
		
			[image: cover.jpg]
		

	
		
			Docker for Developers

			Develop and run your application with Docker containers using DevOps tools for continuous delivery

			Richard Bullington-McGuire

			Andrew K. Dennis

			Michael Schwartz

			BIRMINGHAM—MUMBAI

			Docker for Developers

			Copyright © 2020 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Commissioning Editor: Vijin Boricha

			Acquisition Editor: Rohit Rajkumar

			Senior Editor: Arun Nadar

			Content Development Editor: Romy Dias

			Technical Editor: Sarvesh Jayant

			Copy Editor: Safis Editing

			Project Coordinator: Neil Dmello

			Proofreader: Safis Editing

			Indexer: Priyanka Dhadke

			Production Designer: Nilesh Mohite

			First published: August 2020

			Production reference: 1140820

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-78953-605-8

			www.packt.com

			To the doctors, nurses, public health officials, and first responders who are protecting us from COVID-19.

			– Richard Bullington-McGuire

			To my wife, Megen, for her support over the past few months.

			– Andrew K. Dennis

			To all the people I've known over the years who've made me a better engineer and person.

			– Michael Schwartz

			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Contributors

			About the authors

			Richard Bullington-McGuire is a software architect and DevOps practitioner with more than 28 years of professional experience in information technology. He has operated internet services continuously since 1995 when he established The Obscure Organization. He has used Docker to build, deploy, and run applications in production, including operating the Freezing Saddles winter cycling event since 2018. Richard is a member of the IEEE and the ACM. He holds 6 AWS certifications, including all of the Foundational, Associate, and Professional level certifications. He works at Modus Create, Inc. as director of engineering. You can find him on Twitter and GitHub at @obscurerichard. Richard lives in Arlington, VA, with his wife and four children.

			I want to thank my wonderful wife, Patricia, and my children, for giving me the space and support I've needed to write this book, even while the COVID-19 global pandemic was raging around us. I'd also like to thank Jay Garcia for suggesting that I join this effort. The whole Packt editing team has helped this first-time book author immensely, but I'd like to give special thanks to Romy Dias who edited most of my work.

			Andrew K. Dennis is a full stack and cybersecurity architect with over 17 years' experience who currently works for Modus Create in Reston, VA. He holds two undergraduate degrees in software engineering and creative computing and a master's degree in information security. Andy has worked in the US, Canada, and the UK in software engineering, e-learning, data science, and cybersecurity across his career, and has written four books on IoT, the Raspberry Pi, and supercomputing. His interests range from the application of pataphysics in computing to security threat modeling. Andy lives in New England and is an organizer of Security BSides CT.

			I want to thank my wife, Megen, for her support during the writing of this book; the other authors for their collaboration and hard work; Modus Create for aiding me: and the other authors as well for helping to initiate the project; my parents for all their support over the years as my career in technology grew; and finally, a thank you to the Packt team for their edits and insights.

			Michael Schwartz is a full stack software engineer, architect, and embedded engineer for Modus Create, with over 45 years' experience as a professional. He founded one of the first public ISPs in the SF Bay Area, Best Internet Communications, and an early internet advertising agency, MediaPlex. He was one of the early developers of video games, including the upright coin-operated machines and consoles. His most recent project is RoboDomo, a home automation system built around Node.js, Docker containers, MQTT, and React.js. Originally from Chicago, IL, Mike resides in the Palm Springs area of California.

			I want to thank Jesus Garcia and Pat Sheridan for throwing the support of Modus Create behind this book project. I'd also like to thank my co-authors, Andy and Richard, who've made this the definitive book on Docker at this time.

			About the reviewer

			Sreenivas Makam is a customer engineer and application modernization specialist at Google Cloud, Bangalore. He has a master's in electrical engineering and around 20 years' experience in the public/private cloud and networking industry. Prior to Google, Sreenivas worked at Cisco Systems and a few start-ups. His interests include hybrid cloud technologies, SDN, and DevOps. He also likes to try out and follow open source projects in these areas. Sreenivas was also a Docker captain for 2 years, promoting Docker technologies. He is pretty active in cloud technology forums and meetup groups. He can be reached on Twitter at @srmakam.

			I would like to thank my family for giving me extra time during the weekend to do the book reviews. Thanks to my daughters, Sasha and Masha, for keeping me energetic.

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

		

	
		
			Table of Contents

			Preface

			Section 1: An Introduction to Docker – Containers and Local Development

			Chapter 1: Introduction to Docker

			The drivers for Docker 4

			Co-located hosting 5

			Self-hosting6

			Data centers6

			Using virtualization to economize resource usage 8

			Addressing the increasing power requirements 10

			Using containers to further optimize data center resources 13

			Summary 15

			Further reading 16

			Chapter 2: Using VirtualBox and Docker Containers for Development

			Technical requirements 18

			Host filesystem pollution problem 18

			Using VirtualBox for virtual machines 19

			Introduction to virtualization19

			Creating a virtual machine19

			Guest additions22

			Installing VirtualBox22

			Using Docker containers 23

			Introduction to containers24

			Using Docker for development26

			Getting started with Docker 27

			Automating Docker commands via sh scripts28

			Summary 41

			Further reading 42

			Chapter 3: Sharing Containers Using Docker Hub

			Technical requirements 44

			Introducing Docker Hub 44

			Interacting with Docker Hub from the command line45

			Using the Docker Hub website46

			Implementing a MongoDB container for our application 48

			Running a shell within a container52

			Introducing the microservices architecture 56

			Scalability56

			Inter-container communication57

			Implementing a sample microservices application 60

			Sharing your containers on Docker Hub 65

			Summary 69

			Further reading 70

			Chapter 4: Composing Systems Using Containers

			Technical requirements 72

			Introduction to Docker Compose 73

			The problem with .sh scripts73

			Docker Compose configuration files74

			Inheritance using multiple configuration files78

			The depends_on option79

			Adding port bindings using overrides82

			Using Docker local networking 85

			Networking using .sh scripts85

			Networking with Docker Compose88

			Binding a host filesystem within containers 89

			Optimizing our container size90

			Using the build.sh script93

			Other composition tools 94

			Docker Swarm94

			Kubernetes95

			Packer95

			Summary 95

			Further reading 96

			Section 2: Running Docker in Production

			Chapter 5: Alternatives for Deploying and Running Containers in Production

			Technical requirements 100

			Example application – ShipIt Clicker 101

			Running Docker in production – many paths, choose wisely 101

			What is the minimum realistic production environment? 102

			Bare minimum – run Docker and Docker Compose on one host102

			Docker support103

			Problems with single-host deployment103

			Managed cloud services 103

			Google Kubernetes Engine104

			AWS Elastic Beanstalk105

			AWS ECS and Fargate105

			AWS EKS105

			Microsoft Azure Kubernetes Service106

			Digital Ocean Docker Swarm106

			Running your own Kubernetes cluster – from bare metal to OpenStack 107

			Deciding on the right Docker production setup 108

			Exercise – join the ShipIt Clicker team110

			Exercise – choosing from reasonable deployment alternatives115

			Exercise – Dockerfile and docker-compose.yml evaluation 116

			Summary 116

			Chapter 6: Deploying Applications with Docker Compose

			Technical requirements 118

			Example application – ShipIt Clicker v2118

			Selecting a host and operating system for single-host deployment 119

			Requirements for single-host deployment119

			Preparing the host for Docker and Docker Compose 120

			Using operating system packages to install Docker and Git120

			Deploying using configuration files and support scripts 122

			Re-examining the initial Dockerfile122

			Re-examining the initial docker-compose.yml file124

			Preparing the production .env file127

			Supporting scripts129

			Exercise – keeping builds off the production server132

			Exercise – planning to secure the production site133

			Monitoring small deployments – logging and alerting 134

			Limitations of single-host deployment 136

			No automatic failover136

			Inability to scale horizontally to accept more load136

			Tracking down unstable behavior based on incorrect host tuning136

			Loss of single host could be disastrous – backups are essential137

			Case study – migrating from CoreOS and Digital Ocean to CentOS 7 and AWS138

			Summary 138

			Further reading 139

			Chapter 7: Continuous Deployment with Jenkins

			Technical requirements 142

			Example application – ShipIt Clicker v3143

			Using Jenkins to facilitate continuous deployment 143

			Avoid these traps143

			Using an existing Jenkins server144

			Setting up a new Jenkins server145

			How Jenkins can support continuous deployment149

			The Jenkinsfile and host connectivity 149

			Testing Jenkins and Docker with a pipeline script150

			Driving configuration changes through Jenkins 156

			Using Git and GitHub to store your Jenkinsfile156

			Changing the origin of all checked out repositories159

			Creating Jenkins environment variables for production support160

			Building Docker containers and pushing them to Docker Hub161

			Pushing to Docker Hub and triggering a production deployment162

			Deploying to multiple environments through multiple branches 165

			Creating a staging environment166

			Creating Jenkins environment variables for staging support166

			Deploying by force-pushing to the staging branch167

			Complexity and limits to scaling deployments through Jenkins 169

			Managing multiple hosts170

			The complexity of build scripts170

			How do you know when you have hit the limit?171

			Summary 171

			Further reading 172

			Chapter 8: Deploying Docker Apps to Kubernetes

			Technical requirements 174

			Options for Kubernetes local installation 175

			Minikube176

			Verifying that your Kubernetes installation works176

			Deploying a sample application – ShipIt Clicker v4 177

			Deploying the NGINX Ingress Controller and ShipIt Clicker locally178

			Choosing a Kubernetes distribution 180

			Google Kubernetes Engine180

			AWS EKS180

			Microsoft Azure Kubernetes Service182

			Reviewing other relevant options182

			Objects184

			ConfigMaps184

			Pods185

			Nodes186

			Services186

			Ingress Controllers187

			Secrets189

			Namespaces195

			Spinning up AWS EKS with CloudFormation 195

			Introducing the AWS EKS Quick Start CloudFormation templates196

			Preparing an AWS account 197

			Launching the AWS EKS Quick Start CloudFormation templates201

			Configuring the EKS cluster205

			Deploying an application with resource limits to Kubernetes on AWS EKS 206

			Annotating ShipIt Clicker to use the ALB Ingress Controller208

			Using AWS Elastic Container Registry with AWS EKS 209

			Creating an ECR repository210

			Local example – labeled environments in the default namespace212

			Staged environments – Dev, QA, staging, and production214

			Summary 214

			Chapter 9: Cloud-Native Continuous Deployment Using Spinnaker

			Technical requirements 218

			Improving your setup for Kubernetes application maintenance 219

			Managing the EKS cluster from your local workstation219

			Troubleshooting kubectl connection failures220

			Switching between local and cluster contexts221

			Verifying that you have a working ALB Ingress Controller222

			Preparing a Route 53 domain and certificate223

			Building and deploying ShipIt Clicker v5224

			Spinnaker – when and why you might need more sophisticated deployments 227

			Introduction to Spinnaker228

			Setting up Spinnaker in an AWS EKS cluster using Helm 229

			Connecting to Spinnaker through the kubectl proxy231

			Exposing Spinnaker via ALB Ingress Controllers231

			Configuring Spinnaker using Halyard233

			Connecting Spinnaker to Jenkins233

			Setting up Jenkins to integrate with both Spinnaker and ECR235

			Connecting Spinnaker to GitHub240

			Connecting Spinnaker to Docker Hub240

			Troubleshooting Spinnaker issues241

			Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker 242

			Adding a Spinnaker application243

			Adding a Spinnaker pipeline244

			Setting up a DNS entry for the Ingress Controller250

			Surveying Spinnaker's deployment and testing features 250

			Canary deployments250

			Red/black deployments251

			Rolling back252

			Testing with Spinnaker252

			Summary 252

			Further reading 253

			Chapter 10: Monitoring Docker Using Prometheus, Grafana, and Jaeger

			Technical requirements 256

			Setting up a demo application – ShipIt Clicker v7256

			Docker logging and container runtime logging 260

			Understanding Kubernetes container logging 261

			Ideal characteristics for a log management system261

			Troubleshooting Kubernetes control plane issues with logs262

			Storing logs with CloudWatch Logs264

			Storing logs for the long term with AWS S3265

			Analyzing logs stored in S3 with AWS Athena266

			Using the liveness, readiness, and startup probes in Kubernetes 267

			Using a liveness probe to see whether a container can respond268

			Changing ShipIt Clicker to support separate liveness and readiness probes269

			Exercise – forcing ShipIt Clicker to fail the readiness check270

			Gathering metrics and sending alerts with Prometheus 271

			Prometheus' history271

			Exploring Prometheus through its query and graph web interface272

			Adding Prometheus metrics to an application273

			Querying Prometheus for a custom metric275

			Configuring Prometheus alerts 276

			Sending notifications with the Prometheus Alertmanager278

			Exploring Prometheus queries and external monitoring in-depth281

			Visualizing operational data with Grafana 281

			Gaining access to Grafana281

			Adding a community-provided dashboard282

			Adding a new dashboard with a custom query283

			Application performance monitoring with Jaeger 285

			Understanding the OpenTracing API285

			Introduction to Jaeger286

			Exploring the Jaeger client with ShipIt Clicker288

			Installing the Jaeger Operator293

			Summary 294

			Further reading 295

			Chapter 11: Scaling and Load Testing Docker Applications

			Technical requirements 298

			Using the updated ShipIt Clicker v8299

			Scaling your Kubernetes cluster 301

			Scaling the cluster manually302

			Scaling the cluster dynamically (autoscaling)304

			What is Envoy, and why might I need it? 310

			Network traffic management with an Envoy service mesh311

			Setting up Envoy 312

			Testing scalability and performance with k6 318

			Recording and replaying network sessions320

			Hand-crafting a more realistic load test321

			Running a stress test327

			Summary 328

			Further reading 329

			Section 3: Docker Security – Securing Your Containers

			Chapter 12: Introduction to Container Security

			Technical requirements 334

			Virtualization and hypervisor security models 334

			Virtualization and protection rings335

			Docker and protection rings337

			Container security models 339

			Docker Engine and containerd – Linux security features 340

			PID namespaces342

			MNT namespaces342

			NET namespaces343

			IPC namespaces343

			UTS namespaces343

			USER namespaces343

			A note on cgroups 344

			An overview of best practices 344

			Keeping Docker patched345

			Securing the Docker daemon socket346

			Docker won't fix bad code347

			Always set an unprivileged user347

			Summary 348

			Chapter 13: Docker Security Fundamentals and Best Practices

			Technical requirements 350

			Docker image security 350

			Image verification352

			Using minimal base images355

			Restricting privileges357

			Avoiding data leakages from your image358

			Security around Docker commands 360

			COPY versus ADD – what's the story?361

			Recursive COPY – use with caution362

			Security around the build process 364

			Using multi-stage builds364

			Limiting resources and capabilities when deploying your builds 366

			Limiting resources366

			Dropping capabilities367

			Summary 368

			Chapter 14: Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

			Technical requirements 370

			Securely storing secrets in Docker 370

			The Raft log371

			Adding, inspecting, and removing secrets 372

			Creating373

			Inspecting373

			Deleting374

			Secrets in action – examples 375

			Docker tags for security 377

			Using labels for metadata application 379

			Summary 380

			Chapter 15: Scanning, Monitoring, and Using Third-Party Tools

			Technical requirements 382

			Scanning and monitoring – cloud and DevOps security for containers 382

			Scanning using Anchore Engine383

			A brief mention of Chef InSpec389

			Native monitoring locally using Docker stats389

			Aggregating monitoring data in the cloud with Datadog 393

			Securing your containers using AWS 398

			Security alerts for AWS with GuardDuty 398

			Securing your containers using Azure 400

			Container monitoring in Azure400

			Using Security Center to secure your containers in Azure401

			Securing your containers using GCP 403

			Container Analysis and Binary Authorization in GCP403

			Understanding your attack surface with Security Command Center406

			Summary 407

			Further reading 407

			Chapter 16: Conclusion – End of the Road, but not the Journey

			Technical requirements 410

			Wrapping up – let's get started 410

			What we learned about development 411

			Going deeper – design patterns411

			Next steps for taking your DevOps knowledge further 414

			Chaos engineering and building resilient production systems414

			A summary on security and where to go next 416

			Metasploit – container-based penetration testing417

			Summary 420

			Other Books You May Enjoy

			Leave a review - let other readers know what you think 423

		

	
		
			Preface

			Software engineering teams are rapidly adopting containers to package and deploy their software. Providing a platform-agnostic experience, containers allow you to run applications with a variety of operating system images and to deploy on-premises, in data centers, and in the cloud. In order to support container-based applications, vendors have developed a wide variety of tools, ranging from Docker and Google's Kubernetes project to Lyft's Envoy service mesh and Netflix's Spinnaker. Whether you are working on the software development side of the house, hosting, and infrastructure, or constructing DevOps pipelines, you need both a broad and in-depth understanding of many concepts in order to manage container-based environments.

			In Docker for Developers, we will start with a walk-through of the basics of developing with containers locally using Docker, and then move on to deploying production-ready, cloud-hosted systems with AWS. If you are interested in learning about container orchestration, deployment, monitoring, and security, then we think you will enjoy this book.

			Who this book is for

			Docker for Developers is geared toward engineers and DevOps personnel who want to learn the basics of containers and then build upon this knowledge to understand how to use containers in production, through a set of successively more sophisticated deployments. We will demonstrate how Docker applications can be deployed via CI/CD pipelines and managed in a production-grade, cloud-hosted environment. A basic understanding of containers would be helpful when tackling the book's subject matter, but this is not essential. It is assumed that readers of this book are familiar with Linux, the use of command-line tools, and basic software engineering concepts, such as version control and using Git.

			What this book covers

			Chapter 1, Introduction to Docker, provides some background on Docker, a walk-through of containers and their purpose, and presents the reader with an introduction to the topics that will be discussed in the book.

			Chapter 2, Using VirtualBox and Docker Containers for Development, guides the reader through using a virtual machine locally for development and then compares this to how Docker can be used for containerized development projects.

			Chapter 3, Sharing Containers Using Docker Hub, introduces the reader to Docker Hub and pre-built containers. Next, we explore the process of building specialized containers.

			Chapter 4, Composing Systems Using Containers, investigates more complex situations where multiple containers need to work together as a complete system. Additionally, we give the reader an overview of Docker Compose.

			Chapter 5, Alternatives for Deploying and Running Containers in Production, helps the reader understand the spectrum of choices when it comes to running containers in a production environment, including cloud options, on-premises and hybrid solutions.

			Chapter 6, Deploying Applications with Docker Compose, discusses how to deploy a production application on a single host with Docker Compose and how to deal with logging and monitoring, along with the pros and cons of this simple setup.

			Chapter 7, Continuous Deployment with Jenkins, shows how to use Jenkins for continuous integration (CI) and continuous deployment (CD) for containers, using a Jenkinsfile and multiple development branches.

			Chapter 18, Deploying Docker Apps to Kubernetes, explores Kubernetes concepts, cloud distribution options, and shows how to create an Amazon Web Services Elastic Kubernetes Service (EKS) cluster for deploying Docker applications to Kubernetes.

			Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker, builds upon the skills we developed around CI/CD by integrating Netflix's Spinnaker with Kubernetes and looking at automated tests.

			Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger, explains how to monitor container-based applications using AWS CloudWatch, Prometheus, and Grafana. We introduce the OpenTracing API and implement it using Jaeger.

			Chapter 11, Scaling and Load Testing Docker Applications, explores how to scale a Docker-based application through Kubernetes. It introduces the concept of a service mesh and shows a simple implementation using Envoy, integrating load balancing and advanced traffic routing and filtering, including utilization of the circuit breaker pattern. Finally, we show how to use k6.io to perform load testing to demonstrate that our application can scale out.

			Chapter 12, Introduction to Container Security, walks the reader through basic container security concepts, including how virtualization and hypervisor security models work.

			Chapter 13, Docker Security Fundamentals and Best Practices, builds upon the previous chapter's introduction and delves deeper into Docker and security components. This includes a comparison of Docker commands and their security implications.

			Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels, covers the topics of secrets, including passwords, and how they can be used securely with container-based environments. The reader is also introduced to the use of tagging and labeling best practices.

			Chapter 15, Scanning, Monitoring, and Using Third-Party Tools, expands upon our logging and monitoring skills acquired from other chapters by refocusing on these elements from a security focus. Here, we also look at what options are available for users of AWS, Azure, and GCP and how we can scan containers for security issues using Anchore.

			Chapter 16, Conclusion – End of the Road, but not the Journey, wraps the book up by revisiting what we have learned so far. Finally, we provide some ideas for where the reader can go next in exploring container-based projects. This ranges from adding Netflix Chaos Monkey to their CI/CD pipeline, to running Metasploit in a container.

			To get the most out of this book

			You will need a Windows, Mac, or Linux workstation that can run Docker. You should use the latest version if possible. Additionally, in order to complete any of the cloud-based projects, you will need to set up a cloud provider account. The examples use Amazon Web Services (AWS), although you could adapt much of the content to services hosted by another cloud provider:

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			While we do not explicitly demonstrate how to deploy the projects listed in this book to Microsoft Azure or the Google Cloud Platform, if you wish to explore some of the security features available on those cloud platforms, or try out the existing projects in them, you will need to create an account for each provider.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

			You can download the code files by following these steps:

			
					Log in or register at www.packt.com.

					Select the Support tab.

					Click on Code Downloads.

					Enter the name of the book in the Search box and follow the onscreen instructions.

			

			Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

			
					WinRAR/7-Zip for Windows

					Zipeg/iZip/UnRarX for Mac

					7-Zip/PeaZip for Linux

			

			The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Docker-for-Developers. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			Code in Action videos for this book can be viewed at https://bit.ly/3kDmrtq.

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781789536058_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, container names, folder names, filenames, file extensions, pathnames, dummy URLs, and user input. Here is an example: "This file needs to be added to the conf.d directory on the host."

			A block of code or Dockerfile is set as follows:

			FROM ubuntu:bionic

			RUN apt-get -qq update && \

			apt-get -qq install -y nodejs npm > /dev/null

			RUN mkdir -p /app/public /app/server

			COPY src/package.json* /app

			WORKDIR /app

			RUN npm -s install

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			FROM alpine:20191114

			RUN apk update && \

			apk add nodejs nodejs-npm

			RUN addgroup -S app && adduser -S -G app app

			RUN mkdir -p /app/public /app/server

			ADD src/package.json* /app/

			Any command-line input or output is written as follows:

			$ cp docker_daemon.yaml /path/to/conf.d/

			$ vim /path/to/conf.d/conf.yaml

			Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "You can do this by clicking the Get It Now button on the Azure Marketplace website."

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	
		
			Section 1: An Introduction to Docker – Containers and Local Development

			In this section, we introduce the reader to the technologies, skills, and steps involved in developing applications using Docker Containers. We begin by tracing the history of hosting and why we need Docker in the first place. We then demonstrate the differences between virtualization and containerization, using VirtualBox to create simple virtual machines and using Docker to create a simple PHP application with state. We discuss how applications involving multiple containers working together (microservices) are the ultimate way to use containers, and present a simple CRUD demo involving several containers, including some prepared by third parties and shared with us on Docker Hub. Finally, we present the Docker Compose tool as a means to orchestrate complete applications made up of multiple containers, while providing private access between the containers.

			This section comprises the following chapters:

			
					Chapter 1, Introduction to Docker

					Chapter 2, Using VirtualBox and Docker Containers for Development

					Chapter 3, Sharing Containers Using Docker Hub

					Chapter 4, Composing Systems Using Containers

			

		

	
		
			Chapter 1: Introduction to Docker

			Docker is a technology that allows entire applications and their environments to be encapsulated within individual containers. When multiple versions of these containers are run on a single machine, they are sandboxed from one another as if running on their own dedicated machines.

			Docker is open source, which fits well with running Linux in containers, as well as numerous available open source components that help build complex systems. It is the logical progression of technologies used for hosting and backend development over the past decade or longer. This progression has moved from a physical kind of hosting to a logical one and has been driven by several requirements. These requirements include reliability, reachability, scalability, and security.

			This book is divided into three sections. The first is an introduction to Docker, focusing on local development. The second describes the methodology for testing, deploying, and scaling applications. The third goes into detail about security when using a container-based design.

			In this chapter, we will review the history of hosting and backend solutions with a focus on how Docker came to be a widely used technology.

			The following topics will be covered in this chapter:

			
					Origins of hosting services

					Types of hosting services – co-location

					Types of hosting services – self-hosting

					The benefits of data centers

					How virtualization works

					The power requirements at data centers

					How virtualization is a solution for data centers and the invention of the cloud

					How containers are a bigger win for data centers and hosting

			

			The drivers for Docker

			The range of hosting services was originally limited to self-hosted servers, co-located server hosting, and shared hosting. In 1994 and 1995, Best Internet Communications rose from nothing to hosting 18,000+ websites on a pair of Pentium servers, which were the most powerful servers of the time. Best also offered dedicated server-hosting through co-location, dedicated broadband connectivity, and upscale premium services.

			Most of the websites hosted by Best were of the shared-hosting variety. All of these sites shared the same server, the same hard drives, the same filesystem, the same RAM, the same CPUs, the same network connections, and so on.

			It was not uncommon for any one of these websites to be slashdotted, or containing a link to the site from a very popular site to the hosted site. This would cause a large spike in traffic to the one out of the approximately 18,000 sites, and a performance hit to the others. As the quality of the sites grew and demanded more resources, their administrators would move to dedicated co-located hosting or self-hosting.

			Co-located hosting

			With co-located hosting, the customer rents a secure cage within a larger hosting facility (data center):

			
				
					[image: Figure 1.1 – A typical server rack, commonly seen in colocation]
				

			

			Figure 1.1 – A typical server rack, commonly seen in colocation

			The customer can install and manage the machines of their choice. Some co-location facilities offer, for additional fees, remote hands service, where the customer can call the hosting company and one of their engineers does whatever the customer requires to the hosted servers. The cages are locked so that other customers can't gain access to other customers' equipment.

			Self-hosting

			With self-hosting, the customer buys a full-time dedicated broadband-style connection in a physical location of their choosing:

			
				
					[image: Figure 1.2 – Indian Railway 139 server room (self-hosting)]
				

			

			Figure 1.2 – Indian Railway 139 server room (self-hosting)

			The customer ends up building their own kind of data center and installs and manages servers and other equipment on-premises.

			Data centers

			The benefits of a professional data center are numerous, and ultimately, the trend became that just a few companies, relative to all the companies with an internet presence, provided data centers, and the remaining companies paid rent for dedicated, shared, or premium hosting. A professional data center provides rich internet connectivity (more than one provider, faster connections), clean power, battery-backed-up power for 24/7/365 uptime, back-up generator-backed-up power for longer brownouts or blackouts, fire-suppression systems, a controlled climate suitable for keeping equipment at the proper operating temperatures, multiple physical locations, a professionally managed Network Operations Center (NOC) and technical support, and security in the form of guards, cameras, and fingerprint, handprint, and/or retina scanners:

			
				
					[image: Figure 1.3 – A server room at CERN (Switzerland)]
				

			

			Figure 1.3 – A server room at CERN (Switzerland)

			The companies that ended up building and running the majority of data centers are Google (Google Cloud Platform), Microsoft (Azure), Amazon (Amazon Web Services (AWS)), Yahoo! (once upon a time), and lesser players, which include boutique hosting companies, regional hosting companies, and companies that require security beyond what a hosting company can provide (for example, banks and financial institutions, governments, and so on).

			Amazon had a unique need for data centers. They are one of the largest online retailers in the world, as well as the largest data center developer/owner. The number of servers, the uptime, the security, and the reach that they require drove them to build data centers throughout the country and then the world.

			Google has a unique need for data centers as well. They are the largest search engine and advertising company in the world. In order to be reachable, Google needs servers in as many physical places as possible. In order to be fast, Google needs many servers—at least enough servers for distributed search index processing in each of its geo-locations.

			Companies such as RackSpace and Level 3 were originally built as data center providers. Their specialties included co-location facilities, dedicated server hosting, remote hands, NOCs, nationwide-dedicated fiber-optic backbones, clean and blackout resistant power, and very rich connectivity to various other networks, including AT&T, Verizon, and Comcast. They found themselves with the infrastructure to follow the trend toward virtualization and began to offer these cloud services.

			The highest cost of providing data center services, and this passed on to the customer, was initially bandwidth. The providers paid for bandwidth by the megabit, plus a monthly cost of maintaining the physical connections that carried this bandwidth. As the providers built their own private infrastructure to carry data between their own data centers around the world, the cost became a flat rate, or a fixed cost, for a significant amount of the total bandwidth used. This allowed the price of bandwidth to decline to the point where it became a minimal consideration for hosting.

			These companies ended up building a comprehensive infrastructure for dedicated hosting. It turns out that this infrastructure is ideally suited for virtualized product offerings, too.

			Using virtualization to economize resource usage

			Virtualization is the process of exposing a portion of a physical machine as a logical or virtual machine that acts enough like a real machine that it supports the installation of whole operating systems, their filesystems, and the software that runs on the operating system. For example, a machine with 64 GB of RAM and 4 CPUs could run virtualization software that masquerades as four 16 GB RAM machines with 1 CPU each. This machine could run four instances of Linux.

			Virtualization is not a new concept, having been implemented by IBM in the early 1960s. It likely gained in overall popularity during the 1980s when it was used to run MS-DOS, and then Windows by computer systems such as the original Apple Macintosh (Mac) and Unix computers such as the Sun and Silicon Graphics workstations.

			Initial virtualization software used what features were available on CPUs of the time, but often simply emulated the instruction set of the x86 on the 68000 family or custom CPUs of the professional Unix workstations. SoftPC was one of the most popular offerings in the 1980s.

			SoftPC was quite slow, but the ability to run Windows or MS-DOS applications on a Mac computer allowed the use of these machines in business and education environments. Instead of adding Microsoft Office compatibility to all the programs on the Mac to support exchanging files between Windows/MS-DOS users and Mac users, users could run Microsoft Office.

			People saw it in action and saw the value in it. Windows was the dominant operating system for home and business, and to fit in with Windows in the corporate environment, something like SoftPC was needed. The problem with SoftPC is that it was pure software emulation, which was quite slow in actual use. Virtualization is superior to emulation in terms of performance!

			Entire companies were founded around providing consumer or business virtualization solutions. VMWare, founded in 1998, was one of the first of these companies.

			Innotek developed VirtualBox and released it as open source in 2007, and was then acquired by Sun Microsystems in 2008. Then, Sun was acquired by Oracle in 2010. Parallels, a virtualization solution for Mac, was developed in 2004 and became mainstream in 2006.

			The value of virtualization encouraged chip makers to gradually add CPU support for virtualization. With CPU support, an x86-based system could run virtualized machines or software at close enough to native speed to be much more tolerable. This, in turn, led the workstation companies (such as Apple, Sun, and Silicon Graphics) to move to x86 CPUs.

			A key component of virtualization software is the hypervisor. The hypervisor presents the virtual machine to the chosen operating system and then manages the resources and execution of the virtual machines over time. The virtual machines themselves are configurable, at least regarding the amount of RAM, the number of logical CPU cores, graphics card memory, the host operating system disk files to act as virtual disk drives in the virtual machine, the mounting and unmounting of CD-ROM in the virtual CD-ROM drive, and so on. The hypervisor assures that these resources are truly available and that no virtual machine starves the other virtual machines for the host machine's resources.

			For the enterprise, the requirements were somewhat different. Instead of providing virtual machines via a general-purpose host operating system such as Linux, the entire operating system itself could be optimized just for being the hypervisor. VMWare offered its Elastic Sky X Integrated (ESXi) operating system in 2004. The University of Cambridge computer laboratory developed the Xen hypervisor in the late 1990s, and the first stable version was released in 2003. Xen was originally the hypervisor used by Amazon for its Elastic Compute Cloud offering, before moving to KVM.

			KVM is a virtualization solution supported directly by the Linux kernel. The kernel can act as the hypervisor under KVM. KVM can additionally emulate processors other than the host's native CPU, which is typically x86. This allows KVM to be used to emulate targets such as the Raspberry Pi.

			Scaling a dedicated hosted website can be problematic. It's possible to simply upgrade to a larger and more powerful server to handle growing traffic and services. At some point, however, there is no server that is large and powerful! To scale up from that point requires distributing services across multiple servers.

			Addressing the increasing power requirements

			The trend toward virtualization created a demand for a new breed of servers to be housed at the data centers. Where a customer might have rented or installed their own dedicated server with 16 GB of RAM, the virtual server provider could rent a portion of a 128 GB RAM server and share that server with multiple customers. These bigger servers required more CPU cores, so the virtual servers could have reasonable computing capabilities.

			Fitting these specialized servers into the same space as the smaller and less capable dedicated servers created a new challenge: power. Instead of using 400 watts of power for the dedicated server, the cloud servers might use 1,600 watts; the power requirements would be four times more. In addition to the power requirements of the machines themselves, it took more power to run the air conditioners to cool the machines.

			The power cost requirements changed the equation for dedicated hosting, so bandwidth pricing was virtually free, while the power requirements of the servers were charged at a very high price.

			To help mitigate the cost of power, data centers have been built to provide some of their own power. Solar panels, building near a river that can drive turbines, wind turbines, and building in places with cool or cold climates are among some of the techniques used. Data centers do use batteries for back-up power, and diesel-powered generators as well.

			Energy efficiency is another way to mitigate power costs. The use of lower-powered CPUs and other computer parts is one means to this end. The CPU manufacturers have had a heavy focus on producing lower-powered CPUs for both data center and laptop use.

			The hosting companies would supply a 60 watt power supply for each co-location cage. If you needed more than 60 watts, you could pay extra to have additional 60 watt lines for your cage. You'd pay for the construction and then the monthly power usage.

			Hosting at one of these facilities was problematic for most customers. It required purchasing physical machines and other hardware, designing the infrastructure required for the services to be provided, physical access to the cage and hardware from time to time, and potential failures, which meant downtime.

			The growth and popularity of services require scalability or more and bigger machines. You could repurpose old machines, but they take up space and power. Customer costs soared when the current cage filled up and more presence was required.

			The next step, and the solution to these hassles, is virtualization and running your servers and services within the cloud.

			Virtualization and cloud computing

			Most customers don't need dedicated servers. What they really need is the security of a filesystem that only their software can read and write to, that the CPU is guaranteed to be dedicated to their purpose, and that the throughput and computing power is identifiable and delivered as expected.

			The appeal of virtual servers offered by companies such as AWS drove many administrators to move away from dedicated and self-hosting. AWS grows its offerings to add more value to virtual hosting, so their customers get the benefit of Amazon's developers efforts.

			It's relatively cheap to duplicate the customer-designed infrastructure to create a testing environment that is separate from the live/deployed applications. It's easy to scale services that grow with popularity, or when the services are slashdotted. This is a term that describes what happens when a very popular site adds a link to another site, driving a lot more traffic to that site—perhaps more traffic than the site was designed to handle.

			The design and deployment of a virtualized infrastructure can be done from the comfort of your office. There is no need to physically visit a data center. If you need to scale horizontally, you only need to spin up additional virtual machine instances. If you need to scale vertically, you only need to spin up a more powerful virtual machine and substitute it for the one that is too slow or too small.

			If hardware fails at a cloud-hosting facility, the hosting company's employees install new hardware. This is done in complete transparency with you, the customer. A feature known as Teleport allows the hosting company to move a running virtual machine to a different physical machine, without the interruption of service.

			Along with virtual servers, hosting companies can also offer virtual disks, elastic IPs, load balancers, DNS, backup solutions, and so on. Virtual disks are handy because you can back them up by simply copying the file that is the image. You can also boot new instances from an existing virtual disk, saving the time required to install a whole operating system on a virtual machine.

			The ability to use elastic IPs and virtual load balancers allows a scalability that is as easy as the click of a mouse.

			You can assign an elastic IP to any virtual instance or load balancer. If the instance is stopped, you can reassign that IP to another instance. If this were handled only with DNS, there could be days' worth of delays for the DNS to propagate through the many DNS servers at the ISPs. The load balancer allows you to create virtual server farms and balance incoming requests between the virtual servers in the farm. You can trivially spin up and add additional virtual servers to the load balancer as you need to scale. The hosting companies can even provide software triggers that will automatically spin up and add new servers when traffic increases, and then spin them down and remove them when traffic is reduced:

			
				
					[image: Figure 1.4 – Hardware virtualization]
				

			

			Figure 1.4 – Hardware virtualization

			A popular stack technology at the time that AWS was made available to the public was LAMP, which is short for Linux, Apache, MySQL, and PHP. A typical setup would be to install these four software packages on a dedicated Linux server. AWS offered RDS, or a MySQL equivalent dedicated virtual server, which allowed the offloading and scaling of the LAMP application. AWS offered virtual load balancers, which are logical Ethernet switches that load balance traffic among two or more web servers. They offered domain name-hosting and elastic IPs, so a site's uptime could be almost infinite. AWS continues to develop new software and services to benefit its customers.

			AWS and its competitors allow a cost-effective and dynamic way to grow an internet presence as it gains popularity. The price structure is common among most providers. The cost is based on the number of elastic load balancers, the number of virtual server instances, the amount of RAM, the number of virtual CPUs, the size of persistent storage, and the bandwidth. There are also optional additional services that can increase the price.

			Virtual servers provide the benefits of a physical one, but it comes at the cost of the dedication of physical RAM on the host machine and the power required to run the machine. A host machine might have 64 GB of RAM; it can run some combination of virtual machines that, combined, use up that RAM—for example, four 16 GB virtual machines, two 32 GB virtual machines, two 16 gigabytes and one 32 GB virtual machine, and so on.

			A risk of virtual machines is that when the host machine is rebooted or fails, all the virtual machines hosted on it will go off air.

			The features that enable virtualization and the limitations of virtualization when applied at data centers make containerization a viable and preferred alternative.

			Using containers to further optimize data center resources

			Docker is a clever use of OS-level virtualization support that allows multiple Docker containers to execute on a single machine. A container is a running instance of a container image. The containers are, by default, isolated from the host machine, as well as from one another.

			They can be configured to expose resources, such as networking ports, to the host network (for example, the internet) or to one another. The following diagram illustrates the basic structure of containers on a host:

			
				
					[image: Figure 1.5 – Docker containerization]
				

			

			Figure 1.5 – Docker containerization

			Containers share their Linux kernel with the host, so you do not need to install complete operating systems within the container as you do with virtual machines. The containers are managed by the Docker daemon, which handles the management of the containers and resources they use, as well as the images, networks, volumes, and so on.

			An important distinction between virtual servers and containers is that containers share the resources, directly, of the host, whereas virtual servers require duplicate resources. For example, two identical containers use the host's RAM, rather than a block of RAM configured before booting the virtual machine. If you need to constrain the resources (the CPU, memory, swap, and so on) of a container, you can do so, but the default is to have no resource constraints on any container.

			Unlike with virtual servers, you deal with an application image, rather than a virtual disk. You can copy the image to back it up, but there is no virtual disk file to copy. These application images are progressively built on top of other containers. When you build a container, only the bits of the application image that change need to be dealt with.

			When designing services that use containers, you will not likely install many components within any one container. For a virtual machine running a LAMP application, you might install Apache, MySQL, and PHP all within one virtual machine. When designing the same LAMP application for containers, you might configure one container just for MySQL and another for Apache and PHP. You can then scale your application by running additional Apache and PHP containers and additional MySQL instances in a cluster configuration.

			If we consider the use of containers for the LAMP application discussed earlier, we can implement MySQL in a dedicated container, and Apache and PHP in another; all this running on top of the host's Linux kernel. To scale the LAMP application, a second, third, fourth, and so on instance of the Apache/PHP container can be spun up, and the same is true for the MySQL container. MySQL containers can be configured for master-subordinate operations.

			If the host operating system is not Linux kernel-based, there are two options. The first option is to run host OS native containers (for example, Windows containers on a Windows host). The second option is to run a Linux virtual machine on the host and run the containers within that virtual machine.

			Containerization is a boon for hosting companies and their customers. No longer is it required to dedicate a fixed amount of RAM per container as is required with virtual machines. A physical machine is limited only by its resources when it comes to the number of containers it can run concurrently. The pricing model for containers can save customers on monthly costs. Thus, containerization is a big win.

			In the next chapter, we'll look at how to use virtual machines and Docker to develop applications locally. Later in this book, we'll look at how to deploy our locally developed software to publicly accessible internet/cloud infrastructure.

			Summary

			In this chapter, we saw how Docker and containerization was a natural result of the progression of hosting requirements since the start of the commercial internet. We reviewed the history of hosting and how we got to today's hosting configurations. You should now have a decent understanding of the difference between virtualization and containerization.

			In the next chapter, we'll look at VirtualBox and Docker. This is a good way to explore the differences between virtual machines and Docker containers.

			Further reading

			If you would like to look into some of the subjects discussed so far in-depth, refer to the following links:

			
					This link partially describes how Google's search algorithm is implemented: https://www.google.com/search/howsearchworks/

					This link describes Google's search infrastructure: https://netvantagemarketing.com/blog/how-does-google-return-results-so-damn-fast/

					This link also describes Google's search infrastructure: https://www.ctl.io/centurylink-public-cloud/servers/

					This link describes IBM's early technology to support virtualization: https://en.wikipedia.org/wiki/IBM_CP-40

					This link describes an old program that emulates a PC to run Windows on a non-Windows host: https://en.wikipedia.org/wiki/SoftPC

					This link provides an introduction to the VMWare company: https://en.wikipedia.org/wiki/VMware

					This link describes Oracle's VirtualBox: https://en.wikipedia.org/wiki/VirtualBox

					This link introduces Parallels: https://en.wikipedia.org/wiki/Parallels_(company)

					This link discusses the role of the Hypervisor in virtualization and containerization: https://en.wikipedia.org/wiki/Hypervisor

					This link describes VMWare's standalone operating system designed specifically to run virtual machines: https://en.wikipedia.org/wiki/VMware_ESXi

					This link describes the Xen hypervisor: https://15anniversary.xenproject.org/#Intro

					This link describes Amazon's AWS virtual machines: https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud

					This link describes kernel features to support virtualization and containerization: https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

					This link describes using QEMU to emulate Raspberry Pi on a workstation: https://azeria-labs.com/emulate-raspberry-pi-with-qemu/

			

		

	
		
			Chapter 2: Using VirtualBox and Docker Containers for Development

			In the previous chapter, we introduced virtualization and containerization. In this chapter, we'll demonstrate how you can use software such as VirtualBox to create virtual machines and we'll use Docker to create containers. The focus of this chapter will be on using these technologies for development on your workstation.

			A common problem among developers who work on multiple projects is that, over time, they end up with a lot of software installed on their workstations that they don't currently use. This can be so problematic that the developer might reformat their workstation's hard drive and reinstall the operating system.

			Both VirtualBox and Docker containers can be used to resolve this problem. The software you install stays within either the virtual machine's or the container's filesystem and is separate from the workstation's native filesystem. If you delete a virtual machine or container, all the files installed therein are removed – including any applications or development software that was installed.

			Another problem that arises for developers is the version of software required to work on a specific project. If the developer is working on one project that uses Node.js v12 and another that uses Node.js v10, they can't really run both projects on the workstation at the same time and switching between versions of Node.js is doable, but ugly. This is a non-issue with virtual machines or containers – you can have one virtual machine with Node.js v12 and another with Node.js v10 and run both virtual machines at the same time. It is similar with two containers, one for each version of Node.js.

			Virtualization is very useful when you need to model an entire machine. If your production systems are virtual machines or physical machines, a virtual machine is a good way to emulate that environment. Virtualization is terrific for running a complete alternate operating system on the workstation; that is, you can run Windows 10 in a virtual machine on a macOS or Linux workstation.

			In this chapter, we will cover the following topics:

			
					Host filesystem pollution problem

					Using VirtualBox for virtual machines

					Using Docker containers

			

			Technical requirements

			The code for this chapter can be downloaded from: https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter2

			Check out the following video to see the Code in Action:

			https://bit.ly/3gX9dFE

			Host filesystem pollution problem

			Both virtualization and containerization solve certain problems developers face. There's no real point in installing server-style software systems on your workstation – that kind of software can be installed in a virtual machine or a Docker container. Using this strategy means you don't have to pollute your workstation's filesystem, you won't have software version conflicts, and you can run a different operating system than the one your workstation runs.

			The pollution problem is a real concern for developers – they end up with a lot of cruft, or installed software, that they don't use day to day, but that take up system resources. We will learn to use virtualization or containerization to install that software in a way that isn't installed on your host's filesystem.

			Using VirtualBox for virtual machines

			There are several options for running virtual machines on your workstation. These include Parallels (for macOS), KVM/QEMU (for Linux), VMware (commercial for several host operating systems), and VirtualBox (an Oracle product). We'll use VirtualBox because it is open source and free to use. It's also portable in the sense that you can run VirtualBox and your virtual machines on Linux, Windows, macOS, and other host operating systems.

			Introduction to virtualization

			Virtualization uses special instructions and features of your workstation's CPU to run a generic pseudo-computer system (virtual machine) on your host. Within this virtual machine, you can install a wide range of operating systems, including various versions of Windows Server, Linux, BSD, and so on. The operating system running in a virtual machine is called the guest operating system; the operating system running on your workstation is called the host operating system.

			As the guest operating system executes code, it will be required to perform disk and network access, execute privileged CPU instructions, and otherwise access shared resources with the host. The virtualization software effectively traps these guest operating system accesses and translates them into host operating system calls. Thus, code running in the virtual machine is mostly running at full native CPU speed until these shared access traps are executed – then there is some overhead for the translation to host accesses.

			The guest virtual machines may be configured before you install an operating system within. You can set how much RAM to use, one or more virtual disks, one or more Ethernet controllers, a graphics card, an ISO file (installation media) to insert in the virtual CD-ROM drive, and so on.

			You typically set RAM, disk space, and the number of virtual CPU cores to appropriate values for your guest operating system and the apps you intend to use within the guest. For example, if you are going to run Windows in a virtual machine, you might want to give it at least 2 virtual CPU cores and 8 gigabytes of RAM and 32 gigabytes of disk space. If you are going to run an application in the virtual machine that needs more than 8 gigabytes of memory, you would want to assign more RAM; if the app needs a lot of disk space, you would assign more disk space.

			Creating a virtual machine

			To boot the virtual machine, use the VirtualBox program (user interface). When the virtual machine boots, it acts just like a physical PC – as far as the installer on the installation media is concerned, it is a physical PC. The installer will work as if you were installing on a new PC or reinstalling on your PC.

			A virtual machine may present its console or desktop within a window on your workstation's desktop, or it can be headless. A headless virtual machine is similar to a server machine – you access it via FTP, SSH, and so on. You would use a headless virtual machine when you have no use for the operating system console or graphical interface. The headless machine provides all the services of a server you would remotely access.

			You start a headless virtual machine from the command line instead of the VirtualBox user interface program. This is done via the VBoxManage command, which is documented here: https://www.virtualbox.org/manual/ch08.html. It is more likely that you will be using a guest operating system with a graphical user interface, though.

			A typical headless virtual machine might be used to run a LAMP application—Linux, Apache, MySQL, and PHP all contained neatly within the virtual machine and not within the filesystem of your workstation. You can model a scalable LAMP application by starting a headless virtual machine that runs MySQL and two headless virtual machines that run the HTTP server and the PHP code.

			A typical graphics/desktop virtual machine might be used to run Windows in a window on your Mac computer, to run Linux in a window on your Mac computer, to run Linux in a window on your Windows machine, and so on. If you like to use Linux, but you need to run Windows programs, doing it in a virtual machine is a good way to go.

			A non-headless install will have a few display options. The entire desktop can be displayed in a window on your host's desktop. This is the default display mode. The window can be resized like any other window on the desktop. However, within the interior of the window, the guest's desktop will not resize to fit until you install the VirtualBox guest additions in the guest.

			The guest window can be made full screen. This makes the guest look like it's the operating system running native on the workstation. If you are running macOS, you can switch desktops using the macOS gestures and go back and forth between full-screen Windows and full-screen macOS desktops.

			For some host operating systems, the guest can be put into seamless mode, where the desktop is not displayed at all, but any applications running in the virtual machine render their windows on top of the host desktop.

			The result is a mixture of virtual machine application windows and your host operating system application menus on your desktop, as shown in the following screenshot:

			
				
					[image: Figure 2.1 – Microsoft Windows 10 running fullscreen in VirtualBox on a Linux host]
				

			

			Figure 2.1 – Microsoft Windows 10 running fullscreen in VirtualBox on a Linux host

			As you can see, you may run and manage a full Windows installation on your workstation within a virtual machine. You can access the files and directories on your host if you set up Samba for file sharing on the host.

			Incidentally, portions of this book were written using Microsoft Word 365, running in a Windows 10 virtual machine on a Linux host. The Docker examples that follow were executed on the Linux host. This is a great example of why you would run a virtual machine.

			Note:

			Microsoft allows you to buy a Windows 10 license and use it to activate Windows 10 within a virtual machine.

			Apple only allows macOS to be run in a virtual machine on Apple hardware. It is a violation of their licensing terms to run macOS within a virtual machine on a PC running Windows or Linux.

			Linux and most BSD variants are generally free to use on a PC or within a virtual machine on a PC.

			Guest additions

			For Windows and Linux guest operating systems, you can install drivers that fully integrate the guest and host operating systems. These drivers are known as guest additions and you can download these from the VirtualBox site: https://virtualbox.org. They are installed within the virtual machine as any program you install for Windows or Linux. The integration with the host is quite useful.

			The guest additions display drivers that allow you to use the full resolution of the host's screen and, if you're running in windowed mode (guest desktop in a host desktop window), resizing the window will cause the guest desktop to resize to fit the new window size. If you want to use the seamless windows feature, you are required to install the guest display drivers.

			The additions provide mouse pointer integration. This allows you to freely move the cursor between physical screens, from guest windows to host windows. Otherwise, the mouse would be captured by the virtual machine so that it can manage pointer events.

			The guest additions also share the host and guest clipboards as if they were one clipboard. You can select and copy text in a macOS host application and then paste that copied text into a Windows application running in the virtual machine.

			For Linux guests, the additions allow you to share host filesystem directories and files. This is particularly useful because you can use the host operating system tools and software to develop files seen by the host. For example, you create a shared folder on your macOS machine for your project's working directory. You can use your macOS editors to edit files in the project and, in the virtual machine, you can run Linux native compilers or tools to execute your project. Let's now begin by installing VirtualBox.

			Installing VirtualBox

			The URL for VirtualBox is https://www.virtualbox.org/. There, you can find documentation and downloads for the various host platforms (workstation operating systems), add-ons, see screenshots, see recommended third-party software that works with VirtualBox, and so on.

			Windows installation instructions

			To install the Windows installation, go to the downloads page at the VirtualBox site, download the installer for the latest version, and then, when the download is complete, double-click on it. Then, follow the onscreen instructions.

			macOS installation instructions

			For macOS installation, you can use Homebrew or download the installer .dmg file from the VirtualBox site and install from that. To use Homebrew, you only need to enter one command:

			$ brew cask install virtualbox

			Homebrew (https://brew.sh/) is the missing package manager for macOS. It is a command-line system for installing software from Homebrew's repositories. It is a terrific tool for augmenting the software shipped with macOS. The software in those repositories is updated far more frequently than the Apple software updates.

			Linux installation instructions

			The installation instructions for VirtualBox on Linux varies depending on the Linux distribution that you use on your workstation. Since there are so many different distributions, we'll cover Ubuntu to give you an idea of what to do and provide you with helpful pointers for installing VirtualBox on other distributions (Arch Linux, Fedora, and suchlike).

			For Ubuntu, you can install VirtualBox from the Ubuntu Software Center, download a .deb file from the VirtualBox site, or use apt:

			$ sudo apt install virtualbox

			For Arch Linux and its variants, you can follow the instructions on the terrific Arch wiki at https://wiki.archlinux.org/index.php/VirtualBox.

			For Fedora or other RPM-based Linux distributions, follow the instructions at the VirtualBox site: https://virtualbox.org. Let's now learn how to use Docker containers.

			Using Docker containers

			Docker is generally used to create containers, which run your application as if in a headless virtual machine. In fact, on host operating systems that are not Linux-based, Docker effectively runs Linux in a virtual machine and runs your containers within that virtual machine. This is done transparently.

			Note:

			You don't have to install VirtualBox yourself. Docker is packaged in such a way that it will install or use any already-existing virtualization technology (for example, a hypervisor) for your operating system.

			Introduction to containers

			Earlier versions of Docker installed VirtualBox to create its virtual machine, but more recent virtualization technology implemented within the operating systems allows Docker to use those technologies instead.

			Docker for Linux containers expects the host operating system or the virtual machine to be running Linux. The containers share the Linux kernel with the host. Docker can be used to run Windows native containers, in a similar manner to Linux containers. The Windows kernel is shared among the host and guests. For discussion purposes, we'll focus on the Linux host and guests.

			Docker containers are typically used to implement something like headless virtual machines. The use of virtual machines for each application you might create a container for is expensive – you must reserve a fixed amount of RAM and disk space for the virtual machine. On a 16 gigabyte RAM MacBook Pro, you can roughly fit three 4 gigabyte RAM virtual machines running at the same time. You do need to have some RAM for the host operating system to run. Starving the host or guest virtual machines of RAM will cause them to swap, which crushes performance:

			
				
					[image: Figure 2.2 – Docker containers illustrated]
				

			

			Figure 2.2 – Docker containers illustrated

			Containers are separated from the host operating system using host operating system features. The containers use the Linux kernel's namespaces feature (https://manpages.debian.org/stretch/manpages/namespaces.7.en.html) to separate the code running in containers from one another, and cgroups (see https://manpages.debian.org/stretch/manpages/cgroups.7.en.html) to limit the resources that a container may use (including RAM and CPU). Containers also use the Linux unionfs (https://manpages.debian.org/buster/unionfs-fuse/unionfs.8.en.html) filesystem to implement the layered filesystem our containers see when running under Docker.

			From the applications running within the container's point of view, the container is a whole and dedicated computer; there is no direct communication with the host operating system.

			Containers do not require the number of virtual CPUs or a dedicated block of RAM per container.

			You are only limited by how much RAM the containers need and how much RAM the host has.

			Containers share the host's Linux kernel, while virtual machines must have a whole operating system installed!

			You may choose to limit the resources used by a container instance, but this is not required.

			Host resources may be shared with the guest containers. The host's networking can be shared with any container, but this is only really needed for containers running applications that require this. For example, to use the host's Bonjour networking functionality, the guest would use the host's networking.

			The guest containers may expose ports to the host and any computers that can access the host. For example, a container running an HTTP server might expose port 80 and, when the host is accessed at port 80, the container responds.

			Containers have driven the concept of microservices. An application using microservice architecture implements a collection of services that communicate among themselves and the host. These services are meant to be trivial to implement – only the specific code required to support the service needs to be included in the program. It's not uncommon for microservices to be implemented in a single source code file with just a few lines of code.

			Container architecture is quite scalable. You can run multiple containers running the same application (horizontal scaling) and you can dedicate more host resources to the container system (vertical scaling). For example, you might create a container running an HTTP server; you can create a server farm by instantiating as many of these containers as you desire.

			Using Docker for development

			A great reason to use Docker for development is that you don't have to install any programs, other than Docker itself, on your host to enable development. For example, you can run Apache in a container without installing it on your workstation.

			You can also mix and match software versions within your containers. A microservices architecture might require one container to use Node.js version 8 and another container to use Node.js version 10. This is obviously problematic on a single host, but is straightforward when using Docker. One container installs and runs version 8, and another container installs and runs version 10.

			During development, you can share your project's development files with the container so that when you edit these files, the container sees that the files have changed.

			Each container has its own set of global environment variables. It's typical to configure the application using environment variables, rather than in source code or configuration files within the container.

			When you are ready to deploy or publish a container, you can push it to a container hosting service, such as Docker Hub. In fact, Docker Hub is a terrific source for already-existing containers that may aid you in your project development. There are pre-made container images for MongoDB, Node.js (various versions), Apache, and so on.

			Container construction is effectively object-oriented. You inherit from a base container and add the functionality you need to that. You can create a Node.js application in a container that starts with a ready-made Node.js container, install npm packages in the container, and run your custom code in the container.

			You can always develop your own base containers. For these, you can start with ready-made packages for a flavor of Linux. The Alpine Linux base container is popular because it is one of the most lightweight images to start from. There are base containers for Fedora, Ubuntu, Arch Linux, and more. Whichever of these Linux containers you start from, you can use that operating system's installation tools to add packages from the official repositories for that operating system; that is, apt for Ubuntu, yum for Fedora, and so on.

			It's a good idea to Dockerize an existing application that wasn't designed to run in a container. You can choose a flavor and version of Linux for the container that is compatible with the application, and you can split up the application into multiple container images to afford future scalability.

			For example, you might have an older LAMP application that requires specific versions of PHP, MySQL, and Apache, as well as an older version of Ubuntu. You would break this up into a distinct MySQL container, and a distinct Apache plus PHP container. You would want your Apache+PHP containers to use a shared volume so that they're all running the same and latest PHP source code. You can set up the MySQL container to use master-slave replication. You can set up a load balancer in another container that balances between as many Apache and PHP container instances as you choose.

			Time for a hands-on example, using Docker for development.

			Getting started with Docker

			We have created a GitHub repository to share code examples for this book. The repository can be found at https://github.com/PacktPublishing/Docker-for-Developers. You should fork this repository, and then clone it to your host. Creating the fork means you can manage your copy of the repository as you see fit without requiring permissions. The code of interest for this section is in the chapter2/ directory. The code here implements a small Apache+PHP application that is designed to run in a container. There are sh scripts to perform the Docker command lines, so you don't have to keep typing in a long string of command-line arguments.

			Before we get into the code, let's make sure that Docker is installed properly. The docker ps command prints a list of all running Docker containers. We can see we have no containers running and there is an actual docker command:

			% docker ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			%

			A Dockerfile is a text file that defines how to build a Docker container image. The container is not started; it is just created on disk. Once built, you can start as many instances as you wish.

			Automating Docker commands via sh scripts

			We're going to make heavy use of the docker cli command and sh scripts to automate command-line use. The use of sh script files has a few advantages. Once the script file is created, you don't have to remember what all the command-line switches to the command are. Once the script is correct, you won't have any issues due to typos or improper command-line switches. Typing the script filename is much shorter and your shell should autocomplete it when you type the first few characters of the name and hit the Tab key. Finally, the names of the scripts are mnemonic: build.sh means build the container, run.sh means run the container, and so on.

			The sh scripts we provide are as follows:

			
					./build.sh: This builds the container from the Dockerfile. You will want to run this script whenever you edit the Dockerfile, or if the container otherwise needs to be built.

					./debug.sh: This runs the container in debug mode. In debug mode, Apache is run in foreground mode and you can hit ^C to stop the container.

					./run.sh: This runs the container as a daemon. Unlike the ./debug.sh script, you will be returned to the command-line prompt, with the container running in Docker. You will use this script to run the container locally, as if in production, so that you can test production behavior.

					./stop.sh: When you have your container running in the background, this script can be used to stop it.

					./shell.sh: Sometimes, when creating your container and editing the Dockerfile, things do not work as expected. You can use this script to get a Bash command line running within the container. From this command line, you can inspect and diagnose the problems.

					./persist.sh: This script demonstrates using a named volume to persist the application state within the container. That is, with a named volume, you can stop and restart the container and the contents of the volume are persisted. The volume is mounted in the container as if it were a disk.

			

			To demonstrate how building a container using a Dockerfile works, we've created one in the GitHub repository, in the chapter2/ directory (file named Dockerfile):

			# we will inherit from the Debian image on DockerHub FROM debian # set timezone so files' timestamps are correct ENV TZ=America/Los_Angeles # install apache and php 7.3 # we include procps and telnet so you can use these with shell.sh prompt RUN apt-get update && apt-get install -y procps telnet apache2 php7.3 # add a user - this user will own the files in /home/app RUN useradd --user-group --create-home --shell /bin/false app # set up and copy files to /home/app ENV HOME=/usr/app WORKDIR /home/app COPY . /home/app # The PHP app is going to save its state in /data so we make a /data inside the container RUN mkdir /data && chown -R app /data && chmod 777 /data

			 # we need custom php configuration file to enable userdirs COPY php.conf /etc/apache2/mods-available/php7.3.conf # enable userdir and php RUN a2enmod userdir && a2enmod php7.3 # we run a script to stat the server; the array syntax makes it so ^C will work as we want CMD ["./entrypoint.sh"]

			Let's look at what the Dockerfile does, step by step:

			
					The Dockerfile inherits from the Debian image on Docker Hub.

					We set the time zone for the container to match the time zone of the host; in other words, ensure that the timestamps of files inside the container and on the host match. This is important when mapping host directories to the container's filesystem.

					We then install Apache and PHP 7.3. These are installed in the container's filesystem and not on the host's filesystem. We have avoided the pollution problem of having a version of both installed on the host that later become unused when not working on this project.

					We also installed some command-line utilities that allow us to examine the state of the built container from a Bash shell running within the container.

					By default, the user and group that will be running the project in the container is root. In order to provide some typical Unix/Linux security, we want to run as an actual user; in our case, the username is app. So we add the user to the container's environment with useradd.

					We are going to put our PHP scripts in /home/app, with the ability to map our working directory with our PHP scripts on the host over /home/app.

					Our demo app writes its state to /data, so we need to create it and ensure that the PHP script running as a user app can read and write files there.

					We created a custom PHP configuration file that we want to use within the container, so we copy it to the container in the correct location in the filesystem.

					We need to enable the userdir and php7.3 modules. This allows us to run PHP scripts from Apache as well as have our PHP scripts in /home/app/public_html accessed via a URL such as http://localhost/~app/index.php.

					When the container is started, it needs to run some program or script within the container. We use an sh script named entrypoint.sh in the /home/app directory to start the application. We can edit this file to suit our needs during development.

			

			We could have chosen from a variety of Linux flavors from which to start. We chose Debian here because the configuration commands should be familiar to most readers. If you install Debian in a virtual machine, you'd use the same commands to install and maintain your system. Debian isn't the smallest or most lightweight of Linux images to start from; Alpine is a great choice if you want to make your container use fewer resources. If you choose to use Alpine, be sure to read up on how to install packages and maintain the system using Alpine.

			Note that whichever Linux image you start from, it's sharing the Linux kernel with your host machine. Only within the container is it Debian – your host operating system can be some other Linux distribution. What you install inside the container is not installed on your workstation, only within the container. Obviously, you shouldn't mix, say, Debian commands and installed packages directly on an Arch Linux workstation.

			When you install Apache on an actual host or virtual machine, you configure it by using the a2enmod and a2dismod commands, as well as by editing the various configuration files in /etc/apache2. What we do here is edit the configuration file locally on our workstation, and then we copy that configuration file to the container.

			The Dockerfile installs a few Debian applications within the container using apt-get. The RUN command that spawns apt-get within the container uses the -y switch to answer yes to any questions apt-get might ask, the -qq switch to make the apt-get command less verbose, and the >/dev/null redirection of stdio to make the Docker build (build.sh) output compact. Without the -qq and stdout redirection, the build output would contain every package and dependency downloaded, along with all the installation commands for all these packages.

			Note that the final line in the Dockerfile is a CMD, the command to run when the container is instantiated. In our case, we use an array with one item, entrypoint.sh. The array makes it so that you can hit Ctrl + C to stop the container. The entrypoint.sh script runs Apache in the container after performing the necessary initialization. Also note that we enabled both the userdir and php7.3 modules in the Dockerfile.

			Now that we have a Dockerfile, we need to be able to build the container so that we can then use it. This is where the first of our .sh scripts comes into play.

			Understanding build.sh

			The build.sh script is used to build the container. You will need to build the container at least once so that we can edit files on the host and see the changes in action within the container. You will need to rebuild the container each time you want to try the container in production mode and have the latest versions of the files:

			#!/bin/sh

			 # build.sh

			 # we use the "docker build" command to build a container named "chapter2" from . (current directory)# Dockerfile is found in the current directory, and determines how the conatiner is built.

			 docker build -t chapter2 .

			The -t flag says to name the container chapter 2. The Dockerfile is found in the current directory. The output of the build.sh script is lengthy, so it is omitted here.

			You can see that each step printed in the output while building the container corresponds to a line in the Dockerfile:

			Sending build context to Docker daemon 15.87kB Step 1/11 : FROM debian ---> 67e34c1c9477 Step 2/11 : ENV TZ=America/Los_Angeles ---> Using cache ---> 7bfa02a200a8 Step 3/11 : RUN apt-get update -qq >/dev/null && apt-get install -y -qq procps telnet apache2 php7.3 -qq >/dev/null ---> Running in 98a4e3192e22 debconf: delaying package configuration, since apt-utils is not installed Removing intermediate container 98a4e3192e22 ---> 86aa2b03b3b1 Step 4/11 : RUN useradd --user-group --create-home --shell /bin/false app ---> Running in 917b16b86dc5 Removing intermediate container 917b16b86dc5 ---> ef96ff367f1f Step 5/11 : ENV HOME=/usr/app ---> Running in c9706abf0afd Removing intermediate container c9706abf0afd ---> 4cc08031746b Step 6/11 : WORKDIR /home/app ---> Running in 08c2b9c79204 Removing intermediate container 08c2b9c79204 ---> 9b68722d6776 Step 7/11 : COPY . /home/app ---> d6a7b4a1a4f3 Step 8/11 : RUN mkdir /data && chown -R app /data && chmod 777 /data ---> Running in fe824496056c Removing intermediate container fe824496056c ---> 75996f4d08bc Step 9/11 : COPY php.conf /etc/apache2/mods-available/php7.3.conf ---> c6a3b094a041 Step 10/11 : RUN a2enmod userdir && a2enmod php7.3 ---> Running in 1899c1d01a2e Removing intermediate container 1899c1d01a2e ---> ae6ddd93786c Step 11/11 : CMD ["./entrypoint.sh"] ---> Running in cb0ffeaefca6 Removing intermediate container cb0ffeaefca6 ---> 9c64d1cb6bd3 Successfully built 9c64d1cb6bd3 Successfully tagged chapter2:latest

			The container is incrementally built, as described by the Dockerfile. Each step is built in an image layer denoted with a hash value – those are the hex hash values printed. When you build the container again, Docker can start from the state of any of those layers' / hash values, reducing the need to constantly rebuild the container from scratch. Each layer is simply a diff (difference) between the current layer's requirements and the state of the previous layer.

			The first layer is the Debian image. The next layer is an intermediate image, the diff between the result of the ENV command in the Dockerfile and the original Debian image. The next layer is the diff between this previous intermediate image and the result of the apt-get installed packages. Note that we use && to pack a few apt-get commands into one layer in the container. This greatly speeds up the build process. The layering continues as each command in the Dockerfile is processed by the Docker build command.

			Docker is smart about how it caches and works with the layers. It doesn't have to download the Debian image each time you build; it can start building from a previous intermediate stage if it knows the previous steps have not changed the state of the container to that point.

			Whenever we need to build the container, because we've made changes to the Dockerfile, we use the build.sh script. Once we have the container built, we have a few ways to use it. The debug.sh script is probably the most common script you'll use during development.

			Understanding debug.sh

			The debug.sh script runs the container image that is not in daemon mode. You can hit Ctrl + C to stop the program:

			#!/usr/bin/env bash

			 # debug.sh

			 # run container without making it a daemon - useful to see logging output

			 docker run \ --rm \ -p8086:80 \ --name="chapter2" \ -v `pwd`:/home/app \ chapter2

			The docker run command takes many optional arguments that are too numerous to detail here. For more complete information on all of the possible command-line arguments to docker run, refer to the docker run documentation on the Docker site: https://docs.docker.com/engine/reference/run/. We'll only cover the ones used in our scripts:

			
					Here, we use –rm, which tells Docker to clean up when the container exits, removing the container and filesystem for the container.

					The -p flag tells Docker to map port 80 from the container (HTTP) to port 8086 on the host; you can access the HTTP server in the container by using port 8086 on the host.

					The –name argument names the running container; if you don't provide a name, you'll have to use docker ps to get the hash that identifies the container to stop it using docker stop.

					The -v switch mounts volumes in the container. A volume can be a directory of a file on the host, a named volume that Docker manages for you. If you want to stop and restart the container and retain data that is written to the filesystem by the container, you must mount a volume and the container must write to this volume. You can mount multiple volumes, if you like. In our debug.sh script, we mount the current directory with the sources over /home/app, so we can modify the sources and the container programs see that the files are changed (because the file timestamps are newer) as if they were inside the container, too. For this demo, you can edit the index.php script and reload the page, and you'll see the change in action. If you don't mount this volume, then the container will access the files copied to /home/app by the Dockerfile and the build.sh script; this is what you want for production.

					The last argument to docker run is the name of the container to start – in our case, it's chapter2, the container image we created using the build.sh script.Note:
We do not persist /data in the container. We can do this by adding the -v switch to map a Docker volume to /data, which we will do in the persist.sh script.

			

			Running our chapter2 container with debug.sh

			Let's see the container in action. We run the build.sh script and see that it succeeds. Then, we use the debug.sh script to launch the container in debug/foreground mode. Note that we did not do any configuration of the hostname for the container, so there is a warning message printed by Apache:

			% ./debug.sh

			entrypoint.sh

			----> Point your browser at http://localhost:8086/~app/index.php

			AH00558: apache2: Could not reliably determine the server's fully qualified domain name, using 172.17.0.5. Set the 'ServerName' directive globally to suppress this message

			On the host, we can use a browser to fetch http://localhost:8086/~app/index.php.

			Remember, we mapped port 8086 to port 80 of the container, we enabled the userdir module, and, in the Dockerfile, we copied the index.php script to /home/app/public_html (the userdir module).

			We could have configured Apache with a default host and copied our files to /var/www in the Dockerfile and build process. This would have given us a cleaner URL, and this is what you would want to do for an actual production site. For our purposes, it's good to see the Apache modules enabled and working within the container:

			
				
					[image: Figure 2.3 – Browser showing the output of our program]
				

			

			Figure 2.3 – Browser showing the output of our program

			When we reload the page in the browser a few times, we can see that the counter is being properly maintained:

			
				
					[image: Figure 2.4 – Page after we reload]
				

			

			Figure 2.4 – Page after we reload

			Note that we aren't generating any HTML (yet). If you're trying this yourself, you can now edit the index.php file, change Counterx: to Counter: and reload the page, and you will see that the page prints Counter: now.

			We are now set up for PHP development.

			If we want to add, say, MySQL support, we'll have to modify the Dockerfile to install the PHP MySQL module, and enable it as we did with userdir and php. If we want to add a PHP framework, we either need to install it within the container via the Dockerfile, or add it to the chapter2/ directory that is copied to the container's /home/app directory and, for development, mounted/bound in the container by replacing /home/app.

			We can check to see that the container is running by using the docker ps command:

			% docker ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			54925e51e404 chapter2 "./entrypoint.sh" 2 seconds ago Up 1 second 0.0.0.0:8086->80/tcp chapter2

			We can exit or kill the container by pressing Ctrl + C in the window where we started it with debug.sh.

			When we run the container with the run.sh script, we don't see any output from the container, not even the Apache warning:

			% ./run.sh

			1707b1ff84fabed4d9696aadbcd597cee08063eaa7ad22bfe572c922df 43997e

			Again, we use docker ps to see that it is running:

			% docker ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			1707b1ff84fa chapter2 "./entrypoint.sh" 41 seconds ago Up 39 seconds 0.0.0.0:8086->80/tcp chapter2

			Loading the same URL in the browser, we see that the counter is again 1. Reloading a few times, we see the counter increments as we designed.

			We can restart the container using docker restart. Note that the container was first instantiated 3 minutes ago, but since we restarted it, the status is Up 1 second:

			% docker ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			1707b1ff84fa chapter2 "./entrypoint.sh" About a minute ago Up 1 second 0.0.0.0:8086->80/tcp chapter2

			Since the container was only restarted, its filesystem remains intact. Reloading the URL in our browser, we see that the counter continues to increment. We can stop the container using docker stop, or the stop.sh script. The docker ps command shows no containers running. Then we start it up again:

			% docker ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			Now, when we reload in our browser, the counter is reset to 1. This is because we are writing to the container's filesystem. The filesystem goes away when the container exits.

			If we want the counter to persist between container start/restart, we'd have to write it to a volume that is mounted on the container.

			We write to /data/container.txt, so we can do the following:

			
					Mount our own container.txt on the host to /data/container.txt on the guest.

					Mount a directory on the host as /data on the guest.

					Have Docker create and maintain a named or anonymous volume for us.

			

			Since the advent of named volumes, they are the better choice. A named volume is created and maintained using the -v switch to docker run with just the name of the directory on the guest; for example, -v name:/data. We have a script, persist.sh, designed to make using the named volume easy.

			persist.sh

			The persist.sh script does the same thing as the debug.sh script, except that it adds the -v name:/data switch to the docker run command:

			#!/usr/bin/env bash

			 # run container without making it a daemon - useful to see logging output # we are adding an anonymous volume for /data in the container so the # counter persists between runs.

			 docker run \ --rm \ -p8086:80 \ --name="chapter2" \ -v `pwd`:/home/app \ -v name:/data \ chapter2

			When we run it and point our browser at http://localhost:8086/~app/index.php, we see that the counter works, even if we stop and restart the container.

			run.sh

			The run.sh script runs the container in daemon mode – you won't be able to see the application's output without using the docker log command. It also does not mount the host directory as a volume in the container. This simulates the production environment:

			#!/usr/bin/env bash

			 # run.sh

			 # run the container in the background # /data is persisted using a named container

			 docker run \ --detach \ --rm \

			 --restart always \ -p8086:80 \ -v name:/data \ --name="chapter2" \ chapter2

			We are using the docker run command, once again, but with slightly different arguments:

			
					The –detach flag to Docker Run is what causes the container to run in the background.

					The named volume is used, so the data is persisted between starting and stopping the container.

					The development working directory is mounted on /home/app within the container.

					The –restart switch always tells Docker to restart the container when the system is rebooted. This is handy since you won't have to figure out some way to automatically start your container(s) when the operating system starts.

			

			The container is only able to run using the files copied to it using the Dockerfile and build.sh. If you edit files on your host, you will not see the changes within the running container, as with persist.sh. You will need to run the build.sh script every time you edit files and want them changed within the container for the purposes of run.sh.

			We'll need a way to stop our running container. This is where stop.sh comes in.

			stop.sh

			The stop.sh script will stop your chapter2 container. This is particularly useful when you've used the run.sh script to launch your container in the background:

			#!/bin/sh

			 # stop.sh

			 # stop running container - typing stop.sh is easier than the whole docker command

			 docker stop chapter2

			Let's see run.sh and stop.sh in action:

			build.sh debug.sh Dockerfile entrypoint.sh install-virtualbox-macos.sh persist.sh php.conf public_html README.md run.sh shell.sh stop.sh % docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES % ./run.sh 7d6bc5195a583b3979a2533b50708978d96981d3d9ac59b266055246b6 fad329 % docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 7d6bc5195a58 chapter2 "./entrypoint.sh" 2 seconds ago Up 1 second 0.0.0.0:8086->80/tcp chapter2 % ./stop.sh chapter2 % docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES %

			The shell.sh script runs the container and starts the Bash shell so that you can use command-line programs to diagnose issues with the container as it's built:

			#!/usr/bin/env bash

			 # shell.sh

			 # This script starts a shell in an already built container. Sometimes you need to poke around using the shell # to diagnose problems.

			 # stop any existing running container ./stop.sh

			 # fire up the container with shell (/bin/bash)docker run -it --rm --name chapter2 chapter2 /bin/bash

			The following code snippet shows the shell.sh script in action:

			% ./shell.sh Error response from daemon: No such container: chapter2 root@f10092244abe:/home/app# ls -l total 44 -rw-r--r-- 1 root root 871 Dec 13 10:28 Dockerfile -rw-r--r-- 1 root root 808 Dec 5 14:56 README.md -rwxr-xr-x 1 root root 38 Dec 4 12:15 build.sh -rwxr-xr-x 1 root root 197 Dec 4 16:12 debug.sh -rwxr-xr-x 1 root root 411 Dec 13 10:28 entrypoint.sh -rw-r--r-- 1 root root 75 Dec 2 17:31 install-virtualbox-macos.sh -rwxr-xr-x 1 root root 315 Dec 13 10:26 persist.sh -rw-r--r-- 1 root root 860 Dec 4 16:24 php.conf drwxr-xr-x 1 root root 18 Dec 13 10:27 public_html -rwxr-xr-x 1 root root 152 Dec 5 13:01 run.sh -rwxr-xr-x 1 root root 308 Dec 4 17:40 shell.sh -rwxr-xr-x 1 root root 115 Dec 4 17:41 stop.sh root@f10092244abe:/home/app# ls -ldg /data drwxrwxrwx 1 root 0 Dec 13 10:28 /data root@f10092244abe:/home/app# exit %

			We can see that /data was created and has world write permissions.

			These few sh scripts are enough to get you developing and using your own containers. As you work with Docker, you'll likely come up with additional scripts of your own! However, we will see in Chapter 4, Composing Systems Using Containers, a way to work with Docker without the sh scripts.

			Summary

			In this chapter, we have learned about how VirtualBox can be used to create virtual machines on your workstation and how you can use it to run Windows (or Linux or other operating systems) in a virtual machine. We also learned enough about Docker to use it to build our first application.

			This chapter was written using Windows 10 running within a VirtualBox virtual machine, running on an Arch Linux host. Microsoft Word was used within Windows, while the Docker commands and scripts were run and edited on the Arch Linux host.

			We demonstrated how we can build a LAMP-style application, without MySQL, and containerize it. We can mount our source code directory from the host to the container so that we can edit files and see the changes immediately in the container. We learned how to persist data, meaning that stopping and starting the container would retain important files and state.

			In the next chapter, we'll explore Docker Hub and build a more complex application that requires more than one container.

			Further reading

			
					This URL is for the official Docker documentation:https://docs.docker.com

					This URL is for the Dockerfile reference:https://docs.docker.com/engine/reference/builder/

					This URL is for the documentation for the Docker ps command:https://docs.docker.com/engine/reference/commandline/ps/

					This URL is for the documentation pertaining to volumes and storage in Docker:https://docs.docker.com/storage

					This URL is for the documentation pertaining to the Docker run command:https://docs.docker.com/engine/reference/run/

					This URL is for the documentation pertaining to the Docker restart command:https://docs.docker.com/engine/reference/commandline/restart/

					This URL is for the documentation pertaining to the Docker stop command:https://docs.docker.com/engine/reference/commandline/stop/

			

		

	
		
			Chapter 3: Sharing Containers Using Docker Hub

			In the previous chapter, we learned how to build a container and run it on our workstation using Docker. We used a Debian image as our starting point, but where did that image come from? The answer is that it came from Docker Hub. Docker Hub is the official container image library for Docker, run by the same folk who brought us Docker itself.

			The container library contains the official images for numerous programs, servers, services, and so on that you might install within your own containers. For example, there are official images for various Linux distributions, versions of Node.js, versions of MySQL and MongoDB, and so on.

			You can think of Docker Hub as being like GitHub. You can explore existing organizations and pre-made containers, as well as upload your own containers and create your own organizations.

			We will demonstrate how to use the Docker Hub website to search and get information for third-party containers that you can use in your applications. We will also demonstrate how to use third-party containers from Docker Hub using the command line. We will use the official MongoDB container from Docker Hub, which is published by MongoDB, Inc.

			Entire backend applications can be implemented as a combination of multiple Docker containers working together. This application structure allows each of our custom container implementations to be simple and minimal. We'll apply microservices architecture to build a simple application. This demonstrates how containers can work together to create a complete working application. Lastly, we'll see how you can share your ready-for-production containers with third parties and your development team using Docker Hub.

			In this chapter, we will cover the following topics:

			
					Introducing Docker Hub

					Implementing a MongoDB container for our application

					Introducing the microservices architecture

					Implementing a sample microservices application

					Sharing your containers on Docker Hub

			

			Technical requirements

			The only technical requirements are to have Docker installed on your host, and a browser, such as Google Chrome, Firefox, or Microsoft Edge. This is one of the best parts of Docker—you don't have to install the complex servers/services on your host; we install them in Docker containers.

			We have prepared examples that you can use directly without modification in a public GitHub repository, which can be found at https://github.com/PacktPublishing/Docker-for-Developers.

			Check out the following video to see the Code in Action:

			https://bit.ly/2PTADjH

			Introducing Docker Hub

			You will typically interact with Docker Hub from the command line or in Dockerfiles, but you can use the Docker Hub website (https://hub.docker.com) to search for any pre-built containers that you know you want to use. You can also use the website to discover pre-built containers that might be of interest to you.

			In general, you will inherit from some pre-built Docker containers on Docker Hub to create your own custom containers. For example, you might inherit from a Linux distribution container and install the software you want for your project within that inherited/custom container.

			When you inherit from the Linux distribution, some of that distribution's base software packages are installed. If you inherit from a Debian-flavor Linux container, you will be able to use the apt package manager within the container to install software as if you were running that Debian-flavor Linux container on a dedicated or virtual machine.

			Some pre-built containers inherit from a Linux flavor and provide pre-installed packages that are specific to the offering. When you inherit from a Node.js container, that Node.js container might inherit from a Linux distribution container and will have Node.js, npm, and yarn already installed.

			Interacting with Docker Hub from the command line

			The easiest way to see Docker Hub and Docker working together is to run the official hello-world container. The command to run a container from Docker Hub is docker run name-of-container; we'll type docker run hello-world:

			# docker run hello-world Unable to find image 'hello-world:latest' locally latest: Pulling from library/hello-world 1b930d010525: Pull complete Digest: sha256:4fe721ccc2e8dc7362278a29dc660d833570ec2682f4e 4194f4ee23e415e1064 Status: Downloaded newer image for hello-world:latest

			Hello from Docker!

			This message shows that your installation appears to be working correctly.

			To generate this message, Docker took the following steps: 1. The Docker client contacted the Docker daemon. 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

			 (amd64)

			 3. The Docker daemon created a new container from that image which runs the

			 executable that produces the output you are currently reading.

			 4. The Docker daemon streamed that output to the Docker client, which sent it

			 to your terminal.

			To try something more ambitious, you can run an Ubuntu container with:

			 $ docker run -it ubuntu bash

			Share images, automate workflows, and more with a free Docker ID:

			 https://hub.docker.com/

			For more examples and ideas, visit:

			 https://docs.docker.com/get-started/

			Docker did not find the container in its local container cache, so it automatically downloaded it and then ran it within the Docker engine. This code in the container is simple—it just prints the preceding messages.

			Note

			You can run any container you find on the Docker Hub website in the same way!

			If your output does not resemble the preceding output, you either have an issue with your Docker installation or the Docker Hub servers are not accessible from your host. One possible problem may be that your installation of Docker requires you to run the docker commands as root or an administrator.

			The installation instructions can be found at https://docs.docker.com/install/, while the post-installation instructions for Docker can be found at https://docs.docker.com/install/linux/linux-postinstall/. These post-installation instructions explain how to set up Docker so that you can manage it as a non-root user.

			Using the Docker Hub website

			Let's go find the hello-world container page in Docker Hub—https://hub.docker.com/_/hello-world. The page will look something like this:

			
				
					[image: Figure 3.1 – The hello-world image page on Docker Hub]
				

			

			Figure 3.1 – The hello-world image page on Docker Hub

			This is typical of what you'll see for most containers shared on Docker Hub. Specific software packages encapsulated in a container, such as MongoDB, offer official images for various versions of the software. This allows you to deal with software that depends on a specific version of a Docker Hub package.

			The MongoDB page on Docker Hub is https://hub.docker.com/_/mongo. To find it, simply type mongodb into the search box at the top of the hello-world (or any other package) page and select it from the search results page. You can use the search box to find any shared images for whatever software you might want.

			Of interest are the Simple Tags and Shared Tags sections of the page. The various version images of MongoDB are tagged with simple tags and shared tags.

			For example, the 3.4-xenial simple tag means there is an image for version 3.4 of MongoDB running in an Ubuntu Xenial container.

			The 3.4 shared tag means there are images of version 3.4 of MongoDB that run on more than one host operating system—typically, Windows Server, Linux, or macOS. The Docker daemon will choose the appropriate image for the host operating system.

			As of the time of writing, there are images for the MongoDB 3.4, 3.6, 4.0, and 4.2 major versions, as well as minor point versions of these major versions:

			
				
					[image: Figure 3.2 – Simple tags and shared tags for hello-world]
				

			

			Figure 3.2 – Simple tags and shared tags for hello-world

			The process for finding the available pre-built third-party containers is the same. You can search for Redis, for example, and you will get a similar page with details about the available Redis containers.

			Implementing a MongoDB container for our application

			We can explore using pre-built containers from Docker Hub by implementing a MongoDB container. We'll use this container later as part of a demo application that is made up of several containers that work together.

			We will use the official Docker image for MongoDB, found on the Docker Hub website at https://hub.docker.com/_/mongo. We will create a .sh script to start running our image within Docker so that the startup process is easy and repeatable.

			We learned in Chapter 2, Using VirtualBox and Docker Containers for Development, that we can expose a container's network ports to the host. That means we can run this MongoDB container image in Docker and access the running MongoDB server within that container by accessing the MongoDB port on the host.

			In the GitHub repository (https://github.com/PacktPublishing/Docker-for-Developers) for this book, there is a chapter3/ directory, which is a companion for this chapter. Within that directory is a shell script, start-mongodb.sh. This script is a bit more elaborate than the simple ones we used in the previous chapter. We're going to use environment variables to configure MongoDB, and we're going to use a directory on the host for MongoDB's data files—this makes backing up the data as easy as copying those files to back-up media:

			#!/bin/bash

			# start-mongodb.sh

			SERVICE=mongodb # name of the service

			# You can set these in this script (uncomment and edit the lines) or set them in your .zshrc/.bashrc/etc.

			# Change this to an EXISTING directory on the HOST where the mongodb database files will be created #!/bin/bash

			# start-mongodb.sh

			SERVICE=mongodb # name of the service

			# Change this to an EXISTING directory on the HOST where the mongodb database files will be created and maintained.

			#MONGO_DATADIR="$HOME/data"

			# Stop any running MongoDB container, remove previous container, pull newer version

			docker stop $SERVICE

			docker rm $SERVICE

			docker pull mongo:3.4

			# Now we run it!

			docker run …

			You do need a Dockerfile to create a container image. However, if you are using a pre-made container image from Docker Hub that is standalone, such as MongoDB, you won't need one. The developers at MongoDB use Dockerfiles to generate the images before uploading them to Docker Hub.

			In fact, you can see from the Supported tags section of the MongoDB page in Docker Hub that they produce and support quite a few images, including different versions—some for Windows OS, some for Linux, and so on. The MongoDB developers must have quite a few Dockerfiles—one for each image!

			We must provide one environment variable to start-mongodb.sh: MONGO_DATADIR, which is an existing directory on your workstation where you want MongoDB in the container to store its data files. There are a few ways to set this variable:

			
					You can add export MONGODB_DATADIR=/path/to/data/dir to your shell startup file (.zshrc, .bashrc, and so on).

					You can do the export (environment variable) operation by hand in the shell before running the script.

					You can set the value of the environment variable when using the command line to run the start-mongodb.sh script: # MONGODB_DATADIR=~/data ./start-mongodb.sh.

					You can uncomment the line that sets MONGO_DATADIR in the start-mongodb.sh script file and edit it to set it to your desired data directory each time you run the script.

			

			The last line in the start-mongodb.sh script is a single command line. The backslash (\) character at the end of the line signifies that the line is being continued or joined with the next line. This command is the one that starts the container. As you can imagine, if you had to type in this long command every time to start your MongoDB container, it would be painful. The .sh script makes it rather painless:

			docker run \

			 --name $SERVICE \

			 -d \

			 --restart always \

			 -e TITLE=$SERVICE \

			 -p 27017:27017 \

			 -v "$MONGO_DATADIR":/data/db \

			 mongo:3.4

			Let's take a look at the different parts of the preceding command:

			
					The docker run command names the mongodb running container.

					The -d switch runs the container in detached mode. The container will automatically start when your workstation is rebooted.

					The -e switch allows you to pass environment variables to the container; in this case, we pass the TITLE=mongodb environment variable. You can have multiple -e switches if you want to pass more than one variable.

					The -p switch exposes port 27017 in the container to port 27017 on the host. You can remap an exposed port in the container to a different port number on the host. You would do this if you have a MongoDB server already running in a container or on your host. However, Docker provides us the flexibility to always run MongoDB within a container, so we'll never have to install it on our host.We might want to install MongoDB client programs on the host so that we can access MongoDB using the MongoDB REPL/shell. Once port 27017 is exposed on the host, any program can access the MongoDB database, using it as if it were running on the host.

					The -v switch maps a directory on the host to the directory in the container where MongoDB will manage its database and other files.

					We choose to download and run mongo:3.4 (tag/version 3.4) from Docker Hub.Note
The docker run command only downloads the container from Docker Hub if it doesn't exist on your workstation yet or if the container image on Docker Hub is newer.

			

			You can run any container you find on Docker Hub in the same way!

			Let's run the script by using the following commands:

			# mkdir -p ~/mongodb

			# MONGO_DATADIR=~/mongodb ./start-mongodb.sh

			The following output contains a few warnings about not being able to stop an already-running container named mongodb (this is expected):

			# mkdir -p ~/mongodb && MONGO_DATADIR=~/mongodb ./start-mongodb.sh stopping mongodb Error response from daemon: No such container: mongodb removing old mongodb Error: No such container: mongodb pulling mongodb 3.4: Pulling from library/mongo 976a760c94fc: Pull complete c58992f3c37b: Pull complete 0ca0e5e7f12e: Pull complete …

			3757d63ce2b9: Pull complete Digest: sha256:4c7003e140fc7dce5f12817d510b5a9bd265f2 c3bbd6f81d50a60cc11f6395d9 Status: Downloaded newer image for mongo:3.4 docker.io/library/mongo:3.4 e3854f6931e1aa4b64557d5a54e652653123f84a 544fedf39a5cf68d2ee9d0af # docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES e3854f6931e1 mongo:3.4 "docker-entrypoint.s…" 5 seconds ago Up 3 seconds 0.0.0.0:27017->27017/tcp mongodb #

			Docker pulled the proper MongoDB image and ran it in the background in the Docker engine. You can observe the following:

			
					The MongoDB image consists of several layers that were downloaded (Pull complete).

					There was already an existing (but older) image on the workstation (Downloaded newer image…).

					The container is running via the docker ps command.

			

			If the container encounters errors, it may exit and print diagnostic messages in the output. You can run a shell in the container to perform forensic diagnosis.

			Running a shell within a container

			Generally, you would run a shell within the container so that you can discover more about the container's environment. For example, you may have a bug in your Dockerfile—such as forgetting to copy a file into the container. You can run a shell in the container and list directories and you will see that the file is missing.

			In the case of the MongoDB container, you might want to run the MongoDB client commands from within the container. The Docker Hub page for the MongoDB container says we can run the client commands by simply attaching to the running container (https://hub.docker.com/_/mongo). The command from the MongoDB Docker Hub page is as follows:

			docker exec -it mongodb bash

			The different parts of this command are as follows:

			
					docker exec runs a command in a running container (https://docs.docker.com/engine/reference/commandline/exec/).

					The -it switches specify that Docker is to run the container interactively—this means it gets input from the keyboard and sends output to the Terminal window.

			

			Within the container, we can list directories using the ls command:

			# docker exec -it mongodb bash root@e3854f6931e1:/# ls bin data docker-entrypoint-initdb.d etc js-yaml.js lib64 mnt proc run srv tmp var boot dev entrypoint.sh home lib media opt root sbin sys usr

			We can see that the Docker containers are running using the ps command within the container:

			root@e3854f6931e1:/# ps -aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND mongodb 1 0.7 0.0 954676 62028 ? Ssl 22:37 0:02 mongod root 40 2.8 0.0 18240 3248 pts/0 Ss 22:41 0:00 bash root 51 0.0 0.0 34420 2848 pts/0 R+ 22:41 0:00 ps -aux root@e3854f6931e1:/#

			We can run the command-line MongoDB tools inside the container. We did not have to install these on our workstation! Here, we run the MongoDB command and then run the show collections and show databases commands within the Mongo REPL:

			root@e3854f6931e1:/# mongo MongoDB shell version v3.4.23 connecting to: mongodb://127.0.0.1:27017 MongoDB server version: 3.4.23 Welcome to the MongoDB shell.For interactive help, type "help".For more comprehensive documentation, see http://docs.mongodb.org/Questions? Try the support group http://groups.google.com/group/mongodb-user Server has startup warnings:2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten]2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for the database.2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten] ** Read and write access to data and configuration is unrestricted.2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten]> show collections > show databases admin 0.000GB local 0.000GB >root@e3854f6931e1:/# exit

			We're all set to go—MongoDB is running and we were able to use the REPL. The show collections command returned no collections because we haven't created any. The show databases command shows that MongoDB has, by default, two databases: admin and local.

			The docker logs command shows us the stdout and stderr output of the container:

			# docker logs mongodb 2019-12-13T22:37:09.161+0000 I CONTROL [initandlisten] MongoDB starting : pid=1 port=27017 dbpath=/data/db 64-bit host=e3854f6931e1 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] db version v3.4.23 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] git version: 324017ede1dbb1c9554dd2dceb15f8da3c59d0e8 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] OpenSSL version: OpenSSL 1.0.2g 1 Mar 2016 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] allocator: tcmalloc 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] modules: none 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] build environment:2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] distmod: ubuntu1604 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] distarch: x86_64 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] target_arch: x86_64 2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] options: {}2019-12-13T22:37:09.165+0000 I STORAGE [initandlisten] wiredtiger_open config: create,cache_size=31491M,session_max=20000,eviction=(threads_min=4,threads_m ax=4),config_base=false,statistics=(fast),log=(enabled=true,archive=true,path=journal,compressor=snappy),file_manager=(close_idle_time=100000),checkpoint=(w ait=60,log_size=2GB),statistics_log=(wait=0),verbose=(recovery_progress),2019-12-13T22:37:14.335+0000 I INDEX [initandlisten] building index using bulk method; build may temporarily use up to 500 megabytes of RAM 2019-12-13T22:37:14.342+0000 I INDEX [initandlisten] build index done. scanned 0 total records. 0 secs 2019-12-13T22:37:14.344+0000 I COMMAND [initandlisten] setting featureCompatibilityVersion to 3.4 (

			…

			You will likely use the docker logs command to see the debugging output from your containers.

			What we see in our preceding logs is that MongoDB seems to be running just fine within the container. There are no error messages printed.

			You can have the docker logs command follow the log file using the -f command-line switch. When the command is in follow mode, any new lines written to the log as the application is running will be appended to the display on the screen.

			Up to point, we have explored using Docker to run a complex server application (MongoDB) without having to install MongoDB on our workstation. Using Docker, we have access to MongoDB.

			We can start MongoDB using our .sh script, and we can also stop it—we can do this at will so that we don't have to always have MongoDB running in the background.

			Now that we know how to run a Docker container, let's have a look at how to work with multiple containers that work together.

			Introducing the microservices architecture

			Docker and Docker Hub enable development using the microservices architecture. This architecture emphasizes building and running containers that focus on a single aspect of the overall application. When all the containers are running, you have your complete backend application. The containers can be complex, such as a full-blown database server, or simple, such as a short shell script. Ideally, the containers you implement for your application will be simple, short, and focused. Each microservice you write should be simple to debug since you don't need many lines of code.

			Suppose we want to develop a backend application that uses MongoDB and Redis and whose application code is written using Node.js. We have the option to create a Dockerfile and start with the MongoDB image. We would then add Redis by installing it using apt, and then add our program to it as we did with the Debian image in Chapter 2, Using VirtualBox and Docker Containers for Development. The problem with creating the application using this method is that when you stop the container for development reasons, you're also stopping the running MongoDB and Redis servers.

			Instead of a monolithic container with everything installed, you can run MongoDB, Redis, and your custom application containers separately. You can even divide your custom application into multiple containers. All you need is a mechanism to communicate between your application containers.

			Note

			It is far better to avoid using monolithic containers in your design! While it might seem that a large and complex program such as MongoDB is a monolithic sort of thing, it's just one dedicated service you can use as a microservice.

			Now that we have a brief understanding of microservices architecture, we can examine some of the benefits and requirements of containers as microservices.

			Scalability

			Scalability is almost always a huge consideration for backend implementations. For example, a simple HTTP/WWW (web page) server can grind to a halt if enough people are trying to fetch our pages from it at the same time. For this reason, server farms exist so that you can deploy two or more of these HTTP/WWW servers that duplicate the functionality of serving our pages. For a two-server farm, you basically get double the number of people fetching your pages from it than for a single server. As traffic grows—for example, if the site gains in popularity—you can add a third server, then a fourth server, and so on. The capability of the backend to serve pages grows as you need it.

			In a microservices architecture, we achieve a similar means of scalability. We can run multiple instances of our MongoDB container to achieve more capacity for database operations. The only trick is to configure MongoDB as a cluster or as shards and the application containers to use this database setup.

			Inter-container communication

			Inter-container communication usually involves some technology that allows messages to be sent from one container to another and for responses or statuses to be sent in return. Being able to communicate between running containers can be done via a few technologies, including the following:

			
					Sockets

					The filesystem

					Database records

					HTTP

					MQTT

			

			Let's discuss each of them now.

			Using sockets

			Using sockets is a non-trivial way to communicate between containers. If you have five containers, you might have five sockets per container to provide communication paths between them all. As you scale, more sockets need to be created in each container, and you really want to automate this. There's quite a bit of business logic involved.

			Using the filesystem

			Using the filesystem involves sharing something such as a network drive among all the containers. To send a message, a container writes to a file in the filesystem. To receive a message, the container reads from a file in the filesystem. The receiver needs to poll, or repeatedly check, the filesystem to detect when the file is written to. This is not ideal because we don't really want to share a network drive like this—the performance is going to be on the slow side.

			Note

			Polling is a programming technique where you continuously check the status of a machine state (such as whether a file has changed).

			Using database records

			Using database records is similar to the filesystem method, except the messages to be sent are simply written to records in the database and the receivers only need to poll the database records for changes. Some databases provide a notification mechanism to tell a client (receiver) that the database has changed.

			Both filesystem and database schemes require a good amount of business logic and debugging. You have to consider the order of messages sent and received and avoid missing a message because an older message is overwritten in the database or filesystem.

			Using HTTP

			HTTP is a stateless protocol, so you don't have to maintain a mesh of open sockets for communication. The protocol is well-defined and human-readable (for example, in text). To send a message, you send an HTTP request to the container you want to communicate with and wait for the response. You can close or persist the connection (keep it alive) as the HTTP protocol permits. Additionally, to avoid having to poll for messages or state change via HTTP, you can use WebSockets.

			Using MQTT

			MQTT is a well-designed message bus. It works much like IRC or Slack in that you have rooms (topics) and people in rooms (subscribers). Messages sent to a room (topic) are received by the people (subscribers). The people (subscribers) can join multiple rooms (topics) and they receive the messages for those rooms (topics).

			For an MQTT application, there must be one MQTT server (broker) container that is accessible from the other containers. The other containers do not have to know about one another, only the address of the MQTT broker.

			The MQTT broker accepts connections from one or more clients. The clients can subscribe to one or more topics. The topics are as arbitrary as the channel/room names are in IRC or Slack; they are typically strings. When a message is sent to the MQTT broker for a specific topic, the broker sends the message to all the clients who are subscribed to that topic.

			Mosca (https://hub.docker.com/r/matteocollina/mosca) is an MQTT broker written in JavaScript. You can run it in a container, as you do with MongoDB or Redis.

			There are several other MQTT brokers to choose from, as well—you can find them on Docker Hub.

			HTTP versus MQTT

			MQTT is a protocol specifically designed for passing messages of key/value pairs. Its strength is in its broadcast capability. Each client is responsible for asking for modifications to values based on the specific keys it cares about. Each client can be assured that their updates are received by any and all other interested clients. MQTT also has the capability to retain specific key/value pairs, so when a new client subscribes, it can be notified of the current key/value pair (the most recently sent one).

			MQTT does not provide a request/response protocol, although it is simple to implement one. The downside of using MQTT for request/response-type transactions is that the response is not guaranteed to happen as soon as possible.

			HTTP requires custom programming to provide the message-passing services that MQTT provides. You could implement a message bus sort of system that mimics MQTT's functionality, but that means more programming work for you and additional maintenance costs down the line. HTTP's strength is that it is a request/response protocol, so you can typically expect a response right away. The downside is that if the server is maintaining a set of key/value pairs, you would be required to poll the server from the clients to see whether the values have changed and post to the server to update the values. Polling causes the server to burn CPU, even when values haven't changed, and this can add up in a way that grinds your server to a halt if enough clients are polling frequently enough. You could use WebSockets, but in the end, you've reinvented MQTT.

			HTTP is a good choice if you need more than what MQTT provides. Certainly, HTTP supports PHP or Node.js (and others) backend services.

			It's possible to combine HTTP and MQTT. Use HTTP for request/response-type transactions and MQTT for state updates.

			MQTT is a good choice for our purposes.

			The chapter3/ directory in the companion GitHub repository contains a simple microservices-based backend demonstration application. It uses MongoDB, Redis, and MQTT, along with some publisher and subscriber applications that you can find in the GitHub repository for this book (https://github.com/PacktPublishing/Docker-for-Developers). Later in this chapter, we'll learn how to share our subscriber and publisher containers via Docker Hub.

			Implementing a sample microservices application

			We can use the Mosca, MongoDB, and Redis containers, along with a couple of custom containers, to implement a simple but complete application:

			
				
					[image: Figure 3.3 – Diagram of our sample microservices application]
				

			

			Figure 3.3 – Diagram of our sample microservices application

			The publisher and subscriber will communicate with each other using MQTT. The subscriber will listen for a handful of MQTT topics that direct it to operate on or retrieve information from the MongoDB and Redis databases. The publisher will send these MQTT topics and print the responses.

			The publisher will be based on Node.js version 11 and the subscriber will be based on Node.js version 12. Without Docker or a virtual machine, running two Node.js versions on the same machine concurrently requires the use of Node Version Manager (nvm) and having multiple versions of Node.js installed on your workstation. Docker containers make it simple to use as many versions as you need and to package the version, along with the app that uses it, in a nice package (a container).

			The publisher and subscriber apps are in their own publisher/ and subscriber/ subdirectories of chapter3/ in the companion repository. These programs each need their own Dockerfile so that we can build the two separate containers. They also have their own helper .sh scripts (debug.sh, run.sh, build.sh, and so on). The publisher app only needs to have an MQTT library. The subscriber app needs the MQTT library and a MongoDB library and a Redis library. These libraries will be installed using npm (the Node.js package manager) within the containers.

			The publisher and subscriber apps demonstrate how a microservices architecture works, using multiple Docker containers.

			The subscriber connects to the MongoDB and Redis containers using Node.js packages/libraries, which are installed in the container with npm. The subscriber provides basic Create, Read, Update, and Delete (CRUD) functions for adding, listing, removing, and retrieving count of records in each of the MongoDB and Redis databases. The publisher sends MQTT messages to the subscriber to invoke this functionality.

			Our topics are strings that are derived from a pattern: container/command. If we want to communicate with the subscriber, the pattern is subscriber/command. If we want to communicate with the publisher, the pattern is publisher/command. This convention makes it obvious which topics each microservice would want to subscribe or publish to.

			The MQTT topics and messages are as follows:

			
					subscriber/mongo-count: Responds with the count of records in the MongoDB database.

					subscriber/mongo-add: Adds the message content to the MongoDB database.

					subscriber/mongo-list: Returns a JSON object that contains a list of records in the MongoDB database. If the message is a non-zero length string, it is used to filter the list of records returned.

					subscriber/mongo-remove: Removes a record from the MongoDB database. The message may contain a string or an object (JSON) suitable for passing to MongoDB's collection.deleteOne() method.

					subscriber/mongo-removeall: Deletes all records from the MongoDB database.

					subscriber/redis-count: Responds with the count of records in the Redis database.

					subscriber/redis-flushall: Removes all the records from the Redis database.

					subscriber/redis-set: Adds a record to the Redis database; the message is of the key=value form.

					subscriber/redis-list: Lists all the records in the Redis database and returns a JSON array of records.

					subscriber/redis-del: Deletes a record from the Redis database.

					subscriber/commands: Returns a list of available commands (MQTT topics).

			

			There are shell scripts in the root of the chapter3/ directory that individually start Redis (start-redis.sh), MongoDB (start-mongodb.sh), and the Mosca MQTT broker (start-mosca.sh), as well as a script, start-all.sh that starts all three.

			We've already detailed the workings of the start-mongodb.sh script earlier. The start-redis.sh and start-mosca.sh scripts are roughly the same; just the names of the programs that are started (Redis and Mosca) are changed.

			It is important to note that the start-mongodb.sh script connects the host's port 27017 to the container's port 27017. This is so that other containers can reach MongoDB via the default port. The start-mosca.sh script connects ports 1883 and 80 to the host so that MQTT and MQTT, over WebSocket, can be used from any of the containers. The start-redis.sh script connects port 6379 to the host so that Redis can be accessed from the containers via the default Redis port. Of course, the host can access any of the containers as well.

			The subscriber/start-subscriber.sh and publisher-start-publisher.sh scripts both run the applications locally on the host, not in containers. This allows host native debugging functionality, using WebStorm or another IDE or Node.js debugger. Developing and debugging our publisher and subscriber entirely within Docker containers is covered in the next chapter.

			Note

			To use the start-subscriber.sh and start-publisher.sh scripts, you will need to install Node.js and yarn on your development workstation. Ensure that you run yarn install in both subscriber/ and publisher/ directories.

			This is what start-subscriber.sh looks like:

			#!/bin/sh

			# start-subscriber.sh

			yarn start

			The start-publisher.sh script is identical to the start-subscriber.sh script. The package.json file in the publisher directory signals yarn start to launch the publisher program.

			The HOSTIP variable must be set to your host machine's IP, available to our publisher and subscriber, and is used by our Node.js programs to address the MQTT broker, MongoDB server, and Redis server when connecting.

			To find your IP on macOS (assuming you use 192.168.*.* as your home network IP address range):

			# ifconfig | grep 192

			inet 192.168.0.19 netmask 0xffff0000 broadcast 192.168.255.255

			The IP of the host is 192.168.0.19.

			To find your IP on Linux, use the following command:

			$ ip address | grep 192

			inet 192.168.0.21/16 brd 192.168.255.255 scope global dynamic enp0s31f6

			The IP of this host is 192.168.0.21.

			You will run the start-publisher.sh script using the following command:

			HOSTIP=192.168.0.19 ./start-publisher.sh

			To run the start-subscriber.sh script use the following command:

			HOSTIP=192.168.0.19 ./start-subscriber.sh

			The publisher program is relatively simple. It connects to the MQTT broker and listens for topics starting with publisher/. The topics and messages received are then converted into the subscriber/ format topics and published to MQTT. The subscriber responds with the publisher topic and the response message.

			With both the publisher and subscriber running, we use the MQTT command-line tool to send messages to the publisher. In the following screenshot, you can see how we exercise a few of the subscriber commands.

			These two scripts assume that we have Mosca installed on our host. We don't need to install it for the MQTT broker, but for the command-line tools. Being able to send MQTT topics/commands from the command line on the host, in .sh scripts on the host, and in crontabs on the host is very useful. You can also use Mosca as a library to implement a broker in your own Node.js code.

			Note

			For curious readers, the screenshot is of a Terminal window running tmux with three panes. tmux is a terminal multiplexer: it enables several terminals to be created, accessed, and controlled from a single screen. The tmux GitHub repository can be found at https://github.com/tmux/tmux.

			In the following screenshot, you can see how we exercise a few of the subscriber commands:

			

			
				
					[image: Figure 3.4 – Three shells demonstrating the publisher and subscriber working together]
				

			

			Figure 3.4 – Three shells demonstrating the publisher and subscriber working together

			As we can see, the publisher and subscriber work as expected, as do the database queries between containers and the host. We can edit and debug the publisher and subscriber programs to get them working to our satisfaction.

			Now that we have these working publisher and subscriber containers, we want to share them with the rest of the development team.

			Sharing your containers on Docker Hub

			To share our containers, we'll use Docker Hub and publish the two containers. The rest of the team can pull the pre-built containers from Docker Hub and use them without having to deal with the source code repository at all. They are just microservices to them, just as we don't need the source to Mosca, MongoDB, or Redis with those containers.

			Of course, the development team is going to have to run them.

			We have created an organization on Docker Hub, dockerfordevelopers, which we will use to publish the containers for this book. You won't be able to push to it, but we can. In order to publish to Docker Hub, you will need to use the docker login command, and you must have already created an account on https://hub.docker.com/.

			You can also create your own organization on Docker Hub where you can share your own containers. If you want to use the examples in the GitHub repository for this chapter, you will have to edit the scripts to replace dockerfordevelopers with your own organization name.

			Since we are creating our own custom containers, we will need some .sh scripts for each container, as explained in the previous chapter. There are a set of .sh scripts for the publisher and the subscriber.

			The Dockerfile used to build the container for the publisher is almost identical to the one used in the previous chapter:

			# we will inherit from the NodeJS v12 image on Docker Hub

			FROM node:12

			# set time zone so files' timestamps are correct

			ENV TZ=America/Los_Angeles

			# we include procps and telnet so you can use these with shell.sh prompt

			RUN apt-get update -qq >/dev/null && apt-get install -y -qq curl procps telnet >/dev/null

			# add a user - this user will own the files in /home/app

			RUN useradd --user-group --create-home --shell /bin/false app

			# set up and copy files to /home/app

			ENV HOME=/usr/app

			WORKDIR /home/app

			COPY . /home/app

			# install our NodeJS packages (from package.json)

			RUN yarn install

			# we run a script to stat the server; the array syntax makes it so ^C will work as we want

			CMD ["yarn", "start"]

			The major difference in this Dockerfile and the one in the previous chapter is that we are not installing Apache and PHP, but we are inheriting from node:12 and installing our Node.js program's required packages.

			We are inheriting from node:12 in this Dockerfile for the publisher. The Dockerfile for the subscriber is identical, except that it inherits from node:13. This illustrates how you can have containers with different base software versions on the same host; this would be unpleasant to deal with on a host without containers.

			Note

			The node:12 and node:13 containers are pulled from Docker Hub and updated each time we build the containers.

			The following is the build.sh script that is used to build the publisher:

			#!/bin/sh

			# build.sh

			# we use the "docker build" command to build a container named "dockerfordevelopers/publisher" from . (current directory)

			# Dockerfile is found in the current directory, and determines how the container is built.

			docker build -t dockerfordevelopers/publisher .

			The build.sh script is very short and only really consists of the line, a single command. It is easier to type ./build.sh instead of the whole docker build -t dockerfordevelopers/publisher . command. This also makes the process less error-prone and you don't have to memorize the command-line switches and format.

			There is a nearly identical build.sh script for the subscriber, too. Only the name of the container built is different: dockerfordevelopers/subscriber.

			The output of the build.sh script for the publisher is as follows:

			# ./build.sh

			Sending build context to Docker daemon 4.902MB

			Step 1/9 : FROM node:12

			Step 2/9 : ENV TZ=America/Los_Angeles

			Step 3/9 : RUN apt-get update -qq >/dev/null && apt-get install -y -qq curl procps telnet >/dev/null

			Step 4/9 : RUN useradd --user-group --create-home --shell /bin/false app

			Step 5/9 : ENV HOME=/usr/app

			Step 6/9 : WORKDIR /home/app

			Step 7/9 : COPY . /home/app

			Step 8/9 : RUN yarn install

			yarn install v1.16.0

			[1/4] Resolving packages...

			[2/4] Fetching packages...

			[3/4] Linking dependencies...

			[4/4] Building fresh packages...

			Done in 1.55s.

			Step 9/9 : CMD ["yarn", "start"]

			 ---> Running in f882d870bc6a

			Removing intermediate container f882d870bc6a

			 ---> b8f9439e36fa

			Successfully built b8f9439e36fa

			Successfully tagged dockerfordevelopers/publisher:latest

			You can see that the 1/9, 2/9, 3/9, and so on steps map one to one to the lines in our Dockerfile. The first line in our Dockerfile reads From Node:12 and the Step 1/1 line reads From Node:12. Similarly, Step 2/2 is the second line in the Dockerfile. The build process follows the Dockerfile as a series of steps to build the final container image.

			The last line in the output tells us that the name of the container is dockerfordevelopers/publisher:latest. We use this name to push our build container to Docker Hub.

			We use the push.sh script to perform the commands to push the publisher container to the organization on Docker Hub:

			#!/bin/sh

			# push.sh

			docker push dockerfordevelopers/publisher

			This is another one-line .sh script for our convenience.

			The following is the output of the push.sh script for the publisher:

			# ./push.sh

			The push refers to repository [docker.io/dockerfordevelopers/publisher]

			9502c45a0d0e: Pushed

			79b7f0047832: Pushed

			bca5484440a2: Pushed

			…

			6a335755bda7: Pushed

			latest: digest: sha256:e408ae01416511ad8451c31e532e3c2c6eb3324 ad43834a966ff161f9062e9ad size: 3056

			#

			We have a sort of template or pattern for working with custom containers in our microservices architecture project:

			
					We edit and debug the code for our container.

					We run the build.sh script to build a container image.

					We run the push.sh script to push the container to Docker Hub.

			

			Your fellow developers can now run the publisher image. This is run on a second machine, such as a developer's workstation:

			# docker run --rm dockerfordevelopers/publisher

			Unable to find image 'dockerfordevelopers/publisher:latest' locally

			latest: Pulling from dockerfordevelopers/publisher

			c5e155d5a1d1: Pull complete

			221d80d00ae9: Pull complete

			4250b3117dca: Pull complete

			69df12c70287: Pull complete

			…

			Digest: sha256:e408ae01416511ad8451c31e532e3c2c6eb3324ad 43834a966ff161f9062e9ad

			Status: Downloaded newer image for dockerfordevelopers/publisher:latest

			yarn run v1.16.0

			$ node ./index.js

			Of course, on this second machine, the developer has installed and run the required microservices: Mosca, MongoDB, and Redis. The application will not run without all the microservices running within Docker.

			Pushing to Docker Hub on your development host and pulling from Docker Hub on a production host is a simple way to deploy containers for production. It is not very robust, however. We will cover better schemes for deployment in later chapters.

			Summary

			In this chapter, we learned how to break up an application that would normally be run in a virtual machine with multiple services (MongoDB, Redis, and Mosca) into a microservices-based architecture run as containers within Docker.

			We learned how to navigate the Docker Hub website and find useful pre-made Docker containers that you simply download and run.

			We also learned how to package our own microservices as Docker containers and how we can push them to Docker Hub for the public or development team members to use.

			Several containers were used to launch the complete application as microservices communicated through ports mapped to the host's ports. This is not ideal, especially if you already have a WWW server running on port 80; Mosca uses port 80, too.

			In the next chapter, we will discuss how we can use the Docker Compose tool to design complete microservice architecture applications and run them so that they have a private internal network and so host ports are not required.

			Further reading

			You can refer to the following links for more information on the topics covered in this chapter:

			
					The official Docker documentation: https://docs.docker.com

					The Dockerfile reference: https://docs.docker.com/engine/reference/builder/

					The Docker Hub site: https://hub.docker.com/

					The documentation for Docker Hub: https://docs.docker.com/docker-hub/

					The documentation for the Node.js containers on Docker Hub: https://hub.docker.com/_/node

					The documentation for the Redis containers on Docker Hub: https://hub.docker.com/_/redis

					The documentation for the MongoDB containers on Docker Hub: https://hub.docker.com/_/mongo

					The documentation for the Mosca containers on Docker Hub: https://hub.docker.com/r/matteocollina/mosca

			

		

	
		
			Chapter 4: Composing Systems Using Containers

			In the previous chapter, we created a server-side application using microservices architecture. The application was made up of five separate containers: three official images and two custom images. The official images were for MongoDB, Redis, and Mosca (MQTT).

			For the most part, communication between containers is done via MQTT message passing. The subscriber container carries out the database Create, Read, Update, and Delete (CRUD) operations via the Node.js API for MongoDB and Redis. All of the relevant network ports are exposed on the development host, enabling the subscriber program to access the database servers at localhost (127.0.0.1) and both subscriber and publisher programs to access Mosca/MQTT at localhost, too.

			In this chapter, we are going to discuss composing systems—specifically, Docker Compose. We are also going to learn how to keep network access private so that services can be accessed from within our containers but not be accessible from the host. We will learn how we can share volumes in the filesystem between containers. There are alternatives to Docker Compose, and we will look at some of them.

			We will cover the following topics in this chapter:

			
					Introduction to Docker Compose

					Using Docker local networking

					Local volumes

					Other composition tools

			

			To recap, we have three official image containers for MongoDB, Mosca, and Redis. We have an additional two containers created for this book—publisher and subscriber microservices.

			The publisher microservice has been modified to present a form in a web browser. The fields in the form and the submit buttons allow us to exercise the various operations supported by the subscriber microservice:

			
				
					[image: Figure 4.1 – The form generated by our updated publisher program]
				

			

			Figure 4.1 – The form generated by our updated publisher program

			You can choose which database to perform CRUD operations on. You can also set a value that is to be used for the List, Count, Add, and Remove operations. There is a button for each of the CRUD operations, as well as a Flush button, which removes all the records from the selected database. The return value/result of the operation is shown beneath the form under the Result heading.

			Technical requirements

			The prerequisite software for this chapter includes Docker, Docker Compose (see https://docs.docker.com/compose/install/), Git, and a web browser, such as Google Chrome or Safari.

			The Docker and Docker Compose documentation use the term service, whereas we use the term microservice. For the purposes of this chapter, the terms are interchangeable.

			In the GitHub repository (https://github.com/PacktPublishing/Docker-for-Developers), there is a chapter4/ directory that accompanies this chapter. It contains a modified version of the microservices architecture code used in the previous chapter.

			Check out the following video to see the Code in Action:

			https://bit.ly/3iRWqoH

			Introduction to Docker Compose

			A composing system for containers is a tool that allows us to describe the whole microservices architecture program in a configuration file and then perform operations on the system described. Docker Compose is one such tool. Before we get into what Docker Compose is and does, let's look at the reason why we need a tool like this.

			The problem with .sh scripts

			So far, we've been using .sh scripts to make working with our microservices application easy. We have used the following scripts:

			
					start-mongodb.sh

					start-redis.sh

					start-mosca.sh

					subscriber/start-subscriber.sh

					publisher/start-publisher.sh

					subscriber/build.sh

					publisher/build.sh

					subscriber/push.sh

					publisher/push.sh

			

			Instead of having to invoke each of these as separate commands, we can make a single start-all.sh script that invokes them all:

			#!/bin/sh

			./start-mosca.sh

			./start-mongodb.sh

			./start-redis.sh

			cd subscriber && ./start-subscriber.sh & cd ..

			cd publisher && ./start-publisher.sh & cd ..

			Note

			The start-all.sh script is presented for informational purposes. We will not be using it going forward!

			This approach works, but the information about what ports are open and other container-specific access information is hidden within those .sh scripts. For example, the mongodb.sh script starts MongoDB and binds port 27017 of the container to port 27017 of the host.

			Making changes to the configuration may require editing each of those .sh scripts, and maybe even the start-all.sh script itself, as well as its counterpart, stop-sll.sh. We have several additional scripts as well for building and publishing the containers and to perform other housekeeping tasks. This approach is both inconvenient and error-prone.

			The Docker Compose tool solves most of the issues with .sh scripts, although we might still want to use .sh scripts to invoke the docker-compose command with its various command-line arguments.

			Docker Compose configuration files

			Configuration for Docker Compose is done via .yml files, the contents of which are YAML. YAML is a markup language that allows data serialization. It is similar to JSON format but is much more human-friendly in its syntax.

			A file named docker-compose.yml is Docker Compose's default configuration file. You may have multiple configuration files, and you can tell Docker Compose which configuration files to use via a command-line switch.

			Let's look at the docker-compose-example.yml file in the chapter4/ directory in the repository. The Docker Compose tool can replace the shell script methodology we've used so far:

			# Example Docker Compose file for our chapter 4 application

			version: '3'

			services:

			Docker Compose supports different versions of the docker-compose.yml format. Newer versions have higher version numbers and add additional docker-compose features. In the services section, we describe each of the containers that are to be built and run.

			We have our redis container under the services section. The image field specifies that we will be using the redis image from Docker Hub. We persist the database in /tmp/redis so that the data is not lost when the container is stopped and restarted:

			 redis:

			 image: redis

			 volumes:

			 - /tmp/redis:/data

			 ports:

			 - 6379:6379

			We expose port 6379, the default Redis port, on the host. Exposing this port allows the host and other containers to access the Redis server.

			After Redis, we have our MongoDB container. We are going to use the mongo image from Docker Hub. We persist the data in the host's /tmp/mongo directory so that the database's contents are retained between stopping and restarting the container:

			 mongodb:

			 image: mongo

			 volumes:

			 - /tmp/mongo:/data/db

			 ports:

			 - 27017:27017

			The default TCP port for MongoDB is 27017, and we expose it to map port 27017 in the container to port 27017 on the host. Tools on the host and within our containers can access MongoDB via localhost, and we don't need to specify a port on the command lines since the default is configured.

			Next is the Mosca container. We are using the matteocollina/mosca image from Docker Hub. We set the /db volume in the container to /tmp/mosca on the host to persist Mosca's state:

			 mosca:

			 image: matteocollina/mosca

			 volumes:

			 - /tmp/mosca:/db

			 ports:

			 - 1883:1883

			 - 80:80

			We expose ports 1883 and 80 as the same ports on the host. Port 1883 is the default MQTT port. Port 80 is provided to support MQTT over WebSocket, so you can use MQTT in JavaScript programs in the browser.

			In our publisher container, the build: line tells docker-compose that we need to build the container specified in the publisher/ directory. The Dockerfile in the publisher directory is used to define how the container is to be built:

			 publisher:

			 build: publisher

			 environment:

			 - MQTT_HOST=${HOSTIP}

			 - REDIS_HOST=${HOSTIP}

			 - MONGO_HOST=${HOSTIP}

			 ports:

			 - 3000:3000

			We expose port 3000 so that we can access the web server that is running in the container using a web browser on the host.

			In our subscriber container, the build: line tells docker-compose that we need to build the container specified in the subscriber/ directory. The Dockerfile in the subscriber directory is used to define how the container is to be built:

			 subscriber:

			 build: subscriber

			 environment:

			 - MQTT_HOST=${HOSTIP}

			 - REDIS_HOST=${HOSTIP}

			 - MONGO_HOST=${HOSTIP}

			We don't expose anything—the subscriber performs all of its I/O operations via direct API calls for MongoDB and Redis, as well as accepting commands and reporting status via MQTT.

			Some things to note are as follows:

			
					All the containers are described neatly within the single configuration file.

					The containers still expose the same ports on the host as with the .sh scripts.

					The containers must still find the database and MQTT broker containers via the HOSTIP environment variable. This variable must still be set as explained in the previous chapter.

			

			To use our docker-compose-example.yml script to bring up all five microservices, we use the docker-compose up command. The -f switch tells docker-compose which Docker Compose .yml file to use:

			% docker-compose -f docker-compose-example.yml up

			By default, docker-compose runs all the containers in the configuration file in debug mode. They will print their output to the Terminal/console in the order that the lines are printed. You may see lines printed by the subscriber, then lines printed by the publisher, then lines printed by subscriber again. If you hit Ctrl + C, it will terminate all of the containers and return you to Command Prompt.

			If you want the containers to run in detached or daemon mode, use the -d switch:

			% docker-compose -f docker-compose-example.yml up -d

			In detached or daemon mode, the containers will not print output to the Terminal/console and you will be returned to the prompt right away.

			To stop all five microservices, we use a similar docker-compose command:

			% docker-compose -f docker-compose-example.yml down

			If we do not specify the Docker Compose configuration file to use (-f docker-compose-example.yml), then the docker-compose command will look for and use a file named docker-compose.yml instead.

			The docker-compose up/down commands allow us to start and stop one or more of our services as well. For example, we can start only the mongodb and redis containers:

			% docker-compose -f docker-compose-example.yml up mongodb redis

			The existing mongodb and/or redis containers will be stopped and new ones started. It is up to your programs to detect whether the connections to these services were stopped and to handle the error accordingly.

			We can build any or all of our services using docker-compose:

			% docker-compose -f docker-compose-example.yml build publisher

			This command builds our publisher container but does not start any containers.

			The key takeaway from the ability to specify none (none means all) or one or more of our containers (by name) replaces several of our old .sh scripts. We don't need start scripts anymore because we can use docker-compose up; we don't need stop scripts because we can use docker-compose down; we don't need build scripts because we can use docker-compose build; and more! See https://docs.docker.com/compose/reference/ for details on other docker-compose command functionality.

			We are likely to have different setups for development and production, if not additional scenarios. With .sh scripts, we have a debug.sh and run.sh script for development and production. The problem with this .sh file scheme is that we have almost identical docker run commands in each, with only minor differences.

			Docker Compose has an inheritance feature where multiple configuration files can be specified on the docker-compose command line.

			Inheritance using multiple configuration files

			We can implement a base docker-compose.yml file and then override the settings in that file with our own override configuration files. This feature is called inheritance—we will inherit the base settings from the docker-compose file and override the settings for our purposes.

			Docker Compose starts with the first configuration file on the command line, then merges the second one into it, then merges the third (if there is one), and so on. To merge means to apply settings in the second (or third) configuration file to the current state of the configuration, which will ultimately be used. Any settings in the second configuration file will replace the ones in the first configuration file, if they exist, or will add new services or settings if they don't already exist.

			Let's look at the docker-compose.yml base file, which we'll use from now on:

			version: '3'

			services:

			 redis:

			 image: redis

			 mongodb:

			 image: mongo

			 volumes:

			 - /tmp/mongo:/data/db

			 mosca:

			 image: matteocollina/mosca

			 volumes:

			 - /tmp/mosca:/db

			 publisher:

			 build: publisher

			

			 depends_on:

			 - "mosca"

			 - "subscriber"

			 subscriber:

			 build: subscriber

			 depends_on:

			 - "redis"

			 - "mongodb"

			 - "mosca"

			This looks like the docker-compose-example.yml file from the previous section, but you may notice a couple of differences:

			
					There are two depends_on options—one for the publisher and one for the subscriber.

					We are no longer exposing or binding the container's ports to the host's ports.

			

			Let's take a look at them in detail in the following sections.

			The depends_on option

			The depends_on option allows us to control the start-up order of the containers (refer to https://docs.docker.com/compose/startup-order/). Additionally, depends_on expresses an interdependency between containers. Refer to https://docs.docker.com/compose/compose-file/#depends-on#depends_on for more information about the depends_on option.

			Service dependencies cause the following behaviors:

			
					docker-compose up starts services in dependency order. In our example, redis, mongo, and the mosca services are started before the subscriber container, and both mosca and subscriber are started before publisher.

					docker-compose up SERVICE automatically includes dependencies under SERVICE.

			

			docker-compose stop stops services in dependency order (mosca, then mongodb, then redis in our docker-compose.yml file).

			The order in which the services are started is important because if we start publisher before mosca is running, the logic to connect to the MQTT broker in the publisher program will fail. Similarly, starting subscriber before the database and MQTT broker services would likely cause the logic in subscriber to connect to the databases and the MQTT broker to fail. It doesn't make sense to start publisher before subscriber is running because anything publisher sends via MQTT will fall on deaf ears, so to speak.

			Even though a container has started, there is no guarantee that the container's program will have completed its initialization by the time the microservices that use them try to connect. In our publisher and subscriber code, we created a wait_for_services() method that ensures that we can connect to the services only when they are up and ready.

			We call wait_for_services() first thing in our publisher and subscriber programs to ensure we have waited just long enough for the dependent services to be up and ready.

			The wait_for_services() method in publisher/index.js is as follows:

			/**

			 * wait_for_services

			 *

			 * This method is called at startup to wait for any dependent containers to be running.

			 */

			const waitOn = require("wait-on"),

			 wait_for_services = async () => {

			 try {

			 await waitOn({ resources: [`tcp:${mqtt_host}:${mqtt_port}`] });

			 } catch (e) {

			 debug("waitOn exception", e.stack);

			 }

			};

			Our publisher microservice only connects to the MQTT broker, so the wait_for_services() method only waits for our MQTT broker's TCP port to be accessible.

			The wait_for_services() method in subscriber/index.js is a bit more complicated:

			/**

			 * wait_for_services

			 *

			 * This method is called at startup to wait for any dependent containers to be running.

			 */

			const waitOn = require("wait-on"),

			 wait_for_services = async () => {

			 try {

			 debug(`waiting for mqtt (${mqtt_host}:${mqtt_port})`);

			 await waitOn({ resources: [`tcp:${mqtt_host}:${mqtt_port}`] });

			 debug(`waiting for redis (${redis_host}:${redis_port})`);

			 await waitOn({ resources: [`tcp:${redis_host}:${redis_port}`] });

			 debug(`waiting for mongo (${mongo_host}:${mongo_port})`);

			 await waitOn({ resources: [`tcp:${mongo_host}:${mongo_port}`] });

			 } catch (e) {

			 debug("***** exception ", e.stack);

			 }

			};

			The subscriber microservice needs to connect to the MQTT broker, the redis server, and the mongo server. We wait for the TCP ports of those servers to be accessible.

			There are other ways to wait for services to be available that involve installing command-line programs/scripts in the container and running them before starting our publisher or subscriber service. For example, you might use this handy wait-for-it.sh script, which can be found at https://github.com/vishnubob/wait-for-it.

			The lack of options in the docker-compose.yml file to expose container ports is not an oversight. We are fully able to specify those options in an override file that can provide options to existing containers.

			Adding port bindings using overrides

			In the chapter4/ directory in the code repository, we have a docker-compose-simple.yml file that is an example of an override file:

			version: '3'

			services:

			 redis:

			 ports:

			 - 6379:6379

			 mongodb:

			 ports:

			 - 27017:27017

			 mosca:

			 ports:

			 - 1883:1883

			 - 80:80

			 publisher:

			 environment:

			 - MQTT_HOST=${HOSTIP}

			 - REDIS_HOST=${HOSTIP}

			 - MONGO_HOST=${HOSTIP}

			 ports:

			 - 3000:3000

			 subscriber:

			 environment:

			 - MQTT_HOST=${HOSTIP}

			 - REDIS_HOST=${HOSTIP}

			 - MONGO_HOST=${HOSTIP}

			Here, we specify the ports for each container. We are inheriting the options from our docker-compose.yml file and adding options to expose the ports for each of our containers.

			We don't expose any ports for the subscriber microservice because it never exposes any ports to the host's ports.

			We also define three environment variables to be used by the publisher and subscriber containers to access the MQTT_HOST (mosca), REDIS_HOST (redis), and MONGO_HOST (mongodb) services.

			The docker-compose command to bring up our services using the two configuration files (inheritance) is as follows:

			% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f docker-compose-simple.yml up

			Since we are not using the -d switch, our containers are not detached but print their console/debug output to the Terminal. You cannot enter more commands until you hit Ctrl+ C. Doing this will stop all the containers in reverse depends_on order and return you to Command Prompt:

			% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f docker-compose-simply.yml up -d

			Adding the -d switch causes all the containers to be started in daemon mode. They run in the background and you immediately get a command-line prompt. No further output is sent to the Terminal.

			If containers are running in daemon mode, you can stop them using the docker-compose down command:

			% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f docker-compose-simple.yml down

			We can use three or more configuration files as well. Each additional file specified on the command line further extends the containers and options specified within.

			What we have so far is effectively a production that is set up using inheritance. Debugging using this is particularly painful because your only means of diagnosing errors is to add debug() calls to the publisher and/or subscriber, then rebuilding the container(s), and then rerunning the whole application.

			To improve our development and debugging cycles, we can bind/mount our publisher/ and subscriber/ directories to the /home/app directory in the containers. The Dockerfiles for both containers use the nodemon (https://nodemon.io/) utility to start the application within the container.

			The nodemon utility does a bit more than just starting our program:

			
					It also monitors the state of the program, and if it stops, nodemon will restart it. This is useful because our Node.js programs might detect an error from which they cannot easily be recovered, so they just exit and allow nodemon to restart them.

					For development, nodemon also monitors the timestamps of the files in the code directory and will restart the program if any of the files change.

			

			Since we can bind/mount our source code directly in the container, any changes we make to the files using our editor or IDE on the host will immediately affect the changes in the container.

			We can create a docker-compose-simple-dev.yml file, which adds our bind/mounts to publisher and subscriber:

			version: '3'

			services:

			 publisher:

			 volumes:

			 - ./publisher:/home/app

			 subscriber:

			 volumes:

			 - ./subscriber:/home/app

			We run this using the docker-compose up command:

			% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f docker-compose-simple.yml -f dockercompose-simple-dev.yml up -d

			If we edit, say, the publisher/index.js file on the host, we can see that nodemon sees the change and restarts the publisher program:

			publisher_1 | [nodemon] restarting due to changes...

			publisher_1 | [nodemon] starting `node ./index.js`

			publisher_1 | 2020-03-30T18:03:39.537Z publisher publisher microservice, about to wait for MQTT host(192.168.0.21, 1883

			publisher_1 | 2020-03-30T18:03:39.546Z publisher ---> wait succeeded

			publisher_1 | 2020-03-30T18:03:39.587Z publisher publisher connecting to MQTT mqtt://192.168.0.21

			publisher_1 | 2020-03-30T18:03:39.591Z publisher connected to 192.168.0.21 port 1883

			publisher_1 | 2020-03-30T18:03:39.638Z publisher listening on port 3000

			We now have a good handle on docker-compose, but we are binding ports from our containers to the host's ports. This is problematic if you have a container that wants to bind to port 80 on the host but the host is running a web server or another container for another project that also wants to bind to port 80.

			Fortunately, Docker provides a facility to only expose our ports to our containers!

			Using Docker local networking

			Both Docker and Docker Compose have command-line options to specify a Docker local network that the application will use. Using this Docker local network allows our containers to access another container's ports without having to bind/expose these ports to the host's ports.

			Networking using .sh scripts

			You use the docker network create command to create a named network that your containers can use to privately communicate with one another. You can have as many of these private networks defined as you like—you might want to work on multiple unrelated projects simultaneously and each needs its own network:

			% docker network create chapter4

			This command creates a network named chapter4 that we can use for our microservices example programs. We can destroy networks we have created using the docker network rm command:

			% docker network rm chapter4

			This command removes our chapter4 network from the system.

			The start-mongodb.sh, start-redis.sh, start-mosca.sh, publisher/run.sh, and subscriber/run.sh scripts are used by the up.sh script to bring up our application's containers using the docker run command.

			Let's examine our up.sh script:

			#!/bin/sh

			./stop-all.sh

			We run the docker network create command to create our chapter4 network:

			docker network create chapter4

			We start our three servers:

			./start-mosca.sh

			./start-mongodb.sh

			We also run ./start-redis.sh:

			###### SUBSCRIBER

			cd subscriber

			./run.sh

			Finally, we start the publisher:

			###### PUBLISHER

			# publisher needs to expose port 3000

			# so we can access the WWW interface

			cd ../publisher

			./run.sh

			The start-mongodb.sh and start-redis.sh scripts are roughly the same as the start-mosca.sh script. The relevant lines in the start-mosca.sh script are the ones for the docker run command:

			docker run \

			 --name $SERVICE \

			 -d \

			 --restart always \

			 -e TITLE=$SERVICE \

			 --network chapter4 \

			 -v /tmp/mosca:/db \

			 matteocollina/mosca

			Only the service name, which third-party/Docker Hub container to use, and any container to host directory bindings are specific to mongodb, mosca, or redis. They all share the chapter4 network.

			The docker run command in the subscriber/run.sh script looks as follows:

			docker run \

			 --name $SERVICE \

			 -d \

			 --restart always \

			 -e TITLE=$SERVICE \

			 --network chapter4 \

			 dockerfordevelopers/$SERVICE

			We are no longer defining the HOSTIP environment variable because the Docker local networking system provides a DNS function that allows the programs in our containers to look up the other containers by name. The name is the name of the container, which is specified in the docker run commands scripts with the –name command-line option.

			The relevant lines in subscriber/index.js are as follows:

			const debug = require("debug")("subscriber"),

			 mongo_host = process.env.MONGO_HOST || "mongodb",

			 mongo_port = 27017,

			 mongoUrl = `mongodb://${mongo_host}:${mongo_port}`,

			 mqtt_host = process.env.MQTT_HOST || "mosca",

			 mqtt_port = 1883,

			 mqttUrl = `mqtt://${mqtt_host}`,

			 redis_host = process.env.REDIS_HOST || "redis",

			 redis_port = 6379,

			 redisUrl = `redis://${redis_host}`;

			The code is designed to accept the MONGO_HOST environment variable; otherwise, it will use the mongodb container name. The same is the case for MQTT_HOST/mosca and REDIS_HOST/redis.

			Note

			We have been defining the HOSTIP, MONGO_HOST, MQTT_HOST, and REDIS_HOST environment variables, especially in the .sh script examples. Since we've been naming our containers using the --name switch on our docker run commands, Docker's local DNS will work with .sh scripts. That is, we don't need to define those environment variables if we name our containers. We still need to bind container ports to the host's ports, unless we also add the --network switch and docker network create to the Docker local network.

			The down.sh script stops all the containers and removes the chapter4 network:

			#!/bin/sh

			docker stop publisher

			docker stop subscriber

			docker stop redis

			docker stop mongodb

			docker stop mosca

			docker network rm chapter4

			We can use these .sh scripts, but we've already learned that Docker Compose is the superior method for managing our microservices.

			Networking with Docker Compose

			The docker-compose.yml configuration file that we created is still enough to use as the base for using the docker-compose commands to manage our containers. However, we no longer need to expose or bind container ports to the host's ports; the only exception is we'll continue to bind port 3000 so that we can access the publisher web pages using our browser on the host. The base docker-compose.yml file does not bind port 3000, so we will continue to bind ports using the override file.

			By default, if you specify no configuration files on the command line, docker-compose looks for docker-compose.yml and uses it, and then looks for docker-compose.override.yml and uses that.

			If you need to specify a third configuration file, you must use the -f command-line switch for each configuration file.

			Our docker-compose.override.yml file handles our production case:

			version: '3'

			services:

			 redis:

			 networks:

			 - chapter4

			 mongodb:

			 networks:

			 - chapter4

			 mosca:

			 networks:

			 - chapter4

			 publisher:

			 ports:

			 - 3000:3000

			 networks:

			 - chapter4

			 subscriber:

			 networks:

			 - chapter4

			networks:

			 chapter4:

			This file adds the chapter4 network, assigns it to each of the containers, and binds port 3000 in the publisher container to port 3000 on the host.

			All we need to do to use docker-compose.yml and docker-compose.override.yml is run a simple docker-compose command:

			% docker-compose up

			After a few seconds, our five containers are up and running and we can access the application with our browser on the host. We can see it is all working. We can also do the following:

			
					Use the -d switch to run the containers in detached/daemon mode.

					Use docker-compose to stop and start any one or more containers.

					Use docker-compose to build any one or more containers.

					Use docker-compose logs to show the logs of any of our containers running in daemon mode.

			

			What we now have is a pair of configuration files that work for production mode. We now need a way to work in development mode by binding our source code to the container's home directory.

			Binding a host filesystem within containers

			Previously, we used a third docker-compose configuration file to specify bindings so that our source code directory would be overlaid within the container (in place of the app's home directory). We will do the same for the latest incarnation of our Docker Compose setup.

			We first create a docker-compose-dev.yml file:

			version: '3'

			services:

			 publisher:

			 volumes:

			 - ./publisher:/home/app

			 subscriber:

			 volumes:

			 - ./subscriber:/home/app

			This override file simply maps the publisher and subscriber source code directory over /home/app in the related container. Now, we can freely edit sources on the host and, thanks to nodemon, our changes will take effect almost immediately within the running containers. There is no need to stop, rebuild, or restart any containers.

			Unfortunately, docker-compose has no facility to remove options using inheritance; we can only modify existing ones or add new ones. If we could remove options, we would bind the source in our docker-compose.override.yml file and remove them in a docker-compose-production.yml file. This would allow us to use the short docker-compose up form for development and to use a command line with three -f switches for production. This would be handy because we would use development most of the time and rarely use production.

			As it is, we must specify the three -f switches:

			% docker-compose -f docker-compose.yml -f docker-compose.override.yml -f docker-compose-dev.yml up

			There are other uses for volumes, which we will explore.

			Optimizing our container size

			We can examine our container images using the docker images command:

			% docker images | grep pub

			chapter4_publisher latest 15f3a84d348d 24 minutes ago 987MB

			As you can see, our publisher image is 987 megabytes! All that for an almost-250-line JavaScript program. We can try to shrink this size by moving our node_modules directory out of the container and into a named volume. This will also speed up the building of our container since node_modules will be persisted in this named volume from build to build, and using the yarn command to install the modules will only install anything that is new.

			Note

			We renamed the Dockerfile to Dockerfile.chapter3 in the publisher/ directory. The new Dockerfile has been modified to build a very small image.

			A smaller image can be created by optimizing our Dockerfile. What we're going to do is build a base image and our result image. The base image will have node_modules installed. The base image is only rebuilt when something changes that requires one of its layers to be rebuilt.

			Let's look at an optimized Dockerfile for the publisher:

			FROM node:12-alpine

			We inherit from the alpine OS node v12 image. This image is much lighter than the Debian flavor default node container:

			ENV TZ=America/Los_Angeles

			WORKDIR /home/app

			# add a user - this user will own the files in /home/app

			RUN adduser -S app

			ENV HOME=/home/app

			COPY . /home/app

			The resulting image is built without installing or updating node_modules. We will install the modules in another step. This saves us from having to use yarn install every time we build our container:

			CMD ["yarn", "start"]

			We use yarn start to launch our publisher app.

			After we run docker-compose build publisher, we can see we have greatly reduced the size of our container!

			Before our optimizations, the container was 987 megabytes. After the optimizations, 89.5 megabytes, which is almost a 900-megabyte reduction:

			# docker images | grep pub

			chapter4_publisher latest 080efb97e0d3 About a minute ago 89.5MB

			We still need to install our node_modules/ modules, which will be done within a named volume and defined in the docker-compose-overrides.yml file. This is done once, and then again only if you add packages to the packages.json file in the publisher/ directory:

			# docker-compose run publisher yarn install

			This command installs the node_modules/ packages using yarn install within the publisher container. The named volume is mounted correctly because it is specified within the docker-compose configuration (.yml) files.

			Note

			We did not optimize the subscriber build.

			We can verify that the volume was created and does contain the installed node_modules modules by examining the _data directory of our volume, which on Linux should be in /var/lib/docker/volumes:

			# cd /var/lib/docker/volumes/

			# ls -1 chapter4_node_modules_publisher/_data/

			abbrev

			accepts

			ajv

			ansi-align

			ansi-regex

			ansi-styles

			anymatch

			The location of the volumes is significantly different for macOS. You will need to use the following command to get a shell in the Linux virtual machine that is running Docker:

			# screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty

			You might have to hit ^C a few times to get a shell prompt. This prompt is a shell running in the virtual machine. Within the virtual machine, the volume for the node_modules/ directory in the container is at /var/lib/docker/volumes, as with Docker on Linux.

			We can see the speedup of our build. The initial build of the publisher, after completely removing all of the images from the system, takes around 16 seconds:

			# time docker-compose build publisher

			Successfully built e50ec5f4d53b

			Successfully tagged chapter4_publisher:latest

			docker-compose build publisher 0.36s user 0.09s system 2% cpu 16.187 total

			A subsequent build without node_modules installed takes around a half a second:

			# time docker-compose build publisher

			Successfully tagged chapter4_publisher:latest

			docker-compose build publisher 0.34s user 0.08s system 74% cpu 0.568 total

			After editing index.js and doing a rebuild, it takes less than 1 second:

			# time docker-compose build publisher

			Successfully tagged chapter4_publisher:latest

			docker-compose build publisher 0.34s user 0.08s system 49% cpu 0.842 total

			As you can see, we were able to reduce the size and build time of our containers!

			Using the build.sh script

			There is a build.sh script provided in the chapter4/ directory of the GitHub repository. It just contains a few lines of actual shell commands:

			#!/bin/sh

			# build.sh

			# build publisher and subscriber and install node_modules in each

			docker-compose build --force-rm --no-cache

			docker-compose run publisher yarn install

			docker-compose run subscriber yarn install

			The build.sh script builds all five containers and runs yarn install in both the publisher and subscriber containers to install the node_modules modules in their respective named volumes. The command-line switches to the docker-compose build command are as follows:

			
					--force-rm: Forces Docker to remove all the intermediate container images as it builds

					--no-cache: Forces Docker to use no cached/downloaded/built versions of anything

			

			You can drop these two switches to greatly improve the build speed. They are provided here to demonstrate a way of forcibly rebuilding everything from scratch.

			That's a decent overview of Docker Compose. It is one of the first, if not the first, composition tools for describing, building, and running Docker applications. But there are also other alternatives out there.

			Other composition tools

			We have already seen how we can compose and build a multiple service application using docker-compose and .sh scripts. But there are some other options that you may want to consider.

			Docker Swarm

			Docker Swarm is a cluster management system. It allows you to deploy containers that are defined with docker-compose to a cluster of nodes or servers. There are some limitations to what you can do with docker-compose.yml if you want to use Docker Swarm. For example, you cannot use volumes with Docker Swarm, and binding container ports to the host should be carefully planned.

			Kubernetes

			Kubernetes is a feature-rich alternative to docker-compose. It allows containers to be deployed to a cluster of Docker container servers and uses a configuration file format similar to docker-compose.yml.

			Packer

			Packer is a tool that generates several output formats, including Docker containers. You define your containers using JSON files and the tool reads from them. Packer uses builders to generate output files. The output can be (but is not limited to) the following:

			
					Azure machine images

					DigitalOcean machine images

					Docker container images

					Google cloud images

					Parallels (for macOS) images

					VirtualBox images

					VMware images

			

			The composition tool that you choose should make your job easier. Be sure to choose one that truly suits your needs. Docker Compose is the official Docker composition tool. The others may be more modern and solve additional problems that Docker Compose does not.

			Summary

			In this chapter, we introduced Docker Compose as a superior management tool for managing and running a complex system of containers. We described several useful docker-compose configuration file options that allow us to specify ports to expose, local networking, and local volumes. We exploited the docker-compose tool's inheritance capabilities as well.

			A critical part of using Docker is the development cycle. We typically edit, build, run, and test each cycle—then repeat. The size of images, as well as the time spent building, publishing, and downloading them, can be strategically reduced.

			We also explored some alternatives to using .sh scripts and docker-compose. These are a natural next step in your Docker education as they provide facilities for deploying your orchestrations to swarms or clusters of servers in production or for testing.

			The next few chapters go into detail about how to deploy your applications and how to implement continuous integration and automated testing. After that, we will cover security considerations for containerized applications.

			Further reading

			You can refer to the following URLs for more information on the topics covered in this chapter:

			
					The official Docker documentation: https://docs.docker.com

					The official Docker Compose documentation: https://docs.docker.com/compose/

					The Dockerfile reference:https://docs.docker.com/engine/reference/builder/

					The Docker Hub site:https://hub.docker.com/

					The documentation for Docker Hub:https://docs.docker.com/docker-hub/

					The documentation for the Node.js containers on Docker Hub:https://hub.docker.com/_/node

					The documentation for the Redis containers on Docker Hub:https://hub.docker.com/_/redis

					The documentation for the MongoDB containers on Docker Hub:https://hub.docker.com/_/mongo

					The documentation for the Mosca containers on Docker Hub:https://hub.docker.com/r/matteocollina/mosca

			

		

	
		
			Section 2: Running Docker in Production

			In this section, you will learn how to choose between the different alternatives for running Docker applications in production, ranging from single-host configurations to sophisticated clusters of servers in the cloud that can scale out to handle heavy loads. You will learn how to deploy systems first using Docker Compose, and how to automate building and deploying a simple setup using Jenkins. We will then explore a more sophisticated setup in Chapter 8, Deploying Docker Apps to Kubernetes through Chapter 11, Scaling and Load Testing Docker Applications, centering around the use of Kubernetes and Amazon Web Services. You will learn how to deploy applications both manually and using the Spinnaker continuous deployment system, and how to use a variety of tools to monitor applications. Finally, we will learn how to scale Docker applications using Kubernetes, using tools such as the Envoy service mesh and k6 for load testing. We will use a sample application, a game called ShipIt Clicker, to demonstrate each of these concepts in turn.

			This section comprises the following chapters:

			
					Chapter 5, Alternatives for Deploying and Running Containers to Production

					Chapter 6, Deploying Applications with Docker Compose

					Chapter 7, Continuous Deployment with Jenkins

					Chapter 8, Deploying Docker Apps to Kubernetes

					Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker

					Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger

					Chapter 11, Scaling and Load Testing Docker Applications

			

		

	
		
			Chapter 5: Alternatives for Deploying and Running Containers in Production

			As container technology and cloud computing mature, the number of ways in which you can deploy your Docker containers has exploded. Some of the options are as simple as running Docker on a single host, and others feature advanced features such as autoscaling, multi-cloud support, and more. You could even run your Docker containers on-premises on bare-metal servers or adopt a hybrid cloud solution.

			After reading this chapter, you will understand that the many choices available offer different trade-offs. You will learn how to build the smallest viable production environment. You will be able to choose between different cloud providers and their managed container runtimes, as well as articulate the benefits of running Docker either on-premises or in a hybrid cloud. Most importantly, you will be able to make an informed decision about choosing a production path for deploying Docker containers given competing objectives.

			Understanding the spectrum of choices will help guide you toward making better decisions.

			In this chapter, we are going to cover the following main topics:

			
					Running Docker in production – many paths, choose wisely

					What is the minimum realistic production environment?

					Managed cloud services

					Running your own Kubernetes cluster – from bare-metal servers to OpenStack

					Deciding on the right Docker production setup

			

			Technical requirements

			To complete the exercises in this chapter, you'll need Git and Docker on your local workstation. For Mac and Windows users, please install Docker Desktop (https://www.docker.com/products/docker-desktop) as this is how most people using Docker use it on their local workstations. You need to learn more about the options before you choose a production deployment tool.

			Depending on what avenues you explore, you may also want to establish accounts with Amazon Web Services, Google Cloud, Microsoft Azure, or Digital Ocean. Most of these services have fairly generous free tiers that may allow you to experiment without spending much money, especially if you only use the services for a short duration. When considering what sort of environment might be suitable for your application, it helps to have multiple options. If you do create resources in the cloud, don't forget to terminate resources that you are done with or are not planning to keep, or you could receive a nasty surprise when you see the bill. Most cloud providers have a billing alert system. Please consider setting up an alarm that will notify you if your spending exceeds your budget.

			If you want to explore hosting a more complex on-premises setup, or use a bare-metal hosting service such as Packet (https://www.packet.com/), you may need one or more server computers that meet the specifications for running Docker or OpenStack on bare-metal computer hardware.

			The GitHub repository for this chapter is https://github.com/Packt-Publishing/Docker-for-Developers – please see the chapter5 folder inside.

			Check out the following video to see the Code in Action:

			https://bit.ly/2DYMria

			Example application – ShipIt Clicker

			The linked GitHub repository for this chapter has code for a prototype for an online game – called ShipIt Clicker. In this game, a fedora-clad squirrel urges you to deploy containers to production; the faster you click, the faster you accumulate Squirrel Dollars (SQ$), which you can use in the ShipIt Store to purchase upgrades that either increase how many containers you deploy per click, or allow you to deploy containers even if you are not clicking. The prototype version of this game has a simple HTML interface, with a RESTful API that talks to a Redis database to keep score. The version of ShipIt Clicker included in this chapter is a bare-bones prototype that has only a fraction of the full features of the game. However, it has many of the characteristics of an early-stage production application and is ready for its first production deployment. It features a setup using docker-compose to run multiple containers. The game features communications between a web browser game client, a Node.js server using Express and a Swagger-driven API, and a Redis NoSQL database used to track scores and other game information.

			You can experiment with ShipIt Clicker to get familiar with more elaborate applications than previous chapters explored. Feel free to adapt and improve both the configuration files and the code in conjunction with a variety of tools and services in order to learn more about deploying to production. In subsequent chapters, we will learn how to deploy this application to production in several different ways, each offering progressively more capabilities, but different trade-offs in terms of cost, complexity, and availability. Before we do that, let's learn more about these alternatives.

			Running Docker in production – many paths, choose wisely

			If you thought running Docker on your local workstation offered many choices, buckle up as the variety available to developers and system administrators in deploying an application built using Docker in a robust way makes the local development environment look simple by comparison. Some of the largest information technology companies in the world use Docker (or equivalent container technologies) to run at a massive scale, and container orchestration makes that possible. The promise of having a self-healing cluster that can continue to run applications in the face of network partitions and hardware failure has lured many into the Docker arena. Many people see their enthusiasm wane when the complexity of running a fault-tolerant cluster becomes evident.

			However, you don't have to do it all yourself. Multiple cloud providers offer services that make running applications with Docker more manageable. The solution larger organizations are gravitating toward is Kubernetes, a project sponsored by Google as a public and community-supported alternative to proprietary container orchestration tools. Kubernetes takes the lessons that Google learned from building and operating Borg, their internal container orchestration tool, and makes them available to the public.

			Or maybe you just need to run a simple dynamic website on as small a setup as possible – you don't have to learn cloud orchestration to do that if you have access to an internet-connected server that itself can run Docker.

			What is the minimum realistic production environment?

			Docker can run on a wide variety of hardware and software, but the level of support you will receive from either Docker itself or from a third party, such as an operating system distribution that bundles Docker, may vary significantly. Docker can run on a wide variety of operating systems: Linux, Apple macOS, Microsoft Windows, and even IBM S/390x.

			Bare minimum – run Docker and Docker Compose on one host

			Given the wide distribution of Docker on different environments, the minimum production environment for a Docker-hosted application is a single host, whether it is physical or virtual, running an operating system that supports Docker and Docker Compose. Many popular mainstream operating systems and distributions have some version of Docker built in, including the current Long-Term Support (LTS) versions of Ubuntu (16.04, 18.04, and 20.04) and CentOS (7 and 8). Other more specialized operating systems, such as CoreOS and Container Linux, focus exclusively on running containers and may be good choices, albeit with a learning curve for people used to more mainstream systems.

			You could even run Docker on Windows or macOS for a production system. You might be more comfortable running Docker on a platform that has support, depending on your risk tolerance and needs. Trade-offs abound!

			Docker support

			The community edition of Docker receives support from the parent company for a very limited time – the developer-focused Docker Inc. company (https://www.docker.com) produces quarterly releases of the Community Edition (CE) Docker toolchain with a 4-month rolling support window. As of November 13, 2019, the Enterprise Edition (EE) of Docker is a Mirantis product; see https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/ for more details. The EE version of Docker features longer support horizons; support for a variety of Linux, Windows, and macOS operating systems; and an expanded set of supported orchestration systems; see https://docs.docker.com/ee/ for more information on Docker EE. Mirantis announced that it would end support for the Docker Swarm container orchestrator, a part of Docker EE, in November 2021, but retracted the retirement announcement in February 2020. See https://devclass.com/2020/02/25/mirantis-to-keep-docker-swarm-buzzing-around-pledges-new-features/ for more details.

			Kubernetes appears to be the winner of the Docker container orchestration wars, given this news, although Mirantis is still supporting Docker Swarm.

			Problems with single-host deployment

			Running Docker on a single host has major drawbacks, however. If that host suffers a major hardware or software failure or has impaired internet connectivity, your application will suffer decreased availability. Computers are fundamentally unreliable and even systems that have enterprise availability features, such as redundant disks, power supplies, and cooling features, can suffer failures due to environmental factors. If you do go down this route, it would be prudent to add some sort of external monitoring and ensure you have a reliable backup and restore routine to mitigate these risks. In order to avoid these risks, we need to consider more sophisticated approaches, such as relying on more container orchestration systems that a third party runs.

			Managed cloud services

			In order to overcome the limitations of deploying applications on a single host, the easiest option to choose is to consider running your application using a managed cloud service that provides a container orchestration solution. Some of the most popular solutions include the following:

			
					Google Kubernetes Engine (GKE)

					Amazon Web Services Elastic Beanstalk (EB)

					Amazon Web Services Elastic Container Service (ECS)

					Amazon Web Services Elastic Kubernetes Service (EKS)

					Microsoft Azure Kubernetes Service (AKS)

					DigitalOcean Docker Swarm

			

			Most of these services support running a set of Docker containers through Kubernetes (https://kubernetes.io/), a project initiated by Google. For many years, Google has run a container orchestration system called Borg (https://ai.google/research/pubs/pub43438), and Google used that as inspiration to create a container orchestration system suitable for external use, which got named Kubernetes.

			Some managed cloud services support Docker Swarm, while others (including AWS Elastic Beanstalk and AWS ECS) have their own custom orchestration systems.

			All of the container orchestration systems allow software developers and system administrators to run a fleet of servers that execute multiple containers simultaneously, with policy-based mechanisms for distributing multiple container instances among the cluster. The container orchestrators are responsible for starting, monitoring, and moving container workloads from host to host as health checks and scaling constraints dictate. Since Google popularized running these container orchestration systems, many vendors have devised managed service offerings, including Google, Microsoft, Amazon Web Services, Digital Ocean, and others, as we will discuss in the following subsections.

			Google Kubernetes Engine

			Google offers a system called Google Kubernetes Engine (GKE) (https://cloud.google.com/kubernetes-engine/), which offers a supported Kubernetes cluster running within the Google Cloud. If you use this service, you don't have to operate and upgrade the Kubernetes cluster master nodes yourself; you won't see the master nodes in the cloud console at all, as Google operates them directly. Furthermore, Google does not charge customers for running those Kubernetes master nodes. This option is appealing to developers because it has a way to run low-cost Kubernetes clusters. Having the support directly from Google to run Kubernetes workloads gives some customers additional confidence with this system.

			However, Google Cloud is not the first or even the second biggest cloud provider, and the rest of the services available from Google Cloud are not as varied as the services that Azure, AWS, or other cloud providers such as AliBaba offer.

			If you are invested in Google Cloud, or you want a low-cost environment to experiment with Kubernetes or take it to production and you are not tied to cloud services from other providers, evaluate GKE for running Docker and Kubernetes loads.

			AWS Elastic Beanstalk

			Amazon Web Services offers a way to run Docker applications through its platform-as-a-service offering, Elastic Beanstalk (https://aws.amazon.com/elasticbeanstalk/). You can run either single Docker containers or a setup that supports multiple Docker containers. Under the covers, Elastic Beanstalk uses ECS if you select multiple containers. With Elastic Beanstalk, developers use a command-line interface tool that simplifies deployment to multiple environments, in conjunction with some concise configuration files that hide some of the complexity of running an autoscaling cluster.

			It is easier to set up Elastic Beanstalk than it is to set up either ECS or EKS, and developers needing an easy on-ramp to get to production with low overhead and minimal setup might consider using Elastic Beanstalk.

			AWS ECS and Fargate

			AWS also offers a container orchestration system called ECS (https://aws.amazon.com/ecs/). ECS has two basic modalities: one where containers run on a fleet of EC2 instances managed directly by the account owner, and one where AWS manages the nodes that containers run on, called Fargate (https://aws.amazon.com/fargate/).

			Using ECS with either EC2 or Fargate can make sense if you are invested in AWS. While this path allows you to deploy containers without having to deal with Kubernetes or Docker Swarm, however, it is a proprietary system that only AWS supports, so you would have to do extra work to move your systems away from it compared to using Kubernetes or Docker Swarm as an orchestrator. It has its own learning curve and requires that you commit to running your Docker workloads on AWS because these interfaces are AWS-specific.

			AWS EKS

			Amazon Web Services (AWS) offers EKS, a managed Kubernetes service that offloads the maintenance and configuration of the Kubernetes master servers to AWS. EKS is the AWS equivalent of Google's GKE. It offers robust integration with the rest of the AWS services, and even though it is not as economical as the GKE service with respect to running the Kubernetes masters, the baseline costs are modest compared with the cost of running a busy application. AWS has generally had support available for Kubernetes through EKS since 2018 and has fixed enough of the initial rough spots that surfaced after its launch (such as a lack of support for some common autoscaling strategies) to make EKS a formidable Kubernetes distribution. In December 2019, AWS announced support for running Kubernetes containers managed by EKS through Fargate, melding the support AWS has for EKS with the managed container runtime and elastic and transparent provisioning that AWS provides.

			AWS has the largest and most comprehensive set of services available from a cloud provider as of early 2020. If you have an investment in AWS, and you want a well-trod path that many people have traveled, consider using AWS EKS as your Kubernetes master environment.

			Microsoft Azure Kubernetes Service

			Microsoft Azure provides a robust container deployment service in Azure Kubernetes Service (AKS). This option may be particularly appealing if you or your company have a large investment in Microsoft platform tooling, including Windows, Visual Studio Code, or Active Directory. Microsoft claims to have robust support for all these concerns. The developer tooling from Microsoft also tends to have a gentler learning curve than the tools from some other organizations. However, if you rely really heavily on elements of the Microsoft stack, it may be more difficult to migrate to other solutions.

			If you are working for a Microsoft shop, or you want an easy on-ramp to Kubernetes that is tightly integrated into Visual Studio Code, consider AKS.

			Digital Ocean Docker Swarm

			Digital Ocean provides support for running a fleet of containers using Docker Swarm, a relatively simple container orchestration system. This technology has a reputation for being easier to deploy than deploying containers on Kubernetes or even AWS ECS. The Docker tooling has support for deploying to Docker Swarm out of the box.

			However, after the Mirantis acquisition, Docker Swarm's support status was deprecated and then revived after customers demanded continuing support. Given the wavering commitment from the main vendor supporting it, you should carefully consider whether you should field new applications using Docker Swarm.

			Now that we have seen what the alternatives entail for running Docker applications in production, let's examine the set of alternatives for running applications using Docker and Kubernetes.

			Running your own Kubernetes cluster – from bare metal to OpenStack

			If you must run your application on-premises, in a data center, or if you have the need to run across multiple cloud computing providers, you may need to run your own Kubernetes cluster. Once you learn more about the benefits and drawbacks of running Docker and Kubernetes either on-premises or in a hybrid cloud, you should be able to know when it is an appropriate solution. While these scenarios are more complex than using one of the managed services, they can provide different benefits, listed as follows:

			
					Upgrading cluster software (or not) on your own schedule, with full control of what versions you run today and tomorrow. Cloud vendors may lag in what versions are supported, or deprecate versions in ways that can impose operational risk.

					Using one of the many mature Kubernetes provisioning solutions, such as Kops, that facilitate setting up k8s clusters on AWS EC2.

					Operating a hybrid cloud solution across a mixture of data center and cloud computing environments. While some cloud provider solutions, such as Google Cloud Anthos or Azure Arc, can support hybrid environments, many do not.

					Running high-performance Kubernetes clusters on bare metal, without the overhead of a hypervisor.

					Running on platforms not supported by major cloud vendors, such as running Docker and Kubernetes on a cluster of Raspberry Pi computers.

					Having complete control over the supporting infrastructure of your cluster integrating with a platform that uses Kubernetes as a starting point, such as the OpenShift platform.

					Running on a private cloud solution, such as OpenStack or VMware Tanzu (formerly known as VMware Enterprise PKS).

					Running Docker containers as part of a comprehensive computing platform that has other major features and capabilities beyond vanilla Kubernetes, such as Red Hat OpenShift or Rancher.

			

			In practice, running any of these solutions is more complex than relying on either a single-host deployment of Docker or a vendor-managed software-as-a-service Kubernetes clustering solution.

			Deciding on the right Docker production setup

			Because of the bewildering number of choices, picking the right path to deploy your application in production is daunting. You may need to weigh many factors, including the following:

			
					Setup: How hard is it to go from local development to production?

					Features: Deployment, testing, monitoring, alerting, and cost reporting.

					Cost: Initial and ongoing monthly charges.

					Support: Is support easily available either from vendors or from the community?

					Elasticity: Can it scale out as the load increases, with automatic or manual controls?

					Availability: Can the setup survive the loss of services, hosts, and networks?

					Stickiness: How hard will it be to change the deployment strategy?

			

			Running Docker on a single host is inexpensive and easy to set up but has poor scaling and availability characteristics. All the major cloud orchestration services that support Kubernetes are well-balanced in terms of features and scaling and availability characteristics, but they are more complex to set up and operate. The non-Kubernetes options are stickier than the Kubernetes options. Running your own clusters either in the cloud, on bare-metal servers, or in a hybrid cloud gives you enormous flexibility at the cost of increased complexity and support burden.

			Learning the relative strengths and weaknesses of these systems will help you judge the right set of technologies to use to deploy your applications. The following matrix shows my snap judgements on a scale of 1 to 5, where 5 is the best, of how well the different technology options compare.

			
				
					[image:]
				

			

			
				
					[image:]
				

			

			You can use this matrix to help rank alternative solutions. By comparing two or more of the choices, you can get a better idea of what sort of solution would be appropriate. In order to evaluate this matrix, you could build an evaluation table where you compare alternatives. If you rank the priorities with a number, where 5 is the highest priority and 1 is the lowest priority, you can multiply the priority by the scores in Table 1 in order to get a scaled score.

			The following example matrix has priorities that emphasize ease of setup, minimization of cost, and minimization of stickiness, while disregarding robustness in the form of high availability or elasticity under load. That set of priorities matches up with the priorities many real-world applications have when they first launch – the struggle developers face is often to get things up and running quickly, and it is OK to compromise on the other factors. The scaled scores in the Alternative columns represent the result of multiplying the priority versus the Production Alternatives Rank table for each alternative.

			
				
					[image:]
				

			

			In this case, alternative 1, Docker on a single host, has the highest-ranked scaled score, 78 versus 74. The factors that are important, setup, cost, and stickiness, combine with the weights to push it above the other alternative. Given this score, you should consider using that deployment alternative. Consider though that if the availability or elasticity priority was even one notch higher, the other alternative, Google Cloud GKE, would have been the higher-ranking service.

			You may find that your needs are served by a hybrid solution also, where more than one of the solutions is appropriate and necessary to solve your problems. For example, you might find that your everyday demands tilt toward an on-premises cluster, but peak demand might require scaling out into the cloud.

			Exercise – join the ShipIt Clicker team

			Let's pretend that you have just joined the ShipIt Clicker development team. Other people on the team have created the basic design for the game (see the game design document in https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter5/ShipIt_Clicker-spec.md) and written a prototype that has only the bare minimum required functionality to build, test, and package the application with Docker.

			The rest of the team might be experts in design, or frontend or backend development, but they are not sure how they should proceed regarding deploying to production. At this point, you have more experience using Docker than any of the other developers on the team. The Dockerfile and docker-compose.yml files they have produced are functioning.

			Get the ShipIt Clicker—the version made for this chapter—running on your local workstation to better understand how it is put together.

			Run docker-compose up in order to start the containers on your local machine. This will allow you to evaluate the deployment alternatives and experiment with changes that will prepare the application for production use. You will see output similar to the following; we will explain in detail what each group of lines in the output means:

			$ docker-compose up

			Building shipit-clicker-web

			Step 1/11 : FROM ubuntu:bionic

			---> 775349758637

			Step 2/11 : RUN apt-get -qq update && apt-get -qq install -y nodejs npm > /dev/null

			---> Using cache

			---> f8a9a6eddb8e

			The preceding output shows Docker using the ubuntu:bionic image, and then the installation of the operating system packages.

			Steps 3-5 of the Dockerfile prepare the container image for the application installation by creating essential directories and copying the package configuration file for node modules into place:

			Step 3/11 : RUN mkdir -p /app/public /app/server

			---> Using cache

			---> f7e56a628e8b

			Step 4/11 : COPY src/package.json* /app

			---> eede94466dc7

			Step 5/11 : WORKDIR /app

			---> Running in adcadb6616c2

			Removing intermediate container adcadb6616c2

			---> 6256f613803e

			Next, the Dockerfile installs the node modules:

			Step 6/11 : RUN npm install > /dev/null

			---> Running in 02ae124cf711

			npm WARN deprecated superagent@3.8.3: Please note that v5.0.1+ of superagent removes User-Agent header by default, therefore you may need to add it yourself (e.g. GitHub blocks requests without a User-Agent header). This notice will go away with v5.0.2+ once it is released.

			npm WARN optional Skipping failed optional dependency /chokidar/fsevents:

			npm WARN notsup Not compatible with your operating system or architecture: fsevents@1.2.11

			npm WARN shipit-clicker@1.0.5 No repository field.

			npm WARN shipit-clicker@1.0.5 No license field.

			Removing intermediate container 02ae124cf711

			---> 64ea4b348ed1

			After this, the Dockerfile copies more configuration files into the container image, as well as copying the sources for the application itself into place within the container under /app:

			Step 7/11 : COPY src/.babelrc src/.env src/.nodemonrc.json /app/

			---> 88e88c1bc35d

			Step 8/11 : COPY src/public/ /app/public/

			---> c9872fccc1c9

			Step 9/11 : COPY src/server/ /app/server/

			---> f6e76811659a

			Finally, the Dockerfile tells Docker what port to expose and how to run the application:

			Step 10/11 : EXPOSE 3000

			---> Running in 75fbd217ef27

			Removing intermediate container 75fbd217ef27

			---> 03faaa0e8030

			Step 11/11 : ENTRYPOINT DEBUG='shipit-clicker:*' npm run dev

			---> Running in 0a44ab13b0d3

			Removing intermediate container 0a44ab13b0d3

			---> ab6e4da773e7

			Successfully built ab6e4da773e7

			At this point, the Docker container is built, and Docker applies the latest tag:

			Successfully tagged chapter5_shipit-clicker-web:latest

			WARNING: Image for service shipit-clicker-web was built because it did not already exist. To rebuild this image you must use `docker-compose build` or `docker-compose up --build`.

			The power of using docker-compose up is on display next, as the one command we ran at the beginning not only builds the Docker container for our application, but it also starts all the containers together. When it starts the containers, it starts both the application container, and the Redis container. The Redis container emits some detailed output as part of its startup. The output of our docker-compose up command continues with container startup messages:

			Starting chapter5_redis_1 ... done

			Creating chapter5_shipit-clicker-web_1 ... done

			Attaching to chapter5_redis_1, chapter5_shipit-clicker-web_1

			redis_1 | 1:C 04 Feb 2020 06:15:08.774 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo

			redis_1 | 1:C 04 Feb 2020 06:15:08.774 # Redis version=5.0.7, bits=64, commit=00000000, modified=0, pid=1, just started

			redis_1 | 1:C 04 Feb 2020 06:15:08.774 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf

			redis_1 | 1:M 04 Feb 2020 06:15:08.776 * Running mode=standalone, port=6379.

			redis_1 | 1:M 04 Feb 2020 06:15:08.776 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.

			redis_1 | 1:M 04 Feb 2020 06:15:08.776 # Server initialized

			Note that Redis is not entirely happy being run as part of a Docker container that uses a Linux kernel that is not tuned explicitly for it. This is an example where using Docker might not yield optimal results, but results that are good enough anyway:

			redis_1 | 1:M 04 Feb 2020 06:15:08.776 # WARNING you have Transparent Huge Pages (THP) support enabled in your kernel. This will create latency and memory usage issues with Redis. To fix this issue run the command 'echo never > /sys/kernel/mm/transparent_hugepage/enabled' as root, and add it to your /etc/rc.local in order to retain the setting after a reboot. Redis must be restarted after THP is disabled.

			redis_1 | 1:M 04 Feb 2020 06:15:08.776 * DB loaded from disk: 0.000 seconds

			redis_1 | 1:M 04 Feb 2020 06:15:08.776 * Ready to accept connections

			You can see that Redis is now ready to go. Next, docker-compose starts up the ShipIt Clicker container, using the command given in the preceding ENTRYPOINT DEBUG output ('shipit-clicker:*' npm run dev):

			shipit-clicker-web_1 |

			shipit-clicker-web_1 | > shipit-clicker@1.0.5 dev /app

			shipit-clicker-web_1 | > nodemon server --exec babel-node --config .nodemonrc.json | pino-pretty

			shipit-clicker-web_1 |

			shipit-clicker-web_1 | [nodemon] 1.19.4

			shipit-clicker-web_1 | [nodemon] to restart at any time, enter `rs`

			shipit-clicker-web_1 | [nodemon] watching dir(s): *.*

			shipit-clicker-web_1 | [nodemon] watching extensions: js,json,mjs,yaml,yml

			shipit-clicker-web_1 | [nodemon] starting `babel-node server`

			shipit-clicker-web_1 | [1580796912837] INFO (shipit-clicker/47 on 52e6d59c6121): Redis connection established

			shipit-clicker-web_1 | redis_url: "redis://redis:6379"

			shipit-clicker-web_1 | [1580796913083] INFO (shipit-clicker/47 on 52e6d59c6121): up and running in development @: 52e6d59c6121 on port: 3000}

			Once you have done this, you can play the game by going to http://localhost:3005/ in a web browser. In the following figure, we see the output of the main menu of the game, with a link to the API documentation at http://localhost:3005/api-explorer/:

			
				
					[image: Figure 5.1 – ShipIt Clicker game main menu]
				

			

			Figure 5.1 – ShipIt Clicker game main menu

			Once you have the application running and have explored it, you can learn how to deploy it in different ways.

			Exercise – choosing from reasonable deployment alternatives

			The setup in this chapter works to get the game running on a local development environment. However, the setup has some issues that might cause problems for a production deployment.

			The initial audiences for the game in this prototype stage are as follows:

			
					Your fellow game developers and the management team of the company

					A globally distributed team of enthusiasts who signed up for an Alpha program

					A professional cadre of testers twelve time zones away from where you live

			

			Management wants to get the prototype available for the alpha tester volunteers and the professional testers as soon as possible, but wants to know what the options and costs will be to support a more robust deployment environment that can scale if the game goes viral or the investors approve an ad campaign to boost subscribers.

			Your tasks, given what you know about Docker and the alternatives for deploying to production, are as follows:

			
					Advise management on what the first production deployment should be, after constructing a Production Decision Alternatives table.

					Advise management on what one or more reasonable alternatives to the first deployment would be, which would increase elasticity and availability.

					Build a spreadsheet model of the one-time and recurring costs incurred over the first year for each option, after consulting current price lists from vendors.

			

			Solution

			Compare your decision matrix to the preceding example in the Deciding on the right Docker production setup section and see whether your result differs. Show the spreadsheet model of costs and your decision matrix to a colleague and ask them what they might choose and whether they agree with your decision.

			Exercise – Dockerfile and docker-compose.yml evaluation

			Management wants you to stretch a little and help smooth the way for a production deployment. They want you to identify areas for improvement:

			
					Are the choices made in the Dockerfile and docker-compose.yml files reasonable for this application?

					What choices could be made to better prepare the application for a production deployment?

					What effect does the choice of a commodity operating system distribution have when choosing a container base to use in FROM?

			

			Solution

			Look at the versions of the Dockerfile and docker-compose.yml files in https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter6 and see how your recommendations line up. We will explore this in more detail in Chapter 6, Deploying Applications with Docker Compose.

			Now that we have learned more about the alternatives for deploying Docker containers into production, and done some practical exercises, let's review what we have learned.

			Summary

			In this chapter, we learned about the alternatives for deploying your Docker-based application to production. We learned that the many choices involve trade-offs, and how to build the smallest viable production environment. We learned how to choose between different cloud providers and their managed container runtimes, and how to articulate the benefits of running Docker either on-premises or in a hybrid cloud. We also learned how to decide on a production path for deploying Docker containers given competing objectives.

			Given these lessons, you can apply what you have learned to create a real production deployment. Having enough context about the technology alternatives is very important – because different strategies offer different advantages and disadvantages. Your company might need a super-robust autoscaling deployment in the future but might only need something that works today.

			In the next chapter, we will show how you can create a robust single-host Docker production deployment while maintaining the ability to develop locally.

		

	
		
			Chapter 6: Deploying Applications with Docker Compose

			The simplest possible practical deployment scenario of an application packaged with Docker involves running Docker Compose on a single host. Many of the commands that you use as a developer, such as docker-compose up -d, also apply to deploying Docker applications on a single host.

			Running Docker applications on a single host is easier to understand than running them using one of the more complex container orchestration systems because many of the same techniques you might use to run a non-Docker application apply; however, it has some significant drawbacks in terms of performance and availability.

			In this chapter, you will discover why this is the simplest practical option, learn how to configure Docker for production on a single host, and master some techniques for managing and monitoring a simple setup efficiently. Furthermore, you will better understand the drawbacks of running Docker on a single host, including the problems you may face.

			In this chapter, we're going to cover the following main topics:

			
					Selecting a host and operating system for single-host deployment

					Preparing the host for Docker and Docker Compose

					Deploying using configuration files and support scripts

					Monitoring small deployments—logging and alerting

					Limitations of single-host deployment

			

			Technical requirements

			To complete the exercises in this chapter, you'll need Git and Docker on your local workstation, and you will need a single host capable of running Linux and Docker for your production server, connected to a network that you can SSH into and that your users can reach.

			The GitHub repository for this chapter can be found at https://github.com/PacktPublishing/Docker-for-Developers—please refer to the chapter6 folder.

			Check out the following video to see the Code in Action:

			https://bit.ly/31OSi1H

			Example application – ShipIt Clicker v2

			The version of ShipIt Clicker in this chapter is more polished than the one we used in Chapter 5, Alternatives for Deploying and Running Containers in Production. It has the following features:

			
					An improved Dockerfile and docker-compose.yml file suitable for basic production use

					Storage of game state in Redis tied to a server session, leading to distinct game states for different client devices

					Improved visual and audio assets

			

			We will use this enhanced version of ShipIt Clicker as the application to deploy on a single host using Docker Compose.

			Selecting a host and operating system for single-host deployment

			Deploying your application on a single host is the simplest possible way to run an application in production. In many ways, it resembles the user experience of performing local development using Docker and Docker Compose. If you can package the parts of your application using a docker-compose.yml file, you are already 70 percent of the way there. If you already have basic UNIX or Linux system administration skills, this will be very easy—this strategy requires the least effort and you can master the essentials in an hour or two.

			Requirements for single-host deployment

			In order to proceed with deployment, you will need a computer running a modern Linux operating system of the same architecture as your development system, with enough memory and processor and storage capacity to run your application. If you are developing on a Windows 10 64-bit desktop using Docker Community Edition, you need a Linux system that also uses the x86_64 architecture. If you're using Docker on a Raspberry Pi 4 running Raspbian, you need an ARM architecture server. Really, you could use any bare metal or virtual machine server, either on-premises or in the cloud, as long as it supports Docker.

			Some cloud providers, such as Amazon Web Services (AWS), offer a free tier for their smallest virtual machine deployments, at least for the first year. The example in this chapter will work on a host like this, but if you have a larger application, you may need to use a larger and more expensive system.

			Production applications often must run 24*7, and the users of these applications may have reliability concerns. While running Docker applications on a single host is possibly the least reliable way to proceed, it might be good enough for your application. All the single-host reliability measures that vendors such as HP, Dell, and IBM have built can be enough in many cases to ensure adequate reliability if your application requires that.

			You will need one of the following Linux operating system distributions that support Docker:

			
					Red Hat Enterprise Linux (or CentOS) 7 or 8

					Ubuntu 16.04 or 18.04 or newer

					Amazon Linux 2

					Debian Stretch 9

					Buster 10

			

			To minimize time to production and to maximize ease, pick one that you know already, or use CentOS 7, which is used in the following examples.

			Only select a Docker-focused distribution, such as Container Linux or CoreOS, if you want to take a slower, more advanced path to production, as your system administration skills may be less effective in those environments. User management in CoreOS, for example, works quite differently than it does in more mainstream distributions.

			Because this strategy depends only on having a host that the users of your application can reach, you have tremendous flexibility.

			Preparing the host for Docker and Docker Compose

			Before you configure the software on the host, you should ensure that it has a stable IP address. Sometimes these are referred to as static IP addresses, or Elastic IP addresses, in an AWS context. You may need to specially allocate these IP address through your provider, which can often be done through the provider's console, such as with the Network tab in AWS Lightsail, or the Elastic IPs settings in the AWS EC2 console.

			Also, you should map an address (type A) record in a Domain Name System (DNS) zone that you control to the IP address so that your users can get to the application by using a short name, such as shipitclicker.example.com instead of a raw IP address, such as 192.2.0.10. All public cloud systems have the ability to manage DNS entries—for example, AWS Route 53 (https://docs.aws.amazon.com/route53/index.html), and most virtual hosting systems have this capacity as well.

			Using operating system packages to install Docker and Git

			You will need to install Docker on the host. For production use, avoid the outdated Docker versions that ships with operating system distributions, and try to use the operating system packages that Docker publishes for Docker Community Edition. You can find instructions on installing Docker Community Edition on the Docker website for various operating systems, as follows:

			
					CentOS: https://docs.docker.com/install/linux/docker-ce/centos/

					Debian: https://docs.docker.com/install/linux/docker-ce/debian/

					Fedora: https://docs.docker.com/install/linux/docker-ce/fedora/

					Ubuntu: https://docs.docker.com/install/linux/docker-ce/ubuntu/

					Binaries: https://docs.docker.com/install/linux/docker-ce/binaries/

			

			Use the following commands for a fresh installation of CentOS 7:

			$ sudo yum install -y yum-utils

			$ sudo yum install -y device-mapper-persistent-data lvm2

			$ sudo yum-config-manager --add-repo \

			https://download.docker.com/linux/centos/docker-ce.repo

			$ sudo yum install -y docker-ce docker-ce-cli containerd.io

			Add your normal, non-root user to the Docker user group, and become a member of that group for this Terminal session:

			$ sudo usermod -aG docker $USER

			$ newgrp docker

			Make sure the Docker service is enabled so that it will start on boot, and that the Docker service is started:

			$ sudo systemctl enable docker

			$ sudo systemctl restart docker

			Install docker-compose by following the directions at https://docs.docker.com/compose/install/. 1.25.3 is the latest version as of January 2020, but please check the version number on that page for the latest to put in the following command, which should all be one line:

			$ sudo curl -L "https://github.com/docker/compose/releases/download/1.25.3/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

			$ sudo chmod +x /usr/local/bin/docker-compose

			Now that you have the Docker daemon running and enabled, and you also have docker-compose installed, you can deploy your application.

			Next, install git through your operating system's package manager. For Red Hat family distributions (such as RHEL, CentOS, Fedora, and Amazon Linux), use the following command:

			$ sudo yum install -y git

			For Debian family distributions (including Ubuntu), run the following command:

			$ sudo apt-get update && apt-get install -y git

			At this point, the host is ready to deploy Docker applications. In order to complete deployment, we will use a strategy that relies on shell scripts and Docker environment configuration files.

			Deploying using configuration files and support scripts

			To deploy our application to a production server, we will use a combination of simple commands and support scripts that start or update the running set of containers. Let's start by taking a close look at the two most important files required for deployment: Dockerfile and docker-compose.yml.

			Re-examining the initial Dockerfile

			The Dockerfile from Chapter 5, Alternatives for Deploying and Running Containers in Production, has good layering and has package.json and package.json.lock copied into the image before RUN npm -s install executes and before the main parts of the app are copied into the image. However, it has some rough edges, which we are going to smooth out in this chapter to prepare a solid production deployment. First, let's take a look at the initial Dockerfile:

			FROM ubuntu:bionic

			RUN apt-get -qq update && \

			 apt-get -qq install -y nodejs npm > /dev/null

			RUN mkdir -p /app/public /app/server

			COPY src/package.json* /app

			WORKDIR /app

			RUN npm -s install

			COPY src/.babelrc \

			 src/.env \

			 src/.nodemonrc.json \

			 /app/

			COPY src/public/ /app/public/

			COPY src/server/ /app/server/

			EXPOSE 3000

			ENTRYPOINT DEBUG='shipit-clicker:*' npm run dev

			The preceding Dockerfile for the ShipIt Clicker game prototype gets many things right from a local development perspective, but has some limitations, which we will address in the Dockerfile for this chapter.

			Very often, developers start with a base image (such as FROM ubuntu:bionic) that mirrors what they know best: traditional Linux distributions that you might run on your workstation. This may help with debugging the Dockerfile initially, but it comes at a steep cost because both the base and generated images are large, consisting of hundreds of megabytes. Also, the package installation for Ubuntu is quite verbose, so the apt-get install command has to redirect stdout to /dev/null to prevent verbose output from taking over our Terminal (see https://askubuntu.com/a/1134785).

			The rest of the initial Dockerfile has some common quirks that you should avoid for production, such as copying configuration files for all of the development tooling (see the COPY command, which copies dotfiles). The initial Dockerfile has an entry point (ENTRYPOINT) that refers to a server that is best suited for development, not production, because it was quick and easy to define that way. A real production setup requires a build step that will create a set of assets suitable for distribution, as well as a different npm command that launches the app using those assets.

			The Dockerfile for this chapter has corrections for all of these issues:

			FROM alpine:20191114

			RUN apk update && \

			 apk add nodejs nodejs-npm

			RUN addgroup -S app && adduser -S -G app app

			RUN mkdir -p /app/public /app/server

			ADD src/package.json* /app/

			WORKDIR /app

			RUN npm -s install

			COPY src/public/ /app/public/

			COPY src/server/ /app/server/

			COPY src/.babelrc /app/

			RUN npm run compile

			USER app

			EXPOSE 3000

			ENTRYPOINT npm start

			In this revised Dockerfile, we use Alpine Linux instead of Ubuntu for smaller images, and we pin the version of Alpine for consistent builds. The container image based on Alpine Linux is 71% smaller:

			$ docker images | awk '/chapter._ship/{ print $1 " " $7}'

			chapter6_shipit-clicker-web-v2 154MB

			chapter5_shipit-clicker-web 524MB

			In the revised Dockerfile, we also create an app user so that Docker runs the application as a normal UNIX user, not the root user, as that can exacerbate security problems.

			After installing the operating system packages and npm packages as silently as possible, we can copy the application files and the .babelrc configuration file into /app, and then run RUN npm run compile in order to prepare the production version of the node application, which we run as the app user with ENTRYPOINT npm start.

			Re-examining the initial docker-compose.yml file

			The initial docker-compose.yml file from the previous chapter gets the job done of starting both a web and a Redis container, but it has some deficiencies. The initial docker-compose.yml file was adapted from the barebones example in the Docker documentation at https://docs.docker.com/compose/, so it has some gaps in how ready it is for production use. Many developers adapt these examples without considering certain nuances that matter when you have to deploy an application to production. You can think of it as a starting point, rather than the final destination. The initial docker-compose.yml file is as follows:

			version: '3'

			services:

			 shipit-clicker-web:

			 build: .

			 environment:

			 REDIS_HOST: redis

			 ports:

			 - "3005:3000"

			 links:

			 - redis

			 redis:

			 image: redis

			 ports:

			 - "6379:6379"

			The revised docker-compose.yml file for this chapter is much more robust. This file is inspired in part by the samples at https://github.com/docker-library/redis/issues/111 and especially by an example by GitHub user @lagden, which has a nice example of a docker-compose.yml file that supports Redis:

			version: '3'

			services:

			 shipit-clicker-web-v2:

			 build: .

			 environment:

			 - APP_ID=shipit-clicker-v2

			 - OPENAPI_SPEC=/api/v1/spec

			 - OPENAPI_ENABLE_RESPONSE_VALIDATION=false

			 - PORT=3000

			 - LOG_LEVEL=${LOG_LEVEL:-debug}

			 - REQUEST_LIMIT=100kb

			 - REDIS_HOST=${REDIS_HOST:-redis}

			 - REDIS_PORT=${REDIS_PORT:-6379}

			 - SESSION_SECRET=${SESSION_SECRET:-mySecret-v2}

			Note that we define all the environment variables explicitly for the application, and that several of them are defined with a ${VARIABLE_NAME:-default_value} syntax that uses the value of an environment variable. These can be specified on the command line, in the usual configuration file: $HOME/.profile, $HOME/.bashrc, or the .env file in the same directory as the docker-compose.yml file:

			 ports:

			 - "${PORT:-3006}:3000"

			 networks:

			 - private-redis-shipit-clicker-v2

			 links:

			 - redis

			 depends_on:

			 - redis

			The preceding ports section defines the networking configuration for the main container; it defines a private network called private-redis-shipit-clicker-v2, which links the two containers. Note the use of depends_on in this section. This means that the ShipIt Clicker container will wait until the Redis container is started before starting. Next, let's examine the Redis container definition:

			 redis:

			 command: ["redis-server", "--appendonly", "yes"]

			 image: redis:5-alpine3.10

			 volumes:

			 - redis-data-shipit-clicker:/data

			 networks:

			 - private-redis-shipit-clicker-v2

			volumes:

			 redis-data-shipit-clicker: {}

			networks:

			 private-redis-shipit-clicker-v2:

			This has many environment variable entries—for example, LOG_LEVEL, REDIS_HOST, and REDIS_PORT—that allow easy overrides. It allows the override of Redis host settings, both for easier debugging and to pave the way for easy connection to cloud Redis services. It starts Redis with command-line parameters that enable persistence and allocates a Docker persistent volume to store Redis append-only log files. Otherwise, the data would vanish every time the Redis container is restarted. It makes the network where Redis and the web server communicates private. This is especially important with Redis because, with the default configuration, the Redis server operates without any authentication or authorization—it is wide open to whoever can connect!

			In this minimalistic, production-ready docker-compose.yml file, we expose the web server directly on port 80 to the world. This works, but modern browsers will show a security warning for plain HTTP content. It will work to get you to production, but many production applications require more security safeguards than running over plain HTTP. You can get around this by using either a proxy or external load balancer that terminates HTTPS on port 443, or by configuring SSL certificates. We will cover this in more detail in later chapters.

			One of the features of the docker-compose v3 configuration is that it sets the default behavior for when a container fails to always restart. This should happen even if the host is rebooted, and will definitely happen if a process exits due to an unhandled exception. If you need to configure the restart behavior of your application more directly, you can do so with the settings listed in the documentation at https://docs.docker.com/compose/compose-file/#restart_policy.

			Preparing the production .env file

			Clone the repository and prepare to configure docker-compose:

			$ git clone https://github.com/PacktPublishing/Docker-for-Developers.git

			$ cd Docker-for-Developers/chapter6

			In order to configure your application for production, you should create a file called .env in the directory where your docker-compose.yml file lives. If you want to change any of the defaults—for example, to change the level of debugging shown in production from info to debug—you should do so through creating and editing the .env file associated with the production deployment. Copy the file, env.sample, to .env and edit it to suit your preferences for production.

			Handling secrets

			This demo application uses environment variables and an .env file to store secrets. This is in accordance with the 12-factor application principles (see https://12factor.net/config), but it is certainly not the only way, or the most secure way, to deal with secrets. You could use a secret management system, such as HashiCorp Vault or Amazon Secrets Manager, to store and retrieve secrets. We will cover this in detail in both Chapter 8, Deploying Docker Apps to Kubernetes, and Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels; but for now, let's just use environment variables for the secrets.

			You should replace the secret in the environment variable, SESSION_SECRET, with a random secret and confirm whether you want to expose port 80 to the world. Use whatever editor you are comfortable with, whether that is vi, emacs, or nano:

			cp env.sample .env

			vi .env

			Once you have set the environment variable overrides, you can deploy the application.

			Deploying for the first time

			Once you have copied your .env file in place, start the services in the background to deploy the application:

			$ docker-compose up -d

			Verify that the services are running, as follows:

			$ docker-compose ps

			 Name Command State Ports

			chapter6_redi docker- Up 6379/tcp

			s_1 entrypoint.sh

			 redis ...

			chapter6_ship /bin/sh -c Up 0.0.0.0:80-

			it-clicker- npm start >3000/tcp

			web-v2_1

			Check whether the system logs show any errors:

			$ docker-compose logs

			As long as you don't see a stream of error messages in the logs, you should then be able to reach the website at the IP address of the server—for example, at http://192.0.2.10—substituting your IP address. If you assigned a hostname using DNS, you should be able to reach it using that hostname—for example, at http://shiptclicker.example.com—substituting the full canonical domain name for this one.

			Troubleshooting common errors

			If you get an error like this, you need to ensure that the host is not running another web server, such as Apache HTTPD or NGINX:

			docker.errors.APIError: 500 Server Error: Internal Server Error ("b'Ports are not available: listen tcp 0.0.0.0:80: bind: address already in use'")

			If you get this issue, you should either uninstall the web server that is running on the host or change what port it uses to listen for requests. You could also change the port that ShipIt Clicker runs on by changing the PORT variable in the .env file. For Red Hat family systems, a server listening on port 80 is likely to be Apache HTTPd, and you can remove it with the following:

			$ yum remove -y httpd

			For Debian family systems, it is also likely to be Apache, and you will need to use the following command to remove it:

			$ apt-get remove -y apache2

			It is possible that you might have some other web server running. You can find out what the process name of your web server is with netstat:

			$ sudo netstat -nap | grep :80

			tcp6 0 0 :::80 :::* LISTEN 12037/httpd

			You may not need to do any troubleshooting to get your application running in Docker, but in a single-host deployment scenario, you can use your system administration troubleshooting skills to figure out what might be going wrong.

			Once you have the application running, you may find that you run some of the same operations repeatedly, such as rebuilding the application when you have made changes. This is where support scripts come in handy.

			Supporting scripts

			When running a site in production, you might have to do some operations frequently. It becomes tiresome to remember the exact sequence of the Docker commands required to restart and update the running system or to connect to the database.

			You should continue to develop your application on your local workstation and use the production system to deploy changes to your users, once you have tested things locally.

			With the improved networking setup in this chapter, it is no longer possible to connect directly to the Redis container via a direct TCP port, so we will use docker exec within a script to do that.

			If you are in the Docker-for-Developers/chapter6 directory, you can permanently add this directory to PATH with the following commands to make running these scripts more convenient:

			$ echo "PATH=$PWD:$PATH" | tee -a "$HOME/.bash_profile"

			$. "$HOME/.bash_profile"

			The most common operations for this application are probably restarting the application, deploying changes, and connecting to Redis to troubleshoot. For these operations, we will use the restart.sh script, the deploy.sh script, and the redis-cli.sh script.

			Restarting

			The restart.sh script will restart all the containers. You should run this after you make a change to the configuration file, .env. You could just run docker-compose up -d, but that alone will not tell you whether the changes took hold. This will also run docker-compose ps for you, which will show you whether your containers are running correctly after the change, including what the port mappings are. In the following example session, we remove the .env file entirely and then recreate it with just a single setting for PORT=80:

			[centos@ip-172-26-0-237 chapter6]$ rm .env

			[centos@ip-172-26-0-237 chapter6]$ deploy.sh

			chapter6_redis_1 is up-to-date

			Recreating chapter6_shipit-clicker-web-v2_1 ... done

			 Name Command State Ports

			--

			chapter6_redis_1 docker-entrypoint.sh redis ... Up 6379/tcp

			chapter6_shipit-clicker-web-v2_1 npm start Up 0.0.0.0:3006->3000/tcp

			[centos@ip-172-26-0-237 chapter6]$ echo 'PORT=80' > .env

			[centos@ip-172-26-0-237 chapter6]$ restart.sh

			chapter6_redis_1 is up-to-date

			Recreating chapter6_shipit-clicker-web-v2_1 ... done

			 Name Command State Ports

			--

			chapter6_redis_1 docker-entrypoint.sh redis ... Up 6379/tcp

			chapter6_shipit-clicker-web-v2_1 npm start Up 0.0.0.0:80->3000/tcp

			[centos@ip-172-26-0-237 chapter6]$

			You can see that the chapter6_shipit-clicker-web-v2_1 application was recreated the second time that restart.sh was run, and that the server is now connected to the wildcard IPv4 0.0.0.0 address on port 80. This will allow the server to respond to an HTTP request without a special port number in the URL.

			Deploying

			The deploy.sh script pulls changes from the git upstream repository, builds the container, and restarts any containers requiring an update. You should use this after you have made changes to the code and tested them locally.

			Redis

			The redis-cli.sh script will allow you to connect to the running Redis server in the command line. It uses a docker exec command, which attaches to the running container and starts a new redis-cli command within it This is needed in part because now, Redis is running in an isolated network, and you should not be able to reach it via TCP sockets, even from the production host. This will let you troubleshoot any issues with the backend server.

			Here is a sample session showing redis-cli.sh in action:

			[centos@ip-172-26-0-237 chapter6]$./redis-cli.sh

			127.0.0.1:6379> help

			redis-cli 5.0.7

			To get help about Redis commands type:

			 "help @<group>" to get a list of commands in <group>

			 "help <command>" for help on <command>

			 "help <tab>" to get a list of possible help topics

			 "quit" to exit

			To set redis-cli preferences:

			 ":set hints" enable online hints

			 ":set nohints" disable online hints

			Set your preferences in ~/.redisclirc

			127.0.0.1:6379> keys *

			1) "example/deploys"

			2) "example/nextPurchase"

			3) "example/score"

			127.0.0.1:6379> get example/score

			"209"

			127.0.0.1:6379> quit

			Note that you can use this redis-cli.sh script to connect to the Redis server, even though it is on a private virtual network that would be inaccessible if you had installed the standard redis-cli program on the host. Being able to rely on tools in a container can allow you to reach deep into the configuration of an application, even though it is protected from being directly exposed to the internet.

			Exercise – keeping builds off the production server

			The deployment script for this chapter does the simplest thing possible for updates: it rebuilds the container on the production server. This might, however, lead to resource exhaustion and bringing the production server down.

			Given what you learned about Docker Hub in Chapter 4, Composing Systems Using Containers, how might you change the workflow of application development to revise the docker-compose.yml file and the deploy.sh script to avoid building the Docker container on the production server?

			Write down one or two sentences describing the workflow that you would use and what alterations to the docker-compose.yml configuration file would be needed.

			Note:

			There are multiple ways to achieve these goals, and there is no single answer to how to achieve them. You can compare your answer with the docker-compose.yml file in the next chapter to see how your ideas compare to the solution for building the containers highlighted in that chapter.

			Exercise – planning to secure the production site

			Imagine that you hear from your boss that the ShipIt Squirrel code and production systems are going to get some attention from your company's chief information security officer, who is going to go through everything looking for weaknesses. He is concerned that in the rush to get this live, too many shortcuts have been taken, and he wants you to provide some more information to him. Please write down the answers to these three questions:

			
					What could be done to secure communication between the clients and the server with SSL? Which of the following should you do? a. Terminate SSL within the program itself.
b. Use an external load balancer to terminate SSL.
c. Use a web server on the host, but outside Docker, to terminate SSL.
d. Use Docker and a web server container to terminate SSL.

					How do you plan on renewing the SSL certificate periodically?

					Are there other weaknesses in the security of the current system that you can find, either at the Docker layer or the API layer?

			

			Once you have deployed the application and considered some enhancements to its security, you should learn how to monitor the deployment so that you can find out when something goes wrong before the users of your application notice.

			Answers for how to secure the production site:

			Any of the four options for Question 1 could work, but options b and d are the most robust and stable in practice. Option a is tricky to get right, and option c requires separate updates to the application environment.

			Regarding Question 2, you can either purchase an SSL certificate from a vendor, which you must renew and reinstall every year, you can rely on the vendor of your load balancer to automatically renew your certificate (if they offer that as an option), or you can use Let's Encrypt to automatically renew the certificate. See the Further reading section of the next chapter for more about using Let's Encrypt to renew the certificate, as well as using a set of Docker containers to terminate SSL.

			Question 3 is open-ended, but the first thing that you should notice is that there is no authentication or authorization built into the web services in the chapter6 code base.

			Monitoring small deployments – logging and alerting

			One of the nice things about starting small is that you may be able to rely on very simple mechanisms for both logging and alerting. For any deployment using Docker and Docker Compose on a single host—for example, a deployment of ShipIt Clicker—you can use some basic tools and commands to deal with logging, and a variety of simple alerting services provided by third parties to deal with alerting.

			Logging

			For logging, in many cases, all that is required is to use the logs built into Docker. Docker captures the standard output and standard error file handles of every process it starts and makes them available as logs for each container. You can review the consolidated logs for all the services started since the last container restart with the following command, assuming you are in the directory where your docker-compose.yml file is present (less -R will interpret the ANSI color escapes that the logs command produces):

			$ docker-compose logs 2>&1 | less -R

			You can also do docker ps in order to find the name of the running containers so that you can retrieve their log streams:

			 [centos@ip-172-26-0-237 ~]$ docker ps

			CONTAINER ID IMAGE COMMAND CREATED

			 STATUS PORTS NAMES

			e947e7de33ef chapter6_shipit-clicker-web-v2 "npm start" 4 hours ago

			 Up 4 hours 0.0.0.0:80->3000/tcp chapter6_shipit-clicker-web-v2_1

			3f91820e097b redis:5-alpine3.10 „docker-entrypoint.s…" 4 hours ago

			 Up 4 hours 6379/tcp chapter6_redis_1

			Once you have the names of the containers, you can retrieve the individual log files for each running container separately. You can pipe them to less, or redirect the output of the logs to a file, for example:

			 [centos@ip-172-26-0-237 ~]$ docker logs chapter6_shipit-clicker-web-v2_1 > shipit.log

			[centos@ip-172-26-0-237 ~]$ tail shipit.log

			> shipit-clicker@1.0.0 start /app

			> node dist/index.js

			{"level":30,"time":1580087119723,"pid":16,"hostname":"e947e7de33ef","name":"shipit-clicker-

			v2","msg":"Redis connection established","redis_url":"redis://redis:6379","v":1}

			{"level":30,"time":1580087119934,"pid":16,"hostname":"e947e7de33ef","name":"shipit-clicker-

			v2","msg":"up and running in development @: e947e7de33ef on port: 3000}","v":1}

			[centos@ip-172-26-0-237 ~]$

			This procedure does require you to log into the production server and run some commands there, but in practice, this is a good way to examine the logs of an application running on a single host.

			Alerting

			To begin, it would be enough to monitor the HTTP server on port 80 of the production server to ensure it stays alive. If you have access to a network monitoring system for your company—for example, a Nagios or Icinga server—you could use that. If the system is accessible via the internet, you can use a free monitoring service, such as https://uptimerobot.com, to monitor the server.

			In order to extend monitoring deeper, you might want to also monitor the internal services, such as Redis. This is more challenging in a simple setup like this one, though. We will go into more depth about advanced monitoring systems in Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger.

			The basic idea here is that you want to get either an email, an SMS message, or both if the system goes down.

			Limitations of single-host deployment

			What could go wrong with deploying a Docker application to a single host? Plenty! While single-host deployment offers operational simplicity, it has some major limitations. Let's look at some of the limitations in the following sections.

			No automatic failover

			If either the database server container or the web service container fails and cannot be restarted automatically, the site will be down and will require manual intervention. This might be as simple as noticing that your monitoring system says that the site is down, and so you need to SSH in and reboot the server. But sometimes, a single server will be so low on memory that it must be manually rebooted from a higher-level console or even power-cycled manually. This tends to lead to significant periods of time where an application is down and not available to serve requests.

			Inability to scale horizontally to accept more load

			What happens if the traffic for the system exceeds the current capacity? In single-host deployment, you may be able to switch the host to a larger computer with more memory and processors, which is called vertical scaling. That is much easier in a cloud environment than it is in an environment, where you have to deal with physical hardware, such as an on-premises or data center environment. It would be much harder to adapt these simple deployment techniques to a whole fleet of server instances—which is called horizontal scaling.

			Tracking down unstable behavior based on incorrect host tuning

			Depending on your hosting provider, the base operating system you start with, and how the Docker containers are configured, you might experience instability that is hard to track down. Maybe your host gets rebooted frequently due to the provider's network detecting unstable hardware or network conditions. Maybe you have configured your operating system to install automatic updates and applying them causes periods of outages. Maybe the application grows in memory until it triggers a failure of some kind.

			For simplicity's sake, the examples in this chapter do not specify memory limits at an application or container level. This means that the Redis container could consume all available memory on the host since it lacks a max_memory setting in its application-level main configuration file. It also means that the node container running the Express web application could leak memory until the operating system Out-Of-Memory (OOM) killer terminates it or the Docker daemon.

			One way of mitigating this problem is by configuring virtual memory on the host using a swap file or swap partition, which makes the system look as if it has more physical memory than it actually does. If you do not configure a swap file on the host, you may find that running the deploy.sh script will fail. You might not see any messages in the console when this happens, but if you check /var/log/messages, you will find traces of the Linux kernel's OOM killer terminating the npm install program or another part of the Docker container build process.

			See the Docker documentation for more on the dangers of not configuring the memory for your containers and operating system appropriately:

			https://docs.docker.com/config/containers/resource_constraints/

			Loss of single host could be disastrous – backups are essential

			If you have hosted your application on a single physical or virtual server, you should ensure that the system is backed up regularly. Many providers have an image backup service that you can configure to take daily backups and preserve them for some period of time for an extra cost. You could also script backups of the critical volumes using old-school methods, such as using TAR and SSH or using a modern backup system, such as restic (see https://restic.readthedocs.io/en/latest/), to back up the files and volumes to a cloud storage system.

			Case study – migrating from CoreOS and Digital Ocean to CentOS 7 and AWS

			One of the authors, Richard Bullington-McGuire, maintained a winter cycling competition website, https://freezingsaddles.org/, on a Digital Ocean droplet using CoreOS for more than a year. This system would frequently be knocked offline after a reboot, and it was difficult to track down exactly what the problems were that caused the periodic outages. Lack of console access to the Digital Ocean control panel and a lack of familiarity with CoreOS made troubleshooting the system even more difficult. To ensure that the system was backed up, restic was installed and configured to send backups to Amazon S3. After many frustrating system administration experiences, the system was moved over to AWS using Lightsail, running CentOS 7 as a host operating system. To guard against OOM conditions, the new system ran with a swap file equal in size to RAM. After this, the system stopped randomly failing every few days and operations became much more smooth. Additionally, the new system had daily automatic snapshot backups enabled, lessening the need to back up the system with an application-level tool such as restic. Even so, if the system reboots, the web server does not always come up smoothly, with manual intervention required to restore the service.

			Summary

			The simplest way to get your Docker-based application to production is to deploy it onto a single host with Docker Compose. If you have properly prepared the host with the right software, including Docker Compose, you can deploy your application there in a production-ready configuration. This can be completed in a matter of hours and can serve applications with low to moderate performance and availability demands efficiently. If you make the right adjustments to your configuration files, your application will be ready to deploy to production. By using shell scripts that encapsulate long, verbose commands, you can more easily handle regular maintenance and updates for your applications. In the simplest case, you can use external monitoring and alerting for this class of application and handle this concern with low effort.

			You can apply what you have learned in this chapter to increase the sophistication of the Dockerfile and the docker-compose.yml file that support your application. You can craft simple shell scripts to automate the most common applications. You will have learned that you can rely on external monitoring through services such as https://uptimerobot.com to provide simple availability monitoring, and that you can use the built-in Docker logging facilities to provide insights into the operations of your application.

			Once you have an application deployed, it would be a good idea to increase the level of automation surrounding it, particularly related to how you can build and deploy the application. In the next chapter, we will see how you can use Jenkins, a common continuous integration system, to automate deployment and testing.

			Further reading

			
					Docker Cookbook: https://www.packtpub.com/free-ebooks/virtualization-and-cloud/docker-cookbook-second-edition/9781788626866

					Use Compose in production: https://docs.docker.com/compose/production/

					Open source monitoring tools: https://geekflare.com/best-open-source-monitoring-software/

					Free monitoring tools: https://www.dnsstuff.com/free-network-monitoring-software

					Is docker-compose suited for production? https://vsupalov.com/docker-compose-production/

					Docker tip 2: the difference between COPY and ADD in a Dockerfile: https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile

			

			If you are running a real production application on a single host with docker-compose, you should strongly consider securing your site with SSL. You can use Let's Encrypt and a host of Docker sidecar containers to achieve this:

			
					How to use Let's Encrypt, NGINX, and Docker to secure your site with SSL: https://github.com/nginx-proxy/docker-letsencrypt-nginxproxy-companion

					Using docker-compose.yml to configure Let's Encrypt with NGINX and Docker: https://github.com/nginx-proxy/docker-letsencryptnginx-proxy-companion/blob/master/docs/Docker-Compose.md

			

		

	
		
			Chapter 7: Continuous Deployment with Jenkins

			In order to reliably use Docker containers in production, you need a process that will consistently build, test, and deploy your software. A team building very small applications might be satisfied with running tests and deployment scripts manually. However, discipline often breaks down, and people step on each other's toes. This often results in broken builds and tests that are not run before or after a production deployment. The aftermath is often downtime and unhappy customers. In order to make sure that we can build, test, and deploy software reliably, we can use continuous integration software. This type of software can reliably build, test, and deploy revisions in a disciplined and traceable way. A well-run modern project can even use this software to achieve continuous deployment, where even the smallest changes to the software can be quickly promoted to either a test or production environment.

			In this chapter, we show how to configure Jenkins, one of the most popular continuous integration software systems, to facilitate deployment to the minimal environment shown in the previous chapter. We will use Jenkins to manage both the production installation and a new staging environment installation of the application used to test changes before they reach production.

			By the end of this chapter, you will know when it might be a good idea to deploy Jenkins for CI and CD with Docker. You will learn how to set up a basic Jenkinsfile that can help Jenkins secure shell (SSH) to production hosts and run docker-compose commands to update the application. You will discover how to set up Jenkins parameterized builds that allow both changing and auditing configuration parameters. You will extend the simple production setup by adding an isolated staging environment to allow developers to make changes more confidently. Finally, you will know when this type of solution has exhausted its limits and when it is time to reach for more sophisticated tools.

			In this chapter, we're going to cover the following main topics:

			
					Using Jenkins to facilitate continuous deployment

					The Jenkinsfile and host connectivity

					Driving configuration changes through Jenkins

					Deploying to multiple environments through multiple branches

					Complexity and limits to scaling deployments through Jenkins

			

			Technical requirements

			To complete the exercises in this chapter, you'll need Git and Docker on your local workstation, and you will need to have already set up a production application as described in the previous chapter. To complete the exercises about deploying to multiple environments, you will need another host to run a test environment, with similar specifications as the production host.

			You will also need a Jenkins server. This chapter will go over some options for the simple setup and maintenance of a Jenkins server if you don't already have one available to you. If your company already runs a Jenkins server, you can use that—ask the system administrators for permission. This server will need to be able to reach your production server via SSH.

			You will need to be able to create DNS entries in a zone you control, for both the staging server and the Jenkins server. You can use the same DNS zone as you used in the previous chapter.

			The GitHub repository for this chapter is https://github.com/Packt-Publishing/Docker-for-Developers—please see the chapter7 folder inside.

			Check out the following video to see the Code in Action:

			https://bit.ly/3kL1EUU

			Example application – ShipIt Clicker v3

			The version of ShipIt Clicker in this chapter is very similar to the one in the previous chapter. We will use it to test deployment through Jenkins to both a production and a staging environment.

			Using Jenkins to facilitate continuous deployment

			The world of continuous integration servers has come a long way in the last 20 years. One of the most popular systems is Jenkins (see https://jenkins.io/)—because it is free, flexible, and offers a huge variety of integrations and plugins. CloudBees (https://www.cloudbees.com/), the company behind it, also offers commercial support via a paid version. Your company might already be running Jenkins, in which case you may not need to do much setup to get your project to build and run.

			We are going to use the Jenkins 2.x Pipeline project type, where a Jenkinsfile is committed to source control in GitHub and controls the steps Jenkins uses to build and deploy the project.

			Avoid these traps

			Before we set up Jenkins, we should make sure we avoid certain common traps people fall into when setting it up for the first time.

			Avoid running Jenkins in Docker

			Although you can use Docker to run a Jenkins server, doing so introduces some complications that are best avoided, especially when just trying to get a continuous integration server running for the first time. You would either need to use a feature called Docker-in-Docker (dind) or a customized Docker installation of Jenkins that has the correct ports and files mapped from the host in a very specific way. If you don't get it just right, you might run into trouble with not being able to build Docker containers since you can't double-mount a union filesystem, for example.

			Setting up Jenkins itself running as a Docker container and working through the quirks would probably consume a ton of effort and time, and is beyond the scope of the advice we can give in this book.

			Avoid running Jenkins on the production server

			In a previous chapter, we set up a production server in the cloud to host an application. You might be tempted to have that same server you already have running do double-duty by having it run the Jenkins CI server as well. This would be economical, but it is risky as any problem with either the production configuration or the Jenkins server could both bring down production and knock your CI server offline. This would also complicate the network and web hosting virtual host configuration—it would be too easy to have these distinct services conflict, without a more sophisticated orchestration system.

			Part of running robust systems is to have adequate isolation between processes and systems that have distinct purposes, so avoid doubling-up Jenkins and your production server; run it on a system separate from your production server.

			Avoid running Jenkins on your local workstation

			You might also be tempted to just install Jenkins on your local workstation to give it a test drive. However, you will find several major drawbacks to this approach:

			
					Your workstation probably does not have a stable IP address, necessitating dynamic DNS solutions, and possibly punching holes in firewalls and setting up NAT port redirections.

					You would have to run Jenkins on your system constantly to have it process and build changes to the software as commits get pushed.

					Jenkins can be pretty heavyweight to run alongside a full development environment—and it may slow your workstation down significantly.

			

			If we should not run Jenkins as a Docker container, and we should not run it on our local workstation, where should we run Jenkins? Let's explore the options.

			Using an existing Jenkins server

			You don't have to set up Jenkins from scratch if you have access to a Jenkins server running a recent version of Jenkins in the 2.x series. Recent versions of Jenkins have excellent support for Docker, assuming that the hosts running the Jenkins builds have Docker running on them.

			You will need to make sure that the following Jenkins plugins are present:

			
					SSH credentials

					Pipeline

					GitHub

					GitHub Organization

			

			Ideally, the Jenkins server would already be set up with the GitHub Organization plugin and it should be configured so that it can automatically manage GitHub webhooks. If this is the case, you can either fork the sample repository or clone it and push it into your GitHub organization as a new repository and start deploying from there.

			You will need enough permissions on the Jenkins server to create credentials, which we will use to hold secrets required for building and deploying the software.

			Setting up a new Jenkins server

			A convenient way to simplify the set of technologies you have to maintain is to use the same base operating system and Docker setup that the production host runs. The instructions and scripts here are tailored to a CentOS 7 installation, but you can follow the same basic steps for other operating system distributions with some modification of the specific commands used to set up and maintain the packages, for example using apt-get instead of yum to install operating system packages.

			Begin by installing Docker and docker-compose just as you did in the previous chapter. Once that is done, test that Docker works with the docker run --rm hello-world command and then install Jenkins. If you are using CentOS 7, you can use the script at https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter7/bin/provision-jenkins.sh to install both Docker and Jenkins together (replace centos@jenkins.example.com with the user name and IP address or hostname of your new Jenkins server):

			$ ssh centos@jenkins.example.com < bin/provision-jenkins.sh

			$ ssh centos@jenkins.example.com

			If you are using another operating system, consult the Jenkins documentation online for installation instructions: https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins

			In order to configure CentOS 7 to allow network traffic to flow to Jenkins, you may have to configure its host firewall to allow inbound traffic.

			Also, it is desirable to have Jenkins listen on a standard port such as port 80 or 443. This can be accomplished in several ways, including having a web server act as a proxy for Jenkins, or using a load balancer to terminate SSL. A shortcut for allowing network traffic to flow to Jenkins on port 80 for CentOS 7 is as follows (if you used the provision-docker.sh script to provision Jenkins this is already done):

			$ sudo firewall-cmd --zone=public --permanent --add-masquerade

			$ sudo firewall-cmd --permanent --add-service=http

			$ sudo firewall-cmd --permanent --add-forward-port=port=80:proto=tcp:toport=8080

			$ sudo firewall-cmd --permanent --direct \

			 --add-rule ipv4 nat OUTPUT 0 \

			 -p tcp -o lo --dport 80 -j REDIRECT --to-ports 8080

			$ sudo firewall-cmd --reload

			The firewall-cmd invocation will allow you to reach Jenkins on port 80 instead of specifying port 8080.

			Once Jenkins is installed, you must retrieve a password from its logs to connect to the server:

			$ sudo grep -A 3 password /var/log/jenkins/jenkins.log

			Note the password given in the output of this command. If this does not work immediately, wait a few minutes and try again, as Jenkins may still be starting up.

			Then, open a web browser and put in the IP address with the appropriate port, either 8080 or 80 depending on whether you have redirected connections. For example, enter http://192.2.0.10:8080 and navigate to the site.

			You should see a screen that says Unlock Jenkins:

			
				
					[image: Figure 7.1 – Unlock Jenkins]
				

			

			Figure 7.1 – Unlock Jenkins

			Use the administrator password from the /var/log/jenkins/jenkins.log file to sign in for the first time.

			The next screen will prompt you to install plugins. Please install the suggested plugins:

			
				
					[image: Figure 7.2 – Customize Jenkins

]
				

			

			Figure 7.2 – Customize Jenkins

			If your system has less than 4 GB of memory, you will want to run with a swap file. Run the free command to see if the server has any swap memory available. If not, issue these commands to create a 1 GB swap file and activate it:

			$ free

			 total used free shared buff/cache available

			Mem: 1882296 89008 1533220 8676 260068 1612156

			Swap: 2097148 0 2097148

			$ sudo dd if=/dev/zero of=/swap bs=1M count=1024

			1024+0 records in

			1024+0 records out

			1073741824 bytes (1.1 GB) copied, 2.94343 s, 365 MB/s

			[vagrant@localhost ~]$ sudo chmod 0600 /swap

			[vagrant@localhost ~]$ sudo mkswap /swap

			Setting up swapspace version 1, size = 1048572 KiB

			no label, UUID=2bd70cac-3730-45bb-8b77-982425fb7af5

			[vagrant@localhost ~]$ echo /swap swap swap defaults 0 0 | sudo tee -a /etc/fstab

			/swap swap swap defaults 0 0

			[vagrant@localhost ~]$ sudo mount -a

			[vagrant@localhost ~]$ free

			 total used free shared buff/cache available

			Mem: 1882296 83120 481244 8668 1317932 1604256

			Swap: 2097148 0 2097148

			You should see that the system has non-zero swap memory in the output of free.

			Jenkins security and HTTPS

			For production use, you should configure Jenkins to run behind either an SSL-terminating load balancer or a web server configured with an SSL certificate that will listen on HTTPS. Please consult the Jenkins documentation or the many tutorials available on the internet regarding securing Jenkins with HTTPS on how to accomplish this. You should also consider restricting the set of IP addresses that can directly reach the Jenkins server as these servers are frequent targets for malicious actors. See the Further reading section at the end of this chapter for more about securing Jenkins.

			In order to use Jenkins with Docker, you will need to install the Docker Pipeline plugin. From the Jenkins main screen, go to the Manage Jenkins | Manage Plugins menu, click on the Available tab, select the Docker Pipeline plugin, and then press the Download now and install after restart button. When Jenkins restarts, log in again.

			Now that you have a Jenkins server available to you, you can proceed to configure it to talk to the production server.

			How Jenkins can support continuous deployment

			Jenkins can check out the sources for a project from version control, build the software, run tests, and run deployment scripts. Because it has Docker support, it can build a Docker container, push the container to Docker Hub or another container repository, and then run deployment scripts that connect to a server to tell it to update its running Docker containers. In order to support all these objectives, we must configure Jenkins to integrate with the production server, with a version control repository, and with Docker Hub. First, we will ensure that we can use Jenkins to connect to the production server.

			The Jenkinsfile and host connectivity

			To ensure repeatable builds, we are going to use Jenkins scripts to run build and deployment automation. Jenkins supports a type of script called a declarative pipeline script that allows a concise definition of steps needed to build, test, and deploy software. This script is conventionally known as a Jenkinsfile. Because these scripts are written using the Groovy language (see https://groovy-lang.org/), you can declare variables, write functions, and use many features of this very powerful language to help you build and deploy your software. Jenkins supports both a free-form scripting style and a more structured declarative style of script that uses a special Groovy DSL to provide more scaffolding for concise scripts.

			See here for more information on how to write a Jenkinsfile: https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

			You can either directly enter these scripts into a Jenkins job definition or store them in version control. If you put a file called Jenkinsfile in the root of a version control repository, Jenkins can discover those files if it gets configured to talk to a version control system such as GitHub.

			Testing Jenkins and Docker with a pipeline script

			To test that Jenkins and Docker are working together, we will first enter a script through the console. At the top-level Jenkins screen, click on the New Item menu and then create a new job of type Pipeline. Call it Hello Docker:

			
				
					[image: Figure 7.3 – New Item – Hello Docker pipeline]
				

			

			Figure 7.3 – New Item – Hello Docker pipeline

			Then, in the Pipeline section, enter this script (see chapter7/Jenkinsfile-hello-world in the companion GitHub project):

			pipeline {

			 agent { docker { image 'alpine:20191114' } }

			 stages {

			 stage('build') {

			 steps {

			 sh 'echo "Hello, World (Docker for Developers Chapter 7)"'

			 }

			 }

			 }

			 }

			Save the job and click on the Build Now link, and Jenkins will create build #1. Follow the link for #1 that appears on the left and then click on the Console Output button. You should see something like this:

			
				
					[image: Figure 7.4 – New Item – Hello Docker Console Output

]
				

			

			Figure 7.4 – New Item – Hello Docker Console Output

			You should see Hello, World (Docker for Developers Chapter 7) in the Console Output on the Jenkins web page. If you see out of memory errors here, ensure that you have a swap file on your Jenkins server. If you see an error about Docker not being a known agent type, go to the Manage Jenkins | Manage Plugins menu, and install the Docker Pipeline plugin.

			Connecting to the production server via SSH

			Next, we will configure Jenkins to connect to the production server via SSH. We need to do this in order to control the Docker subsystem on the remote server. We will generate an SSH key for Jenkins to use and add it to the production server's list of authorized keys.

			Generating an SSH key and adding it to Jenkins credentials

			On your local workstation, issue the following command to generate a 2,048-bit RSA SSH key pair and view it:

			ssh-keygen -t rsa -b 2048 -f jenkins.shipit

			cat jenkins.shipit

			Copy the contents of the jenkins.shipit file to your clipboard, then go to your Jenkins home page, and in the left-hand menu, navigate to the Manage Jenkins link, then to the Manage Credentials link, then navigate to System | Global credentials (unrestricted) of the kind SSH Username with private key. Give it the ID of jenkins.shipit and enter the username of the non-root user from the production server (typically, centos for CentOS 7 cloud servers). Click on Enter directly and add the key and click on the OK button to save the credentials:

			
				
					[image: Figure 7.5 – Add Credentials – SSH key

]
				

			

			Figure 7.5 – Add Credentials – SSH key

			Copy the SSH public key, jenkins.shipit.pub, from your local system to the production server and append it to the ~/.ssh/authorized_keys file. By entering the following commands on your local workstation, replace centos@192.2.0.10 with the username and IP address of your production server:

			prod=centos@192.2.0.10

			ssh $prod mkdir -p .ssh

			ssh $prod tee -a .ssh/authorized_keys < jenkins.shipit.pub

			ssh $prod chmod 700 .ssh ssh $prod chmod 600 .ssh/authorized_keys

			Test that the SSH key authentication is working by using the key to log in from your local workstation:

			$ ssh -i jenkins.shipit $prod

			Last login: Mon Mar 2 04:57:35 2020 from gateway.example.net

			[centos@ip-172-26-13-202 ~]$

			Once you have done this, you can create a test job that uses these credentials to SSH to the server.

			Use a Jenkins Pipeline job to SSH to the production server

			In the Jenkins web console, create a new Jenkins job with the New Item menu, give it the item name SSH to Production, and pick the Pipeline job type:

			
				
					[image: Figure 7.6 – Create Item – SSH to Production

]
				

			

			Figure 7.6 – Create Item – SSH to Production

			In the job definition form, in the Pipeline section, for the Definition field, choose Pipeline script and enter the following pipeline script into the Script field, but change centos@192.2.0.10 to the user and host for your production server, and save the job script (see chapter7/Jenkinsfile-ssh-proof-of-concept) in the companion GitHub project):

			pipeline {

			 agent any

			 stages {

			 stage('SSH') {

			 steps {

			 withCredentials([sshUserPrivateKey(

			 credentialsId: 'jenkins.shipit',

			 keyFileVariable: 'keyfile')]) {

			 sh '''

			prod=centos@192.2.0.10

			cmd="docker ps"

			ssh -i "$keyfile" -o StrictHostKeyChecking=no $prod $cmd

			 '''

			 }

			 }

			 }

			 }

			}

			When you run this by clicking on the Build Now link, and view the console output, you should see output similar to the following:

			…

			+ ssh -i **** -o StrictHostKeyChecking=no centos@34.238.248.192 docker ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			6c9ef1ca65f6 chapter6_shipit-clicker-web-v2 "npm start" 6 weeks ago Up 6 weeks 0.0.0.0:80->3000/tcp chapter6_shipit-clicker-web-v2_1

			…

			3f91820e097b redis:5-alpine3.10 "docker-entrypoint.s…" 7 weeks ago Up 7 weeks 6379/tcp chapter6_redis_1

			If you do not see the output of docker ps, double-check the username, IP address, and SSH key. Check for any error messages that Jenkins emits about the Jenkinsfile or related to the ssh shell command to troubleshoot. You will need to get this to work in order to get the next stage to work reliably.

			You can use Jenkins to connect to other hosts to run scripts that use docker and docker-compose. But you can also run docker and docker-compose directly on the Jenkins server if you need to. We will explore that later in the chapter.

			Now that we can use Jenkins to connect to the production server via SSH, using a pipeline script, we can use that connection to make changes to the production server, including deploying new changes to the server.

			Driving configuration changes through Jenkins

			Next, we will learn how to make changes to the production system by running scripts from the Git repository hosted in Jenkins. We can use Jenkins both to build the Docker containers for the application and to deploy those containers on the production server. That way, any changes to either the program or to its Dockerfile or the docker-compose.yml file can be propagated through automation to the production system.

			Here are some tips for integrating Jenkins with other systems, including GitHub, that can make your life easier. The first tip relates to the best way to configure Jenkins with a Jenkinsfile—by storing it in a version control system.

			Using Git and GitHub to store your Jenkinsfile

			In the previous section, we used Jenkinsfile entered directly into a Jenkins job to do some quick testing. That works well for doing exploratory work, but to build and manage a more complex set of scripts, you should use Git version control to store the Jenkinsfile and use GitHub to store and share the Git repository, since GitHub integrates nicely with Jenkins. This will let you make changes not only to your program but also to the deployment scripts in a controlled fashion.

			For more information about why you should use the Git version control system in conjunction with GitHub, see this introductory guide: https://guides.github.com/introduction/git-handbook/.

			We can combine the power of a script stored in GitHub with the Jenkins Environment variables feature, which lets you centrally store values that will be substituted in the same Jenkinsfile as the one in the repository for this book to deploy the demonstration project. This support for environment variable substitution will allow you to use the Jenkinsfile unchanged, even though your production server may be set up with a distinct user and host, while also using your SSH, Docker Hub, and GitHub credentials, which are similarly distinct.

			In order to make further progress, you must make sure that Jenkins has a GitHub username and security token as a credential so that you can use Jenkins to check out GitHub repositories.

			Ensuring Jenkins has a GitHub username and security token credential

			In order to use Jenkins with GitHub, you will need to save a Jenkins credential that has a GitHub personal access token. In a web browser, sign in to GitHub, and go to https://github.com/settings/tokens and generate a token that has both the repo and admin:repo_hook scopes. Copy the generated token to the clipboard. Then, in another browser window, go to your Jenkins server and navigate through credentials to the Jenkins global credentials and create a Global credentials (unrestricted) credential of the type Username with password and put in your GitHub username, paste the security token from the clipboard, and give it an ID of github.repo.username and a description of GitHub repo credentials (username), but replace username with your actual GitHub username. Press the OK button to save the credential.

			Option 1 – Configuring Jenkins with a GitHub organization item

			Jenkins has support for defining items that might be individual Jenkins jobs or collections of related jobs. Several of the types of items allow you to connect a version control system to Jenkins so that it will automatically define multiple Jenkins jobs. One of the most powerful of these is a GitHub Organization item. Using a GitHub Organization item will allow Jenkins to scan GitHub for every project that has a Jenkinsfile, and Jenkins will automatically set up a forest of child items for all the repositories in the GitHub organization where it finds a Jenkinsfile.

			This is the easiest way to have Jenkins manage a set of related projects If you are using a new Jenkins server to explore Docker development, in a GitHub organization you control, try setting this up. If you are using a corporate Jenkins server, this may already be set up.

			From your Jenkins installation's home page, click the New Item link and create an item with a name that matches your GitHub organization of type GitHub Organization. Use the credentials labeled as GitHub repo credentials (username) and make sure the name in the organization field matches your GitHub organization name.

			You can set up a filter so that this scans only the projects you want for a Jenkinsfile. This might be a good idea if you have a huge number of repositories and branches in your organization, or if you only want your installation of Jenkins to build specific repositories—the repositories that might work with Jenkins—or there is some other Jenkins server that also builds a subset of the projects in your GitHub organization. If you want to do this, add a Behavior of type Filter by name (with regular expression) and construct a regular expression to match the names of only the repositories you want to include.

			Using GitHub, fork the Docker-for-Developers repository (https://github.com/PacktPublishing/Docker-for-Developers/) to your organization. Alternatively, if you don't want to fork the repository, create an empty repository in your organization. Then, push your local copy of the repository to the freshly created repository, go into the GitHub organization item you created, and you should see a Docker-for-Developers item show up.

			If you are using an individual GitHub account, and lack access to a GitHub organization, this may not be a good option, however. You could instead configure Jenkins with a multibranch pipeline item that retrieves the Jenkinsfile from a single GitHub repository.

			Option 2 – Configuring Jenkins with a multibranch pipeline item

			Using a multibranch pipeline item will allow Jenkins to scan GitHub for a single repository for every project that has a Jenkinsfile, and Jenkins will automatically set up a forest of child items for branches and pull requests for a single configured GitHub repository, for branches where it finds a Jenkinsfile.

			Fork the Docker-for-Developers repository to your organization or create an empty repository in your account and push your local copy of the repository to GitHub. You need to do this before configuring the multibranch pipeline.

			From your Jenkins installation's home page, click the New Item link and create an item with a name that matches your GitHub repository name of type Multibranch Pipeline. In Branch Sources, choose GitHub, and then fill out the GitHub form with the credentials labeled as GitHub repo credentials (username), and put the URL of your GitHub repository in the Repository HTTPS URL field. Then, save the item. It will scan the repository and set up the individual Jenkins jobs for each Git branch.

			At this point, whether you have used the multibranch pipeline or the GitHub organization item type, you should have a set of branches in your Jenkins.

			Changing the origin of all checked out repositories

			At this point, you should also change the URL for your Git repositories, both on your local workstation, and on the production server you set up in the previous chapter, to the new repository URL. Replace example with the name of your GitHub organization or user where you forked the repository:

			git remote set-url origin https://github.com/example/Docker-for-Developers.git

			Checking that your GitHub repository is talking to Jenkins via a webhook

			GitHub can communicate with other systems via webhooks, which are HTTP requests that the system triggers, targeting another system, when people do certain actions.

			See here for more information about GitHub's support for webhooks and system integration: https://developer.github.com/webhooks/

			When we set up the GitHub Organization item or the MultiBranch Pipeline item, Jenkins should have set up one of these webhooks in GitHub so that it can talk to Jenkins. If it did not, you can go to the Settings tab on GitHub for your GitHub repository, go to Webhooks, and add a webhook of the form https://jenkins.example.com/github-webhook/ (replacing jenkins.example.com with your Jenkins server).

			Now that we have configured Jenkins to be able to communicate with GitHub, we want to make sure that pushing a branch to GitHub triggers builds in Jenkins. Depending on your account's GitHub permissions and the Jenkins configuration, it might not have created the webhook automatically.

			In a web browser, navigate to your GitHub repository and go to Settings, then to Webhooks, and verify that there is a webhook with your Jenkins server URL there.

			What to expect now that Jenkins is connected to GitHub

			Now that we have configured Jenkins to be able to check for the presence of a Jenkinsfile in the repository we are using, we can proceed. Jenkins will try to build the project you have just defined. The build will fail unless you provide Jenkins with additional variables and credentials, however.

			In order to tie the specific configurations for the build to your environment, we will need to use Jenkins to set up some environment variables to store the less sensitive items, in addition to storing cryptographic keys and passwords using the Credentials feature.

			Creating Jenkins environment variables for production support

			Jenkins has support for setting environment variables that items (build and deployment jobs, for example) can reference. For secret variables, such as SSH private keys, or Docker Hub API credentials, you can use the Credentials system that we used in the previous section to store these securely. For values that are less sensitive, we can use the Environment variables settings available on the Jenkins configuration screen:

			
				
					[image: Figure 7.7 – Jenkins configuration – Environment variables for production host

]
				

			

			Figure 7.7 – Jenkins configuration – Environment variables for production host

			In order to proceed, please double-check with the DNS provider that you use that your production host has a DNS name associated with its IP address. In Chapter 6, Deploying Applications with Docker Compose, we set up DNS names for the production server. Having a DNS name will make the configurations more readable and will make it easier for people to reach the server in a web browser. Set up variables for these keys and values:

			
					shipit_prod_host: Production server DNS domain name, for example, shipitclicker.example.com)

					shipit_prod_user: Production server username, for example, centos

			

			Once you have set up these variables, hit the Save button. We will use these variables when we run the Jenkins job that updates the running containers. Before we do that though, we need a place to put the containers. In a previous chapter, you learned how to push a container image to Docker Hub. Next, we will automate that process.

			Building Docker containers and pushing them to Docker Hub

			In order to avoid building the containers on the production server, we will need to build them on Jenkins and then push the containers into a Docker container registry, such as Docker Hub. This allows a clean separation of building the Docker containers from deploying them. If you try to both build and deploy the container on a single small server, it is highly likely that at some point you will run into out of memory issues or other system stability problems. And on a production server, you want to maximize the stability of that environment.

			While you could push the container to Docker Hub from your local workstation, part of the benefit of using Jenkins is that you can use it to automatically build and push containers to a central repository. To do that, you will need to give Jenkins credentials to Docker Hub.

			Adding Docker Hub credentials to Jenkins credential manager

			Log in to https://hub.docker.com/ with your Docker account and create an API token for Jenkins to use from the https://hub.docker.com/settings/security security settings page. Copy that API token to the clipboard and in another web browser tab, visit the Jenkins credential manager and create another global unrestricted credential of type Username with Password. Give it an ID called shipit.dockerhub.id and put your Docker account username in the username field, and the access token in the password field and save it.

			This will allow you to use your Docker Hub credentials to push a build to Docker Hub, and since we already have SSH credentials set up in Jenkins, we can use those to push a Docker image to Docker Hub after we build it, and then to connect to the production server in order to deploy the new software.

			Ensuring the previous production environment is stopped

			If the production environment from the previous chapter is running, you will need to stop it in order to deploy the new environment. This will ensure that the new production environment can bind to the correct TCP ports.

			Note

			In a situation where you have a real production application with valuable customer data, you would want to back up and restore any databases and other persistent storage to the new environment. The ShipIt Clicker application only uses Redis in order to save details about the production environment. For Redis, this can be done via the CLI using the SAVE command. You can then copy the resulting dump.rdb file into the Docker volume that this chapter's Redis container uses.

			From your local workstation, SSH to the server and stop it (replace 192.0.2.10 with the IP address of your server):

			cmd='cd Docker-for-Developers/chapter6; docker-compose stop'

			ssh centos@192.2.0.10 "$cmd"

			Now that the previous Docker containers are stopped, you may proceed with using Jenkins to build the software, push to Docker Hub, and deploy the containers on the production server. You only have to do this once, when you are first transitioning from the setup from the previous chapter to the environment managed by Jenkins in this chapter.

			Next, let's trigger a production environment deployment through Jenkins.

			Pushing to Docker Hub and triggering a production deployment

			Now that we have all the environment variables and credentials in place, we can trigger a Jenkins build. Jenkins normally triggers a build when it detects a commit, but we can also force Jenkins to start a build. Go to the Jenkins job that is hooked up to the GitHub repository where the application code resides for the master branch and click on Build Now. Jenkins will start building the job and show the build number in the user interface:

			
				
					[image: Figure 7.8 – Jenkins jobs in GitHub Organization – master branch

]
				

			

			Figure 7.8 – Jenkins jobs in GitHub Organization – master branch

			Before we check on the progress of the job, let's examine how it works.

			Jenkins runs a combination of the Jenkinsfile and the script chapter7/bin/dep-ssh.sh in order to build and deploy the software. The Jenkinsfile checks out the repository, builds the Docker container, and pushes it to Docker Hub. The following excerpt from the Jenkinsfile shows the code that manages the checkout, build, and push process:

			pipeline {

			 agent any

			 stages {

			 stage('build') {

			 steps {

			 checkout scm

			 script {

			 docker.withRegistry(registry, 'shipit.dockerhub.id') {

			 def image = docker.build(

			 getImageName(appName),

			 "-f ${dockerfile} --network host ./chapter7"

)

			 image.push()

			 }

			 }

			 }

			 }

			The next stage, the deploy stage, runs when the branch is master or staging and invokes the shell script chapter7/bin/dep-ssh.sh, which connects to the server via SSH and updates the copy of the repository, pulls the built Docker containers, and restarts the containers. See the following excerpt from dep-ssh.sh for the most important part:

			ssh -i "$keyfile" -o StrictHostKeyChecking=no "$targetEnv" <<EOF

			set -euo pipefail

			cd Docker-for-Developers/chapter7

			git fetch

			git reset --hard HEAD

			git checkout -f origin/"$GIT_BRANCH"

			docker pull "$image"

			set -a

			DOCKER_IMAGE="$image"

			PORT="$port"

			bin/restart.sh

			EOF

			Now that you understand how the build and deploys are chained together, you should see whether the deployment to the production environment worked.

			Verifying that the deployment worked

			Click on the most recent build and then click on Console Output to follow the progress of the job. A successful run will show Finished: Success at the end of the console output.

			The console output will show these basic steps:

			
					The Git repository being cloned from GitHub.

					The Docker container being built.

					The Docker container being pushed to Docker Hub.

					Jenkins connecting to the production server via SSH.

					The script chapter7/bin/ssh-dep.sh runs on the production server, which then pulls the image from Docker Hub and restarts the Docker services.

			

			If any of the preceding steps fail, the Jenkins job will fail. If that happens, double-check that the credentials and environment variables are correct. You can compare the output of your test run to the sample output, chapter7/consoleOutput.txt, in the companion GitHub repository to see whether your Jenkins run worked as expected.

			If this has built successfully, you should be able to go to the same URL you used in the previous chapter (for example, http://shipitclicker.example.com/ or http://192.2.0.10/) in order to see the application. Congratulations! Now every push to the master branch, including when pull requests get merged to the master branch, will deploy the production environment. This is one of the simplest ways to achieve continuous deployment.

			You might want to be able to see your changes in a separate environment that is stable and always available so that if you make changes that might break the production environment, you can test them out in isolation. In the next section, we will learn how to set up a staging environment similar to the production environment and orchestrate deployments to it using Jenkins.

			Deploying to multiple environments through multiple branches

			Being able to deploy to a single production environment is valuable, but in order to support development and testing, it is useful to have at least one other environment other than the production environment to test with. That way, people testing the software who do not have a development environment can see the effect of changes you make, without you having to deploy them to the production environment.

			In the next part of the chapter, we are going to create a second environment, a staging environment, to allow us to test changes before they are in production.

			Creating a staging environment

			You will need another host, similar in specifications to the one running the production environment, for the staging environment. Once you can SSH to that host, you could follow the instructions in the previous chapter about installing Docker and Git. Assuming you are running on CentOS 7, you can use the following script snippet to quickly provision Docker on that system and test that it is working (replace centos@192.2.0.11 with the user and host you are using for your staging environment, and the GitHub URL with the URL of your organization's fork of the project repository):

			$ staging=centos@192.2.0.11

			$ ssh $staging < bin/provision-docker.sh

			$ ssh $staging git clone https://github.com/PacktPublishing/Docker-for-Developers.git

			$ ssh $staging docker run --rm hello-world

			Once you have Docker working on the staging system, you can enter the exit command to go back to your local workstation. Then, make sure that the staging system has the same SSH public key that the production system has. Do this from the directory that contains the jenkins.shipit.pub key file:

			$ ssh $staging mkdir -p .ssh

			$ ssh $staging tee -a .ssh/authorized_keys < jenkins.shipit.pub

			$ ssh $staging chmod 700 .ssh $ ssh $staging chmod 600 .ssh/authorized_keys

			Now that the staging server has been prepared with the right SSH credentials and the essential software needed to run Docker applications, we will configure Jenkins to support this staging environment.

			Creating Jenkins environment variables for staging support

			In order to prepare Jenkins for deployments to the staging server, we will return to the Environment variables settings available on the Jenkins configuration screen. In order to proceed, please make sure that your staging host has a DNS name associated with it. Set up variables for these keys and values:

			
					shipit_staging_host: Staging server DNS domain name, for example, shipit-staging.example.com)

					shipit_staging_user: Staging server username, for example, centos

			

			Deploying by force-pushing to the staging branch

			The deployment scripts detect what branch is being processed and deploy to the right environment. This is done with a combination of directives in the Jenkinsfile and having the deploy script use environment variables set up through the Jenkinsfile and the Jenkins global configuration. Before we get to the example that shows how to use Git to force-push, we need to examine the Jenkinsfile and support scripts to see how they handle branch names.

			How do the scripts know what server to use?

			The Jenkinsfile will only run the deploy stage if the branch name is either master or staging:

			 stage('deploy') {

			 when {

			 anyOf {

			 branch 'master'

			 branch 'staging'

			 }

			 }

			Next up, we are going to see some of the power of using a Jenkinsfile, showing off some of the Groovy language features such as variable interpolation and calling functions. The steps that follow in the Jenkinsfile define environment variables that the chapter7/bin/ssh-dep.sh script uses to help pick the right environment:

			 steps {

			 echo "BRANCH_NAME is ${env.BRANCH_NAME}"

			 echo "Deploying to ${getTarget()}"

			 withCredentials([sshUserPrivateKey(

			 credentialsId: 'jenkins.shipit',

			 keyFileVariable: 'keyfile')]) {

			 sh """

			 set -a

			 target=${getTarget()}

			 image=${getImageName(appName)}

			 keyfile=${keyfile}

			 ./chapter7/bin/ssh-dep.sh

			 """

			These use Jenkins variable interpolation expressions to call Jenkins functions written in Groovy (getTarget() and getImageName(appName)) that set some of the environment variables that the chapter7/bin/ssh-dep.sh script uses.

			The getTarget() function uses this ternary expression to pick whether to target the prod or staging environment:

			def getTarget() {

			 env.BRANCH_NAME == 'staging' ? 'staging' : 'prod'

			}

			Once the flow of control has passed to the chapter7/bin/ssh-dep.sh script, it uses the target environment variables to pick what environment to target and sets variables up so that the SSH command will pick the correct server:

			port=${port:-80}

			prod="${shipit_prod_user}@${shipit_prod_host}"

			staging="${shipit_staging_user}@${shipit_staging_host}"

			image=${image:-dockerfordevelopers/shipitclicker:latest}

			if [["$target" = "staging"]]; then

			 targetEnv="$staging"

			 targetHost="$shipit_staging_host"

			else

			 targetEnv="$prod"

			 targetHost="$shipit_prod_host"

			fi

			In this way, the shell script sets up targetEnv so that the following SSH command can reach the correct server:

			ssh -i "$keyfile" -o StrictHostKeyChecking=no "$targetEnv" <<EOF

			Now that you see how the variables in the Jenkinsfile and chapter7/bin/ssh-dep.sh interact, you are ready to use Git to initiate a deployment to staging.

			Preparing to use Git to force-push a branch to staging

			Although force-pushing branches in Git can be problematic, this is one of the times when it makes sense. If you consider the staging branch to be special, not something that you would ordinarily merge into the master, you can then repeatedly force-push work in progress from any branch to it.

			On your local workstation, create a new branch in the Git repository called experiment by issuing the command git checkout -b experiment. Edit the chapter7/src/public/index.html file and change the text enclosed in the <h1> tags to ShipIt Clicker Experiment. Save the file and do a git commit command. Then, force-push the HEAD of your branch to GitHub as follows:

			$ git push origin HEAD:staging --force

			This will push the code you just committed to GitHub. Then, open a web browser to your Jenkins server and examine the item for your repository. You should shortly see that Jenkins has created a staging branch job and will build the software and push it to Docker Hub, and deploy it to the staging environment. Observe the Jenkins console log for the job for the staging branch and make sure that it is similar to the one for the production deployments from the master branch.

			If your deployment worked, check with a web browser to see that the title of the application on the staging server is ShipIt Clicker Experiment—the text you changed.

			At this point, we have used Jenkins to deploy a Docker application to both a production and a staging server. You might wonder what it would take to add a third or fourth environment, or what the drawbacks of this approach might be. Very complex scripts and environments might make it harder to deploy with Jenkins—let's examine that more closely.

			Complexity and limits to scaling deployments through Jenkins

			Since Jenkins is a general-purpose tool for building and scripting processes related to software development, it offers immense flexibility, but at the cost of complexity. While it can do almost any function related to continuous integration and deployment, it may take more scripting and setup than other systems, such as Spinnaker, CodeFresh, or WeaveWorks, that are more purpose-built. Some other continuous integration and deployment systems deal exclusively with Docker-focused workflows.

			Using Jenkins to manage builds, tests, and deployments to one or two hosts is quite manageable. But when you start to scale out, it may become more complex and difficult to continue to use Jenkins to handle builds and deployments. The build and deployment scripts may also become too complex to manage due to the many different programming languages and approaches required. Let's examine these limits, starting with limits about managing multiple hosts.

			Managing multiple hosts

			The scripts shown in this chapter handled deployments to two environments: a production environment and a staging environment. However, if we wanted to have four more similar environments, say, development, QA, demo, and beta, we might have to spin up four additional hosts and extend our scripts accordingly. It could get to be a big, expensive mess pretty fast. Also consider what would happen if one host became too small to run the production site. You might need to run a fleet of instances and make sure that they all use the same database. Then, you would get into issues about how you might update and deploy that fleet of instances without downtime. The questions and problems start to get bigger if you use a brute-force scripting approach.

			If you were going to use Jenkins to manage multiple hosts at scale, you would want to look into integrating it with services that offer additional abstractions to handle scaling and deployment, such as AWS EC2 Auto Scaling Groups, and AWS CodeDeploy. However, neither of those are focused on Docker-specific functionality. You could also use Jenkins to run scripts that used Kubernetes tools, such as kubectl or helm, in order to deploy the software to a Kubernetes cluster, if you have an organizational commitment to using Jenkins as your continuous integration environment.

			The complexity of build scripts

			One of the best things about Jenkins is that it allows you to script builds using the Groovy domain-specific language; however, this can be one of the worst things simultaneously. Groovy is a powerful and concise Java virtual machine-based language, but it is much less well known than many other scripting languages, such as Python, Ruby, and Bash. Furthermore, Jenkins uses a sandbox model to limit what type of Groovy statements are allowed.

			This often means that implementers must split their build scripts between a high-level orchestration layer written in the Jenkins pipeline DSL dialect of Groovy and some other language. This project uses a combination of Groovy Jenkinsfile and Bash shell scripts to do this, which drive the Docker builds and deploys.

			How do you know when you have hit the limit?

			People who have had many years of experience using Jenkins and hand-rolled scripts to build and deploy software have learned to recognize a few signs that using Jenkins for your purposes has hit its limits:

			
					The installation of Jenkins itself becomes fragile and too complex for new people on the project to learn quickly.

					It becomes difficult to upgrade Jenkins because of plugin incompatibilities.

					The build scripts fail routinely, and people ignore the failures.

					It starts taking too long to build and deploy the software to meet the business needs.

					If you maintain many applications, the scripts used to build and maintain them become a maze of cut and paste spaghetti code.

			

			If you see these signs, it might be time to consider using a more purpose-built approach, such as Spinnaker, GitLab CI, or CodeFresh as your CI and container pipeline management tool.

			Summary

			In this chapter, you have learned how to construct a continuous deployment pipeline using Docker, Jenkins, and GitHub. You learned how to establish connectivity between a Jenkins server and multiple host servers through SSH, scripted using a Jenkinsfile. You learned how to combine those techniques to drive configuration changes and Docker deployments to the production host using Jenkins. You also learned how to set up a second staging environment and use the Jenkins environment variables and credentials support in order to make a single set of scripts deploy to multiple environments. Finally, you learned about the limitations of using Jenkins to manage larger-scale deployments, and when it might be time to reach for other tools to manage continuous deployment.

			Now that you have mastered the basics of using Jenkins to build and deploy software to both a production and a staging environment, you can apply this to your own projects. This will help you build and deploy your software more reliably.

			In the next chapter, we will see how we can use Kubernetes and the Amazon Web Services Elastic Kubernetes Service (AWS EKS) to manage larger-scale, more robust clusters of servers that can host applications running in Docker.

			Further reading

			If you choose to use Jenkins to manage your Docker-based environments, you should look at these resources more closely:

			
					Using a Jenkinsfile: https://jenkins.io/doc/book/pipeline/jenkinsfile/

					Jenkins Docker integration docs: https://jenkins.io/doc/book/pipeline/docker/

					Securing Jenkins: https://jenkins.io/doc/book/system-administration/security/

					Using Let's Encrypt and Apache to secure Jenkins with SSL: https://www.agileana.com/blog/serve-jenkins-over-https-with-apache-as-proxy-and-certbot-letsencrypt-ssl/

					Using an NGINX reverse proxy or AWS ELB to secure Jenkins with SSL: https://wiki.jenkins.io/display/JENKINS/Jenkins+behind+an+NGinX+reverse+proxy

			

			If you are running a real production application on a single host with docker-compose, you should strongly consider securing your site with SSL. You can use Let's Encrypt and a host of Docker sidecar containers to achieve this:

			
					How to use Let's Encrypt, NGINX, and Docker to secure your site with SSL: https://github.com/nginx-proxy/docker-letsencrypt-nginx-proxy-companion

					Using docker-compose.yml to configure Let's Encrypt with NGINX and Docker: https://github.com/nginx-proxy/docker-letsencrypt-nginx-proxy-companion/blob/master/docs/Docker-Compose.md

			

		

	
		
			Chapter 8: Deploying Docker Apps to Kubernetes

			Recently, lots of container orchestrators have sprung up like mushrooms after a rainstorm, but one orchestrator is poised to dominate the market: Kubernetes, from the Cloud Native Computing Foundation. Google originally released Kubernetes with the intention of bringing the same level of sophistication to the world of open source container runtimes as it has been doing for years internally with the Borg clustering system.

			We will begin by learning more about different Kubernetes distributions and why you might want to use each one. We will start with using Kubernetes on a local development workstation, and then install a sample application locally.

			As we progress through the chapter, you will learn how to create a Kubernetes cluster on Amazon Web Services (AWS) through Elastic Kubernetes Service (EKS), and deploy your application to a cluster running on multiple Elastic Compute Cloud (EC2) nodes. We will use AWS CloudFormation, an infrastructure-as-code system, to deploy the EKS cluster. Once we have deployed the cluster to AWS, we will learn about using labels and namespaces to organize our applications.

			Running a Kubernetes cluster is more complex than the alternatives presented so far, but it opens up a huge universe of tools and techniques for running clustered applications with a vendor-neutral, cloud-native approach. Kubernetes is useful not only for cloud deployments, but also for on-premises deployments and local development.

			In this chapter, we're going to cover the following main topics:

			
					Options for Kubernetes local installation

					Deploying a sample application – ShipIt Clicker v4

					Choosing a Kubernetes distribution

					Getting familiar with Kubernetes concepts

					Spinning up AWS EKS with CloudFormation

					Deploying an application with resource limits to Kubernetes on AWS EKS

					Using AWS Elastic Container Registry with AWS EKS

					Using labels and namespaces to segregate environments

			

			Let's get started by getting Kubernetes running on our local workstation. Then, we will look at the various Kubernetes distributions available.

			Technical requirements

			For this chapter, you will need to set up Kubernetes on your local workstation, either through Docker Desktop or by installing a Kubernetes distribution, such as Minikube. In addition, to deploy your containers to AWS, you will need an account set up in advance.

			You can sign up for an AWS account at the following URL if you haven't already done so:

			https://aws.amazon.com/

			The code files for this chapter can be downloaded from the chapter8 directory at https://github.com/PacktPublishing/Docker-for-Developers/.

			Check out the following video to see the Code in Action:

			https://bit.ly/3fXO5xy

			Options for Kubernetes local installation

			You need to set up a local Kubernetes installation in order to build, package, and test your Docker application in preparation for deploying it to a production installation in the cloud. Please review the Kubernetes Getting Started documentation (https://kubernetes.io/docs/setup/). This documentation calls this local environment a learning environment. Think of the local environment as a way to learn about and test your application before you take the application to production with Kubernetes in the cloud. Let's continue by weighing up the options, starting with Docker Desktop's Kubernetes support.

			Docker Desktop with Kubernetes

			For most people, this is the easiest way to start experimenting with Kubernetes. You don't have to set up cloud accounts or do a complicated installation to get started if you choose to do this. To install Docker Desktop, follow the download links at https://www.docker.com/products/docker-desktop.

			With recent versions of Docker Desktop, you can enable Kubernetes support and run and develop Kubernetes applications on your workstation. Open the Docker Desktop application on your workstation and go to the Preferences menu to open the Settings dialog. Tick the Enable Kubernetes box and hit the Apply & Restart button:

			
				
					[image:]
				

			

			Figure 8.1 – Example of enabling Kubernete

			This will activate a single-node Kubernetes cluster on your local workstation. Once you have enabled Kubernetes, you are ready to verify that your local installation works. See the following section to find out how to do this.

			Minikube

			If you don't want to run Kubernetes through Docker Desktop, you should probably use Minikube to set up a local Kubernetes single-node cluster environment. This is available on Windows, Macintosh, and a wide variety of Linux operating system distributions.

			To install Minikube, follow the directions for your operating system found at https://kubernetes.io/docs/tasks/tools/install-minikube/, and then follow the instructions in the following section to verify that your Minikube installation works.

			Verifying that your Kubernetes installation works

			Interacting with Kubernetes is done mostly through the command-line interface (CLI). You can issue the following command to see whether your environment is functional; it will show all the running pods, including the system pods:

			kubectl get pods -A

			The output will look something like this:

			
				
					[image: Figure 8.2 – Output of kubectl get pods

]
				

			

			Figure 8.2 – Output of kubectl get pods

			Now that you have Kubernetes running on your local workstation, you can develop and deploy applications using Kubernetes. Applications you develop and package with Kubernetes can be deployed with the same tools that you use locally – but at a much larger scale in the cloud. Before we deploy an application to the cloud, though, we should show that we can deploy a packaged application locally.

			Deploying a sample application – ShipIt Clicker v4

			Let's imagine that the ShipIt Clicker application introduced in previous chapters has been shipped to production and the team responsible for operations is nervous about the limits of scaling this application since it is only deployed on one server. In order to scale out this Docker application to multiple servers, the team has decided to migrate to Kubernetes and package the software for Kubernetes using the Helm package manager. To proceed, let's install Helm and test it out.

			Installing Helm

			Helm is to Kubernetes what a package manager is to a modern operating system. It allows developers to specify how their application is packaged and deployed in a Kubernetes cluster. Helm is not only a package manager, but also a templating system for generating Kubernetes configurations and applying those configurations in a controlled way. Helm allows developers to define the entire set of containers and their interrelated Kubernetes configurations. Once you have defined an application in Helm, it becomes simple to install and update that application.

			You can install this on macOS easily with Homebrew using the following command:

			brew install helm

			For other operating systems, follow the Helm installation instructions at https://helm.sh/docs/intro/install/.

			Once you have installed Helm, use it to install the stable Helm repository (so that we can install other software packages that Helm supports, such as the NGINX Ingress Controller) with the following command:

			helm repo add stable https://kubernetes-charts.storage.googleapis.com/

			Once you have installed this, you can use Helm to install applications from the catalog to your local Kubernetes instance. You can also use Helm to install applications defined in local Helm charts. We will use Helm to deploy ShipIt Clicker to Kubernetes, in conjunction with another Helm package, the NGINX Ingress Controller. In this chapter, we will first deploy the ShipIt Clicker application to the local learning environment Kubernetes cluster, and later, we will deploy ShipIt Clicker to the cloud on Amazon EKS.

			Deploying the NGINX Ingress Controller and ShipIt Clicker locally

			Let's use Helm to install a packaged application, the NGINX Ingress Controller, and then use it to install ShipIt Clicker. An Ingress Controller is a Kubernetes networking proxy that allows requests from the outside to reach applications deployed to Kubernetes, with well-defined interfaces to help wire together the applications. The stable Helm repository contains the NGINX Ingress Controller. Install it as follows:

			helm install nginx-ingress stable/nginx-ingress

			Later in the chapter, we will explore Ingress Controller in more detail. Know for now that this simple installation is sufficient to expose services inside the Kubernetes cluster with the right configurations to localhost so that you can test them.

			Next, we will build the ShipIt Clicker Docker container, tag it, and push it to Docker Hub. Kubernetes relies on pulling Docker images from a Docker image registry, so it is insufficient to only have the container on your local system. Issue these commands, replacing dockerfordevelopers with your Docker Hub username:

			$ cd chapter8

			$ docker build . -t dockerfordevelopers/shipitclicker:0.4.0

			$ docker push dockerfordevelopers/shipitclicker:0.4.0

			Edit the shipitclicker/values.yaml file and replace dockerfordevelopers with your Docker Hub username in this stanza:

			# Default values for shipitclicker.

			# This is a YAML-formatted file.

			# Declare variables to be passed into your templates.

			replicaCount: 1

			image:

			 repository: dockerfordevelopers/shipitclicker

			 pullPolicy: IfNotPresent

			Then, deploy ShipIt Clicker to the Kubernetes local environment. In this case, we will use a local Helm Chart instead of one from a network Helm Chart repository. The Helm Chart for ShipIt Clicker is in the GitHub repository, in the chapter8/shipitclicker directory. Install it with Helm, as follows:

			$ helm install shipitclicker shipitclicker NAME: shipitclicker

			LAST DEPLOYED: Fri Apr 24 23:21:22 2020

			NAMESPACE: default

			STATUS: deployed

			REVISION: 1

			NOTES:

			1. Get the application URL by running these commands:

			 http://localhost

			Visit http://localhost/ to view the ShipIt Clicker application. You should see the running application splash screen.

			Troubleshooting local installation

			If you can't reach the application at http://localhost/, you might have another web server running on port 80, such as Apache 2.

			Now that we are running this on Kubernetes, you need to use Kubernetes commands to connect to services that are on the inside of the cluster and not exposed through the Ingress Controller.

			To expose the Redis port from the Kubernetes cluster for testing, use the following commands:

			$ brew install redis

			$ kubectl port-forward deployment/shipitclicker 6379 &

			$ redis-cli

			> keys *

			> quit

			Now that you have deployed the ShipIt Clicker application to a local Kubernetes installation, you can proceed with deploying it to a larger cloud environment and configuring it for production readiness.

			Choosing a Kubernetes distribution

			So, how do we host Kubernetes beyond installing it on our workstations? When it comes to choosing a Kubernetes distribution, you are presented with a plethora of options, as we saw in Chapter 5, Alternatives for Deploying and Running Containers in Production. We are now going to revisit some of the most popular options to help you gain an understanding of the choices available based on your cloud provider or bare-metal data center setup, as well as see why we are choosing to use EKS to demonstrate the migration of the ShipIt Clicker sample application to Kubernetes.

			Google Kubernetes Engine

			Google Kubernetes Engine (GKE) is Google's key service for hosting containers in a Kubernetes-based environment. GKE (formerly known as Google Container Engine) was released in an Alpha state in November 2014 and went live in August 2015 for general usage.

			It currently offers one of the most mature Kubernetes services offered by cloud providers, including the following features:

			
					A single cluster quick start option for trialing the service

					Container vulnerability scanning

					Built-in data encryption

					Multiple channels for upgrading, repairing, and releasing

					Integration with Google monitoring services

					Automatic scaling and load balancing

					Google-managed underlying hardware

			

			Further documentation for interested readers can be found at the GKE website at https://cloud.google.com/kubernetes-engine/docs.

			Let's now compare this with Amazon's offerings.

			AWS EKS

			Amazon's answer to serving and managing containers in the cloud is its EKS service. As with GKE, Amazon's Kubernetes services, EKS, offers a managed service. Unlike Google's offering, it came to the market later, not being available until early 2018. However, what EKS loses in maturity, it makes up for in features.

			These features include the following:

			
					Serverless hosting via AWS Fargate (https://aws.amazon.com/fargate/)

					Server deployment options on EC2

					Zero-downtime upgrades and patching

					Auto-detection of unhealthy nodes

					Hybrid hosting solutions with AWS Outposts (https://aws.amazon.com/outposts/)

					Kubernetes Jobs for batch processing

			

			You can read more about EKS on the official website at https://aws.amazon.com/eks/features/.

			We'll be exploring EKS in more detail throughout this chapter and in subsequent chapters, mostly since it is the managed Kubernetes offering from the dominant cloud vendor. Other distributions have their merits, however, so we will also examine some of the other options out there. Next is Red Hat OpenShift.

			Red Hat OpenShift

			OpenShift is a collection of software developed by Red Hat geared toward containerized application architectures. Like GKE and EKS, OpenShift is Kubernetes-focused; however, where it diverges is with its focus on build-related artifacts and a native image repository.

			Having used Jenkins in the projects presented in this book, you will now be familiar with continuous integration and continuous deployment (CI/CD) pipelines in relation to containers. One of the key features of OpenShift is its extension of the standard kubectl commands to include mechanisms that replicate the sort of CI/CD functionality that you might otherwise have to use software such as Jenkins or Spinnaker to get. This includes the ability to create builds, test runs, and deployments.

			There are some other key features that also make OpenShift a desirable option:

			
					Automated upgrades and life cycle management

					Open source code base available on GitHub (https://github.com/openshift)

					Deploy in any cloud, in a data center, or on-premises

					An image registry

					Monitoring and log aggregation

			

			For further information on Red Hat OpenShift, make sure to check out the documentation on GitHub (https://github.com/openshift/openshift-docs) or on the official website (https://www.openshift.com/).

			Microsoft Azure Kubernetes Service

			We've looked at the major players so far, but of course, couldn't go any further without mentioning Microsoft's contribution to the Kubernetes ecosystem. For users of Microsoft cloud products, Azure Kubernetes Service (AKS) provides a mechanism to serve Docker containers in a Kubernetes-based environment.

			Let's take a brief tour of what AKS offers:

			
					The elastic provisioning of services

					Integration with the Azure DevOps and Monitor services

					Identity and access management with Active Directory

					Failure detection and container health monitoring

					Canary deployments

					Log aggregation

			

			As you can see, for Azure users, it has a comparable set of features to those available in EKS and GKE. If you would like to learn more, please refer to the AKS documentation (https://docs.microsoft.com/en-us/azure/aks/). Here, you will also find a quick start guide for getting a taste of what the service has to offer.

			Before running through the components that form the basis of Kubernetes, let's briefly review the other options available.

			Reviewing other relevant options

			EKS, OpenShift, GKE, and AKS represent the most popular Kubernetes services on the market. However, they are not alone. Digital Ocean offers an option for those wishing to get a taste of a managed service outside of deploying your own RedShift infrastructure or signing up to the big cloud providers. You can read more about it at https://www.digitalocean.com/products/kubernetes/.

			Many readers will be familiar with IBM, and they too offer cloud-hosting services. If you want to try out Kubernetes in their cloud environment, you can find details on their website, including how to set up a free cluster (https://www.ibm.com/cloud/container-service/).

			Anyone familiar with VMware might wish to explore their Kubernetes offering as well –VMware Tanzu Kubernetes Grid – which has strengths in building hybrid clouds (https://tanzu.vmware.com/kubernetes-grid).

			Finally, those looking for a fully managed Kubernetes service or those who are already customers of Rackspace have the option of checking out their Kubernetes as a Service (KaaS) offerings (https://www.rackspace.com/managed-kubernetes).

			That wraps up our whistle-stop tour of the hosting platforms available for deploying your containers.

			For the remainder of this chapter, we will be using Amazon's EKS service. If you haven't created an account, we recommend you sign up for one here now:

			https://aws.amazon.com/

			Note

			Users of other cloud providers may find that they can adapt the following sections to their own services if they wish.

			Let's now dig into the core concepts of Kubernetes, including pods, nodes, and namespaces.

			Getting familiar with Kubernetes concepts

			Now that you know where you can deploy Kubernetes, let's dive into some of the key concepts (including objects, ConfigMaps, pods, nodes, services, Ingress Controllers, secrets, and namespaces) and how they work. Let's start by examining an architecture diagram that shows the relationship between the various components of the system:

			
				
					[image: Figure 8.3 – Kubernetes architecture diagram

]
				

			

			Figure 8.3 – Kubernetes architecture diagram

			Figure 8.3 – Kubernetes architecture diagram

			With Kubernetes, the cluster consists of a control plane that manages all aspects of the Kubernetes cluster (including the interface with the cloud provider) and a set of workers for the cluster, known as nodes, where the applications hosted by the cluster live. Developers and cluster operators interact with Kubernetes via the control plane through an API. The processes in the control plane communicate with the processes running on the individual worker nodes via the kubelet process, and the processes on the worker nodes are organized as pods that communicate with one another via the kube-proxy process that runs on each node.

			Objects

			The most fundamental concept in Kubernetes is an object. You use Kubernetes to create and maintain a collection of objects that might represent different elements of a cluster. All of the items explored in this section are Kubernetes objects. Kubernetes exposes APIs that let administrators create these objects and that some of the objects can use to discover and communicate with one another. You can use the kubectl utility to create, query, and modify all the different types of Kubernetes objects, as well as to configure the cluster.

			The kubectl command-line utility can take YAML format files that describe the objects and use them to create and update the state of the system. This is the most basic way of defining, installing, and upgrading Kubernetes applications. The Helm tool we used to install applications takes this a step further by providing templating and life cycle capabilities.

			We recommend configuring your application through Helm Charts. You briefly saw how to use Helm at the beginning of this chapter. A Helm Chart is simply a set of YAML configuration files that contain information about your containerized application.

			You can create a new Helm Chart using the following command:

			helm create my-chart

			This sets up a Helm Chart structure with template files that are ready for customization.

			ConfigMaps

			Kubernetes handles application configuration with a concept known as a ConfigMap. Then, we need to define the configuration for the container itself. This is handled through a ConfigMap.

			The key idea behind ConfigMaps is that you can separate the important configuration from the content of the images themselves. This is done in order to provide better portability of your microservices and applications.

			ConfigMaps can be created directly through kubectl using the following command:

			kubectl create configmap sample-configmap-name

			A ConfigMap will contain information used by your application, and other key-value pairs, such as the namespace. The following example illustrates how an application's ConfigMap might look:

			apiVersion: v1

			kind: ConfigMap

			metadata:

			 name: shipitclicker-configmap

			data:

			 language: "JavaScript"

			 node.version: "13.x"

			A ConfigMap such as the one we just demonstrated would then be stored inside your Helm Chart directory in the templates folder – for example, shipitclicker/templates/configmap.yaml.

			With this basic setup in place, you can then install your configuration through the helm install command. We will be exploring configuration in both its ConfigMap and Helm Chart formats in further detail throughout this chapter.

			Pods

			Pods in Kubernetes serve the purpose of grouping together 1 to n containerized components, which are then run in a shared context. They also include shared resources, such as IP addresses, storage, and definitions on how containers should be run. Multiple containers running together in a pod can communicate with each other on fixed ports on localhost, simplifying application configuration significantly.

			When defining what should be run in a pod, the best approach is to think of it as holding all the necessary containers for a system or application. Multiple pods can then be added to Kubernetes to scale your application out horizontally. This allows you to create redundancy and helps cope with increases in traffic and load.

			The shared context that the pods use is implemented through Linux concepts such as cgroups and namespaces. In Chapter 12, Introduction to Container Security, we will explore some of these concepts in depth in relation to container security.

			Nodes

			Machines that host Docker containers in Kubernetes' ecosystem are known as nodes, though you may also encounter the terms minions or workers – they all mean the same thing, but node is the official term. Kubernetes supports nodes that are either physical or virtual machines. Services such as Amazon's EKS provide the mechanisms for deploying node infrastructure. You deploy Kubernetes pods on nodes; the pods include both containers and shared resources.

			In the learning environment that we are using, our local development workstation is the sole node in the cluster. Later in this chapter, we will be creating a Kubernetes cluster with nodes managed by EKS on AWS EC2. Kubernetes nodes run containers through pods and other Kubernetes objects, such as DaemonSets.

			Alternative container runtimes

			Kubernetes nodes could potentially run different container runtimes. Kubernetes not only supports Docker containers, but also other container technologies, including containerd, CRI-O, and Frakti. Since this book is about Docker, we will exclusively use the Docker runtime in our examples.

			Services

			A Kubernetes service is a way of declaring how your application exposes its interfaces to the world. It typically defines a network port that other Kubernetes pods can use to communicate with your application.

			The Helm Chart for ShipIt Clicker emits a service template that defines a ClusterIP service definition:

			$ helm template shipitclicker ./shipitclicker | less

			…

			# Source: shipitclicker/templates/service.yaml

			apiVersion: v1

			kind: Service

			metadata:

			 name: shipitclicker

			 labels:

			 helm.sh/chart: shipitclicker-0.1.10

			 app.kubernetes.io/name: shipitclicker

			 app.kubernetes.io/instance: shipitclicker

			 app.kubernetes.io/version: "0.4.0"

			 app.kubernetes.io/managed-by: Helm

			spec:

			 type: ClusterIP

			 ports:

			 - port: 8008

			 targetPort: http

			 protocol: TCP

			 name: http

			 selector:

			 app.kubernetes.io/name: shipitclicker

			 app.kubernetes.io/instance: shipitclicker

			This declaration describes the fact that ShipIt Clicker exposes HTTP on port 8008 as a service on each pod. This lets other Kubernetes services discover and make connections to it.

			Ingress Controllers

			Kubernetes manages an internal network where the applications in a cluster can communicate with one another via a private network. By default, there is no way to reach applications running on the inside of a Kubernetes cluster from the outside. The Ingress Controller plays the role of a proxy and connection broker. Depending on whether you are deploying on-premises or in the cloud, different types of Ingress Controller have different uses. For example, earlier in this chapter, we installed the nginx-ingress Ingress Controller to allow us to reach applications running on our local Kubernetes installation. That controller is also useful when you want a vendor-neutral way of granting access to Kubernetes applications.

			Other Ingress Controllers allow Kubernetes to work smoothly with different types of external load balancers, such as aws-alb-ingress-controller, which enables the use of an Application Load Balancer (ALB) in the AWS cloud, or k8s-bigip-ctlr, which enables the use of F5 BIG-IP load balancers, which are found in many data centers.

			You can use Ingress Controllers to map domain names and HTTP paths to Kubernetes services. This makes it really easy to expose different services at different URLs. If you had a fleet of microservices, you could expose them at different API endpoints using this pattern. You can take advantage of Ingress Controllers by declaring an ingress object for your application that advertises how to connect your service to the outside world. For the ShipIt Clicker example, we use the following to map the service to localhost in the default namespace:

			$ helm template shipitclicker ./shipitclicker | less

			…

			# Source: shipitclicker/templates/ingress.yaml

			apiVersion: networking.k8s.io/v1beta1

			kind: Ingress

			metadata:

			 name: shipitclicker

			 labels:

			 helm.sh/chart: shipitclicker-0.1.10

			 app.kubernetes.io/name: shipitclicker

			 app.kubernetes.io/instance: shipitclicker

			 app.kubernetes.io/version: "0.4.0"

			 app.kubernetes.io/managed-by: Helm

			 annotations:

			 kubernetes.io/ingress.class: nginx

			 kubernetes.io/tls-acme: "true"

			spec:

			 rules:

			 - host: "localhost"

			 http:

			 paths:

			 - path: /

			 backend:

			 serviceName: shipitclicker

			 servicePort: 8008

			…

			The Kubernetes system handles connections to applications hosted inside the cluster from the outside using this Ingress Controllers definition. This means that when you are first developing your application, you do not need to worry about how it is connected to the outside world. The Kubernetes configurations that enable Ingress Controllers can all be managed with Helm Charts, too.

			Next, we will examine how Kubernetes deals with sensitive information – using secrets.

			Secrets

			Every application has values that need to be protected, from database passwords to API keys, so having a mechanism to store and retrieve them securely is an important function. In Kubernetes, this is handled with a mechanism called secrets. You can use a combination of configuration files and kubectl commands for sharing and modifying information that needs to be protected with your pods and their running containers. Once you have created a secret, you can use it in your application through a variety of mechanisms, including exposing a secret as an environment variable or creating a file that containers running in a pod can retrieve.

			The key operations in Kubernetes related to secrets are as follows:

			
					Creating a secret

					Describing a secret

					Retrieving a secret

					Editing a secret

			

			Let's explore these four concepts, starting with creating a secret.

			Creating a secret

			We can use several procedures to create a secret. This could be done by adding it manually on the command line or storing it in a YAML template file and using it from there.

			To add a secret stored in a text document via the command line, we can use the following commands:

			$ echo "new-secret" > secret.txt

			$ kubectl create secret generic secex --from-file=./secret.txt

			If we do this, kubectl will take care of encoding the secret for us using Base64 encoding.

			Let's prepare a secret another way, with a configuration file. In order to prepare a text secret for this file, it must be Base64-encoded. You can do that from the command line in macOS or Linux with the following command:

			$ echo -n "changed-api-key" | base64

			Y2hhbmdlZC1hcGkta2V5

			If we wanted to instead store the secret in a configuration file, and use kubectl to add it to Kubernetes, we could create the following secret-api-token.yaml file:

			apiVersion: v1

			kind: Secret

			metadata:

			 name: api-token

			 namespace: default

			type: Opaque

			data:

			 token: "Y2hhbmdlZC1hcGkta2V5"

			Then, using the kubectl apply command-line option, we can create the secret:

			kubectl apply –f ./secret-api-token.yaml

			You will notice that the configuration file format for the secret is very similar to the example ConfigMap we examined.

			Because shipitclicker uses Helm to manage its Kubernetes objects, it has support for secrets built into its templates. The one secret it references in the code in this chapter is related to a Node.js server-side framework setting for the Express framework used by the sample application that deals with server sessions. This secret is called SESSION_SECRET, and it is stored in the chapter8/shipitclicker/templates/secrets.yaml file:

			apiVersion: v1

			kind: Secret

			metadata:

			 name: {{ .Release.Name}}-secrets

			 namespace: {{ .Release.Namespace }}

			type: Opaque

			data:

			 SESSION_SECRET: "bXlTZWNyZXQtdjQK"

			Notice that this uses template expressions for name and namespace in order to align with the other templates that Helm transforms.

			We created this secret when we installed the shipitclicker Helm template earlier in the chapter when we used the helm install command. That is how you create secrets when you use a Helm template.

			Now that we have seen several ways of creating secrets, we will show how we ask Kubernetes what secrets it knows about.

			Describing a secret

			Once a secret has been created, you can list it using the kubectl get secrets command. This will list the secrets in a similar way to this:

			
				
					[image:]
				

			

			

			Figure 8.4 – List of secrets

			To learn more about the secret, use the kubectl describe command:

			kubectl describe secrets/shipitclicker-secrets

			The output of the preceding command is shown in the following screenshot:

			
				
					[image: Figure 8.5 – Output of the kubectl describe command showing the secret's metadata

]
				

			

			Figure 8.5 – Output of the kubectl describe command showing the secret's metadata

			You will see metadata about your secret displayed, including the key of the secret – in this case, SESSION_SECRET. It will not show the value of the secret, though.

			Retrieving a secret

			A typical way for a Kubernetes application to retrieve a simple secret is to define it as an environment variable passed to the container referencing the secret. See this excerpt from the rendered Helm chart templates:

			# Source: shipitclicker/templates/deployment.yaml

			apiVersion: apps/v1

			kind: Deployment

			metadata:

			 name: shipitclicker … containers:

			 - name: shipitclicker

			…

			 env:… - name: REDIS_PORT

			 valueFrom:

			 configMapKeyRef:

			 name: shipitclicker-configmap

			 key: REDIS_PORT

			 - name: SESSION_SECRET

			 valueFrom:

			 secretKeyRef:

			 name: shipitclicker-secrets

			 key: SESSION_SECRET

			You can see that the environment variables mapped to the deployment for the shipitclicker container reference both the configMapKeyRef and secretKeyRef entries.

			To deal with more complex secrets that are complete files, such as SSH private keys, the mechanism is similar. See the Kubernetes secrets documentation for more scenarios at https://kubernetes.io/docs/concepts/configuration/secret/.

			For troubleshooting purposes, we can retrieve a secret from Kubernetes from the command line:

			$ template='go-template={{index .data "SESSION_SECRET"}}'

			$ kubectl get secrets shipitclicker-secrets -o "$template" | base64 -D

			mySecret-v4

			Now that we have seen how to retrieve a secret, we will examine how to edit secrets.

			Editing secrets

			If you wish to edit the secret after creating it, use the kubectl edit command:

			kubectl edit secrets secex

			This will open your default editor (by default, vi) and you can edit the secret. You will have to have the Base64-encoded replacement value ready. It will look something like this:

			apiVersion: v1

			data:

			 secret.txt: Y2hhbmdlZC1hcGkta2V5LTI=

			kind: Secret

			metadata:

			 creationTimestamp: "2020-04-25T20:54:31Z"

			 name: secex

			 namespace: default

			 resourceVersion: "826562"

			 selfLink: /api/v1/namespaces/default/secrets/sample-secret

			 uid: ce8fbf27-33ba-461e-9bb8-1ca31fa3e888

			type: Opaque

			You can edit secrets directly this way. You might need to redeploy your application after updating a secret, depending on how it uses that secret. Having to manage this by hand can get complicated, which is one of the reasons why we use Helm to package applications.

			Updating the ShipIt Clicker session secret

			For applications deployed with Helm, it is usual practice to make changes through the Helm templates instead of using raw kubectl commands. Now, we will change the ShipIt Clicker SESSION_SECRET key using Helm by following this procedure:

			
					Generate a Base64-encoded secret with the following command: echo -n "new-session-secret" | base64

					Edit the template chapter8/shipitclicker/templates/secrets.yaml file.

					Use the value outputted by the openssl command for the new SESSION_SECRET value.

					Edit the chapter8/shipitclicker/Chart.yaml file and increment the chart's version number.

					You have to do this every time you update a Helm Chart. Then, update the template with the following command:helm upgrade shipitclicker ./shipitclicker

			

			As you can see, the basic commands to add and edit secrets are very simple. Using them in our application is slightly more complex. This should give you a taste of how to create a secret value and retrieve information on it to explore the feature.

			Note

			For further information on secrets, you can check out the latest Kubernetes documentation at https://kubernetes.io/docs/concepts/configuration/secret/.

			In Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels, we look into secret storage and usage in relation to Docker Swarm. While Docker Swarm is falling out of favor, with many teams switching to Kubernetes, it is important to understand these concepts when maintaining legacy systems. Additionally, you may find yourself in a position where you have to migrate systems from Docker Swarm to Kubernetes. The information provided in this chapter and Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels, should help you map concepts from one technology to the other.

			Namespaces

			In order to partition resources within Kubernetes, we can use a concept called namespaces. Namespaces provide a mechanism to group container resources into non-overlapping sets, which then allows you to subdivide your Kubernetes resources, based on your business needs, within the same cluster. This could include everything from environments (development, staging, and production) to groups of microservices. One important factor you should consider is that applications in the same namespace can read any secret in that namespace, so it represents a security boundary as well.

			It is tempting, once you learn of this feature, to want to use it everywhere, but the Kubernetes documentation cautions against this. The main namespaces content page (https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/) states the following:

			"For clusters with a few to tens of users, you should not need to create or think about namespaces at all."

			Keep in mind, though, that different teams might want to segregate applications from one another, and namespaces are a good way to do that as they provide a security boundary. Later in this chapter, in the Using labels and namespaces to segregate environments section, we will explore using this concept to deploy our application to both a staging and production environment in AWS.

			Next, let's set up AWS EKS with CloudFormation in order to deploy our application to the public cloud using Kubernetes.

			Spinning up AWS EKS with CloudFormation

			Now that we have walked through a local installation of Kubernetes and explored some of the cloud vendor options, we are going to try deploying containers to an AWS-hosted Kubernetes environment. This will be the EKS service we briefly introduced in the previous section of this chapter.

			In order to achieve this, we will describe how to create and manage an EKS cluster using AWS CloudFormation, their infrastructure-as-code service. For more information on CloudFormation, be sure to check out the AWS guides and documentation at https://docs.aws.amazon.com/cloudformation/.

			Assuming you have previously created an AWS account or followed the instructions under the Technical requirements section of this chapter, load up the AWS cloud console.

			To proceed, we need to set up EKS. There are many ways to get a working EKS cluster that require varying amounts of work:

			
					Set up everything by hand, step by step through the AWS console. We do not recommend this approach as it requires deep AWS knowledge to carry out correctly, and will lead to a hard-to-replicate environment with poor controls.

					Write infrastructure-as-code templates from scratch in either AWS CloudFormation or Terraform to control all the resources needed. This is an approach that might work for you if you are an expert in either CloudFormation or Terraform and have an existing investment in CloudFormation or Terraform tooling, but we do not recommend this for beginners.

					Use the eksctl tool (see https://eksctl.io) to create a cluster with a simple CLI tool. This could work well if you are already familiar with AWS and want to put your cluster in a specific region and tweak more of the parameters of your cluster. We only recommend this if you are familiar with AWS and EKS already.

					Research and adopt infrastructure-as-code templates that someone else has already written. Both AWS and many other people have created CloudFormation and Terraform templates.

			

			We are going to follow this last approach and use the AWS Quick Start CloudFormation templates for EKS to create our first cloud Kubernetes cluster.

			Introducing the AWS EKS Quick Start CloudFormation templates

			Amazon provides a handy set of CloudFormation templates called Quick Starts, built by their expert cloud architects to quickly get you up and running for a wide selection of AWS services and scenarios (https://aws.amazon.com/quickstart/).

			We will be using an AWS EKS Quick Start template for the next section of this chapter.

			However, before you deploy the EKS Quick Start CloudFormation templates, please take a moment to prepare your AWS account for deployment.

			Preparing an AWS account

			If you are just starting to use AWS, there are a few critical things to take care of before you proceed in order to protect your account. These precautions and preparations also apply if you choose a method other than using the AWS Quick Start CloudFormation templates to create your EKS cluster.

			If you are already an experienced AWS user and have an AWS Identity and Account Management (IAM) user account with administrative privileges, you have an EC2 key pair in the us-east-2 region, and you know your public IPv4 address, you can skip ahead to the Launching the AWS EKS Quick Start CloudFormation templates section. Avoid using an assumed IAM role with administrative privileges to create the CloudFormation template, though – that can cause some of the child templates to enter an UPDATE_ROLLBACK_FAILED state, which is difficult to recover from.

			Using an IAM administrator user and not the root account user

			First of all, ensure that you are not using the AWS console as the root account user. This is a major security risk. You will need an AWS IAM user account with administrative privileges. If you have just created your AWS root account, you can set one up by following the AWS instructions at https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html.

			Once you have set up this user and enabled billing access for the IAM user as per instructions, go to the https://console.aws.amazon.com/iam/home#/home page and copy the IAM user's sign-in link to the clipboard. Edit your web browser bookmarks and use this URL to create an AWS IAM Login item. You will want to use this to sign in to your AWS account with your administrator account instead of using the root account.

			On your local system, create an eks-notes.txt file and record the sign-in link there. Also, record the User ARN value of the administrator user from the https://console.aws.amazon.com/iam/home?region=us-east-2#/users/Administrator URL:

			
				
					[image: Figure 8.6 – AWS IAM user summary for the administrative user

]
				

			

			Figure 8.6 – AWS IAM user summary for the administrative user

			This Amazon Resource Name (ARN) user is a string, much like a web Uniform Resource Identifier (URI), but it is Amazon-specific. Now that we have set up an administrative user, let's set up multi-factor authentication (MFA) to protect both the root account and the administrator user.

			Setting up MFA

			We recommend that you protect both the root account and every IAM user account with administrative privileges using MFA. If someone compromises your root account, they could create huge bills by launching expensive cloud resources, steal your information, or even delete all your data. When you are getting started, we recommend that you use MFA with a virtual MFA device and supporting software such as Google Authenticator, Authy, or 1Password.

			For added security, you have the option of using one of the supported hardware token solutions, but virtual MFA works fine. Please see the AWS MFA documentation for more details on setting up MFA:

			https://aws.amazon.com/iam/features/mfa/

			Signing in to the AWS console with the IAM user account

			Ensure you have signed out of the root account. Then, use the sign-in URL from your eks-notes.txt document to sign in to the AWS console with your administrator IAM user account before proceeding.

			Creating access keys for the IAM administrator user

			In order to use the AWS command-line tools, you will need to generate AWS access keys. You can read more about access keys and other types of AWS credentials at https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html.

			In the AWS console, go to the IAM service and look in the Users section for the administrator user you just created. Then, navigate to the Security credentials tab and create new access keys by pressing the Create access key button:

			
				
					[image:]
				

			

			Figure 8.7– AWS IAM user summary for an administrative user

			Download these access keys as a CSV file to your local system. You will need to open that file and examine the keys in order to configure the AWS CLI, which we will do next.

			Configuring the AWS CLI on your local workstation

			You are going to need a working AWS CLI installation on your local workstation to complete the configuration of the EKS cluster. If you don't already have this installed, follow the instructions to install it at https://aws.amazon.com/cli/.

			Once it is installed, issue the aws configure command and use the access ID and secret key from the access key's CSV file you saved in the previous section to configure the CLI to use the administrator user. Verify that it works with the aws sts get-caller-identity command. Inspect the output to make sure that it does not show an error message, and then verify that the ARN that this command emits for the active user is the same one as for the administrator user shown in the IAM web console. The output should look something like this:

			
				
					[image: Figure 8.8 – Output of aws sts get-caller-identity

]
				

			

			Figure 8.8 – Output of aws sts get-caller-identity

			You will need this set up when you configure the cluster for the ALB Ingress Controller later in the chapter.

			Creating an EC2 key pair for the EKS cluster

			In order to perform the initial configuration of the EKS cluster, you will need to SSH to an EC2 virtual server that the CloudFormation template sets up, known as the bastion host. A bastion host is a server set up for the purposes of being a single point of access to a protected network. In order to gain access to the bastion host, you will need an SSH key pair registered with AWS EC2. Having this configured can also help you gain access to the nodes in order to troubleshoot and inspect them. In order to do this, you need an SSH key pair registered with AWS EC2 in the us-east-2 region. Signed in as your IAM administrator user, go to https://console.aws.amazon.com/ec2, and then make sure you switch your region to us-east-2 from the region picker:

			
				
					[image: Figure 8.9 – Switching your AWS region

]
				

			

			Figure 8.9 – Switching your AWS region

			Then, find and click on the key pairs link in the menu on the left, create a new key pair called ec2-eks, and download it. You will need this key pair when you configure the EKS cluster. To prepare for that, copy this key pair to the .ssh directory under your local user home directory and set its permissions so that SSH will allow its use:

			$ mkdir -p ~/.ssh

			$ chmod 0700 ~/.ssh

			$ cp ~/Downloads/ec2-eks.pem ~/.ssh/

			$ chmod 0600 ~/.ssh/ec2-eks.pem

			You will need this key to connect to the bastion host for your EKS cluster later. Next, make sure you know your public IP address.

			Recording your public IP address in CIDR notation

			We are going to restrict access from the internet to the Kubernetes cluster by restricting it to just the pubic IPv4 address you are currently using. This will keep malicious hackers and people who attack internet hosts from scanning your system. To do this, go to https://whatismyip.com/ and copy your public IPv4 address in CIDR format, which is the raw numerical address with /32 appended. For example, if it was 192.2.0.15, the CIDR form of your IPv4 address would be 192.2.0.15/32. On your local system, open your eks-notes.txt file and record the CIDR address there.

			Launching the AWS EKS Quick Start CloudFormation templates

			You can find the documentation on the AWS EKS Quick Start CloudFormation templates at https://aws.amazon.com/quickstart/architecture/amazon-eks/.

			To get a complete picture of what this offers, read the deployment guide that AWS offers related to this quick start:

			https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/welcome.html

			At a minimum, review the outline on that page. When you want to proceed with deployment, click on the How to Deploy section. You will see that you have two options when deploying the CloudFormation templates, as follows:

			
					Deploy to a new VPC (https://fwd.aws/6dEQ7)

					Deploy to an existing VPC (https://fwd.aws/e37MA)

			

			Before you begin, sign out of the AWS console if you are still signed in with the root account user, and sign in as a administrator user using the IAM sign-in URL you recorded in the eks-notes.txt file.

			We recommend that you start by deploying this infrastructure to a new Virtual Private Cloud (VPC). Click on that link or use the preceding URL to go to the CloudFormation stack creation forms. Most of the items in these forms can be left at their defaults, but some must be filled out both to complete initial cluster configuration and to ensure that you do not accidentally create an unsecure configuration.

			Guidance for EKS Quick Start CloudFormation creation

			Creating the CloudFormation stack will require you to fill out a four-page CloudFormation parameters form by following the Deploy into a new VPC link in the previous section. This is the first page of that form:

			
				
					[image: Figure 8.10 – CloudFormation form, page 1 of 4: Prepare template

]
				

			

			Figure 8.10 – CloudFormation form, page 1 of 4: Prepare template

			This guidance will allow you to complete the items to get a working EKS cluster in about 30 minutes.

			Create Stack – Prerequisite – Prepare Template

			Leave all the items on this form at their defaults and hit the Next button. This will take you to the Specify Stack Details screen.

			Specify Stack Details

			You can leave almost all of these items at their defaults, but specify items for the following parameters:

			
					Availability Zones: us-east-2a, us-east-2b, and us-east-2c.

					Allowed external access CIDR: Enter your IPv4 CIDR address, such as 192.2.0.15/32.

					EKS cluster name: Choose a short cluster name.

					Maximum number of nodes: 8.

					SSH Key Name: eks-ec2.

					Additional EKS admin ARN (IAM Role): Leave this blank, unless you have another AWS IAM role in your account that you want to give access to.

					Additional EKS admin ARN (IAM User): Leave this blank, unless you have another AWS IAM user in your account that you want to give access to.

					Kubernetes Version: 1.15.Note
Do not use 1.16 or higher if you want to experiment with Spinnaker as described in Chapter 9, Cloud-Native Continous Deployment Using Spinnaker, as Spinnaker is not compatible with higher versions

					EKS Public Access Endpoint: Enabled.

					EKS Public Access CIDRs: Enter your IPv4 CIDR address, such as 192.2.0.15/32.

					ALB Ingress Controller: Enabled.

					Cluster Autoscaler: Enabled.

					EFS Storage Class: Enabled.

					Monitoring Stack: Prometheus and Grafana.

			

			Selecting these options will ultimately allow you to manage the EKS cluster from your local workstation using the kubectl, helm, and eksctl tools. Once these are specified, press the Next button at the bottom of the form. This will take you to the Configure Stack Options screen.

			Configure Stack Options

			Leave all of these at their defaults. Press the Next button at the bottom of the form. This will take you to the Review screen.

			Review

			Scroll to the bottom of the form and check both of the checkboxes acknowledging that this might create IAM resources with custom names and that it might require the CAPABILITY_AUTO_EXPAND capability. Press the Next button at the bottom of the form to create the CloudFormation template. Wait about 30 minutes and review the creation status of the template in the CloudFormation console—it should complete without issue. Check that all the CloudFormation templates reach the completed state before proceeding. It should look something like this:

			
				
					[image: Figure 8.11 – The CloudFormation console with the CREATE_COMPLETE status

]
				

			

			Figure 8.11 – The CloudFormation console with the CREATE_COMPLETE status

			Now, your EKS cluster is ready for its initial configuration.

			Configuring the EKS cluster

			Having deployed the CloudFormation template, you will have an environment that contains the following AWS services:

			
					A VPC that serves as networking infrastructure for the cluster

					An EKS Kubernetes control plane managed by AWS

					An EC2 bastion host used to configure the cluster

					Kubernetes infrastructure, including three EC2 instances serving as nodes deployed across three AWS availability zones

					An ALB Ingress Controller that will allow outside access to cluster services

			

			To gain initial access to the cluster, view the CloudFormation outputs for the stack and note the IPv4 address marked BastionIP. Then, SSH to the host with that address, replacing 192.2.10 with that IP address:

			ssh -i ~/.ssh/eks-ec2.pem ec2-user@192.2.0.10

			Once the deployment is complete, follow the AWS deployment guide to validate the cluster state:

			https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/step-3.html.

			Use some of the commands you have learned about, such as kubectl get all -A, kubectl get nodes, and kubectl describe service/kubernetes, to explore the cluster configuration from the bastion host.

			The bastion node already has kubectl, helm, and git installed, so you have the option of using it to perform some cluster maintenance chores. The Helm installation even has the stable charts repository already installed, which you can verify with the helm repo list command.

			Keep an eye on AWS costs

			Once you have deployed the EKS infrastructure, AWS will start charging you by the hour while it is running. You will be responsible for all charges incurred while the EKS cluster and EC2 servers are running. Keeping this EKS cluster running might cost up to $10-20 per day. Please visit the Billing & Cost Management dashboard at https://console.aws.amazon.com/billing/home?#/ in order to see your month-to-date and projected costs. We recommend that you have AWS generate cost and usage reports on a regular basis to help you track your spending. Information on enabling this can be found at https://docs.aws.amazon.com/cur/latest/userguide/cur-create.html.

			Verifying that the ALB Ingress Controller is working

			Because we enabled the ALB Ingress Controller optional add-in when we created the EKS cluster, we can skip the detailed directions in the ALB user guide (https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html) to set up an ALB Ingress Controller for EKS. Since the ALB Ingress Controller is already set up, the cluster will automatically be able to create new Ingress Controllers and application load balancers when it finds a correctly annotated ingress object.

			As an exercise, you can deploy the 2048 game described in the last section of the user guide to validate that the ALB works as expected.

			Deploying an application with resource limits to Kubernetes on AWS EKS

			In Kubernetes, we can set resource limits on an application in order to prevent it from consuming all the available CPU and memory resources in the cluster. This is desirable to protect the system from resource exhaustion, and to ensure that an application that has a memory leak or a bug that causes it to consume more CPU than expected does not bring down the entire cluster.

			To demonstrate setting resource limits, we are going to deploy the ShipIt Clicker Docker container and Helm charts we deployed to our local Kubernetes installation in the Deploying a sample application section earlier in this chapter to the EKS cluster.

			To demonstrate setting resource limits, we will now look at deploying the ShipIt Clicker application to Kubernetes, managed by the AWS EKS service, with CPU and memory limits enabled. We will also expose this application to the world using an Ingress Controller.

			Configuring resource limits to guard against memory leaks and runaway CPU usage

			Now that we are deploying to EKS, we want to be sure that our pod's containers are good citizens in the cluster. To do this, we will specify both resource requests and limits. Requests give Kubernetes guidance about how much of each resource it will initially allocate to the application, and will guide the orchestrator when it places the containers and pods on the nodes. Kubernetes will only schedule a pod on a node if it has adequate headroom to support a request. Limits give the orchestrator hard-maximum limits on how much CPU or memory to allocate. If a container exceeds its memory limit, its process will be killed with an out-of-memory (OOM) error.

			We are going to use the Helm templates at chapter8/shipitclicker-eks/ in order to make the first set of changes versus the basic Helm template we installed on our local system.

			In chapter8/shipitclicker-eks/values.yaml, we are now specifying the CPU and memory requests and limits for the containers:

			resources:

			 limits:

			 cpu: 500m

			 memory: 512Mi

			 requests:

			 cpu: 500m

			 memory: 512Mi

			These apply both to the Redis and the ShipIt Clicker containers.

			Annotating ShipIt Clicker to use the ALB Ingress Controller

			Some changes are required for the chapter8/shipitclicker-eks/values.yaml file to make sure that the Ingress Controller annotations are compatible with the EKS setup. We need to switch up the annotations so that they are targeted toward EKS. Also, we will remove the host restriction and make sure that the configuration for paths has a wildcard in it. Since we use a ClusterIP service point, we also need to use the ip target type for the ALB Ingress Controller:

			ingress:

			 enabled: true

			 annotations:

			 kubernetes.io/ingress.class: alb

			 alb.ingress.kubernetes.io/scheme: internet-facing

			 alb.ingress.kubernetes.io/target-type: ip

			 hosts:

			 # - host: "*"

			 - paths: ['/*']

			Without these annotations, the ALB Ingress Controller would have trouble connecting to the services.

			Deploying an EKS-ready ShipIt Clicker to EKS

			SSH to the bastion host, clone the repository, and deploy the software with Helm:

			$ git clone https://github.com/PacktPublishing/Docker-for-Developers.git

			$ cd Docker-for-Developers helm install shipitclicker chapter8/shipitclicker-eks/

			Check in the AWS EC2 console for evidence that an elastic load balancer is getting created. It may take a few minutes to become available. When it does, enter its DNS name in a browser and you should see the ShipIt Clicker game.

			If you don't see it, troubleshoot by looking at the Ingress Controller logs:

			kubectl logs -n kube-system deployment.apps/alb-ingress-controller

			Now that we have the ShipIt Clicker application deployed to EKS and exposed to the world with an ALB Ingress Controller, let's examine how we can segregate environments so that different Docker containers can run without interfering with each other.

			Using AWS Elastic Container Registry with AWS EKS

			Using public images stored in Docker Hub is fine for some applications, but for more sensitive applications, you might want to store your Docker containers in a private Docker registry. AWS provides just such a registry: Elastic Container Registry (ECR). You can read more about the basics of ECR on the main product website at https://aws.amazon.com/ecr/.

			In order to get a Kubernetes cluster to use images from a private repository, you must configure the cluster with the right credentials so that it can pull images from the repository. The process for most repositories is in the Kubernetes documentation at https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/.

			However, AWS ECR uses an enhanced security system that relies on AWS IAM to grant temporary access tokens that are used to authenticate with ECR. Kubernetes has built-in support for this authentication process, as described in the documentation on images regarding using a private registry (https://kubernetes.io/docs/concepts/containers/images/#using-aws-ec2-container-registry).

			When using ECR with Kubernetes, you use an ECR identifier in the specification for the images used in pod configurations or their Helm templates. Instead of using the default Docker Hub image specifications, you can specify images using the following syntax:

			ACCOUNT.dkr.ecr.REGION.amazonaws.com/imagename:tag

			The AWS documentation on EKS explains that the worker nodes that run the pods must have the correct IAM policies applied via IAM roles in order to get authentication tokens and retrieve the images:

			https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_EKS.html

			Fortunately, the AWS CloudFormation templates we used to set up the EKS cluster produce worker nodes that already have the correct permissions applied, as do all clusters set up using the eksctl tool, if you set up your cluster with that alternative path. The access control rules described in ECR on the preceding EKS web page will grant EKS nodes permission to read any images stored in any ECR repository on the account.

			So, to use ECR with EKS, all we should have to do is make sure our containers are pushed to an ECR repository in the same account with the EKS cluster, and that we use the ECR-style repository URIs as the identifiers for the containers that run in our Kubernetes pods.

			Next up, let's create an ECR repository so that we can prepare for integrating ECR and EKS.

			Creating an ECR repository

			In a web browser, log in to the AWS console. Make sure you switch to the us-east-2 region (the same region where your EKS cluster lives), and then click on the Services link and choose Elastic Container Registry. If you don't have any registries created yet, click on the Get Started button. The AWS console will prompt you for a namespace and repository.

			Alternatively, visit the following URL to start the creation process:

			https://console.aws.amazon.com/ecr/create-repository?region=us-east-2

			Either way, you will see something like this:

			
				
					[image: Figure 8.12 – The ECR Create repository form

]
				

			

			Figure 8.12 – The ECR Create repository form

			Leave the other settings at their defaults. After you create the repository, note the URI for your repository; you will need it in order to push containers to the registry. You will see the URI on a screen that looks like this:

			
				
					[image: Figure 8.13 – The ECR Repositories page

]
				

			

			Figure 8.13 – The ECR Repositories page

			Then, click on the View push commands button. This will give you detailed instructions on how to use the AWS CLI to get temporary credentials that you can use to accomplish a Docker push to the ECR repository.

			Exercise – pushing ShipIt Clicker to the ECR repository

			Follow the instructions shown after clicking on the View push commands button to build and deploy the ShipIt Clicker Docker container to ECR. The following commands are a less repetitive way of executing those steps (replace the REPO value with the hostname of your ECR registry from the URI generated in the Create form):

			$ cd Docker-for-Developers/chapter8	

			$ REPO=143970405955.dkr.ecr.us-east-2.amazonaws.com

			$ IMAGE=dockerfordevelopers/shipitclicker

			$ aws ecr get-login-password --region us-east-2 | \

			 docker login --username AWS --password-stdin $REPO

			$ docker build -t $IMAGE:latest .

			$ docker tag $IMAGE:latest $REPO/$IMAGE:latest

			$ docker push $REPO/$IMAGE:latest

			If this succeeds, you will see an output similar to the following:

			
				
					[image: Figure 8.14 – A Docker push to ECR

]
				

			

			Figure 8.14 – A Docker push to ECR

			In the next chapter, we are going to use ECR to store Docker images that we build through Jenkins and deploy using Spinnaker and Helm.

			Now that we have seen how we might store Docker container images in an ECR repository, we will examine how we can segregate environments using labels and namespaces.

			Using labels and namespaces to segregate environments

			We learned earlier in this chapter what a namespace is. Now, we will explore how we can use both namespaces and labels to create separate environments in both a local environment and in an EKS cluster.

			Local example – labeled environments in the default namespace

			Let's imagine you are developing the ShipIt Clicker application and want to keep a working stable environment deployed so that you can demonstrate it to others and compare new behaviors in code that you are changing to stable behavior. While you could use namespaces to segregate the application, it would be simpler to just deploy the Helm Chart again with deployments that have different labels. You can use multiple deployments with distinct labels, along with some template overrides, to accomplish this with Helm, without having to deal with the complexity of multiple namespaces.

			To do this, we need to do the following:

			
					Define a hostname to use to reach the service.

					Configure the Ingress Controller for ShipIt Clicker to use that hostname.

					Configure and bump the chart version in chapter8/shipitclicker/Chart.yaml.

					Deploy the Helm Chart with a different name from the one already deployed, for example shipit-stable.

					Test that we can reach the alternative environment.

			

			Let's go through each of these steps in order to set up this stable environment using namespaces.

			Adding multiple hostnames to the local environment

			The time-tested way to add alternative names for your local environment is to edit your operating system hosts file – this is /etc/hosts on UNIX-inspired systems, such as Linux and macOS, or C:\Windows\System32\Drivers\etc\hosts on Windows systems. You must do so as a user with administrative privileges, though. You might add an entry such as 127.0.0.1 shipit-stable.internal. to your hosts file, following some of the guidance at https://tools.ietf.org/html/rfc6762#appendix-G to pick a TLD that is unlikely to cause operational problems.

			However, there is an easier way to do this now. You can use a hostname of the name.A.B.C.D.nip.io form and it will map to whatever IP address you give, thanks to the free https://nip.io/ service. This enables the easy creation of localhost aliases as we can use shipit-stable.127.0.0.1.nip.io and similar names for local development.

			Temporarily configuring the Helm Chart for the shipit-stable environment

			Edit the chapter8/shipitclicker/values.yaml file to switch up the host so that it matches shipit-stable.127.0.0.1.nip.io, and bump the chart version. Then, use Helm to deploy the app using the command helm install shipit-stable shipitclicker/. You should then be able to see the application in your web browser by going to http://shipit-stable.127.0.0.1.nip.io/.

			Staged environments – Dev, QA, staging, and production

			In the EKS environment, you could also get a pretty good separation of environments just by deploying labeled stacks. You could label the stacks with a prefix or suffix name that indicates what environment they are. With ALB support, each separate service that is exposed to the world will get its own distinct load balancer, whether they are in different namespaces or not.

			But there are some cases where you would want to use namespaces. For example, if you host both production and non-production resources in the cluster, you could make it so that the namespaces for the non-production resources use quotes. Refer to https://kubernetes.io/docs/concepts/policy/resource-quotas/ for more information on quotas.

			Exercise

			Create a qa namespace with kubectl and use Helm to deploy ShipIt Clicker to that namespace. Then, set a memory quota on that namespace so that it never uses more than 1 GB of RAM.

			For even more advanced practices regarding namespaces, you should consult the best practices documentation at https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-organizing-with-namespaces.

			Now that we have set up a separate environment that is segregated using namespaces, we have more flexibility in how we might deploy and manage our applications. Next, let's review what we have learned in this chapter.

			Summary

			In this chapter, we learned all about Kubernetes and options for hosting it in the cloud. We walked through some of the cloud-hosting platforms on the market and then completed a quick overview of the key components of Kubernetes.

			Following this, we developed a process for deploying our Docker containers to AWS EKS, using AWS ECR as a Docker container registry. Here, you also got the chance to experiment with Amazon's CloudFormation technology, a platform for developing infrastructure as code.

			Next, we studied Helm and Helm Charts and built on the ShipIt Clicker application. This was stood up in AWS with resource limits.

			You should now feel comfortable with repeating this process for another project if you wish!

			Now that our basic Kubernetes setup is ready to go, what other concerns do we need to address before we can use it for a scalable production project? We have seen how we can use Jenkins for continuous deployment, but it would be tedious to write all the scripts required to get the basic Jenkins system to manage a complex Kubernetes cluster and deploy applications to it reliably.

			This chapter has presented a simplified set of Helm Charts that generate Kubernetes configurations that result in a running application, but there are some refinements we must make in order to make the application production-ready, just as we did in previous chapters with Docker Compose.

			In the next chapter, we are going to introduce Spinnaker as a cloud-native CI/CD platform that will help us facilitate CI/CD for a Kubernetes for this exact task.

			Further reading

			These articles may help you get a better handle on some of the essential Kubernetes concepts:

			
					A gentle illustrated introduction to Kubernetes concepts through this tongue-in-cheek guide: https://www.cncf.io/the-childrens-illustrated-guide-to-kubernetes/

					Another Cloud Native Computing Foundation illustrated guide to Kubernetes concepts featuring Phippy: https://www.cncf.io/phippy-goes-to-the-zoo-book/

					Why is Kubernetes getting so popular? See this blog article: https://stackoverflow.blog/2020/05/29/why-kubernetes-getting-so-popular/

					Many applications require you to use private Docker image registries, whether that is Docker Hub, AWS ECR, or something else. Read this to find out how to integrate registry secrets into your Kubernetes configuration files: https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

					While this is targeted at customers of Digital Ocean using their Kubernetes service, it does an excellent job of explaining NGINX Ingress Controllers: https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm

					The user guide for EKS. This is chock full of super-detailed information about running EKS: https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html

					Deploy the Kubernetes dashboard. This is optional but will give you a nice web user interface to see more information about the cluster: https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

					An example of an advanced configuration using Kubernetes namespaces might involve using the Kubernetes role-based access control (RBAC) system to further restrict how applications in different namespaces interact: https://kubernetes.io/docs/reference/access-authn-authz/rbac/

					Learn more about the options for EKS installations, including Terraform, using a hybrid strategy that mixes NGINX and ALB Ingress Controller, and more: https://medium.com/@dmaas/setting-up-amazon-eks-what-you-must-know-9b9c39627fbc

			

		

	
		
			Chapter 9: Cloud-Native Continuous Deployment Using Spinnaker

			Deploying Docker containers as cloud-native applications to Kubernetes poses challenges that a specialized container-centric continuous deployment system can solve. Instead of writing custom deployment logic in those scripts that Jenkins runs, as we did when we deployed to a single host, we can use Spinnaker to deploy to Kubernetes. Because Spinnaker works with Jenkins, we can continue to use the Jenkins server that we already set up to build the Docker containers and prepare the Helm Charts for deployment. Using Spinnaker, we will deploy an application using its built-in support for Helm Charts and Kubernetes deployments. We will also explore some of Spinnaker's specialized deployment strategies and see how they apply to Kubernetes-centric environments.

			In this chapter, we are going to learn when and why you would use Spinnaker in addition to Jenkins. We will learn how to improve your setup for supporting the deployment and maintenance of Kubernetes applications by learning to configure Spinnaker and integrating it with GitHub, Docker Hub, and Jenkins. We will learn how to deploy an app to Kubernetes using a Spinnaker pipeline and AWS Elastic Container Registry (ECR), as well as learn a bit about how Spinnaker's support for different deployment and testing strategies may or may not apply when you use it in conjunction with Kubernetes.

			We will cover the following topics in this chapter:

			
					Improving your setup for Kubernetes application maintenance

					Spinnaker – when and why you might need more sophisticated deployments

					Setting up Spinnaker in your AWS EKS cluster with Helm

					Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker

					Learning about Spinnaker's support for different deployment and testing strategies with respect to Kubernetes applications

			

			Let's get started by reviewing the technical requirements for this chapter, and then we will move on to learning about the Spinnaker platform.

			Technical requirements

			You will need to have a working Kubernetes cluster in the cloud, as set up in the previous chapter. You could reuse that cluster or set up a new one for this chapter using the same method or by using eksctl. Please note that the Spinnaker version described in this chapter is not compatible with Kubernetes 1.16 and later; be sure to install this on a Kubernetes 1.15 cluster. You will also need to have a current version of the AWS Command-Line Interface (CLI), kubectl, and helm 3.x installed on your local workstation, as described in the previous chapter. The Helm commands in this chapter use the helm 3.x syntax. The AWS Elastic Kubernetes Service (EKS) cluster must have a working Application Load Balancer (ALB) Ingress Controller setup. We will also use the AWS ECR Docker repository set up in the previous chapter. You will also need to have the Jenkins server that was set up in Chapter 7, Continuous Deployment with Jenkins, available as Spinnaker relies on Jenkins for building software artifacts.

			Spinnaker requires more resources than might be available on your local workstation, and we will want to connect it to outside services, such as Jenkins and GitHub, in a way that might not work with a local Kubernetes learning environment.

			Check out the following video to see the Code in Action:

			https://bit.ly/2DUGumq

			Using the updated ShipIt Clicker v5

			We will use the version of ShipIt Clicker in the chapter9 directory in the following GitHub repository:

			https://github.com/PacktPublishing/Docker-for-Developers/

			This version has some changes from the previous version. It only has one copy of the Helm Charts in chapter9/shipitclicker, with several override YAML files for cluster deployment: values-eks.yaml and values-spin.yaml.

			In the previous chapter, we kept multiple directories of redundant template and configuration files, but the only differences in the Helm Charts were the overrides in the values file. The copy in this chapter uses a more concise strategy. It turns out that you can use multiple YAML config files that override just the settings that have to change for each deployment or environment. In this chapter, we will transition the container repository for the sample application from Docker Hub to ECR, deploy it once manually, and then switch to deploying ShipIt Clicker using Spinnaker.

			Improving your setup for Kubernetes application maintenance

			In order to deploy and maintain Spinnaker, we need to be able to talk to the Kubernetes cluster from our local workstation. We also want to be able to use Secure Sockets Layer (SSL)-protected communications to Kubernetes-hosted resources. Let's take this step by step in order to prepare your local workstation and AWS account for more advanced deployments.

			Managing the EKS cluster from your local workstation

			In order to make it easier to administer the EKS cluster and work with it, you will want to set up your local workstation to talk to the cluster. In the previous chapter, we set up the AWS CLI with an AWS IAM administrator account and then used it to set up an EKS cluster. We will build on that in this chapter to make sure that we can efficiently manage the cluster and the applications in it from our local workstation.

			Follow the instructions here on your local workstation to get kubectl and the rest of the Kubernetes utilities talking with your EKS cluster:

			https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-connection

			The essential parts of the instructions in the preceding link involve executing an aws cli command from your local workstation. Issue this command to update .kube/config with an entry that will let you connect to the EKS cluster, but replace EKS-VIVLKQ5X with the name of your EKS cluster:

			aws eks --region us-east-2 update-kubeconfig --name EKS- VIVLKQ5X

			Then, test whether you can communicate with the cluster:

			kubectl get nodes

			If this works, you will see a list of EC2 hosts that comprise your EKS cluster nodes.

			Troubleshooting kubectl connection failures

			If the preceding aws eks command yielded an error message or an access denied message, or it failed to complete, you will need to troubleshoot before proceeding. Follow the steps in the following sections, and also look at the AWS guide for troubleshooting this communication failure:

			https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-connection/

			Making sure you have the right AWS CLI profile active

			If you have multiple AWS CLI profiles, your default user might not match the one expected. You can either explicitly tell the AWS CLI to use a profile with the --profile parameter or you can set the AWS_DEFAULT_PROFILE variable to force it to use a particular profile, as follows, before issuing the aws eks command:

			export AWS_DEFAULT_PROFILE=my-eks-profile

			Now that we have set up the AWS CLI with the profile, we must double-check that we can still reach our EKS cluster by checking the CloudFormation template access control list.

			Ensuring that your CloudFormation template is configured to allow access

			In the previous chapter, when we set up the EKS cluster, we entered our IPv4 address in Classless Inter-Domain Routing (CIDR) form and set the CloudFormation parameters so that the EKS public access endpoint was enabled. Ensure that the setting to enable the public access endpoint is still enabled. Also, double-check the EKS public access CIDR setting and make sure it matches your current IPv4 address in CIDR form – for example, 192.2.0.15/32. Double-check your address with https://whatismyip.com/ to be sure. If these are not set correctly, update the CloudFormation stack with these values.

			The CLI profile must match the IAM user that you used to create the EKS cluster with the AWS Quick Start.

			This will configure IAM and EKS appropriately.

			Switching between local and cluster contexts

			When you have multiple Kubernetes contexts configured, you can switch between them via the kubectl config get-contexts and kubectl config use-context commands, as follows:

			$ kubectl config get-contexts

			CURRENT NAME CLUSTER AUTHINFO NAMESPACE

			* arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8 arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8 arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8

			 docker-desktop docker-desktop docker-desktop

			$ kubectl config use-context docker-desktop

			Switched to context "docker-desktop".

			$ kubectl get nodes

			NAME STATUS ROLES AGE VERSION

			docker-desktop Ready master 21d v1.15.5

			$ kubectl config use-context arn:aws:eks:us-east-2:143970405955:cluster/EKS-VIVLKQ5X

			Switched to context "arn:aws:eks:us-east-2:143970405955:cluster/EKS-VIVLKQ5X".

			 $ kubectl get nodes

			NAME STATUS ROLES AGE VERSION

			ip-10-0-31-183.us-east-2.compute.internal Ready <none> 2d9h v1.15.10-eks-bac369

			ip-10-0-57-2.us-east-2.compute.internal Ready <none> 2d9h v1.15.10-eks-bac369

			ip-10-0-90-115.us-east-2.compute.internal Ready <none> 2d9h v1.15.10-eks-bac369

			In the preceding listing, we can see all the contexts we have defined. We can also see that when we use the docker-desktop context, we only see one node, but when we use the EKS context, we see multiple EC2 server nodes. For the rest of the chapter, we are going to target the EKS context for the Kubernetes-related commands.

			Verifying that you have a working ALB Ingress Controller

			In the previous chapter, we set up an EKS cluster with an ALB Ingress Controller in order to grant the world access to the ShipIt Clicker application. If you are reusing that EKS cluster and the ALB Ingress Controller is working OK, you can skip to the next section.

			If you have set up a new cluster, you can either follow the instructions in the last chapter in order to get the ALB Ingress Controller working, or you can run one of the shell scripts included in this chapter as a shortcut if the new cluster lacks an ALB Ingress Controller.

			To use the ALB Ingress Controller setup script, make a note of your EKS cluster name, and make sure you have installed both Helm and eksctl.

			Then, run the deploy-alb-ingress-controller.sh script from your local workstation to set up the ALB Ingress Controller (replace EKS-8PWG76O8 with the name of your EKS cluster):

			chapter9/bin/deploy-alb-ingress-controller.sh EKS-8PWG76O8

			Now that you have the ALB Ingress Controller installed, you can proceed to get a domain managed in AWS and generate an SSL certificate.

			Preparing a Route 53 domain and certificate

			In order to secure the communications between your EKS cluster and the outside world, we are going to use the following services to manage Domain Name Server (DNS) entries and server certificates:

			
					AWS Route 53: https://aws.amazon.com/route53/

					AWS Certificate Manager (ACM): https://aws.amazon.com/certificate-manager/

			

			In Chapter 7, Continuous Deployment with Jenkins, we configured Jenkins to use domain names to map entries for staging and production for ShipIt Clicker. In this chapter, we are going to use Route 53 to manage DNS entries and ACM to manage certificates to help secure communication.

			You can either transfer the top-level domain you are using to Route 53, or you can delegate a subdomain of an existing domain you control, such as eks.example.com, to Route 53. See this AWS guide on delegating a subdomain to Route 53:

			https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html

			Once you have delegated the domain to Route 53, verify that you can view the SOA record for that domain (substituting your domain for eks.example.com):

			$ host -t soa eks.example.com eks.example.com has SOA record ns-1372.awsdns-43.org. awsdns-hostmaster.amazon.com. 1 7200 900 1209600 86400

			If this returns an SOA record similar to the preceding log, you are set. If it yields a not found error, you need to troubleshoot more.

			Once your domain is resolving OK, go to the ACM console at https://us-east-2.console.aws.amazon.com/acm/home?region=us-east-2#/ and generate a new public certificate containing both of the domain names – *.eks.example.com and eks.example.com (replacing example.com with your domain). The domain name starting with * is known as a wildcard certificate because it matches any domain name that has the same domain suffixes. Using that will allow us to have one certificate covering many domain names.

			Use the DNS method of validation. Since you have that domain managed in Route 53, you can expand the domain and hit the shortcut Create record in Route 53 button, which should look similar to the following:

			
				
					[image:]
				

			

			Figure 9.1 – Requesting a certificate in ACM

			This will add validation records to your Route 53 zone, which will speed up the issuance of the certificates. The certificate might take from 5 minutes to 1 hour to get issued, unless there is a problem with the DNS validation records, such as the domain not being properly delegated from the name servers that are one level above it. Wait for the certificate to be issued and note the ARN of the certificate – you will need it later.

			Building and deploying ShipIt Clicker v5

			In order to verify that we have support for SSL-protected sites, we are going to deploy ShipIt Clicker to EKS and enable ALB load balancer support for HTTPS. In order to demonstrate that we can use the AWS ECR container registry, we will also push the container to ECR and use that registry to deploy the application.

			Copy chapter9/values-eks.yaml to chapter9/values.yaml, and then edit the values.yaml file, as follows. Start by changing the name of the image at the start of the file and prefix it with the name of your ECR container registry (replace 143970405955 with your AWS account ID and make sure the region – here, us-east-2 – matches the region you are using):

			image:

			 repository: 143970405955.dkr.ecr.us-east-2.amazonaws.com/ dockerfordevelopers/shipitclicker:0.5.0

			Note that the values.yaml file has annotations indicating that the ALB should listen on both port 80 and 443, and that it has a fully qualified domain name in the host setting. Edit the values in the following host entry so that the shipit-v5.eks.example.com domain name matches a domain name that would match the wildcard SSL certificate you have in ACM:

			ingress:

			 enabled: true

			 annotations:

			 kubernetes.io/ingress.class: alb

			 alb.ingress.kubernetes.io/scheme: internet-facing

			 alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS":443},{"HTTP":80}]'

			 alb.ingress.kubernetes.io/target-type: ip

			 hosts:	

			 - host: "shipit-v5.eks.example.com"

			 paths: ['/*']

			Now that we have prepared the values.yml file, we will build the container and push it to EKS.

			Change the directory to Docker-for-Developers/chapter9 and issue these commands to build and deploy the ShipIt Clicker to the cluster to test the ALB integration (replace 143970405955.dkr.ecr.us-east-2.amazonaws.com with your ECR registry):

			docker build . -t dockerfordevelopers/shipitclicker:0.5.0

			docker tag dockerfordevelopers/shipitclicker:0.5.0 143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:0.5.0

			aws ecr get-login-password --region us-east-2 | docker login --username AWS --password-stdin 143970405955.dkr.ecr.us-east-2.amazonaws.com

			docker push 143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:0.5.0

			helm install shipit-v5 -f values.yaml ./shipitclicker

			After a few minutes, you should be able to verify that the Ingress Controller is working:

			$ kubectl get ingress

			NAME HOSTS ADDRESS PORTS AGE

			shipit-v5-shipitclicker shipit-v5.eks.shipitclicker.com 9bbd6f9c-default-shipitv5s-051a-795288134.us-east-2.elb.amazonaws.com 80 90m

			If this does not appear, check the Ingress Controller logs, as follows, for troubleshooting clues:

			kubectl logs -n kube-system deployment.apps/alb-ingress-controller

			Next, we need to create a DNS address-mapping record, also known as an A record, to map the address for shipit-v5.eks.example.com to the address of the ALB shown in the HOSTS column in the preceding output of kubectl get ingress. Go to the Route 53 AWS console for your domain and create a new record of type A for shipit-v5.eks. Make this record an alias record and enter the DNS name from the HOSTS column of the ALB listed in the kubectl get ingress output. The form to do that should look something like the one in the following screenshot:

			
				
					[image:]
				

			

			Figure 9.2 – Creating an A record as an alias in AWS Route 53

			Press the Create button to save the record, and then wait 5 minutes for the DNS changes to propagate. Then, go to https://shipit-v5.eks.example.com/ (replacing example.com with your domain name) to verify that you can view it over HTTPS.

			Now that you've made sure that you can administer the EKS cluster from your local environment, pushed the demo application's container to ECR, deployed the demo application to Kubernetes using Helm, and configured the HTTPS support to secure an ALB Ingress Controller to reach a service hosted in EKS, you are ready to proceed with a Spinnaker installation.

			Spinnaker – when and why you might need more sophisticated deployments

			In order to reliably deploy your application, you could write many scripts by hand and use a continuous integration system. However, many people have thought about the problems inherent in deploying applications in Kubernetes. Kubernetes does have significant deployment capabilities, especially when you use the deployment controller. But this approach does not meet everyone's needs. Some people have developed specialized systems that reduce the complexity of handling these tasks. Systems such as Jenkins-X, Weaveworks, CodeFresh, and Spinnaker fit this niche. We are going to examine Spinnaker, a continuous deployment toolset, in more detail (https://www.spinnaker.io/).

			We will begin by walking through Spinnaker's core concepts and highlighting where it shares terminology with other platforms, such as Kubernetes, including where the meanings are different.

			Introduction to Spinnaker

			Spinnaker is a continuous delivery (CD) platform that works across cloud vendors and is open source. Netflix originally wrote Spinnaker to help manage their multi-cloud deployments, using the immutable server pattern (see https://martinfowler.com/bliki/ImmutableServer.html). Spinnaker features an image bakery that involves combining application code with an operating system image and supporting libraries, and then saving (baking) an immutable machine image, such as an AWS Amazon Machine Image (AMI) or VMware Virtual Machine Disk (VMDK) image, to speed up deployments and minimize runtime configuration. Read more about the image bakery and its use in Spinnaker in the following articles:

			
					https://netflixtechblog.com/how-we-build-code-at-netflix-c5d9bd727f15

					https://docs.armory.io/spinnaker-install-admin-guides/packer/

			

			This pattern works well at a scale, but the advent of Docker and container-centric runtimes, such as Kubernetes, provides a different approach to reach the same goals.

			Spinnaker has been adapted to work with Kubernetes and Docker, as well as supporting its original deployment strategy of using an image bakery and the immutable server pattern. You can find the source code for the platform among other projects at the official GitHub repository:

			https://github.com/spinnaker

			Before we install the application, we should familiarize ourselves with some of the core concepts of this technology. The first one we will look at is application management.

			Application management

			We can use the management feature to administer and view our cloud resources. Using Spinnaker, we model our applications around concepts such as server groups and clusters. Refer to the Spinnaker documentation for a complete overview of these concepts:

			https://spinnaker.io/concepts/

			An application is the top-level container, which can be deployed on the infrastructure that Spinnaker maintains, including clusters and server groups. Each cluster then acts as a mechanism to organize server groups. Spinnaker considers Docker containers running in Kubernetes in pods as members of a server group. These Docker images may contain services such as ShipIt Clicker and any associated tools, such as the Datadog monitoring agents featured in Chapter 15, Scanning, Monitoring, and Using Third-Party Tools.

			Now that we understand how a containerized project is represented in Spinnaker, we should consider how we can deploy it to our EKS cluster in AWS via this framework.

			Application deployment

			The application deployment piece of the puzzle is represented graphically in the Spinnaker user interface with a pipeline. A pipeline can either be started manually or kicked off automatically as part of a process triggered by other events, such as a source code control-system push. A pipeline tells us all the steps (called stages) along the way that need to be completed – for example, to take a Docker container, install it, and make subsequent updates to it in our cloud environment.

			The following screenshot demonstrates what a deployment pipeline and its various stages look like:

			
				
					[image:]
				

			

			Figure 9.3 – Spinnaker pipeline

			Each of the stages in this pipeline can be thought of as a discrete task. Each task is executed in sequence or in parallel, depending on whether the pipeline forks. As we will see shortly, Spinnaker comes with a number of predefined stages that we can incorporate into our custom pipeline.

			It is advantageous to tie the pipeline to your build server and your source code control repository so that when you push changes to your application and its Helm Charts, Spinnaker can package, test, and deploy them appropriately.

			Now that we have briefly walked through the two major concepts of Spinnaker, let's get stuck into building out some infrastructure and a pipeline so that we can get a better handle of how the stages work and the types of deployment strategies that are possible.

			Setting up Spinnaker in an AWS EKS cluster using Helm

			Setting up a production-grade Spinnaker cluster requires some careful planning, but for learning purposes, we are going to use one of the simplified approaches. The complete Spinnaker setup guide can be found at https://www.spinnaker.io/setup/.

			In order to demonstrate the proof of concept of using Spinnaker, we are going to use the Helm Chart found at the following link to deploy Spinnaker:

			https://github.com/helm/charts/tree/master/stable/spinnaker

			The Spinnaker Helm Chart warns against production use

			Although this Helm Chart states that it is not suitable for production use, we can use it to demonstrate the proof of concept for building, testing, and deploying applications. The Spinnaker setup guide gives guidance for setting up production-grade Spinnaker systems. Most importantly, that includes making the Spinnaker installation separate from the cluster that also hosts the applications that end users consume. We are going to ignore that advice to save time and money in this chapter and make it easier to demonstrate. If you are going to adopt Spinnaker at scale, please take this advice to heart and set up Spinnaker according to their best practices documentation in a separate cluster.

			Ensure you are connected to the correct Kubernetes context targeting your EKS cluster, and enter the following command to deploy Spinnaker to its own namespace:

			$ kubectl create namespace spinnaker

			$ helm install spinnaker stable/spinnaker --namespace spinnaker --version 1.23.3 --timeout 600s

			It may take several minutes for the Spinnaker deployment to complete. When it is done, you should see an output similar to the following:

			
				
					[image:]
				

			

			Figure 9.4 – Spinnaker Helm Chart installation

			Next, we will connect to the freshly installed Spinnaker system.

			Connecting to Spinnaker through the kubectl proxy

			To carry out preliminary testing, pay attention to the advice in the output you receive from the helm install command you ran to create port forwarding tunnels in the previous section. It should be similar to the output shown in the preceding section. You should set up two separate console windows or tabs on your local workstation, and then run the pairs of commands listed in the output of the helm install spinnaker command in the NOTES section to set up the port forwarding tunnels, one per console window or tab. You can then go to http://127.0.0.1:9000 in your browser to verify that Spinnaker is up and running.

			Exposing Spinnaker via ALB Ingress Controllers

			The directions for integrating Spinnaker with EKS (https://www.spinnaker.io/setup/install/providers/kubernetes-v2/aws-eks/) describe a solution using services with a LoadBalancer annotation to expose the services. However, since we have our ALB Ingress Controller, Route 53, and ACM already configured, it would be better to expose them using the ALB Ingress Controller. Edit the chapter9/spinnaker-alb-ingress.yaml file, and make the following changes in the ingress configuration for both spin-deck and spin-gate (there are two sets of configurations in the file):

			
					Replace eks.example.com with the domain name you have configured with the ACM wildcard certificate.

					Replace 192.2.0.10/32 with your public IP address in CIDR format (the same format you used to lock down the EKS API).

					Replace 192.2.0.200/32 with the public IP address of your Jenkins server.Security notice
It is important to add the preceding IP address restriction because, out of the box, Spinnaker's user interface runs as the cluster administrator user. If you allowed 0.0.0.0/0 (the entire internet) access, someone could run processes as the cluster administrator and modify or take over your cluster. If you have a dynamic IP address, you might have to change this several times, starting with the CloudFormation template.

			

			Then, apply the config template to create the ALB Ingress Controllers:

			kubectl apply -n spinnaker -f spinnaker-alb-ingress.yaml

			After a few seconds, issue the following command to verify that this worked (look for your domain name instead of eks.example.com):

			$ kubectl get -n spinnaker ingress

			NAME HOSTS ADDRESS PORTS AGE

			spin-deck spinnaker.eks.example.com 9bbd6f9c-spinnaker-spindec-5f03-917097792.us-east-2.elb.amazonaws.com 80 10m

			spin-gate spinnaker-gate.eks.example.com 9bbd6f9c-spinnaker-spingat-712f-2021704484.us-east-2.elb.amazonaws.com 80 10m

			The DNS names that this lists under the HOSTS column are the names we intend to use to call the services. The DNS addresses under the ADDRESS column are the actual DNS names that the ALB Ingress Controller has created using the AWS ALBs. To connect these two names, we need to create two DNS records in our domain in order to reach the Spinnaker services with the friendlier names. Note the DNS names of the ingress controllers from the ADDRESS column in this listing. Then, go to the AWS Route 53 console for your domain and create two new DNS entries of type A. Make them alias records.

			Name the first one spinnaker and give it the value shown in the ADDRESS column for the entry named spin-deck.

			Name the second entry spinnaker-gate and give it the value shown in the ADDRESS column for the entry named spin-gate.

			The result of this will be two new DNS entries similar to the following (with your domain name instead of example.com):

			
					spinnaker.eks.example.com

					spinnaker-gate.eks.example.com

			

			While you are waiting for 5 minutes or so for the DNS records to become available and the ALB to be fully activated, use Halyard to configure Spinnaker with the HTTPS version of these URLs.

			Configuring Spinnaker using Halyard

			Now that we have assigned friendly DNS names to our Spinnaker installation, we need to configure Spinnaker to make it understand that it must respect these names. From your local workstation, connect to the Halyard maintenance pod:

			kubectl exec --namespace spinnaker -it spinnaker-spinnaker-halyard-0 bash

			Once you have connected to the pod, you will see a spinnaker@spinnaker-spinnaker-halyard-0:/workdir$ prompt. Then, enter these commands, replacing example.com with your domain name:

			$ hal config security api edit --override-base-url https://spinnaker-gate.eks.example.com --cors-access-pattern https://spinnaker.eks.example.com

			$ hal config security ui edit --override-base-url https://spinnaker.eks.example.com

			$ hal deploy apply

			The last hal command will redeploy the Spinnaker application.

			Wait 5 minutes for the DNS records to activate and the ALBs to be fully created. Once this is done, visit the Spinnaker site via its fully qualified domain name, replacing example.com with your domain name:

			http://spinnaker.eks.example.com/

			You should be redirected to the HTTPS version of the site.

			Connecting Spinnaker to Jenkins

			In order to get Spinnaker to receive artifacts from Jenkins, we must connect it using a Jenkins administrator API token. Spinnaker has instructions on this that can be found at https://www.spinnaker.io/setup/ci/jenkins/.

			Go to the Jenkins server you used in a previous chapter. Sign in and go to the user configuration page at a URL similar to https://jenkins.example.com/user/admin/configure (substitute your Jenkins URL for jenkins.example.com). Then, generate an API token for Spinnaker:

			
				
					[image:]
				

			

			Figure 9.5 – Jenkins API token generation

			As shown in the Configuring Spinnaker using Halyard section, connect to the hal maintenance pod from your local workstation:

			kubectl exec --namespace spinnaker -it spinnaker-spinnaker-halyard-0 bash

			Then, issue these commands in the shell of that pod to configure Jenkins, replacing the values to the right of the equals sign for the BASEURL, APIKEY, and USERNAME values with those for your installation:

			$ hal config ci jenkins enable

			$ BASEURL=https://jenkins.example.com

			$ APIKEY=123456789012345678901234567890

			$ USERNAME=admin

			$ echo $APIKEY | hal config ci jenkins \

			 master add my-jenkins-master \ --address $BASEURL --username $USERNAME --password

			$ hal deploy apply

			Now that Spinnaker is set up to talk to Jenkins, we will move on to configuring Jenkins with an additional set of build jobs that Spinnaker will use.

			Setting up Jenkins to integrate with both Spinnaker and ECR

			In order to run the Spinnaker-specific jobs and integrate Jenkins with ECR, we are going to need to configure Jenkins with additional plugins and credentials so that it can push containers to AWS ECR, and also set up a new multi-branch pipeline item in order to use the Jenkinsfile for this chapter, stored in the GitHub repository as chapter9/Jenkinsfile.

			In the following sections, we will make all the changes needed to make Jenkins work with both ECR and Spinnaker.

			Installing the AWS ECR Jenkins plugin

			Sign in to your Jenkins server as the admin user, and then navigate in the left menu to Configure | Plugin Manager. Click on the Available tab and type ECR into the Filter box. You will see something like this:

			
				
					[image:]
				

			

			Figure 9.6 – Installing the Amazon ECR plugin through Jenkins Plugin Manager

			Click on the Install checkbox next to the Amazon ECR plugin and select the Download now and install after restart button. You will see something as in the following screenshot:

			
				
					[image:]
				

			

			

			Figure 9.7 – Installation in progress for the Amazon ECR Jenkins plugin

			It might take Jenkins 5–15 minutes to restart before it is available again. Once it is available, sign in again as the Jenkins admin user. Next, we will create an AWS IAM user with limited privileges and configure Jenkins with those credentials.

			Creating a limited AWS IAM user for Jenkins

			In a previous chapter, we used the AWS console to create an administrator IAM user for the account. This time, we will use the AWS CLI in order to create a Jenkins user, with more limited permissions than the administrator user so that it can only manage ECR repositories and push Docker images to those repositories. This is in line with the security principle of granting the least privilege access required for a system only. To create the user, attach the appropriate policy, create the access keys, and issue the three aws iam commands in the following listing to set up the Jenkins user (the output that you should expect to see is in line with these commands):

			$ aws iam create-user --user-name Jenkins

			{

			 "User": {

			 "Path": "/",

			 "UserName": "Jenkins",

			 "UserId": "AIDASDBKOBZBU6ZX6SQ7U",

			 "Arn": "arn:aws:iam::143970405955:user/Jenkins",

			 "CreateDate": "2020-05-03T02:45:34Z"

			 }

			}

			$ aws iam attach-user-policy --user-name Jenkins --policy-arn arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryPowerUser

			$ aws iam create-access-key --user-name Jenkins

			{

			 "AccessKey": {

			 "UserName": "Jenkins",

			 "AccessKeyId": "AKIASDBKOBZBYFDCBLMR",

			 "Status": "Active",

			 "SecretAccessKey": "q+1z7wt/FsbYOv5Yy7HRUSZI0OsLbANV7a8nIQDy",

			 "CreateDate": "2020-05-03T02:46:00Z"

			 }

			}

			Note the values associated with AccessKeyId and SecretAccessKey in the output of your commands. You will need those to configure a Jenkins credential for AWS access in the next section. Next, let's configure Jenkins with AWS credentials.

			Configuring Jenkins with credentials for AWS and ECR

			We need to tell Jenkins what our AWS credentials are so that it can push the Docker containers it builds to ECR. Furthermore, we also need to configure Jenkins to know what ECR registry to use. In Chapter 6, Deploying Applications with Docker Compose, we configured Jenkins with credentials for GitHub and Docker Hub. Now, we will configure additional credentials for the AWS IAM user and the ECR container registry.

			While you are signed into the Jenkins server with the admin user, go to its home page and then navigate in the left menu to the Credentials | System | Global credentials (unrestricted) screen. Then, add a credential of the AWS Credentials type with the shipit.aws.key ID, the ShipIt Clicker AWS API Keys description, and the access key ID and secret access key from the previous section. You should see a credential form that looks like this:

			
				
					[image:]
				

			

			Figure 9.8 – Configuring AWS credentials in Jenkins

			Once you have done this, add an additional credential of the Secret text type with the following fields, but replace the values in the Secret field with the value of the ECR container host from the URL you used earlier this chapter when deploying ShipIt Clicker, omitting the dockerfordevelopers/shipitclicker:0.5.0 reference at the end:

			
					Scope: Global

					Secret: 143970405955.dkr.ecr.us-east-2.amazonaws.com

					ID: shipit.ecr.container.id

					Description: ShipIt Clicker ECR container ID

			

			Save this credential by pressing the OK button.

			Now that we have configured Jenkins with the credentials needed to connect to AWS and ECR, let's configure a new multi-branch pipeline for the code in this chapter.

			Configuring Jenkins with a multi-branch pipeline for the Jenkinsfile

			Next, we will configure Jenkins to use an additional multi-branch pipeline item that pulls from the same GitHub repository but is configured to use chapter9/Jenkinsfile instead of the Jenkinsfile at the root of the repository. Sign in to Jenkins, and from the home page, navigate to New Item. Create a new multi-branch pipeline item, name it Spinnaker, and then configure it with your GitHub repo credentials, similar to what is included in the following screenshot (replace PacktPublishing/Docker-for-Developerswith the GitHub organization and name of the forked copy of the repository that you set up in Chapter 7, Continuous Deployment with Jenkins):

			
				
					[image:]
				

			

			Figure 9.9 – Jenkins multi-branch pipeline setup

			After you configure this, the new item should connect to the GitHub repository and build and push a container to AWS ECR. Inspect the console output from the master branch in this new item to make sure the build succeeds and that the Docker image gets pushed to the AWS ECR repository.

			Now that you have configured Jenkins with the ECR plugin, created a Jenkins IAM user, configured Jenkins with the credentials for that user, configured Jenkins with new credentials to reflect the AWS integration, and added the new Jenkins multi-branch setup, you can proceed to connect other services to Spinnaker. Next, we will connect GitHub.

			Connecting Spinnaker to GitHub

			We will follow the guidance from https://www.spinnaker.io/setup/artifacts/github/ to connect Spinnaker to Jenkins so that it can read artifacts from GitHub. Go to your GitHub user account and, in Developer Settings, generate an access token for Spinnaker with repo scope.

			From your local workstation, connect to the Halyard maintenance pod, as shown in the Configuring Spinnaker using Halyard section, put the GitHub token in a file in the home directory, and then issue the following commands (replacing xxxx with your GitHub token and my-github-user with your GitHub username):

			TOKEN=xxxx

			GH_ACCOUNT=my-github-user

			TOKEN_FILE=~/.github-token.txt

			echo "$TOKEN" > $TOKEN_FILE

			hal config artifact github enable

			hal config artifact github account add $GH_ACCOUNT --token-file $TOKEN_FILE

			hal deploy apply

			Once you have done this, Spinnaker should be able to talk to GitHub. Next, we will connect Spinnaker to Docker Hub.

			Connecting Spinnaker to Docker Hub

			You will also need to connect Spinnaker to Docker Hub so that it can read your repository and the library/redis repository. Integrating Spinnaker with Docker Hub requires you to whitelist all the repositories that your templates will use. The default Docker Hub integration has a short whitelist of the most common libraries.

			We will follow the guidance from https://www.spinnaker.io/setup/install/providers/docker-registry/ in order to add Docker Hub to Spinnaker.

			Log in to your Docker Hub account and generate a new API token for the Spinnaker installation from https://hub.docker.com/settings/security.

			From your local workstation, connect to the Halyard maintenance pod:

			kubectl exec --namespace spinnaker -it spinnaker-spinnaker-halyard-0 bash

			Then, issue the following commands (replacing xxxx with your Docker Hub token and my-dockerhub-user with your Docker Hub username):

			$ ADDRESS=index.docker.io

			$ REPOSITORIES="library/redis dockerhub-user/shipitclicker"

			$ USERNAME=dockerhub-user

			$ PASSWORD=xxxx

			$ REPOSITORIES="library/redis dockerhub-user/shipitclicker"

			$ echo $PASSWORD | hal config provider docker-registry \

			 account add my-docker-registry \

			 --address $ADDRESS \

			 --repositories $REPOSITORIES \

			 --username $USERNAME \

			 --password

			$ hal deploy apply

			Once Docker Hub is connected, you are ready to start setting up an application and pipeline in Spinnaker. But before we do that, let's talk about how to troubleshoot Spinnaker issues.

			Troubleshooting Spinnaker issues

			If you have any difficulties getting a Spinnaker pipeline execution to work, or have other issues setting up and configuring Spinnaker, the user interface has minimal error-reporting capabilities. It can seem opaque and daunting.

			For example, let's imagine you have a typo in one of your artifact definitions – for example, gitgub.com instead of github.com. The pipeline might fail when it tries to retrieve that artifact due to a hostname failure lookup.

			Rather than trying to figure out which of the Spinnaker pods might have recorded an error, you can just tail all the logs of all the Spinnaker pods at once:

			kubectl logs -n spinnaker -f -l app=spin --all-containers --max-log-requests 10

			If you search your console output for the word exception, you may find a clue, such as this one found when troubleshooting Spinnaker:

			com.netflix.spinnaker.clouddriver.artifacts.exceptions.FailedDownloadException: Unable to determine the download URL of artifact Artifact(type=github/file, customKind=false, name=chapter9/helm.tar.gz, version=staging, location=null, reference=https://api.gitgub.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/helm.tar.gz, metadata={id=8ebb0ad7-2d14-4882-9b77-fde3a03e3c45}, artifactAccount=obscurerichard, provenance=null, uuid=null): api.gitgub.com: Try again

			Analyzing log files like this can really get you out of a jam. Next up, we will deploy ShipIt Clicker with Spinnaker.

			Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker

			Let's get our hands dirty with Spinnaker by deploying our ShipIt Clicker application. For this, we will be using Helm Charts, and we will use the version of the application in the chapter9 directory.

			Spinnaker requires Helm archive files to operate

			In order to simplify the deployment of the Helm Charts, we have created an archive of the chapter9/shipitclicker Helm Chart directory in chapter9/helm.tar.gz, as Spinnaker expects an archive in this format as one of its inputs. We could instead output this archive to an AWS S3 object, or even as a GitHub release artifact, but that is beyond the scope of this chapter. If you change the Helm Charts in the chapter9/shipitclicker directory, be sure to update the helm.tar.gz archive and commit and push it before building with Spinnaker.

			Adding a Spinnaker application

			Go to your Spinnaker installation in the web browser at https://spinnaker.eks.example.com (replacing example.com with your domain). Add an application called shipandspin, then, in Repo Project, insert your GitHub username, and in Repo Name, insert the name of the repo where you have forked the Docker-for-Developers code:

			
				
					[image:]
				

			

			

			Figure 9.10 – The New Application dialog in Spinnaker

			When you submit this form, it will take you to an infrastructure definition form. Stop here, and do not fill in or submit the infrastructure definition form. This form is intended for other types of Spinnaker deployments, not for Kubernetes-centric deployments. When you deploy your application, it will define infrastructure in Kubernetes that Spinnaker understands.

			Adding a Spinnaker pipeline

			Navigate to the PIPELINES screen:

			
				
					[image:]
				

			

			Figure 9.11 – A PIPELINES screen example in Spinnaker

			Create a pipeline called shipit-eks-staging, and then add two artifacts – one for the Helm Chart and one for a values-spin.yaml override.

			For the first one, pick the GitHub account, give it the chapter9/helm.tar.gz Helm artifact, and click Use Default Artifact. Then, give it the full URL of the artifact from the API, changing this to match your account and repository name (double-check that this is correct before submitting):

			https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/helm.tar.gz

			Tell it to use the staging branch. It will look something like this when you have defined it:

			
				
					[image:]
				

			

			Figure 9.12 – Overriding the artifact: Helm Chart archive in Spinnaker

			Give it another artifact for the chapter9/values-spin.yaml override file. Set the chapter9/values-spin.yaml file path and the values-spin.yaml display name, select Use Default Artifact, and then set https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/values-spin.yaml for Content URL and staging for the branch (replacePacktPublishing/Docker-for-Developerswith the GitHub organization and name of the forked copy of the repository that you set up in Chapter 7, Continuous Deployment with Jenkins):

			
				
					[image:]
				

			

			Figure 9.13 – Overriding the artifact: Helm Chart archive in Spinnaker

			Then, configure Automated Triggers to get triggers from your GitHub installation, as follows. Pick the job marked job/staging, which pulls from the branch that you learned to force push in a previous chapter. Be sure to also specify build.properties for Property File, which is a Jenkins archived file that this will use to get the version of the container that Jenkins built:

			
				
					[image:]
				

			

			Figure 9.14 – The Jenkins Automated Triggers screen in Spinnaker

			Go to the bottom of the form and save the Configuration stage.

			Now, let's add the next stage, which creates the Kubernetes manifest from the Helm Charts.

			Adding the Bake (Manifest) stage

			After you have saved the configuration stage, you will still be at the bottom of the very long stage-definition web form. Go back to the top of the form and add an additional stage of the Bake (Manifest) type. Configure it with the shipit-staging name and tell it to deploy to the default namespace. Give it a Template Artifact setting of helm.tar.gz.

			For Overrides, set values-spin.yaml. Add an override key-value pair with the image.repository name and the ${trigger["properties"]["imageName"]} value. Add an override key-value pair with the ingress.hosts[0].host name and the shipit-stage.eks.example.com value, replacing example.com with your domain name.

			We will set up a Route 53 DNS entry for the Ingress Controller that this creates as soon as it is deployed. The form should look something like the following:

			
				
					[image:]
				

			

			Figure 9.15 – The Bake (Manifest) template renderer configuration screen in Spinnaker

			Then, at the bottom of the form, in the Produces Artifacts section, pick a Base64 kind of artifact. Give it a name and display name of kube-templates.yaml and save the form. It should look something like this:

			
				
					[image:]
				

			

			Figure 9.16 – The Bake (Manifest) Produces Artifacts section in Spinnaker

			Configuring this stage will set up the Helm template-rendering process. Then, save the form. Next, we will set up the Deploy (Manifest) stage.

			Adding the Deploy (Manifest) stage

			After you have saved the previous configuration change, go to the top of the configuration form again and add another stage, Deploy (Manifest). Pick the default account and tell it to override the namespace to deploy to the default namespace. Select kube-templates.yaml for Manifest Artifact to deploy. Do not select the Rollout Strategy Options setting, as this only works if you have one ReplicaSet and forego using Deployments as a Kubernetes controller. It will look something like this:

			
				
					[image:]
				

			

			Figure 9.17 – Deploy (Manifest) Configuration in Spinnaker

			Now, we are ready to trigger a deployment. Click on PIPELINES at the top of the screen and click on the Start Manual Execution link. It should reach out to GitHub for the latest build, and then bake the manifest using Helm Charts and deploy.

			Because we used Jenkins to emit a build.properties file and used a Spring Expression Language (SPEL) expression to override the image.repository field in the template, we will be using the specific container that the Jenkins job connected to the trigger built. Refer to the following link for more information on SPEL expressions and Spinnaker pipelines:

			https://www.spinnaker.io/guides/user/pipeline/expressions/

			There might be some issues that you need to troubleshoot, particularly if you have made a typo in some of the required configurations. If all goes well, it should look something like this:

			
				
					[image:]
				

			

			Figure 9.18 – Pipelines showing a completed job in Spinnaker

			You can then explore the Execution Details and INFRASTRUCTURE panes, as Spinnaker will show you some information about the running application. It can even show you the logs from your running pods.

			Setting up a DNS entry for the Ingress Controller

			To see the running application from the outside, you will need to set up a DNS entry. Issue the kubectl get ingress command to determine the DNS alias of the Ingress Controller for shipit-eks-staging, and then set up the DNS alias in Route 53 for your domain to match the override you set up for shipit-stage.eks.example.com (replacing example.com with your domain).

			You should be able to visit https://shipit-stage.eks.example.com/ (replacing example.com with your domain) once this is complete and see the running ShipIt Clicker game.

			Next up, we will learn about Spinnaker's support for different types of deployments and how they apply (or don't apply) to Kubernetes deployments.

			Surveying Spinnaker's deployment and testing features

			In the introduction to Spinnaker earlier in this chapter, we noted that you would have the opportunity to learn more about the various deployment methodologies available to you. Let's now dig into these concepts, including canary and red/black deployments, and describe their relevance to Spinnaker when used to manage Kubernetes deployments.

			Canary deployments

			Canary deployment is a method of exposing an application to its users where you run a subset of the traffic for the application through a new deployment while keeping most of the traffic for the application going to the currently deployed version. This can help you test whether the new version is suitable for production use without immediately funneling all the traffic through.

			The Kubernetes v2 Spinnaker provider does not support canary deployments

			Although this is one of Spinnaker's most desired features, the Kubernetes v2 cloud provider does not support canary deployments, so we won't use it for ShipIt Clicker. If we were using a non-Kubernetes cloud provider, such as the AWS, Google Compute Engine, or an Azure provider, this would be a more natural pattern to use. See https://spinnaker.io/setup/install/providers/ for the full list of Spinnaker cloud providers.

			Red/black deployments

			Let's now look at how the red/black deployment methodologies work. This is another name for the better-known blue/green deployment strategy. With a red/black strategy, you keep two sets of servers or containers available during a deployment, with traffic flowing to only one at a time. Let's say red is taking traffic when the deployment begins. During the deployment, you would deploy to black. Once the health checks pass, you switch traffic to black, but keep red around so that if anything goes wrong, you can switch traffic back to red without having to redeploy.

			Spinnaker announced support for red/black deployments through the Kubernetes v2 provider in 2019:

			https://blog.spinnaker.io/introducing-rollout-strategies-in-the-kubernetes-v2-provider-8bbffea109a

			However, this has some significant limitations. It means you can't use the Kubernetes deployment objects and must instead use the lower-level ReplicaSet annotations. The Helm Chart generator produces a skeleton with a deployment in it that sits atop ReplicaSets, so if you want to use the Spinnaker red/black support with Kubernetes, you will have to alter your Helm Charts significantly. Refer to this advice on the Kubernetes v2 provider:

			https://www.spinnaker.io/guides/user/kubernetes-v2/traffic-management/#you-must-use-replica-sets

			What Spinnaker does support for Kubernetes deployments that only use ReplicaSets are the following deployment strategies:

			
					Dark: Deploy to a new ReplicaSet that is not connected to the live load balancer.

					Red/black: Deploy a new ReplicaSet and switch back and forth between the new and old sets using Spinnaker.

					Highlander: Deploy a new ReplicaSet and destroy the old one as soon as the new one starts taking traffic (there can be only one ReplicaSet).

			

			If you are using the Kubernetes deployment controller, the behavior you will get is very similar to the Spinnaker Highlander strategy. So, you may not need to use the Spinnaker support for advanced deployment strategies if you are using Kubernetes.

			Rolling back

			So, what happens if a deployment fails? Well, we will need to roll back to our previous release in a safe fashion. For the style of deployment where Spinnaker manages deploying machine images, it orchestrates this rollback. However, with the Kubernetes operator, it relies on the Kubernetes deployment mechanisms that use liveness and readiness probes in order to check that a deployment is valid.

			Spinnaker does have some support for undoing a rollout of a set of templates directly through its interface. However, this may not work if all the resources in the templates do not have independent revisions, such as separately versioned and tagged Docker containers. See here for more information about rollbacks with Spinnaker and Kubernetes:

			https://www.spinnaker.io/guides/user/kubernetes-v2/automated-rollbacks/

			Testing with Spinnaker

			With Spinnaker, you can either use a manual judgement stage to provide time for people to do a manual test on an application or you can use a scripted pipeline stage to run an automated test suite in Jenkins versus your application. If you are deploying to multiple environments or using the red/black strategies, this can give you a better opportunity to execute tests versus your application before deploying it to production or exposing it to the world.

			You can find more information on testing using either one of these strategies in their respective Spinnaker documentation at https://www.spinnaker.io/guides/tutorials/codelabs/safe-deployments/ and https://www.spinnaker.io/setup/features/script-stage/.

			Summary

			In this chapter, we explored the topic of continuous deployment in AWS using the Spinnaker framework. We started by configuring Spinnaker to work with Jenkins, GitHub, AWS ECR, and Docker Hub. Then, we used it to deploy the ShipIt Clicker application to Kubernetes on EKS, securing both Spinnaker and the ShipIt Clicker application with SSL.

			Following this, we learned about some advanced deployment strategies that Spinnaker offers, and what some of the trade-offs are that you would have to make when configuring your Kubernetes-driven Docker application to take advantage of them. We also learned how you can trigger the execution of tests (manual or automated) via Spinnaker. By using the lessons learned in this chapter in practice, you can construct continuous deployment systems that use a combination of simple Jenkins build jobs and Spinnaker pipelines to deploy Docker applications to Kubernetes. The skills you have acquired related to integrating Spinnaker with Kubernetes are also applicable to integrating other software packages with Kubernetes.

			In the next chapter, we will explore monitoring our Docker containers with Prometheus, Grafana, and Jaeger.

			Further reading

			Use the following resources to expand your knowledge of Spinnaker and EKS:

			
					Spinnaker is not a build server, and other misconceptions: https://www.armory.io/blog/spinnaker-is-not-a-build-server-and-other-misconceptions/

					An AWS blog post describing a full installation of Kubernetes and Spinnaker with Jenkins and ECR: https://aws.amazon.com/blogs/opensource/deployment-pipeline-spinnaker-kubernetes/

					A good article on how Kubernetes services are exposed to the world: https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

					The AWS official documentation on the ALB Ingress Controller: https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html

					The Spinnaker CLI: https://www.spinnaker.io/guides/spin/

					A Kubernetes external DNS provider that you can use to annotate your templates to avoid having to manually set up DNS aliases: https://github.com/kubernetes-sigs/external-dns

			

			Spinnaker is not the only advanced Kubernetes-aware CD system you should be aware of; you might consider these other alternatives as well, and carry out fresh research on this topic as this landscape is changing rapidly:

			
					Jenkins-X – an opinionated Kubernetes-focused CI/CD system: https://jenkins-x.io/

					Argo Project – workflows, CD, and more. A CNCF project at the incubating stage as of July 2020: https://argoproj.github.io/

					WeaveWorks – a GitOps system for CD using Kubernetes: https://www.weave.works/technologies/ci-cd-for-kubernetes/

			

		

	
		
			Chapter 10: Monitoring Docker Using Prometheus, Grafana, and Jaeger

			In order to understand how an application behaves when it runs in production, developers and system operators rely on logging, monitoring, and alerting systems. These systems can both give insight into whether an application and its environment are operating normally and provide clues to follow if troubleshooting is needed. As systems become more complex, the need for deeper insights into both applications and their support software also grows. Systems that allow for deep inspection of all these concerns without having to alter the code that runs on the system can be said to have good observability characteristics.

			In this chapter, you will learn how to instrument your application and its runtime environment to improve the observability of the entire system. You will learn about many aspects of logging, monitoring, and alerting. Specifically, you will learn how to view, query, and store logs from the Kubernetes cluster both within the cluster and in CloudWatch and Amazon Simple Storage Service (S3). You will learn how to implement liveness and readiness probes specific to the needs of a cloud-native application, get alerts when something goes wrong, and capture application metrics with Prometheus. You will learn how to visualize performance and availability metrics using Grafana. Finally, we will dive deep into the application-specific metrics at the code and database layer using Jaeger.

			We will cover the following topics in this chapter:

			
					Docker logging and container runtime logging

					Use liveness and readiness probes in Kubernetes

					Gathering metrics and sending alerts with Prometheus

					Visualizing operational data with Grafana

					Application performance monitoring with Jaeger

			

			Next up, let's make sure that you are ready to test out these systems and learn how to use them in concert to achieve observability for your system.

			Technical requirements

			This chapter focuses on the integration of Kubernetes with some AWS services, including CloudWatch, Kinesis, and S3, so you must have a working AWS account with administrator privileges. You will need to have a working Kubernetes cluster in AWS, as set up in a previous chapter with AWS Elastic Kubernetes Service (EKS). You could reuse that cluster or set up a new one for this chapter using either the AWS EKS Quick Start CloudFormation templates or eksctl.

			You will also need to have a current version of the AWS CLI, kubectl, and helm 3.x installed on your local workstation, as described in the previous chapter. The helm commands in this chapter use the helm 3.x syntax. The EKS cluster must have a working ALB Ingress Controller setup.

			You could use Spinnaker and Jenkins, as set up in previous chapters, to deploy the applications in this chapter, but it is not required.

			Check out the following video to see the Code in Action:

			https://bit.ly/3iIqgvM

			Setting up a demo application – ShipIt Clicker v7

			In order to have a sample application to instrument and monitor, we will use the version of ShipIt Clicker in the chapter10 directory in the following GitHub repository:

			https://github.com/PacktPublishing/Docker-for-Developers/

			This version of the application has some important production-readiness updates in contrast to the version in the previous chapter. Instead of being tightly coupled with a specific Redis installation, this version uses a Redis server installed separately. We will need to deploy the Redis cluster onto Kubernetes before installing the latest version of ShipIt Clicker.

			To prepare our Kubernetes environments, both in the local learning environment and the AWS cloud EKS cluster, we will first need to install Redis using Helm.

			Installing Redis from the Bitnami Helm repository

			In order to deploy this version, we are going to have to deploy the Redis server independently of the ShipIt Clicker pod. This represents a more realistic scenario than the one where the ShipIt Clicker Kubernetes pod had both the Redis server and the stateless application container running in it.

			We are going to use the version of Redis maintained by Bitnami (https://bitnami.com/), which offers separate reader and writer endpoints. Deploy Redis first through Helm, both to your local Kubernetes installation and then to your cloud Kubernetes installation (replace docker-desktop and the AWS ARN with the context IDs for your installation when you run the following commands):

			$ helm repo add bitnami https://charts.bitnami.com/bitnami

			$ kubectl config use-context docker-desktop

			$ helm install redis bitnami/redis

			$ kubectl config use-context arn:aws:eks:us-east- 2:143970405955:cluster/EKS-8PWG76O8

			$ helm install redis bitnami/redis

			This will deploy a Redis cluster with one node that accepts read and write, and multiple nodes that are replicas that are read-only. The version of ShipIt Clicker in this chapter has been adapted to use this external Redis service, which uses a Kubernetes secret to store a password needed for authentication.

			Offensive terms – master and slave considered harmful

			The Bitnami Redis template, and Redis itself, use master and slave terminology to describe the roles of nodes in a distributed system. Please know that while these terms are common in information technology, many people find this terminology backward and offensive. Other terms, such as primary/secondary or reader/writer, convey the same information without the negative connotations. See this article for more on this controversial issue:

			https://medium.com/@zookkini/masters-and-slaves-in-the-tech-world-132ef1c87504

			Next, let's build and install ShipIt Clicker into our learning environment.

			Installing the latest version of ShipIt Clicker locally

			Next, we will build the ShipIt Clicker Docker container, tag it, and push it to Docker Hub, as we did in previous chapters. Issue these commands, replacing dockerfordevelopers with your Docker Hub username:

			$ docker build . -t dockerfordevelopers/shipitclicker:0.10.0

			$ docker push dockerfordevelopers/shipitclicker:0.10.0

			$ kubectl config use-context docker-desktop

			$ helm install --set image.repository=dockerfordevelopers/shipitclicker:0.10.0 shipit-v7 shipitclicker

			Inspect the running pods and services using kubectl get all to verify that the pod is running, note its name, then inspect the logs with kubectl logs to see the startup logs. There should be no errors in the log.

			Next, let's install this version on EKS.

			Installing the latest version of ShipIt Clicker on EKS through ECR

			Now that you have built the Docker containers and installed this locally, install it to AWS EKS via Elastic Container Registry (ECR). Edit values.yaml to give this a hostname in the Route 53 zone, such as shipit-v7.eks.example.com (replace the ECR reference with the one corresponding to your AWS account and region, and replace example.com with your domain name):

			$ docker tag dockerfordevelopers/shipitclicker:0.10.0 143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:0.10.0

			$ aws ecr get-login-password --region us-east-2 | docker login --username AWS --password-stdin 143970405955.dkr.ecr.us-east-2.amazonaws.com

			$ docker push 143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:0.10.0

			$ kubectl config use-context arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8

			$ kubectl config use-context arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8

			$ helm install shipit-v7 -f values.yaml --set image.repository=143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:0.10.0 ./shipitclicker

			Inspect the Kubernetes logs to make sure the application has deployed cleanly to the cluster:

			kubectl logs services/shipit-v7-shipitclicker

			If all is well with the deployment, get the AWS ALB Ingress Controller ingress address, as described in the previous chapter, and create DNS entries in the Route 53 console for the deployed application with the ALB address. You should then be able to reach your application at a URL similar to https://shipit-v7.eks.example.com/ (replace example.com with your domain name).

			Configuring Jenkins and Spinnaker for this chapter

			You might wonder whether you can use the same Jenkins and Spinnaker configuration you set up previously for this chapter. You can, by making a few simple configuration changes to the Jenkins job in the Spinnaker multi-branch pipeline item and the Spinnaker pipeline definitions. Start by fixing up Jenkins. Edit the configuration of the job and change the Build Configuration | Script Path item so that it references chapter10/Jenkinsfile, and then hit the Save button:

			
				
					[image:]
				

			

			Figure 10.1 – The Jenkins Build Configuration setting for the Spinnaker multi-branch pipeline item

			Jenkins will rescan the repository and use the files from chapter10 instead of chapter9.

			Then, go to Spinnaker and edit the pipeline for the staging environment in the configuration pipeline stage, and change all the chapter9 references to chapter10.

			You can then use git push --force origin HEAD:staging as described in the previous chapter to trigger a Kubernetes deployment from Spinnaker.

			The Helm templates for ShipIt Clicker in this chapter have been packaged into an archive file, chapter10/helm.tar.gz, using the following commands:

			$ cd chapter10

			$ helm package shipitclicker

			Successfully packaged chart and saved it to: /Users/richard/Documents/Docker-for-Developers/chapter10/shipitclicker-0.10.0.tgz

			$ mv shipitclicker-*.tgz helm.tar.gz

			If you alter the Helm Charts and you are using Spinnaker, be sure to use the preceding commands to repackage the helm.tar.gz file, as Spinnaker expects the charts in that specific file.

			Next, let's take a detailed look at logging for both the Docker containers and the container runtime logs, such as those for the Kubernetes control plane.

			Docker logging and container runtime logging

			When you are trying to troubleshoot problems with your application, it helps to have detailed logs for both the application itself and from whatever system it runs. Every Docker container, whether it is run locally or with a cloud container runtime manager such as Kubernetes, produces its own logs that you can query.

			In previous chapters, we've used both the docker logs command and the kubectl logs command in order to examine logs for the demo application when run both on a local workstation and in the cloud with Kubernetes. These commands can yield insight into events that are critical to your system, including both application logging messages and error and exception logs. They are still the bedrock tools you will reach for; but particularly when we need to scale out our application with Kubernetes, we will need a more sophisticated approach.

			Understanding Kubernetes container logging

			Every Docker container running in every Kubernetes pod produces logs. The Kubernetes runtime, by default, will temporarily store the last 10 MB of logs for every running container. This makes it possible to sample the logs for every running application using only the kubectl logs tool. When a pod is evicted from a node, or when a container restarts, Kubernetes will delete these ephemeral log files; it will not automatically save the logs to permanent storage. This is far from ideal if you need to troubleshoot a problem, especially if the problem happened long ago enough that those logs have rolled over and the older log entries are unavailable.

			You can use kubectl to examine multiple logs at once, as shown in the previous chapter, with respect to showing multiple Spinnaker container logs, and you can use common command-line tools, such as grep, awk, jq, and less, to carry out further basic searching and filtering on logs. However, the issue with logs rolling over will thwart some search attempts.

			Given the constraints on the basic features of the Kubernetes system with respect to both log retention and searching, it would be prudent to explore how we might want to mitigate these issues. Let's talk about the characteristics we would want from a log management system next.

			Ideal characteristics for a log management system

			Ideally, you would want to use a system for managing your logs that has some of the following characteristics:

			
					Having log messages be available to view in a central console

					Low latency from when a log event happens to when it is available for searches

					Collection of logs from multiple sources, including Kubernetes objects such as pods, nodes, deployments, and Docker containers

					An easy-to-use search interface, with the ability to save and reuse ad hoc queries

					A way to visualize a histogram of search results that includes the ability to zoom in on the graph by clicking and dragging over the graph (a feature known as brushing)

					A way to send alerts based on the contents of log messages

					A way to configure the retention period of the log messages

			

			Various organizations have built many excellent log storage and analysis systems over the past 20 years, including the following third-party log management systems:

			
					Splunk (https://www.splunk.com/)

					Elasticsearch (https://www.elastic.co/)

					Loggly (https://www.loggly.com/)

					Papertrail (https://www.papertrail.com/)

					New Relic Logs (https://newrelic.com/products/logs)

					Datadog Log Management (https://docs.datadoghq.com/logs/)

			

			Cloud providers also have built excellent integrated log storage and analysis systems, including the following:

			
					AWS CloudWatch (https://aws.amazon.com/cloudwatch/)

					Google Cloud Logging (https://cloud.google.com/logging)

					Microsoft Azure Monitor Logs (https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-platform-logs)

			

			As a developer or system operator, you can use these systems to store and search log entries. However, in order to do so, you must use a log shipper to extract the logs from their origins and forward them to the log management system.

			We will examine how to forward Kubernetes container logs to one of these systems shortly, but first, let's examine another critical system aspect: logging for the Kubernetes control plane that provides orchestration for nodes, pods, and the rest of the family of Kubernetes objects.

			Troubleshooting Kubernetes control plane issues with logs

			If you run your own Kubernetes cluster, where you manage the control plane servers, you may have a difficult time troubleshooting system-level issues. The Kubernetes troubleshooting guide offers guidance about looking at various log files on individual machines in the control plane cluster, which could be a painful exercise:

			https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/

			However, if you are using managed Kubernetes services, such as AWS EKS, you will not have direct access to these systems. You might ask, how do I get those logs? The managed Kubernetes service providers all have ways to ship those logs to another system in order to aid in troubleshooting. Fortunately, AWS EKS has an optional configuration setting that tells it to ship logs from its control plane directly to CloudWatch:

			https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html

			If you used the AWS EKS Quick Start described in Chapter 8, Deploying Docker Apps to Kubernetes, to create your EKS cluster, it sets this up for you. You can go to the CloudWatch Logs console in the us-east-2 region to verify: https://us-east-2.console.aws.amazon.com/cloudwatch/home?region=us-east-2#logs:

			You will see a listing of log groups similar to the following:

			
				
					[image:]
				

			

			Figure 10.2 – CloudWatch log groups showing EKS control plane logs

			The main Kubernetes control plan log group will be named similarly to /aws/eks/EKS-8PWG76O8/cluster, but with your EKS cluster name. You can navigate to this and examine the logs there in detail through the console.

			If you used eksctl to create your EKS cluster, you may not have enabled CloudWatch logging. You can use the instructions here to add CloudWatch logging to EKS through eksctl:

			https://eksctl.io/usage/cloudwatch-cluster-logging/

			Now that you have verified that your EKS cluster control plane is logging to CloudWatch and have learned how to get a basic viewing of the logs, let's proceed to capture the rest of the Kubernetes logs in CloudWatch Logs and analyze them with CloudWatch Logs Insights.

			Storing logs with CloudWatch Logs

			AWS operates a cloud-scale service to handle logging, time-series metrics, data ingestion, storage, and analysis called CloudWatch. Many AWS services, including EKS, offer logging integration through CloudWatch. As with so many AWS services, you only pay for what you use. You can learn more about the basics of CloudWatch at https://aws.amazon.com/cloudwatch/.

			We saw in the previous section that AWS allows us to configure the EKS control plane to send logs directly to CloudWatch. This is good, but if we are going to manage our logs in a central place, we should try to store all of our logs there.

			Next, we will look at how we can ship more logs to CloudWatch, using the solution that AWS recommends in the EKS documentation – Fluent Bit (https://fluentbit.io/).

			AWS provides an excellent tutorial on setting up Fluent Bit with EKS at https://aws.amazon.com/blogs/containers/kubernetes-logging-powered-by-aws-for-fluent-bit/.

			The scripts and configuration files described later in this chapter are inspired by and partially derived from that article.

			Next, we will learn how we can use a script to install Fluent Bit and supporting AWS resources quickly and repeatably.

			Installing Fluent Bit to ship logs to CloudWatch

			While you could go through the steps in the previously referenced AWS blogs by hand, in order to streamline these operations and make them work more seamlessly with the AWS EKS Quick Start, you can use the install-fluentbit-daemonset.sh script in this chapter to install Fluent Bit as a DaemonSet in your EKS cluster, with a configuration that ships logs to CloudWatch Logs. Give it the name of the CloudFormation template for your EKS cluster CloudFormation template as a command-line parameter:

			chapter10/bin/install-fluentbit-daemonset.sh Amazon-EKS

			Setting up Fluent Bit to work with AWS requires a bit more work than it does with some other cloud platforms; for example, if you were using Google Cloud Platform's GKE, it would be installed automatically for you.

			Once you have the logs for the containers streaming into CloudWatch, you can use the CloudWatch AWS console to view the container logs, as well as the control plane logs.

			Changing the CloudWatch log retention periods

			By default, CloudWatch will store logs indefinitely. To save on log storage fees, you should consider setting a relatively short retention period for your CloudWatch logs – such as 60 days. You can do that from the console or the command line, as follows, where this command sets the period for the fluentbit-cloudwatch log group created by the install-fluentbit-daemonset.sh script:

			aws logs put-retention-policy --log-group-name fluentbit-cloudwatch --retention-in-days 60 --region us-east-2

			You might consider doing this for each of the CloudWatch log groups, even the ones created by the AWS EKS Quick Start CloudFormation template.

			Next, let's see how we can store logs in S3.

			Storing logs for the long term with AWS S3

			In order to economically store log data for the long term, over a period of months or years, you can use an inexpensive cloud object storage system, such as Amazon S3 (https://aws.amazon.com/s3/).

			If you have a serious need to retain logs for the long term – for example, if you have a sensitive financial application where regulations mandate 5 years of storage for all application logs – S3 could be a good fit. You can make long-term storage even less expensive by setting up S3 life cycle rules on the bucket to move objects to less expensive storage tiers, migrate them to Amazon Glacier (https://aws.amazon.com/glacier/), or expire and delete older records.

			AWS published a blog article (https://aws.amazon.com/blogs/opensource/centralized-container-logging-fluent-bit/) that outlines a path that you could use to stream the logs into S3 using Kinesis Firehose as an additional Fluent Bit target. You could follow the instructions in the blog under the Log analysis across clusters section to get the logs streaming to S3 that way, but it will probably be challenging to do so as you would have to adapt the scripts to the EKS Quick Start in many ways, including changing the AWS region and dealing with the assumption that you used eksctl to set up your cluster.

			A project called CloudWatch2S3 that was inspired by that blog can help with this process by deploying one CloudFormation template. This has the advantage that it can send all of the CloudWatch log groups to S3, and you can install it by applying a single CloudFormation template. It can also collect CloudWatch logs from multiple AWS accounts should you choose to do that. Clone the GitHub repository at https://github.com/CloudSnorkel/CloudWatch2S3 to your workstation and follow the directions there to set up the streaming of CloudWatch logs to S3. Before you proceed, you might consider creating an Amazon Key Management Service (KMS) key to encrypt the Kinesis Firehose and S3 bucket contents. Install the CloudFormation template using the AWS console or CLI, as you prefer.

			Now that we have seen how to store logs in both CloudWatch and S3, it would be nice to learn how we might query those logs.

			Analyzing logs with CloudWatch Insights and Amazon Athena

			Now that you have logs stored in both CloudWatch and S3, you can query them with either CloudWatch Insights or Amazon Athena.

			Analyzing logs stored in CloudWatch with CloudWatch Insights

			The easiest way to perform queries on the logs stored in AWS is with CloudWatch Insights. This web-based query interface provides an interactive query builder and a way to visualize the results in both histogram and tabular data formats. It features a saved query manager, which is a key feature because it lets you build and refine a set of queries that can span one or more log groups. The documentation for CloudWatch Insights is available at https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html.

			You can explore the sample queries in the AWS console for that service to get a better feel for what CloudWatch Insights has to offer.

			Analyzing logs stored in S3 with AWS Athena

			When logs are stored in S3, you won't be able to query them in exactly the same way you would if you used CloudWatch Insights or another log management system. However, there are ways to efficiently query logs stored in S3. The most direct way is with a query tool called Amazon Athena:

			https://aws.amazon.com/athena/

			Athena will let you use a SQL-like query language on semi-structured data stored in S3 buckets. You pay by the query, according to how much data is scanned and how much processing time it requires. In order to get Athena to understand the structure of your S3 data, you would need to configure virtual tables using the AWS Glue catalog:

			https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html

			Setting up the combination of AWS Glue and Athena is pretty complex and is beyond the scope of what we can show in this chapter. See the links in the Further reading section at the end of this chapter for more information on setting up Athena so that you can use it to query the data stored in S3.

			Exercise – finding the number of ShipIt Clicker games played

			The ShipIt Clicker demo application emits a log message every time a game is started of the form:

			{"level":30,"time":1591067727743,"pid":17,"hostname":"shipit-staging-shipitclicker-776c589c4f-z9tgg","name":"Shipit-Clicker -shipit-staging","msg":"Game created in Redis","key":"WWoor1SAYT_H98G4DDR-T","value":"OK","v":1}

			Create a query in CloudWatch Insights that counts the total number of games that have been created. For CloudWatch Insights, you will have to select the fluentbit-cloudwatch log group.

			Solution

			Refer to the following file for the solution:

			https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter10/cloudwatch-insights.txt

			Using the liveness, readiness, and startup probes in Kubernetes

			Kubernetes has multiple types of health checks, called probes, to ensure that the Docker containers it runs are in shape to process traffic. You can read about them in detail at https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/.

			The types of probes deal with different concerns:

			
					Liveness: Determines whether an application can process requests at all.

					Readiness: Determines whether a container is ready to receive real traffic, especially if it depends on external resources that have to be reachable or connected.

					Startup: Determines whether a container is ready to start taking the other two types of traffic, intended for slow-starting legacy applications to give them time to start. As these are mostly needed for legacy applications, we won't cover them in detail.

			

			You can configure probes to execute commands inside a running container, perform a TCP port check, or check an HTTP endpoint. Probes have sensible default values for timeouts and check intervals—by default, a probe will check every 10 seconds and will fail with a timeout with 1 second. By default, a probe must fail three times in a row before the probe enters the failure state, and it must succeed once before it enters a success state. You can override these values through template annotations, in deployment.yaml in your Helm Charts, for example.

			If a liveness probe for a container fails enough times, Kubernetes will kill the container and restart it. If a readiness probe for a container in a pod is failing, Kubernetes will not direct any traffic for a service depending on that pod to the container. We are going to examine liveness and readiness probes in detail next.

			Using a liveness probe to see whether a container can respond

			For a service such as ShipIt Clicker, a good liveness check would be one where the application can rely solely on internally configured resources to respond – for example, relying on containers deployed in the same pod. In previous chapters, the liveness and readiness checks for this application were set to retrieve the / resource via HTTP. The liveness check stays the same for this chapter, as the ability to serve a simple HTML page is a good liveness check for an Express application. Observe the following excerpt from chapter10/shipitclicker/templates/deployment.yaml:

			 livenessProbe:

			 httpGet:

			 path: /

			 port: http

			This makes Express serve the file in chapter10/src/public/index.html. This makes a decent liveness probe, but it does not mean that a pod is ready to process requests that reach out to external resources. For that, we should use a readiness check.

			Using a readiness probe to ensure that a service can receive traffic

			Some applications have to complete a wave of initialization where they make database calls and call on external services before they are ready to take traffic. For ShipIt Clicker, the application must be able to contact Redis before it is ready to receive traffic. Next, we are going to examine a defect in the prior versions of ShipIt Clicker and the fix that had to be made to support both liveness and readiness probes, as these changes are illustrative of the type of changes that you might have in your application.

			Changing ShipIt Clicker to support separate liveness and readiness probes

			Previous versions of ShipIt Clicker would suffer a fatal exception if any connection to Redis failed. This would happen as soon as the initialization routines in src/server/index.js loaded, as the modules it loaded would instantiate the RedisDatabase class in src/server/api/services/redis-service.js, which would immediately connect to the Redis server. This class lacked a Redis error handler, so the error it threw was fatal and caused the process to terminate.

			This failure would repeat immediately as Kubernetes tried to start another container and would trigger a series of crashes that engaged the Kubernetes crash loop detector.

			The new error handler in the RedisDatabase.init() method in chapter10/src/server/api/services/redis.service.js looks like this, and will log all Redis errors to the console – and, therefore, to the Kubernetes logging system – to make it easier to troubleshoot:

			 client.on("error", err => l.error({msg: "Redis error", err:err}));

			This chapter's code also uses a lazy loading pattern to avoid having to immediately connect to Redis when the classes are instantiated. With lazy loading, you defer the creation of an object or resource until you actually need it. We achieve lazy loading by using by the RedisDatabase.instance() method, which uses the singleton design pattern for the Redis client connection:

			 instance() {

			 return this._client ? this._client : this._client = this.init();

			 }

			 async ping() {

			 return this.instance().pingAsync();

			 }

			Using lazy loading will allow us to defer connecting to the Redis server until a request arrives that really requires it. Recall that in this version of the application, we split the Redis server out from the ShipIt Clicker service and have it running separately. Given this, a readiness probe should reach out to the Redis server and make sure that ShipIt Clicker can indeed talk to it, before accepting traffic. This version has a new API endpoint, /api/v2/games/ready, which performs a Redis PING operation to ensure that the application is ready to take traffic:

			 readinessProbe:

			 httpGet:

			 path: /api/v2/games/ready

			 port: http

			If the Redis server is not available, this readiness probe will fail and Kubernetes will remove the container that fails the health check from the service.

			Exercise – forcing ShipIt Clicker to fail the readiness check

			Next, we will run an experiment to see what happens when the liveness probe passes but the readiness check fails. Use kubectl to switch to your local learning environment Kubernetes context. Temporarily alter the chapter10/shipitclicker/template/configmap.yaml file to break the Redis installation by changing the REDIS_PORT value to an invalid number, such as 1234. Then, use Helm to install the chart with the alternative shipit-ready-fail name. Use kubectl get pods to verify that the new pod is in the RUNNING state but has 0/1 pods that are marked READY. Your output should look something like this:

			$ kubectl get pods | grep -E '^NAME|fail'

			NAME READY STATUS RESTARTS AGE

			shipit-ready-fail-shipitclicker-57c67d76cd-qklh6 0/1 Running 0 3m20s

			The readiness checks for this installation of ShipIt Clicker will start failing immediately. If you describe the pod, you will see that it is no longer ready. When you are done, use Helm to uninstall the shipit-ready-fail chart and revert the value in the configmap.yaml file to its original value.

			Gathering metrics and sending alerts with Prometheus

			Prometheus is the dominant Kubernetes-based system for collecting metrics on cluster operations. Prometheus sports a wide range of features related to handling time-series data, visualizing data, querying it, and sending alerts based on metrics data.

			This metrics data might include a variety of time-series data for CPU usage, both for nodes and for pods; storage utilization; application health, as defined by readiness probes; and other application-specific metrics. Prometheus uses a pull model where it polls endpoints for numeric data. Pods, DaemonSets, and other Kubernetes resources supporting Prometheus use annotations to advertise that Kubernetes should scrape them for metrics data via HTTP, usually via a /metrics endpoint. This can include data from Nodes, surfaced through a DaemonSet called node_exporter that runs on each Node.

			It stores the metrics data it receives by associating this data with a metric name and a set of labels in key-value pair format, along with a millisecond-resolution timestamp. This labeling allows both efficient storage and the querying of the metrics in a time-series database. System operators and automated systems can then query this database to investigate the system's health and performance.

			It not only provides a time-series database for metrics but also an alerting subsystem so that system operators can proactively take action when applications encounter trouble.

			You can read more about the overall Prometheus architecture and its feature set at https://prometheus.io/docs/introduction/overview/.

			Prometheus' history

			While Prometheus was originally developed by SoundCloud in 2012, it became a Cloud Native Computing Foundation (CNCF) top-level project in 2016 and it is independent of any single company, just like Kubernetes itself. Its design is inspired by Google's Borgmon system.

			Exploring Prometheus through its query and graph web interface

			If you installed an EKS cluster using the AWS EKS Quick Start CloudFormation templates as described in Chapter 8, Deploying Docker Apps to Kubernetes, you should already have a working Prometheus application. If not, you can follow the instructions here to install it using Helm:

			https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html

			You can connect to the Prometheus service and start exploring it by using kubectl to create a port forwarding proxy to the Prometheus console web application. You should connect the prometheus-server Kubernetes service to your local workstation as follows (replace the expression after use-context with your AWS EKS cluster ARN):

			$ kubectl config use-context arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8

			$ kubectl port-forward -n prometheus service/prometheus-server 9090:80

			Then, open a web browser and visit http://localhost:9090/, and you will see the Prometheus query console.

			A good starter query to use to test Prometheus is the node_load1 term, which shows the 1-minute load averages of the underlying Kubernetes nodes. Enter that into the query field and hit the Execute button, and then activate the Graph tab. You will see a graph showing those load averages.

			The Prometheus query language is called PromQL and is quite different from other time-series database query languages. You will need to learn more about PromQL to formulate your own queries. Read more about that at https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085.

			While Prometheus can graph query results on its own, Kubernetes users typically use Grafana in conjunction with Prometheus to provide more sophisticated graphs and dashboards. We will explore Grafana further later in this chapter. Next, let's examine how you might add a Prometheus metric to an application.

			Adding Prometheus metrics to an application

			In order to integrate an application with Prometheus, you need to expose a specially structured HTTP API via a Prometheus client library. Prometheus offers official client libraries for several languages, and the community has created many other client libraries for different languages. You can read more about the general process in the Prometheus documentation at https://prometheus.io/docs/instrumenting/clientlibs/.

			To demonstrate this integration, the version of ShipIt Clicker in this chapter exposes both a set of default metrics and a custom metric in the form of a counter, labeled shipitclicker_deployments_total. To do this, we integrate the Prometheus client for JavaScript applications using Node.js:

			https://github.com/siimon/prom-client

			To perform the integration, we installed and saved the prom-client Node module with an npm install prom-client --save command, and then integrated the client loosely following the provided example code at https://github.com/siimon/prom-client/blob/master/example/server.js.

			The structure of a metrics-enabled ShipIt Clicker program

			The Prometheus metrics publishing code in ShipIt Clicker is organized conventionally for a Node application written with the Express framework, with routes for metrics added to the main router in chapter10/src/server/routes.js in the same modular pattern as the routes for the game API. The main route imports chapter10/src/server/api/controllers/metrics/router.js, which defines the HTTP routes for /metrics and a special route for /metrics/shipitclicker_deployment_total, using the controller class defined in chapter10/src/server/api/controllers/metrics/controller.js. This controller has methods that integrate with a Prometheus service class defined in chapter10/src/server/api/services/prometheus.service.js, which integrates with the prom-client library and exposes both the default metrics and the custom shipitclicker_deployments_total metric. Refer to the following code excerpt from the service to see how we encapsulate the prom-client library:

			import * as client from 'prom-client';

			…

			export class Prometheus {

			…

			 this.register = client.register;

			 this.deploymentCounter = new client.Counter({

			 name: 'shipitclicker_deployments_total',

			 help: 'Total of in-game deployments in this ShipIt Clicker process',

			 });

			 client.collectDefaultMetrics({

			 timeout: 10000,

			 gcDurationBuckets: [0.001, 0.01, 0.1, 1, 2, 5],

			 });

			 }

			}

			export default new Prometheus();

			The controller classes that serve up the metrics have proper exception-handling and error-logging scaffolding that the baseline example from prom-client lacks. If you wanted to, you could easily adapt the router, controller, and service classes to a new application with minimal effort.

			In order to simplify troubleshooting, the metrics are bound to the same HTTP port as the rest of the application: port 3000. This means that you can retrieve the metrics from any installed version of ShipIt Clicker that has this code integrated – for example, from https://shipit-v7.eks.example.com/metrics (replace example.com with your domain name). You should see a long list of metrics, starting with the following:

			# HELP shipitclicker_deployments_total Total of in-game deployments in this ShipIt Clicker process

			# TYPE shipitclicker_deployments_total counter

			shipitclicker_deployments_total 0

			# HELP process_cpu_user_seconds_total Total user CPU time spent in seconds.

			# TYPE process_cpu_user_seconds_total counter

			process_cpu_user_seconds_total 2.5176489999999996

			…

			Now that we have seen the raw metrics, let's examine how the configuration that allows Prometheus to discover the demo application works.

			Getting Prometheus to discover the ShipIt Clicker application

			The installation of Prometheus configured through the AWS EKS Quick Start CloudFormation template is configured to perform service discovery of pods that support Prometheus metrics. In order for your Kubernetes pods to be discovered, they must be annotated with Prometheus-specific metadata, including the prometheus.io/scrape: "true" annotation. Refer to chapter10/shipitclicker/template/deployment.yaml for the annotations used to expose ShipIt Clicker to Prometheus:

			 template:

			 metadata:

			 labels:

			 {{- include "shipitclicker.selectorLabels" . | nindent 8 }}

			 annotations:

			 prometheus.io/scrape: "true"

			 prometheus.io/port: "3000"

			As long as these annotations are on the pod, Prometheus will know that it must scrape the pod's /metrics endpoint for data.

			Now that we have seen how the program and its configuration templates have been extended to support Prometheus metrics, let's query Prometheus for the custom metric.

			Querying Prometheus for a custom metric

			Play the game deployed at https://shipit-v7.eks.example.com/ for a minute or two (replace example.com with your domain name). Then, connect to the Prometheus console using the port forwarding method explained earlier in this chapter, and issue a query for shipitclicker_deployments_total, then switch to the Graph tab. You should see a graph that shows an increasing number of deployments over time.

			If you keep playing the game and keep re-issuing the query in the Prometheus console, you will see the number of deployments go up. The default scrape interval and targets that Prometheus uses are defined in a prometheus.yml file embedded in the prometheus-server ConfigMap in the prometheus namespace. By default, it is set to 30 seconds, so you will not see instantaneous changes in the query results from Prometheus.

			Next, let's explore Prometheus' support for alerts.

			Configuring Prometheus alerts

			Prometheus has the capability to query itself periodically in order to detect important conditions – this is the basis of the alerts system. You can apply the powerful Prometheus query language to detect when parts of your system that have Prometheus metrics are overloaded, responding too slowly, or are not available.

			For most applications, the foundational alert item must answer the question is the application available? If the application is up, it is ready and available to serve user requests. Prometheus has a metric called up that can help answer that question – it will have a value of 1 if the service is up, and 0 if it is down. If you query Prometheus for up, you will see the basic availability status of every service it monitors. You might want to raise an alert if any service has a value other than 1 for 5 minutes or more. That is the basic example given in the Prometheus documentation for alerts (refer to https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/). Next, we will show how to add the example InstanceDown rule from the documentation to our Prometheus service configuration.

			The AWS EKS Quick Start templates have a Prometheus installation that has no alerts defined at the start, so we will have to define one or more ourselves. If you installed Prometheus on your local workstation, you would edit configuration files in the /etc directory to do this, and then trigger a configuration file reload. However, in a Kubernetes setup, there has to be another mechanism in place to allow the editing of these values.

			The AWS EKS Quick Start Prometheus setup uses a Kubernetes ConfigMap in the prometheus namespace called prometheus-service that has multiple embedded YAML configuration files defined within it, and a container running in each Prometheus server pod (refer to https://github.com/jimmidyson/configmap-reload) that monitors the ConfigMap files for changes and then sends an HTTP POST to the Prometheus server running in the pod to get it to reload the changes. The ConfigMap files are updated once per minute inside the pods. The editing cycle for making config changes to alerts looks like this:

			
					Edit the prometheus-service ConfigMap using kubectl.

					Wait 1 minute for the ConfigMap changes to propagate to the pods.

					View the alerts via the port-forwarded Prometheus console at http://localhost:9090/alerts.

			

			In order to add the monitoring, we run the following command to edit the ConfigMap and add the rules under the alerts: stanza, as follows:

			kubectl -n prometheus edit configmap/prometheus-server

			Look at the top of the file and make the alerts: stanza match the following text:

			apiVersion: v1

			data:

			 alerting_rules.yml: |

			 {}

			 alerts: |

			 groups:

			 - name: Kubernetes

			 rules:

			 - alert: InstanceDown

			 expr: up == 0

			 for: 5m

			 labels:

			 severity: page

			 annotations:

			 summary: "Instance {{ $labels.instance }} down"

			 description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 5 minutes."

			 prometheus.yml: |

			After you have edited the file, save it and it will propagate to the pods within 1 minute.

			Troubleshooting note – YAML format files are exacting

			The capitalization and spacing in the Alerts section must be exact, or you may get parsing errors (visible in the logs from the prometheus-server pods) – or worse, a silent failure to add the alert you intended.

			You should then be able to see the alert definition in the Prometheus console in the Alerts section; click on InstanceDown and it should show the alert definition:

			
				
					[image:]
				

			

			Figure 10.3 – Prometheus alerts showing InstanceDown

			Now that you have an alert defined, you can configure Prometheus to send notifications based on the alert.

			Sending notifications with the Prometheus Alertmanager

			One of the most powerful aspects of Prometheus is its support for sending notifications of alerts, powered by a component called Alertmanager. This component takes the raw alert information from Prometheus, performs additional processing on it, and then sends notifications. You can find an in-depth overview of Prometheus alerting at https://prometheus.io/docs/alerting/overview/.

			This alerting system supports multiple channels, including email, PagerDuty, Pushover, Slack, and more through webhooks. We are going to configure a Slack integration to demonstrate sending an alert. In order to do this, we are going to alter the Alertmanager configuration, which is stored in a Kubernetes ConfigMap called prometheus-alertmanager.

			To add the Slack integration, make sure you have a Slack account that is signed in via a web browser, then go to https://api.slack.com/ and build a new app for Slack. In the Features configuration screen, configure a new incoming webhook and select a channel in Slack to receive the notifications. Then, copy the URL of the incoming hook to the clipboard and store it in a local text file. You will need that when you configure Alertmanager. Configure any other settings that you feel are relevant, including an icon for the Slack integration. Then, edit the ConfigMap for the Alertmanager using the following command:

			kubectl -n prometheus edit configmap/prometheus-alertmanager

			The ConfigMap will have an empty {} clause for the global: section, which we will remove, and then we add slack_api_url and the slack_configs section, as follows (replace the value in single quotes for the Slack API URL with your incoming webhook URL from the Slack application, and replace the channel with the hashtag name of your Slack channel where alerts should appear):

			apiVersion: v1

			data:

			 alertmanager.yml: |

			 global:

			 slack_api_url: 'https://hooks.slack.com/services/A/B/C'

			 receivers:

			 - name: default-receiver

			 slack_configs:

			 - channel: '#docker-book-notices'

			 route:

			This will give you a very basic alerting setup that you can expand on in order to get notified of downtime. You can test that the Alertmanager is hooked up by sending a test alert via the Prometheus Alertmanager API. First, port-forward the Alertmanager service to your local machine:

			kubectl -n prometheus port-forward service/prometheus-alertmanager 9093:80

			In a different console window, issue the following command:

			curl -d '[{"status": "firing", "labels":{"alertname":"Hello World"}}]' -H "Content-Type: application/json" http://localhost:9093/api/v1/alerts

			You should get a {"status":"success"} response from that curl command, and then you should see the Hello World alert in your Slack:

			
				
					[image:]
				

			

			Figure 10.4 – Prometheus alert in Slack

			Exercise – deploy a broken ShipIt Clicker, expect an AlertManager notification

			Edit the chapter10/shipitclicker/templates/deployment.yamlfile to redirect Prometheus probes to port 3001 and deploy this broken ShipIt Clicker application using Helm to see the alerting in action. Call the application shipit-broken. Check the Prometheus console to verify that the alert enters the pending state. This should happen in less than 1 minute. Within 10 minutes, you should see an alert in Slack of the [FIRING:1] (InstanceDown shipit-broken shipitclicker 10.0.87.39:3000 kubernetes-pods default shipit-broken-shipitclicker-6658f47599-pkxwk 6658f47599 page) form. Once you get the alert, uninstall theshipit-broken Helm Chart, revert the change to deployment.yaml, and you should stop getting notifications about that specific issue.

			Once you get the alert, uninstall the shipit-broken Helm Chart and you should stop getting notifications about that specific issue.

			Exploring Prometheus queries and external monitoring in-depth

			The topics about how to build Prometheus queries and how to extend Prometheus to monitor external systems are quite deep and beyond the scope of this chapter. Please consult the Prometheus documentation and the links in the Further reading section at the end of this chapter to learn more about creating Prometheus queries and configuring it to use additional metrics data sources.

			Next, let's examine how we can use Grafana to visualize the data that Prometheus gathers.

			Visualizing operational data with Grafana

			Prometheus is often deployed with Grafana (https://grafana.com/) to provide sophisticated dashboards and a more sophisticated UI for monitoring. The installation of Kubernetes from the AWS EKS Quick Start includes Grafana, configured with a few dashboards. Let's explore the Grafana installation and see how it integrates with Prometheus.

			Gaining access to Grafana

			The Grafana installation is exposed by default over a Kubernetes LoadBalancer, which in EKS creates an AWS EC2-Classic Elastic Load Balancer (ELB). Find out what address it is listening on, as follows. Look in the EXTERNAL-IP field for the actual DNS name of the ELB:

			$ kubectl -n grafana get service

			NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

			grafana LoadBalancer 172.20.5.46 aaa-bbb.us-east-2.elb.amazonaws.com 80:30669/TCP 39d

			Put that DNS address into your web browser, prefixed with http://, and you will get the Grafana login screen. You will need to retrieve the administrative username and password from the Kubernetes secret to login:

			$ kubectl -n grafana get secrets/grafana --template='{{index .data "admin-user"}}' | base64 -D

			[username redacted]

			$ kubectl -n grafana get secrets/grafana --template='{{index .data "admin-password"}}' | base64 -D [password redacted]

			Use these values to log in to the Grafana console. You can then explore the UI, including the dashboards and the Prometheus query explorer. Some of the dashboards might not have values fully populated, such as the Kubernetes All Nodes dashboard, but don't fret too much about it, as it is possible to add community-provided dashboards that are extremely detailed and fully populated with cluster-wide statistics. Look at the Kubernetes Pods dashboard and select different pods, including the Redis pods and the ShipIt Clicker pod, to get a feel for how to use the dashboards. Change the time window with the widget in the upper-right corner to show data for a day or a week, and then click and drag over an interesting area to zoom in.

			Next, let's add a couple of community-provided dashboards to get a flavor for the full power that this system can deliver.

			Adding a community-provided dashboard

			Grafana provides a repository of both official and community-provided dashboards at https://grafana.com/grafana/dashboards.

			These include a bewildering variety of dashboards. You should explore this in detail with your own needs in mind.

			When you add a dashboard, one of the options presented is Import. Choose this and it will ask you for a dashboard ID or URL from the community site.

			Here are four general-purpose dashboards that are worth adding to your installation:

			
					Cluster Monitoring for Kubernetes: This compact dashboard from Pivotal Observatory lets you see what pods are consuming the most CPU, memory, and network resources at a glance – https://grafana.com/grafana/dashboards/10000.

					Kubernetes Cluster (Prometheus): A concise dashboard showing critical cluster-wide metrics – https://grafana.com/grafana/dashboards/6417.

					1 Node Exporter for Prometheus Dashboard EN v20191102: A cluster-wide complex dashboard that exposes many CPU, disk, and network metrics – https://grafana.com/grafana/dashboards/11074.

					Node Exporter Full: This exposes every possible metric from the Prometheus Node Exporter, a very popular dashboard on the site with over two million downloads – https://grafana.com/grafana/dashboards/1860.

			

			Adding a new dashboard with a custom query

			The steps to add a new dashboard with a custom query are as follows:

			
					In the left menu, click on the + sign to add a new dashboard. Then, in the New Panel area, click Add Query. Add the following query to the field next to Metrics:shipitclicker_deployments_total
It should look something like this:
[image:]
Figure 10.5 – Grafana custom dashboard item definition

					Then, in the Panel tab on the right, click on the Panel Title field. Name this panel ShipIt Clicker Deployments, and then click on the left-pointing arrow in the top-left corner of the screen to return to defining the widget.

					In the top menu, click on the graph with the plus sign to add another widget:[image:]
Figure 10.6 – The Grafana add widget

					Add another similar panel with the following query with the title ShipIt Clicker Deployments Rate:rate(shipitclicker_deployments_total[2m])

					Then, click on the gear icon in the top menu and change the name of the dashboard to ShipIt Clicker Dashboard, and then save the dashboard.

					Next, take a break and play the ShipIt Clicker game for a few minutes. This will generate traffic that you will be able to see on the graph. A few minutes after you stop playing, your dashboard might look like this:

			

			

			
				
					[image:]
				

			

			Figure 10.7 – The ShipIt Clicker custom dashboard in Grafana

			Understanding rates and counters

			Note that the rate dashboard drops back down to 0 after you stopped playing, but the one that counts only the total increases and stays as it is. Choosing a rate query for a variable ending in total in Prometheus is usually what you want to measure throughput.

			Now that we have seen how to graph application metrics and build dashboards with Grafana, let's explore another topic: application performance monitoring and distributed tracing with Jaeger.

			Application performance monitoring with Jaeger

			We are now going to take a brief tour of Jaeger to see how it can be used for performance monitoring in a microservices architecture. One of the key problems faced when implementing performance and error tracking in a microservice architecture versus a monolithic application is that a microservices architecture is inherently a distributed environment.

			Early attempts at solving this problem, such as OpenCensus (https://opencensus.io/tracing/), suffered from disparate terminology and approaches and incompatible systems. To solve this problem, the performance monitoring community created the OpenTracing API.

			Understanding the OpenTracing API

			The OpenTracing project (https://opentracing.io/) is designed to allow engineers to add performance-monitoring features to their projects using a common API specification that is non-vendor specific.

			Some of the key features of OpenTracing that realize this goal are as follows:

			
					The API specification itself (https://github.com/opentracing/specification)

					Frameworks and libraries that implement the API specification

					Comprehensive documentation (https://opentracing.io/docs/)

			

			Let's now look at the two most important core concepts of the specification: spans and tracing.

			Spans

			A span represents a unit of work and is the basic building block of this type of tracing system. Each span contains an operation name, the start and finish time, a SpanContext, and finally, tags and logs key-value pairs.

			Your tag key-value pairs apply to the whole span and include information such as db.type and http.url. A list of conventional tags can be found on GitHub at https://github.com/opentracing/specification/blob/master/semantic_conventions.md.

			The logs key-value pair is used to define logging messages that refer to a specific incident or event, rather than the span as a whole. For example, you could use this collection of key-value pairs to record debugging information.

			The final concept in a span is the SpanContext, which is used to carry data across process boundaries. Its two key components are the state that denotes a specific span within a trace and a concept known as baggage items. These are essentially key-value pairs that cross a process boundary.

			You can read more about spans at the OpenTracing website's documentation at https://opentracing.io/docs/overview/spans/.

			Traces and tracers

			The next concept we will look at is traces and tracers.

			A trace is a way of grouping one or more spans under a single identifier known as the trace identifier. This can be used to understand a workflow through a distributed system, such as a microservices architecture.

			The tracer is the actual implementation of the OpenTracing API specification that collects spans and publishes them. Examples of tracers that implement OpenTracing include Datadog (which we will explore in Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels), Instana, Lightstep, and Jaeger.

			If you want to read more around tracers and traces, you can find the official documentation at https://opentracing.io/docs/overview/tracers/.

			Let's explore a tool that implements the OpenTracing API – Jaeger.

			Introduction to Jaeger

			Jaeger is an open source application-tracing framework that allows developers and system operators to gather information from a running application and determine both how the application spends its time and how it interacts with other distributed system components, using the OpenTracing API. The Jaeger website is https://www.jaegertracing.io/.

			Jaeger's history

			Jaeger, named after the German word for hunter, originally came from the transportation company Uber. Engineers there, led by Yuri Shkuro, built this distributed tracing framework. Inspired by the Google paper on their tracing framework, Dapper (https://research.google/pubs/pub36356/), and the Zipkin tracing framework (https://zipkin.io/), they created Jaeger as a cloud-native tracing framework. Uber has been using Jaeger since 2015 and contributed it to the CNCF in 2017; the CNCF promoted it to a top-level project in 2019. You can read more about the history of Jaeger on the Uber engineering blog at https://eng.uber.com/distributed-tracing/.

			Jaeger's components

			Some of the important components that make up the Jaeger ecosystem include the following:

			
					The client libraries available as packages or directly from GitHub

					Jaeger agents used to listen for spans

					The collector, responsible for aggregating data sent from agents

					Jaeger query, for analyzing data via a UI

					The Ingester, which allows us to gather data from Kafka topics and then write the data to services such as AWS Elasticsearch

			

			Let's test Jaeger and see how it works in practice.

			Exploring the Jaeger UI

			To explore Jaeger, we can run the all-in-one latest image using Docker:

			$ docker run --rm -i -p6831:6831/udp -p16686:16686 jaegertracing/all-in-one:latest

			Then, we can open a web browser and visit http://localhost:16686/ to see the UI. The Jaeger search interface itself is instrumented to send traces to the collector, so once you see the UI, reload the page once to make some more traces, and populate the Service drop-down box. Then, press the Find Traces button. It should look something like this:

			
				
					[image:]
				

			

			Figure 10.8 – The Jaeger UI search interface

			When you are done exploring, stop the running Docker container by pressing Ctrl + C. Next, lets explore how you might instrument an application by seeing how ShipIt Clicker is integrated with OpenTracing and Jaeger.

			Exploring the Jaeger client with ShipIt Clicker

			The Jaeger client is available in a number of languages. Our example will use Node.js, but there is also support for Go, Java, and Python, among others. You can check the official client documentation at the following URL to learn more:

			https://www.jaegertracing.io/docs/1.18/client-libraries/

			ShipIt Clicker v7 already has a Jaeger client, a piece of OpenTracing JavaScript Express middleware, and the OpenTracing API client installed:

			
					The Jaeger client: https://github.com/jaegertracing/jaeger-client-node

					Express middleware: https://github.com/opentracing-contrib/javascript-express

					The OpenTracing client: https://github.com/opentracing/opentracing-javascript

			

			If you have an Express application that you want to use with Jaeger, you would issue the following command to install the same combination of libraries:

			$ npm install --save jaeger-client express-opentracing opentracing

			In the GitHub repository (https://github.com/PacktPublishing/Docker-for-Developers), the Jaeger client configuration in chapter10/src/server/common/jaeger.js has an example of how to configure the Jaeger client using a mixture of environment variables and default values. Both the docker-compose configuration files and the Helm templates for ShipIt Clicker have been updated to use some environment variables to configure Jaeger, to give jaeger.js the right context for those environments; this file imports the jaeger-client module, configures it, and exports a tracer object. We use the tracer object from the express-opentracing middleware in the chaper10/src/server/common/server.js file:

			import tracer from './jaeger';

			import middleware from 'express-opentracing';

			…

			export default class ExpressServer {

			 constructor() {

			…

			 app.use(middleware({ tracer: tracer }));

			 }

			Using middleware or other software that can hook into common libraries processes provides us with lift and lets us avoid writing boilerplate code. The express-opentracing middleware object decorates the Express res response object with a span attribute, which lets us use an OpenTracing span from within our controllers and request handlers.

			We can use a more explicit style also, where we create the spans and log entries programmatically:

			
					To see this in action, inspect the ShipItClicker's API controller at chapter10/src/server/api/controllers/games/controller.js: async incrementGameItem(req, res) {
 const key = `${req.body.id}/${req.body.element}`;
 const value = req.body.value;
 const span = tracer.startSpan('redis', {
 childOf: req.span,

					The next stanza shows how to create a tag in the span that holds more detailed tracing information: tags: {
 [opentracing.Tags.SPAN_KIND]: opentracing.Tags.SPAN_KIND_RPC_CLIENT,
 'span.kind': 'client',
 'db.type': 'redis',
 'db.statement': `INCRBY ${key} ${value}`,
 },
 });

					The preceding code initializes a child span for Redis, using the main span through req.span. Then, we immediately call Redis, log the results, and finish the span: try {
 var redis = await RedisService.incrby(key, value);
 span.log({ result: redis }).finish();

					Next, we log a message in the span associated with the parent span: const msg = {
 msg: 'Game item Redis INCRBY complete',
 key: key,
 value: redis,
 };
 req.span.log(msg);

					Now, we log the message using the regular logging mechanism and update the Prometheus custom metric if this request increments the deploys element: l.info(msg);
 if (req.body.element === 'deploys') {
 const incr = parseInt(req.body.value, 10);
 PrometheusService.deploymentCounter.inc(incr);
 }

					If we get this far, the Redis request has been successful, and we can return a JSON response to the client: return res.json({
 id: req.params.id,
 element: req.params.element,
 value: redis,
 });

					If the request fails – for example, if Redis is unavailable – we must carry out error processing. First, we construct a message that has the detailed error in it: } catch (err) {
 const msg = {
 key: req.body.id,
 element: req.body.element,
 message: err.message,
 stack: err.stack,
 };

					Then, we log the error to both the OpenTracing span and our regular error log, and return a 404 Not Found HTTP response to the client: span.log(msg).finish(); l.warn(msg);
 return res.status(404).json({
 status: 404,
 msg: 'Not Found',
 });
 }
 }
The preceding code shows how you can use the tracer object to initiate a child span of the main span in req.span, and has logging elements that annotate both spans with the results of the Redis operation.

			

			In order to make it easy to demonstrate the Jaeger integration, this chapter has a Docker Compose file, chapter10/docker-compose.yml, that integrates the ShipIt Clicker container, Redis, and Jaeger. You can run all of them by issuing the following commands from the chapter10 directory:

			docker-compose build && docker-compose up -d

			You can then visit http://localhost:3010/ to play the ShipIt Clicker game for a minute to generate some traces, then visit http://localhost:16686/ to see the Jaeger query interface in action. Query the shipitclicker-v7 service, click on one of the traces in the graph, and then expand the two spans and the logs revealed within and you should see something like this:

			
				
					[image:]
				

			

			Figure 10.9 – Jaeger trace showing the ShipIt Clicker HTTP transaction and Redis spans

			In contrast to the docker-compose.yml file presented in Chapter 6, Deploying Applications with Docker Compose, the one in this chapter is deliberately set up for development, not as a production-hardened configuration. It exposes both the Redis and Jaeger ports for convenience, so it is not suitable for production use without additional hardening. However, this makes it very convenient for debugging and developing the application. You can even run the ShipIt Clicker application code on your local workstation by running npm run dev and have it connect to the Docker-hosted Redis and Jaeger services – which is probably the fastest way to try out changes.

			You could also install Jaeger in Kubernetes, both to your local learning environment and to the AWS EKS Kubernetes cluster. To do that, we will use the Jaeger Operator.

			Installing the Jaeger Operator

			We've seen how we can use Jaeger locally through both a raw docker command and through docker-compose. Next, we will learn how to deploy Jaeger to Kubernetes. The Helm Charts for Jaeger (https://github.com/jaegertracing/helm-charts) are not fully supported, and they may have issues with Helm 3. The Jaeger team is actively investing in Jaeger Operator as the primary method to install and maintain this system. A Kubernetes Operator is a special type of resource that orchestrates the installation and maintenance of a whole set of related objects and configurations, often comprising a complex distributed system.

			To deploy to a Kubernetes environment, we can use the following GitHub repository as a guide:

			https://github.com/jaegertracing/jaeger-operator

			Use the set of kubectl commands listed there to install the operator namespace and the related Kubernetes objects for the Jaeger operator. Run not only the main kubectl commands but also the set of kubectl commands to give the operator cluster-wide permissions through a role binding. To get Jaeger to work smoothly with all the namespaces, edit the deployment and remove the value from the WATCH_NAMESPACE variable:

			kubectl -n observability edit deployment/jaeger-operator

			The part of the file with WATCH_NAMESPACE should then look as follows:

			 spec:

			 containers:

			 - args:

			 - start

			 env:

			 - name: WATCH_NAMESPACE

			 - name: POD_NAME

			Now that you have done this, you can install a Jaeger Operator instance that will itself spin up the services, pods, and DaemonSets for Jaeger. An example Operator definition suitable for development or lightweight production use that deploys Jaeger using a DaemonSet on all nodes using only memory for trace storage is in chapter10/jaeger.yaml. Install it with kubectl:

			kubectl apply -n observability -f chapter10/jaeger.yaml

			This will install all the required components, including a jaeger-query Ingress Controller that does not have any annotations, so the EKS cluster will not connect it to anything. See the chapter10/jaeger-ingress.yaml file for a version that has annotations to connect it to the internet with the ALB Ingress Controller. You can use the same basic procedures you used with other Kubernetes services and Route 53 to expose the Jaeger console from Kubernetes; or, you can leave it alone and connect to the Jaeger console only when you need to via port forwarding.

			If you are installing this on your local Kubernetes learning environment, you could alternatively add NGINX Ingress Controller annotations to the Ingress Controller.

			To further extend Jaeger, you might consider adding one of the storage backends, such as Cassandra or Elasticsearch, so that traces will persist beyond the lifetime of the Jaeger pod. We're going to leave it there with Jaeger, but feel free to explore it in more detail.

			Next, we will review what we have learned in this chapter.

			Summary

			In this chapter, you have learned all about observability – how to perform logging and monitoring for Docker applications using both Kubernetes cloud-native approaches and using AWS services.

			You learned about decoupling applications from common services (such as Redis) to increase production-readiness. In order to aid troubleshooting and the analysis of application and system problems, you learned how to extend logging beyond the running containers in a Kubernetes cluster into AWS CloudWatch and S3, as well as how to query those log storage systems using both CloudWatch Insights and AWS Athena. You saw how you might add more sophisticated Kubernetes liveness and readiness probes to an application, and how to make error handling more robust.

			Then, you learned how to collect detailed metrics from both the application and the supporting systems using Prometheus, how to query those metrics, and how to set up alerts with the Prometheus Alertmanager. Prometheus and Grafana go hand in hand; you discovered how to configure Grafana dashboards provided by the community and how to add a custom dashboard that shows application-specific metrics. Finally, you learned how to use Jaeger and the OpenTracing API to instrument an application with traces that give deep insight into the performance of an application by using both open source middleware and explicitly annotating the application.

			In the next chapter, we will explore how we can scale out the application using autoscaling, protect it from overloading using Envoy and the circuit breaker pattern, and perform load testing using k6.

			Further reading

			You can explore the following resources to expand your knowledge of observability, Kubernetes logging, Prometheus monitoring, Grafana, Jaeger, and managing Kubernetes clusters:

			
					Introduction to observability: https://docs.honeycomb.io/learning-about-observability/intro-to-observability/.

					Manage your Kubernetes clusters in style with k9s – a quick and easy terminal interface similar to Midnight Commander that is an alternative to using kubectl to query and control a Kubernetes cluster: https://k9scli.io/.

					Kail – Kubernetes' log tail utility: https://github.com/boz/kail.

					Getting started with Athena: https://docs.aws.amazon.com/athena/latest/ug/getting-started.html.

					Query data from S3 files using AWS Athena: https://towardsdatascience.com/query-data-from-s3-files-using-aws-athena-686a5b28e943.

					Getting started with Kubernetes – Observability: Are Your Applications Healthy? Liveness and Readiness Probes: https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-observability-are-your-applications-healthy_596077.

					Kubernetes Liveness and Readiness Probes: How to Avoid Shooting Yourself in the Foot: https://blog.colinbreck.com/kubernetes-liveness-and-readiness-probes-how-to-avoid-shooting-yourself-in-the-foot/

					Awesome Prometheus alerts – the mother lode of rules for not only Kubernetes but also other systems that Prometheus can monitor, available under a Creative Commons Attribution license: https://awesome-prometheus-alerts.grep.to/rules.

					Configuring Prometheus Operator Helm Chart with AWS EKS has good examples of more detailed Alertmanager configurations: https://medium.com/zolo-engineering/configuring-prometheus-operator-helm-chart-with-aws-eks-c12fac3b671a.

					Monitoring Distributed Systems – from the Google SRE book – pay special attention to the four Golden Signals: https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/.

					How to monitor Golden Signals in Kubernetes: https://sysdig.com/blog/golden-signals-kubernetes/.

					PromQL tutorial for beginners and humans: https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085.

					Understanding delays on Prometheus alerting: https://pracucci.com/prometheus-understanding-the-delays-on-alerting.html.

					Kubernetes in Production – the Ultimate Guide to Monitoring Resource Metrics with Prometheus: https://www.replex.io/blog/kubernetes-in-production-the-ultimate-guide-to-monitoring-resource-metrics.

					Kubernetes Monitoring with Prometheus – the ultimate guide (part 1) – yes, it's funny that multiple articles claim to be the ultimate guide, but this one has really detailed information and a part 2 that also covers Grafana: https://sysdig.com/blog/kubernetes-monitoring-prometheus/.

					Kubernetes: Monitoring with Prometheus — exporters, Service Discovery, and its roles. Has a section on setting up a Redis exporter that you could use to explore ShipIt Clicker's operation better: https://itnext.io/kubernetes-monitoring-with-prometheus-exporters-a-service-discovery-and-its-roles-ce63752e5a1.

					Taking Advantage of Deadman's Switch in Prometheus: https://jpweber.io/blog/taking-advantage-of-deadmans-switch-in-prometheus/ (combine with https://deadmanssnitch.com/ for a complete Deadman's Switch alerting system).

					Using Prometheus Metrics in Amazon CloudWatch: https://aws.amazon.com/blogs/containers/using-prometheus-metrics-in-amazon-cloudwatch/.

					An alternative solution to the periodic export of CloudWatch logs to S3 via a scheduled Lambda function: https://medium.com/searce/exporting-cloudwatch-logs-to-s3-through-lambda-before-retention-period-f425df06d25f.

			

		

	
		
			Chapter 11: Scaling and Load Testing Docker Applications

			Technology giants such as Google, Facebook, Lyft, and Amazon use container orchestration systems in part so that they can run their massive computing resources at very high levels of utilization. To do that, you must have a way to scale your applications across a fleet of servers, which might be dynamically allocated from a cloud provider. Even if you have a cluster that can scale out with high traffic and scale back in when demand subsides, you may still need additional tools to make sure it operates correctly. You also need to ensure that the service degrades gracefully if capacity limits are exceeded.

			You can use a service mesh such as Envoy, Istio, or Linkerd to handle those concerns. Envoy is one of the simpler options in the service mesh arena; it provides both load balancing and advanced traffic routing and filtering capabilities. All these capabilities provide the glue needed to serve traffic to demanding users. Some of the more complex service meshes use Envoy as a building block since it is so flexible.

			To prove that the scaling strategy works, you need to perform load testing. To do this, we will use k6.io, a cloud-native load testing and API testing tool.

			In this chapter, you are going to learn how to use the Horizontal Pod Autoscaler, the Vertical Pod Autoscaler, and the Cluster Autoscaler to configure your Kubernetes cluster so that it scales out. You will learn about Envoy and why you might use it to provide a proxy layer and service mesh on top of Kubernetes. This includes how to create an Envoy service mesh on top of a Kubernetes cluster, as well as how to configure it with a circuit breaker. Then, you will learn how to verify that the service mesh and autoscaler mechanisms are working as expected. Finally, you will learn how to run a load test with k6.io and observe how the service fails when subjected to a stress test.

			We will cover the following topics in this chapter:

			
					Scaling your Kubernetes cluster

					What is Envoy, and why might I need it?

					Testing scalability and performance with k6

			

			Technical requirements

			You will need to have both a local Kubernetes learning environment and a working Kubernetes cluster in the cloud, as set up in Chapter 8, Deploying Docker Apps to Kubernetes. You will also need to have a current version of the AWS CLI, as well as kubectl and helm 3.x installed on your local workstation, as described in the previous chapter. The Helm commands in this chapter use helm 3.x syntax.

			For your local Kubernetes learning environment, you should have a working NGINX Ingress Controller configured, which you can install by running the chapter11/bin/deploy-nginx-ingress.sh script. You should also have a local Jaeger operator, which you can install by running the chapter11/bin/deploy-jaeger.sh script.

			For the cloud-hosted cluster, you can reuse the AWS Elastic Kubernetes Service (EKS) cluster or set up a new one for this chapter using the same method or using eksctl. The EKS cluster must have a working ALB Ingress Controller set up. You should also have an Elastic Container Registry (ECR) set up to hold container images. We recommend that you also have working installations of Prometheus, Grafana, and Jaeger in your cloud-hosted Kubernetes cluster, as described in Chapter 10, Monitoring Docker in Production with Prometheus, Grafana, and Jaeger. You can run the deploy-jaeger.sh script against your cloud cluster as well.

			Check out the following video to see the Code in Action:

			https://bit.ly/2CwdZeo

			Using the updated ShipIt Clicker v8

			We will use the version of ShipIt Clicker provided in the chapter11 directory of the following GitHub repository: https://github.com/PacktPublishing/Docker-for-Developers/.

			This version of the application you use, similar to what we did in the previous chapter, depends on an externally installed version of Redis from the bitnami/redis Helm Charts when used in Kubernetes.

			Understanding the differences from the previous version of ShipIt Clicker

			In each chapter, we have made enhancements to ShipIt Clicker to illustrate changes related to the chapter content, as well as to polish the application the same way we would do as part of a production release process.

			This version of ShipIt Clicker is similar to the one provided in the previous chapter, but it has one more API endpoint called /faults/spin that's used as a part of a fault injection testing strategy to induce CPU load on the nodes running the application, in order to test cluster autoscaling strategies. The spin endpoint will get slower the more frequently it is called but will recover and get faster if calls subside. This simulates the way that an application with poor performance behaves, without having to devise a complicated real set of poorly performing code and database servers. It provides an artificial CPU load that is convenient for testing CPU-based autoscaling. See the code in chapter11/src/server/common/spin.js and chapter11/src/server/controllers/faults/controller.js to see how this works.

			This version of ShipIt Clicker also has an enhancement related to Prometheus metrics: it exposes these metrics on a separate port by configuring Express to listen on a separate port so that it serves up the /metrics endpoint. This helps us avoid exposing metrics that contain information about the application that an ordinary user does not need and makes it possible for multiple containers in the same pod as ShipIt Clicker to also expose Prometheus metrics. See the code in the chapter11/src/server/index.js file, which adds another HTTP listener and a router for metrics. The Helm templates in chapter11/shipitclicker/templates/deployment.yaml also have changes to support this new endpoint.

			Next, we'll build and install ShipIt Clicker into our local Kubernetes learning environment.

			Installing the latest version of ShipIt Clicker locally

			In this section, we will build the ShipIt Clicker Docker container, tag it, and push it to Docker Hub, as we did in previous chapters. Issue the following commands, replacing dockerfordevelopers with your Docker Hub username:

			$ docker build . -t dockerfordevelopers/shipitclicker:1.11.7

			$ docker push dockerfordevelopers/shipitclicker:1.11.7

			$ kubectl config use-context docker-desktop

			$ helm install --set image.repository=dockerfordevelopers/shipitclicker:1.11.7 shipit-v8 shipitclicker

			Inspect the running pods and services using kubectl get all to verify the pod is running, note its name, and then inspect the logs with kubectl logs to see the startup logs. There should be no errors in the log.

			Next, we'll install this version in EKS.

			Installing the latest version of ShipIt Clicker in EKS through ECR

			Now that you have built the Docker containers and installed this locally, we'll install it in AWS EKS via ECR. Edit chapter11/values.yaml to give this a hostname in the Route 53 DNS zone such as shipit-v8.eks.example.com (replace the ECR reference with the one corresponding to your AWS account and region and replace example.com with your domain name):

			$ docker tag dockerfordevelopers/shipitclicker:1.11.7 143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:1.11.7

			$ aws ecr get-login-password --region us-east-2 | docker login --username AWS --password-stdin 143970405955.dkr.ecr.us-east-2.amazonaws.com

			$ docker push 143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:1.11.7

			$ kubectl config use-context arn:aws:eks:us-east-2:143970405955:cluster/EKS-8PWG76O8

			$ helm install shipit-v8 -f values.yaml --set image.repository=143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:1.11.7 ./shipitclicker

			Inspect the Kubernetes logs to make sure that the application has deployed cleanly to the cluster:

			kubectl logs services/shipit-v8-shipitclicker shipitclicker

			If all is well with the deployment, get the AWS ALB Ingress Controller's address, as described in Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker, and create DNS entries in the Route 53 console for the deployed application with the ALB address. You should then be able to reach your application at a URL similar to https://shipit-v8.eks.example.com/ (replace example.com with your domain name).

			Scaling your Kubernetes cluster

			To support more traffic and more applications, your Kubernetes cluster may need to grow beyond its initial size. You can use both manual methods and dynamic programmed methods to do this, especially if you are working with a cloud-based Kubernetes cluster. To scale out an application, you need to control two dimensions: the number of pods running a particular application and the number of nodes in a cluster. You can't scale the number of pods infinitely on a cluster with the same number of nodes; practical limits related to CPU, memory, and network concerns will ultimately demand that the cluster scales out the number of nodes as well.

			The method that's used to scale out a cluster will vary considerably, depending on the cloud vendor and Kubernetes distribution. The Kubernetes documentation explains both the general process and some specific instructions for clusters running in the Google and Microsoft Azure clouds:

			https://kubernetes.io/docs/tasks/administer-cluster/cluster-management/

			Generally speaking, you must start and configure a new server that is set up similarly to the existing cluster nodes, and then join it to the cluster by using the kubeadm join command:

			https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/

			Kubernetes distributions and cloud vendors make this easier by relying on mechanisms such as machine images and autoscaling groups. We will show you how to scale your cluster by using Amazon EKS. In Chapter 8, Deploying Docker Apps to Kubernetes, we set up EKS with AWS Quick Start CloudFormation templates in the Spinning up AWS EKS with CloudFormation section. The following sections assume that you have used that method to set up a cluster that uses autoscaling groups.

			Scaling the cluster manually

			Given that we want to increase the number of nodes in our cluster, we will want to identify and follow the procedures that are specific to our Kubernetes installation. For Amazon EKS clusters, see the following documentation:

			https://docs.aws.amazon.com/eks/latest/userguide/launch-workers.html

			You could just launch an entirely new group of nodes, but you can often adjust a parameter or two in order to increase the size of your cluster. This is done when you increase the size of a cluster, which is called scaling out, and when you decrease the size of a cluster, which is called scaling in. Next, we will learn how to adjust a simple parameter so that we can scale out the number of nodes in the cluster.

			Scaling nodes out manually

			For the sake of simplicity, let's assume you used the AWS Quick Start for EKS CloudFormation templates to create your cluster initially. Since that uses CloudFormation to manage the cluster, you should prefer using CloudFormation to update the cluster's configuration. To manually scale your cluster out, go to the AWS console and update the CloudFormation deployment, changing the default values for Number of nodes and Maximum number of nodes from their current values to higher values, such as 4 and 8:

			
				
					[image:]
				

			

			Figure 11.1 – Updating the AWS EKS Quick Start CloudFormation template

			Continue through the CloudFormation update forms and apply the changes. Look at the CloudFormation events for updates and wait a few minutes. You can then check that the update to the CloudFormation template worked fine. Then, you can check the size of the autoscaling group to make sure it has grown.

			You could also update the autoscaling group sizes through the EC2 console, thereby setting the minimum, desired, and maximum number of nodes to 4, 4, and 8, respectively. This will cause your deployed configuration to drift from its CloudFormation templates, however, which is undesirable as the actual state will no longer match the model that CloudFormation expects. See the following post for more on why that is problematic: https://aws.amazon.com/blogs/aws/new-cloudformation-drift-detection/.

			If you used eksctl to create your cluster instead, you can follow the instructions at https://eksctl.io/usage/managing-nodegroups/ to scale the node groups it creates.

			Scaling nodes in manually

			You can reverse the process to scale in the cluster (reducing its size), but beware that scaling a cluster in manually is trickier. Doing this safely involves a process called draining, which is described in the following Kubernetes documentation: https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/. Just changing the autoscaling group's size on its own will terminate an instance without letting you choose which instance to terminate or giving you a chance to drain the instance. If you really wanted to do this, you would have to do all the following:

			
					Decrement the autoscaling group minimum size by one.

					Drain the node with kubectl drain.

					Terminate the node using an AWS CLI command that decrements the desired capacity.

			

			After you've adjusted the autoscaling group's minimum size, you could issue the following commands (replace the node name and instance ID in each of these commands with the ones that match the node you want to terminate):

			$ kubectl drain \

			 ip-10-0-94-28.us-east-2.compute.internal \

			 --ignore-daemonsets

			$ aws autoscaling terminate-instance-in-auto-scaling-group \

			 --instance-id i-09c88021d2324e821 \

			 --should-decrement-desired-capacity

			This process is involved and could easily lead to manual error. It will also lead to configuration drift from the CloudFormation template, so you should either seek to script it or rely on automatic scaling mechanisms instead.

			Scaling pods manually through deployments

			Manually scaling the number of pods in a deployment or ReplicaSet is quite easy, assuming that you have enough resources in your cluster. You can use the kubectl scale command to set the number of replicas. You might have to issue several kubectl get commands before you see all the replicas become ready, as shown in this transcript:

			$ kubectl get deployment/shipit-v8-shipitclicker

			NAME READY UP-TO-DATE AVAILABLE AGE

			shipit-v8-shipitclicker 2/2 2 2 57m

			$ kubectl scale deployment/shipit-v8-shipitclicker --replicas=4

			deployment.apps/shipit-v8-shipitclicker scaled

			$ kubectl get deployment/shipit-v8-shipitclicker

			NAME READY UP-TO-DATE AVAILABLE AGE

			shipit-v8-shipitclicker 2/4 4 1 58m

			$ kubectl get deployment/shipit-v8-shipitclicker

			NAME READY UP-TO-DATE AVAILABLE AGE

			shipit-v8-shipitclicker 4/4 4 4 59m

			Next, we will examine how we can apply programmatic scaling to the cluster, for both nodes and pods.

			Scaling the cluster dynamically (autoscaling)

			Now that you've completed many of the exercises in the preceding three chapters, which explored the complex concepts that go along with the Kubernetes container orchestration system, you might be wondering: is all this effort worth it? In this section, we will explore the key feature that can make the pain of managing these systems worth it – autoscaling. By dynamically scaling the applications in a cluster, and the cluster itself, you can drive high utilization of cluster resources, meaning that you will need fewer computers (virtual or physical) to run your systems. When you combine dynamic scaling with the self-healing capabilities of the Kubernetes system, this becomes compelling, even though it has high complexity and a high learning curve in some areas.

			Kubernetes supports several dynamic scaling mechanisms, including the Cluster Autoscaler, the Horizontal Pod Autoscaler, and the Vertical Pod Autoscaler. Let's explore each of these.

			Configuring the Cluster Autoscaler

			The Cluster Autoscaler is responsible for scaling the nodes in a cluster out to meet demand when the cluster has no more capacity to schedule pods, as well as for scaling in nodes that no longer have running pods on them. This system runs as a deployment in the kube-system namespace and uses cloud APIs to launch and terminate nodes.

			If you used the AWS EKS Quick Start Cloudformation templates to create your cluster and told it to enable the Cluster Autoscaler, no further configuration is needed. If you used eksctl or another method to create the cluster, you may need to configure it further using the directions provided here: https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html.

			You can verify that the Cluster Autoscaler is running by querying it:

			$ kubectl -n kube-system get deployments | grep autoscaler

			cluster-autoscaler-1592701624-aws-cluster-autoscaler 1/1 1 1

			Now that we have learned a bit about the Cluster Autoscaler, let's discover how we might configure an application to take advantage of its features.

			Configuring a stateless application to work with the Cluster Autoscaler

			A stateless application, such as ShipIt Clicker, can tolerate starting and stopping any one of its pods and can run on any node in the cluster. It doesn't require special configuration to work with the Cluster Autoscaler. Stateful applications that mount local storage and some other classes of applications must avoid some scaling operations if possible and may require special handling. See the Autoscaling FAQ for more details: https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md.

			You can give the Cluster Autoscaler a hint that it should not scale in pods beyond a certain point, and that it should strive to keep a certain number or percentage of healthy pods available by using a PodDisruptionBudget (PDB): https://kubernetes.io/docs/tasks/run-application/configure-pdb/.

			We have configured ShipIt Clicker with a PDB in its Helm Chart. See chapter11/src/shipitclicker/templates/pdb.yaml for more information. You can find the default values for it in chapter11/src/shipitclicker/values.yaml. The defaults now have ShipIt Clicker configured to deploy two pods and have a PDB with a minimum of one pod available. This provides hints to the Cluster Autoscaler and other Kubernetes applications that it should always keep at least one pod alive, even as node maintenance is underway.

			Next, we will demonstrate the Cluster Autoscaler in action.

			Demonstrating the Cluster Autoscaler in action

			In order to get the Cluster Autoscaler to make changes to the size of the cluster, we can start more pods than it has capacity to handle currently. To watch this process in action, it is helpful to tail the logs of the cluster-autoscaler service. Open a Terminal window and run the following commands to tail the logs of the service:

			$ service=service/$(kubectl get services -n kube-system \

			 | awk '/cluster-autoscaler/{ print $1 }')

			$ kubectl logs -f -n kube-system "$service"

			Every 10 seconds, you will see log entries indicating that the service is looking for unschedulable pods (which would cause the cluster to scale out the number of nodes) and for nodes that are eligible for scaling in.

			Then, in a different Terminal window, manually scale the deployment of ShipIt Clicker to 50 pods:

			kubectl scale deployment/shipit-v8-shipitclicker --replicas=50

			Each of the t3.medium nodes in the default EKS cluster can handle approximately 4 to 16 ShipIt Clicker pods, depending on how many other pods are also running on each node. This will trip the Cluster Autoscaler and make it scale out by at least one additional node. You will see entries in the Cluster Autoscaler log noting that it has found unschedulable pods, and shortly afterward, that it has completed scaling.

			To see the progress from the perspective of the nodes and pods in the deployment, issue the following commands every few seconds:

			kubectl get nodes; kubectl get deployments

			You will see nodes launching and more and more replicas becoming ready until the set of replicas stabilizes. Once that happens, scale it back down to a lower default state:

			kubectl scale deployment/shipit-v8-shipitclicker --replicas=2

			Once you've done that, you may notice that the nodes do not scale in immediately as they enter a cooldown condition for 10 minutes after a scale out operation completes. However, a minute after the cooldown period expires, the Cluster Autoscaler will notice that the CPU utilization of these nodes is close to zero and it will scale in the cluster, terminating the nodes that no longer have pods available. The Cluster Autoscaler will respect the PDB when it performs this scale in operation as well – allowing you to be as conservative as required when shrinking the number of pods and nodes in the cluster.

			Now that you have learned how to scale the cluster nodes in and out using the Cluster Autoscaler, let's learn how to use the Horizontal Pod Autoscaler to set scaling policies.

			Configuring the Horizontal Pod Autoscaler

			The Horizontal Pod Autoscaler allows you to set up rules for scaling out sets of Kubernetes pods using rules that can take into account CPU utilization or other custom metrics. This service can also scale pods controlled by deployments, ReplicaSets, and replication controllers. You can read more about the theory of how it works here: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

			This is the last big piece of the puzzle you need before you can achieve a cluster that automatically scales in and out in response to demand.

			You need Metrics Server for the Horizontal Pod Autoscaler to work. We will install this next.

			Installing Metrics Server

			To have more detailed statistics available in your Kubernetes cluster for use by the software components that enable dynamic scaling (including the Horizontal Pod Autoscaler), you need to run the standard Metrics Server. It aggregates statistics across the cluster regarding the memory, CPU, and other resource utilization of the nodes and among the pods in a format that the various Kubernetes autoscaler mechanisms can understand and act upon. The AWS EKS guide talks about installing that here:

			https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html

			To install it, ensure your kubectl config context is set to your cloud cluster. Then, issue the following command from your local workstation:

			kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.3.6/components.yaml

			Once you have installed Metrics Server, verify that it is running:

			$ kubectl -n kube-system get deployment metrics-server

			NAME READY UP-TO-DATE AVAILABLE AGE

			metrics-server 1/1 1 1 6m

			Next, we will activate the Horizontal Pod Autoscaler for the ShipIt Clicker application to demonstrate how it works.

			Activating the Horizontal Pod Autoscaler

			The AWS EKS guide shows the steps needed to install the Horizontal Pod Autoscaler: https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html.

			The main thing we need to install is the metrics service. It turns out that the Horizontal Pod Autoscaler is baked into Kubernetes itself. We can issue a command such as the following one to activate a Horizontal Pod Autoscaler for a deployment:

			kubectl autoscale deployment shipit-v8-shipitclicker --cpu-percent=50 --min=2 --max=50

			If you need to edit these parameters, you can do so with the following command:

			kubectl edit hpa/shipit-v8-shipitclicker

			You can get a detailed view of what the Horizontal Pod Autoscaler has done recently by issuing this command:

			kubectl describe hpa/shipit-v8-shipitclicker

			To test whether the Horizontal Pod Autoscaler and Cluster Autoscaler are working as expected, we need to drive CPU load. That's where the /faults/spin endpoint comes in handy. Later in this chapter, in the Testing scalability and performance with k6 section, we will see how to construct a realistic load test for the ShipIt Clicker application. However, to exercise autoscaling, we are going to use a brute-force method by using the Apache Bench utility that's run via Docker (replace example.com with your domain name):

			$ url=https://shipit-v8.eks.example.com/faults/spin

			$ docker run --rm jordi/ab -c 50 -t 900 "$url"

			Use the kubectl get deployments, kubectl get pods, kubectl get nodes, and kubectl describe hpa commands repeatedly to watch the deployment replicas grow. Alternatively, use a Kubernetes monitoring tool such as k9s (https://k9scli.io/) to watch the pod and node counts grow over the first 10 minutes or so, and then subside in the 15 minutes afterward. You could also look at some Grafana dashboards and Jaeger traces, as described in the previous chapter, to see how the cluster is handling the load, or even look at the CloudWatch metrics that surfaced in the EC2 console for the active nodes.

			Next, we will consider when we might use the Vertical Pod Autoscaler.

			Configuring the Vertical Pod Autoscaler

			The Vertical Pod Autoscaler is a newer scaling mechanism that observes the amount of memory and CPU usage that pods request, versus what they actually use, in order to optimize memory and CPU requests – it performs right-sizing to drive better cluster utilization. This is the most useful scaling mechanism for stateful pods.

			However, the Vertical Pod Autoscaler documentation currently states that it is not compatible with the Horizontal Pod Autoscaler, so you should avoid configuring it so that it manages the same pods. You can explore using it for your application, but keep in mind the advice it specifies about not mixing it with the Horizontal Pod Autoscaler using CPU metrics. The installation procedure for the Vertical Pod Autoscaler is also more involved than configuring either of the other autoscalers, so we won't show all the steps in detail here – please refer to the Vertical Pod Autoscaler documentation for detailed configuration instructions: https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler.

			In this section, we learned all about how we can scale our application using both manual and dynamic methods. In the next section, we will learn all about Envoy, a service mesh that provides some advanced controls and sanity regarding communications between pods in a Kubernetes cluster.

			What is Envoy, and why might I need it?

			Envoy (https://www.envoyproxy.io/) is a C++ open source service mesh and edge proxy geared toward microservice deployments. Developed by a team at Lyft, it is especially useful for teams developing Kubernetes-hosted applications, such as the ones you have seen throughout this book.

			So, why exactly would we need to deploy Envoy? When developing cloud-based production systems that use multiple containers to host a distributed service, many of the problems you will encounter are related to observability and networking.

			Envoy aims to solve these two problems by introducing a proxy service that offers runtime-configurable networking and metrics collection that can be used as a building block for creating higher-level systems that manage these concerns. Whether you're building out a small distributed application or a large microservice architecture designed around the service mesh model, Envoy's features allow us to abstract the thorny problem of networking in a cloud and platform-agnostic fashion.

			The team at Lyft developed Envoy using the following concepts:

			
					Out of process architecture: Envoy is a self-contained process that can be deployed alongside existing applications.

					A transparent communications mesh: All applications communicate via localhost and are ignorant of the network topology. An L3/L4 filter architecture is used for networking proxying. You can add custom filters to the proxy to support tasks such as TLS client certificate authentication.

					Language agnosticism: Envoy works with multiple languages and allows you to mix and match application frameworks. For example, through the use of Envoy PHP and Python, containerized applications can communicate with each other.

					HTTP L7 filters and routing: As with L3/L4 filters, filtering is also supported at the L7 layer. This allows plugins to be developed for different tasks, ranging from buffering to interacting with AWS services such as DynamoDB. Envoy's routing feature allows you to deploy a routing subsystem that can redirect requests based on a variety of criteria, such as path and content type.

					Load balancing and front/edge proxy support: Envoy supports advanced load balancing techniques, including automatic retries, circuit breakers, health checking, and rate limiting. Additionally, you can deploy Envoy at the network edge to handle TLS termination and HTTP/2 requests.

					Observability and transparency: Envoy collects statistics to support observability at both the application and networking layer. You can combine Envoy with Prometheus, Jaeger, Datadog, and other monitoring platforms that support metrics and tracing.

			

			Let's explore some of Envoy's features in more detail so that we can understand these concepts better.

			Network traffic management with an Envoy service mesh

			You should already be familiar with the concept of a load balancer, which is one type of network traffic manager. But what exactly is a service mesh? Why would you need to use one? How does Envoy help us in this regard?

			A service mesh is an infrastructure layer dedicated to handling service-to-service communications, typically through a proxy service. The benefits of using a service mesh are as follows:

			
					Transparency and observability into network communications.

					You can support secure connections across the network.

					Metrics collection, including length of time for a retry to succeed when a service fails.

					You can deploy proxies as sidecars. This means they run alongside each service rather than within it. In turn, this allows us to decouple the proxying service from the application itself.

			

			An example of a four-application service mesh can be visualized as follows:

			
				
					[image:]
				

			

			Figure 11.2 – Example of a service mesh with four microservices and sidecar proxies

			Here, each of our containerized applications has a corresponding sidecar proxy. The application communicates with the proxy, which, in turn, communicates across the service mesh with the other containerized services we are hosting. The application does not know that the proxy exists and does not need any modifications to work with the proxy. All the configuration can be done by wiring ports together using the container orchestration system, in a way that is invisible to the application.

			Now, let's gets our hands dirty and get Envoy up and running.

			Setting up Envoy

			Because of Envoy's architecture, you have flexibility in terms of how you can deploy the software:

			
					Configured explicitly as a sidecar container, with a static configuration file, alongside an application container

					Configured dynamically as part of a service mesh control plane, where the container might be injected into a Kubernetes pod as a component, using software such as Istio (https://istio.io/) or AWS App Mesh (https://aws.amazon.com/app-mesh/)

			

			The second option offers additional power at the cost of adding major complexity.

			The Envoy sample configurations (see https://www.envoyproxy.io/docs/envoy/latest/start/start#sandboxes) are all of the first variety, with explicit Envoy proxy configurations. To learn about Envoy, it is simpler to consider the explicit configuration examples. The version of ShipIt Clicker provided in this chapter has been modified so that you can add an Envoy sidecar container using a static configuration file when it is deployed in Kubernetes, with a minimalist approach that allows us to demonstrate Envoy's features.

			Configuring ShipIt Clicker for Envoy

			Now, let's examine the specific changes that need to be made for Envoy to be supported in ShipIt Clicker. The application JavaScript code does not require any changes; all the changes are in the Helm Charts. See the Helm Charts in chapter11/shipitclicker and compare them with the ones in chapter10/shipitclicker; you will see a new Envoy sidecar container defined in chapter11/shipitclicker/templates/deployment.yaml, configured with an image defined in chapter11/shipitclicker/values.yml:

			 - name: envoy-sidecar

			 image: "{{ .Values.envoy.repository }}"

			 imagePullPolicy: {{ .Values.envoy.pullPolicy }}

			 command: ["/usr/local/bin/envoy"]

			 args: ["-c", "/etc/envoy-config/config.yaml"]

			The preceding lines in the template launch the Envoy container using a configuration file, /etc/envoy-config/config.yaml, defined in a ConfigMap. Envoy needs both a port definition for its administrative interface and a port definition for each service it manages or proxies:

			 ports:

			 - name: envoy-admin

			 containerPort: 9901

			 protocol: TCP

			 - name: envoy-http

			 containerPort: 4000

			 protocol: TCP

			We can query the administrative API to ensure that Envoy is both live and ready to accept traffic, in accordance with Kubernetes best practices:

			 livenessProbe:

			 httpGet:

			 path: /server_info

			 port: envoy-admin

			 readinessProbe:

			 httpGet:

			 path: /ready

			 port: envoy-admin

			To expose the configuration file to the container, we use a volume mount that exposes the config.yaml file:

			 volumeMounts:

			 - name: envoy-config-vol

			 mountPath: /etc/envoy-config/

			 volumes:

			 - name: envoy-config-vol

			 configMap:

			 name: {{ .Release.Name }}-envoy-sidecar-configmap

			 items:

			 - key: envoy-config

			 path: config.yaml

			The config.yaml file is defined in chapter11/shipitclicker/templates/configmap-envoy.yaml and has definitions for listeners and clusters for the following:

			
					An ingress proxy for the ShipIt Clicker container inside the pod

					An egress proxy for the Redis Kubernetes service that can be reached at redis-master in the cluster

					An ingress proxy that allows Prometheus to scrape metrics from the Envoy sidecar in the pod

			

			The ConfigMap for ShipIt Clicker in chapter11/shipitclicker/templates/configmap.yaml has been modified so that it connects to localhost:6379 for Redis, which Envoy listens for and proxies out via a TCP L4 proxy to the Redis service. This listens elsewhere in the cluster at redis-master:6379.

			The Kubernetes service in chapter11/shipitclicker/templates/service.yaml now calls the envoy-http port instead of directly calling the application container's port.

			Why not use the Envoy Redis protocol proxy?

			The example files used here use a plain TCP proxy, instead of Envoy's Redis protocol proxy (see https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/redis_proxy/v3/redis_proxy.proto and https://github.com/envoyproxy/envoy/tree/master/examples/redis).

			This is because the ShipIt Clicker application has a Redis password authentication set up that is not compatible with Envoy's Redis proxy. ShipIt Clicker is set up to use a password it retrieves from a Kubernetes Secret that the Bitnami Redis Helm Chart stores. However, Envoy does not pass through this password; when configured with the Redis protocol proxy, it emitted an error message stating Warning: Redis server does not require a password, but a password was supplied when ShipIt Clicker tried to authenticate. It turns out that if you use the Envoy Redis protocol support, you must configure the proxy itself with password authentication for the client, and optionally the server, through the configuration file stored in a ConfigMap. However, the password that the Bitnami Redis server uses is only available as a Kubernetes secret, so reworking the system to support this would add complexity.

			As an exercise, you could install Redis without a password and remove the password from the configuration for ShipIt Clicker if you wanted to do this. If you did this, you could also switch Redis implementations to the Bitnami Redis Cluster Helm Chart (see https://github.com/bitnami/charts/tree/master/bitnami/redis-cluster), and then use the Envoy support for Redis clusters in order to implement the reader/writer split pattern.

			So far, we've seen how to deploy Envoy to create a service mesh. Next, we are going to explore the circuit breaker pattern.

			Configuring Envoy's support for the circuit breaker pattern

			The circuit breaker pattern is a mechanism that's used to configure thresholds for failures. The goal here is to prevent cascading failures spreading across your microservice platform and to stop continuous requests to a non-responsive service.

			Configuring the pattern on Envoy is relatively simple. We can configure circuit breaking values as part of an Envoy cluster definition via the circuit_breakers field.

			To see how this works, examine the following ConfigMap file, which contains a definition of a circuit breaker (chapter11/shipitclicker/templates/configmap-envoy.yaml):

			 circuit_breakers:

			 thresholds:

			 - priority: DEFAULT

			 max_connections: {{ .Values.envoy.maxRequests }}

			 max_pending_requests: {{ .Values.envoy.maxRequests }}

			 max_requests: {{ .Values.envoy.maxRequests }}

			 max_retries: {{ .Values.envoy.maxRetries }}

			This threshold definition specifies the maximum number of connections Envoy will make and the maximum number of parallel requests. In our example, we have a configuration for a default priority threshold and a second one for high priority (used for HTTP 1.1) and the maximum number of requests (used for HTTP/2). If the rate of traffic that Envoy detects exceeds these thresholds, it will throw an error and deny the requests, without passing the request to the target service. Notice that since we are using Helm Charts, we specify the actual values using the Helm template variable substitution with the values coming from chapter11/shipitclicker/values.yaml or one of the override mechanisms for Helm Chart values. The default values are from a section of the values.yaml file that specifies Envoy-specific values:

			envoy:

			 repository: envoyproxy/envoy:v1.14.2

			 pullPolicy: IfNotPresent

			 accessLog: "/dev/null"

			 maxRequests: 1024

			 maxRetries: 2

			These default values are suitable for production for this application, but how can we test that the circuit breaker works, without inducing a massive load? We will show you how do that next.

			Testing the Envoy circuit beaker

			In order to test that the Envoy circuit breaker is working properly, we'll deploy ShipIt Clicker to the cloud Kubernetes cluster with an artificially lowered request limit and perform a quick load test to verify that it works. Issue a Helm upgrade command, followed by a kubectl rollout restart command, similar to the following, to set the maximum simultaneous requests to 10 (replace image.repository with your ECR repository reference):

			$ helm upgrade shipit-v8 -f values.yaml --set image.repository=143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker:1.11.7 --set envoy.maxRequests=2 ./shipitclicker

			Release "shipit-v8" has been upgraded. Happy Helming!

			NAME: shipit-v8

			LAST DEPLOYED: Sun Jun 28 22:34:15 2020

			NAMESPACE: default

			STATUS: deployed

			REVISION: 17

			NOTES:

			1. Get the application URL by running these commands:

			 http://shipit-v8.eks.example.com/*

			$ kubectl rollout restart deployment/shipit-v8-shipitclicker

			deployment.apps/shipit-v8-shipitclicker restarted

			Next, we'll use Apache Bench to test the deployed application, starting with a single concurrent request:

			$ url=https://shipit-v8.eks.example.com/faults/spin

			$ docker run --rm jordi/ab -c 1 -n 400 $url | grep requests:

			Completed 100 requests

			Completed 200 requests

			Completed 300 requests

			Completed 400 requests

			Finished 400 requests

			Complete requests: 400

			Failed requests: 0

			Here, you can see that when run with only one concurrent request, all the requests succeeded. Next, we'll increase the concurrency to 50 simultaneous connections:

			$ docker run --rm jordi/ab -c 50 -n 400 $url | grep requests:

			Completed 100 requests

			Completed 200 requests

			Completed 300 requests

			Completed 400 requests

			Finished 400 requests

			Complete requests: 400

			Failed requests: 72

			If we set the concurrency to 50 simultaneous requests, many of them will fail as the circuit breaker kicks in. We've already seen how to set up a basic circuit breaker with two thresholds for our cluster. More advanced circuit breaker patterns exist, including breaking on latency and retries. We'll leave you to explore this further if you think your applications will need it.

			Now that you have tested the circuit breaker with low connection thresholds, reset the thresholds to their original values and redeploy the application to help set up the application for more load testing.

			If we had a good measurement of how much real user traffic each pod could handle without failing, we could use this to set a better value for the circuit breaker. However, Apache Bench is a blunt instrument that does not let us simulate a realistic user load. For that, we need to use a more sophisticated load test framework. Now, we'll take a look at how we can test scalability with k6, a Docker-based load testing framework.

			Testing scalability and performance with k6

			The k6 framework (https://k6.io) is a programmable open source load testing tool. We are going to show you how to use it to generate a more realistic load pattern than you could generate using a simple load generator such as Apache Bench (ab).

			This framework is quite simple to set up and use thanks to its Docker image, which is available on Docker Hub. You can find the Quick Start instructions at https://k6.io/docs/getting-started/running-k6.

			To create a load test using k6, you need to use JavaScript using k6's library routines. To perform a smoke test, your script would need to look something like this:

			import http from 'k6/http';

			export default function() {

			 http.get('https://shipit-v8.eks.example.com/');

			}

			This script is roughly equivalent to using the ab utility to stress test a web server. Create a file called hello.js using the preceding source code, replacing shipit-v8.eks.example.com with the fully qualified domain name of one of your websites.

			Following Docker best practices, you should ensure that you add the --rm flag to the Docker command line so that you do not accumulate stale containers in your local installation:

			$ docker run --rm -i loadimpact/k6 run - < hello.js

			This will run k6 and retrieve the URL specified in hello.js.

			There are just a few key concepts you must know about:

			
					You must provide a default function.

					K6 is not Node.js. It has no event loop.

					Your default function is known as a Virtual User (VU).

					Code defined outside of the default function is evaluated once, on program startup.

					The default function is run repeatedly until the test is over.

					You can run your test with as many VUs as you want, and for as long as you want.Note
There are many command-line options you can use with k6 to ramp up and down VUs over time, as well as to specify how long to run the test and how many VUs to simulate. The defaults have only one VU, and only one test iteration.

			

			Let's use some of those options to run the test with more users and for a longer duration:

			$ docker run --rm -i loadimpact/k6 run --vus 50 --duration 30s - < hello.js

			Running k6 like this will perform a load test almost identical to an Apache Bench load test, with a concurrency of 50 and a duration of 30 seconds.

			However, since you have the full power of JavaScript available, you can write more nuanced load tests using a variety of strategies.

			Recording and replaying network sessions

			An alternative to writing a script such as hello.js by hand is to use a record-and-replay strategy. Many load testing frameworks support this paradigm, including k6. To do this, use the Chrome browser and its Inspect feature. You can use the debugger's Network tab to capture and save network traffic to and from the application's backend.

			You start with an empty (cleared) network history in the debugger. Then, you load and play the game. Each click will cause API requests to occur between the application running in the browser and the backend.

			When you are satisfied with your recording, right-click on the Network pane and choose copy all as HAR. This puts the HAR-formatted text in the system clipboard:

			
				
					[image:]
				

			

			

			Figure 11.3 – Google Chrome inspector debugging console – Copy all as HAR

			Paste from the clipboard into a file named chapter11/src/test/k6/session.har. Then, run a conversion script to transform the HAR file into a JavaScript file at chapter11/src/test/k6/har-session.js, and run another shell script that will run k6 via Docker with the right arguments to initiate a one-user, 60-second test:

			$ chapter11/bin/k6-convert-har.sh

			$ chapter11/bin/k6-run-har.sh

			The k6-run-har.sh script is set up to use environment variables that override the VUs with the USERS variable, and to override the test duration with the DURATION variable. So, you can prefix the script with those variables like this and run a 10-user test for 300 seconds:

			$ USERS=10 DURATION=300 chapter11/bin/k6-run-har.sh

			There are some wrinkles to note about using this playback and record strategy, though: the process is quite literal, and results in a file that has no delays between requests. Running the test will induce a large, machine-speed load on the target service. There is no randomization of the delays that should happen between requests, which is something you want to do in order to closely model the load that a real user's session would put on a service.

			To create a more realistic test, we are going to have to do some JavaScript programming.

			Hand-crafting a more realistic load test

			In the chapter11/src/tests/k6/ directory, there is a test.js script designed to realistically test ShipIt Clicker, whether it's deployed locally or in the cloud.

			This script mimics a human playing the game by using these strategies:

			
					Fetches the HTML, stylesheets, images, and JavaScript files that make up the application

					Performs HTTP post to start a new game

					Gets the initial score, deployments, and nextPurchase values

					Attempts to simulate the click stream a human player would make

			

			The HTTP requests were identified by playing the game in a web browser such as Google Chrome, using its Inspect feature, and viewing the Network tab as the game loads and is played. Then, we wrote a test that simulated the series of requests in a way that is closely modeled after real user behavior, including having realistic random delays.

			Let's examine the code in chapter11/src/test/k6/test.js. Here, we import the http class and the sleep() method from the k6 supplied libraries:

			import http from "k6/http";

			import { sleep } from "k6";

			We pass parameters to the test.js script as environment variables:

			
					The DEBUG environment variable lets us trigger more verbose logging.

					The MOVES environment variable contains the number of moves per game.

					The TARGET environment variable would be something like http://192.2.0.10:3011 for localhost development, where 192.2.0.10 is the IPv4 LAN address of your workstation.

			

			These parameters get retrieved from the __ENV object, as follows:

			const DEBUG = __ENV.DEBUG;

			const MOVES = __ENV.MOVES;

			const target = __ENV.TARGET;

			The ENDPOINTS array gets used to iterate through the three main elements that the game tracks:

			const ENDPOINTS = ['score', 'deploys', 'nextPurchase'];

			The deploy() method simulates a human clicking on the Deploy button in the app; it calls http.patch() twice – once to update the deployment count and once to update the score:

			const deploy = id => {

			 validate(

			 http.patch(

			 `${target}/api/v2/games/${id}/deploys`,

			 JSON.stringify({

			 id: id,

			 element: 'deploys',

			 value: 1,

			 }),

			 params

)

);

			This function also updates the score:

			 validate(

			 http.patch(

			 `${target}/api/v2/games/${id}/score`,

			 JSON.stringify({

			 id: id,

			 element: 'score',

			 value: 1,

			 }),

			 params

)

);

			};

			The validate() method that the deploy() method calls simply verifies that the server returns a valid response:

			 validate(

			 http.patch(

			 `${target}/api/v2/games/${id}/score`,

			 JSON.stringify({

			 id: id,

			 element: 'score',

			 value: 1,

			 }),

			 params

)

);

			};

			The getStaticAssets() method simulates the user's browser fetching the HTML, CSS, images, and JavaScript that make up the game:

			const getStaticAssets = () =>

			 [

			 target,

			 `${target}/stylesheet.css`,

			 `${target}/img/shipit-640x640-lc.jpg`,

			 `${target}/img/Richard-Cartoon-Headshot-Jaunty-180x180.png`,

			 `${target}/app.js`,

]

			 .map(http.get)

			 .map(validate);

			The getGameId() method simulates the start of a new game:

			const getGameId = () => {

			 const uri = `${target}/api/v2/games/`;

			 const response = validate(http.post(uri, {}, params));

			 return JSON.parse(response.body).id;

			};

			The getScores() method retrieves the existing scores using the map functional programming technique to both iterate over the endpoints and to run a validation function on the HTTP response:

			const getScores = id => {

			 return ENDPOINTS.map(element =>

			 http.get(`${target}/api/v2/games/${id}/${element}`)

).map(validate);

			};

			The putScores() method is used to reset all the game scores, such as when a new game begins:

			const putScores = (id, score) => {

			 return ENDPOINTS.map(element =>

			 http.put(

			 `${target}/api/v2/games/${id}/${element}`,

			 JSON.stringify({

			 id: id,

			 element: element,

			 value: score,

			 }),

			 params

)

).map(validate);

			};

			The default function is the one that k6 loops through for each virtual user:

			export default function() {

			 const startDelay = random_gaussian(6000, 1000) / 1000;

			 log.debug(`Loading static assets, then wait ${startDelay}s to start game`);

			 getStaticAssets();

			 sleep(startDelay);

			After this function loads the static assets, it sleeps for a random delay to simulate a user waiting at the splash screen:

			 const gameDelay = random_gaussian(1500, 250) / 1000;

			 const id = getGameId();

			 log.debug(

			 `Game ${id}: Reset game scores, then wait ${startDelay}s to start game`

);

			 getScores();

			 putScores(id, 0);

			 sleep(gameDelay);

			After another delay, when simulating the user seeing the game screen, the test program enters a loop where it starts rapidly simulating clicks:

			 log.info(`Game ${id}: Simulating ${MOVES} moves, starting in ${gameDelay}s`);

			 for (let i = 0; i < MOVES; i++) {

			 const moveDelay = random_gaussian(125, 25) / 1000;

			Notice that we use a randomly generated delay between moves with a Gaussian distribution that has a mean of 125 milliseconds and a standard deviation of 25 milliseconds. This simulates clicking at about 8 clicks/second, which is the rate we measured when playing ShipIt Clicker on an iPhone – in 1 minute, we recorded 480 clicks:

			 log.debug(`Game ${id}: move #${i}, then sleep ${moveDelay}s`);

			 deploy(id);

			 sleep(moveDelay);

			 }

			 log.info(`Game ${id}: Done with ${MOVES} moves`);

			}

			The default function that's used for each virtual user fetches the same URLs that a user's browser would fetch on first page load. Note all the random delays that realistically simulate the delays that a real user would make. In a tight loop, the test simulates the user clicking as fast as a human would. The delay between clicks is subtly randomized using a random number with a normal distribution to simulate the fact that a human cannot click with robotic precision.

			The chapter11/bin/k6-run.sh script runs the test using the same environment variable pattern override that the k6-har-run.sh script did, but with more variables. It allows you to set these parameters:

			
					USERS: Number of users

					DURATION: Duration in seconds

					MOVES: Number of moves in a game

					STAGES: Specify a set of k6 stages, which can vary VUs over time

			

			The script requires a command-line argument, which is the URL target for the test. As mentioned earlier, this might be something like http://192.2.0.10:80/ to test against the application infrastructure deployed on your workstation. Or, it could be the application as it was deployed to your cluster in the cloud, such as https://shipit-v8.eks.shipitclicker.com/.

			Running a stress test

			In order to run a stress test, you want to ramp up the amount of load on an application until it starts showing signs of failing. We can try doing that using the script.js k6 program and the k6-run.sh test harness. The key element that we must specify is the STAGES parameter:

			$ MOVES=400 STAGES=900s:100 chapter11/bin/k6-run.sh https://shipit-v8.eks.example.com

			You will likely find that with the default settings of two pods, this initial test will not show any signs of failure. You can use the kubectl command, plus Prometheus, Grafana, and Jaeger to monitor the test progress, plus the CPU and memory utilization in the cluster, as described in the previous chapter. For example, here is a screenshot of Grafana after the preceding load test:

			
				
					[image:]
				

			

			Figure 11.4 – The Grafana dashboard showing the rate of ShipIt Clicker deployments during the load test

			In order to get this deployment to fail during the stress test, we don't want it to automatically scale out. So, we will delete the Horizontal Pod Autoscaler:

			kubectl delete hpa/shipit-v8-shipitclicker

			We also want to stress test a single pod in order to see how much it can take, so we will shrink the number of replicas in the deployment to only 1:

			kubectl scale deployment/shipit-v8-shipitclicker --replicas=1

			At this point, we can rerun the stress test using the preceding k9-run.sh command. Watch the output. You will probably see some failed requests, which should be logged in the k9 output with a warning that looks something like this:

			time="2020-06-29T05:52:31Z" level=info msg="WARNING: PATCH https://shipit-v8.eks.example.com/api/v2/games/t2iAHlWtnhJhbsXfJI3zB/deploys: status 503"

			Once we are done stress testing, we can recreate the Horizontal Pod Autoscaler and reset the number of replicas for the deployment to a higher number.

			At this point, we've learned how to use k6 to create a realistic load test and used it to perform a stress test of ShipIt Clicker.

			Summary

			In this chapter, we explored the topic of scaling out clusters in Kubernetes by using the Cluster Autoscaler and the Horizontal Pod Autoscaler. We then explored the topic of service meshes and set up a minimalistic Envoy service mesh in order to provide proxying and transparent network communications for complex microservice architectures.

			Following this, we looked at how we could use the circuit breaker pattern to prevent a service from becoming overwhelmed by traffic. Then, we used connection thresholds to test that the circuit breaker worked, in conjunction with a simple load test technique, using Docker and Apache Bench. After this, we learned about progressively more sophisticated load testing techniques when using k6, including both record-and-playback and detailed hand-crafted load tests designed to mimic real user behavior.

			This brings us to the end of our Running Containers in Production section of this book. We're going to move on and look at security next. Here, we will learn how to apply some techniques to the projects and skills we have developed so far in this book to improve our container security posture. So, let's move on to Chapter 12, Introduction to Container Security.

			Further reading

			Use the following resources to expand your knowledge of autoscaling, the Envoy service mesh, and load testing:

			
					Envoy presentation from Lyft: https://www.slideshare.net/datawire/lyfts-envoy-from-monolith-to-service-mesh-matt-klein-lyft.

					Performance Remediation Using New Relic and JMeter, a three-part article series by the Docker for Developers co-author Richard Bullington-McGuire. This covers load testing and performance improvement basics. You can adapt these techniques to Kubernetes using Prometheus, Grafana, Jaeger, and k6.io: https://moduscreate.com/blog/performance-remediation-using-new-relic-jmeter-part-1-3/.

					Using a Network Load Balancer with the NGINX Ingress Controller on Amazon EKS – an economical and flexible alternative to using the ALB Ingress Controller for many scenarios: https://aws.amazon.com/blogs/opensource/network-load-balancer-nginx-ingress-controller-eks/.

					Kubernetes Autoscaling 101: Cluster Autoscaler, Horizontal Pod Autoscaler, and Vertical Pod Autoscaler: https://levelup.gitconnected.com/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231.

					Velero to backup and restore your Kubernetes cluster. Backup and restore your entire cluster, a namespace, or objects, filtered by tags: https://velero.io/.

					Expose Envoy Prometheus metrics as /metrics. See this issue for the workaround that's integrated into ShipIt Clicker's Envoy configuration that lets you expose Envoy's metrics to the Prometheus metrics scraper by adding an additional Envoy mapping: https://github.com/prometheus/prometheus/issues/3756.

					Microservicing with Envoy, Istio, and Kubernetes: https://thenewstack.io/microservicing-with-envoy-istio-and-kubernetes/.

					Jaeger Native Tracing with Envoy – an advanced tracing strategy: https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing.

					Redis with Envoy Cheatsheet – setting up Redis and Envoy using TLS and Redis Auth: https://blog.salrashid.me/posts/redis_envoy/.

					Introduction to Modern Network Load Balancing and Proxying, from Lyft's Matt Klein: https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236.

					Matt Klein on the Success of Envoy and the Future of the Service Mesh: https://thenewstack.io/matt-klein-on-the-success-of-envoy-and-the-future-of-the-service-mesh/.

					Cost Optimization for Kubernetes on AWS. Once you get a handle on scaling, the next step is to reduce costs. The EKS cluster might cost between $10-20 per day to run with the defaults given in the AWS EKS Quick Start CloudFormation templates: https://aws.amazon.com/blogs/containers/cost-optimization-for-kubernetes-on-aws/.

			

		

	
		
			Section 3: Docker Security – Securing Your Containers

			In this section, we introduce the topic of security. Here, you will build upon the skills you have learned throughout the book in order to understand how security techniques can be adopted to protect your container-based environments from malicious actors. From expanding our use of monitoring to introducing new tools to the DevOps pipeline, you'll be left in a position to start exploring more advanced topics and projects.

			This section comprises the following chapters:

			
					Chapter 12, Introduction to Container Security

					Chapter 13, Docker Security Fundamentals and Best Practices

					Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

					Chapter 15, Scanning, Monitoring, and Using Third-Party Tools

					Chapter 16, Conclusion – End of the Road, but not the Journey

			

		

	
		
			Chapter 12: Introduction to Container Security

			When developing technical projects, security should be a fundamental concern. We live in a world surrounded by security threats, from malware and viruses to data breaches. Being the victim of cybercrime or information leaks can have increasingly negative consequences, especially under regulations such as the EU's General Data Protection Regulation (GDPR).

			When breaches or compromises do happen, having the ability to limit their scope through good architectural practices is a must. This is achieved through the concept of limiting what is called lateral movement. By this, we mean using one breached system to access another, thereby providing the attacker with the ability to traverse through your system, compromising further systems and stealing data.

			Thankfully, containerization, when deployed correctly, can help you improve your security posture through a variety of features that will be explored in the final section of this book. First, however, we should explore the technical fundamentals of Docker's security architecture so that we can start to build upon it. Some of the concepts in this chapter will be a recap of ideas we have explored elsewhere in this book, framed in a security setting. This should help to not only cement those concepts in your learning process but also help you to understand how to secure your application development projects.

			In this chapter, we're going to cover a brief overview of the security architecture of containers and how this relates and compares to virtualization, as well as how Docker Engine and containerd work from a security perspective and the concepts they have inherited from Linux. We will also look at an overview of best practices that you can implement that leverage Docker's security architecture. This will provide a foundation for exploring the topic deeper in the following chapters.

			We will cover the following topics in this chapter:

			
					Virtualization and hypervisor security models

					Container security models

					Docker Engine and containerd – Linux security features

					A note on cgroups

					An overview of best practices

			

			So, let's start by reviewing how containers and virtualization differ and how security is a fundamental component of both.

			Technical requirements

			For this chapter, you will need to have access to a Linux machine running Docker. We recommend that you use the setup you have been using so far in this book.

			If you have jumped to the security section as your starting point, we recommend you install the Docker Community Edition from https://docs.docker.com/v17.09/engine/installation/.

			Check out the following video to see the Code in Action:

			https://bit.ly/3gW33FD

			Virtualization and hypervisor security models

			In previous chapters, we explored how Docker works and how it compares to other technologies, such as FreeBSD jails and virtualization. Building on what we learned here, we will now seek to understand the security model that underpins Docker better.

			To start with, let's look at how security is implemented by virtualization tools so that we can then understand how Docker matches and differs from them.

			Virtualization and protection rings

			When using virtual machines (VMs), you may have come across the term hypervisor. This is a program that orchestrates how the VMs run on your system and interact with the underlying hardware. Some hypervisor products, known as type 1 hypervisors, run directly on top of the hardware. Others, such as VirtualBox, are installed via your existing operating system and allow you to load additional operating systems as VMs.

			How the hypervisor works with the underlying hardware is governed by what is known as protection rings. These rings dictate the layers of privilege, effectively deciding which aspects of a computer system's software, such as the operating system, drivers, and desktop applications, can access which parts of the underlying hardware.

			Typically, you will see the protection ring modeled as a set of concentric circles, such as the following:

			
				
					[image:]
				

			

			Figure 12.1 – Protection ring example

			Sometimes the device drivers ring may show as two separate rings as well (denoted by the dotted circle in the diagram).

			Each hardware architecture will differ slightly in its adaptation of the protection ring model and, in turn, the operating systems that run on it may also run code at different levels than expected. However, it is typical to find ring 0—that is, the ring at the center with the most privilege—denoted as the kernel ring (sometimes called kernel land).

			Malicious software will often try to attack the kernel in order to gain full access over the system and run low-level system processes. This software is usually known as kernel-mode rootkits. Therefore, protecting the kernel is a must, as well as ensuring that if a system is breached with a malicious application, library, or package, it cannot escalate privileges to gain kernel access is paramount.

			Outer rings may then handle device drivers and applications. Each is assigned a ring and the outer ring containing user applications is often known as user land. Gates handle how each ring can speak to the ring below it. As with the kernel, there is a risk of malicious software infecting applications that run at these levels including user-mode rootkits that run at level 3.

			With these threats in mind, the protection ring model helps prevent the programs that you install on your desktop from maliciously accessing the underlying hardware and bypassing the kernel. Therefore, malware writers are forced to look for security holes and other means of obfuscating their attacks, such as injecting their code into other processes. You can think of these layers of security as providing a set of doors that need to be breached, rather than an attacker just being able to walk in and be given direct access to the underlying hardware.

			These layers of segmentation, while not foolproof, help to provide what is known as a layered approach to security. The idea here is that by adding one layer of security to another, we make it increasingly difficult for an attack to be pulled off.

			Virtualization and malware

			Since we are interested in virtualization and subsequently, how this compares to Docker containers, we are, of course, interested in how virtualization fits into this model. How does virtualization protect against rootkits and other malware?

			Many modern hardware architectures, such as the ARMv7-A, include a hypervisor as a privilege level in our ring model that is more privileged than the operating system level. This allows the hypervisor to switch between operating systems that are running at the next ring above.

			Some architectures also implement what is known as ring -1. This allows the hypervisor to run at a further deeper security ring, with the guest operating system kernels running at ring 0. If, for example, you are running VirtualBox on top of an x86 platform, depending on whether hardware virtualization exists, VirtualBox will run either at ring -1 or ring 0.

			VMs are useful for conducting malware analysis for a number of reasons, including the fact the machine can be locked down, so it is a self-contained environment. Once the investigator is done analyzing the code and its effects, the VM can be deleted without having to reinstall the whole operating system of the machine, or (if configured correctly) risk the malware gaining access to the underlying hardware.

			So, in summary, protection rings provide a mechanism to provide a way to segment software so that it can only access certain resources. In a virtualization model, a hypervisor can run in the ring with the most privilege to switch between operating systems. A hypervisor can be installed via an existing operating system, such as Windows, or be deployed on bare metal, such as the VMware ESXi product. It can also be used to create a sandbox environment that prevents malicious code from infecting the underlying hardware or operating system.

			So, how does this compare to Docker and how does the protection ring model apply?

			Docker and protection rings

			Like VMs, Docker containers provide an isolated environment for running your code on top of an existing operating system. This operating system can be either virtualized or installed directly onto bare metal.

			So, how does this work? You may remember that Docker containers run on top of Docker Engine, which in turn sits on top of the operating system via an intermediate component called containerd. This is in comparison to the type 1 hypervisor, which runs on top of the infrastructure, as we discussed previously, with the guest operating systems running on top of the hypervisor.

			Docker containers, therefore, all run on top of the same operating system, regardless of whether it is virtualized or not. In fact, in some instances, such as if you run Linux containers on Docker on Windows, you may notice that it uses an intermediary step. This consists of running a virtualized version of Linux, which in turn runs the Docker engine. In this scenario, all the containers are running on the same virtualized Linux operating system.

			Note

			Docker Engine Enterprise Edition also supports native Windows containers. You can read more about them at https://www.docker.com/products/windows-containers.

			The key concept to all of this is that isolation happens at the container level, rather than—or in addition to—the VM level. So, at a basic level, Docker does not provide the same sandboxing that the VM itself does.

			The following diagram demonstrates the difference:

			
				
					[image:]
				

			

			Figure 12.2 – Example of isolation in Docker and VMs

			In the preceding diagram, if we run Docker on the VM stack, we would replace the Applications layer with the Docker Engine/Containerd and container layers.

			As you can probably see, this provides a layer of security in addition to that provided by the underlying host operating system or, when applicable, the additional layer of the hypervisor. However, this layer of security when operating on top of the host operating system and not via a VM does mean that if the Docker Engine contains a security vulnerability, you have an additional layer of risk.

			The Docker containers' access to the underlying system/kernel, therefore, is mediated by the engine, which in turn makes system calls via containerd (and, in most cases, is called via runc).

			Note

			If you want to read about containerd and runc in more detail, check out the official website at https://containerd.io/.

			Here, we have provided a level of isolation between each container and the underlying operating system and hardware. Docker Engine does not run at ring 0 or ring -1, but rather at ring 3, meaning while it is susceptible to other forms of attack, it does not have direct access to the hardware as the hypervisor does.

			Note

			Even with this layered approach to security, flaws have been found in the past. You can read more at https://www.twistlock.com/labs-blog/breaking-docker-via-runc-explaining-cve-2019-5736/.

			Additionally, each container is a separate self-contained set of libraries and applications that can only communicate with each other via Docker Engine. By default, as we noted, the containers do not have access to the underlying operating system that Docker Engine is hosted on. In fact, any calls to access system resources at the underlying OS level have to be explicitly configured when setting up the Dockerfile. The Docker containers, therefore, run at ring level 3, aka user land, with additional layers of security in place.

			Now that we have an understanding of the ring model and how Docker and virtualization work in conjunction with it, let's look at container security models and what they have inherited from Linux's best practices and techniques.

			Container security models

			Moving up from the hardware layer and how the hypervisor and base operating system mediate access to it, we can begin to review what happens at the software layer running at ring level 3. To explore this, there are two key features of Docker's container security model that we need to understand:

			
					Applications are isolated from the underlying host system.

					Containerized applications are isolated from each other.

			

			So, how does Docker achieve these objectives? The answer to this is, as you may have guessed, via Docker Engine and related components, such as containerd. These components have inherited a number of key Linux features and concepts with major benefits for security, including the following:

			
					runc: A lightweight container runtime

					Namespaces: A Linux method for partitioning kernel resources

					Control groups (cgroups): A kernel feature for limiting resources such as CPU usage

			

			Additionally, it also allows the implementation of other security features found in the Linux kernel, such as the following:

			
					SELinux: The Linux kernel security module for handling access control security policies

					AppArmor: A Linux feature for restricting application capabilities

					TOMOYO: A Linux security module for handling mandatory access control (MAC)

					GRSEC: A collection of security enhancements for the Linux kernel

			

			These tried and true best practices allow containers to be isolated from one another and from the host operating system in a secure fashion. We will now delve deeper into Docker Engine and containerd to get a better understanding of how these security features are implemented.

			Docker Engine and containerd – Linux security features

			Docker Engine, which you installed previously, acts as the coordinator for all your application containers. In addition to the engine are other key components that make up the Docker ecosystem. Initially, many of the components were baked into Docker Engine, but over the years, in order to make the engine smaller and faster, some components, such as the runtime mechanism for managing containers, were broken down into separate projects.

			One example of this is the containerd project. containerd, which implements runc, allows container management and is used in a number of related projects beyond Docker, including Kubernetes CRI.

			Note

			You can download and view the source code for containerd from GitHub at https://github.com/docker/containerd and runc at https://github.com/opencontainers/runc.

			containerd solves the problem of aggregating a number of features in the Linux kernel and providing an abstraction layer to handle system calls (syscalls). Docker Engine, therefore, sits on top of this and uses it to interact with the underlying operating system. An example of a task handed off to it from Docker Engine is attaching a process to an existing container.

			This modular approach is not limited to the engine and how it interacts with the operating system. For example, containers and the engine do not need to reside on the same machine. Therefore, hosting options can be broken up.

			This distributed model works as Docker implements a client-server model with the engine being the server and each of your containers acting as clients. Some of the key features of this architecture are as follows:

			
					The server running as a Linux daemon process (https://man7.org/linux/man-pages/man7/daemon.7.html).

					A Docker command-line interface (CLI) where you can run containers from. This is represented by the docker command in your terminal.

					Communication between the containers and the engine handled over a REST API.

			

			It is important to note that the communication channel between the containers and the engine can be encrypted using SSL/TLS.

			SSL/TLS is the de facto standard for encrypting traffic between web endpoints. You will have seen it used on websites when accessing content via the HTTPS protocol. Later on, we will explore how you can enable SSL/TLS to help protect the Docker daemon socket.

			Docker provides an extensive set of features for configuring complex networks, and you can read more about it in detail at the Docker website at https://docs.docker.com/v17.09/engine/userguide/networking/.

			The isolation that this client-server architecture provides between the host OS and your various containers (whether located on the same machine or distributed) works on the premise of least access. This means that each Docker container effectively only has access to the resources it needs, such as to the disk or network resources, and nothing more. Additionally, one Docker container cannot access the processes of another container.

			This model of least access is aided by the implementation of Linux namespaces to isolate processes from one another. Running Docker on Windows via a virtualized Linux environment hosting the engine is one way that Windows users can reap the benefits of this technology.

			Note

			If you would like to learn more about how native Windows containers achieve process and Hyper-V isolation, you can refer to the Windows Containers website at https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container.

			Docker Engine, when deploying a container, will generate a number of these Linux namespaces. They are as follows:

			
					The process ID (PID) namespace

					The mount (MNT) namespace

					The networking (NET) namespace

					The inter-process communication (IPC) namespace

					The Unix time-sharing (UTS) namespace

					The USER namespace

			

			We'll now look at each of these in a little more detail to understand the security implications.

			PID namespaces

			As you may know, each process in the Linux operating system resides in a tree structure and is assigned an ID called the PID. The PID namespace allows the separation of processes. By implementing the PID namespace, we can prevent our container from viewing the system processes. Aside from the security benefit of this, it has the additional benefit that system PIDs, such as PID 1, can be reused.

			If you want to grant your containers access to system processes, you will, therefore, have to encode this into your Dockerfile explicitly. This follows the previously mentioned principle of granting the least access. So, think carefully before you implement any features this way.

			MNT namespaces

			The MNT namespace allows a container to have access to its own collection of root directories and file mounts. This method allows you to create a private filesystem and so segment which files are accessible to which container, reducing the risk of a compromised container getting access to files it shouldn't or accidental file corruption.

			NET namespaces

			Docker, as we discussed briefly, has a variety of networking tools at its disposal. By default, when you deploy a container, it will have its networking features enabled. This will allow them to make outgoing connections. By default, the container will use the same DNS servers as configured by the host and have a MAC address assigned to it. The IP address in IPv4 and IPv6 can be set using the relevant flags. If you chose to override the MAC address via the available flag, you should be aware that there is no mechanism to automatically check whether the MAC address is unique. Duplicate MAC addresses will likely result in a MAC address collision.

			If you wish to disable networking as part of your security posture for a particular container, this can be achieved by overriding the settings using the --network flag when you execute the run command. Setting the flag to none will disable all external access, leaving only the loopback address accessible.

			A number of other configuration options are available to customize your container network settings, and these can be accessed under the help menu.

			IPC namespaces

			The IPC namespace is used to provide separation of named shared memory segments, along with message queues.

			IPC namespaces are locked down to prevent processes in one namespace accessing those within another. The benefit of this model is that a container can safely deploy a set of services that require memory segment utilization, such as the types of applications you might find in FinTech.

			UTS namespaces

			The UTS namespace allows us to set the domain and hostname for processes running in the namespace. This namespace is a default feature, so all containers have it enabled, and it allows you to assign a different hostname per container.

			USER namespaces

			The final category of namespace we will discuss is the USER namespace. This is a mechanism that allows you to map users and groups to a container. Once mapped, users can be assigned different user IDs.

			One extremely useful benefit of this feature from a security perspective is that it helps to prevent your container from being leveraged for privilege escalation attacks. Examples of how to achieve this include not only running applications as an unprivileged user but also mapping the root user within the container to a less-privileged user at the Docker host level. Therefore, processes running at root within the container have this privilege level limited to the container they operate within.

			A note on cgroups

			Linux cgroups are a mechanism used to control the number of processes that can be spawned and so prevent a system from suffering severe performance loss or worse, crashing.

			By using cgroups, we can set a limit to the number of processes that can be spawned through the fork() and clone() operations. Once a limit is hit, it's not possible to generate any further processes under the cgroup. Additionally, cgroups support the ability to set CPU and memory limits. You can read about their comprehensive list of options at https://www.man7.org/linux/man-pages/man7/cgroups.7.html

			Using this feature enables you to have more granular control over the system resources that your container is using. In an unfortunate event where a container is compromised, preventing it from over-consuming system resources is a useful mechanism to limit the damage until you can remediate the problem.

			Having looked at how Docker Engine and containerd use best practices from Linux, let's now move on to look at some best practices that we can use that also implement some of the features we have discussed so far.

			An overview of best practices

			In the following chapters, we will be delving into techniques to ensure your containers are secure. You'll be happy to know that there are a number of best practices that you can use off the bat to ensure that you are thinking about and implementing security at the most basic level.

			The first thing to understand, and that you may have already picked up on, is that Docker containers, compared to VMs, do not provide the same level of security. We gave an example earlier of how a VM can be used for malware analysis due to its sandboxed environment. Therefore, from a security perspective, you should approach containers as a mechanism that is used to optimally package system resources and applications for development and delivery (with some very useful security built in) but not treat them as a micro-VM.

			With this in mind, let's look at some best practices we can apply when using Docker.

			Keeping Docker patched

			As with any application you run, it is important to keep Docker patched. Unpatched security vulnerabilities in Docker Engine, for example, can be leveraged by nefarious actors who gain access to one of your containers in the case of a breach.

			The Docker Desktop application in macOS, for example, provides an option to check for updates, and the preferences allow you to automatically check for updates:

			
				
					[image:]
				

			

			Figure 12.3 – Example of checking for updates on macOS

			When implementing Docker, you may also wish to manually upgrade the software based on security patches or whether you are using the Docker Enterprise edition.

			A list of each patch/release can be found on the Docker website with a list of the features added or issues addressed:

			https://docs.docker.com/engine/release-notes/

			You will notice here that some of the items are listed with the CVE prefix, which stands for common vulnerabilities and exposures. The CVE list is a collection of publicly disclosed security issues. When a security problem with Docker is identified, it may be listed in the CVE database, and then when it is fixed, the CVE ID for the issue will be listed in the release notes.

			As a final note on this topic, also remember to keep the underlying operating system that Docker is running on patched and hardened, too.

			Securing the Docker daemon socket

			In addition to ensuring that Docker is regularly patched, we also need to safeguard the daemon socket. This means locking it down to prevent an attacker from using it to gain root access to the underlying host. Docker security documentation provides an extensive guide to doing this; however, we will summarize it here.

			Note

			To read more about the daemon socket, review the official documentation on Docker's website at https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option.

			You can find the domain socket file on Linux systems at /var/run/docker.sock.

			This file should only be accessible via root permissions or accounts in the Docker group.

			We are now going to set up encrypted access over TLS/SSL to the Docker daemon to add another layer of protection.

			As you may be aware, unencrypted TCP sockets are enabled through using the -H flag and include the TCP protocol, host, and port number. The port for unencrypted connections by convention is 2375. Going forward, if you have been using that method, we recommend you stop and use the built-in TLS/SSL support.

			Before we can connect over the secure channel between our client and host, we need to generate the following files:

			
					Certificate authority (CA) private and public keys

					Server key

					Server certificate signing request (CSR)

					Signed certificates

					Client key

					Client CSR

			

			Depending on your operating system, the steps to generate these OpenSSL files will be different. The Docker website provides a handy list of steps for this process. Windows users can use a Linux VM to perform these steps as well:

			https://docs.docker.com/engine/security/https/

			Implementing encryption can be achieved in the following fashion by enabling the Docker daemon to use the CA, server certificate, and server key. In this example, we will run the daemon on 0.0.0.0 and on port 2376:

			dockerd --tlsverify --tlscacert=tlsca.pem --tlscert=tlsservercert.pem --tlskey=tlsserverkey.pem -H=0.0.0.0:2376

			Now, we can test connecting to it. First, make sure that the client certificate, key, and CA are available. Then, run the following command:

			docker --tlsverify --tlscacert=tlsca.pem --tlscert=tlscert.pem --tlskey=tlskey.pem -H=$HOST:2376 version

			You should now be able to successfully connect to the Docker daemon over the encrypted channel.

			Docker won't fix bad code

			Docker can do a lot to help negate the effects of security problems, but it cannot fix bad code. The same best practices apply when writing applications that apply when deploying on an EC2 instance, VMware, or any other platform.

			A great place to start with application security is the OWASP top 10. OWASP also offers a number of helpful cheat sheet guides for application security development, in addition to their standard documentation.

			You can find them at https://cheatsheetseries.owasp.org/.

			Always set an unprivileged user

			We touched on the subject of the USER namespace and how it can aid you in securing your Docker setup. One practice you should implement is to make sure you configure containers to use an unprivileged user where possible. Doing this from the start will help you get into good habits.

			The two easiest methods to do this are as follows:

			
					Add a user to the Dockerfile.

					When running Docker, add the --user flag to the run command.

			

			In the first case, this can be achieved in the following fashion:

			FROM alpine

			

			RUN addgroup -S secureusers && adduser -S secureuser -G secureusers

			#Execute any root commands prior to needing to switch users

			USER secureuser

			With the second option, we can apply the flag to the command line as follows:

			docker run --user 5000:500

			Here, we have included the user ID and group ID.

			Now that we have some basics in place, let's quickly review what we have learned before we further dig into some of the fundamentals and get our hands dirty.

			Summary

			Over the course of this chapter, we learned about how VMs and Docker work in conjunction with the underlying operating system, hardware, and each other.

			Following this, we explored the various features that Docker has implemented from Linux to bake in security concerns.

			Finally, we looked at some best practices that apply regardless of the applications we are developing. Now, let's jump into some security fundamentals and learn about Docker image security, commands, and the build process in the next chapter.

		

	
		
			Chapter 13: Docker Security Fundamentals and Best Practices

			As we wish to ensure that our containers are hardened for both development and production environments, there are many techniques and best practices we can implement to achieve this task. In many cases, it is simply a case of modifying existing commands or behaviors you've learned throughout this book to add an extra layer of security to your practices.

			Within this chapter, we will be building upon the foundational knowledge we have of Docker and container security. This will involve hands-on exercises in building and modifying containers. Covering subjects as varied as image security through the usage of Docker commands and signed images, upon completing the following exercises, you should feel comfortable in applying these skills in a real-world development and DevOps environment.

			In this chapter, we're going to cover the following main topics:

			
					Docker image security: Here, we will learn about image security, including using minimal base images, signed and verified images, and avoiding data leakage.

					Security around Docker commands: Here, we will gain an understanding of how to use Docker commands securely, including using COPY instead of ADD when building out Docker images.

					Security around the build process: Here, we will learn about the best practices for build processes, including multi-stage builds.

			

			Let's get started by looking at Docker image security and some best practices we can implement.

			Technical requirements

			For this chapter, you will need to have access to a Linux machine running Docker. We recommend that you use the setup you have been using so far in this book.

			In addition to this, you will need an account on Docker Hub in order to access images located there. If you have not already set one up, you can do so at https://hub.docker.com.

			If you have an existing container or service running SSH, this can be used later in this chapter. If not, do not worry. We provide a link to an example Dockerfile from the official Docker documentation you can use instead if you wish.

			Check out the following video to see the Code in Action:

			https://bit.ly/30WkOPE

			Docker image security

			As you have worked through the material in this book, you will have become increasingly familiar with images. These are a fundamental building block in the Docker ecosystem. An image is the combination of the filesystem and parameters that, when run by Docker, becomes your container.

			Having made sure Docker itself is patched and secured, that our application code is robust, and that when we run the containers they will have limited privileges, we also want to ensure that the image itself is secure.

			One of the benefits of Docker is that services such as Docker Hub allow us to share and reuse container images. However, we need to be careful that what we are downloading is secure and has not been uploaded by a malicious party:

			
				
					[image:]
				

			

			Figure 13.1 – Docker Hub displaying example repositories

			You should always be cautious, however, even with legitimate/official websites.

			There have been several cases in the past where malicious images have been uploaded to Docker Hub, with the hope that these will be downloaded by unsuspecting parties. Examples of malicious code have included images purporting to be related to tomcat, mysql, and cron. A compromised container containing a kernel exploit, for example, could lead to an attack on the underlying host.

			Kromtech Security Center in one particular time frame in 2018 found 17 malicious Docker images on Docker Hub. You can read about this situation in their report, Cryptojacking invades cloud. How modern containerization trend is exploited by attackers, at https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers.

			Your first step, therefore, in any project when using third-party tools and code should be to verify that the source of these artifacts is trustworthy. It is also important to stay on top of security alerts to make sure you do not inadvertently download images with damaging flaws.

			In the case of Docker images, once you are confident of the validity of origin, you can then add additional verification processes to check the artifact itself is safe. In fact, you may be familiar with this concept with other technologies you use, such as verifying a file integrity hash when downloading an OS.

			One mechanism to help ensure that the source of what we are downloading is legitimate is to use the signed Docker Certified images served from Docker Hub. As we saw with the Kromtech report, we can never be too careful, even with legitimate hosts like Docker Hub. These certified images have been reviewed by the host and certified as authentic. Many popular application environments are available on Docker Hub, including the following:

			
					Splunk Enterprise Edition: https://hub.docker.com/_/splunk-enterprise

					Datadog: https://hub.docker.com/_/datadog-agent

					Dynatrace: https://hub.docker.com/_/dynatrace

					Oracle Java 8 SE (Server JRE): https://hub.docker.com/_/oracle-serverjre-8

			

			You can find more at the Docker Hub website here:

			https://hub.docker.com/search?q=&type=image&certification_status=certified

			Let's now take a hands-on approach to checking the legitimacy of an image, including interacting with Docker Hub. Load up your command-line tool and then move on to the next section.

			Image verification

			The first concept we need to understand is that of content trust. This is the security model in Docker applied to images.

			Docker's Content Trust (DCT) model at its heart is a mechanism to use digital signatures to prove the integrity of images hosted on platforms such as Docker Hub. With DCT enabled, users can then ensure they do not pull untrusted images (that is, unsigned images) unless they make explicit exceptions.

			By default, Docker has DCT disabled, which will allow you to pull images without verifying the safety of them. This opens you up to the risk of downloading an artifact that is infected with malware or another security vulnerability.

			Thankfully, we can use the DOCKER_CONTENT_TRUST flag to ensure that when we pull an image, it is verified. This works by checking whether the image has been signed by its creator or whether we are using an explicit hash associated with an image. To enable it system-wide, include it in your .bashrc file as follows:

			$ vim /<path>/<to>/.bashrc

			export DOCKER_CONTENT_TRUST=1

			:x

			$ source /<path>/<to>/.bashrc

			If, for any reason, you wish to interact with an untagged image, you can temporarily disable the setting by using the --disable-content-trust flag in your command.

			The DOCKER_CONTENT_TRUST flag can be limited to a single shell in addition to system-wide coverage. To quickly enable it in a new shell when you spawn, type the following:

			$ export DOCKER_CONTENT_TRUST=1

			Just remember that when you close the shell, you will need to enable the flag again, or set the system-wide property as explained earlier in the .bashrc file.

			In practice, with this setting enabled system-wide (or in an individual shell), it means that command-line operations that interact with a tagged image will need to have one of two things. These can be either content hashes appended to the image or the image itself will need to be one that has already been signed in advance through the use of signing keys.

			Signing keys

			Signing keys are a set of components that are used to sign an image. They consist of an offline key, which forms the basis for DCT to trust an image tag, along with a tagging key for signing tags themselves and finally, a set of server-managed keys for enforcing security guarantees.

			So, from a practical perspective, what exactly does this result in when running commands? Let's see a quick example using the image called shipitclicker.

			If we wish to pull the shipitclicker image while the DOCKER_CONTENT_TRUST flag is enabled, we can append a hash to the image using the @ symbol. Consider the following, for example:

			$ docker pull dockerfordevelopers/shipitclicker@sha256:b20caa037ac2c36a9845f719ebb12952bbb3e749d4b05fcdcd8d 38201a7de795

			As long as the content hash sha256:b20caa037ac2c36a9845f719ebb12952bbb3e749d4b05fcdcd8d382 01a7de795 exists, the command will succeed. Otherwise, imagine that we wanted to pull the latest version of this image or version number, such as the following, for example:

			$ docker shipitclicker:v0.1

			In this scenario, we then would need to ensure that the image had been signed, or the command will fail. The pull command is not the only operation that interacts with trusted content. Others include the following:

			
					$docker push

					$docker build

					$docker create

					$docker run

			

			We can test this out now. We've created the shipitclicker image in advance for you to pull from Docker Hub, located in the Packt Docker book repository at https://hub.docker.com/r/dockerfordevelopers/shipitclicker.

			You can attempt to pull this image using the following command:

			$ docker pull dockerfordevelopers/shipitclicker:v0.1

			You should now see a request denied error similar to the following:

			Error: remote trust data does not exist for docker.io/ dockerfordevelopers/shipitclicker: notary.docker.io does not have trust data for docker.io/ dockerfordevelopers/shipitclicker

			Ensuring that this flag is enabled in an automated build process is also a must, as it prevents unverified images from making their way into your environments by accident.

			This very simple approach of using DCT can go a long way to ensuring you avoid using untrusted content from Docker Hub. Now let's look at the base images a little closer.

			Using minimal base images

			So we know that we are pulling in signed images or specific hashes, but is there anything we need to consider around the type of image we are using in our containers? The answer to this is yes.

			You should ask yourself when using an image whether the whole OS, complete with all its pre-installed packages, is required? In some cases, this can introduce vulnerabilities, as you may be including unpatched libraries and other code in your container. The best approach, therefore, is to start with something basic and then build up from there. This will help to reduce your overall attack surface.

			Let's grab a minimal image from Docker Hub now so we can work with it throughout the rest of this chapter. The image we are going to use is shipitclicker:v0.1, which we just tested with DOCKER_CONTENT_TRUST and is based on Alpine.

			Note

			If you are interested in checking it out and haven't already done so, the Alpine image is only 5 MB in size and is part of the Official Images program on Docker Hub. These are a set of repositories that provide all the essential basics, while also ensuring all security patches are applied regularly. In addition to this, the official Docker images are also signed, so can therefore guarantee some of the security precautions that were just discussed around image verification in this chapter.

			The first thing you will need to do is disable DOCKER_CONTENT_TRUST in your current shell, or grab the hash of the image so that you can now pull it. If you wish to disable DOCKER_CONTENT_TRUST, you can do this via the following command in your current shell:

			$ export DOCKER_CONTENT_TRUST=0

			Just remember, if you shut the shell down and create a new one, you will need to run this command again. We recommend you leave the flag set to 1 and instead pull the hash version.

			You can find the hash under the Tags tab for the repository, as the following link demonstrates:

			https://hub.docker.com/r/dockerfordevelopers/shipitclicker/tags

			From here, select the digest value displayed under the version you are interested in. This will then display the sha256 hash, such as the following, for example:

			DIGEST:sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c 64992ef69804dbf01

			The following screenshot shows where you can find the hash for use in your docker pull commands:

			
				
					[image:]
				

			

			Figure 13.2 – Information on a Docker image

			The portion of the string containing sha256 onward can then be used in the pull request:

			$ docker pull dockerfordevelopers/shipitclicker@ sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef 69804dbf01

			You should now see something similar to the following in your terminal:

			sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef 69804dbf01: Pulling from dockerfordevelopers/shipitclicker

			Digest: sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c 4992ef69804dbf01

			Running the docker images command should now show it present on your system.

			When it comes to building your own images, another consideration is using the .dockerignore file to help keep the overall container size down.

			With the .dockerignore file included in the build context directory, any files listed in the file will not be added to the image. This, as you will see shortly, has another handy benefit. From an image size perspective, and in light of our general drive cleanliness as a best practice, we can use it to avoid binaries such as Python .pyc files and similar being accidentally added to the image. The following example .dockerignore file demonstrates how we can do this:

			 # ignore .pyc and .git files/directories

			.git

			**/*.pyc

			This approach is very simple, and if you are used to using .gitignore files, it will already be familiar.

			Now we have our minimal base image, we should take a look at some methods to restrict privileges when we create containers, so as to prevent accidental security breaches.

			Restricting privileges

			In the previous chapter, we looked at assigning a user and a group to restrict privilege escalation when starting the image. We can build on this by also using a useful parameter called no-new-privileges.

			The flag leverages a feature of the underlying Linux kernel known as no_new_privs. The basic idea of this feature was to ensure that any processes, including child processes, cannot gain additional privileges when spawned. With this option enabled, applications will not be able to use features such as setuid.

			Note

			The setuid feature allows users to run and execute certain programs with escalated privileges. This poses a security threat, as an attacker can exploit it to execute code and programs they would not normally have access to.

			Processes spawned via this feature also cannot unset the no_new_privs flag on themselves, thus preventing an attacker from disabling this feature and escalating privileges via setgid or setuid.

			To enable the no-new-privileges feature when running a container, you will need to include the --security-opt flag and add it as a parameter.

			Let's try this out with the image we just downloaded:

			$ docker run -d -it --security-opt=no-new-privileges dockerfordevelopers/shipitclicker@sha256:39eda93d15866957 feaee28f8fc5adb545276a64147445c64992ef69804dbf01

			The image should now be running in this mode. Remember that we can get the container name by running the following command:

			$ docker ps -a

			Disabling the ability for a container to gain further privileges can also help us to prevent container breakout. The term breakout is used to refer to a case when a compromised container can access sensitive data on the underlying host. In a scenario where a container is exploited and the exploit allows the attacker to elevate privileges (if, for example, the previously discussed flag wasn't included), they may then attempt to pivot and compromise other containers through Docker, or exploit the host itself for some other gain.

			As we will learn later in this chapter, there are ways to harden our system further, by restricting the privileges (known as capabilities) of a container when we run it.

			We'll now look at some more flags we can add, along with some other techniques to ensure that the data we are using remains safe.

			Avoiding data leakages from your image

			In Linux, we can implement users and groups to ensure that only those who need access to read and write files can do so. This fine-tuned system of access permissions is important to help prevent data leakage. Another useful method we can use to protect the filesystem used by the image is to set the filesystems and any volumes to a read-only state.

			Let's start by looking at a volume we may want to mount. We're going to run a new container based off the shipitclicker image and mount a local filesystem to it. In order to achieve this, in addition to the --mount flag, we will include a readonly statement within the run command.

			Start by creating an empty folder on your local OS, which we can use to mount the filesystem:

			$mkdir testfiles

			Next, try running the following command. It will mount the local folder and run the container and attempt to write a file to the /mnt/testfiles directory called test.file:

			$ docker run --mount source=testfiles,destination=/mnt/testfiles,readonly dockerfordevelopers/shipitclicker@ sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef 69804dbf01 sh -c 'touch /mnt/testfiles/test.file'

			You should now see an error informing you that the filesystem is read-only:

			touch: /mnt/testfiles/test.file: Read-only filesystem

			Using this mechanism, we can read files mounted to the container, but avoid a situation where the container can write files back to it, thus accidentally writing keys or other data into a directory on the host where they should not be located.

			Note

			An important point to remember is that the root account can override any file permissions and thus can read any files in the container. If somebody gets root access, they can exfiltrate your data!

			What about protecting the filesystem in the container itself, for example, the /tmp directory? Thankfully, Docker provides us with an easy method to do this, via the --read-only flag. We can try this out and see how it works in practice. First, stop the container we just created. Remember, you can get the container's name when you run the docker ps -a command.

			Once you have the container name, stop the container. We've used nervous_sinoussi here to represent the name; replace this with your container's own unique name:

			$ docker stop nervous_sinoussi

			Now, we are going to recreate the container using the --read-only flag. Included in the run command will be an example of trying to write a file called test to the /tmp directory. With the --read-only flag enabled, we should get an error informing us this is not permitted.

			Let's remove the container we created previously in order to keep our environment clean:

			$docker container rm nervous_sinoussi

			So, try running the following command, including your container name:

			$ docker run --read-only dockerfordevelopers/shipitclicker@ sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992e f69804dbf01 sh -c 'echo "Testing" > /tmp/test'

			You should now see an error such as the following:

			sh: can't create /tmp/test: Read-only filesystem

			Checking the list of Docker processes running, you will see the command executed and exited. Let's clear this container out and try rerunning the command without the flag and echo out the contents of the file we create:

			$ docker run dockerfordevelopers/shipitclicker@sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef69804 dbf01 sh -c 'echo "Testing" > /tmp/test | echo "File content is: $(cat /tmp/test)"'

			Confirmation that the filesystem was written to will now be displayed via the echo command, which prints the contents of /tmp/test:

			File content is: Testing

			Therefore, to avoid this second scenario where the filesystem can be written to, always include the --read-only flag.

			Additionally, remember not to include sensitive information such as private keys and API tokens inside the Dockerfile. There are a number of services you can use to avoid this situation including HashiCorpVault, Docker Swarm, and services built into cloud providers like AWS, such as SSM. Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels, will cover these in more detail.

			With some of these best practices in mind, now let's look at the commands we would use to build our own images and what security concerns we need to take into consideration.

			Security around Docker commands

			We will shortly be exploring the build process and how we can harden this from a security perspective. In order to do this, however, we will first dig into some of the commands we will use in a little more detail so we know which ones are safe to use, and which pose a potential threat. Let's start by looking at the COPY and ADD commands.

			COPY versus ADD – what's the story?

			When you come to build an image, you will want to copy files from the host over to it. Typically, there are two methods for doing this. If you've done any research online, you may have seen comments along the lines of "don't use the ADD command." So why is this?

			The ADD command allows us to recursively copy files over to the image, much like a cp -r command might do in Linux if we also piped it through zip when necessary. In short, it expands archive files and creates any directories that don't exist on the target.

			The input to the command is provided as a URL that can reference either a local or remote (archive) file. As you can imagine, when pulling from a remote location, there are a number of risks to consider

			
					Has the file been modified on the remote host and compromised?

					Do you know the origin of the file on the remote host?

					What considerations are there regarding Man-In-The-Middle (MITM) attacks?

			

			An example of how this command might be used in a Dockerfile can be seen here:

			ADD https://github.com/PacktPublishing/Docker-for-Developers/archive/master.zip /tmp/ch13/

			In this case, the zipped version of the repository hosted on this book's GitHub account would be downloaded and expanded into the tmp directory.

			Previously, we discussed using the .dockerignore file to help keep image sizes small. In addition to this benefit, they can help to prevent files accidentally being added if you include the ADD command. For example, you can ensure that configuration .ENV files or similar are not copied over.

			The COPY command works slightly differently to ADD. Like ADD, it copies files recursively. However, you must provide an explicit source and destination folder. This means you have to declare the locations the files are coming from and going to. A ZIP file copied from A to B will still remain a ZIP file, and not be expanded while avoiding any unintended consequences.

			We can see an example of the syntax for this command as follows:

			COPY master.zip /tmp/ch13

			It is safer to break down the process of adding files into multiple steps, such as downloading the files, scanning them, and then copying them over. When accessing remote content, you should always use an SSL/TLS connection as well. This can prevent MITM attacks being a problem by implementing a cryptographically secure and authenticated communication route.

			Note

			An MITM attack is one where a malicious party secretly eavesdrops, relays, or alters communications between two parties.

			We've just looked at how the COPY command can avoid some of the issues of ADD, but what about recursive copying? Are there risks here?

			Recursive COPY – use with caution

			Recursive copying, as you may be aware, copies the contents of one location to another, and includes all the nested subfolders and files.

			It's possible to accidentally copy files into the image you did not mean to when using the recursive copy command in Docker.

			Let's look at an example. In this following screenshot, we can see an example directory, and included in it is a folder called oops and a my_secret file. This file contains a hypothetical secret such as an API token that has been accidentally left in the folder:

			
				
					[image:]
				

			

			Figure 13.3 – Example of a secret accidentally left in the source code

			Imagine that we were to run the following command:

			COPY . .

			Along with the parent directory in which all the folders reside, this secret file would also be copied over, as the command will recursively copy everything, including the oops directory and our nested file.

			In order to avoid these negative effects, it is always a good practice to update your .dockerignore file to ensure that sensitive file types are excluded.

			As we noted earlier, if you are familiar with .gitignore, adding file types to your .dockerignore file should be simple. Here are some quick rules to remember:

			# comment – the line is ignored

			* # matches anything up to the * e.g. *.txt matches all text files

			**# matches any number of folders e.g. **/*.txt matches all text files in build context

			! #can be used to exclude a specific file e.g. !id_rsa.pub

			tmp? # Any files or folder that start with tmp and include a subsequent character are

			 #ignored

			/tmp # Will exclude any directories or files starting with tmp directly below root

			//tmp* # Similar to the above however works for two directories below root

			Using these mechanisms, you can ensure a variety of files are excluded from the container, such as *.pem and *.ENV files.

			Therefore, if you do plan to use recursive copying in your Dockerfile, ensure the .dockerignore file is up to date and that you have audited your application to ensure that everything being copied over is as intended.

			Let's now turn our attention to the build process and how we can improve security at this stage. Here, we will see how commands such as COPY come into play as part of a larger process.

			Security around the build process

			We've seen how we can pull images and run them in a secure fashion. But what about building our own container images? As you are now familiar with, some commands pose additional risks when added to the Dockerfile. In this section of the chapter, we will look at how we can secure the build process using the techniques we have learned so far. This will include using a minimal base image (shipitclicker) as a starting point and then using the security tweaks we have tested against this image when running it as a container.

			Using multi-stage builds

			As we previously covered, we need to be careful about secrets and ensure they are not accidentally leaked. One way to avoid this is to not include them in the Dockerfile. However, what about at the build stage? It's likely you will need to use private keys in conjunction with the build process from time to time, for example, to pull code from a remote service that is protected with public key encryption.

			One method to use keys securely is through the use of multi-stage builds. This process uses a disposable intermediate layer, which ensures that data isn't accidentally leaked into the final build process. Let's look at a simple example. If you wish to run this code, you will need to have an SSH server running and add your public key to it.

			If you don't have one running already, to build a container that runs SSH, you can reuse the Dockerfile located at https://docs.docker.com/engine/examples/running_ssh_service/.

			Next, let's take a look at an example of the multi-stage build process and how we can use it in conjunction with accessing an SSH service.

			Copy the following code to a new Dockerfile you can work with. On your container running the SSH server, add a file called file.txt and then update the Dockerfile code to include your user, IP/hostname, and the path to the file you just created.

			Let's do a quick walkthrough of what is going on here before we build it:

			FROM dockerfordevelopers/shipitclicker@sha256:39eda93 d15866957feaee28f8fc5adb545276a64147445c64992ef69804dbf01 as intermediate

			WORKDIR /test

			ARG ssh_prv_key

			RUN echo "$ssh_prv_key" > /tmp/id_rsa_test

			RUN chmod 600 /tmp/*

			RUN apk add openssh

			RUN scp -i /tmp/id_rsa_test user@server:/path/to/file.txt .

			FROM dockerfordevelopers/shipitclicker@sha256:39eda93 d15866957feaee28f8fc5adb545276a64147445c64992ef69804dbf01

			WORKDIR /test

			COPY --from=intermediate /test .

			This code does a number of things. First, it takes our shipitclicker image as an intermediate build step.

			Following this, it sets the WORKDIR to test and creates an ARG value called ssh_prv_key. This ARG value will allow us to pass in the path to the RSA private key that will be needed to connect to the remote SSH server.

			Based upon our input, we echo it out as a file and then set permissions on the file to 600. Then, we install openssh so we can use the scp command-line feature. The interesting bit comes next.

			The RUN scp command takes the private key we injected and uses it to connect to the remote server to retrieve a file called file.txt, which is then copied back to the present directory. This step completes the first stage of the build.

			In the second stage, we once again use the shipitclicker image and use the same WORKDIR, that is, test. The final line, however, is where the magic happens. It copies from the intermediate step we completed in step 1, the file that was retrieved from the remote server, and replicates it to the final build stage.

			As you can see from the result, the final container does not contain the private key we used to retrieve the file from the remote SSH server, and thus will not accidentally end up in the final container.

			To build out this Dockerfile once you have a remote location to copy the file from, you can use the following command:

			$docker build --build-arg ssh_prv_key="$(cat ~/.ssh/id_rsa_test)" .

			As you can probably guess from looking at this, the ssh_prv_key build argument is simply the value of our private key concatenated out into the variable.

			Once we have built our container, when we run it, we want to ensure that it does not consume more resources than required. This can help to mitigate damage in the case of an unfortunate security breach.

			As a final note, multi-stage builds can also aid in keeping the images small, which is a desirable quality, as already discussed. Let's now take a look at how we limit capabilities and resource usage in Docker further.

			Limiting resources and capabilities when deploying your builds

			You can limit a variety of resources available to your container, including CPU usage and memory. This can help prevent denial-of-service attacks. In this scenario, the container is exploited to use up the underlying resources of the host, thus causing overall performance degradation, or worse, the underlying host to crash.

			Additionally, access control mechanisms are an important piece of the puzzle to ensure that as well as limiting the resources used by a container, we also limit privileges and access.

			Limiting resources

			In order to avoid the types of DOS attacks mentioned earlier, we can use a combination of flags to restrict how much of the underlying host resources a container can consume.

			The first area we will look at is memory. Docker gives us the ability to restrict how much memory a container can use through a combination of hard and soft limits.

			We can set a hard limit on a container using the -m/--memory flag. This will set aside the amount you specify and will not allow the container to exceed this. In the case that a container does become compromised, the hard limit feature will prevent a runaway malicious process from consuming more and more of the underlying host's RAM.

			When setting the memory limit, ensure that you adjust it in line with what your application is intended to do. Too little memory may prevent an issue if the container were compromised, but may, in turn, not be enough to run your application.

			The –memory flag can also be combined with the –memory-reservation flag. This second feature allows you to specify a soft limit smaller than the –memory one. When Docker discovers that the underlying host has an issue, such as low memory, it will activate this feature. Once activated, Docker will attempt to restrict the amount of memory available to the container.

			As with memory, we also need to be aware that an exploited container can also consume more CPU resources than expected, which can, in turn, have negative side effects for the host.

			Note

			If you are using Docker 1.12 or lower, you will need to use the –cpu-period and –cpu-quota flags instead of the –cpus flag.

			Using the –cpus flag, you can define how many CPUs a container has access to. If you have multiple CPUs (for example, four) and set the value to –cpus="2", the container is restricted to only being able to use up to two CPUs and no more.

			We've seen how we can use some flags to restrict the resources a container has available to it at runtime. Let's look at some additional flags we can use to further restrict potential security risks when we run our container.

			Dropping capabilities

			Some techniques you can use to help avoid other risks include dropping capabilities when running containers. Capabilities are a feature of Linux that divide privileges associated with the root/super user account into individual components.

			The list of capabilities that a container usually has are chown, dac_override, fowner, fsetid, kill, setgid, setuid, setpcap, net_bind_service, net_raw, sys_chroot, mknod, audit_write, and setfcap. To understand what each capability allows, please refer to the Linux man-pages documentation at http://man7.org/linux/man-pages/man7/capabilities.7.html.

			To remove capabilities such as chown, you can use the –cap-drop flag when running a container. Refer to the following for an example:

			$ docker run -d -it --cap-drop=chown --security-opt=no-new-privileges dockerfordevelopers/shipitclicker@sha256:39eda 93d15866957feaee28f8fc5adb545276a64147445c64992ef69804dbf01

			Removing powerful capabilities that your production containers do not need can help harden you against attacks that seek to break out of the container.

			That ends this chapter on techniques to improve your fundamental security posture. Before we move on to some more advanced techniques, let's quickly re-cap what we have learned so far.

			Summary

			In this chapter, we have reviewed some basic steps you can take to ensure that when you pull images and build and run containers, your attack surface will be reduced.

			We learned about how to ensure that we only pull safe images from Docker Hub. Additionally, we saw how we can use read-only permissions to prevent write access to filesystems.

			Multi-stage builds were discussed to show how we can break down our container build process into steps to ensure that SSH keys and similar are not accidentally included in the final product. The .dockerignore file was briefly reviewed from a security perspective, and finally, we discussed how to restrict system resources and implement access control through removing capabilities.

			In the next chapter, we will look at how we can automate some of the security processes by using scanning tools and implement monitoring.

		

	
		
			Chapter 14: Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

			We've seen several examples so far of the need to use files that contain secrets. We can think of secrets as a generic term for the types of sensitive data that would typically be stored in config and ENV files, such as database access credentials or API tokens. Docker provides a handy method for securing this type of data and sharing it. For legacy systems using swarm mode instead of Kubernetes, having an understanding of how to apply security to these environments is important, as you may have to retroactively fix environments in your career.

			Along with managing secret data, we can also use labels and tags to help ensure we are working with security in mind. You've seen tags already in the previous chapter and we will explore these further later in this chapter.

			Additionally, we will explore how metadata labels can be used to provide extra information about a container and how to use the security.txt file.

			In this chapter, we're going to cover the following main topics:

			
					An introduction to securely storing secrets in Docker

					What secrets are and why we need them

					A walk through the Raft log file

					Adding, editing, and removing secrets from a swarm

					Using tags more effectively to ensure we use secure images

					Implementing metadata labels and the secrets.txt file

			

			Let's get started by looking at what Docker secrets are and why they are beneficial.

			Technical requirements

			For this chapter, you will need to have access to a Linux machine running Docker. We recommend that you use the setup you have been using so far in this book.

			In addition to this, you will need an account on Docker Hub in order to access images located there. If you have not already set one up, you can do so via the following link:

			https://hub.docker.com

			Finally, in order to explore using Docker secrets, you will need to set up at least two containers and use Docker's swarm feature. You can read more about swarm mode here: https://docs.docker.com/engine/swarm/

			Check out the following video to see the Code in Action:

			https://bit.ly/3iDsjkA

			Securely storing secrets in Docker

			An inevitable part of working with complex, networked software projects is having to deal with secret data. This can be a range of things such as private keys for SSH access, SSL certificates, passwords, and API keys.

			In order to share secrets securely with multiple containers, you will, of course, need to avoid attempts to store the secret in the container itself in a fashion that allows a potential attacker to access it. This layer of abstraction is not only useful for managing different sets of credentials based upon the environment, but also provides an extra layer of security should the container be compromised in some fashion.

			Thankfully, Docker comes with a useful feature for achieving this goal. It is simply called Docker secrets. In order to use this feature or the Kubernetes equivalent, you will need to implement swarm services or Kubernetes itself. As we have recommended elsewhere in this book, you may wish to avoid swarm services if possible, in favor of Kubernetes. However, you may have to work with legacy systems where they are in use, so understanding secrets in this case is important. With this in mind, containers should, therefore, run as a service.

			Mirantis, having purchased Docker, has pledged open-ended support for Docker Swarm as of February 2020 (https://www.mirantis.com/blog/mirantis-will-continue-to-support-and-develop-docker-swarm/). You may be familiar with this concept from Chapter 5, Alternatives for Deploying and Running Containers in Production; however, if you need a refresher you can follow the steps provided on the Docker website for getting started with swarm mode as an alternative to Kubernetes if you wish:

			https://docs.docker.com/engine/swarm/swarm-tutorial/

			The secrets feature in both swarms and Kubernetes allows you to manage data such as passwords and API keys centrally and then securely share it with the containers of your choice. This avoids having to hardcode values in an insecure fashion within the container, or having to allow all containers access to the sensitive data.

			Additionally, secrets, when shared with other containers in a swarm by Docker secrets, for example, are transferred over a secure connection encrypted via SSL/TLS. Let's now take a deeper look at how Docker secrets work at a fundamental level, including an important feature called the Raft log.

			The Raft log

			In order to share content between swarm nodes, we need to ensure there is both consensus and fault tolerance. In short, this means that all nodes in the network agree on some set of values to maintain a consistent state.

			The algorithm that Docker Swarm uses is called Raft. You can read more about the technical details in the paper In Search of an Understandable Consensus Algorithm, available at the Raft GitHub account:

			https://raft.github.io/raft.pdf

			Docker Swarm uses a file known as the Raft log file as part of its implementation of the algorithm. The benefit of this file is that it can be used for storing secrets, which subsequently have to be shared across 1 to n nodes. When a secret is added via the docker secret command, a value is added to the Raft log file and is then made available via a temporary filesystem, as seen in this example:

			/run/secrets/apikey

			And this in essence is how a secret can be shared between multiple Docker containers in a swarm. Reading the secret in an application will depend on what language you are using. For example, if you were modifying the ShipIt Clicker application you would be using JavaScript. If we had a secret such as an API key file, we could access it directly in the JavaScript source code using the fs module, as the following example demonstrates:

			fs.readFile('/run/secrets/apikey', 'utf8')

			 As you can see, this is a fairly simple approach.

			Although this file is encrypted, we can also add an extra layer of security through locking.

			Swarms can be locked using the --autolock flag in order to prevent an attacker from decrypting the Raft log file.

			Refer to the Docker documentation for more details:

			https://docs.docker.com/engine/swarm/swarm_manager_locking/

			Now you have a basic understanding of how the Docker secrets feature works, let's look at how we use it.

			Adding, inspecting, and removing secrets

			We will now begin exploring the various commands associated with secrets.

			Feel free to also substitute the commands in this section with their Kubernetes equivalent if you wish to try those instead. You can find the list of kubectl commands at https://kubernetes.io/docs/concepts/configuration/secret/.

			Or you can refer back to Chapter 8, Deploying Docker Apps to Kubernetes, where we created, described, retrieved, and edited secrets via kubectl.

			In relation to Docker, we will start by creating secrets first.

			Creating

			The create command is how we add a new secret to the Raft log file. Its basic format is the following:

			docker secret create [OPTIONS] SECRET [file|-]

			You may notice this is similar to the command in kubectl, which is kubectl create secret.

			When creating a secret, we can use the -l flag to add a label to the secret, such as the following:

			docker secret create -l key=val api_key -

			This allows us to label values, so we know which environment they are destined for. For example, we can add a key value for the environment such as Quality Assurance (QA), Development (DEV), and Production (PROD).

			A secret can also be a file. For example, if we want to add a private key, we might do the following:

			docker secret create my_key ./id_rsa

			If you wish to add/update a secret to a running service, you will need to use the --secret-add flag on the update command. See the following, for example:

			docker service update --secret-add <secret> <service>

			Having added a secret, let's explore how we can now review it.

			Inspecting

			There are a number of techniques we can use to examine Docker secrets. To list any secrets that have been added to the Raft log file, we can use the ls command:

			$ docker secret ls.

			On running this command, the current secrets will be displayed, as shown in the following example:

			ID NAME CREATED UPDATED

			123345 my_key 2 weeks ago 2 weeks ago

			We can gather more information about this secret using the inspect command.

			The format for this is the following:

			docker secret inspect [OPTIONS] SECRET [SECRET...]

			So, using the preceding example, we could run the command as follows:

			$ docker secret inspect my_key

			This will then return a JSON object containing the ID, version created and updated dates, and the spec object containing the labels and name. An example of this output is now provided:

			[

			 {

			 "ID": "ae4kfwe6s56sgop7vn1kxap59",

			 "Version": {

			 "Index": 10

			 },

			 "CreatedAt": "2020-01-26T07:15:29.674382561Z",

			 "UpdatedAt": "2020-01-26T07:15:29.674382561Z",

			 "Spec": {

			 "Name": "my_key",

			 "Labels": {

			 "env": "dev",

			 "rev": "20200126"

			 }

			 }

			 }

]

			We've added and inspected secrets, so now we shall explore how to delete them when we no longer need them.

			Deleting

			Removing a secret is as easy as adding one, and uses the same syntax as its Linux equivalent for removing files, that being rm.

			The format of the command is as follows:

			docker secret rm SECRET [SECRET...]

			In Kubernetes, the equivalent would be kubectl delete secret.

			To remove our example secret from earlier, we would run the command as follows:

			docker secret rm my_key

			If you wish to remove a secret being used by a current service, you will need to use the --secret-rm flag with the update command, such as in the following example:

			docker service update --secret-rm <secret> <service>

			As you can see, adding, removing, and inspecting secrets is simple. Let's now try the preceding commands out using the SSH file from Chapter 13, Docker Security Fundamentals and Best Practices.

			Secrets in action – examples

			It's now time to try out the commands we just reviewed (create/inspect/ls/rm). Make sure your setup is configured to use swarms. You can also re-use the image from the previous chapter for this section. This can be obtained using the following command:

			$ docker pull docker pull dockerfordevelopers/shipitclicker@ sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef 69804dbf01

			Important note

			Remember, you can use the docker swarm init command to initialize the swarm. Use the --advertise-addr flag with the IP address of your initial container as well.

			Previously, we used the following command to add an SSH private key for use with SCP to a single container:

			$ docker build --build-arg ssh_prv_key="$(cat ~/.ssh/id_rsa_test)" .

			To add this key to our swarm, we would use the following command:

			$ docker secret create -l env=dev ssh_prv_key ~/.ssh/id_rsa_test

			Here, we have created a new secret with the same name as the build argument we used previously, and we output the content of our private key to it. We also included a label, which has a key=val pair denoting the environment we are working in. In this case, it is the development environment.

			Let's now check that we have added it correctly. We can do this by running the ls command:

			$ docker secret ls

			ID NAME CREATED UPDATED

			To5jj... ssh_prv_key 1 minutes ago 1minutes ago

			Here, we see the ID of the secret and the name. This looks good! Now let's execute the inspect command on the key using the NAME value:

			$ docker secret inspect ssh_prv_key

			You should now see a JSON object displayed, similar to the following:

			[

			 {

			 "ID": "to5jjgshjqaddhf56ty89rss42",

			 "Version": {

			 "Index": 17

			 },

			 "CreatedAt": "2019-11-25T07:11:03.335174723Z",

			 "UpdatedAt": "2019-11-25T07:11:03.335174723Z",

			 "Spec": {

			 "Name": "ssh_prv_key",

			 "Labels": {

			 "env": "dev",

			 "rev": "20181125"

			 }

			 }

			 }

]

			If you have multiple containers in your swarm, then you can grant them access to this secret. The following example demonstrates how we can send the secret we just created to a new container that uses our example image:

			$ docker service create --name second_container --secret source=ssh_prv_key,target=second_ssh_prv_key,mode=0400 dockerfordevelopers/shipitclicker@ sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef 69804dbf01

			Here, the --secret source value is set to the name of the Docker secret we created. We are then going to store it in the variable defined in the target value. For clarity, we have called this second_ssh_prv_key. The mode has been set to 0400 to make the secret accessible and then chosen our tagged image as the source image for the create command.

			To confirm the secret is available, we can check the temporary filesystem we discussed earlier. For this, you will need to grab the container ID of the new container. You can use the docker ps command for this.

			Next, use the container ID as follows:

			$ docker exec -it <id> cat /run/secrets/second_ssh_prv_key

			You should see that the contents of the secret are the same as those you passed into the first container, namely the private SSH key we have been testing with so far.

			Other options

			In addition to using native Docker and Kubernetes tools, a variety of other options exist for storing secrets in cloud-based systems. AWS, GCP, and Azure offer native support, and HashiCorp provides a comprehensive cloud-agnostic secrets-managing mechanism in the form of HashiCorp Vault, at https://www.vaultproject.io/.

			We are now going to build upon our knowledge of Docker secrets by understanding how tags can be used.

			Docker tags for security

			We've just seen how we can make sure we are sharing secrets securely between containers in a swarm. In Chapter 12, Introduction to Container Security, we gained an appreciation for how to use tags combined with other security features, to ensure we use the correct image.

			Now, we'll see how these two worlds can intersect by using tags with secrets and labels so we can annotate which environment a given secret and tag are used in.

			As a good security practice, we should always use different secrets for different environments. For example, the passwords for database access in your development, staging, and production instances should not be the same. Typically, as part of your development process, you will likely be using newer versions of containers in research, development, and QA environments compared to production.

			We can use Docker tags to help ensure that once we have credentials/secrets set up for a development environment, we are also pulling in the right image as well; that is, the one we intended to use for development purposes with the development credentials we created. Using fixed tags provides a layer of security through immutability and prevents an experimental image that may contain security flaws from accidentally being used outside of the development environment.

			Typically, a methodology such as semantic versioning (https://semver.org/) should be in place. This will result in tags using a format that communicates the level of change you should expect when using the release. Major version numbers indicate a backward-incompatible set of changes. A minor release is usually a new feature to an existing release. Finally, we have a patch release, which could be a small security fix or similar. A typical format might be the following:

			1.1.2

			When choosing the tag, in line with your versioning system, choose the one that most closely matches the environment you want to deploy in. For example, choose :1.1.2-dev over :1.

			In this instance, you know you will be pulling the patch release. You can then deploy credentials via docker secret, specifically for this build and for the environment you are deploying it to. One useful method is to pair up the secret label with the tag version you are using, as in the following code, for example:

			$docker secret create --label ver=1.1.2-dev \

			 --label env=dev \

			 ssh_prv_key ~/.ssh/id_rsa_test

			In this example, a secret has been created (an SSH key) and we know it should be used with tag version 1.1.2 and that this is a development environment. Here, the labels provide annotations to give us the context of the secret. Simple techniques like this can help to provide more information to an engineering team and avoid a production credential from accidentally being used with an experimental development container or in the wrong environment.

			We've seen how we can combine tags, secrets, and labels. Let's now look at other labeling options.

			Using labels for metadata application

			Metadata labels are a way of annotating your containers with extra information to provide development teams with useful facts. This can be useful for other developers on your team when they need to understand key features of the image, such as its version and a description.

			We saw with the docker secrets command how we could add labels via the command line. With metadata labels, we can also add labels to the Dockerfile so that when we build out a new container, this information is baked in.

			A label takes the following format:

			LABEL key=value

			Building upon our preceding example, we can set the version inside of our container via the Dockerfile as follows:

			LABEL "version"="1.1.2-test"

			LABEL "description"=" Development environment container for testing the newest security patch. Not for production release yet"

			Once you've built out a container, you can view any of the metadata you have added using the docker inspect command:

			"Labels" :{

			 "version"="1.1.2-test",

			 "description"=" Development environment container for testing the newest security patch. Not for production release yet"

			}

			When releasing software for public consumption, you should consider also linking to a security.txt file. Like a code of conduct or contributors' guide, this provides a mechanism to alert security researchers on how to responsibly disclose any security issues they may find with your software.

			You can automatically generate a security.txt file from the following website:

			https://securitytxt.org/

			Save this file to your code repository, and then link it via LABEL in your Dockerfile as in the following example:

			LABEL "security.txt"="https://respository.example.com/my_project/security.txt"

			That wraps up our guide to secrets, tags, and labels. Let's recap what we have learned so far.

			Summary

			In this chapter, we learned all about Docker secrets, the counterpart to Kubernetes secrets. We saw how this feature can be used to securely share sensitive data between containers in a swarm if you need to work with this technology instead of Kubernetes. We also learned this can be useful for segmenting sets of credentials based upon the environment you are working in. Finally, we walked through how we can create, inspect, and delete them.

			Following this, we looked at tags once again and discussed how these can be used to ensure the right image is being pulled from the right environment. A combination of environment-based secrets and tags were shown to help you secure your development processes further.

			Finally, we discussed how containers can be annotated with metadata labels. This also included using the security.txt file.

			In the next chapter, we will explore how third-party tools can be used to help secure our containers and enforce some of the practices we have learned so far.

		

	
		
			Chapter 15: Scanning, Monitoring, and Using Third-Party Tools

			So far, we have explored how we can manually configure our Docker containers to ensure security is a priority. In this chapter, we will look at some of the tools available to automatically scan our images and monitor our production loads. This will provide a jumping off spot for you to expand your Docker-based projects further, based upon your cloud provider if you use one.

			We will start off by looking at DevOps solutions such as Anchore Engine for scanning images for security vulnerabilities, review docker stats and learn how it is useful, set up cAdvisor for local monitoring, and understand how Datadog can be used as a cloud-based solution for gathering container stats.

			This chapter will also briefly review AWS security options including GuardDuty for monitoring production environments and cover some of the features that Microsoft Azure offers. You'll gain an understanding of what tools are available to Google Cloud Platform (GCP) users and deploy the Datadog Agent to your container environment.

			In this chapter, we're going to cover the following main topics:

			
					Scanning and monitoring – cloud and DevOps security for containers

					Securing your containers using AWS

					Securing your containers using Azure

					Securing your containers using GCP

			

			Let's get started by looking at techniques for monitoring containers, scanning for security issues.

			Technical requirements

			For this chapter, you will need to have access to a Linux machine running Docker. We recommend that you use the setup you have been using so far in this book.

			In addition to this, you will need an account on Docker Hub in order to access images located there. If you have not already set one up during previous chapters, you can do so via https://hub.docker.com:

			In order to use many of the programs explored in this chapter, you will need to download them from the web. We'll provide links in each section where relevant so you know where to get them from. In some instances, you may need to set up an account in order to use a service or download a tool.

			Check out the following video to see the Code in Action:

			https://bit.ly/30VfWu8

			Scanning and monitoring – cloud and DevOps security for containers

			Before we begin to look at specific tools for monitoring and scanning your containers, we shall first define exactly what we mean by the term monitoring in a security context.

			As you have seen throughout this book, containers provide a mechanism to serve up applications in small self-contained environments. However, we need to ensure that released software does not suffer from performance degradation while running. For example, we need to know if a container is consuming a lot of resources and thereby impacting the overall performance of our environment. You may already have some understanding of this concept from Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger.

			Additionally, monitoring allows us to look for anomalies that may indicate that the system is under attack or has been compromised in some fashion. While elsewhere in this book monitoring has been focused on ensuring system stability and performance, we will use those concepts from a security angle. Security scanning applications are an important part of any tool chain, but may not pick up every issue, especially newer exploits. Therefore, looking for negative side effects of a malicious software's presence is an important defense mechanism. As such, combining scanning prior to release, monitoring post release, and incident response are important parts of running a production container system.

			A note on sandbox environments

			One concept that may also be useful to understand is a sandbox environment. A sandbox provides an environment for isolating and testing untrusted code. These environments are useful for reviewing containers you believe may be infected with malware without risking impacting live systems or development environments your team uses.

			In this chapter, we are going to start by looking at the scanning stage in the CI/CD (DevOps) pipeline, before investigating how monitoring tools can be used in conjunction with them to protect our systems. Let's get started with Anchore Engine for scanning our containers.

			Scanning using Anchore Engine

			When building out a DevOps pipeline, scanning our containers for security issues is an important consideration. One of the final steps in a typical CI process is to build the container itself, having tested the software we intend to deploy to it. As you have seen throughout this book, we have experimented with a number of technologies deployed within containers. While there are many security tools for each language, whether it be JavaScript or PHP (which are sadly out of scope for this book), we shouldn't fail to lessen our manual security burden at the container level by using automated tools.

			While we have seen the importance of pulling down signed images, it certainly doesn't hurt to scan them. As the saying goes, better safe than sorry!

			If we discover that an image we have included in our build is compromised or a tag violates an internal work security policy or compliance, we know that the whole build is thus vulnerable to attack and can in turn prevent it from reaching our production environment.

			Therefore, we can think of the security scanning process as the following two interrelated steps:

			
					Looking at the image we are including in the Dockerfile, and also the configuration in the Dockerfile itself.

					Ensuring that the container matches any internal requirements that we may have such as not using blacklisted images. In this case, the image may have not been blacklisted purely for security reasons, but also for performance.

			

			In order to accommodate these two factors, we need a container scanning tool that allows us the flexibility of defining our own policies on top of standard security considerations.

			One of the most popular open source tools on the market that allows us to meet both these goals is Anchore Engine. You can find the official website at:  https://anchore.com/engine/.

			In addition to a large number of features we will shortly investigate, it is also an open source project. So, if you wish to contribute to it, make sure to check out the GitHub repository at https://github.com/anchore/anchore-engine.

			At its heart, Anchore is an engine for scanning containers for security issues. It can easily be hooked into your CI pipeline to provide vulnerability and policy scanning prior to deployment. Let's take a look at getting it installed and running a basic scan against the latest Alpine image.

			Installing Anchore Engine

			Installing Anchore Engine is straightforward. First, we need to start with the engine portion of the product. Let's create and navigate into a new directory called aevolume:

			$ mkdir ~/aevolume

			$ cd ~/aevolume

			Next, pull down the latest version of Anchore Engine:

			$ docker pull docker.io/anchore/anchore-engine:latest

			We can now run Docker's create command:

			$ docker create --name ae docker.io/anchore/anchore-engine:latest

			Use curl to grab the docker-compose.yaml

			You can also copy the docker-compose.yaml via curl using: curl https://docs.anchore.com/current/docs/engine/quickstart/docker-compose.yaml > docker-compose.yaml

			Copy over the docker-compose file to your current directory and then remove the ae folder that was created:

			$ docker cp ae:/docker-compose.yaml ~/aevolume/docker-compose.yaml

			$ docker rm ae

			Finally, run the pull and up commands as follows:

			$ docker-compose pull

			$ docker-compose up -d

			Next, we need to install the CLI that can interact with the engine. You have several options here, including the Docker container:

			$ docker pull anchore/engine-cli:latest

			You can also use one of the methods listed here, which will install the CLI locally onto your machine: https://github.com/anchore/anchore-cli.

			The Python version of the CLI can be installed using the following commands:

			apt-get update

			apt-get install python-pip

			pip install anchorecli

			If you have pulled the container image and wish to use the default credentials, run the following command to be dropped into the CLI shell:

			$ docker run -it anchore/engine-cli

			In the following section will be use the Python command line version of the CLI to interact with the engine.

			You can now execute the CLI commands against the engine from within the container shell, or from the CLI if you've installed it manually. The following example demonstrates calling the endpoint via the CLI, passing in the credentials and endpoint, and requesting the system status information:

			$ anchore-cli --u admin --p foobar --url http://localhost:8228/v1/ system status

			You should now see some status results in your console indicating the engines are up:

			Service analyzer (anchore-quickstart, http://engine-analyzer:8228): up

			Service simplequeue (anchore-quickstart, http://engine-simpleq:8228): up

			Service policy_engine (anchore-quickstart, http://engine-policy-engine:8228): up

			Service apiext (anchore-quickstart, http://engine-api:8228): up

			Service catalog (anchore-quickstart, http://engine-catalog:8228): up

			Engine DB Version: 0.0.12

			Engine Code Version: 0.6.1

			Now let's review the scanning step.

			Adding and scanning images

			Let's try out Anchore Engine by running a scan on the latest Alpine container. You'll remember that Alpine is the base operating system that our shipitclicker image version 0.1 has been using so far. Therefore, confirming this is free of issues is a good first step.

			When we run a scan, it checks the image against what is known as a set of policies. Policies in Anchore are collections of whitelists and checks that the image must pass.

			The process to kick off a scan is as follows:

			
					Let's add the Alpine image using the CLI command by executing the following:$ anchore-cli --u admin --p foobar --url http://localhost:8228/v1/ image add alpine:latest

					When this completes successfully, you should see something similar to the following. This tells us the image was added:Image Digest: sha256:ddba4d27a7ffc3f86dd6c2f92041af252a1 f23a8e742c90e6e1297bfa1bc0c45
Parent Digest: sha256:ab00606a42621fb68f2ed6ad3c88be54397f 981a7b70a79db3d1172b11c4367d
Analysis Status: not_analyzed
Image Type: docker
Analyzed At: None
Image ID: e7d92cdc71feacf90708cb59182d0df1b911f8ae022d29 e8e95d75ca6a99776a
Dockerfile Mode: None
Distro: None
Distro Version: None
Size: None
Architecture: None
Layer Count: None 
Full Tag: docker.io/alpine:latest
Tag Detected At: 2020-02-04T16:22:19Z 

					Our image hasn't been analyzed by Anchore yet. This is where we extract and classify metadata. So, let's move the image into this state as follows:$ anchore-cli --u admin --p foobar --url http://localhost:8228/v1/ image wait alpine:latest

					Once complete, we can now run a vulnerability scan on the Alpine image using this command. Here, we are checking for operating-system-level package vulnerabilities using the os property. In addition to os, we have the option of checking for non-os (this includes language-specific packages such as Python PIP and Ruby GEM types) and all:$ anchore-cli --u admin --p foobar --url http://localhost:8228/v1/ image vuln alpine:latest os
If everything is successful and the image passes, you will not see any vulnerabilities displayed on the screen.
If a vulnerability is found, it will come back in the following format:
Vulnerability ID Package Severity Fix Vulnerability URL
CVE-1111-1111 package.zip Negligible None https://somewebsite

			

			By default, the basic Anchore installation policy will scan for CVE issues and Dockerfile problems, such as those we have explored in the previous few chapters.

			Now you have the scanning engine in place, you can begin to build out your own policies and scan against them. For more information, refer to the Anchor policy documentation:

			https://docs.anchore.com/current/docs/using/cli_usage/policies/

			Also, to see examples of policies you can copy and modify, check out the Anchore Hub page on GitHub:

			https://github.com/anchore/hub

			Whether defining custom policies or reusing others, these JSON files can be added using the CLI:

			$ anchore-cli policy add /path/to/image/policy/bundle.json

			Once added, they can then be activated using the activate command:

			$ anchore-cli policy activate <Policy ID>

			If you need to know a policy ID, you can use the policy list command from the CLI:

			anchore-cli --u admin --p foobar policy list

			As an experiment, you might like to run the default or your own policies against the other images in the Docker for Developers Docker Hub repository:

			https://hub.docker.com/r/dockerfordevelopers/shipitclicker/tags

			This covers the basics of getting up and running. If you wish to add scanning to your DevOps pipeline, Anchore integrates with a number of CI/CD systems, including the following:

			
					CloudBees

					GitHub

					GitLab

					CircleCI

					Codefresh

			

			Integration instructions for each platform can be found on the Anchore website:

			https://docs.anchore.com/current/docs/using/integration/ci_cd/

			Anchore also includes a plugin for Jenkins, so you can experiment with integrating it with the Jenkins setup we completed earlier in this book:

			https://plugins.jenkins.io/anchore-container-scanner/

			Let's quickly mention another tool before we move on to looking at monitoring tools.

			A brief mention of Chef InSpec

			Another tool you may be interested in reviewing when considering scanning container infrastructure is Chef InSpec.

			Chef InSpec is an open source framework like Anchore but geared toward testing and auditing all of your applications and infrastructure. This includes running auditing tests against Docker. If you are looking for an all-in-one solution for infrastructure beyond just your container environment, this may meet your needs.

			Note

			A complete walk-through of InSpec is out of scope of this book, however, if you would like to read more about it, you can find further information in the document portal at the InSpec website: https://www.inspec.io/docs/.

			In summary, we can scan our containers before deploying them to check if they are secure. Let's now move on and look at Docker stats for container monitoring.

			Native monitoring locally using Docker stats

			Now we have deployed our containers and believe that they are secure, we should consider using monitoring tools to review performance and help investigate problems when they arise.

			Before exploring some of the complex and comprehensive tools available in the cloud, we can use Docker's native stats tool to get a quick overview of the container's health. This can be useful if you are quickly testing a container in an isolated sandbox environment due to a suspicion that some software on it may be using up resources in an anomalous fashion – for example, if you suspect a web application may be infected by a coin miner that wasn't picked up at the CI stage.

			Note

			Running a container in a VM sandbox, as well as allowing you to probe performance metrics, allows you to safely scan it for security issues without risking infecting the underlying machine.

			To access data on your container's performance, you can execute the following command:

			$ docker stats <container id>

			For each container, you will see CPU usage, memory usage, the memory limit (MEM), % NET I/O, and finally, BLOCK I/O. The following example demonstrates a typical output:

			CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O BLOCK I/O

			ebb12326ae94 1% 73.63 MiB/490 MiB 15.02% 90.2 MB/275.5 MB 26.8 MB/873.7 MB

			While the stats command is useful when doing local development or if you wish to get a quick snapshot of how a system is performing, it would be nice to gather a more comprehensive set of metrics. One method of achieving this is to use the Stats API. We'll now briefly look at this and also consider some of the security implications around it.

			Using the Stats API

			The Stats API is a more comprehensive set of results, returned in JSON format, and is available on the Docker socket:

			$ /var/run/docker.sock

			You'll remember from the Securing the Daemon Socket section in Chapter 12, Introduction to Container Security, that we need to ensure an attacker cannot compromise the socket and then use it to gain root access to the underlying host. We can do this by encrypting the traffic using TLS. Refer back to this chapter if you need help in getting this set up.

			The Stats API operates using a REST architecture and thus takes HTTP requests as queries. You can see examples on the official documentation site at https://docs.docker.com/engine/api/latest/.

			Requests to the API can be made from the command line using netcat or curl, with a third-party tool such as Postman, or you can write your own script using Python, Bash, or similar, to hit the endpoint.

			Using curl as an example, you can replace the value in this command with your own and execute it:

			$ curl -sk <options> https://<ip>:<port>/<rest endpoint> --cert <path/to/cert.pem> --key <path/to/key.pem -cacert <path/to/ca.pem>

			You should see a JSON object returned with the results. These are more comprehensive than using the Docker command, and may be more useful if you wish to save them as JSON files for further analysis, for example, if gathering data on a container you may believe is compromised.

			In addition to the native Docker tools, Google provides Container Advisor (cAdvisor) for gathering metrics on your container. We will now briefly take a look at this, as a third option for local monitoring.

			cAdvisor for container monitoring

			cAdvisor is a Google-managed software project for providing container insights into container performance and resource usage. The source code for cAdvisor is available on GitHub at the following URL:

			https://github.com/google/cadvisor

			To test it out, you can use the standard demo container provided by Google. Simply run the following command to pull it down from Google Container Registry and start it up:

			$ sudo docker run \

			 --volume=/:/rootfs:ro \

			 --volume=/var/run:/var/run:ro \

			 --volume=/sys:/sys:ro \

			 --volume=/var/lib/docker/:/var/lib/docker:ro \

			 --volume=/dev/disk/:/dev/disk:ro \

			 --publish=8080:8080 \

			 --detach=true \

			 --name=cadvisor \

			 gcr.io/google-containers/cadvisor:latest

			You can now access cAdvisor's web portal on port 8080 of localhost. If you have other services running on this port, such as Jenkins, you can change the cAdvisor port in the preceding command.

			Try accessing http://localhost:8080/containers/ and you should see the dashboard shown in the following screenshot:

			
				
					[image: Figure 15.1 – cAdvisor dashboard]
				

			

			Figure 15.1 – cAdvisor dashboard

			From this dashboard, you can explore a variety of metrics ranging from filesystem and memory to CPU and processes. Monitoring these for poor performance can be a useful tool to monitor security issues as we have noted elsewhere.

			For example, if resource usage seems to be abnormally high, this can be an indication of software that it isn't functioning properly, or a potential security issue, such as malware running on the container.

			All of this is very useful for small local systems and perhaps a quick investigation of a potentially compromised container, but what about monitoring our containers in a production environment and gathering actionable data if we believe a security issue may exist? Well, we can look at one of the many third-party tools that exist that allow us to gather metrics and build comprehensive dashboard and alerting systems.

			To demonstrate this, we are going to look at one of the most popular tools on the market for gathering monitoring data for Kubernetes and Docker environments, Datadog.

			Aggregating monitoring data in the cloud with Datadog

			For commercial projects where environments are deployed to a cloud environment or on your own data center, we need a platform that is capable of aggregating data from a variety of inputs and then presenting it in a fashion you can work with.

			Datadog is one such product capable of achieving this and provides plugins for both simple Docker and advanced Kubernetes-based environments. It is also supported on a number of platforms, including major cloud providers such as AWS. Datadog (https://www.datadoghq.com/) offers a free 14-day trial so you can experiment with their container features and decide if they meet your needs. You'll find this a worthy rival to some of the tools explored in earlier chapters.

			So, now let's take a look at the agents you can run for Kubernetes and Docker on your nodes to start sending data back to Datadog.

			Datadog agents for Docker and Kubernetes

			Once you have an account set up at https://www.datadoghq.com/, you can install the Datadog Agent on a test node to monitor performance.

			Tip

			We'd recommend starting with a test environment before trying to deploy the production. We also recommend that, before deploying to your production environment, you familiarize yourself with the Docker and Kubernetes agent documentation at: https://docs.datadoghq.com/agent/docker/?tab=standard.

			The following examples will cover installing Docker Agent and also the Kubernetes agent. Each example uses a cluster with only a single node for demonstration purposes. You are welcome to reuse the Docker container from Chapter 12, Introduction to Container Security, or one of the other containers used elsewhere in this book.

			Installing and monitoring Docker Agent

			Your first task is to install the Docker Agent on the host. The Datadog Docker Agent is responsible for collecting the metrics and passing them back to your account dashboard.

			Installing the agent is now incredibly easy. From within your host, execute the following Docker command to include the Datadog Agent:

			$ docker run -d --name dd-agent \

			 -v /var/run/docker.sock:/var/run/docker.sock:ro \

			 -v /proc/:/host/proc/:ro \

			 -v /path/to/cgroup/:/host/sys/fs/cgroup:ro \

			 -e DD_API_KEY={API_KEY} \

			 datadog/docker-dd-agent:latest

			Based upon your OS version, and the version of the agent you have installed, you can then confirm it is running by checking the list of commands here:

			https://docs.datadoghq.com/agent/guide/agent-commands/?tab=agentv6v7#agent-status-and-information

			From the Datadog dashboard you should now see data being returned. You can now begin to explore the metrics that come back from your containers, and set alerts when issues arise:

			
				
					[image: Figure 15.2 – Example of the Datadog dashboard showing metrics]
				

			

			Figure 15.2 – Example of the Datadog dashboard showing metrics

			The next area you may be interested in exploring is the Security option in the menu. Select this and follow the wizard to set up security monitoring. Once complete, you can enable and disable security Detection Rules, as the following screenshot demonstrates:

			
				
					[image: Figure 15.3 – Detection rules in Datadog]
				

			

			Figure 15.3 – Detection rules in Datadog

			For more on setting monitors and alerts for containers in Datadog, please refer to the documentation here:

			https://docs.datadoghq.com/monitors/

			Let's now look at the Kubernetes agent equivalent.

			Installing and monitoring the Kubernetes agent

			As with our previous Docker example, we need to install the agent first. To do this, we can deploy a DaemonSet via Helm. The following instructions use Helm version 3.

			Tip

			Remember to run add helm repo add stable, https://kubernetes-charts.storage.googleapis.com, if you haven't already, to add stable to your repositories.

			You can download the official Helm file (values.yaml) containing the configuration from GitHub at (https://github.com/helm/charts/blob/master/stable/datadog/values.yaml).

			Next, you will need to grab your API key from your account. With the API key, we can now complete the installation process. In the following command, replace {API_KEY} with your own:

			helm install datadog-agent -f values.yaml --set datadog.apiKey={API KEY} stable/datadog

			You should see a confirmation in your terminal that the deployment was successful:

			
				
					[image: Figure 15.4 – Datadog Agent deployment]
				

			

			Figure 15.4 – Datadog Agent deployment

			Now you have deployed the agent, it will start to collect metrics from Kubernetes:

			
				
					[image: Figure 15.5 – Example dashboard metrics]
				

			

			Figure 15.5 – Example dashboard metrics

			As part of this installation process, the kube-state-metrics Helm chart is also included. This Helm chart installs the kube-state-metrics service (https://github.com/kubernetes/kube-state-metrics).

			A variety of data is collected by this service and you can view the exposed metrics at https://github.com/kubernetes/kube-state-metrics/tree/master/docs.

			For example, you may be interested in the metrics around secrets, so you can see what data is being gathered by reviewing the Kubernetes log collection document. You can also enable log collection via Helm. To do this, update the datadog-values.yaml file to set the enabled and containerCollectAll key-value pairs both to true. Once you have done this, run helm upgrade to update your Datadog Helm chart.

			With the metrics from your nodes being sent back to the Datadog default Kubernetes dashboard, you can start to configure alerting and monitoring and explore the many features Datadog offers.

			For example, you can create a custom dashboard that displays the number of security signals discovered:

			
				
					[image:]
				

			

			Figure 15.6 – Dashboard list

			We've briefly seen how we can use third-party tools to monitor our containers in a security context. This can help to alert us about security issues that may manifest their symptoms as performance problems.

			Let's now look at some of the tools provided by the major cloud platforms out there. Both Datadog and the CI/CD scanning pipeline we discussed can be integrated with the providers listed in the following sections, to provide an even more comprehensive security posture.

			Securing your containers using AWS

			There are a number of approaches we can take to securing containers in the cloud. We will start by looking at Amazon Web Services, commonly known as AWS. This section of the book assumes you are already familiar with working in AWS for hosting container-based projects. If you use a different service, such as Azure or GCP, then please feel free to skip ahead to the Azure container security and Google container security options sections respectively. The topic of AWS and container hosting is also discussed in Chapter 5, Alternatives for Deploying and Running Containers in Production, and Chapter 8, Deploying Docker Apps to Kubernetes. Let's take a look at the tools used for monitoring in AWS.

			Security alerts for AWS with GuardDuty

			A number of tools exist either in AWS or as third-party plugins that can be used to monitor your Amazon environment hosting your container infrastructure.

			Amazon's major tool for monitoring security issues within a VPC is GuardDuty (https://aws.amazon.com/guardduty/).

			We've seen how we can monitor container health with Datadog, but also saw how important it is to monitor the environment that supports our infrastructure. Complex production instances often use AWS services that sit outside of Elastic Kubernetes Service (EKS), Elastic Container Service (ECS), and Elastic Compute Cloud (EC2). Examples include the IAM roles you might have used to set up CloudWatch metrics or S3 buckets earlier in this book.

			AWS GuardDuty provides a mechanism to monitor our cloud-based environment to ensure that any attacks within the VPC that hosts our containers can be tracked down. This is achieved by being integrated with CloudWatch, which allows us to trigger certain security actions based upon the type of alert we see, such as triggering a lambda function, or sending the events on to a third-party application or an S3 bucket for storage.

			If you wish to enable GuardDuty, you will need a VPC setup hosting your containers, such as the one configured in Chapter 8, Deploying Docker Apps to Kubernetes.

			With this in place, you can now create a rule to allow CloudWatch to send events for anything that GuardDuty discovers. This is especially useful for spotting whether containers are generating suspicious network traffic in your VPC.

			Using the AWS CLI, we can now enable CloudWatch to start sending the previously mentioned events. To do this, execute the following command:

			$ aws events put-rule --name PacktContainerSecurity --event-pattern "{\"source\":[\"aws.guardduty\"]}"

			With these events enabled, you have a number of options for next steps. You could, for example, attach a lambda function that will handle events that are triggered and act on them, or integrate CloudWatch GuardDuty events with your Datadog setup, as outlined here:

			https://github.com/DataDog/datadog-serverless-functions/tree/master/aws/logs_monitoring

			If you wish to write the results of CloudWatch GuardDuty events to the S3 bucket created in Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger, in the Storing logs for the long term with AWS S3 section, then you can attach the lambda function as an event rule:

			$ aws events put-targets --rule PacktContainerSecurity --targets Id=1,Arn=arn:aws:lambda:<zone>:<ARN digits>:function:<function>

			An example of a lambda function that can be used to write to the S3 bucket is provided by AWS at the following link:

			https://aws.amazon.com/blogs/database/monitoring-your-security-with-guardduty-in-real-time-with-amazon-elasticsearch-service/

			Once you have modified this lambda to your needs and added it between the < and > brackets, you can include the required permissions by running the following command:

			$ aws lambda add-permission --function-name <function> --statement-id 1 --action 'lambda:InvokeFunction' --principal events.amazonaws.com

			This should act as a jumping-off point for you to explore GuardDuty in more detail and expand upon the setup you have created over the course of this book.

			Another way to store findings to S3

			You can also use the steps provided by AWS here for exporting GuardDuty findings to an S3 bucket: https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_exportfindings.html

			Other security features in AWS you may be interested in checking out include the following:

			
					Amazon Inspector for analyzing application security: https://aws.amazon.com/inspector/

					AWS Security Hub for creating a unified central security center: https://aws.amazon.com/security-hub/

					Amazon Detective for detecting potential security issues: https://aws.amazon.com/detective/

			

			Each of these services can be enabled through your AWS web console. Let's now move on and take a look at some of the options available in Microsoft Azure.

			Securing your containers using Azure

			Azure is Microsoft's flagship cloud service and provides a number of tools you can use to deploy and monitor Docker containers. This section assumes some familiarity with both Azure and the Log Analytics service.

			Container monitoring in Azure

			Microsoft's Container Monitoring solution provides a mechanism to manage Docker and Windows hosts from a single place and supports Kubernetes and Docker Swarm, both of which have been discussed in this book.

			If you are already using Microsoft's AKS service, you may be familiar with the monitoring services available on the AKS page, however, it is also possible to monitor containers across your whole Microsoft infrastructure in Azure.

			To enable the monitoring of your containers, you will need to start by enabling the feature by adding it to Log Analytics. You can do this by clicking the GET IT NOW button on the Azure Marketplace website:

			https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft.containersoms?tab=overview

			Once this is complete, you can create a new Log Analytics workspace. From this new workspace, record the name you chose, and also obtain the workspace ID and key. These are available under the Advanced settings of your workspace and can be found under the Connected Sources | Linux Servers options.

			For the purpose of this overview, we are going to assume an environment of a single host as we did for Datadog running on Linux. In this scenario, you will need to install the Log Analytics agent as follows:

			$ wget https://raw.githubusercontent.com/Microsoft/OMS-Agent-for-Linux/master/installer/scripts/onboard_agent.sh && sh onboard_agent.sh -w <workspace_id> -s <workspace_key>

			You can now restart the agent using the following command:

			$ sudo /opt/microsoft/omsagent/bin/service_control restart [<workspace_id>]

			Now let's try running the monitor against the container as follows:

			$ sudo docker run --privileged -d -v /var/run/docker.sock:/var/run/docker.sock -v /var/lib/docker/containers:/var/lib/docker/containers -e WSID="<workspace_id>" -e KEY="<workspace_key>" -h=`hostname` -p 127.0.0.1:25225:25225 --name="omsagent" --restart=always microsoft/oms

			We can modify the event data we collect under the Data option of the Log Analytics workspace. From here, we can add syslog and also enable the Linux Performance Counters.

			Once the solution is enabled, you will see the Container tile appear. You can then drill into the Container dashboard to gather metrics.

			Now we have some monitoring in place, let's look at some security features that are available in Azure for container-based platforms.

			Using Security Center to secure your containers in Azure

			With monitoring in place, you can now move on to looking at Microsoft's container security tools. The recommended native tool for achieving this in Azure is the Security Center service.

			You can sign up to add it to your Azure account by clicking the Turn on Security Center button at https://azure.microsoft.com/en-us/services/security-center/ and sign up for an Azure account at the same time if you wish.

			Once you have the feature enabled, you will see that Security Center provides a number of features, including the following:

			
					Container runtime protection

					Vulnerability management

					Environment hardening

			

			We'll take a look at each of these briefly.

			Container runtime protection

			Security Center's runtime protection for container environments allows you to generate real-time threat metrics that can be used to plan remediation efforts. The threat detection mechanism is broken down into two core areas:

			
					At the host level: At this level, we can monitor for containers acting in a malicious or suspicious fashion, including an exposed Docker daemon or a privileged command run within the container.

					At the AKS cluster level: AKS cluster-level threat detection analyzes the Kubernetes audit logs for suspicious activity such as highly privileged role creation or a coin miner being detected.

			

			These two features combined can help to look at the layers of your container stack and detect suspicious activity.

			Vulnerability management

			Here, you can use the Container Registries bundle to scan new images when they are pushed. Security Center integration with third-party security provider Qualys scans the container for some of the vulnerabilities we've discussed in this book.

			When an issue is detected, it will be logged on the dashboard with a recommended remediation step.

			Environment hardening

			Security Center provides a variety of tools for monitoring the security of your container environment. One of the most important features is running bench mark tests, such as the CIS Docker Benchmark, to alert you if your environment's configuration is weakened. An example of a CIS control is checking whether containers have unrestricted network traffic being exchanged between each other.

			You can download a copy of the CIS Docker Benchmark for free from the CIS website:

			https://learn.cisecurity.org/benchmarks

			Note

			InSpec users may be interested in downloading the InSpec profile for CIS Docker Benchmarking at https://github.com/dev-sec/cis-docker-benchmark.

			When Security Center spots a problem with your environment, it will flag it on the Recommendations page of the dashboard for you, so you can start remediating the issue.

			We've briefly looked at what is available in Azure. Let's wrap up with a quick tour of some of GCP's features.

			Securing your containers using GCP

			Google offers a number of tools for monitoring containers in both Anthos and Google Kubernetes Engine (GKE).

			For those unfamiliar with Google's offerings, Anthos is a platform that is designed for hybrid and multi-cloud deployment and allows you, among other features, to deploy container-oriented platforms such as Kubernetes. GKE is Google's enterprise-grade Kubernetes platform offered via Google Cloud Platform (GCP) and can be thought of as a rival to Amazon's EKS. Googles Container Registry is a platform for storing images that can be reused across your projects.

			For the following sections, it is assumed that you have some prior knowledge of GCP. If you would like to know more about getting started with GCP, please visit the following link:

			https://cloud.google.com/gcp/getting-started

			Let's start by looking at container security in GCP.

			Container Analysis and Binary Authorization in GCP

			A useful feature that Google offers is the Container Analysis scanner for Container Registry. This feature allows you to scan images for security issues and exposes an API for your use to pull down the metadata results. If you enable this feature on your account, it will scan all new images that are pushed to the registry, however, for existing images you will need to re-push them to trigger the scan.

			The two core features of Container Analysis are the following:

			
					Incremental scans: This handles the scanning of new images and generates the metadata related to them.

					Continuous monitoring: The metadata generated by incremental scans is continuously analyzed to see if it matches new sets of security vulnerabilities.

			

			When running scans, a severity level for effective severity (the level defined by the Linux distribution owner) and Common Vulnerability Scoring System (CVSS) score is assigned to a matching issue.

			Note

			If you would like to know more about CVSS, please visit the CVSS website: https://www.first.org/cvss/specification-document.

			Severity levels are categorized as follows:

			
					Critical

					High

					Medium

					Low

					Minimal

			

			These results are stored within your Container Registry account and can be viewed from there. Additionally, they can be retrieved by the RESTful API. For an overview of the REST commands available, please refer to the Container Analysis API documentation:

			https://cloud.google.com/container-registry/docs/reference/rest

			To explore Container Analysis further, you can enable it within your account and test it out by pushing an existing image to the registry. For example, you could use one of the shipitclicker projects we have used throughout this book. To do this, remember to tag the image first:

			$ docker tag <source_image> <hostname>/<project_id>/<image>:<tag>

			The hostname will be one of the four following storage regions:

			
					gcr.io (US)

					us.gcr.io (US)

					eu.gcr.io (EU)

					asia.gcr.io (Asia)

			

			Then, to push to the registry, use the docker push command in the following format:

			$ docker push <hostname>/<project_id>/<image>:<tag>

			It's as simple as that, you can then pull the container image as and when you need to and use the Container Analysis service. In addition to conducting analysis on containers, we can enforce rules around using signed images to complement this.

			Google have built a deploy-time security feature geared toward preventing untrusted container images from making it into GKE. This is called Binary Authorization (https://cloud.google.com/binary-authorization).

			Binary Authorization is built around Kritis, which defines a specification for the deployment authorization of Kubernetes applications. You can read more about it here on GitHub:

			https://github.com/grafeas/kritis/blob/master/docs/binary-authorization.md

			Using this service will allow you to enforce rules around requiring Docker images to be signed by trusted authorities. This involves a process known as attestations. Effectively, each container image has a unique hash (called a digest), which is signed by the signer. You might remember we saw how digests can be used earlier in this book, in Chapter 13, Docker Security Fundamentals and Best Practices.

			When a digest is signed, this is known as an attestation. When we come to deploy a container image, we can use a Binary Authorization attestor to verify the attestation. This allows us to prevent unauthorized – that is, unsigned – container images being used.

			If you are interested in learning more, to set up Binary Analysis you can follow the simple steps documented here:

			https://cloud.google.com/binary-authorization/docs/quickstart

			Let's now take a look at another feature of GCP, Security Command Center.

			Understanding your attack surface with Security Command Center

			The final tool we will quickly take a look at is Google's Security Command Center. For this, you will need to have set up an organization and project in GCP to work with. If not, please refer back to the preceding section for a link to Google's own quick-start guide.

			To enable Security Command Center for this new organization and project, follow these steps:

			
					Log into Cloud Console at https://console.cloud.google.com.

					Add the following two roles via IAM &Admin in your web console, by selecting your Project and Organization and then adding the permissions next to your username: organizationAdmin (roles/resourcemanager.organizationAdmin) from Resource Manager | Organization Administrator and securitycenter.admin (roles/securitycenter.admin) from Security Center | Security Center Admin.

					Save the changes and navigate to the Security Command Center page in the web console.

					Select the organization you added in step 2 from the drop-down list called Organization.

					You will now be presented with the Enable asset discovery page.

					Enable the All current and future projects option.

					Asset discovery will now begin.

			

			Once Security Command Center has finished scanning your resources, you will be able to see the results on the dashboard. By default, anomaly detection is enabled, however, Google provides a number of security sources you can integrate, or you can plug in container-specific third-party services.

			A full list of the potential sources you can integrate can be found here:

			https://cloud.google.com/security-command-center/docs/how-to-security-sources

			With these two basic services set up, you are now free to explore integrating other third-party providers such as Twistlock or experiment with these services to get comfortable rolling them out to a production environment.

			That concludes our whistle-stop tour of a few of the major cloud providers' offerings. Let's summarize what we have looked at.

			Summary

			In this chapter, we've provided you with some pointers for where you can take your cloud skills to next. This has included looking at scanning tools such as Anchore, reviewing metric-gathering platforms such as Datadog, and looking briefly at some of the features offered by the major cloud providers.

			These cloud platforms included AWS, Microsoft Azure, and GCP. Each of these companies also provide a number of other cloud-based container infrastructure products you may wish to explore further.

			We hope this high-level overview has provided you with some thoughtful insights on how to apply these skills to your own projects. Each topic in this chapter should act as a jumping-off point to explore each tool further, or provide you with the basics to start experimenting with monitoring in a cloud-based container environment. For those of you working with local projects, tools such as Docker stats and cAdvisor will provide a handy mechanism for monitoring container performance.

			Now we will move on to the final chapter, where we shall recap what we have studied throughout the book and leave you with some takeaway points for where to take your learning to next.

			Further reading

			Don't forget you can visit each provider's website for a list of these further features:

			
					Containers on AWS: https://aws.amazon.com/containers/services/

					Container services in Azure: https://azure.microsoft.com/en-us/product-categories/containers/

					Container options in GCP: https://cloud.google.com/container-options

			

		

	
		
			Chapter 16: Conclusion – End of the Road, but not the Journey

			You have now reached the final chapter of this book. Over the previous 15 chapters, a variety of topics have been covered. As you may have noticed, the book was grouped into three areas—development, DevOps with monitoring, and finally security. So, let's take the time to recap what we studied in each area and where we can go next.

			First, we will run through an overview of what we learned in the book. Next, a summary of the skills we acquired on the development front will be presented. After this, we will explore where we can go next to learn more about DevOps with containers and expand our newly learned skills. Our penultimate review will consider what we learned about security and how we can stay on top of it. Then, we will finish up with a general conclusion on everything we've studied.

			In order to review these items, we've broken them down into the following topics in this chapter:

			
					Wrapping up – let's get started

					What we learned about development

					Next steps for taking your DevOps knowledge further

					A summary on security and where to go next

			

			Grab your containerized environment and get ready for our last foray together into the world of Docker.

			Technical requirements

			For this chapter, you will need to have access to a Linux machine running Docker. We recommend that you use the setup you have been using so far in this book. This is so you can follow up with some of the tools and techniques recommended in this chapter if you wish.

			Check out the following video to see the Code in Action:

			https://bit.ly/2CpGTfZ

			Wrapping up – let's get started

			Over the course of this book, we have explored the world of containerization. As the technology becomes ever more ubiquitous in companies and projects across the world, having a solid handle on the basics and the toolsets supporting containers becomes ever more useful.

			Before we close the book, we are going to wrap up by reviewing what we have learned on the development front. After this, we will discuss what steps can be taken next to build on your DevOps skills and finally do a quick tour of some security projects that may be of interest.

			You may wish to have your project from Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker, ready in order to augment it with some of the recommended projects in this chapter.

			Remember you can revisit the source code for setting up this project here:

			https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter9

			With that said, let's look at what we have learned about developing in a Docker-based environment.

			What we learned about development

			In the first section of this book, An Introduction to Docker – Containers and Local Development, we got into the basics of Docker and containers, and how they are used for development purposes.

			First, we introduced the topic of containerization and related technologies such as virtualization. Following this, we sized up the differences between Docker containers and virtual machines to see how they compared for development purposes. In Chapter 3, Sharing Containers using Docker Hub, we got our first taste of using Docker Hub to store and retrieve images from a third-party location. Finally, having looked at pre-built containers and container images, we explored the scenario where multiple containers must work together to form a more complex system.

			These four chapters in this section, taken together, provide the basics for local development and understanding the tooling required to make you a successful engineer in this area. To build upon this knowledge, understanding design patterns for container-based systems would be a logical next step for you to explore.

			Going deeper – design patterns

			The first section of this book provided a guide to hands-on development. Just because you are using containers does not mean that architectural patterns for software development have to be abandoned!

			So, you may be asking what a design pattern is if you are new to the subject. In short, patterns are reusable blueprints for solving common architectural problems. Much as engineers and architects in the construction industry reuse workable models for constructing buildings, we can use a similar approach for building software systems.

			The following container-oriented patterns provide a great jumping-off point for you to explore the subject further once you have finished this book. In fact, you may recognize some of them from earlier chapters, which is why we have included them here. Let's now take a brief tour of five of them and look at which services and projects in this book have implemented them.

			A single container – keeping it simple

			When we first embarked on the projects in this book, we kept things simple and used a single container pattern. This is the simplest pattern you can adopt in a container-based environment and the ShipIt Clicker application uses it.

			The sidecar design pattern – useful for logging

			We've looked at logging throughout this book and log-monitoring systems are common implementors of something known as a sidecar pattern. In its simplest form, we have a container such as the ShipIt Clicker one, and then a second container with a log monitoring tool. This could be Grafana, Datadog, or one of the other tools we experimented with. As you start to build out your own projects, this simple pattern makes a great starting point. Deploy your application on a container, and then use a second container to handle log processing. You will also remember from our exploration of Envoy that the sidecar pattern is used here to allow us to create a service mesh without having to directly edit our applications to handle complex networking problems.

			Leader and elections – adding redundancy

			We've seen how highly available systems are desirable, and how tools such as Kubernetes can help us achieve this goal through orchestrating multiple containers across pods. A common design pattern used in conjunction with Kubernetes is the leader and election approach. Here, data can be split across multiple nodes to provide redundancy; for example, the data may be replicated across containers.

			If, for some reason, our container crashes, the other containers will elect a new leader and Kubernetes will spin up a new node to plug the gap.

			The ambassador design pattern – an approach to proxying

			Proxying is an important part of many systems, especially in microservice architectures. As you have seen, in Docker-based environments, we can have multiple containers residing on the same virtual network. Each of these containers is assigned a name, which allows containers to communicate with one another.

			An example of where we can use the ambassador pattern is in communicating between a backend caching service, such as Redis, and a set of applications. In this instance, the applications communicate with a single Redis proxy node, believing it to be Redis itself. However, the proxy node then distributes the traffic across multiple other Redis nodes on the network.

			Redis

			Redis (redis.io), as you may remember from earlier chapters, is an in-memory, open source caching and message brokering system. It allows you to store a variety of data structures in memory such as lists, sets, and hashes, and can additionally be used as a primary database if you wish (https://redislabs.com/blog/goodbye-cache-redis-as-a-primary-database/).

			The tool Envoy, which we examined in Chapter 11, Scaling and Load Testing Docker Applications, is very useful for deploying an ambassador-style approach. If you are interested in trying it out with Redis, then check out Dmitry Polyakovsky's article, Envoy Proxy with Redis (http://dmitrypol.github.io/redis/2019/03/18/envoy-proxy.html).

			Redis can be obtained from Docker Hub as a container (https://hub.docker.com/_/redis/). Let's now look at our final design pattern before moving on.

			The adapter design pattern – solution reuse

			Having a consistent way to communicate information between containers is important, and this is especially the case when aggregating metrics. For example, if different containers produce logs in different formats, we need to be able to ingest this data in a common format. This is where the adapter pattern comes in. We can use this pattern to develop a uniform interface and subsequently receive log files from multiple containers, standardize them, and then store the data in a centralized monitoring service.

			We saw in Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger, that Prometheus is a useful tool for container monitoring. However, Prometheus requires a uniform interface from which to pull metrics, that being the metrics API. Where an application does not expose endpoints that are compatible with Prometheus, we can deploy an interface using the adapter pattern that wraps the target service containers with a Prometheus-compatible set of endpoints. This then allows Prometheus to pull data from the containers we are interested in seamlessly via the intermediate interface container.

			Reading more on design patterns

			Using container-based design patterns helps to ensure that the right model is being used for your system, only introducing as much complexity is as needed, while ensuring the system is resilient and easier to manage.

			If you would like to learn more about container patterns in Kubernetes and Docker, be sure to check out the book, Kubernetes Design Patterns and Extensions, by Packt.

			Next steps for taking your DevOps knowledge further

			The second section, Running Containers in Production, was geared toward DevOps practices such as continuous integration and continuous deployment (CI/CD), container orchestration with Kubernetes, and monitoring with tools such as Jaeger.

			To start with, we looked at options around hosting containers in cloud-based systems and hybrid environments. Next up, we explored the simple option of serving up our application on a single host with Docker Compose. After this, experimenting with Jenkins provided us with our first introduction to CI/CD tools and how these can be used with Docker. With the concept of CD under our belt, it was then on to Chapter 8, Deploying Docker Apps to Kubernetes, which gave us our first taste of Kubernetes for container orchestration. Subsequently, the topic of special container-native cloud deployment options in the form of Spinnaker was then trialed, including understanding what deployment methodologies are useful for production environments. The penultimate chapter of section two of this book explored monitoring tools for performance, such as Jaeger, Prometheus, and Grafana. Finally, we closed this section with a discussion looking at Envoy service meshes, proxying, and scaling and load testing projects in a production environment.

			The seven chapters in this section provided a wealth of projects that gave you an understanding of some of the core concepts companies face when hosting and serving container-based applications in a production environment. However, there are still plenty of interesting techniques and topics to learn in order to take your DevOps skills to the next level.

			Chaos engineering and building resilient production systems

			With a complex production system in place, containers being orchestrated in the cloud, and CD happening, how do we ensure our systems are resilient against faults and unexpected crashes? This is where the concept of chaos engineering comes into play.

			Chaos engineering is the practice of understanding that code and infrastructure are inherently complex and therefore we should approach the engineering and testing process with this in mind. There are five concepts to chaos engineering that can be summarized as follows:

			
					Develop a hypothesis around steady state behavior: Measure outputs from the system over a short period of time to gather a baseline. This baseline is known as the steady state and could include metrics such as the error rate, response and latency times, and traffic loads.

					Test a variety of real-world events: When testing for real-world events that could impact a production system, consider testing software failures, mangled inputs, containers crashing, and other events that could degrade performance.

					Experiment in production: Testing in production may seem like anathema. However, each environment is different and, for authentic results, testing in production is a must.

					Minimize the impact, aka blast radius: Running tests in production, however, does not absolve us of the responsibility to ensure that any degradation of performance is temporary and easily recovered from. Always make sure your experiments are well contained.

					Run automated experiments in a continuous fashion: Using an automated approach allows you to reduce the labor overhead and for tests and experiments to run at all hours of the day.

			

			One such tool developed by Netflix implementing this concept is Chaos Monkey. Chaos Monkey is a platform to which you deploy your infrastructure that will randomly terminate containers that run in a production environment. The goal is to test how a production system will respond/recover and to allow engineers to tune the system to be more resilient.

			You've already seen how to set up Spinnaker, so as a next step, you can integrate Chaos Monkey into your existing pipeline. Chaos Monkey also works with AWS and Kubernetes. The source code can be found at https://github.com/Netflix/chaosmonkey.

			If you are interested in installing Chaos Monkey and adding it to the existing CI/CD Spinnaker pipeline that you built in Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker, you can follow the official installation guide at https://netflix.github.io/chaosmonkey/How-to-deploy/.

			Once it's up and running, you can now test Chaos Monkey in your Spinnaker-based container environment to see how it copes with terminating services and what corresponding metrics are displayed in your monitoring tools.

			If you are interested in combining Chaos Monkey with security techniques, be sure to check out Packt's video guide on how you can use Chaos Monkey to fuzz test applications you host:

			https://subscription.packtpub.com/video/virtualization_and_cloud/9781788394901/94651/94677/chaos-monkey-and-fuzz-testing

			What is fuzz testing?

			Fuzz testing is the process of testing random, invalid, and incompatible randomized data inputs to an application to see how it responds.

			In addition to Chaos Monkey, the following tools also offer mechanisms for building and testing resilient systems:

			
					Gremlin: A chaos engineering platform that can be used with Kubernetes, Mesos, ECS, and Docker Swam, available at https://www.gremlin.com/.

					Mangle: VMware's open source platform for orchestrating chaos engineering that supports Kubernetes and Docker, available at https://vmware.github.io/mangle/.

					Chaos Mesh: A cloud-native chaos engineering platform geared toward Kubernetes environments. It can be deployed via Helm, and is available at https://github.com/pingcap/chaos-mesh.

			

			We've briefly covered chaos engineering as a concept you could explore further from a DevOps perspective. Let's now recap what we studied under the banner of security.

			A summary on security and where to go next

			The final section of this book, Docker Security – Securing Your Containers, was dedicated to the subject of security. First, we looked at how containers work with the underlying hardware from a security perspective. We studied container and hypervisor security models and quickly dipped our toes into security best practices.

			Security fundamentals and best practices came next and provided us with guidance on the best approach to handling our Dockerfile and building minimal base images. After this, we looked at how secrets can be handled in Docker Swarm. This provided insight for readers who may need to maintain legacy systems or migrate from Swarm to Kubernetes. We also looked at how tags, metadata, and labels can be used from a security perspective.

			The penultimate chapter of this book, Chapter 15, Scanning, Monitoring, and using Third-Party Tools, gave us a whistle-stop tour of Google, Amazon, and Microsoft's container security features in the cloud. We also installed Anchore for security scanning, looked at some extra monitoring tools that may be useful, and briefly tried out Datadog for container monitoring, which, in turn, can be used in a security context.

			With these basics under your belt, the following are ideas for some next steps regarding container security projects that build upon this knowledge.

			Metasploit – container-based penetration testing

			Now that we've built secure containers, and hopefully a secure application too, you can explore penetration testing in a container-based environment, such as the one you deployed via Spinnaker. Penetration testing is the process of looking for security flaws in a system that can then be leveraged to gain access, exfiltrate data, disrupt performance, or turn the compromised system into a platform to launch other attacks.

			A popular tool for performing penetration tests is the Metasploit framework (https://www.metasploit.com/). Metasploit is an open source framework for developing and deploying security exploit code against a remote target, such as a container running in your environment. Metasploit is available in a container format from Docker Hub, at https://hub.docker.com/r/metasploitframework/metasploit-framework.

			With this tool in place, you can test vulnerabilities found in containers with tools such as Anchore. Vulnerabilities may include, for example, old versions of software installed on a container that may be open to attack. To grab the latest copy, run the following code:

			docker pull metasploitframework/metasploit-framework

			You can then run the container as follows:

			sudo docker run --rm -it metasploitframework/metasploit-framework

			Once loaded, you will be dropped into the Metasploit shell, called msfconsole:

			
				
					[image: Figure 16.1 – Example of a Metasploit container running]
				

			

			Figure 16.1 – Example of a Metasploit container running

			From here, you can begin to explore the commands available and consider projects you can run from inside the container. A free course on using Metasploit can be found on the Offensive Security website at https://www.offensive-security.com/metasploit-unleashed/. Once you are familiar with the basic commands, consider exploring some of the following features in Metasploit.

			Unprotected TCP socket exploit

			You will remember that we discussed how leaving the TCP socket for Docker exposed could be exploited by attackers. Metasploit provides an example of how this can be achieved. Try running Docker via 2375/tcp on a second machine and load up the docker_daemon_tcp module (https://www.rapid7.com/db/modules/exploit/linux/http/docker_daemon_tcp) in the Metasploit container we just set up. You can now target the compromised socket via this module and create a Docker container with the / path mounted with read and write permissions on the underlying target host that is running the container.

			Testing third-party vulnerable containers – Apache Struts

			The following is just one example of the many vulnerable containers available for downloading and experimenting with. This container, created by piesecurity, includes a vulnerable version of Apache Struts (https://hub.docker.com/r/piesecurity/apache-struts2-cve-2017-5638/).

			Apache Struts is a popular framework built in Java for developing web applications. In 2017, a vulnerability was discovered in the framework that allowed an attacker to execute code remotely on the server running it. One of the most well-known victims of this vulnerability was Equifax, who suffered a catastrophic data breach.

			You can deploy and run this container loaded with Struts via Spinnaker and test out the exploit yourself. Once installed, use the Metasploit module struts2_content_type_ognl (https://www.rapid7.com/db/modules/exploit/multi/http/struts2_content_type_ognl). This will allow you to launch an attack that creates a reverse shell on the compromised container and demonstrates how security flaws inside third-party frameworks can be exploited even when running in Kubernetes and Docker.

			If you'd like to dig into this further, the book Advanced Infrastructure Penetration Testing from Packt provides guidance for using the Metasploit Framework and testing container-based environment security.

			Summary

			We hope you have enjoyed reading this book. It aimed to provide a comprehensive guide to Docker development, both locally and in the cloud. Throughout the 16 chapters, our goal was to demonstrate not only how to develop applications in containers, but how they can be built, deployed, scanned, and monitored.

			Whether you plan to build a new project from scratch, are maintaining legacy systems on Docker Swarm, or migrating to a Kubernetes-based environment, Docker For Developers is the type of book you can dip back into again to refresh your knowledge or seek guidance as required.

			We hope you have enjoyed your journey into the world of containers as much as we have enjoyed sharing this knowledge with you. Good luck with your future projects!

		

	
		
			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image: Mastering Adobe Photoshop Elements

]

			Continuous Delivery with Docker and Jenkins - Second Edition

			Rafał Leszko

			ISBN: 978-1-83855-218-3

			
					Get to grips with docker fundamentals and how to dockerize an application for the CD process

					Learn how to use Jenkins on the Cloud environments

					Scale a pool of Docker servers using Kubernetes

					Create multi-container applications using Docker Compose

					Write acceptance tests using Cucumber and run them in the Docker ecosystem using Jenkins

					Publish a built Docker image to a Docker Registry and deploy cycles of Jenkins pipelines using community best practices

			

			[image: Mastering Adobe Captivate 2019 - Fifth Edition]

			Mastering Docker Enterprise

			Mark Panthofer

			ISBN: 978-1-78961-207-3

			
					Understand why containers are important to an enterprise

					Understand the features and components of Docker Enterprise 2

					Find out about the PoC, pilot, and production adoption phases

					Get to know the best practices for installing and operating Docker Enterprise

					Understand what is important for a Docker Enterprise in production

					Run Kubernetes on Docker Enterprise

			

			Leave a review - let other readers know what you think

			Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

		

	OEBPS/image/B11641_08_005.jpg
B kubectl describe secrets/shipitclicker-secrets

Name: shipitclicker-secrets
Namespace: default
Labels: <none>

Annotations: <none>

Type: Opaque

SESSION_SECRET: 12 bytes

OEBPS/image/B11641_09_018.jpg
SPINNAKER Sea

@ shipandspin

“

v SEARCH ©

v PIPELINES
_ shipit-eks-staging
~ shipit-eks-prod
Reorder Pipelines
v STATUS
_ Running
Terminal
| Succeeded
Not Started
Canceled
Stopped
Paused
Buffered

~
7

Projects Applications Search
i= PIPELINES & INFRASTRUCTURE TASKS
+ - Group by Pipeline j Show zoj executions per pipeline @ stage durations [+] e 2 n

Trigger: enabled £} Configure » Start Manual Execution

v shipit-eks-staging

BUILD #9
MANUAL START

[anonymous] (anonymous)
25 minutes ago

Status: SUCCEEDED Duration: 00:19 C‘

> View All Artifacts (3)
> Execution Details

BUILD #9

MANUAL START
[anonymous] (anonymous)
about 1 hour ago

Status: TERMINAL

=]

Duration: 00:07 '

> View All Artifacts (3)
> Execution Details

BUILD #9

MANUAL START
[anonymous] (anonymous)
about 3 hours ago

Status: TERMINAL Duration: 00:15 ('

Eh

¥ View All Artifacts (3)
> Execution Details

OEBPS/image/B11641_08_013.jpg
aws Services v

Bl © successfully created repository dockerfordevelopers/shipitclicker

ECR > Repositories

EC2 1AM

~ I

Repositories
Q 1 @
N Created Tag Scan on
a
Repository name URI = o ety o
143970405955.dkr.ecrus- 05/21/20,
dockerfordevelopers/shipitclicker east-2.amazonaws.com/dockerfordevelopers 11:22:38 Disabled Disabled
Jshipitclicker PM

@ Feedback (@ English (US) 0, Amazon Web Serv Inc. o its affliates. eserved. Privacy Policy Terms of Use

OEBPS/image/B11641_03_002.jpg
@ mongo - Docker Hub

(€)> @ @ |® PR ttos://hub.docker.com/_/mongol v e TR InoDe® & & =

(See "What's the difference between 'Shared' and 'Simple' tags?" in the FAQ.)
Simple Tags

® 3.4.23-xenial , 3.4-xenial

® 3.4.23-windowsservercore-ltsc2@16 , 3.4-windousservercore-ltsc2016

® 3.6.16-xenial , 3.6-xenial, 3-xenial

® 3.6.16-uindousservercore-1tsc2016 , 3.6-windowsservercore-ltsc2016, 3-windousservercore-ltsc2016
® 4.0.13-xenial , 4.@-xenial

® 4.0.13-windowsservercore-1tsc20l6 , 4.@-windowsservercore-ltsc20l6

® 4.0.13-windowsservercore-18@9 , 4.@-windowsservercore-1809

® 4.2.2-bionic, 4.2-bionic, 4-bionic, bionic

® 4.2.2-windowsservercore-1tsc2016 , 4.2-windowsservercore-1tsc2016, 4-windowsservercore-ltsc20l6,

windowsservercore-ltsc2016

® 4.2.2-windousservercore-1829 , 4.2-windousservercore-1809, 4-windowsservercore-1809, windowsservercore-1829

Shared Tags

® 3.4.23, 3.4:

© 3.4.23-xenial

OEBPS/image/B11641_05_001.jpg
Credits

OEBPS/image/B11641_01_001.jpg

OEBPS/image/B11641_10_003.jpg
Prometheus

Alerts

Inactive (1) Pending Firing (0)

O Show annotations
/etc/config/alerts > Kubernetes

InstanceDown (0 active)

alert: InstanceDown
expr: up ==
for: 5m
labels:
severity: page
annotations:
description: '{{ $labels.instance }} of job {{ $labels.job }} has been down for
more than 5 minutes.'
summary: Instance {{ $labels.instance }} down

OEBPS/image/B11641_12_002.jpg

OEBPS/image/B11641_08_007.jpg
aws Services v source Groups v EC2 IAM % C 4 Support ¥
Identity and Access Users > Administrator
Management (IAM) 4
SUmmary Deleteuser =~ @
Dashboard
« Access management User ARN arn:aws:iam:: BB user/Administrator (2]
Groups Path /
lisers Creation time 2020-04-27 00:05 EDT
Roles B ——— Y
Permissions Groups (1) Tags Security credentials | Access Advisor
Policies) .
Identity providers Sign-in credentials
Account seftings Summary Console sign-in link: https:// | N sicnin.aws.amazon.com
v Access reports {console. @)
* MFA is required when signing in. Learn more
Access analyzer
Archive rules Console password Enabled (last signed in 9 days) | Manage
Analyzers Assigned MFA device arn:aws:iam:: /BB f2/Administrator (Virtual) | Manage
Settings Signing certificates None ¢*
Credential report Access keys
Organization activity Use access keys to make secure REST or HTTP Query protocol requests to AWS service APIs. For your protection,

Service control policies you should never share your secret keys with anyone. As a best practice, we recommend frequent key rotation.
(SCPs) Learn more

Create access key
Q Search IAM
Access key ID Created Lastused Status

OEBPS/image/B11641_15_006.jpg
All Dashboards

O %t

(u]

(u]

w

R % % % % 0

ale a0 O

Name Modified

I security Signals Jun3,2020

o

Docker - Overview
preset

Host Counts.
preset

Kubernetes - Overview
preset

Kubernetes Pods Overview
preset

System - Disk1/0

preset

System - Metrics
preset

System - Networking

preset

Popularity

@ docker

2

ivieicieje

OEBPS/image/B11641_08_003.jpg
Developers &
Cluster Operators

9

Application
End Users

L]

1
1
3

External Load Balancers (e.g. AWS Application Load Balancer)

Kubernetes Control Plane

kube-controller-manager
kube-scheduler

cloud-controller-manager

etcd

Kubernetes Cluster Nodes

Ingress Controllers

Service 1 1 Service 2 | Service 3 | eee

Node

Node

kubelet kube-proxy

kubelet kube-proxy

Container Runtime (Docker)

Container Runtime (Docker)

Pod || Pod || Pod" || Pod

Pod | eee Pod || Pod || Pod® || Pod || Pod

|ConﬂgMap| Secret IDaemonSet

eee |ConfigMap| Secret | DaemonSet

OEBPS/image/B11641_03_004.jpg
cee tx I ———
% mqtt publish -t "publisher" -m "mongo-add foo'

% mqtt publish -t "publisher” -m "mongo-list foo"

% eqt publish -t "publisher" -m "mongo-count foo"

2020-03-06T17:45:03.741Z publisher yarn run v1.16.0
$ node ./index.j
send MQTT messages with topic publisher and any message you like 2020-03-06T18:07:15.252Z subscriber connecting to MongoDB mongodb://192.168.0.21:27017

2020-03-06T18:08:08.962Z mqtt-traffic <<< MESSAGE topic publisher message mongo-add |(node:28) DeprecationWarning: current Server Discovery and Monitoring engine is depreca
ted, and will be removed in a future version. To use the new Server Discover and Monito
8.962Z mqtt-traffic >>> topic subscriber/mongo-add message foo |ring engine, pass option { useUnifiedTopology: true } to the MongoClient constructor.

8.972Z mqtt-traffic <<< MESSAGE topic publisher/mongo-add message |2020-03-06T18:07:15.265Z subscriber Connected to mongodb server mongodb://192.168.0.21:

ex foo","_id":"5e629188728800001cfdfobe"}],"in|27017
: " 5862918872889@8@1(:fdf@be"}} 2020-03-06T18:07:15.266Z subscriber
:08.973Z publisher result mongo-add =
1, n: 11}, 2020-03-06T1! 15.266Z subscriber connecting to MQTT broker mqtt://192.168.0.21 1883
'foo', _id: '5e629188728800001cfdfobe’ } 1, 2020-03-06T1! 15.293Z subscriber connected to mqtt://192.168.0.21 port 1883

2020-03-06T1! .293Z subscriber

insertedIds: '0': '5e629188728800001cfdfobe’ }
2020-03-06T1!
2020-03-06T18:08:24.438Z mqtt-traffic <<< MESSAGE topic publisher message mongo-list 2020-03-06T1!
i 2020-03-06T1!
4. 4382 mqtt- traff\c > top\c subscr\her/mongo list message foo |2020-03-06T1!

mqtt-traf MESSAGE topic publisher/mongo-list message| result: { ok 1

.293Z subscriber WAITING FOR MESSAGES FROM PUBLISHER

.963Z subscriber <<< topic subscriber/mongo-add message foo
.964Z subscriber --- mongodb add foo

.970Z subscriber >>> topic: publisher/mongo-add message: {

00
2020»03—116”.
20-03:

n: 11},
‘foo', _id: 5e629188728800001cfdfobe } 1,

"5e289163c7903991338h47dh 00"}, {" "5e629188728800001cfdfobe",
o 1
2020-03-06T18:08:24.443Z publisher result mongo-list = [insertedIds: { '0': 5e629188728800001cfdfobe }
{ _id: '5e289168c79039918a8b47db', text: 'foo' }, %

24.439Z subscriber <<< topic subscriber/mongo-list message foo
24.4437 subscriber >>> topic: publisher/mongo-list message: [
d: 5e289168c79039918a8b47db, text: 'foo' },

d: 5e620188728800001cfdfobe, text: 'foo' }

{ 1id: '5e629188728800001cfdfébe', text: 'foo' }

2020-03-06T18:08:35.240Z mqtt-traffic <<< MESSAGE topic publisher message mongo-coun
t foo

2020-03-06T18:08:35.240Z mqtt-traffic >>> topic subscriber/mongo-count message foo
2020-03-06T1! 5.243Z mqtt-traffic <<< MESSAGE topic publisher/mongo-count messag|2020-03-06T1!
e2 2020-03-06T1!
2020-03-06T18:08:35.243Z publisher result mongo-count = 2 2020-03-06T1!

35.2417 subscriber <<< topic subscriber/mongo-count message foo
35.241Z subscriber --- mongodb count foo
35.242Z subscriber >>> topic: publisher/mongo-count message: 2

OEBPS/image/B11641_08_011.jpg
aws

Services v Resource Groups EC2 1AM Cloud % Ohio v Support +
- CloudFormation > Stacks
Stacks (11) Cc Create stack ¥
Q Active v © viewnested
1 @
Stack name Status Created Description
AKS‘EKSS""H DRGSR (© CREATE_COMPLETE 2020-05-02 17:26:55 UTC-0400 Deploys an EFS file system
(Ao RN KSR HIBREVRX . © CREATE_COMPLETE 2020-05-02 17:25:17 UTC-0400 Deploys EKS nodes into an
Amazon-EKS-EKSStack-16HISTXPVPX...
© CREATE_COMPLETE 2020-05-02 17:25:17 UTC-0400 LinuxBastion+VPC Nov,19,2
RIS R EIGS A EHISEVRE.. © CREATE_COMPLETE 2020-05-02 17:25:17 UTC-0400 Deploys the grafana helm ¢
RIS RSIRIS SRV (© CREATE_COMPLETE 2020-05-02 17:25:17 UTC-0400 Deploys the prometheus he
Amazon-EKS-EKSStack-16HISTXPVPX...
© CREATE_COMPLETE 2020-05-02 17:07:08 UTC-0400 Deploys the EKS control pla
(Ao RN KSR HISREVRX . (© CREATE_COMPLETE 2020-05-02 17:04:02 UTC-0400 Deploys Lambda functions
AEER RN SRS BE CHISRYRC.. (© CREATE_COMPLETE 2020-05-02 17:01:21 UTC-0400 Deploys IAM roles and polic
BARZEH R ES SRR BHISRVPKIS) (© CREATE_COMPLETE 2020-05-02 17:00:52 UTC-0400 Deploys an EKS cluster into
Amazon EKS-VPCStack-GPBRTQZOBW... (© CREATE_COMPLETE 2020-05-02 16:57:17 UTC-0400 This template creates a Mu
Amazon-EKS © CREATE_COMPLETE 2020-05-02 16:57:11 UTC-0400 Deploys an EKS clusterin a

jacy Policy Terms of Use

OEBPS/image/B11641_01_005.jpg
Docker Daemon

1]

{

Container 3

Container 1 Container 2
Linux Kernel

]

Machine Resources (CPU,RAM, Networking, Disk...)

OEBPS/image/B11641_09_008.jpg
® Jenkins

Jenkins Credentials

Admin 1 log out

Global credentials (unrestricted)

4 Back to credential domains

@= Add Credentials

Kind -~ Aws Credentials

Scope.

D

Description

Access Key ID

Secret Access Key

1AM Role Support

Global (Jenkins, nodes, items, all child items, etc)

shipit.aws.key)
Shiplt Clicker AWS API Key @
AKIASDBKOBZBUPLRSWQF @

These credentials are valid but do not have access to the
"AmazonEC2" service in the region 'us-east-1". This message is not a
problem if you need to access to other services or to other regions.
Message: "You are not authorized to perform this operation.
(UnauthorizedOperation)"

Advanced...

Page generated: May 26, 2020 3:36:26 AM UTC RESTAPI Jenkins ver. 2.219

OEBPS/image/B11641_Table_5.1.jpg
Technology Setup | Features | Cost | Support | Elasticity | Availability | Stickiness
Docker ona 5 1 5 3 1 1 5

single host

Google Cloud | 4 5 3 4 5 5 3

GKE

AWS Elastic 5 3 3 4 5 5 3
Beanstalk

AWS ECS 2 3 4 2

AWS EKS 4 2 5 3

Azure AKS 4 4

OEBPS/image/B11641_15_004.jpg
NAME: datadog-agent
LAST DEPLOVED: Wed Jun 3 10:23:37 2020
NAMESPACE: default
sTATUS: deployed
REVISTON: 1
resT suITE: None
NoTes:
patadog agents are spinning up on each node in your cluster. After a few
[ninutes, you should see your agents starting in your event stream
[Pesitesr o dgamldpag

OEBPS/image/B11641_07_002.jpg
Getting Started

Customize Jenkins

Plugins extend Jenkins with additional features to support many different needs.

Install suggested Select plugins to
plugins install

Select and install plugins
most suitable for your needs.

Jenkins 2.219

OEBPS/image/B11641_09_001.jpg
Resource Groups

Request a certificate

Step 1: Add domain names

Step 2:

elect validation method
Step 3: Add Tags

Step 4: Review

| step 5: Validation

© Request in progress

A certificate request with a status of Pending validation has been created. Further action is needed to complete
the validation and approval of the certificate.

Validation

Create a CNAME record in the DNS configuration for each of the domains listed below. You must complete this step before

AWS Certificate Manager (AGM) can issue your certificate, but you can skip this step for now by clicking Continue. To retum
to this step later, open the certficate request in the ACM Console.

Domain Validation status.
~ *.eks.shipitclicker.com Pending validation

Add the following CNAME record to the DNS configuration for your domain. The procedure for adding CNAME records
depends on your DNS service Provider. Learn more.

Name Type Value
~da3f50b{75069aB050A2ale7200591.0k5.5 e _d707355be64409e3814171466c487186.auiq
hipitclicker.com.

graehs.acm-validations.aws.

Note: Changing the DNS configuration allows ACM to issue certficates for this domain name for as long as the DNS
record exists. You can revoke permission at any time by removing the record. Learn more.

(CEEP TSRS Amazon Route 53 DNS Customers ACM can update your DNS configuration for you.

Learn more.

» eks.shipitclicker.com Pending validation

OEBPS/image/B11641_01_003.jpg

OEBPS/image/B11641_10_001.jpg
Build Configuration

Mode by Jenkinsfile

Script Path chapter10/Jenkinsfile

OEBPS/image/B11641_13_003.jpg
[oops
h e #vQ

I docs » B mysecret
W oops 3

B setuppy

s .

I tests >

OEBPS/image/B11641_04_001.jpg
Publisher

® MongoDB
Redis
VALUE

List Count Add Remove Flush

Result

OEBPS/image/B11641_07_005.jpg
Admin 1 log out

Jenkins » Credentia System Global credentials (unrestricted)
4 Back to credential domains Kind | 551 Username with private key N
@= Add Credentials —
B Global (Jenkins, nodes, items, all child items, etc) |
1D jonkins.shipit
Descripton | (g,
Usemame | oo

Private Key - @ Enter directly
Key
Enter New Secret Below

2VsyyEVUCQIGqVKYLpdsY2vE JeldSBhUZRGE/ LhrePyGOARATEAWA110/Vo42JUMY /1
33dBQOENNYCES 102 1yongHkcLet Thg2Vi leJsyaYEALYINhc4 J9RrC s JH2bIF/ Y2Lerwd
g1bbOPLe6TFOrSOL9WY t1£220122PQUP2Y6LTUVxmI FGAWVABROETP £5IVIQFiSIT2S+7H
11bni2D0HY286DEAARAUCKI 1bGxpbdAQ2 9KZXgubG j YHWBAGHEBQYH

-END OPENSSH PRIVATE KEY

Passphrase

Page generated: Mar 2, 2020 4:3157 AM UTC REST AP Jenkins ver. 2219

OEBPS/toc.xhtml

		
		Contents

			
						Docker for Developers

						Why subscribe?

						Contributors

						About the authors

						About the reviewer

						Packt is searching for authors like you

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Code in Action

								Download the color images

								Conventions used

								Get in touch

								Reviews

					

				

						Section 1: An Introduction to Docker – Containers and Local Development

						Chapter 1: Introduction to Docker
					
								The drivers for Docker
							
										Co-located hosting

										Self-hosting

										Data centers

							

						

								Using virtualization to economize resource usage

								Addressing the increasing power requirements

								Using containers to further optimize data center resources

								Summary

								Further reading

					

				

						Chapter 2: Using VirtualBox and Docker Containers for Development
					
								Technical requirements

								Host filesystem pollution problem

								Using VirtualBox for virtual machines
							
										Introduction to virtualization

										Creating a virtual machine

										Guest additions

										Installing VirtualBox

							

						

								Using Docker containers
							
										Introduction to containers

										Using Docker for development

							

						

								Getting started with Docker
							
										Automating Docker commands via sh scripts

							

						

								Summary

								Further reading

					

				

						Chapter 3: Sharing Containers Using Docker Hub
					
								Technical requirements

								Introducing Docker Hub
							
										Interacting with Docker Hub from the command line

										Using the Docker Hub website

							

						

								Implementing a MongoDB container for our application
							
										Running a shell within a container

							

						

								Introducing the microservices architecture
							
										Scalability

										Inter-container communication

							

						

								Implementing a sample microservices application

								Sharing your containers on Docker Hub

								Summary

								Further reading

					

				

						Chapter 4: Composing Systems Using Containers
					
								Technical requirements

								Introduction to Docker Compose
							
										The problem with .sh scripts

										Docker Compose configuration files

										Inheritance using multiple configuration files

										The depends_on option

										Adding port bindings using overrides

							

						

								Using Docker local networking
							
										Networking using .sh scripts

										Networking with Docker Compose

							

						

								Binding a host filesystem within containers
							
										Optimizing our container size

										Using the build.sh script

							

						

								Other composition tools
							
										Docker Swarm

										Kubernetes

										Packer

							

						

								Summary

								Further reading

					

				

						Section 2: Running Docker in Production

						Chapter 5: Alternatives for Deploying and Running Containers in Production
					
								Technical requirements

								Example application – ShipIt Clicker

								Running Docker in production – many paths, choose wisely

								What is the minimum realistic production environment?
							
										Bare minimum – run Docker and Docker Compose on one host

										Docker support

										Problems with single-host deployment

							

						

								Managed cloud services
							
										Google Kubernetes Engine

										AWS Elastic Beanstalk

										AWS ECS and Fargate

										AWS EKS

										Microsoft Azure Kubernetes Service

										Digital Ocean Docker Swarm

							

						

								Running your own Kubernetes cluster – from bare metal to OpenStack

								Deciding on the right Docker production setup
							
										Exercise – join the ShipIt Clicker team

										Exercise – choosing from reasonable deployment alternatives

										Exercise – Dockerfile and docker-compose.yml evaluation

							

						

								Summary

					

				

						Chapter 6: Deploying Applications with Docker Compose
					
								Technical requirements
							
										Example application – ShipIt Clicker v2

							

						

								Selecting a host and operating system for single-host deployment
							
										Requirements for single-host deployment

							

						

								Preparing the host for Docker and Docker Compose
							
										Using operating system packages to install Docker and Git

							

						

								Deploying using configuration files and support scripts
							
										Re-examining the initial Dockerfile

										Re-examining the initial docker-compose.yml file

										Preparing the production .env file

										Supporting scripts

										Exercise – keeping builds off the production server

										Exercise – planning to secure the production site

							

						

								Monitoring small deployments – logging and alerting

								Limitations of single-host deployment
							
										No automatic failover

										Inability to scale horizontally to accept more load

										Tracking down unstable behavior based on incorrect host tuning

										Loss of single host could be disastrous – backups are essential

										Case study – migrating from CoreOS and Digital Ocean to CentOS 7 and AWS

							

						

								Summary

								Further reading

					

				

						Chapter 7: Continuous Deployment with Jenkins
					
								Technical requirements
							
										Example application – ShipIt Clicker v3

							

						

								Using Jenkins to facilitate continuous deployment
							
										Avoid these traps

										Using an existing Jenkins server

										Setting up a new Jenkins server

										How Jenkins can support continuous deployment

							

						

								The Jenkinsfile and host connectivity
							
										Testing Jenkins and Docker with a pipeline script

							

						

								Driving configuration changes through Jenkins
							
										Using Git and GitHub to store your Jenkinsfile

										Changing the origin of all checked out repositories

										Creating Jenkins environment variables for production support

										Building Docker containers and pushing them to Docker Hub

										Pushing to Docker Hub and triggering a production deployment

							

						

								Deploying to multiple environments through multiple branches
							
										Creating a staging environment

										Creating Jenkins environment variables for staging support

										Deploying by force-pushing to the staging branch

							

						

								Complexity and limits to scaling deployments through Jenkins
							
										Managing multiple hosts

										The complexity of build scripts

										How do you know when you have hit the limit?

							

						

								Summary

								Further reading

					

				

						Chapter 8: Deploying Docker Apps to Kubernetes
					
								Technical requirements

								Options for Kubernetes local installation
							
										Minikube

										Verifying that your Kubernetes installation works

							

						

								Deploying a sample application – ShipIt Clicker v4
							
										Deploying the NGINX Ingress Controller and ShipIt Clicker locally

							

						

								Choosing a Kubernetes distribution
							
										Google Kubernetes Engine

										AWS EKS

										Microsoft Azure Kubernetes Service

										Reviewing other relevant options

										Objects

										ConfigMaps

										Pods

										Nodes

										Services

										Ingress Controllers

										Secrets

										Namespaces

							

						

								Spinning up AWS EKS with CloudFormation
							
										Introducing the AWS EKS Quick Start CloudFormation templates

										Preparing an AWS account

										Launching the AWS EKS Quick Start CloudFormation templates

										Configuring the EKS cluster

							

						

								Deploying an application with resource limits to Kubernetes on AWS EKS
							
										Annotating ShipIt Clicker to use the ALB Ingress Controller

							

						

								Using AWS Elastic Container Registry with AWS EKS
							
										Creating an ECR repository

										Local example – labeled environments in the default namespace

										Staged environments – Dev, QA, staging, and production

							

						

								Summary

					

				

						Chapter 9: Cloud-Native Continuous Deployment Using Spinnaker
					
								Technical requirements

								Improving your setup for Kubernetes application maintenance
							
										Managing the EKS cluster from your local workstation

										Troubleshooting kubectl connection failures

										Switching between local and cluster contexts

										Verifying that you have a working ALB Ingress Controller

										Preparing a Route 53 domain and certificate

										Building and deploying ShipIt Clicker v5

							

						

								Spinnaker – when and why you might need more sophisticated deployments
							
										Introduction to Spinnaker

							

						

								Setting up Spinnaker in an AWS EKS cluster using Helm
							
										Connecting to Spinnaker through the kubectl proxy

										Exposing Spinnaker via ALB Ingress Controllers

										Configuring Spinnaker using Halyard

										Connecting Spinnaker to Jenkins

										Setting up Jenkins to integrate with both Spinnaker and ECR

										Connecting Spinnaker to GitHub

										Connecting Spinnaker to Docker Hub

										Troubleshooting Spinnaker issues

							

						

								Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker
							
										Adding a Spinnaker application

										Adding a Spinnaker pipeline

										Setting up a DNS entry for the Ingress Controller

							

						

								Surveying Spinnaker's deployment and testing features
							
										Canary deployments

										Red/black deployments

										Rolling back

										Testing with Spinnaker

							

						

								Summary

								Further reading

					

				

						Chapter 10: Monitoring Docker Using Prometheus, Grafana, and Jaeger
					
								Technical requirements
							
										Setting up a demo application – ShipIt Clicker v7

							

						

								Docker logging and container runtime logging
							
										Understanding Kubernetes container logging

										Ideal characteristics for a log management system

										Troubleshooting Kubernetes control plane issues with logs

										Storing logs with CloudWatch Logs

										Storing logs for the long term with AWS S3

										Analyzing logs stored in S3 with AWS Athena

							

						

								Using the liveness, readiness, and startup probes in Kubernetes
							
										Using a liveness probe to see whether a container can respond

										Changing ShipIt Clicker to support separate liveness and readiness probes

										Exercise – forcing ShipIt Clicker to fail the readiness check

							

						

								Gathering metrics and sending alerts with Prometheus
							
										Prometheus' history

										Exploring Prometheus through its query and graph web interface

										Adding Prometheus metrics to an application

										Querying Prometheus for a custom metric

										Configuring Prometheus alerts

										Sending notifications with the Prometheus Alertmanager

										Exploring Prometheus queries and external monitoring in-depth

							

						

								Visualizing operational data with Grafana
							
										Gaining access to Grafana

										Adding a community-provided dashboard

										Adding a new dashboard with a custom query

							

						

								Application performance monitoring with Jaeger
							
										Understanding the OpenTracing API

										Introduction to Jaeger

										Exploring the Jaeger client with ShipIt Clicker

										Installing the Jaeger Operator

							

						

								Summary

								Further reading

					

				

						Chapter 11: Scaling and Load Testing Docker Applications
					
								Technical requirements
							
										Using the updated ShipIt Clicker v8

							

						

								Scaling your Kubernetes cluster
							
										Scaling the cluster manually

										Scaling the cluster dynamically (autoscaling)

							

						

								What is Envoy, and why might I need it?
							
										Network traffic management with an Envoy service mesh

										Setting up Envoy

							

						

								Testing scalability and performance with k6
							
										Recording and replaying network sessions

										Hand-crafting a more realistic load test

										Running a stress test

							

						

								Summary

								Further reading

					

				

						Section 3: Docker Security – Securing Your Containers

						Chapter 12: Introduction to Container Security
					
								Technical requirements

								Virtualization and hypervisor security models
							
										Virtualization and protection rings

										Docker and protection rings

							

						

								Container security models

								Docker Engine and containerd – Linux security features
							
										PID namespaces

										MNT namespaces

										NET namespaces

										IPC namespaces

										UTS namespaces

										USER namespaces

							

						

								A note on cgroups

								An overview of best practices
							
										Keeping Docker patched

										Securing the Docker daemon socket

										Docker won't fix bad code

										Always set an unprivileged user

							

						

								Summary

					

				

						Chapter 13: Docker Security Fundamentals and Best Practices
					
								Technical requirements

								Docker image security
							
										Image verification

										Using minimal base images

										Restricting privileges

										Avoiding data leakages from your image

							

						

								Security around Docker commands
							
										COPY versus ADD – what's the story?

										Recursive COPY – use with caution

							

						

								Security around the build process
							
										Using multi-stage builds

							

						

								Limiting resources and capabilities when deploying your builds
							
										Limiting resources

										Dropping capabilities

							

						

								Summary

					

				

						Chapter 14: Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels
					
								Technical requirements

								Securely storing secrets in Docker
							
										The Raft log

							

						

								Adding, inspecting, and removing secrets  
							
										Creating

										Inspecting

										Deleting

							

						

								Secrets in action – examples

								Docker tags for security

								Using labels for metadata application

								Summary

					

				

						Chapter 15: Scanning, Monitoring, and Using Third-Party Tools
					
								Technical requirements

								Scanning and monitoring – cloud and DevOps security for containers
							
										Scanning using Anchore Engine

										A brief mention of Chef InSpec

										Native monitoring locally using Docker stats

										Aggregating monitoring data in the cloud with Datadog

							

						

								Securing your containers using AWS
							
										Security alerts for AWS with GuardDuty

							

						

								Securing your containers using Azure
							
										Container monitoring in Azure

										Using Security Center to secure your containers in Azure

							

						

								Securing your containers using GCP
							
										Container Analysis and Binary Authorization in GCP

										Understanding your attack surface with Security Command Center

							

						

								Summary

								Further reading

					

				

						Chapter 16: Conclusion – End of the Road, but not the Journey
					
								Technical requirements

								Wrapping up – let's get started

								What we learned about development
							
										Going deeper – design patterns

							

						

								Next steps for taking your DevOps knowledge further
							
										Chaos engineering and building resilient production systems

							

						

								A summary on security and where to go next
							
										Metasploit – container-based penetration testing

							

						

								Summary

					

				

						Other Books You May Enjoy
					
								Leave a review - let other readers know what you think

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/B11641_09_004.jpg
NAME: spinnaker

LAST DEPLOYED: Sun May 3 14:33:10 2020

NAMESPACE: spinnaker

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

1. You will need to create 2 port forwarding tunnels in order to access the Spinnaker UI:
export DECK_POD=$(kubectl get pods --namespace spinnaker -1 "cluster=spin-deck" -o jsonpath="{.items[0].metadata.name}")
kubectl port-forward --namespace spinnaker $DECK_POD 9000

export GATE_POD=$(kubectl get pods --namespace spinnaker -1 "cluster=spin-gate" -o jsonpath="{.items[0].metadata.name}")
kubectl port-forward --namespace spinnaker $GATE_POD 8084

2. Visit the Spinnaker UI by opening your browser to: http://127.0.0.1:9000
To customize your Spinnaker installation. Create a shell in your Halyard pod:
kubectl exec --namespace spinnaker -it spinnaker-spinnaker-halyard-@ bash

For more info on using Halyard to customize your installation, visit:
https://www.spinnaker.io/reference/halyard/

For more info on the Kubernetes integration for Spinnaker, visit:
~ https://www.spinnaker.io/reference/providers/kubernetes-v2/

OEBPS/image/B11641_02_002.jpg
Docker Daemon

1

1

I

Container 3

Container 1 Container 2
Linux Kernel

I

Machine Resources (CPU, RAM, Networking, Disk...)

OEBPS/image/B11641_09_006.jpg
@ Admin

Jenkins Plugin Manager

4 Back to Dashboard

Filter: | “, ECR
Ve Manage Jenkins

Available Installed Advanced
Install | Name Version

Cisco Spark Notifier

Notify Cisco Spark spaces from build, post-build and pipeline steps using 'Secret text' ~ 1.1.1
credential containing bot or user token

HashiCorp Vault

Jenkins plugin to populate environment variables from secrets stored in HashiCorp's 3.4.1
Vault
Amazon ECR
This plugin generates Docker authentication token from Amazon Credentials to access 16
Amazon ECR.

CloudBees AWS Credentials

Install without restart Download now and install after restart . " 8
Update information obtained: 21

OEBPS/image/B11641_Preface_Table_1a.jpg
Software and systems covered in

the book

OS requirements and hosting environment

AWS or another cloud account with a

Grafana working Kubernetes cluster

Jasger AWS .or another cloud account with a
working Kubernetes cluster

Eiwvoy AWS .or another cloud account with a
working Kubernetes cluster

GitHub GitHub account (public cloud)

Docker Hub Docker account (public cloud)

Anchore Docker
Docker

Datadog AWS or another cloud account with a

working Kubernetes cluster

OEBPS/image/B11641_11_004.jpg
6 88 Shiplt Clicker 2 | < | O 2020-06-2901:11:03102020-06-2901:27:23 v | > &

Shipit Clicker Deployments Rate Shipit Clicker Deployments.
20 150K
20
15 100K
il 50K —~
50

‘
..a-u‘

012 0114 o116 0118

o112 014 0116 018 0120 012 0124 0126

— {app_kubemetes_jo_instance="shipitstaging", app_kubemetes_io_managed_by="spinnaker’,app) —
— {app_Kubemetes_jo_instance="shipit-v8", app_Kubernetes_lo_name="shipitclicker', instance="100, —
— {app_kubemetes_jo_instance="shipit-v&", app_kubernetes_o_name="shipitclicker',instance="100, —
— {app_kubemetes_io_instance="shipit-v8", app_kubernetes_io_name="shipitclicker’, instance="10.0, —

01:20

o022

0124 0126

lo_instance="shipi ', app. o,
o_instance="shipit-v8", app_Kubernetes_io_nam
Jo_Instance="shipit-v8", app_Kubetnetes_io_nam

Io_instance="shipit-v8", app_kubernetes_io_nami

OEBPS/image/B11641_09_012.jpg
Match against® TMRemove artifact
Account ©) obscurerichard v
File path © chapter9/helm.tar.gz
Displayname helm.tar.gz
If missing ©
Use Prior Execution
Use Default Artifact
Default artifact®
Account ©) obscurerichard v
Content URL © https://api.github.com/repos/PacktPublishing/Docker-for-Developer

Commit/Branch staging

OEBPS/image/12053.png
Docker
Enterprise

Packt>

OEBPS/image/B11641_07_007.jpg
Jenkins » configuration

Resource root URL

Without a resource root URL, resources will be served from the main domain with Content-Security-Policy
set.
Global properties

Disable deferred wipeout on this node
Environment variables

List of variables

Name shipit_prod_host

Value shipitclicker.example.com

Name

shipit_prod_user

@
Value

centos

Add
) Tool Locations

Pipeline Speed/Durability Settings

OEBPS/image/B11641_10_008.jpg
Jaeger Ul

Search

Service (1)

jaeger-query

Operation (2)

all

Tags @

Lookback

Last Hour

Min Duration

Max Duration

Limit Results

20

Find Traces

JSON File

Search Compare

15ms

Duration.

10ms

5ms.

11:47:00 am 11:47:10 am

5 Traces Sort: Most Recent

=

11:47:20 am

Deep Dependency Graph

Compare traces by selecting result items

jaeger-query: /api/services/{service}/operations 260bc45

1 Span . jaeger-query (1)

jaeger-query: /api/services/{service}/operations 2a45a60

1 Span . jaeger-query (1)

jaeger-query: /api/services 365416a

1 Span . jaeger-query (1)

jaeger-query: /api/services/{service}/operations 7e89efa

0.21ms

Today = 11:47:27 am
a few seconds ago

0.62ms

Today = 11:47:19 am
a few seconds ago

0.42ms

Today = 11:47:19 am

afew seconds ago

0.39ms

OEBPS/image/B11641_15_002.jpg
Running container ch; [57] Runningcont.. im Stoppedcont.. 1M Running containers by image i

1 26 1.00 datadog/agent:7

- 0.00 anchore/engine-cli:latest

Containers

Running containers by image

“ ““M

o

0.00 anchore/engine-db-preload:latest

00 gcr.io/google-containers/cadvisor:l...

e

00 anchore/anchore-engine:v0.6.1

OEBPS/image/B11641_08_008.jpg
$

aws sts get-caller-identity

"UserId": "AIDASDBKOBZBUC3RCCP42",
"Account'": '143970405955",
"Arn": "arn:aws:iam::143970405955:user/Administrator"

OEBPS/image/B11641_10_006.jpg
. @ 88 New dashboard -

i+

-

@ Last 2 days v

OEBPS/image/Packt_Logo.png
Packt

OEBPS/image/B11641_11_002.jpg
Application

Proxy

Application

Proxy

Application

Proxy

s

Application

Proxy

s

R N P T TR P

OEBPS/image/B11641_02_004.jpg
Hello, world
Counterx: 5

OEBPS/image/B11641_13_001.jpg
lore - Docker Hub

<« C @ hub.docker.com) ¥ Incognito @ i

& Docker EE & Docker CE [® containers M Plugins

Filters

25 of 2,821,049 available images. Most Popular

Docker Certified @
OFFICIAL IMAGE

Docker

© couchbase 10M+ 501
Certified Downloads Stars
Updated 37 minutes ago ‘
Images Couchbase Server is a NoSQL document database with a distributed architec...

Verified Publisher @ X86-64 F
Docker Certfied And Verified ‘

Publisher Content |

Official Images @
Oficia Images Published By orricaLimace @ i

Dooker ubuntu 10M+ 10K+

5 Downloads ~ Stars |
Updated 38 minutes ago

Categories @
Ubuntu is a Debian-based Linux operating system based on free software.
Analytics

Application
Frameworks

|
\
Application ‘
)

OEBPS/image/B11641_09_017.jpg
Deploy (Manifest) Configuration

Basic Settings

Account
Application
Override Namespace

Namespace

Manifest Configuration

Manifest Source

Manifest Artifact
Expression Evaluation

Required Artifacts to Bind

Rollout Strategy Options

Enable

default
shipandspin

default

Text

© Artifact
kube-templates.yaml

Skip SpEL expression evaluation

| Spinnaker manages traffic based on your selected strategy

OEBPS/image/B11641_09_010.jpg
New Application

Name *
Owner Email *
RepoType
Repo Project

Repo Name

Description

Instance Health

Instance Port O

Pipeline Behavior

*Required

sipandssin
wser@emplecom
sithub
mygithubuser

Docker forDevelopers

Enters description

Consider anly cloud provider health when executing tasks ©
Show health override option for each operation &
0

Enable restarting running pipelines ©
Enable re-run button on active pipelines ©

Cancel

OEBPS/image/B11641_Preface_Table_1.jpg
Software and systems covered in
the book

OS requirements and hosting environment

Docker v2.3

Windows, macOS X, and Linux (any)

Jenkins v2.25

Windows, macOS X, and Linux (any)

Kubernetes v1.15

Docker Desktop or MiniKube (Windows,
macOS X, and Linux)

Elastic Container Registry (ECR)
and Elastic Kubernetes Service
(EKS)

AWS account

Spinnaker v1.23

AWS or another cloud account with a
working Kubernetes cluster

Prometheus

AWS or another cloud account with a
working Kubernetes cluster

OEBPS/image/B11641_08_014.jpg
$ docker push $REPO/SIMAGE:latest

The push refers to repository [143970405955.dkr.ecr.us-east-2.amazonaws.com/dockerfordevelopers/shipitclicker]
91886c2bec58: Pushed

803db8939aa3: Pushed

0e0al8348ee5: Pushed

62e05e3bb22a: Pushed

1348a1focfff: Pushed

f3acd9559398: Pushed

784ec316539a: Pushed

405463c769df: Pushed

ffac27138e4b: Pushed

da64clc32e07: Pushed

latest: digest: sha256:c66f057ae0794e67705474fa480eaf653d0f8abeleb6bd13354a23a4aleefd89 size: 2409

OEBPS/image/B11641_08_001.jpg
Settings

General

I® Resources
W@ Docker Engine
> Command Line

@ Kubernetes

© Docker © Kubernetes

@ docker e 9'@ @O obscurerichard

Kubernetes
Vv1.15.5

Enable Kubernetes

Deploy Docker Stacks to Kubernetes by default

Show system containers (advanced)

Reset Kubernetes Cluster

OEBPS/image/B11641_10_004.jpg
#docker-book-notices *
& 4 | Add a topic Edit

||@T[Richard Bullington-McGuire 12:19 AM Today v
% added an integration to this channel: Prometheus

Prometheus APP 1:03 AM
| [FIRING:1] (Hello World)
Richard Bullington-McGuire 1:04 AM
1% ; 4 o g
‘ looks like the Prometheus Slack integration is working }‘

New

A @ © 0

OEBPS/image/B11641_01_002.jpg

OEBPS/image/B11641_Table_5.2.jpg
Dimension | Priority | Alternative 1: Alternative 2:
Docker on a single host | Google Cloud GKE

Setup 5 25 20

Features 1 1 5

Cost 5 25 15

Support 3 9 12

Elasticity 1 1

Availability |1 1

Stickiness |4 16 12

Total 78 74

OEBPS/image/B11641_Table_5.1a.jpg
Technology Setup | Features | Cost | Support | Elasticity | Availability | Stickiness

DigitalOcean | 4 2 3 1 4 4 2
Docker Swarm

Run your own |2 4 3 2 1 3 3
k8s cluster
(bare metal)

Run your own | 3 5 2 2 5 5 2
k8s cluster

(public cloud)

Run yourown |1 5 3 2 5 5 4
k8s cluster

(hybrid cloud)

OpenShift 3 4 1 5 4 4 1
OpenStack and | 1 5 1 1 4 4 2

Kubernetes

OEBPS/image/B11641_08_006.jpg
aws g,

es v Resource Groups v

Identity and Access Users > Administrator
Management (IAM) b
Summary
Dashboard

v Access management
Groups

Users

EC2 IAM

User ARN
Path

Creation time

CloudFormation CloudWatch

arn:aws:iam::1 :S:user/Administrator [l
/

2020-04-27 00:05 EDT

OEBPS/image/B11641_08_004.jpg
kubectl get secrets
NAME

default-token-sm7kn
nginx-ingress-backend-token-slkjf

nginx-ingress-token-v5jjp
sample-secret
secex

sh.
sh.
sh.
sh.
sh.
sh.

helm.
helm.
helm.
helm.
helm.
helm.

release.
release.
release.
release.
release.
release.

.nginx-ingress.
.shipitclicker.
.shipitclicker.
.shipitclicker.
.shipitclicker.
.shipitclicker.

shipitclicker-secrets
shipitclicker-token-1c9qv

TYPE

kubernetes.io/service-account-token
kubernetes.io/service-account-token
kubernetes.io/service-account-token

Opaque
Opaque

helm

helm.
helm.

helm

helm.
helm.

.sh/release.
sh/release.
sh/release.
.sh/release.
sh/release.
sh/release.

Opaque

kubernetes.io/service-account-token

o
>
3
>

WHRHRHRRERBRRB®®W®

AGE
15d
3h43m
3h43m
15m
12m
3h43m
3h36m
3him
112m
104m
102m
102m
3h30m

OEBPS/image/B11641_03_001.jpg
@ hello-world - Docker Hub

AR Inme & =

Explore Signin Pricing Get Started

hello-world +¢
>Egl:|]?j Docker Official Images

Hello World! {an example of minimal Dockerization)

windows - x86-64 | latest) -

& 1oms
Copy and paste to pull this image

Container Windows Linux ARM 64 #86-64 PowerPC 64 LE ARM 386
docker pull hello-world

IBMZ Official Image
View Available Tags

Description Reviews Tags

Supported tags and respective Dockerfile links

(See "What's the difference between 'Shared' and 'Simple’ tags?" in the FAQ.)

OEBPS/image/B11641_12_003.jpg
About Docker Desktop

Preferences...

Diagnose and Feedback...

Documentation
More of Docker

Kitematic

Sign in / Create Docker ID
Repositories
Kubernetes

Restart
Quit Docker Desktop

OEBPS/image/B11641_08_012.jpg
aws Services v Resource Groups v EC2 *

= ER > .. > Createrepository

Create repository

Repository access and tags

Repository name
143970405955.dkr.ecr.us- dockerfordevelopers/shipitclicker
east-2.amazonaws.com/

Anamespace can be included with your repository name (e.g. namespace/repo-name).

Tag immutability

Enable tag immutabiliy to prevent image tags from being overwritten by subsequent image pushes using the same tag.
Disable tag immutability to allow image tags to be overwritten.

O Disabled

Image scan settings

Scan on push

Enable scan on push to have each image automatically scanned after being pushed to a repository. If disabled, each image
scan must be manually started to get scan results.

O Disabled

Cancel Create repository

rivacy Policy Terms of Use

OEBPS/image/B11641_16_001.jpg
P ———————

e
AT ————
P

[
st
teeps: Anetasolot. con

-
<ol 2023 exploits - 1102 auailiory - 344 post
<[562 paylocds - 45 encoders - 10 noos

[7 svesion

Vetasplott tip: Enable verhose Loaging wesh

(4] Procassing docker/msfcorsete. e for €58 directives
(4] resourcs (éocker/sfeonsole. -c)» Ruby Code (236 yces)
ST = 172.17.0.3

i}

OEBPS/image/cover.png
Continuous
Delivery with
Docker and Jenkins

——

Packt>

OEBPS/image/B11641_07_003.jpg
Admin | log out

Jenkins

Al

Enter an item name

Hello Docker

» Required field

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for
something other than software build.

Y

Multi-configuration project

T Pipeline
%) orchestats ong-nuing actes ha can span maltple b agents. Sutable for uing pipeies (ormery known as workfows) andor
) Suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc.
N

organizing complex activities that do not easily fitin free-style job type.

Folder

Greates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a flter, a folder creates a separate
namespace, so you can have multiple things of the same name as long as they are in different folders.

GitHub Organization

Scans a GitHub organization (or user account) for allrepositories matching some defined markers.

GitHub Organization
&3)./ Scans a GitHub organization (or user account) for all repositories matching some defined markers.

= Multibranch Pipeline
(2) Creates a set of Pipeline projects according to detected branches in one SCM repository.

If you want to create a new item from other existing, you can use this option:

a Copy from [Typemaumcompxe«e

Page generated: Mar 2, 2020 4:10:13 AM UTC REST API

Jenkins ver, 2.219

OEBPS/image/B11641_15_005.jpg
Running containers 5m Stopped containers 5m Running containers by pod

W

33 48

o7 o800

050

OEBPS/image/B11641_07_008.jpg
(©)] Admin llogo

Jenkins » Packt Publishing Docker-for-Developers » master » ENABLE AUTO REFRES
% U
Branch master
O, status
— Full project name: Packt-Publishing/Docker-for-Developers/master
= Changes
) " receni
Build Now | =% Recent Changes
S
ﬁ View Configuration
O, Full Stage View Stage View
P aitHup
T Declarative: .
Pipeline Syntax Checkout SCM build deploy
Avel 1 4
Build History trend = ~ - s - o . Qs_
find X #3
Apr 05 1 854ms 2s 13s
@ # Apr 6, 2020 2:32 AM PYVORl commit
@ Apr 6, 2020 2:05 AM
on Apr 5, 2020 8:20 PM Apr05 1s 4s 6s
22:05
failed|
Atom feed for all [} Atom feed for ;
failures AT 05 No
S 1s 6s 10s
16:20
Permalinks

« Last build (#3), 3.7 sec ago

OEBPS/image/B11641_01_004.jpg

OEBPS/image/B11641_12_001.jpg

OEBPS/image/B11641_09_015.jpg
Bake (Manifest) Configuration

Template Renderer

Render Engine © HELM2 v

Helm Options

Name shipit-staging
Namespace default
Template Artifact
Expected Artifact © ©) helm.tar.gz v
Overrides
Expected Artifact (9] values-spin.yaml v o
©Add value artifact
Overrides Key Value
image.repository ${trigger("properties"]["imay ﬁ

ingress.hosts[0].host #hipitrstaging,eks,example,c ﬁ

Expression Evaluation © Evaluate SpEL expressions in overrides at bake time

OEBPS/image/B11641_09_002.jpg
Back to Hosted Zones Import Zone File Delete Record Set Test Record Set
QRecord Set Name NOETE 8o By
Name ~ Type - Value -
shipitcicker.com. A 24238 248 102
ns-1372.awsdns-43.0rg.
shipitclicker.com. NS 1ns-645.awsdns-16.net.
ns-378.awsdns-47.com.
ns-1842.awsdns-38.co.uk.
shipitclicker.com. SOA ns-1372.awsdns-43.0rg. awsdns-hostmaster.amazol
. GNAME _3h20035756470680061dof0551301ac3.aviqqrachs.
< CNAME _d707355be64409e38f41714e6c487186.auiqqraehs
shipit-staging,eks.shipitclicker.com. A ALIAS dualstack 9bbd6t9c-default-shipitsta-1229-15
shipit-v5.eks.shipitciicker.com. A ALIAS dualstack 9bbd6f9c-default-shipitvss-051a-1¢
spinnaker-gate.eks.shipitclicker.com. A ALIAS dualstack 9bbd6f9c-spinnaker-spingat-712f-1
‘spinnaker.eks.shipitclicker.com. A ALIAS dualstack.9bbd6f9c-spinnaker-spindec-503-*
jenkins sipitcicker.com, A ALIAS dualstack.To44{612814d07cTeedbBefefBd30
K CNAME
staging.shipitclicker.com. A 18.213.192.151

1< < Displaying 110 12 outof 12 Record Sots > |

Evaluate Target Health~ Health Check ID -

™o

300

172800

900

300

300

300

300

Create Record Set

Name: shipit-v5.eks shipitdlicker.com.
Type: | A-IPv4 address K]
Alias: OYes “No

Alias Target: 199361 .us-east-2.elb.amazonaws.com.

Alias Hosted Zone ID: ZJAADJGXGKTTL2

You can also type the domain name for the resource. Examples:

-&

- 33 website endpoint. s3-websil.us-cast-2 amazonaws.com
- Resource record set n this hosted zone: www.example.com
- VPC endpoint: example.us-east 2.vpce.amazonaws.com

Leam More

Routing Policy: Simple

Evaluate Target Health: ~ Yes © No

OEBPS/image/B11641_10_002.jpg
Services ~ Resource Groups + iminsirator © docker-or-de

e CloudWatch > ClowdWatchLogs > Log groups. ‘Switch to the original interface.
Oustbomncs A
o Log groups (11) [| [actons v | auery tog e
@ e g g meg <090
N Log group. 4 Retention ¢ Storedbytes v Creationtime
Logs
Loparoues O iepfexs rwsTsos s Moo 3550 2omsoan
s
O foepombisianscon XS s 10 Complondisl.. Newroge 14360 e
ey — » . 00
s [ot o 45 st 6 sty Newraspee 2dasage
= B — .
SoneLens T o ambiAmeon S5-I Rey. Nevr e 2
Scaion
St [b son 55 865tk GHS DR G, Nerrcaps Zommsse
Container Insights @) C /awsflambrda/Amazon-EKS-EKSStack-16HISTXPVPX-GetCall, Never expire. 142K8 22 daysago.
T e [ovonbis/msn S S SOV o, Newren 1380 R
Syrtntics € et S5 ST HS OV . Newropie 843960 2dasage
Carsios
[o B S TIPS S . Nowrops 2omosn

Gontrbutor nsights
Settings O owsesssclustartons Noveropie Taads ke P

OEBPS/image/B11641_03_003.jpg
Publisher/Subscriber Architecture

MQTT Broker

2l i

Publisher Subscriber

i if

MongoDB Redis

OEBPS/image/B11641_08_010.jpg
aws Services v Resource Groups v EC2 % Q Ohio ¥ Support ¥

CloudFormation

Step 1
Specify template

Step 2
Specify stack details

Step 3
Configure stack
options

Step 4
Review

Create stack

Create stack

Prerequisite - Prepare template

Prepare template
Every stack is based on a template. A template is a JSON or YAML file that contains configuration information
about the AWS resources you want to include in the stack.

O Template is ready Use a sample Create template in
template Designer

Specify template

A template is a JSON or YAML file that describes your stack's resources and properties.

Template source
Selecting a template generates an Amazon S3 URL where it will be stored.

© Amazon S3 URL Upload a template file

Amazon S3 URL
https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-ma

Amazon S3 template URL

View in
Designer

S3 URL: https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/tem
plates/amazon-eks-master.template.yaml

OEBPS/image/B11641_07_001.jpg
Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written
to the log (not sure where to find it?) and this file on the server:

/var/lib/jenkins/secrets/initialAdminPassword

Please copy the password from either location and paste it below.

Administrator password

OEBPS/image/B11641_09_009.jpg
Branch Sources

GitHub
Credentials obscurerichard/***** (GitHub token for repo access) j o Add ~ @®
User obscurerichard
© Repository HTTPS URL
Repository HTTPS URL _ hitps:/igithub.com/PacktPublishing/Docker-for-Developers @
Validate

Repository Scan - Deprecated Visualization

Discover branches

Strategy | Exclude branches that are also filed as PRs - (2}
s e e e = %)
Strategy Merging the pull request with the current target branch revision - (2)
e — =,
Strategy Merging the pull request with the current target branch revision - @
Trust From users with Admin or Write permission .‘ @®

May ot be supported on older versions of GitHub Enterprise. See help button.

Add ~

Property strategy |~ All branches get the same properties

Add property ~

Add source ~

Build Configuration

Mode by Jenkinsfile J

Script Path chapteraiJenkinsfile @®

OEBPS/image/B11641_09_005.jpg
Jenkins Admin

4 People
Status

= Builds

o Configure

& My views

* Credentials

Full Name Admin

Description

API Token

Current token(s)
There are no registered tokens for this user.

spinnaker Generate

Add new Token

Cancel

@

OEBPS/image/B11641_10_009.jpg
Jaeger Ul

Search Compare System Architecture About Jaeger
< « shipitclicker-v7: /:id/:element % | [aais views
Trace Start June 13 2020, 20:14: Duration 6ms Services 1 Depth 2 Total Spans 2
oms i5ms ams asms ons
Service & Operation v > ¥ » oms 1.5ms ams 45ms 6ms
| shipitlicker-v7 iatseman: ——————————————————————————————G—
id/:element

Service: shipitclicker-v7 | Duration: 6ms | Start Time: Oms
> Tags: hitp.method - PATCH

hitp.status_code =200 | hitp.url - /api/v2/games/Kh\KAKZY JLkoeQUBSLF1/score.
> Process: ${namespace}.version - 0.10.0

client-uuid - e3412375-c7de-4944-af9c-20664945de7e
v Logs (3)

hostname - 7d.
> Oms: event - request_received payload - undefined

> Bms: key - KWKAKZYJLkoeQUBSLF1/score | msg - Game item Redis INCRBY complete

value - 553
> 6ms: event - request_finished | payload - undefined
Log tmestamps ar reativ t th sar time of the fl race.
e2b7e0b35800ed11 &
shipitclicker-v7 redis) 3ms
redis

Service: shipitclicker-v7 | Duration: 3ms . Start Time: Oms

INCRBY Knv/IAKZYJLkoeQUBSLF1/score 4 db.type - redis.
> Process: ${namespace}.version - 0.10.0

> Tags: db.statement

internal.span.format

Jasger.
client-uuid - 6341a375-C7de-4944-af9c-20664945dk7e

hostname = 7d.
v Logs (1)

> 3ms: result-553

Log timestamps aro relative o thestarttm of the ful trace.

1269208582430476

OEBPS/image/B11641_15_003.jpg
0 Security Configuration Detection Rules

—— [

(61 contwmed x| shom isavied ruies €D
Optom ©

w1 sy souct scort

Contamer Image Vuiner ability Ostected o4a00 " =2 B wadock o D

Contios Vieited Comphonce tamdards 04T [I o0

OEBPS/image/cover.jpg
Docker for
Developers

OEBPS/image/B11641_09_013.jpg
Match against TRemove artifact
Account O obscurerichard v

File path chapter9/values-spin.yaml

Display name values-spin.yaml

If missing
Use Prior Execution

Use Default Artifact
Default artifact

Account O obscurerichard v

Content URL https://api.github.com/repos/PacktPublishing/Docker-for-Developer

Commit/Branch staging

OEBPS/image/B11641_13_002.jpg
dockerfordevelopers/shipitclicker:0.1
DIGEST: sha256:39edad3d15866957 feaee28f8f c5adb545276a64147445c64992ef69804db 01

OS/ARCH Size LAST PUSHED
linux/amds4 268M8 afew seconds ago by rpigui

OEBPS/image/B11641_07_004.jpg
#® Jenkins Admin 1 log out

Jenkins » HelloDocker » #1
4 Backto Project

0, status o Console Output

= changes

Started by user Admin
I3 console Output Running in Durability level: MAX_SURVIVABILITY
peline] Start of Pipeline
Pipeline] node
Running on Jen
pipeline] {
peline] isUnix
ipeline] sh
& Docker Fingerprints. + docker inspect -f . alpine:20191114

7| View as plain text

= et uid Information s in /var/1ib/jenkins/workspace/Hello Docker

® Delete build #1°

peline] withDockerContainer

@ Restart from Stage

Jenkins does not seem to be running inside a container

& Repiay $ docker run -t -d -u 997:993 -w '/var/lib/jenkins/workspace/Hello Docker" -v
£} Pipeiie Steps "/var/1ib/jenkins /workspace/Hello Docker:/var/lib/jenkins/workspace/Hello

Docker:rw,z" -v "/var/Lib/jenkins/workspace/Hello Docker@tmp:/var/lib/jenkins
B Workspaces /workspace/Hello Docker@tmp:rw,z" -e *+#++4s _g *+shsss _g *issesss _e

B Next Build e KAEREREE @ AERKRERE @ KARRKAKE _p FRRKARRE @ KERERARE _@ KAERERER @
alpine:20191114 cat
$ docker top 240902358b3bSbet7d24e741e5724£c4£e70da9c06d1 £ TbE5ea5A9SbI2bASSE
-eo pid, comn

peline] (

peline] stage

{ (build)

peline] sh

+ echo 'Hello, World (Docker for Developers Chapter 7)'

Hello, World (Docker for Developers Chapter 7)

Pipeline] }

peline] // stage

(pipeline) }

§ docker stop --time=1

240902358b3b5be67d24e74105724£ca e70dadc06d] £cTbESee5d95b32bASS £

$ docker rm -f 240902358b3bSbe67d24e741e5724c4e70dadc06d] fcTbESee5d95bIZbASS £

Pipeline] // withDockerContainer

peline] }

pipeline] // node

peline] End of Pipeline

Finished: SUCCESS

Page generated: May 7, 2020 9:11:43PM UTC RESTAPI Jenkins ver. 2219

OEBPS/image/B11641_15_001.jpg
cAdvisor
/

ot

Docker Containers
Subcontainers

1000-matadsta

o03-syce
004-Aormat
1908-wxtere
Py
1098wt
[T E——
P ——
Pap—

nio

oo

g

nubessds
et

[e——

Alowed Cores 0123

OEBPS/image/B11641_09_003.jpg
o spinnaker-poc Permalink 4 © - pipelineActions~

Configuration Bake (Manifest) Deploy (Manifest)

@ Notify

Check Preconditions

OEBPS/image/B11641_11_003.jpg
[w ﬂ Elements Memory Console Network Security ~ Sources Lighthouse » A1 £ : X

Search X @® O ¥ Q Preserve log (] Disable cache | Online v + 3 fes
ﬁ C (Filter (O Hide data URLs
XHR JS CSS Img Media Font Doc WS Manifest Other (] Has blocked cookies
() Blocked Requests
| 500 ms 1000 ms 1500 ms 2000
=

Name X Headers Preview Response Initiator Timing

Look Up “shipit"” !
JRL: https://shipit-v8.eks.shipitclicker.com/
!] f_h'pi Open in Sources panel Vethod: GET
M3 Open in new tab \de: @ 304
__._gg app" o \ddress: 18.219.50.74:443
Clear browser cookies olicy: no-referrer-when-downgrade

Copy link address
Copy response

_—_I /api} Block request URL
 Block request domain Copy as fetch

depl
. Copy as Node.js fetch
/api/
| Sort By . L Copy as cURL
_j next Header Options > Copy all as fetch
/api

injed Save all as HAR with content Copy all as Node.js fetch
i’s] Save as... Copy all as cURL o

— 9PP(¢ Copy all as HAR
Cobv 7

OEBPS/image/B11641_02_001.jpg
B Ti SHQE e

OEBPS/image/B11641_09_007.jpg
4 search @ Admin Ilogo

Jenkins Update Center

4 Back to Dashboard
o Manage Jenkins

.ﬂ Manage Plugins

ENABLE AUTO REFRESH

Installing Plugins/Upgrades

Preparation
« Checking internet connectivity
« Checking update center connectivity
« Success
Variant 0 Downloaded Successfully. Will be activated during the next boot
Amazon Web Services SDK Installing
-_———
CloudBees AWS Credentials Pending
Amazon ECR Pending
Restarting Jenkins Pending

» Go back to the top page
(you can start using the installed plugins right away)

B> @ Restart Jenkins when installation is complete and no jobs are running

OEBPS/image/B11641_09_014_New.jpg
Automated Triggers
Type

Master

Job

Property File 0

Artifact Constraints O

Jenkins

my-jenkins-master

Spinnaker/job/staging

build properties

Select,

© Trigger Enabled

© Add Trigger

B

Q

4

OEBPS/image/B11641_09_016.jpg
Produces Artifacts

Match against © @
Kind Base64 v An artifact that includes its referenced resource as part of its payload.
Name kube-templates.yaml

Assign to a matched artifact

Display name kube-templates.yaml

If missing ©

Use Default Artifact

OEBPS/image/B11641_09_011.jpg
SPINNAKER Search Projects ~ Applications Search (o} (2]

® shipandspin = i= PIPELINES & INFRASTRUCTURE [TASKS CONFIG

» + = Group by Pipeline j Show | 20 j executions per pipeline @ stage durations [+] o 24 u

OEBPS/image/B11641_10_007.jpg
0

+

» S

Q #

88 Shiplt Clicker -

4.0

3.0

2.0

== {app_kubernetes_io_instance="shipit-staging",app_kubernetes_io_n

Shipit Clicker Deployments Rate

i+

23:20

23:30

23:40

e

[Olast30minues> Q <& ~

Shiplt Clicker Deployments

111.30K
111.20K
111.10K

111.00K

110.90 K
23:20 23:30 23:40

== shipitclicker_deployments_total{app_kubernetes_io_instance="ship

OEBPS/image/B11641_08_002.jpg
$ kubectl get pods -A

NAMESPACE
docker
docker
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kuge—system

NAME

compose-78f95d4f8c-6q47g
compose-api-6ffb89dc58-xmc7g
coredns-5644d7b6d9-trt7s
coredns-5644d7b6d9-x7z5f
etcd-docker-desktop
kube-apiserver-docker-desktop
kube-controller-manager-docker-desktop
kube-proxy-9mq8k
kube-scheduler-docker-desktop
storage-provisioner
vpnkit-controller

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OH @000 00

AGE
13d
13d
13d
13d
13d
13d
13d
13d
13d
13d
13d

OEBPS/image/B11641_02_003.jpg
Hello, world
1

Counterx

OEBPS/image/B11641_10_005.jpg
< New dashboard - B # Olast2days- Q & ~

150K

100K

50K

Panel Title

[
6/90000 6/90400 6/90800 6/91200 6/91600 6/920:00 6/1000:00 6/100400 6/1008:00 6/101200 6/1016:00 6/102000

— shiptclicker_deployments_total{app_kubemetes.io_instance="shipit-staging’,app_kubemetes_io_managed_by="spinnaker'app_kubernetes._jo_name="shipiclic

®
S
©
®

Query @ default - Add Query Query Inspector ?

Metrics ~ shipitclicker_deployments_total
Legend © Minstep © Resolution /1 ~

Format Time series ~ Instant @ Prometheus O

Min time interval ~ © Relative time. Time shift

OEBPS/image/B11641_08_009.jpg
Resource Groups v

New EC2 Experience o
US East (N. Virginia)

| US East (Ohio) us-east-2
EC2 Dashboard New

US West (N. California)
Events New

OEBPS/image/B11641_07_006.jpg
] @ Admin llogout

& Jenkins 3

Jenkins > Al >

Enter an item name

SSH to Production |

» Required field

Freestyle project
This is the central feature of Jenkins. Jenkins wil build your project, combining any SCM with any build
system, and this can be even used for something other than software build.

Pipeline
Orchestrates long-running activities that can span multiple build agents. Suitable for building pipelines.
(formerly known as workflows) and/or organizing complex activiies that do not easily ft in free-style job.

type.

Multi-configuration project

Sutable for projects that need a large number of different configurations, such as testing on muttiple:
environments, platform-specific builds, etc.

Folder

Creates a container that stores nested items i it. Useful for grouping things together. Unlike view, which is
just a flter a folder creates a separate namespace, o you can have multple things of the same name as
long as they are in different folders.

GitHub Organization
Scans a GitHub organization (or user account) for al repositories matching some defined markers.

GitHub Organization
Scans a GitHub organization (or user account) for al repositories matching some defined markers.

Multibranch Pipeline
Creates a set of Pipeline projects according to detected branches in one SCM repository.

If you want to create a new item from other existing, you can use this option:

Copy from ‘ Type to autocomplete

=

Page generated: Mar 16, 2020 1:19:48 AM UTC REST AP Jenkins ver. 2219

OEBPS/image/B11641_11_001.jpg
Number of nodes
‘The number of Amazon EKS node instances. The defauit s one for each of the three Avallablity Zon

[a

Maximum number of nodes
‘The maximum number of Amazon EKS node Instances. The default is three node.

