

The next component is Pilot.

Pilot
Pilot is responsible for platform-agnostic service discovery, dynamic load balancing, and
routing. It translates high-level routing rules and resiliency from its own rules API into an
Envoy configuration. This abstraction layer allows Istio to run on multiple orchestration
platforms. Pilot takes all the platform-specific information, converts it into the Envoy data
plane configuration format, and propagates it to each Envoy proxy with the Envoy data
plane API. Pilot is stateless; in Kubernetes, all the configuration is stored as custom
resources definitions (CRDs) on etcd.

Mixer
Mixer is responsible for abstracting the metrics collection and policies. These aspects are
typically implemented in services by accessing APIs directly for specific backends. This has
the benefit of offloading this burden from service developers and putting the control into
the hands of the operators that configure Istio. It also allows you to switch backends easily
without code changes. The types of backends that Mixer can work with include the
following:

Logging
Authorization
Quota
Telemetry
Billing

The interaction between the Envoy proxy and Mixer is straightforward – before each
request, the proxy calls Mixer for precondition checks, which might cause the request to be
rejected; after each request, the proxy reports the metrics to Mixer. Mixer has an adapter
API to facilitate extensions for arbitrary infrastructure backends. It is a major part of its
design.

Service Mesh - Working with Istio Chapter 13

[419]

Citadel
Citadel is responsible for certificate and key management in Istio. It integrates with various
platforms and aligns with their identity mechanisms. For example, in Kubernetes, it uses
service accounts; on AWS, it uses AWS IAM; and on GCP/GKE, it can use GCP IAM. The
Istio PKI is based on Citadel. It uses X.509 certificates in SPIFEE format as a vehicle for
service identity.

Here is the workflow in Kubernetes:

Citadel creates certificates and key pairs for existing service accounts.
Citadel watches the Kubernetes API server for new service accounts to provision
with a certificate a key pair.
Citadel stores the certificates and keys as Kubernetes secrets.
Kubernetes mounts the secrets into each new pod that is associated with the
service account (this is standard Kubernetes practice).
Citadel automatically rotates the Kubernetes secrets when the certificates expire.
Pilot generates secure naming information that associates a service account with
an Istio service. Pilot then passes the secure naming information to the Envoy
proxy.

The final major component that we will cover is Galley.

Galley
Galley is a relatively simple component. Its job is to abstract away the user configuration on
different platforms. It provides the ingested configuration to Pilot and Mixer.

Now that we have broken down Istio into its major components, let's take a look at how it
accomplishes its duties as a service mesh. The number one capability is traffic management.

Managing traffic with Istio
Istio operates at the network level inside the cluster between your services, as well as
managing how you expose your services to the world. It provides many capabilities, such
as request routing, load balancing, automatic retries, and fault injection. Let's review all of
these, starting with routing requests.

Service Mesh - Working with Istio Chapter 13

[420]

Routing requests
Istio introduces its own virtual services as a CRD. Istio services have a concept of a version
that doesn't exist for Kubernetes services. The same image can be deployed as different
versions of a virtual service. For example, you can represent the production or staging
environment as different versions of the same service. Istio allows you to configure rules
that determine how to route traffic to different versions of a service.

The way this works is that Pilot sends ingress and egress rules to the proxies that determine
where requests should be handled. You then define the rules as a CRD in Kubernetes. Here
is a simple example that defines a virtual service for the link-manager service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: link-manager
spec:
 hosts:
 - link-manager # same as link-manager.default.svc.cluster.local
 http:
 - route:
 - destination:
 host: link-manager

Let's take a look at how Istio does load balancing.

Load balancing
Istio has its own platform-independent service discovery with adapters for the underlying
platform (for example, Kubernetes). It relies on the existence of a service registry that the
underlying platform manages, and removes unhealthy instances in order to update its load
balancing pools. There are currently three supported load balancing algorithms:

Round robin
Random
Weighted least request

Envoy has a few more algorithms, such as Maglev, ring hash, and weighted round robin,
that Istio doesn't support yet.

Istio also performs periodic health checks to verify that instances in the pool are actually
healthy, and can remove them from load balancing temporarily if they fail the configured
health check threshold.

Service Mesh - Working with Istio Chapter 13

[421]

You can configure load balancing through the destination rules in a separate
DestinationRule CRD, as follows:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: link-manager
spec:
 host: link-manager
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN

You can specify different algorithms by the port, as follows:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: link-manager
spec:
 host: link-manager
 trafficPolicy:
 portLevelSettings:
 - port:
 number: 80
 loadBalancer:
 simple: LEAST_CONN
 - port:
 number: 8080
 loadBalancer:
 simple: ROUND_ROBIN

Now, let's take a look at how Istio can help us deal with failures automatically.

Handling failures
Istio provides many mechanisms to deal with failure, including the following:

Timeouts
Retries (including backoff and jitter)
Rate limiting
Health checks
Circuit breakers

All of these can be configured through Istio CRDs.

Service Mesh - Working with Istio Chapter 13

[422]

For example, the following code demonstrates how to set the connection limits and timeout
for the link-manager service at the TCP level (HTTP is supported too):

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: link-manager
spec:
 host: link-manager
 trafficPolicy:
 connectionPool:
 tcp:
 maxConnections: 200
 connectTimeout: 45ms
 tcpKeepalive:
 time: 3600s
 interval: 75s

Circuit breaking is done by explicitly checking for application errors (for example, the 5XX
HTTP status code) within a given time period. This is done in an outlierDetection
section. The following example checks for 10 consecutive errors every 2 minutes. If the
service crosses this threshold, the instance will be ejected from the pool for a period of 5
minutes:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: link-manager
spec:
 host: link-manager
 trafficPolicy:
 outlierDetection:
 consecutiveErrors: 10
 interval: 2m
 baseEjectionTime: 5m

Note that, as far as Kubernetes is concerned, the service may be fine because the container
is running.

It's great that Istio provides so many ways to deal with errors and failures at the operational
level. When testing distributed systems, it is important to test the behavior when certain
components fail. Istio supports this use case by allowing you to inject faults on purpose.

Service Mesh - Working with Istio Chapter 13

[423]

Injecting faults for testing
The failure handling mechanisms of Istio don't magically fix errors. Automatic retries can
automatically address intermittent failures, but some failures need to be handled by the
application or even a human operator. In fact, the misconfiguration of Istio failure handling
can itself cause failures (for example, configuring timeouts that are too short). Testing how
the system behaves in the presence of failures can be done by artificially injecting faults.
There are two types of faults that Istio can inject: aborts and delays. You can configure fault
injection at the virtual service level.

Here is an example of where a delay of 5 seconds is added to 10% of all requests to the
link-manager service in order to simulate a heavy load on the system:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: link-manager
 spec:
 hosts:
 - link-manager
 http:
 - fault:
 delay:
 percent: 10
 fixedDelay: 5s

Testing under stress and in the presence of faults is a tremendous boon, but all testing is
incomplete. When it's time to deploy the new version, you may want to deploy it to a small
percentage of users or have the new version handle just a small percentage of all requests.
This is where canary deployments come in.

Doing canary deployments
We previously discovered how to perform canary deployments in Kubernetes. If we want
to divert 10% of requests to our canary version, we have to deploy nine pods of the current
version and one canary pod to get the correct ratio. Kubernetes' load balancing is tightly
coupled to deployed pods. This is suboptimal. Istio has a better load balancing approach
since it operates at the network level. You can simply configure two versions of your
service and decide what percentage of requests go to each version, regardless of how many
pods run each version.

Service Mesh - Working with Istio Chapter 13

[424]

Here is an example of where Istio will split the traffic and send 95% to v1 of the service and
5% to v2 of the service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: link-service
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: link-service
 subset: v1
 weight: 95
 - destination:
 host: reviews
 subset: v2
 weight: 5

The subsets named v1 and v2 are defined in a destination rule based on labels. In this case,
the label are version: v1 and version: v2:

apiVersion: networking.istio.io/v1alpha3
 kind: DestinationRule
 metadata:
 name: link-manager
 spec:
 host: link-manager
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

This was a pretty comprehensive coverage of the traffic management capabilities of Istio,
but there is much more to discover. Let's turn our attention to security.

Securing your cluster with Istio
The security model of Istio revolves around three themes: identity, authentication, and
authorization.

Service Mesh - Working with Istio Chapter 13

[425]

Understanding Istio identity
Istio manages its own identity model, which can represent human users, services, or groups
of services. In Kubernetes, Istio uses Kubernetes' service account to represent identity. Istio
uses its PKI (through Citadel) to create a strong cryptographic identity for each pod that it
manages. It creates a x.509 certificate (in SPIFEE format) and a key pair for each service
account and injects them as secrets to the pod. Pilot manages a map between the DNS
service names and the identities that are allowed to run them. When clients call into
services, they can verify that the services are indeed run by allowed identities and can
detect rogue services. With a strong identity in place, let's take a look at how authentication
works with Istio.

Authenticating users with Istio
Istio authentication is based on policies. There are two kinds of policies: namespace policies
and mesh policies. A namespace policy applies to a single namespace. A mesh policy
applies to the entire cluster. There can be only one mesh policy with a kind
of MeshPolicy and it must be named default. Here is an example of a mesh policy that
requires all services to use mTLS:

apiVersion: "authentication.istio.io/v1alpha1"
 kind: "MeshPolicy"
 metadata:
 name: "default"
 spec:
 peers:
 - mtls: {}

Namespace policies have a kind of Policy. If you don't specify a namespace, then it will
apply to the default namespace. There can be only one policy per namespace and it must be
called default too. The following policy uses the targets selector to apply only to the api-
gateway service and port 8080 of the link service:

apiVersion: "authentication.istio.io/v1alpha1"
 kind: "Policy"
 metadata:
 name: "default"
 namespace: "some-ns"
 spec:
 targets:
 - name: api-gateway
 - name: link-manager
 ports:
 - number: 8080

Service Mesh - Working with Istio Chapter 13

[426]

The idea is to avoid ambiguity; policies are resolved from a service to a namespace to a
mesh. If a narrow policy exists, it takes precedence.

Istio provides either peer authentication through mTLS or origin authentication through
JWT.

You can configure peer authentication through the peers section, as follows:

peers:
 - mtls: {}

You can configure the origin through the origins section, as follows:

origins:
 - jwt:
 issuer: "https://accounts.google.com"
 jwksUri: "https://www.googleapis.com/oauth2/v3/certs"
 trigger_rules:
 - excluded_paths:
 - exact: /healthcheck

As you can see, origin authentication can be configured for specific paths (through the
include or exclude paths). In the preceding example, the /healthcheck path is exempt
from authentication, which makes sense for a health check endpoint that often needs to be
called from a load balancer or remote monitoring service.

By default, peer authentication is used if there is a peers section. If not, then authentication
will not be set. To force origin authentication, you can add the following to the policy:

principalBinding: USE_ORIGIN

Now that we've discovered how Istio authenticates requests, let's take a look at how it does
authorization.

Authorizing requests with Istio
Services usually expose multiple endpoints. Service A may be allowed to call only specific
endpoints of service B. Service A must first authenticate against service B, and then the
specific request must be authorized as well. Istio supports this by extending the role-based
access control (RBAC) that Kubernetes uses to authorize requests to its API server.

Service Mesh - Working with Istio Chapter 13

[427]

It's important to note that authorization is turned off by default. To turn it on, you can
create a ClusterRbacConfig object. The mode controls how authorization is enabled, as
follows:

OFF means authorization is disabled (the default).
ON means authorization is enabled for all the services in the entire mesh.
ON_WITH_INCLUSION means authorization is enabled for all the included
namespaces and services.
ON_WITH_EXCLUSION means authorization is enabled for all namespaces and
services except the excluded ones.

Here is an example of when authorization is enabled on all the namespaces except kube-
system and development:

apiVersion: "rbac.istio.io/v1alpha1"
 kind: ClusterRbacConfig
 metadata:
 name: default
 spec:
 mode: 'ON_WITH_EXCLUSION'
 exclusion:
 namespaces: ["kube-system", "development"]

The actual authorization operates at the service level and is very similar to the RBAC model
of Kubernetes. Where in Kubernetes there is Role, ClusterRole, RoleBinding, and
ClusterRoleBinding, in Istio, there is ServiceRole and ServiceRoleBinding.

The basic level of granularity is namespace/service/path/method. You can use
wildcards for grouping. For example, the following role grants GET and HEAD access to all
the Delinkcious managers and the API gateway in the default namespace:

apiVersion: "rbac.istio.io/v1alpha1"
 kind: ServiceRole
 metadata:
 name: full-access-reader
 namespace: default
 spec:
 rules:
 - services: ["*-manager", "api-gateway"]
 paths:
 methods: ["GET", "HEAD"]

Service Mesh - Working with Istio Chapter 13

[428]

However, Istio offers even further control with constraints and properties. You can limit a
rule by the source namespace or the IP, labels, request headers, and other attributes.

You can refer to https:/ / istio. io/ docs/ reference/ config/ authorization/
constraints-and- properties/ for more details.

Once you have a ServiceRole, you need to associate it with a list of subjects (such as
service accounts or human users) that will be allowed to perform the requested operations.
Here is how you can define ServiceRoleBinding:

apiVersion: "rbac.istio.io/v1alpha1"
 kind: ServiceRoleBinding
 metadata:
 name: test-binding-products
 namespace: default
 spec:
 subjects:
 - user: "service-account-delinkcious"
 - user: "istio-ingress-service-account"
 properties:
 request.auth.claims[email]: "the.gigi@gmail.com"
 roleRef:
 kind: ServiceRole
 name: "full-access-reader"

You can make a role publicly available to authenticated or unauthenticated users by setting
the subject user to *.

There is much to Istio authorization that we can cover here. You can read up on the
following topics:

Authorization for TCP protocols
Permissive mode (experimental)
Debugging authorization problems
Authorization through Envoy filters

Once a request is authorized there, it may still be rejected if it fails to comply with policy
checks.

https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/
https://istio.io/docs/reference/config/authorization/constraints-and-properties/

Service Mesh - Working with Istio Chapter 13

[429]

Enforcing policies with Istio
Istio policy enforcement is similar to the way admission controllers work in Kubernetes.
Mixer has a set of adapters that are invoked before and after a request is processed. Before
we dive in further, it's important to note that policy enforcement is disabled by default. If
you install Istio using helm, you can enable it by providing the following flag:

--set global.disablePolicyChecks=false.

On GKE, it is enabled; here is how to check this:

$ kubectl -n istio-system get cm istio -o jsonpath="{@.data.mesh}" | grep
disablePolicyChecks
disablePolicyChecks: false

If the result is disablePolicyChecks: false, then it's already enabled. Otherwise,
enable it by editing the Istio ConfigMap and setting it to false.

One common type of policy is rate limiting. You can enforce rate limits by configuring
quota objects, binding them to specific services, and defining mixer rules. A good example
from the Istio demo application can be found at https:/ / raw.githubusercontent. com/
istio/istio/release- 1. 1/ samples/ bookinfo/ policy/ mixer- rule- productpage-
ratelimit.yaml.

You can also add your own policies by creating a Mixer adapter. There are three built-in
types of adapters, as follows:

Check
Quota
Report

This is not trivial; you'll have to implement a gRPC service that can handle the data
specified in a dedicated template. Now, let's take a look at the metrics Istio collects for us.

Collecting metrics with Istio
Istio collects metrics after each request. The metrics are sent to Mixer. Envoy is the primary
producer of metrics, but you can add your own metrics if you wish. The configuration
model for metrics is based on multiple Istio concepts: attributes, instances, templates,
handlers, rules, and Mixer adapters.

https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml
https://raw.githubusercontent.com/istio/istio/release-1.1/samples/bookinfo/policy/mixer-rule-productpage-ratelimit.yaml

Service Mesh - Working with Istio Chapter 13

[430]

Here is a sample instance that counts all the requests and reports them as the request-
count metric:

apiVersion: config.istio.io/v1alpha2
 kind: instance
 metadata:
 name: request-count
 namespace: istio-system
 spec:
 compiledTemplate: metric
 params:
 value: "1" # count each request
 dimensions:
 reporter: conditional((context.reporter.kind | "inbound") ==
"outbound", "client", "server")
 source: source.workload.name | "unknown"
 destination: destination.workload.name | "unknown"
 message: '"counting requests..."'
 monitored_resource_type: '"UNSPECIFIED"'```

Now, we can configure a Prometheus handler to receive the metrics. Prometheus is a
compiled adapter (which is part of Mixer), so we can just use it in the spec. The spec |
params | metrics section has a kind of COUNTER, a Prometheus metric name
(request_count), and, most importantly, the instance name that we just defined, which is
the source of the metrics:

apiVersion: config.istio.io/v1alpha2
 kind: handler
 metadata:
 name: request-count-handler
 namespace: istio-system
 spec:
 compiledAdapter: prometheus
 params:
 metrics:
 - name: request_count # Prometheus metric name
 instance_name: request-count.instance.istio-system # Mixer instance
name (fully-qualified)
 kind: COUNTER
 label_names:
 - reporter
 - source
 - destination
 - message

Service Mesh - Working with Istio Chapter 13

[431]

Finally, we tie it all together with a rule, as follows:

apiVersion: config.istio.io/v1alpha2
 kind: rule
 metadata:
 name: prom-request-counter
 namespace: istio-system
 spec:
 actions:
 - handler: request-count-handler
 instances: [request-count]

Okay, so Istio is amazingly powerful. But are there any situations where you shouldn't use
Istio?

When should you avoid Istio?
Istio provides a lot of value. However, this value is not without a cost. The intrusive nature
of Istio and its complexity have some significant downsides. You should consider these
downsides before you adopt Istio:

Additional concepts and management systems on top of the already complex
Kubernetes make the learning curve very steep.
Troubleshooting configuration issues is challenging.
Integration with other projects might be missing or partial (for example, NATS
and Telepresence).
The proxies add latency and consume CPU and memory resources.

If you're just starting with Kubernetes, I recommend waiting until you get the hang of it
before you even consider using Istio.

Now that we understand what Istio is all about, let's explore how Delinkcious can benefit
from Istio.

Service Mesh - Working with Istio Chapter 13

[432]

Delinkcious on Istio
With Istio, Delinkcious can potentially shed a lot of extra baggage. So, why is it a good idea
to move this functionality from Delinkcious services or Go kit middleware to Istio?

Well, the reason is that this functionality is often unrelated to the application domain. We
invested a lot of work to carefully separate concerns and isolate the Delinkcious domain
from the way they are deployed and managed. However, as long as all of those concerns
are addressed by the microservices themselves, we will need to make changes to the code
and rebuild them every time we want to make an operational change. Even if a lot of this is
data-driven, it can make it difficult to troubleshoot and debug issues because, when a
failure happens, it's not always easy to determine whether it was due to a bug in the
domain code or the operational code.

Let's take a look at some specific examples where Istio can simplify Delinkcious.

Removing mutual authentication between
services
As you may recall, in Chapter 6, Securing Microservices on Kubernetes, we created a mutual
secret between the link-manager service and the social-graph-manager service:

$ kubectl get secret | grep mutual
link-mutual-auth Opaque 1 9d
 social-graph-mutual-auth Opaque 1 5d19h

It required a lot of coordination and explicit work to encode the secrets, and then mount the
secrets into the containers:

 spec:
 containers:
 - name: link-manager
 image: g1g1/delinkcious-link:0.3
 imagePullPolicy: Always
 ports:
 - containerPort: 8080
 envFrom:
 - configMapRef:
 name: link-manager-config
 volumeMounts:
 - name: mutual-auth
 mountPath: /etc/delinkcious
 readOnly: true

Service Mesh - Working with Istio Chapter 13

[433]

 volumes:
 - name: mutual-auth
 secret:
 secretName: link-mutual-auth

Then, the link manager had to get the secret through the auth_util package we had to
implement, and inject it as a header to the request:

// encodeHTTPGenericRequest is a transport/http.EncodeRequestFunc that
 // JSON-encodes any request to the request body. Primarily useful in a
client.
 func encodeHTTPGenericRequest(_ context.Context, r *http.Request, request
interface{}) error {
 var buf bytes.Buffer
 if err := json.NewEncoder(&buf).Encode(request); err != nil {
 return err
 }
 r.Body = ioutil.NopCloser(&buf)

 if os.Getenv("DELINKCIOUS_MUTUAL_AUTH") != "false" {
 token := auth_util.GetToken(SERVICE_NAME)
 r.Header["Delinkcious-Caller-Token"] = []string{token}
 }

 return nil
 }

Finally, the social graph manager has to be aware of this scheme and explicitly check
whether the caller is allowed:

func decodeGetFollowersRequest(_ context.Context, r *http.Request)
(interface{}, error){
 if os.Getenv("DELINKCIOUS_MUTUAL_AUTH") != "false" {
 token := r.Header["Delinkcious-Caller-Token"]
 if len(token) == 0 || token[0] == "" {
 return nil, errors.New("Missing caller token")
 }
 if !auth_util.HasCaller("link-manager", token[0]) {
 return nil, errors.New("Unauthorized caller")
 }
 }
 ...
}

Service Mesh - Working with Istio Chapter 13

[434]

That's a lot of work that has nothing to do with the service itself. Imagine managing access
to hundreds of interacting microservices with thousands of methods. This approach is
cumbersome, error-prone, and requires code changes being made to two services whenever
you add or remove an interaction.

With Istio, we can externalize this completely as a role and a role binding. Here is a role
that allows you to call the GET method of the /following endpoint:

apiVersion: "rbac.istio.io/v1alpha1"
 kind: ServiceRole
 metadata:
 name: get-following
 namespace: default
 spec:
 rules:
 - services: ["social-graph.default.svc.cluster.local"]
 paths: ["/following"]
 methods: ["GET"]

In order to allow only the link service to call the method, we can bind the role to the link-
manager service account as the subject user:

apiVersion: "rbac.istio.io/v1alpha1"
 kind: ServiceRoleBinding
 metadata:
 name: get-following
 namespace: default
 spec:
 subjects:
 - user: "cluster.local/ns/default/sa/link-manager"
 roleRef:
 kind: ServiceRole
 name: "get-following"

If, later, we need to allow other services to call the /following endpoint, we can add more
subjects to this role binding. The social service itself doesn't need to know what service is
allowed to call its methods. The calling services don't need to provide any credentials
explicitly. The service mesh takes care of all that.

Another area where Istio can really help Delinkcious is with canary deployments.

Service Mesh - Working with Istio Chapter 13

[435]

Utilizing better canary deployments
In Chapter 11, Deploying Microservices, we used Kubernetes deployments and services to do
canary deployments. In order to divert 10% of the traffic to a canary version, we scaled the
current version to nine replicas and created a canary deployment, with one replica for the
new version. We used the same labels (svc: link and app: manager) for both
deployments.

The link-manager service in front of both deployments distributed the load evenly
between all the pods, creating the 90/10 split we were aiming for:

$ kubectl scale --replicas=9 deployment/green-link-manager
 deployment.extensions/green-link-manager scaled

 $ kubectl get po -l svc=link,app=manager
 NAME READY STATUS RESTARTS AGE
 green-link-manager-5874c6cd4f-2ldfn 1/1 Running 10 15h
 green-link-manager-5874c6cd4f-9csxz 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-c5rqn 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-mvm5v 1/1 Running 10 15h
 green-link-manager-5874c6cd4f-qn4zj 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-r2jxf 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-rtwsj 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-sw27r 1/1 Running 0 52s
 green-link-manager-5874c6cd4f-vcj9s 1/1 Running 10 15h
 yellow-link-manager-67847d6b85-n97b5 1/1 Running 4 6m20s

This works, but it couples canary deployments with scaling deployments. This can be
expensive, especially if you need to run the canary deployment for a while until you are
confident that it is okay. Ideally, you shouldn't need to create more pods just to divert a
certain percentage of your traffic to a new version.

The traffic shaping capabilities with the subset concepts of Istio address this use case
perfectly. The following virtual service splits the traffic into a ratio of 90/10 between a
subset called v0.5 and another subset called canary:

apiVersion: networking.istio.io/v1alpha3
 kind: VirtualService
 metadata:
 name: social-graph-manager
 spec:
 hosts:
 - social-graph-manager
 http:
 - route:
 - destination:

Service Mesh - Working with Istio Chapter 13

[436]

 host: social-graph-manager
 subset: v0.5
 weight: 90
 - destination:
 host: social-graph-manager
 subset: canary
 weight: 10

Doing canary deployments with Istio's virtual services and subsets is great for Delinkcious.
Istio can help with logging and error reporting, too.

Automatic logging and error reporting
When running Delinkcious on GKE with the Istio add-on, you get automatic integration
with Stackdriver, which is a one-stop shop for monitoring, including metrics, centralized
logging, error reporting, and distributed tracing. Here is the Stackdriver log viewer for
when you are searching for the link-manager logs:

Service Mesh - Working with Istio Chapter 13

[437]

Alternatively, you can filter by service name through the drop-down list. Here is what it
looks like when specifying the api-gateway:

Sometimes, the error reporting view is what you need:

Service Mesh - Working with Istio Chapter 13

[438]

Then, you can drill down into any error and get a lot of additional information that will
help you understand what went wrong and how to fix it:

While Istio provides a lot of value and, in the case of Stackdriver, you benefit from
automatic setup too, it is not always smooth riding – it has some limitations and rough
edges.

Accommodating NATS
One of the limitations I discovered when deploying Istio into the Delinkcious cluster is that
NATS doesn't work with Istio because it requires direct connections and it breaks when the
Envoy proxy hijacks the communication. The solution is to prevent Istio from injecting the
sidecar container and accepting that NATS will not be managed. Adding
theNatsCluster CRD to the following annotation to the pod spec does the work for us:
sidecar.istio.io/inject: "false":

apiVersion: nats.io/v1alpha2
 kind: NatsCluster
 metadata:
 name: nats-cluster
 spec:
 pod:
 # Disable istio on nats pods
 annotations:

Service Mesh - Working with Istio Chapter 13

[439]

 sidecar.istio.io/inject: "false"
 size: 1
 version: "1.4.0"

The preceding code is the complete NatsCluster resource definition with the annotation
in place.

Examining the Istio footprint
Istio deploys a lot of stuff into the cluster, so let's review some of it. Mercifully, the Istio
control plane is isolated in its own istio-system namespace, but CRDs are always
cluster-wide and Istio doesn't skimp on those:

$ kubectl get crd -l k8s-app=istio -o custom-columns="NAME:.metadata.name"

 NAME
 adapters.config.istio.io
 apikeys.config.istio.io
 attributemanifests.config.istio.io
 authorizations.config.istio.io
 bypasses.config.istio.io
 checknothings.config.istio.io
 circonuses.config.istio.io
 deniers.config.istio.io
 destinationrules.networking.istio.io
 edges.config.istio.io
 envoyfilters.networking.istio.io
 fluentds.config.istio.io
 gateways.networking.istio.io
 handlers.config.istio.io
 httpapispecbindings.config.istio.io
 httpapispecs.config.istio.io
 instances.config.istio.io
 kubernetesenvs.config.istio.io
 kuberneteses.config.istio.io
 listcheckers.config.istio.io
 listentries.config.istio.io
 logentries.config.istio.io
 memquotas.config.istio.io
 metrics.config.istio.io
 noops.config.istio.io
 opas.config.istio.io
 prometheuses.config.istio.io
 quotas.config.istio.io
 quotaspecbindings.config.istio.io
 quotaspecs.config.istio.io

Service Mesh - Working with Istio Chapter 13

[440]

 rbacconfigs.rbac.istio.io
 rbacs.config.istio.io
 redisquotas.config.istio.io
 reportnothings.config.istio.io
 rules.config.istio.io
 servicecontrolreports.config.istio.io
 servicecontrols.config.istio.io
 serviceentries.networking.istio.io
 servicerolebindings.rbac.istio.io
 serviceroles.rbac.istio.io
 signalfxs.config.istio.io
 solarwindses.config.istio.io
 stackdrivers.config.istio.io
 statsds.config.istio.io
 stdios.config.istio.io
 templates.config.istio.io
 tracespans.config.istio.io
 virtualservices.networking.istio.io

In addition to all of those CRDs, Istio installs all its components into the Istio namespace:

$ kubectl -n istio-system get all -o name
 pod/istio-citadel-6995f7bd9-7c7x9
 pod/istio-egressgateway-57b96d87bd-cnc2s
 pod/istio-galley-6d7dd498f6-b29sk
 pod/istio-ingressgateway-ddd557db7-glwm2
 pod/istio-pilot-5765d76b8c-d9hq7
 pod/istio-policy-5b47b88467-x7pqf
 pod/istio-sidecar-injector-6b9fbbfcf6-fhc4k
 pod/istio-telemetry-65dcd9ff85-bkjtd
 pod/promsd-7b49dcb96c-wrfs8
 service/istio-citadel
 service/istio-egressgateway
 service/istio-galley
 service/istio-ingressgateway
 service/istio-pilot
 service/istio-policy
 service/istio-sidecar-injector
 service/istio-telemetry
 service/promsd
 deployment.apps/istio-citadel
 deployment.apps/istio-egressgateway
 deployment.apps/istio-galley
 deployment.apps/istio-ingressgateway
 deployment.apps/istio-pilot
 deployment.apps/istio-policy
 deployment.apps/istio-sidecar-injector
 deployment.apps/istio-telemetry

Service Mesh - Working with Istio Chapter 13

[441]

 deployment.apps/promsd
 replicaset.apps/istio-citadel-6995f7bd9
 replicaset.apps/istio-egressgateway-57b96d87bd
 replicaset.apps/istio-galley-6d7dd498f6
 replicaset.apps/istio-ingressgateway-ddd557db7
 replicaset.apps/istio-pilot-5765d76b8c
 replicaset.apps/istio-policy-5b47b88467
 replicaset.apps/istio-sidecar-injector-6b9fbbfcf6
 replicaset.apps/istio-telemetry-65dcd9ff85
 replicaset.apps/promsd-7b49dcb96c
 horizontalpodautoscaler.autoscaling/istio-egressgateway
 horizontalpodautoscaler.autoscaling/istio-ingressgateway
 horizontalpodautoscaler.autoscaling/istio-pilot
 horizontalpodautoscaler.autoscaling/istio-policy
 horizontalpodautoscaler.autoscaling/istio-telemetry

Finally, Istio, of course, installs its sidecar proxies into each pod (except Nats, where we
disabled it). As you can see, each pod in the default namespace has two containers (2/2
under the READY column). One container does the work and the other is the Istio proxy
sidecar container:

$ kubectl get po
 NAME READY STATUS RESTARTS AGE
 api-gateway-5497d95c74-zlgnm 2/2 Running 0 4d11h
 link-db-7445d6cbf7-wdfsb 2/2 Running 0 4d22h
 link-manager-54968ff8cf-vtpqr 2/2 Running 1 4d13h
 nats-cluster-1 1/1 Running 0 4d20h
 nats-operator-55dfdc6868-2b57q 2/2 Running 3 4d22h
 news-manager-7f447f5c9f-n2v2v 2/2 Running 1 4d20h
 news-manager-redis-0 2/2 Running 0 4d22h
 social-graph-db-7d8ffb877b-nrzxh 2/2 Running 0 4d11h
 social-graph-manager-59b464456f-48lrn 2/2 Running 1 4d11h
 trouble-64554479d-rjszv 2/2 Running 0 4d17h
 user-db-0 2/2 Running 0 4d22h
 user-manager-699458447-9h64n 2/2 Running 2 4d22h

If you think that Istio is too big and complicated, you may still want to enjoy the benefits of
a service mesh by pursuing one of the alternatives.

Alternatives to Istio
Istio has a lot of momentum, but it's not necessarily the best service mesh for you. Let's take
a look at some other service meshes and consider their attributes.

Service Mesh - Working with Istio Chapter 13

[442]

Linkerd 2.0
Buoyant is the company that coined the term Service Mesh in 2016 and came out with the
first service mesh – Linkerd. It was based on Twitter's Finagle and was implemented in
Scala. Since then, Buoyant developed a new service mesh that focused on Kubernetes,
called Conduit (which was implemented in Rust and Go), and later (in July 2018) renamed
it to Linkerd 2.0. It is a CNCF project like Istio. Linkerd 2.0 also uses sidecar containers that
can be automatically or manually injected.

Due to its lightweight design and tighter implementation of the data plane proxies in Rust,
Linkerd 2.0 is supposed to outperform Istio and consume far fewer resources in the control
plane. You can refer to the following resources for more information:

CPU and memory: https:/ /istio. io/docs/ concepts/ performance- and-
scalability/ #cpu- and- memory

Linkerd 2.0 and Istio Performance Benchmark: https:/ /medium. com/ @ihcsim/
linkerd- 2-0- and- istio- performance- benchmark- df290101c2bb

Benchmarking Istio and Linkerd CPU: https:/ /medium. com/ @michael_ 87395/
benchmarking- istio- linkerd- cpu-c36287e32781

Buoyant is a smaller company and it seems to lag slightly behind Istio in functionality.

Envoy
The Istio data plane is Envoy, which does all the heavy lifting. You may find the Istio
control plane too complicated and prefer to remove this layer of indirection and build your
own control plane to interact directly with Envoy. This can be useful in some specialized
circumstances; for example, if you want to use a load balancing algorithm offered by Envoy
that Istio doesn't support.

HashiCorp Consul
Consul doesn't tick all the checkboxes for a service mesh, but it provides service discovery,
service identity, and mTLS authorization. It is not Kubernetes-specific and isn't endorsed by
the CNCF. If you already use Consul or other HashiCorp products, you may prefer to use it
as a service mesh too.

https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://istio.io/docs/concepts/performance-and-scalability/#cpu-and-memory
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@ihcsim/linkerd-2-0-and-istio-performance-benchmark-df290101c2bb
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781
https://medium.com/@michael_87395/benchmarking-istio-linkerd-cpu-c36287e32781

Service Mesh - Working with Istio Chapter 13

[443]

AWS App Mesh
If you run your infrastructure on AWS, you should consider the AWS App Mesh. It is a
newer project, AWS-specific, and also uses Envoy as its data plane. It is safe to assume that
it will integrate the best with AWS IAM networking and monitoring technologies. It's not
clear at this point as to whether AWS App Mesh is going to be a better service mesh for
Kubernetes or if its main purpose is to provide service mesh benefits for ECS – AWS'
proprietary container orchestration solution.

Others
There a few other service meshes out there. I will just mention them here so that you can
pursue them further if you're interested. Some of them have some form of integration with
Istio. It's not always clear what their value is since they are not open:

Aspen Mesh
Kong Mesh
AVI Networks Universal Service Mesh

The no mesh option
You can always avoid a service mesh completely and use a library such as Go kit, Hystrix,
or Finagle. You might lose the benefits of the external service mesh, but if you tightly
control all your microservices and they all use the same programming language, then the
library approach may work just fine for you. It is conceptually and operationally simpler
and it shifts the responsibility for managing cross-cutting concerns toward developers.

Summary
In this chapter, we've looked at service meshes and Istio in particular. Istio is a complex
project; it sits on top of Kubernetes and creates a type of shadow cluster with its proxies.
Istio has outstanding features; it can shape traffic at a very fine-grained level, provide
sophisticated authentication and authorization, enforce advanced policies, collect a lot of
information, and help scale your cluster.

We covered the Istio architecture, its powerful capabilities, and explored how Delinkcious
can benefit from these capabilities.

Service Mesh - Working with Istio Chapter 13

[444]

However, Istio is far from simple. It creates a plethora of custom resources, and it overlaps
and extends existing Kubernetes resources in complex ways (VirtualService versus Service).

We also reviewed alternatives to Istio, including Linkerd 2.0, straight Envoy, AWS App
Mesh, and Consul.

At this point, you should have a good understanding of the benefits of service meshes and
what Istio can do for your projects. You may have to do some extra reading and
experimentation to make an informed decision of whether you should incorporate Istio into
your system right away, consider one of the alternatives, or just wait.

I believe that services meshes and Istio, in particular, will be very important and will
become a standard best practice to incorporate into large Kubernetes clusters.

In the next chapter, which is the last chapter, we will continue our discussion about the
future of microservices, Kubernetes, and other emerging trends, such as serverless.

Further reading
You can refer to the following resources for more information regarding what was covered
in this chapter:

Istio: https:/ /istio. io

Hystrix: https://github.com/Netflix/Hystrix
Finagle: https://twitter.github.io/finagle/
Envo: https://www.envoyproxy.io/
Spiffe: https://spiffe.io
Configuration: https://istio.io/docs/reference/config/

https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://istio.io
https://github.com/Netflix/Hystrix
https://twitter.github.io/finagle/
https://www.envoyproxy.io/
https://spiffe.io
https://istio.io/docs/reference/config/

14
The Future of Microservices

and Kubernetes
The software systems of tomorrow will be bigger, more complicated, will be able to handle
more data, and will have an even bigger impact on our world. Just think about self-driving
cars and ubiquitous robots. The human capacity to deal with complexity will not scale. That
means that we will have to use a divide-and-conquer approach to build those complex
software systems. Microservice-based architectures will continue to replace monoliths.
Then, the challenge will shift into coordinating all those microservices into a coherent
whole. This is where Kubernetes comes in as the standard orchestration solution.

In this chapter, we will discuss the near future of microservices and Kubernetes. We will
focus on the near future, because the innovation pace is amazing and trying to look much
further ahead is futile. The long-term vision is that AI will probably advance to the point
where most software development can be automated. At this point, human limits of
handling complexity may not apply, and the software developed by AI will not be
understandable by humans.

So, let's leave the far future alone and, in the spirit of being hands-on, discuss the emerging
technologies, standards, and trends that will be relevant in the next few years, of which you
may want to become aware.

The Future of Microservices and Kubernetes Chapter 14

[446]

The topics we will cover include some microservices themes, such as the following:

Microservices versus serverless functions
Microservices, containers, and orchestration
gRPC/gRPC-Web
HTTP/3
GraphQL

We will also discuss some Kubernetes themes:

Kubernetes extensibility
Service mesh integration
Serverless computing on Kubernetes
Kubernetes and VMs
Cluster autoscaling
Using operators

Let's start with microservices.

The future of microservices
Microservices are the dominant approach for building modern, large-scale systems today.
But, are they going to remain the top choice? Let's find out.

Microservices versus serverless functions
One of the biggest questions regarding the future of microservices is whether serverless
functions are going to make microservices obsolete. The answer is absolutely not. There are
are many great benefits to serverless functions, as well as some serious limitations, such as
cold start and time limits. Those limitations accumulate when you have functions invoking
other functions. The execution time limits for function are very problematic if you want to
apply retry logic with exponential backoff. A long-running service can keep local state and
connections to data stores, and respond quicker to requests. But, for me, the biggest issue
with serverless functions is that they represent a single function, which equates to a single
endpoint of a service. I find a lot of value in the abstraction of a service that encapsulates a
complete domain. If you try to port a service with 10 methods to serverless functions, then
you'll run into management issues.

The Future of Microservices and Kubernetes Chapter 14

[447]

All those 10 functions will need access to the same data store, and multiple functions might
need to be modified. All the functions will need similar access, configuration, and
credentials to access various dependencies. Microservices will remain the backbone of
large, cloud-native distributed systems. However, a lot of work will be offloaded to
serverless functions, which makes sense. We will probably see some systems composed
solely from serverless functions, but these will be forced and will have to make
compromises.

Let's see the symbiotic relationship between microservices and containers.

Microservices, containers, and orchestration
When you break up a monolith into microservices, or start building a microservice-based
system from scratch, you end up with a lot of services. You need to package, deploy,
upgrade, and configure all those microservices. Containers address the packaging problem.
Without containers, it is very difficult to scale microservice-based systems. As the number
of microservices in the system grows orchestrating, the various containers and optimal
scheduling requires a dedicated solution. This is where Kubernetes excels. The future of
distributed systems is more microservices, packaged into more containers, which require
Kubernetes to manage them. I say Kubernetes here, because in 2019, Kubernetes won the
container orchestration wars.

Another aspect of many microservices is that they need to communicate with each other
over a network. Where as in a monolith, most interactions are just function calls, in a
microservice environment, a lot of interactions require hitting an endpoint or making a
remote procedure call. Enter gRPC.

gRPC and gRPC-Web
gRPC is Google's remote procedure call protocol. Over the years, there were many RPC
protocols. I still remember the days of CORBA and DCOM, and Java RMI. Fast-forward to
the modern web, where REST beat SOAP to become the big gorilla in the arena of web
APIs. But, these days, gRPC is beating REST. gRPC provides a contract-based model with
strong typing, efficient payload based on protobuf, and is automatically generating client
code. The combination is very powerful. The last refuge of REST was its ubiquity and the
ease of calling REST APIs bearing JSON payloads from web applications running in the
browser.

The Future of Microservices and Kubernetes Chapter 14

[448]

But, even this advantage is fading away. You could always put a REST-compatible gRPC
gateway in front of your gRPC service, but I consider it a kludge. On the other hand, gRPC-
web is a full-fledged JavaScript library that lets web applications simply invoke gRPC
services. See https:/ / github. com/ grpc/ grpc- web/ tree/ master/ packages/ grpc- web.

GraphQL
If gRPC is the REST killer inside the cluster, then GraphQL is the REST killer at the edge.
GraphQL is simply a superior paradigm. It gives the frontend developers a lot of freedom
to evolve their designs. It decouples the needs of the frontend from the rigid APIs of the
backend and serves as the perfect BFF (backends-for-frontends) pattern. See https:/ /
samnewman.io/patterns/ architectural/ bff/.

Similar to gRPC contracts, the structured schema of a GraphQL service is very enticing for
large-scale systems.

In addition, GraphQL solves the dreaded N+1 problems of traditional REST APIs, where
you first fetch a list of N resources from a REST endpoint and then you have to make N
more calls (one per resource) to get related resources on each of the N items in the list.

I expect GraphQL to gain more and more mindshare as developers become more
comfortable, awareness grows, tooling improves, and learning materials become more
available.

HTTP/3 is coming
The web is built on HTTP. There is no question about it. It's pretty amazing how well this
protocol fared. Here is a quick recap: in 1991, Tim-Berneres-Lee proposes HTTP 0.9 to
support his idea for a World Wide Web. In 1996, The HTTP Working Group publishes
HTTP 1.0 as the informational RFC 1945 to enable the internet boom of the late 1990s. In
1997, the first official RFC 2068 for HTTP 1.1 is published. In 1999, RFC 2616 adds a number
of improvements to HTTP 1.1 and remains the dominant standard for two decades. In 2015,
HTTP/2 is published, based on the SPDY protocol by Google, and all major browsers add
support for it.

https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://github.com/grpc/grpc-web/tree/master/packages/grpc-web
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/

The Future of Microservices and Kubernetes Chapter 14

[449]

gRPC is built on top of HTTP/2, which fixes a lot of issues with previous revisions of the
HTTP and provides the following features:

Binary framing and compression
Multiplexing using streams (multiple requests on the same TCP connection)
Better flow control
Server push

That sounds great. What will HTTP/3 give us? It offers the same feature set of HTTP/2.
However, HTTP/2 is based on TCP, which doesn't offer streams. That means that streams
are implemented at the HTTP/2 level. HTTP/3 is based on QUIC, a reliable transport over
UDP. The details are out of scope, but the bottom line is that HTTP/3 will have much better
performance and is always secure.

It may still take a while for broad HTTP/3 adoption, because many enterprises block or rate
limit UDP on their networks. However, the benefits are compelling and gRPC over HTTP/3
will have even a bigger edge in performance compared to REST APIs.

Those are the primary future trends that will impact microservices. Let's see what is next
for Kubernetes.

The future of Kubernetes
Kubernetes is here to stay. I will make a bold prediction and say that it will be around for
decades. It is undeniably the current leader in the container orchestration space, but more
importantly, it is designed in a super-extensible way. Any potential improvement can be
built on top of the nice building blocks that Kubernetes provides (for example, service
mesh) or replace those building blocks (such as network plugins, storage plugins, and
custom schedulers). It is hard to imagine a brand new platform that will make Kubernetes
obsolete, as opposed to improving and integrating it.

In addition, the industry momentum behind Kubernetes and the way it is developed in the
open and managed by the CNCF is inspiring. Even though it originated from Google, there
is no sentiment that it is Google's project. It is perceived as a true open source project that
benefits everyone.

Now, consider that Kubernetes caters to the needs of the entire spectrum, from hobbyists
playing with local Kubernetes on their laptops, through developers, testing locally or in the
cloud, all the way to large enterprises that require certification and support for their own
on-premises data centers.

The Future of Microservices and Kubernetes Chapter 14

[450]

Pretty much the only criticism there is against Kubernetes is that it is hard to learn. This is
true at the moment, but it will get easier and easier. There is a lot of good training material.
Developers and operators will gain experience. It's easy to find information and the
community is large and vibrant.

A lot of people say that Kubernetes will become boring soon and will become an invisible
infrastructure layer. I don't subscribe to this point of view. Some hard parts of the
Kubernetes experience, such as setting up a cluster and installing a lot of additional
software into the cluster, will become boring, but I think we'll see a lot of innovation across
the board in the next 5 years.

Let's dive into specific technologies and trends.

Kubernetes extensibility
This is an easy call. Kubernetes was always designed as an extensible platform. But, some
of the extension mechanisms required merging into the main Kubernetes repository. The
Kubernetes developers recognized early the limitations and, across the board, introduced
more loosely coupled mechanisms to extend Kubernetes and replace pieces that were
considered core components in the past.

Abstracting the container runtime
Docker used to be the only container runtime that Kubernetes supported. Then it added
special support to the now-defunct RKT runtime. However, later, it introduced the
Container Runtime Interface (CRI) as a way to integrate any container runtime through a
standard interface. Here are some of the runtimes that implement CRI and can be used in
Kubernetes:

Docker (of course)
CRI-O (supports any OCI image)
Containerd (became an CNCF graduate in February 2019)
Frakti (Kata containers)
PouchContainer (P2P image distribution, optional VM-based)

The Future of Microservices and Kubernetes Chapter 14

[451]

Abstracting networking
Kubernetes networking always required a Container Networking Interface (CNI) plugin.
It is yet another CNCF project. It allows a lot of innovation in the networking and network
security space.

You can find here a long list of platforms that support CNI (beyond Kubernetes) and an
even longer list of plugins at https:/ /github. com/containernetworking/ cni.

I expect the CNI to remain the standard interface for networking solutions. A very
interesting project is Cilium, which utilizes the extended Berkeley Packet Filter (eBPF) to
provide very high-performance networking and security at the Linux-kernel level, which
may offset some of the overhead of service mesh sidecar proxies.

Abstracting storage
Kubernetes has an abstract storage model, based on volumes and persistent volume claims.
It supports a large number of storage solution in-trees. This means those storage solutions
had to be built into the Kubernetes code base.

Early on (in Kubernetes 1.2), the Kubernetes team introduced a special type of plugin called
FlexVolume that provided an interface for out-of-tree plugins. Storage providers could
provide their own drivers that implement the FlexVolume interface and could serve as a
storage layer without modifying Kubernetes itself. But, the FlexVolume approach was still
pretty clunky. It required installing special drivers on each node and, in some cases, on the
master too.

In Kubernetes 1.13, the Container Storage Interface (CSI) matured to generally available
(GA) status and provides a modern gRPC-based interface for implementing out-of-tree
storage plugins. Soon, Kubernetes will even support raw block storage via CSI (introduced
as beta in Kubernetes 1.14).

https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni

The Future of Microservices and Kubernetes Chapter 14

[452]

The following diagram illustrates the place of CSI in the Kubernetes cluster and how it
neatly isolates storage providers:

Container Storage Interface

The trend is to replace all the in-tree and FlexVolume plugins with CSI-based
implementations, which will allow removing a significant chunk of functionality from the
core Kubernetes code base.

The cloud provider interface
Kubernetes has seen a lot of success with cloud platforms, such as Google's GKE,
Microsoft's AKS, Amazon's EKS, Alibaba's AliCloud, IBM's cloud Kubernetes service,
DigitalOcean's Kubernetes service, VMware's Cloud PKS, and Oracle's container engine for
Kubernetes.

In the early days, integrating Kubernetes into a cloud platform required a lot of effort and
involved customizing multiple Kubernetes control plane components, such as the API
server, the kubelet, and the controller manager.

The Future of Microservices and Kubernetes Chapter 14

[453]

To make things easier on cloud platform providers, Kubernetes introduced the Cloud
Controller Manager (CCM). The CCM abstracts away, through a set of stable interfaces, all
the parts that a cloud provider needs to implement. Now, the touch points between
Kubernetes and the cloud provider are formalized and it's simpler to reason about and
ensure that the integration is successful. Let's have a look at the following diagram:

Cloud Controller Manager

The preceding diagram illustrates the interactions between a Kubernetes cluster and a host
cloud platform.

Service mesh integration
I mentioned at the end of the Chapter 13, Service Mesh - Working with Istio, that service
meshes are important. They complement Kubernetes and add a lot of value. While
Kubernetes provides the management and scheduling of resources and the extensible API,
a service mesh provides the next layer of managing the traffic flowing between the
containers in the cluster.

This symbiosis is very powerful. On GKE, Istio is already just a button-click away. I expect
most Kubernetes distribution to provide the option to install Istio (or maybe the AWS app
mesh, in the case of EKS) as part of the initial setup.

The Future of Microservices and Kubernetes Chapter 14

[454]

At this point, I expect a lot of other solutions to consider Istio as a standard component and
build on top of it. An interesting project to watch in this space is Kyma (https:/ /kyma-
project.io/), which aims to easily install a slew of best-of-breed cloud-native components.
Kyna takes the extensible and open Kubernetes and adds an opinionated set of well-
integrated components, such as the following:

Helm
Dex
Istio
Knative
Prometheus
Grafana
Jeager
Kubeless
Loki
Velero (formerly, Ark)
Minio

Serverless computing on Kubernetes
As we discussed in Chapter 9, Running Serverless Tasks on Kubernetes, serverless computing
is all the rage. There are many solutions out there. Let's distinguish between two separate
solutions here:

Function as a Service (FaaS)
Server as a Service (SaaS)

FaaS SaaS
FaaS means that you launch a function either as source code
that gets packaged into an image, or as a pre-packaged
image you build. This image then gets scheduled on your
cluster and it runs to completion. You still need to manage
and scale the nodes in your cluster and make sure you have
enough capacity for your long-running services and your
functions.

SaaS means that you don't need to provision
and manage the nodes in your cluster. Your
cluster auto-magically grows and shrinks
according to the load. The Kubernetes
cluster autoscaler provides this capability on
Kubernetes.

Obviously, you can mix and match, and run the Kubernetes cluster autoscaler and also run
some function as a service framework to get the benefits of both.

https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/
https://kyma-project.io/

The Future of Microservices and Kubernetes Chapter 14

[455]

So far, so good. But, Kubernetes is often deployed on public cloud platforms that have their
own non-Kubernetes solutions to the same problem. For example, in AWS, you have
Lambda functions (FaaS) as well as Fargate (SaaS). Microsoft Azure has Azure Functions
and container instances that use a virtual kubelet and you can elastically grow your AKS
cluster. Google has Cloud Functions and Cloud Run.

It will interesting to see how the public cloud providers integrate their offerings with
Kubernetes. Google Cloud Run is built on top on Knative and can already run either on
your GKE cluster or on Google's infrastructure (so it's independent of Kubernetes).

I predict that Knative will become yet another standard component that other FaaS
solutions use as a building block on Kubernetes because it is so portable and supported by
major players, such as Google and Pivotal. It is designed from the get-go as a loosely
coupled collection of pluggable components that let you swap in your preferred
components.

Kubernetes and VMs
Kubernetes started as an orchestration platform for Docker containers. A lot of Docker-
specific assumptions were built in. Kubernetes 1.3 added special support for CoreOS rkt
and started the journey toward a decoupled runtime experience. Kubernetes 1.5 introduced
the CRI, where the kubelet talks to the container runtime engine via gRPC. The CRI
graduated to stable in Kubernetes 1.6.

As I mentioned earlier when discussing the abstraction of the container runtime, the CRI
opened the door to multiple runtime implementations. One class of runtime extensions are
lightweight or micro VMs. This may seem a little counter-productive because one of the
biggest motivations for the container movement was that VMs are too heavyweight for
dynamic cloud applications.

It turned out that containers are not fool-proof when it comes to isolation. Security concerns
override any other concern for many use cases. The solution is to bring back VMs, but with
a lighter touch. Now that the industry has some decent experience with containers, it is
possible to design the next generation of VMs that will find the sweet spot between iron-
clad isolation and high performance/low resource.

The following are some of the most prominent projects:

gVisor
Firecracker
Kata containers

The Future of Microservices and Kubernetes Chapter 14

[456]

gVisor
gVisor is an open source project from Google. It is a user-space kernel sandbox that sits in
front of the host kernel. It exposes an Open Container Initiative (OCI) interface called
runsc. It also has a CRI plugin to interface directly with Kubernetes. The protection offered
by gVisor is only partial. If there is a container breach, then the user kernel and a special
secomp policy provide extra layers of security, but it is not a complete isolation. gVisor is
used by Google AppEngine.

Firecracker
Firecracker is an open source project from AWS. It is a VM monitor using KVM to manage
micro VMs. It is designed specifically to run secure multi-tenant containers and functions as
as a service. It currently runs only on Intel CPUs, but support is planned for AMD and
ARM.

AWS Lambda and AWS Fargate use Firecracker already. Currently, Firecracker can't be
used easily on Kubernetes. The plan is to provide container integration via containerd.
Refer to the link: https:/ / github. com/ firecracker- microvm/ firecracker- containerd/ .

Kata containers
This is another open source solution managed by the OpenStack Foundation (OSF), in the
form of Kata containers. It combines technology from Intel's clear containers and Hyper.sh
RunV. It supports multiple hypervisors, such QEMU, NEMU, and even Firecracker. The
goal of the Kata containers is to build a secure container runtime based on hardware
virtualization for workload isolation. Kata containers can already be used on Kubernetes
via containerd.

It's hard to tell how it will all shake up. There was already some consolidation. There is
strong demand for safe and secure container runtimes. All the projects can either be used
on Kubernetes already, or there are plans to integrate them soon. This will probably be one
of the most important, yet invisible, improvements to the cloud-native landscape. The main
concern is that those lightweight VMs might introduce too much of a performance
overhead for some use cases.

https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/
https://github.com/firecracker-microvm/firecracker-containerd/

The Future of Microservices and Kubernetes Chapter 14

[457]

Cluster autoscaling
If you deal with fluctuating load (and it's safe to say that any non-trivial system does), then
you have three options:

Over provision your cluster.
Try to find a magic ideal size and deal with outages, timeout, and slow
performance.
Grow and shrink your cluster based on demand.

Let's discuss the preceding options in more detail:

Option 1 is expensive. You pay for resources, you don't fully utilize most of the
time. It does buy you some peace and quiet, but eventually, you may run into a
spike of demand that temporarily exceeds even your over provisioned capacity.
Option 2 is not really an option. You may find yourself there if you opted for
over provisioning and underestimated.
Option 3 is where you want to be. Your cluster's capacity matches your
workload. You can always satisfy your SLOs and SLAs and you don't pay for
unused capacity. However, trying to elastically manage your cluster manually is
a no-starter.

The solution is to do it automatically. This is where the cluster autoscaler comes in. I believe
that, for large-scale clusters, the cluster autoscaler will become a standard component.
There may be additional custom controllers that also adjust the cluster size based on
custom metrics, or adjust other resources beyond nodes.

I fully expect all the large cloud providers to invest and address all the current gotchas and
issues related to the cluster autoscaler and ensure it works flawlessly on their platforms.

Another prominent trend in the Kubernetes community that became a best practice is to
provide complex components through Kubernetes operators.

Using operators
A Kubernetes operator is a controller that encapsulates operational knowledge of some
application. It can manage installation, configuration, updates, fail-overs, and more.
Operators often rely on CRDs to keep their own state and can automatically respond to
events. Providing an operator is quickly becoming the way to release new, complicated
software.

The Future of Microservices and Kubernetes Chapter 14

[458]

Helm charts are fine for installing the bits onto the cluster (and operators may use Helm
charts for that purpose), but there is a lot of ongoing management associated with complex
components, such as data stores, monitoring solutions, CI/CD pipelines, message brokers,
and serverless frameworks.

The trend here is very clear: complex projects will provide operators as a standard feature.

There are two interesting projects that support this trend.

OperatorHub (https:/ / operatorhub. io/) is a curated index of Kubernetes operators,
where people can go and find well-packaged software to install on their cluster.
OperatorHub was started by RedHat (now part of IBM), Amazon, Microsoft, and Google. It
is very well-organized by category and provider and is easily searchable. Here is a
screenshot of the main page:

Operator hub

https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/

The Future of Microservices and Kubernetes Chapter 14

[459]

Operators are very useful, but they require pretty good knowledge of how Kubernetes
works, controllers, the concept of reconciliation logic, how to create CRDs, and how to
interact with the Kubernetes API server. It is not rocket science, but it's not trivial either. If
you want to develop your own operators, there is a project called the Operator Framework
(https://github.com/ operator- framework). The Operator Framework provides an SDK to
make it easy to start with your operators. There are guides for writing operators in Go,
using Ansible or Helm.

Operators significantly reduce complexity, but what if you need to manage many clusters?
This is where cluster federation comes in.

Federation
Managing a single large Kubernetes cluster is not simple. Managing multiple geo-
distributed clusters is much harder. It is especially difficult if you try to treat multiple
clusters as one big logical cluster. Many challenges arise around high availability, fail-over,
load balancing, security, and latency.

For many very large systems, multiple clusters are a necessity. Sometimes, it is necessary
for smaller systems too. The following are some use cases:

Hybrid on-premises/cloud
Geo-distributed redundancy and availability
Multi-provider redundancy and availability
Very large systems (more nodes than a single Kubernetes cluster can handle)

Kubernetes attempted to address the problem with the Kubernetes Federation V1 proposal
and implementation. It failed and never made it to GA. But, then came V2, at https:/ /
github.com/kubernetes- sigs/ federation- v2.

All big cloud providers have products for a hybrid on-premises/cloud systems. These
include the following:

Google Anthos
GKE on-premises - AWS Outposts: Microsoft Azure Stack

In addition, many third-party Kubernetes solutions offer cross-cloud and even bare-metal
management of multiple clusters. One of the most promising projects in this area is
Gardener (https:/ / gardener. cloud/) that lets you manage potentially thousands of
clusters. It operates by having a garden cluster that manages many seed clusters (as custom
resources) that can have shoot clusters.

https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://github.com/kubernetes-sigs/federation-v2
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/

The Future of Microservices and Kubernetes Chapter 14

[460]

I see it as a natural progression. Once the industry masters the art of managing a single
cluster, then mastering a collection of clusters will become the next challenge.

Summary
In this chapter, we looked at where microservices and Kubernetes are going next. All the
indicators show that both microservices and Kubernetes will continue to be major factors
when designing, building, evolving, and operating cloud-native, large-scale, distributed
systems. This is good news. Small programs, scripts, and mobile apps will not disappear,
but the backend systems will become large, deal with more data, and be responsible for
managing larger and larger aspects of our lives. Technologies such as virtual reality,
sensors, and AI will require ever-growing amounts of data to be processed and stored.

The short-term development in the microservices world will see gRPC emerge as a popular
transport for inter-service communication, as well as a public interface. Web clients will be
able to consume gRPC via the gRPC for web. GraphQL is another innovation that is a major
improvement compared to the REST API. The industry still needs some time to understand
how to design and build microservice-based architectures. Building a single microservice is
simple. Building a whole system of coordinated microservices is a whole other story.

Containers and Kubernetes solve some of the hard problems that microservice-based
architectures present. New technologies, such as service mesh, will gain mindshare very
quickly. Serverless computing (both SaaS and FaaS) will help developers to deploy and
update applications even faster. The merging of containers and virtualization will result in
more secure systems. Operators will make bigger and more useful building blocks a reality.
Cluster federation will be the new frontier of scalable systems.

At this point, you should have a good idea of what is coming down the line and what to
expect. This knowledge will allow you to plan ahead and make your own assessments
regarding which technologies to invest in right now, and which technologies need to
mature some more.

In short, we are at the beginning of an exciting, new era, where we will learn how to create
reliable systems at an unprecedented scale. Keep learning, stay on top of all the amazing
technologies available to you, build your own systems, and contribute back to the
community.

The Future of Microservices and Kubernetes Chapter 14

[461]

Further reading
The reading list is quite extensive because we discussed a lot of up-and-coming projects
and technologies that are worth monitoring and following up on:

gRPC: https:/ / grpc. io/

The Frakti runtime: https:/ /github. com/ kubernetes/ frakti

Containerd: https:/ / containerd. io/

PouchContainer: https:/ /github. com/alibaba/ pouch

Kata Containers: https:/ / katacontainers. io/

Kubernetes and Cloud Providers: https:/ /medium. com/ @the. gigi/ kubernetes-
and-cloud- providers- b7a6227d3198

Extending Kubernetes: https:/ /www. youtube. com/ watch? v=qVZnU8rXAEU

Azure Functions: https:/ / azure.microsoft. com/ en- us/services/ functions/

Azure Container Instances: https:/ /azure. microsoft. com/en- us/ services/
container- instances/

Google Cloud Run: https:/ /cloud. google. com/blog/ products/ serverless/
announcing- cloud- run- the- newest- member- of- our-serverless- compute- stack

gVisor: https:/ / gvisor. dev/

Firecracker: https:/ /firecracker- microvm. github. io/

Kata Containers: https:/ / katacontainers. io/

Gardener: https:/ / gardener. cloud/

The Operator Framework: https:/ /github. com/operator- framework/
operator- sdk

HTTP/3 explained: https:/ / http3- explained. haxx. se

https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://github.com/alibaba/pouch
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://www.youtube.com/watch?v=qVZnU8rXAEU
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://cloud.google.com/blog/products/serverless/announcing-cloud-run-the-newest-member-of-our-serverless-compute-stack
https://gvisor.dev/
https://gvisor.dev/
https://gvisor.dev/
https://gvisor.dev/
https://gvisor.dev/
https://gvisor.dev/
https://gvisor.dev/
https://gvisor.dev/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://gardener.cloud/
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se
https://http3-explained.haxx.se

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kubernetes Cookbook - Second Edition
Hideto Saito, Hui-Chuan Chloe Lee, Et al

ISBN: 978-1-78883-760-6

Build your own container cluster
Deploy and manage highly scalable, containerized applications with Kubernetes
Build high-availability Kubernetes clusters
Build a continuous delivery pipeline for your application
Track metrics and logs for every container running in your cluster
Streamline the way you deploy and manage your applications with large-scale
container orchestration

https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook-second-edition

Other Books You May Enjoy

[463]

Mastering Kubernetes - Second Edition
Gigi Sayfan

ISBN: 978-1-78899-978-6

Architect a robust Kubernetes cluster for long-time operation
Discover the advantages of running Kubernetes on GCE, AWS, Azure, and bare
metal
Understand the identity model of Kubernetes, along with the options for cluster
federation
Monitor and troubleshoot Kubernetes clusters and run a highly available
Kubernetes
Create and configure custom Kubernetes resources and use third-party resources
in your automation workflows
Enjoy the art of running complex stateful applications in your container
environment
Deliver applications as standard packages

https://www.packtpub.com/application-development/mastering-kubernetes-second-edition

Other Books You May Enjoy

[464]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access
 controlling, with admission 160
 controlling, with authentication 160
 controlling, with authorization 160
ACID properties
 about 49
 atomic 49
 consistent 49
 durable 49
 isolated 49
Agouti
 reference link 305
alerting, human factors
 alert channels, determining 402
 fine-tuning noisy alerts 402
 severity levels, considering 402
 warnings, versus alerts 401
alerting
 about 400
 component failure, embracing 400
 human factors, considering into account 401
 Prometheus alert manager, utilizing 403
 system failure, accepting 401
Alpine Linux Package Manager (APK) 264
Anchore
 reference link 166
API composition
 cons 48
 pros 48
API gateway, availability verifying
 about 191
 access token, obtaining 192, 193
 Delinkcious API gateway, hitting from outside

cluster 194, 195
 Delinkcious URL, searching 191

API gateway
 reference link 63
APIs
 service, exposing via 35
Argo CD
 about 85, 98
 advantages 85
 building, on Argo 98
 configuring 101, 102
 disadvantages 85
 exploring 103, 105, 106, 107, 108
 GitOps, utilizing 98
 sync policies, using 103
 working with 99, 100, 101
authentication
 access, controlling 160
available and partition resilient (AP) 50
AWS App Mesh 443
AWS Fargate
 reference link 250
Azure Container Instances (ACI)
 reference link 250

B
behavior-driven development (BDD) 278
blue-green deployments
 (green) version, deploying 326, 327
 about 320, 321
 blue label 322
 letting, CircleCI build image 325
 link description, prefixing with 324
 link-manager service, updating to match blue

pods 323
 link-manager service, updating to use 327, 328
 roll back 337
 service, verifying that uses green pods to serve

requests 328, 329

[466]

 version number, bumping 324
boilerplate
 generating 60

C
canary deployments
 about 329, 330
 employing, for Delinkcious 331, 332, 333, 335
 roll back 337
 using, for A/B testing 335
CAP theorem 49
Cassandra
 about 232
 deployment, on Kubernetes using StatefulSets

233, 234, 235
CD foundation
 reference link 84
certificate authority (CA) 160
CI/CD pipeline 81, 82
CircleCI
 images, building with 86
Citadel 419
Claire
 reference link 166
client libraries
 using 36
clients 60
Cloud Controller Manager (CCM) 453
Cloud Native Computing Foundation (CNCF) 9,

206, 416
cloud
 serverless 250
ClusterIP (default) 182
cmd subdirectory 61
code 7, 31, 81
code files 54
command query responsibility segregation (CQRS)

214

Command Query Responsibility Segregation
(CQRS)

 about 46
 cons 47
 pros 47
command-line flags 113, 114
command-line interface (CLI) 12

configuration files
 about 115
 INI format 115
 JSON format 117
 proprietary formats 119, 120
 TOML format 118
 XML format 116
 YAML 117
configuration, mechanisms
 about 112
 command-line flags 113, 114
 convention over configuration 112
 environment variables 114
configuration
 about 111, 112
 managing 112
consistent and partition resilient (CP) 50
Container Networking Interface (CNI) 217, 451
Container Runtime Interface (CRI) 11, 12, 217,

450

Container Storage Interface (CSI)
 about 217, 223, 224, 451
 standardizing 225
containers
 microservices 447
continuous delivery (CD) 81
continuous delivery, setting up for Delinkcious
 about 96
 Argo CD 98, 99, 100, 101
 Argo CD, configuring 101, 102
 Argo CD, exploring 103, 105, 106, 107, 108
 Delinkcious microservice, deploying 96, 97
continuous deployment (CD) 310
continuous integration (CI) 81, 310
continuous integration process
 build.sh script 90, 91
 CI pipeline, configuring 88, 89
 CircleCI UI, exploring 93, 94
 future improvements, considering 95
 Go service, Dockerizing with multi-stage

Dockerfile 92, 93
 source tree, reviewing 87
contracts
 employing 34
convention over configuration 112

[467]

Conway's law
 about 39
 horizontal approach 40
 matrix approach 41
 vertical approach 40
CronJobs 269
cross-service dependencies
 managing 340
Custom Resource Definition (CRD) 100, 207, 249
custom resource definitions (CRDs) 418

D
data strategy
 creating 44
 data store per microservice 44, 45
 distributed queries, running 46
 sagas, used for managing transactions across

multiple services 48
data
 storing 76, 78
 storing, inside cluster with StatefulSets 226
 storing, outside Kubernetes cluster 225
Delinkcious application
 reference link 180
Delinkcious CI/CD pipeline
 Argo CD 85
 CircleCI 84
 Jenkins X 83
 options 82
 rolling your own 85
 Spinnaker 83
 Tekton 84
 Travis CI 84
Delinkcious directory structure
 about 61
 cmd subdirectory 61
 pkg subdirectory 62
 svc sub-directory 63
Delinkcious microservices
 about 63
 API, invoking via client library 72, 74, 75
 deploying 96, 97
 object model 64, 65
 service implementation 66, 67, 69
 support functions, implementing 69, 71, 72

Delinkcious on Istio
 about 432
 automatic logging 436, 437, 438
 better canary deployments, utilizing 435
 error reporting 436, 437, 438
 Istio footprint, examining 439
 mutual authentication, removing between

services 432, 433, 434
 NATS, accomodating 438
Delinkcious unit testing
 about 279
 designing, for testability 279
Delinkcious
 custom metrics, recording from 396, 397, 398,

399

 Go, selecting 54
 reference link 52
 used, for link checking 253
dependencies
 managing 36, 339
 types 36
deployment strategies
 about 317
 blue-green deployment 320, 321
 canary deployments 329, 330
 deployment, recreating 317
 rolling updates 318, 319
deployments
 roll back 335
 versus StatefulSets 231
DHT 232
distributed hash table 232
distributed queries
 API composition, employing 47
 Command Query Responsibility Segregation

(CQRS), employing 46
 running 46
distributed tracing
 about 404
 integrating, into services 407, 408
 Jaeger, installing 405, 406
Docker
 download link 7
 installing 7
Draft 349, 350

[468]

dynamic configuration
 about 123
 avoiding 124
 managing 122
 need for 123

E
east-west communication
 versus north-south communication 183
end-to-end tests
 about 305
 acceptance, testing 305
 performance, testing 306
 regression, testing 306
endpoints 58
environment variables 114
Envoy 417, 418, 442
etcd store
 about 10
 reference link 10
events
 receiving, via message queue 206
 sending, via message queue 206
eventually consistent 50
extended Berkely Packet Filter (eBPF) 451
eXtensible Markup Language 116
ExternalName 183

F
firecracker 456
Fission workflows
 reference link 271
Fission
 about 271
 reference link 271
Fluentd
 reference link 388
Function as a Service (FaaS) 248
function configuration
 reference link 263
function deploying, with nuctl
 reference link 265

G
Galley 419
gardener
 reference 459
 reference link 366
general availability (GA) 226, 451
Ginkgo
 used, for unit testing 278
GitOps 86
GNU Project Debugger (GDB) 53
Go kit
 about 52, 55
 boilerplate, generating 60
 clients 60
 endpoints 58
 middleware 59
 reference link 55
 services 59
 transports 57
 used, for structuring microservices 56, 57
Go wiki
 reference link 54
Go-kit
 logger, setting up with 383, 384
Go
 installing 31
 installing, with Homebrew on macOS 31
 selecting, for Delinkcious 54
 used, for unit testing 275, 277, 278
GoLand
 about 53
 reference link 53
Gomega
 used, for unit testing 278
Google Compute Engine (GCE) 222
Google Kubernetes Engine (GKE) 410
GraphQL 448
gRPC 12, 447
gRPC-Web 447
gVisor 456

H
HashiCorp Consul 442
heapster 23

[469]

Helm
 installing 27, 29
 reference link 136
Homebrew
 used, for installing Go on macOS 31
Horizontal Pod Autoscaler (HPA) 271
horizontal pod autoscaler
 using 368, 369, 370
HTTP/3 448, 449
HTTPie
 reference link 73
hybrid approach 44
hybrid configuration 121

I
image registry
 safeguarding 169
images
 AlwaysPullImages 165
 base images, pinning versions 166
 building, with CircleCI 86
 dependencies, updating 166
 minimal base images, using 166
 securing 165
 vulnerabilities, scanning 166
in-memory data store
 reference link 77
in-tree storage plugins
 about 222
 reference link 223
infrastructure
 managing 342
ingress
 about 184
 adding 190
INI format 115
initialization 115
integrated development environment (IDE) 53
Integration tests
 about 285
 database test helpers, implementing 288, 290,

292

 service test helpers, implementing 292
 services, running 286
 test database, initializing 286

 test, running 287, 288
interfaces
 employing 34
internal gRPC API
 consuming 196
 providing 196
isolating tests
 about 302
 cross cluster 304
 cross namespaces 304
 test clusters 303
 test namespaces 304
Istio architecture
 about 416
 Citadel 419
 Envoy 417
 Galley 419
 Mixer 418
 Pilot 418
Istio demo application
 reference link 429
Istio footprint
 examining 441
Istio identity 425
Istio, alternatives
 about 441
 AWS App Mesh 443
 Envoy 442
 HashiCorp Consul 442
 Linkered 2.0 442
 no mesh option 443
Istio
 about 416
 canary deployments 423, 424
 cluster, securing 424
 downsides 431
 failures, handling 421, 422
 faults, injecting for testing 423
 load balancing 420, 421
 metrics, collecting 429, 430, 431
 policies, enforcing 429
 requests, authorizing 426, 428
 requests, routing 420
 traffic, managing with 419
 users, authenticating 425, 426

[470]

J
Jaeger
 installing 405, 406
 reference link 405
JavaScript Object Notation (JSON)
 reference link 117
Jenkins X
 about 83
 capabilities 83
 disadvantages 83
JSON format 117
JSON Web Token (JWT) 176
Jsonnet
 reference link 136

K
Kata containers 456
kitgen
 reference link 60
KNative
 about 270, 271
 reference link 270
Ko
 about 343, 344, 346
 reference link 343
Ksonnet
 reference link 136
KSync 347, 349
kube-api-server 10
kube-controller manager 11
kube-scheduler 10
kubectl
 about 12
 download link 7
 installing 7
Kubeless 271
kubelet 11
Kubernetes architecture 9, 10
Kubernetes architecture, control plane
 about 10
 API server 10
 controller manager 11
 etcd store 10
 scheduler 10

Kubernetes architecture, data plane
 about 11
 container runtime 12
 kube proxy 12
 kubectl 12
 kubelet 11
Kubernetes autoscaler, configuring with Custom

Metrics
 reference link 391
Kubernetes cluster
 autoscaling 367, 370, 371
 hardening, security best practices used 165
 horizontal pod, autoscaling 367
 quotas, used to minimize blast radius 173
 vertical pod, autoscaling 371, 373
Kubernetes ConfigMaps
 advanced configuration, applying 136
 creating 130, 133, 136
 managing 130, 133, 136
 working with 126, 129
Kubernetes Deployments, monitoring with

Prometheus
 reference link 391
Kubernetes deployments
 about 311, 312
 roll back 336, 337
Kubernetes Jobs 269
Kubernetes metrics API 388
Kubernetes metrics server 389, 391
Kubernetes secrets
 creating 152, 153
 managing 150
 passing, to containers 153, 154
 secure pod, building 154, 155
 types 151
Kubernetes serverless framework
 about 269
 CronJobs 269
 Fission 271
 KNative 270, 271
 Kubeless 271
 Kubernetes Jobs 269
 OpenFaas 272
Kubernetes services
 ClusterIP (default) 182

[471]

 ExternalName 183
 loadBalancer 182
 NodePort 182
 types 182
 working with 180, 181, 182
Kubernetes storage model
 about 217
 persistent volume claims 219, 220, 221, 222
 persistent volumes 218
 provisioning 218
 storage classes 218
 volumes 218
Kubernetes, used for self-healing
 about 363
 container failures 364, 366
 node failure 366
 systemic failures 366
Kubernetes
 about 7, 13, 455
 and service mesh 415
 cloud provider interface 452, 453
 cluster, autoscaling 457
 container orchestration platform 8
 container runtime, abstracting 450
 custom resources 137, 139
 extensibility 450
 federation 459
 future 449, 450
 history 8
 logging with 387, 388
 metrics, collecting on 388
 networking, abstracting 451
 operators, using 457, 459
 pros and cons, reference 22
 serverless, computing on 454, 455
 service discovery 140
 service mesh, integration 453
 state 8
 storage, abstracting 451, 452
 used, for configuring microservices 125
Kustomize
 reference link 136
Kyma
 reference link 454

L
leaky abstractions
 reference link 36
limits
 units 173
link checking
 Delinkcious, used 253
 designing 253, 255
 implementing 256, 258, 259
link events, with NATS
 subscribing to 211, 212
link events
 handling 213, 214
 sending, with NATS 208, 209
Linkered 2.0
 about 442
 resources 442
LinkManager unit tests
 implementing 282, 284
LiteIDE
 about 53
 reference link 53
load balancing 184
loadBalancer 182
local cluster
 creating 23
 Helm, installing 27, 29
 Minikube, installing 23, 25
 working with 26, 27
local development deployments
 about 342
 Draft 349, 350
 Ko 343, 344, 346
 KSync 347, 349
 Skaffold 350, 352
 Tilt 353, 354, 356, 357, 359, 360
local storage, for high performance
 about 236
 data, storing in memory 236
 data, storing on local SSD 237
local testing, with Kubernetes
 about 294
 smoke test, writing 294, 295, 297
 Telepresence 298, 299

[472]

logging, with Go-kit
 about 382
 logging middleware, using 384, 385, 386
logging
 about 380
 in Go 381, 382
 need for 381
 versus error reporting 381
 with Kubernetes 387, 388

M
macOS
 Go, installing with Homebrew on 31
manual test data
 about 307
 cons 307
 pros 307
message queue
 events, receiving via 206
 events, sending via 206
metrics
 collecting, on Kubernetes 388
 collecting, with Istio 429, 430, 431
microservice autonomous
 making 34
microservice function 251
microservice ownership
 advantages 38
microservices, configuring with Kubernetes
 about 125
 Kubernetes ConfigMaps, working with 126, 129
microservices
 about 13
 admitting 165
 authenticating 19, 160, 161, 163, 164
 authorizing 19, 164
 categories 35
 containers 447
 coordinating 37
 deploying 13, 14, 15
 discovering 16
 exposing 16
 future 446
 logging 22
 metrics 23

 monitoring 21
 namespaces 17
 network policies 18
 packaging 13, 14, 15
 role-based access control model (RBAC) 19, 20
 scaling 21
 secrets 17, 18
 secure communication 18
 securing 16
 service accounts 17
 service mesh, used for managing cross-cutting

concerns 414
 shared library, used for managing cross-cutting

concerns 413, 414
 uniformity trade-off, versus flexibility trade-off 37,

38

 upgrading 20
 versus monoliths 412
 versus serverless functions 446
middleware 59
Minikube
 cluster, verifying 25
 download link 7
 installing 7, 23, 25
 troubleshooting 25
Mixer 418
monoliths
 versus microservices 412
monorepo approach 43
multiple repos 43
multiple services
 troubleshooting 41

N
national vulnerability database
 reference link 166
NATS
 about 206
 deploying, in cluster 207
 link events, sending with 208, 209
 reference link 206
network
 conquering 167, 169
 dividing 167, 169
news manager package

[473]

 implementing 196, 198, 199
NewsManager interface
 defining 196
NewsManager, exposing as gRPC service
 about 199
 client libraries, generating with gRPC 201
 Go-kit, used for building NewsManager service

202

 gRPC service contract, defining 200
 gRPC transport, implementing 203, 205
 service stubs, generating with gRPC 201
no mesh option 443
NodePort 182
non-relational data stores, using in Kubernetes
 about 242
 Redis 242
north-south communication
 versus east-west communication 183
Nuclio
 about 260
 link checking, triggered in LinkManager 268
 link-checker function, invoking 267
 used, for creating link checker serverless

function 261, 262, 264
 used, for deploying function with Nublio

dashboard 266
 used, for deploying link checker function with

nuctl 264
 used, in serverless link checking 259
nuctl
 reference link 249

O
Open Container Initiative (OCI) 456
OpenFaas
 about 272
 reference link 272
OpenStack foundation (OSF) 456
orchestration 447
out-of-tree storage plugins 222

P
performance
 cost 379
 high availability 379

 obtaining 378
 security 380
 user experience 379
personally identifiable information (PII) 381
Pilot 418
pkg subdirectory 62
pod security policy
 hardening 175
policies
 enforcing, with Istio 429
private key infrastructure (PKI) 160
production snapshot
 about 308
 cons 308
 pros 308
programming
 about 31, 33, 34
 example 32
Prometheus alert manager
 alerts, configuring in 404
 model 403
 utilizing 403
Prometheus
 custom metrics, recording from Delinkcious 396,

397, 398, 399
 deploying, into cluster 391, 392, 393, 395
 reference link 391
 using 391
proprietary formats 119, 120
protected health information (PHI) 381
protocol buffers 200
public APIs
 managing 339
public REST API
 consuming 184
 providing 184
Python client
 reference link 148
Python-based API gateway service
 building 184, 185
 Docker images, utilizing to reduce built time 189,

190

 social login, implementing 185, 186
 traffic, routing to internal microservices 188

[474]

Q
quotas
 types 171
 used, to minimize blast radius 171, 173

R
Redis
 about 242
 events, persisting in news service 243, 245, 246
 features 242
relational databases, using in Kubernetes
 about 237
 data, storing 237
 deployment, using 238
 schema changes, managing 241
 service, using 238
 StatefulSet pods, locating 239, 240
 StatefulSet, using 239
remote configuration service 125
remote configuration store 124
ReplicaSets 13
requests
 authorizing, with Istio 426, 428
 units 173
resources, provisioning with Kubernetes
 about 373
 automated provisioning, rolling 377
 autoscaler, utilizing 377
 container limits, defining 374, 375
 manual provisioning 377
 resource quotas, specifying 376, 377
 resources, selecting 373
resources
 limits 172
 requests 172
role-based access control model (RBAC)
 about 19, 20, 156, 249, 374, 426
 permissions, managing 156, 158
rollback
 dealing, with after API change 338, 339
 dealing, with after payload change 338, 339
 dealing, with after schema change 338, 339

S
saga pattern
 applying, for microservices 50
saga, used for managing transactions across

multiple services
 about 48
 CAP theorem 49
 saga pattern, applying for microservices 50
security best practices
 access, granting 170
 access, granting to Kubernetes resources 170
 image registry, safeguarding 169
 images, securing 165
 network, conquering 167, 169
 network, dividing 167, 169
 pod security policy, hardening 175
 quotas, used to minimize blast radius 171
 security contexts, implementing 173, 174
 toolchain, hardening 176
 used, for hardening Kubernetes cluster 165
Security Content Automation Protocol (SCAP) 166
security contexts
 implementing 173, 174
serverless function
 about 251
 building 252
 configuring 252
 deploying 252
 functions as code 252
 functions as containers 252
 invoking 253
 modeling, in Kubernetes 252
 versus microservices 446
serverless link checking
 with Nuclio 259
serverless
 in cloud 250
service accounts
 about 147, 148, 150
 versus user accounts 146
service mesh
 about 214, 412
 and Kubernetes 416
 used, for managing cross-cutting concerns of

[475]

microservices 414
service test helpers
 errors, checking 292
 implementing 292
 local service, running 293
 local service, stopping 293
service-level agreements (SLAs) 400
service-level objectives (SLOs) 400
service
 about 59
 exposing, via APIs 35
shared library
 used, for managing cross-cutting concerns of

microservices 413, 414
shared service libraries
 utilizing 42
single point of failure (SPOF) 125, 364
Single-Sign on (SSO) 176
Skaffold
 about 350, 352
 reference link 350
smoke test
 running 297, 298
 testing 294
 writing 295, 297
social graph service
 reference link 67
software development life cycle (SDLC) 13, 36
sound security principles
 applying 143, 145
source control strategy
 hybrid approach 44
 monorepo approach 43
 multiple repos 43
 selecting 42
Spinnaker
 about 83
 advantages 83
 disadvantages 83
staging environment
 deploying to 313, 314, 315, 316
StatefulSet
 about 226, 227
 Cassandra 232
 components 228, 229

 need for 231
 orderliness 230
 pod identity 230
 versus deployement 231
StatefulSets
 examples, reviewing 231
 used, for deploying Cassandra on Kubernetes

233, 234, 235
 used, for storing data inside cluster 226
storage
 abstracting 217
svc sub-directory 63
synthetic data
 about 307
 cons 307
 pros 307

T
Tekton
 about 84
 advantages 84
 disadvantages 84
Telepresence
 about 298, 299
 installing 299
 local link service, attaching with Goland for live

debugging 301, 302
 local link service, running via 299, 301
 reference link 298
test clusters
 about 303
 cluster per developer 303
 clusters, dedicated for system tests 304
test data
 managing 307
 manual test data 307
 production snapshot 308
 synthetic data 307
test namespaces
 about 304
 multi-tenant systems, writing 304
test suite
 bootstrapping 282
test-driven design (TDD) 279
third-party dependencies

 managing 341, 342
Tilt 353, 354, 356, 357, 359, 360
Tom's Obvious Minimal Language (TOML)
 reference link 118
TOML format 118
toolchain
 admin user, authentication via JWT tokens 176
 audits 177
 authorization, via RBAC 176
 cluster RBAC 177
 hardening 176
 managing 342
 secret and credentials management 177
 secure communication, over HTTPS 177
traffic
 managing, with Istio 419
transports 58
Twelve Factor App configuration
 about 122
 reference link 122

U
uniform resource identifiers (URIs) 253
unit testing
 about 275, 284
 art, of mocking 280, 282
 Delinkcious unit testing 279
 with Ginkgo 278

 with Go 275, 277, 278
 with Gomega 278
user accounts
 about 146
 versus service accounts 146
users
 authenticating, with Istio 425, 426

V
versions
 managing 339
vertical pod autoscaler
 auto 372
 initial 372
 updatedOff 372
Visual Studio Code (VS Code)
 about 53
 reference link 53
VMs 455

X
XML format 116

Y
YAML
 about 117
 reference link 117

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Kubernetes for Developers
	Technical requirements
	Installing Docker
	Installing kubectl
	Installing Minikube
	The code

	Kubernetes in a nutshell
	Kubernetes – the container orchestration platform
	The history of Kubernetes
	The state of Kubernetes

	Understanding the Kubernetes architecture
	The control plane
	The API server
	The etcd store
	The scheduler
	The controller manager

	The data plane
	The kubelet
	The kube proxy
	The container runtime
	Kubectl

	Kubernetes and microservices – a perfect match
	Packaging and deploying microservices
	Exposing and discovering microservices
	Securing microservices
	Namespaces
	Service accounts
	Secrets
	Secure communication
	Network policies

	Authenticating and authorizing microservices
	Role-based access control

	Upgrading microservices
	Scaling microservices
	Monitoring microservices
	Logging
	Metrics

	Creating a local cluster
	Installing Minikube
	Troubleshooting Minikube
	Verifying your cluster

	Playing with your cluster
	Installing Helm

	Summary
	Further reading

	Chapter 2: Getting Started with Microservices
	Technical requirements
	Installing Go with Homebrew on macOS
	Installing Go on other platforms
	The code

	Programming in the small – less is more
	Making your microservice autonomous
	Employing interfaces and contracts
	Exposing your service via APIs
	Using client libraries
	Managing dependencies
	Coordinating microservices
	The uniformity versus flexibility trade-off

	Taking advantage of ownership
	Understanding Conway's law
	Vertical
	Horizontal
	Matrix

	Troubleshooting across multiple services
	Utilizing shared service libraries
	Choosing a source control strategy
	Monorepo
	Multiple repos
	Hybrid

	Creating a data strategy
	One data store per microservice
	Running distributed queries
	Employing Command Query Responsibility Segregation
	Employing API composition

	Using sagas to manage transactions across multiple services
	Understanding ACID
	Understanding the CAP theorem
	Applying the saga pattern to microservices

	Summary
	Further reading

	Chapter 3: Delinkcious - the Sample Application
	Technical requirements
	Visual Studio Code
	GoLand
	LiteIDE
	Other options
	The code

	Choosing Go for Delinkcious
	Getting to know Go kit
	Structuring microservices with Go kit
	Understanding transports
	Understanding endpoints
	Understanding services
	Understanding middleware
	Understanding clients
	Generating the boilerplate

	Introducing the Delinkcious directory structure
	The cmd subdirectory
	The pkg subdirectory
	The svc subdirectory

	Introducing the Delinkcious microservices
	The object model
	The service implementation
	Implementing the support functions
	Invoking the API via a client library

	Storing data
	Summary
	Further reading

	Chapter 4: Setting Up the CI/CD Pipeline
	Technical requirements
	The code

	Understanding a CI/CD pipeline
	Options for the Delinkcious CI/CD pipeline
	Jenkins X
	Spinnaker
	Travis CI and CircleCI
	Tekton
	Argo CD
	Rolling your own

	GitOps
	Building your images with CircleCI
	Reviewing the source tree
	Configuring the CI pipeline
	Understanding the build.sh script
	Dockerizing a Go service with a multi-stage Dockerfile
	Exploring the CircleCI UI
	Considering future improvements

	Setting up continuous delivery for Delinkcious
	Deploying a Delinkcious microservice
	Understanding Argo CD
	Argo CD is built on Argo
	Argo CD utilizes GitOps

	Getting started with Argo CD
	Configuring Argo CD
	Using sync policies

	Exploring Argo CD

	Summary
	Further reading

	Chapter 5: Configuring Microservices with Kubernetes
	Technical requirements
	The code

	What is configuration all about?
	Configuration and secrets

	Managing configuration the old-fashioned way
	Convention over configuration
	Command-line flags
	Environment variables
	Configuration files
	INI format
	XML format
	JSON format
	YAML format
	TOML format
	Proprietary formats

	Hybrid configuration and defaults
	Twelve factor app configuration

	Managing configuration dynamically
	Understanding dynamic configuration
	When is dynamic configuration useful?
	When should you avoid dynamic configuration?

	Remote configuration store
	Remote configuration service

	Configuring microservices with Kubernetes
	Working with Kubernetes ConfigMaps
	Creating and managing ConfigMaps
	Applying advanced configuration

	Kubernetes custom resources
	Service discovery

	Summary
	Further reading

	Chapter 6: Securing Microservices on Kubernetes
	Technical requirements
	The code

	Applying sound security principles
	Differentiating between user accounts and service accounts
	User accounts
	Service accounts

	Managing secrets with Kubernetes
	Understanding the three types of Kubernetes secret
	Creating your own secrets
	Passing secrets to containers
	Building a secure pod

	Managing permissions with RBAC
	Controlling access with authentication, authorization, and admission
	Authenticating microservices
	Authorizing microservices
	Admitting microservices

	Hardening your Kubernetes cluster using security best practices
	Securing your images
	Always pull images
	Scan for vulnerabilities
	Update your dependencies
	Pinning the versions of your base images
	Using minimal base images

	Dividing and conquering your network
	Safeguarding your image registry
	Granting access to Kubernetes resources as needed
	Using quotas to minimize the blast radius
	Units for requests and limits

	Implementing security contexts
	Hardening your pods with security policies
	Hardening your toolchain
	Authentication of admin user via JWT tokens
	Authorization via RBAC
	Secure communication over HTTPS
	Secret and credentials management
	Audits
	Cluster RBAC

	Summary
	Further reading

	Chapter 7: Talking to the World - APIs and Load Balancers
	Technical requirements
	The code

	Getting familiar with Kubernetes services
	Service types in Kubernetes

	East-west versus north-south communication
	Understanding ingress and load balancing
	Providing and consuming a public REST API
	Building a Python-based API gateway service
	Implementing social login
	Routing traffic to internal microservices
	Utilizing base Docker images to reduce build time

	Adding ingress
	Verifying that the API gateway is available outside the cluster
	Finding the Delinkcious URL
	Getting an access token
	Hitting the Delinkcious API gateway from outside the cluster

	Providing and consuming an internal gRPC API
	Defining the NewsManager interface
	Implementing the news manager package
	Exposing NewsManager as a gRPC service
	Defining the gRPC service contract
	Generating service stubs and client libraries with gRPC
	Using Go-kit to build the NewsManager service
	Implementing the gRPC transport

	Sending and receiving events via a message queue
	What is NATS?
	Deploying NATS in the cluster
	Sending link events with NATS
	Subscribing to link events with NATS
	Handling link events

	Understanding service meshes
	Summary
	Further reading

	Chapter 8: Working with Stateful Services
	Technical requirements
	The code

	Abstracting storage
	The Kubernetes storage model
	Storage classes
	Volumes, persistent volumes, and provisioning
	Persistent volume claims

	In-tree and out-of-tree storage plugins
	Understanding CSI
	Standardizing on CSI

	Storing data outside your Kubernetes cluster
	Storing data inside your cluster with StatefulSets
	Understanding a StatefulSet
	StatefulSet components
	Pod identity
	Orderliness

	When should you use a StatefulSet?
	Comparing deployment and StatefulSets

	Reviewing a large StatefulSet example
	A quick introduction to Cassandra
	Deploying Cassandra on Kubernetes using StatefulSets

	Achieving high performance with local storage
	Storing your data in memory
	Storing your data on a local SSD

	Using relational databases in Kubernetes
	Understanding where the data is stored
	Using a deployment and service
	Using a StatefulSet
	Helping the user service locate StatefulSet pods
	Managing schema changes

	Using non-relational data stores in Kubernetes
	An introduction to Redis
	Persisting events in the news service

	Summary
	Further reading

	Chapter 9: Running Serverless Tasks on Kubernetes
	Technical requirements
	The code

	Serverless in the cloud
	Microservices and serverless functions
	Modeling serverless functions in Kubernetes
	Functions as code
	Functions as containers

	Building, configuring, and deploying serverless functions
	Invoking serverless functions

	Link checking with Delinkcious
	Designing link checks
	Implementing link checks

	Serverless link checking with Nuclio
	A quick introduction to Nuclio
	Creating a link checker serverless function
	Deploying the link checker function with nuctl
	Deploying a function using the Nuclio dashboard
	Invoking the link-checker function directly
	Triggering link checking in LinkManager

	Other Kubernetes serverless frameworks
	Kubernetes Jobs and CronJobs
	KNative
	Fission
	Kubeless
	OpenFaas

	Summary
	Further reading

	Chapter 10: Testing Microservices
	Technical requirements
	Unit testing
	Unit testing with Go
	Unit testing with Ginkgo and Gomega
	Delinkcious unit testing
	Designing for testability

	The art of mocking
	Bootstrapping your test suite
	Implementing the LinkManager unit tests

	Should you test everything?

	Integration testing
	Initializing a test database
	Running services
	Running the actual test
	Implementing database test helpers
	Implementing service test helpers
	Checking errors
	Running a local service
	Stopping a local service

	Local testing with Kubernetes
	Writing a smoke test
	Running the test

	Telepresence
	Installing Telepresence
	Running a local link service via Telepresence
	Attaching to the local link service with GoLand for live debugging

	Isolating tests
	Test clusters
	Cluster per developer
	Dedicated clusters for system tests

	Test namespaces
	Writing multi-tenant systems

	Cross namespace/cluster

	End-to-end testing
	Acceptance testing
	Regression testing
	Performance testing

	Managing test data
	Synthetic data
	Manual test data
	Production snapshot

	Summary
	Further reading

	Chapter 11: Deploying Microservices
	Technical requirements
	The code

	Kubernetes deployments
	Deploying to multiple environments
	Understanding deployment strategies
	Recreating deployment
	Rolling updates
	Blue-green deployment
	Adding deployment – the blue label
	Updating the link-manager service to match blue pods only
	Prefixing the description of each link with [green]
	Bumping the version number
	Letting CircleCI build the new image
	Deploying the new (green) version
	Verifying that the service now uses the green pods to serve requests

	Canary deployments
	Employing a basic canary deployment for Delinkcious
	Using canary deployments for A/B testing

	Rolling back deployments
	Rolling back standard Kubernetes deployments
	Rolling back blue-green deployments
	Rolling back canary deployments
	Dealing with a rollback after a schema, API, or payload change

	Managing versions and dependencies
	Managing public APIs
	Managing cross-service dependencies
	Managing third-party dependencies
	Managing your infrastructure and toolchain

	Local development deployments
	Ko
	Ksync
	Draft
	Skaffold
	Tilt

	Summary
	Further reading

	Chapter 12: Monitoring, Logging, and Metrics
	Technical requirements
	The code

	Self-healing with Kubernetes
	Container failures
	Node failure
	Systemic failures

	Autoscaling a Kubernetes cluster
	Horizontal pod autoscaling
	Using the horizontal pod autoscaler

	Cluster autoscaling
	Vertical pod autoscaling

	Provisioning resources with Kubernetes
	What resources should you provision?
	Defining container limits
	Specifying resource quotas
	Manual provisioning
	Utilizing autoscaling
	Rolling your own automated provisioning

	Getting performance right
	Performance and user experience
	Performance and high availability
	Performance and cost
	Performance and security

	Logging
	What should you log?
	Logging versus error reporting
	The quest for the perfect Go logging interface
	Logging with Go-kit
	Setting up a logger with Go-kit
	Using a logging middleware

	Centralized logging with Kubernetes

	Collecting metrics on Kubernetes
	Introducing the Kubernetes metrics API
	Understanding the Kubernetes metrics server
	Using Prometheus
	Deploying Prometheus into the cluster
	Recording custom metrics from Delinkcious

	Alerting
	Embracing component failure
	Grudgingly accepting system failure
	Taking human factors into account
	Warnings versus alerts
	Considering severity levels
	Determining alert channels
	Fine-tuning noisy alerts

	Utilizing the Prometheus alert manager
	Configuring alerts in Prometheus

	Distributed tracing
	Installing Jaeger
	Integrating tracing into your services

	Summary
	Further reading

	Chapter 13: Service Mesh - Working with Istio
	Technical requirements
	The code

	What is a service mesh?
	Comparing monoliths to microservices
	Using a shared library to manage the cross-cutting concerns of microservices
	Using a service mesh to manage the cross-cutting concerns of microservices
	Understanding the relationship between Kubernetes and a service mesh

	What does Istio bring to the table?
	Getting to know the Istio architecture
	Envoy
	Pilot
	Mixer
	Citadel
	Galley

	Managing traffic with Istio
	Routing requests
	Load balancing
	Handling failures
	Injecting faults for testing
	Doing canary deployments

	Securing your cluster with Istio
	Understanding Istio identity
	Authenticating users with Istio
	Authorizing requests with Istio

	Enforcing policies with Istio
	Collecting metrics with Istio
	When should you avoid Istio?

	Delinkcious on Istio
	Removing mutual authentication between services
	Utilizing better canary deployments
	Automatic logging and error reporting
	Accommodating NATS
	Examining the Istio footprint

	Alternatives to Istio
	Linkerd 2.0
	Envoy
	HashiCorp Consul
	AWS App Mesh
	Others
	The no mesh option

	Summary
	Further reading

	Chapter 14: The Future of Microservices and Kubernetes
	The future of microservices
	Microservices versus serverless functions
	Microservices, containers, and orchestration
	gRPC and gRPC-Web
	GraphQL
	HTTP/3 is coming

	The future of Kubernetes
	Kubernetes extensibility
	Abstracting the container runtime
	Abstracting networking
	Abstracting storage
	The cloud provider interface

	Service mesh integration
	Serverless computing on Kubernetes
	Kubernetes and VMs
	gVisor
	Firecracker
	Kata containers

	Cluster autoscaling
	Using operators
	Federation

	Summary
	Further reading

	Other Books You May Enjoy
	Index

