

Cloud Native with
Kubernetes

Deploy, configure, and run modern cloud native
applications on Kubernetes

Alexander Raul

BIRMINGHAM—MUMBAI

Cloud Native with Kubernetes
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Karan Sadawana

Acquisition Editor: Rahul Nair

Senior Editor: Arun Nadar

Content Development Editor: Pratik Andrade

Technical Editor: Soham Amburle

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Prashant Ghare

First published: January 2021

Production reference: 1031220

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83882-307-8

www.packt.com

http://www.packt.com

To my team at Rackner, my family, and my friends for their support in
the process. To my girlfriend, for dealing with all the late nights of writing.

And to the late Dan Kohn, in memoriam, for introducing me to and
evangelizing the amazing Kubernetes community.

– Alexander Raul

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Alexander Raul is CEO of Rackner, an innovative consultancy that builds, runs, and
secures Kubernetes and the cloud for clients ranging from highly funded start-ups to
Fortune and Global 500 enterprises. With Rackner, he has personally built and managed
large Kubernetes-based platforms and implemented end-to-end DevSecOps for incredible
organizations. Though his background and education are technical (he received an
aerospace degree from the University of Maryland), he is well versed in the business
and strategic arguments for the cloud and Kubernetes – as well as the issues around the
adoption of these technologies. Alexander lives in Washington, D.C. – and when he isn't
working with clients, he's mountaineering, skiing, or running.

About the reviewer
Zihao Yu is a senior staff software engineer at HBO in New York City. He has been
instrumental in Kubernetes and other cloud-native practices and CI/CD projects within
the company. He was a keynote speaker at KubeCon North America 2017. He holds a
Master of Science degree in computer engineering from Rutgers, The State University of
New Jersey, and a Bachelor of Engineering degree from Nanjing University of Science and
Technology in China.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Section 1:
Setting Up Kubernetes

1
Communicating with Kubernetes

Technical requirements 19
Introducing container
orchestration 20
What is container orchestration? 20
Benefits of container orchestration 20
Popular orchestration tools 21

Kubernetes' architecture 21
Kubernetes node types 21
The Kubernetes control plane 22
The Kubernetes API server 22
The Kubernetes scheduler 23
The Kubernetes controller manager 23
etcd 23
The Kubernetes worker nodes 23
kubelet 24
kube-proxy 24
The container runtime 24
Addons 24

Authentication and
authorization on Kubernetes 25
Namespaces 25
Users 25
Authentication methods 25
Kubernetes' certificate infrastructure
for TLS and security 26
Authorization options 27
RBAC 27
ABAC 28

Using kubectl and YAML 29
Setting up kubectl and kubeconfig 29
Imperative versus declarative commands 30
Writing Kubernetes resource YAML files 32

Summary 33
Questions 33
Further reading 34

Table of Contents

ii Table of Contents

2
Setting Up Your Kubernetes Cluster

Technical requirements 36
Options for creating a cluster 36
minikube – an easy way to start 37
Installing minikube 37
Creating a cluster on minikube 38

Managed Kubernetes services 38
Benefits of managed Kubernetes services 39
Drawbacks of managed Kubernetes
services 39

AWS – Elastic Kubernetes Service 39
Getting started 40

Google Cloud – Google
Kubernetes Engine 41
Getting started 41

Microsoft Azure – Azure
Kubernetes Service 43
Getting started 43

Programmatic cluster creation
tools 44
Kubeadm 44
Kops 45
Kubespray 45

Creating a cluster with Kubeadm 45

Installing Kubeadm 46
Starting the master nodes 46
Starting the worker nodes 46
Setting up kubectl 46

Creating a cluster with Kops 47
Installing on macOS 47
Installing on Linux 47
Installing on Windows 47
Setting up credentials for Kops 48
Setting up state storage 49
Creating clusters 50

Creating a cluster completely
from scratch 51
Provisioning your nodes 51
Creating the Kubernetes certificate
authority for TLS 51
Creating config files 52
Creating an etcd cluster and
configuring encryption 52
Bootstrapping the control plane
component 53
Bootstrapping the worker node 55

Summary 56
Questions 56
Further reading 56

3
Running Application Containers on Kubernetes

Technical requirements 58
What is a Pod? 58
Implementing Pods 58
Pod paradigms 59

Pod networking 60
Pod storage 60
Namespaces 60
The Pod life cycle 61

Table of Contents iii

Understanding the Pod resource spec 62

Summary 76

Questions 77
Further reading 77

Section 2:
Configuring and Deploying Applications on
Kubernetes

4
Scaling and Deploying Your Application

Technical requirements 82
Understanding Pod drawbacks
and their solutions 82
Pod controllers 83

Using ReplicaSets 84
Replicas 85
Selector 85
Template 86
Testing a ReplicaSet 86

Controlling Deployments 87
Controlling Deployments with
imperative commands 90

Harnessing the Horizontal Pod
Autoscaler 91
Implementing DaemonSets 92
Understanding StatefulSets 94
Using Jobs 96
CronJobs 98

Putting it all together 100
Summary 105
Questions 105
Further reading 106

5
Services and Ingress – Communicating with the Outside
World

Technical requirement 108
Understanding Services and
cluster DNS 108
Cluster DNS 109
Service proxy types 110

Implementing ClusterIP 111

Protocol 112

Using NodePort 113
Setting up a LoadBalancer
Service 117
Creating an ExternalName
Service 118

iv Table of Contents

Configuring Ingress 120
Ingress controllers 121

Summary 127
Questions 127
Further reading 127

6
Kubernetes Application Configuration

Technical requirements 130
Configuring containerized
applications using best
practices 130
Understanding ConfigMaps 130
Understanding Secrets 131

Implementing ConfigMaps 131
From text values 132
From files 133
From environment files 134
Mounting a ConfigMap as a volume 134
Mounting a ConfigMap as an
environment variable 135

Using Secrets 136
From files 137
Manual declarative approach 138
Mounting a Secret as a volume 138
Mounting a Secret as an environment
variable 139
Implementing encrypted Secrets 140
Checking whether your Secrets are
encrypted 142
Disabling cluster encryption 143

Summary 144
Questions 145
Further reading 145

7
Storage on Kubernetes

Technical requirements 148
Understanding the difference
between volumes and
persistent volumes 148
Volumes 148
Persistent volumes 152
Persistent volume claims 153
Attaching Persistent Volume Claims
(PVCs) to Pods 155

Persistent volumes without
cloud storage 156
Installing Rook 157
The rook-ceph-block storage class 159
The Rook Ceph filesystem 161

Summary 164
Questions 165
Further reading 165

Table of Contents v

8
Pod Placement Controls

Technical requirements 168
Identifying use cases for Pod
placement 168
Kubernetes node health placement
controls 168
Applications requiring different node
types 169
Applications requiring specific data
compliance 169
Multi-tenant clusters 170
Multiple failure domains 170

Using node selectors and node
name 172
Implementing taints and
tolerations 173
Multiple taints and tolerations 177

Controlling Pods with node
affinity 177

Using
requiredDuringSchedulingIgnored
DuringExecution node affinities 178
Using preferredDuringScheduling
IgnoredDuringExecution node affinities 180
Multiple node affinities 182

Using inter-Pod affinity and
anti-affinity 184
Pod affinities 184
Pod anti-affinities 187
Combined affinity and anti-affinity 188
Pod affinity and anti-affinity limitations 190
Pod affinity and anti-affinity
namespaces 190

Summary 191
Questions 192
Further reading 192

Section 3:
Running Kubernetes in Production

9
Observability on Kubernetes

Technical requirements 196
Understanding observability on
Kubernetes 196
Understanding what matters for
Kubernetes cluster and application
health 197

Using default observability
tooling 199
Metrics on Kubernetes 199
Logging on Kubernetes 202
Installing Kubernetes Dashboard 203
Alerts and traces on Kubernetes 208

vi Table of Contents

Enhancing Kubernetes
observability using the best of
the ecosystem 208
Introducing Prometheus and Grafana 208
Implementing the EFK stack on
Kubernetes 218

Implementing distributed tracing with
Jaeger 224
Third-party tooling 229

Summary 230
Questions 231
Further reading 231

10
Troubleshooting Kubernetes

Technical requirements 234
Understanding failure modes
for distributed applications 234
The network is reliable 235
Latency is zero 236
Bandwidth is infinite 236
The network is secure 236
The topology doesn't change 237
There is only one administrator 237
Transport cost is zero 237
The network is homogeneous 238

Troubleshooting Kubernetes
clusters 238

Case study – Kubernetes Pod
placement failure 238

Troubleshooting applications
on Kubernetes 243
Case study 1 – Service not responding 243
Case study 2 – Incorrect Pod startup
command 248
Case study 3 – Pod application
malfunction with logs 251

Summary 257
Questions 257
Further reading 257

11
Template Code Generation and CI/CD on Kubernetes

Technical requirements 260
Understanding options for
template code generation on
Kubernetes 260
Helm 261
Kustomize 261

Implementing templates on
Kubernetes with Helm and

Kustomize 262
Using Helm with Kubernetes 262
Using Kustomize with Kubernetes 272

Understanding CI/CD
paradigms on Kubernetes – in-
cluster and out-of-cluster 279
Out-of-cluster CI/CD 280
In-cluster CI/CD 280

Table of Contents vii

Implementing in-cluster and
out-of-cluster CI/CD with
Kubernetes 281
Implementing Kubernetes CI with AWS
Codebuild 281

Implementing Kubernetes CI with
FluxCD 285

Summary 290
Questions 290
Further reading 290

12
Kubernetes Security and Compliance

Technical requirements 292
Understanding security on
Kubernetes 292
Reviewing CVEs and security
audits for Kubernetes 293
Understanding CVE-2016-1905 –
Improper admission control 293
Understanding CVE-2018-1002105 –
Connection upgrading to the backend 294
Understanding the 2019 security audit
results 294

Implementing tools for cluster
configuration and container
security 295

Using admission controllers 295
Enabling Pod security policies 301
Using network policies 308

Handling intrusion detection,
runtime security, and
compliance on Kubernetes 313
Installing Falco 313
Understanding Falco's capabilities 315
Mapping Falco to compliance and
runtime security use cases 319

Summary 320
Questions 320
Further reading 320

Section 4:
Extending Kubernetes

13
Extending Kubernetes with CRDs

Technical requirements 324
How to extend Kubernetes with
custom resource definitions 324
Writing a custom resource definition 325

Self-managing functionality
with Kubernetes operators 333
Mapping the operator control loop 334
Designing an operator for a custom
resource definition 336

viii Table of Contents

Using cloud-specific Kubernetes
extensions 339
Understanding the cloud-controller-
manager component 340
Installing cloud-controller-manager 340
Understanding the cloud-controller-
manager capabilities 343
Using external-dns with Kubernetes 344

Using the cluster-autoscaler add-on 346

Integrating with the ecosystem 346
Introducing the Cloud Native
Computing Foundation 347

Summary 348
Questions 348
Further reading 348

14
Service Meshes and Serverless

Technical requirements 350
Using sidecar proxies 350
Using NGINX as a sidecar reverse proxy 352
Using Envoy as a sidecar proxy 357

Adding a service mesh to
Kubernetes 366
Setting up Istio on Kubernetes 367

Implementing serverless on
Kubernetes 375
Using Knative for FaaS on Kubernetes 375
Using OpenFaaS for FaaS on Kubernetes 381

Summary 385
Questions 385
Further reading 385

15
Stateful Workloads on Kubernetes

Technical requirements 388
Understanding stateful
applications on Kubernetes 388
Popular Kubernetes-native stateful
applications 388
Understanding strategies for running
stateful applications on Kubernetes 390

Deploying object storage on
Kubernetes 396
Installing the Minio Operator 397
Installing Krew and the Minio kubectl
plugin 397
Starting the Minio Operator 398
Creating a Minio tenant 399

Accessing the Minio console 404

Running DBs on Kubernetes 408
Running CockroachDB on Kubernetes 408
Testing CockroachDB with SQL 410

Implementing messaging and
queues on Kubernetes 412
Deploying RabbitMQ on Kubernetes 412

Summary 415
Questions 415
Further reading 415

Table of Contents ix

Assessments

Chapter 1 – Communicating
with Kubernetes 417
Chapter 2 – Setting Up Your
Kubernetes Cluster 417
Chapter 3 – Running Application
Containers on Kubernetes 418
Chapter 4 – Scaling and
Deploying Your Application 418
Chapter 5 – Services and
Ingress – Communicating with
the Outside World 419
Chapter 6 – Kubernetes
Application Configuration 419
Chapter 7 – Storage on
Kubernetes 420
Chapter 8 – Pod Placement

Controls 420
Chapter 9 – Observability on
Kubernetes 421
Chapter 10 – Troubleshooting
Kubernetes 421
Chapter 11 – Template Code
Generation and CI/CD on
Kubernetes 421
Chapter 12 – Kubernetes
Security and Compliance 422
Chapter 13 – Extending
Kubernetes with CRDs 422
Chapter 14 – Service Meshes
and Serverless 422
Chapter 15 – Stateful Workloads
on Kubernetes 423

Other Books You May Enjoy
Index

Preface
The aim of this book is to give you the knowledge and the broad set of tools needed to
build cloud-native applications using Kubernetes. Kubernetes is a powerful technology
that gives engineers powerful tools to build cloud-native platforms using containers. The
project itself is constantly evolving and contains many different tools to tackle common
scenarios.

For the layout of this book, rather than sticking to any one niche area of the Kubernetes
toolset, we will first give you a thorough summary of the most important parts of default
Kubernetes functionality – giving you all the skills you need in order to run applications
on Kubernetes. Then, we'll give you the tools you need in order to deal with security and
troubleshooting for Kubernetes in a day 2 scenario. Finally, we'll go past the boundaries of
Kubernetes itself and look at some powerful patterns and technologies to build on top of
Kubernetes – such as service meshes and serverless.

Who this book is for
This book is for beginners to Kubernetes, but you should be well acquainted with
containers and DevOps principles in order to get the most out of this book. A solid
grounding in Linux will help but is not completely necessary.

What this book covers
Chapter 1, Communicating with Kubernetes, introduces you to the concept of container
orchestration and the fundamentals of how Kubernetes works. It also gives you the basic
tools you need in order to communicate with and authenticate with a Kubernetes cluster.

Chapter 2, Setting Up Your Kubernetes Cluster, walks you through creating a Kubernetes
cluster in a few different popular ways, both on your local machine and on the cloud.

Chapter 3, Running Application Containers on Kubernetes, introduces you to the most
basic building block of running applications on Kubernetes – the Pod. We cover how to
create a Pod, as well as the specifics of the Pod lifecycle.

xii Preface

Chapter 4, Scaling and Deploying Your Application, reviews higher-level controllers, which
allow the scaling and upgrading of multiple Pods of an application, including autoscaling.

Chapter 5, Services and Ingress – Communicating with the Outside World, introduces
several approaches to exposing applications running in a Kubernetes cluster to users on
the outside.

Chapter 6, Kubernetes Application Configuration, gives you the skills you need to provide
configuration (including secure data) to applications running on Kubernetes.

Chapter 7, Storage on Kubernetes, reviews methods and tools to provide persistent and
non-persistent storage to applications running on Kubernetes.

Chapter 8, Pod Placement Controls, introduces several different tools and strategies for
controlling and influencing Pod placement on Kubernetes Nodes.

Chapter 9, Observability on Kubernetes, covers multiple tenets of observability in the
context of Kubernetes, including metrics, tracing, and logging.

Chapter 10, Troubleshooting Kubernetes, reviews some key ways Kubernetes clusters can
fail – as well as how to effectively triage issues on Kubernetes.

Chapter 11, Template Code Generation and CI/CD on Kubernetes, introduces Kubernetes
YAML templating tooling and some common patterns for CI/CD on Kubernetes.

Chapter 12, Kubernetes Security and Compliance, covers the basics of security on
Kubernetes, including some recent security issues with the Kubernetes project, and
tooling for cluster and container security.

Chapter 13, Extending Kubernetes with CRDs, introduces Custom Resource Definitions
(CRDs) along with other ways to add custom functionality to Kubernetes, such as
operators.

Chapter 14, Service Meshes and Serverless, reviews some advanced patterns on Kubernetes,
teaching you how to add a service mesh to your cluster and enable serverless workloads.

Chapter 15, Stateful Workloads on Kubernetes, walks you through the specifics of running
stateful workloads on Kubernetes, including a tutorial on running some powerful stateful
applications from the ecosystem.

Preface xiii

To get the most out of this book
Since Kubernetes is based on containers, some examples in this book may use containers
that have changed since publishing. Other illustrative examples may use containers that
do not publicly exist in Docker Hub. These examples should be used as a basis for running
your own application containers.

In some cases, open source software like Kubernetes can have breaking changes. The book
is up to date with Kubernetes 1.19, but always check the documentation (for Kubernetes
and for any of the other open source projects covered in the book) for the most up-to-date
information and specifications.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838823078_ColorImages.pdf.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781838823078_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838823078_ColorImages.pdf

xiv Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "In our case, we want to let every authenticated user on the cluster
create privileged Pods, so we bind to the system:authenticated group."

A block of code is set as follows:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: full-restriction-policy

 namespace: development

spec:

 policyTypes:

 - Ingress

 - Egress

 podSelector: {}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

spec:

 privileged: false

 allowPrivilegeEscalation: false

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 - 'persistentVolumeClaim'

 hostNetwork: false

 hostIPC: false

 hostPID: false

Preface xv

Any command-line input or output is written as follows:

helm install falco falcosecurity/falco

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Prometheus also provides an Alerts tab for configuring Prometheus alerts."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Setting Up

Kubernetes

In this section, you'll learn what Kubernetes is for, how it is architected, and the basics
of communicating with, and creating, a simple cluster, as well as how to run a basic
workload.

This part of the book comprises the following chapters:

• Chapter 1, Communicating with Kubernetes

• Chapter 2, Setting Up Your Kubernetes Cluster

• Chapter 3, Running Application Containers on Kubernetes

1
Communicating

with Kubernetes
This chapter contains an explanation of container orchestration, including its benefits,
use cases, and popular implementations. We'll also review Kubernetes briefly, including
a layout of the architectural components, and a primer on authorization, authentication,
and general communication with Kubernetes. By the end of this chapter, you'll know how
to authenticate and communicate with the Kubernetes API.

In this chapter, we will cover the following topics:

• A container orchestration primer

• Kubernetes' architecture

• Authentication and authorization on Kubernetes

• Using kubectl and YAML files

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer running
Linux, macOS, or Windows. This chapter will teach you how to install the kubectl
command-line tool that you will use in all later chapters.

20 Communicating with Kubernetes

The code used in this chapter can be found in the book's GitHub repository at the
following link:

https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter1

Introducing container orchestration
We cannot talk about Kubernetes without an introduction of its purpose. Kubernetes is
a container orchestration framework, so let's review what that means in the context of
this book.

What is container orchestration?
Container orchestration is a popular pattern for running modern applications both in
the cloud and the data center. By using containers – preconfigured application units with
bundled dependencies – as a base, developers can run many instances of an application in
parallel.

Benefits of container orchestration
There are quite a few benefits that container orchestration offers, but we will highlight the
main ones. First, it allows developers to easily build high-availability applications. By
having multiple instances of an application running, a container orchestration system can
be configured in a way that means it will automatically replace any failed instances of the
application with new ones.

This can be extended to the cloud by having those multiple instances of the application
spread across physical data centers, so if one data center goes down, other instances of the
application will remain, and prevent downtime.

Second, container orchestration allows for highly scalable applications. Since new
instances of the application can be created and destroyed easily, the orchestration tool can
auto-scale up and down to meet demand. Either in a cloud or data center environment,
new Virtual Machines (VMs) or physical machines can be added to the orchestration tool
to give it a bigger pool of compute to manage. This process can be completely automated
in a cloud setting to allow for completely hands-free scaling, both at the micro and macro
level.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter1
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter1

Kubernetes' architecture 21

Popular orchestration tools
There are several highly popular container orchestration tools available in the ecosystem:

• Docker Swarm: Docker Swarm was created by the team behind the Docker
container engine. It is easier to set up and run compared to Kubernetes, but
somewhat less flexible.

• Apache Mesos: Apache Mesos is a lower-level orchestration tool that manages
compute, memory, and storage, in both data center and cloud environments. By
default, Mesos does not manage containers, but Marathon – a framework that runs
on top of Mesos – is a fully fledged container orchestration tool. It is even possible
to run Kubernetes on top of Mesos.

• Kubernetes: As of 2020, much of the work in container orchestration has
consolidated around Kubernetes (koo-bur-net-ees), often shortened to k8s.
Kubernetes is an open source container orchestration tool that was originally
created by Google, with learnings from internal orchestration tools Borg and
Omega, which had been in use at Google for years. Since Kubernetes became open
source, it has risen in popularity to become the de facto way to run and orchestrate
containers in an enterprise environment. There are a few reasons for this, including
that Kubernetes is a mature product that has an extremely large open source
community. It is also simpler to operate than Mesos, and more flexible than Docker
Swarm.

The most important thing to take away from this comparison is that although there are
multiple relevant options for container orchestration and some are indeed better in certain
ways, Kubernetes has emerged as the de facto standard. With this in mind, let's take a look
at how Kubernetes works.

Kubernetes' architecture
Kubernetes is an orchestration tool that can run on cloud VMs, on VMs running in your
data center, or on bare metal servers. In general, Kubernetes runs on a set of nodes, each
of which can each be a VM or a physical machine.

Kubernetes node types
Kubernetes nodes can be many different things – from a VM, to a bare metal host, to a
Raspberry Pi. Kubernetes nodes are split into two distinct categories: first, the master
nodes, which run the Kubernetes control plane applications; second, the worker nodes,
which run the applications that you deploy onto Kubernetes.

22 Communicating with Kubernetes

In general, for high availability, a production deployment of Kubernetes should have a
minimum of three master nodes and three worker nodes, though most large deployments
have many more workers than masters.

The Kubernetes control plane
The Kubernetes control plane is a suite of applications and services that run on the
master nodes. There are several highly specialized services at play that form the core of
Kubernetes functionality. They are as follows:

• kube-apiserver: This is the Kubernetes API server. This application handles
instructions sent to Kubernetes.

• kube-scheduler: This is the Kubernetes scheduler. This component handles the
work of deciding which nodes to place workloads on, which can become quite
complex.

• kube-controller-manager: This is the Kubernetes controller manager. This
component provides a high-level control loop that ensures that the desired
configuration of the cluster and applications running on it is implemented.

• etcd: This is a distributed key-value store that contains the cluster configuration.

Generally, all of these components take the form of system services that run on every
master node. They can be started manually if you wanted to bootstrap your cluster entirely
by hand, but through the use of a cluster creation library or cloud provider-managed
service such as Elastic Kubernetes Service (EKS), this will usually be done automatically
in a production setting.

The Kubernetes API server
The Kubernetes API server is a component that accepts HTTPS requests, typically on
port 443. It presents a certificate, which can be self-signed, as well as authentication and
authorization mechanisms, which we will cover later in this chapter.

When a configuration request is made to the Kubernetes API server, it will check the
current cluster configuration in etcd and change it if necessary.

The Kubernetes API is generally a RESTful API, with endpoints for each Kubernetes
resource type, along with an API version that is passed in the query path; for instance, /
api/v1.

For the purposes of extending Kubernetes (see Chapter 13, Extending Kubernetes with
CRDs), the API also has a set of dynamic endpoints based on API groups, which can
expose the same RESTful API functionality to custom resources.

Kubernetes' architecture 23

The Kubernetes scheduler
The Kubernetes scheduler decides where instances of a workload should be run. By
default, this decision is influenced by workload resource requirements and node status.
You can also influence the scheduler via placement controls that are configurable in
Kubernetes (see Chapter 8, Pod Placement Controls). These controls can act on node labels,
which other pods are already running on a node, and many other possibilities.

The Kubernetes controller manager
The Kubernetes controller manager is a component that runs several controllers.
Controllers run control loops that ensure that the actual state of the cluster matches that
stored in the configuration. By default, these include the following:

• The node controller, which ensures that nodes are up and running

• The replication controller, which ensures that each workload is scaled properly

• The endpoints controller, which handles communication and routing configuration
for each workload (see Chapter 5, Services and Ingress – Communicating with the
Outside World)

• Service account and token controllers, which handle the creation of API access
tokens and default accounts

etcd
etcd is a distributed key-value store that houses the configuration of the cluster in a highly
available way. An etcd replica runs on each master node and uses the Raft consensus
algorithm, which ensures that a quorum is maintained before allowing any changes to the
keys or values.

The Kubernetes worker nodes
Each Kubernetes worker node contains components that allow it to communicate with the
control plane and handle networking.

First, there is the kubelet, which makes sure that containers are running on the node as
dictated by the cluster configuration. Second, kube-proxy provides a network proxy layer
to workloads running on each node. And finally, the container runtime is used to run the
workloads on each node.

24 Communicating with Kubernetes

kubelet
The kubelet is an agent that runs on every node (including master nodes, though it has
a different configuration in that context). Its main purpose is to receive a list of PodSpecs
(more on those later) and ensure that the containers prescribed by them are running on
the node. The kubelet gets these PodSpecs through a few different possible mechanisms,
but the main way is by querying the Kubernetes API server. Alternately, the kubelet can be
started with a file path, which it will monitor for a list of PodSpecs, an HTTP endpoint to
monitor, or its own HTTP endpoint to receive requests on.

kube-proxy
kube-proxy is a network proxy that runs on every node. Its main purpose is to do TCP,
UDP, and SCTP forwarding (either via stream or round-robin) to workloads running on
its node. kube-proxy supports the Kubernetes Service construct, which we will discuss
in Chapter 5, Services and Ingress – Communicating with the Outside World.

The container runtime
The container runtime runs on each node and is the component that actually runs
your workloads. Kubernetes supports CRI-O, Docker, containerd, rktlet, and any valid
Container Runtime Interface (CRI) runtime. As of Kubernetes v1.14, the RuntimeClass
feature has been moved from alpha to beta and allows for workload-specific runtime
selection.

Addons
In addition to the core cluster components, a typical Kubernetes installation includes
addons, which are additional components that provide cluster functionality.

For example, Container Network Interface (CNI) plugins such as Calico, Flannel,
or Weave provide overlay network functionality that adheres to Kubernetes' networking
requirements.

CoreDNS, on the other hand, is a popular addon for in-cluster DNS and service discovery.
There are also tools such as Kubernetes Dashboard, which provides a GUI for viewing and
interacting with your cluster.

At this point, you should have a high-level idea of the major components of Kubernetes.
Next, we will review how a user interacts with Kubernetes to control those components.

Authentication and authorization on Kubernetes 25

Authentication and authorization on
Kubernetes
Namespaces are an extremely important concept in Kubernetes, and since they can affect
API access as well as authorization, we'll cover them now.

Namespaces
A namespace in Kubernetes is a construct that allows you to group Kubernetes resources
in your cluster. They are a method of separation with many possible uses. For instance,
you could have a namespace in your cluster for each environment – dev, staging, and
production.

By default, Kubernetes will create the default namespace, the kube-system namespace,
and the kube-public namespace. Resources created without a specified namespace will
be created in the default namespace. kube-system contains the cluster services such as
etcd, the scheduler, and any resource created by Kubernetes itself and not users. kube-
public is readable by all users by default and can be used for public resources.

Users
There are two types of users in Kubernetes – regular users and service accounts.

Regular users are generally managed by a service outside the cluster, whether they be
private keys, usernames and passwords, or some form of user store. Service accounts
however are managed by Kubernetes and restricted to specific namespaces. To create a
service account, the Kubernetes API may automatically make one, or they can be made
manually through calls to the Kubernetes API.

There are three possible types of requests to the Kubernetes API – those associated with a
regular user, those associated with a service account, and anonymous requests.

Authentication methods
In order to authenticate requests, Kubernetes provides several different options: HTTP
basic authentication, client certificates, bearer tokens, and proxy-based authentication.

To use HTTP authentication, the requestor sends requests with an Authorization
header that will have the value bearer "token value".

26 Communicating with Kubernetes

In order to specify which tokens are valid, a CSV file can be provided to the API server
application when it starts using the --token-auth-file=filename parameter.
A new beta feature (as of the writing of this book), called Bootstrap Tokens, allows for
the dynamic swapping and changing of tokens while the API server is running, without
restarting it.

Basic username/password authentication is also possible via the Authorization token,
by using the header value Basic base64encoded(username:password).

Kubernetes' certificate infrastructure for TLS and
security
In order to use client certificates (X.509 certificates), the API server must be started using
the --client-ca-file=filename parameter. This file needs to contain one or more
Certificate Authorities (CAs) that will be used when validating certificates passed with
API requests.

In addition to the CA, a Certificate Signing Request (CSR) must be created for each user.
At this point, user groups can be included, which we will discuss in the Authorization
options section.

For instance, you can use the following:

openssl req -new -key myuser.pem -out myusercsr.pem -subj "/
CN=myuser/0=dev/0=staging"

This will create a CSR for the user myuser who is part of groups named dev and
staging.

Once the CA and CSR are created, the actual client and server certificates can be created
using openssl, easyrsa, cfssl, or any certificate generation tool. TLS certificates for
the Kubernetes API can also be created at this point.

Since our aim is to get you started running workloads on Kubernetes as soon as possible,
we will leave all the various possible certificate configurations out of this book – but both
the Kubernetes documentation and the article Kubernetes The Hard Way have some great
tutorials on setting up a cluster from scratch. In the majority of production settings, you
will not be doing these steps manually.

Authentication and authorization on Kubernetes 27

Authorization options
Kubernetes provides several authorization methods: nodes, webhooks, RBAC, and ABAC.
In this book, we will focus on RBAC and ABAC as they are the ones used most often for
user authorization. If you extend your cluster with other services and/or custom features,
the other authorization modes may become more important.

RBAC
RBAC stands for Role-Based Access Control and is a common pattern for
authorization. In Kubernetes specifically, the roles and users of RBAC are implemented
using four Kubernetes resources: Role, ClusterRole, RoleBinding, and
ClusterRoleBinding. To enable RBAC mode, the API server can be started with the
--authorization-mode=RBAC parameter.

Role and ClusterRole resources specify a set of permissions, but do not assign those
permissions to any specific users. Permissions are specified using resources and
verbs. Here is a sample YAML file specifying a Role. Don't worry too much about the
first few lines of the YAML file – we'll get to those soon. Focus on the resources and
verbs lines to see how the actions can be applied to resources:

Read-only-role.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: read-only-role

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

The only difference between a Role and ClusterRole is that a Role is restricted to a
particular namespace (in this case, the default namespace), while a ClusterRole can
affect access to all resources of that type in the cluster, as well as cluster-scoped resources
such as nodes.

28 Communicating with Kubernetes

RoleBinding and ClusterRoleBinding are resources that associate a
Role or ClusterRole with a user or a list of users. The following file represents
a RoleBinding resource to connect our read-only-role with a user,
readonlyuser:

Read-only-rb.yaml

apiVersion: rbac.authorization.k8s.io/v1namespace.

kind: RoleBinding

metadata:

 name: read-only

 namespace: default

subjects:

- kind: User

 name: readonlyuser

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: read-only-role

 apiGroup: rbac.authorization.k8s.io

The subjects key contains a list of all entities to associate a role with; in this case, the
user alex. roleRef contains the name of the role to associate, and the type (either
Role or ClusterRole).

ABAC
ABAC stands for Attribute-Based Access Control. ABAC works using policies instead
of roles. The API server is started in ABAC mode with a file called an authorization
policy file, which contains a list of JSON objects called policy objects. To enable ABAC
mode, the API server can be started with the --authorization-mode=ABAC and
--authorization-policy-file=filename parameters.

In the policy file, each policy object contains information about a single policy: firstly,
which subjects it corresponds to, which can be either users or groups, and secondly, which
resources can be accessed via the policy. Additionally, a Boolean readonly value can be
included to limit the policy to list, get, and watch operations.

A secondary type of policy is associated not with a resource, but with types of
non-resource requests, such as calls to the /version endpoint.

Using kubectl and YAML 29

When a request to the API is made in ABAC mode, the API server will check the user
and any group it is a part of against the list in the policy file, and see if any policies match
the resource or endpoint that the user is trying to access. On a match, the API server will
authorize the request.

You should have a good understanding now of how the Kubernetes API handles
authentication and authorization. The good news is that while you can directly access
the API, Kubernetes provides an excellent command-line tool to simply authenticate and
make Kubernetes API requests.

Using kubectl and YAML
kubectl is the officially supported command-line tool for accessing the Kubernetes API. It
can be installed on Linux, macOS, or Windows.

Setting up kubectl and kubeconfig
To install the newest release of kubectl, you can use the installation instructions at
https://kubernetes.io/docs/tasks/tools/install-kubectl/.

Once kubectl is installed, it needs to be set up to authenticate with one or more clusters.
This is done using the kubeconfig file, which looks like this:

Example-kubeconfig

apiVersion: v1

kind: Config

preferences: {}

clusters:

- cluster:

 certificate-authority: fake-ca-file

 server: https://1.2.3.4

 name: development

users:

- name: alex

 user:

 password: mypass

 username: alex

https://kubernetes.io/docs/tasks/tools/install-kubectl/

30 Communicating with Kubernetes

contexts:

- context:

 cluster: development

 namespace: frontend

 user: developer

 name: development

This file is written in YAML and is very similar to other Kubernetes resource specifications
that we will get to shortly – except that this file lives only on your local machine.

There are three sections to a Kubeconfig YAML file: clusters, users, and
contexts:

• The clusters section is a list of clusters that you will be able to access via kubectl,
including the CA filename and server API endpoint.

• The users section lists users that you will be able to authorize with, including any
user certificates or username/password combinations for authentication.

• Finally, the contexts section lists combinations of a cluster, a namespace,
and a user that combine to make a context. Using the kubectl config
use-context command, you can easily switch between contexts, which allows
easy switching between cluster, user, and namespace combinations.

Imperative versus declarative commands
There are two paradigms for talking to the Kubernetes API: imperative and declarative.
Imperative commands allow you to dictate to Kubernetes "what to do" – that is, "spin up
two copies of Ubuntu," "scale this application to five copies," and so on.

Declarative commands, on the other hand, allow you to write a file with a specification
of what should be running on the cluster, and have the Kubernetes API ensure that the
configuration matches the cluster configuration, updating it if necessary.

Using kubectl and YAML 31

Though imperative commands allow you to quickly get started with Kubernetes, it is far
better to write some YAML and use a declarative configuration when running production
workloads, or workloads of any complexity. The reason for this is that it makes it easier
to track changes, for instance via a GitHub repo, or introduce Git-driven Continous
Integration/Continuous Delivery (CI/CD) to your cluster.

Some basic kubectl commands
kubectl provides many convenient commands for checking the current state of your
cluster, querying resources, and creating new ones. kubectl is structured so most
commands can access resources in the same way.

First, let's learn how to see Kubernetes resources in your cluster. You can do this by using
kubectl get resource_type where resource_type is the full name of the
Kubernetes resource, or alternately, a shorter alias. A full list of aliases (and kubectl
commands) can be found in the kubectl documentation at https://kubernetes.
io/docs/reference/kubectl/overview.

We already know about nodes, so let's start with that. To find which nodes exist in a
cluster, we can use kubectl get nodes or the alias kubectl get no.

kubectl's get commands return a list of Kubernetes resources that are currently in the
cluster. We can run this command with any Kubernetes resource type. To add additional
information to the list, you can add the wide output flag: kubectl get nodes
-o wide.

Listing resources isn't enough, of course – we need to be able to see the details of a
particular resource. For this, we use the describe command, which works similarly
to get, except that we can optionally pass the name of a specific resource. If this last
parameter is omitted, Kubernetes will return the details of all resources of that type, which
will probably result in a lot of scrolling in your terminal.

For example, kubectl describe nodes will return details for all nodes in the cluster,
while kubectl describe nodes node1 will return a description of the node
named node1.

https://kubernetes.io/docs/reference/kubectl/overview
https://kubernetes.io/docs/reference/kubectl/overview

32 Communicating with Kubernetes

As you've probably noticed, these commands are all in the imperative style, which makes
sense since we're just fetching information about existing resources, not creating new
ones. To create a Kubernetes resource, we can use the following:

• kubectl create -f /path/to/file.yaml, which is an
imperative command

• kubectl apply -f /path/to/file.yaml, which is declarative

Both commands take a path to a file, which can be either YAML or JSON – or you can just
use stdin. You can also pass in the path to a folder instead of a file, which will create or
apply all YAML or JSON files in that folder. create works imperatively, so it will create
a new resource, but if you run it again with the same file, the command will fail since the
resource already exists. apply works declaratively, so if you run it the first time it will
create the resource, and subsequent runs will update the running resource in Kubernetes
with any changes. You can use the --dry-run flag to see the output of the create or
apply commands (that is, what resources will be created, or any errors if they exist).

To update existing resources imperatively, use the edit command like so: kubectl
edit resource_type resource_name – just like with our describe command.
This will open up the default terminal editor with the YAML of the existing resource,
regardless of whether you created it imperatively or declaratively. You can edit this and
save as usual, which will trigger an automatic update of the resource in Kubernetes.

To update existing resources declaratively, you can edit your local YAML resource file
that you used to create the resource in the first place, then run kubectl apply -f /
path/to/file.yaml. Deleting resources is best accomplished via the imperative
command kubectl delete resource_type resource_name.

The last command we'll talk about in this section is kubectl cluster-info, which
will show the IP addresses where the major Kubernetes cluster services are running.

Writing Kubernetes resource YAML files
For communicating with the Kubernetes API declaratively, formats of both YAML and
JSON are allowed. For the purposes of this book, we will stick to YAML since it is a bit
cleaner and takes up less space on the page. A typical Kubernetes resource YAML file
looks like this:

resource.yaml

apiVersion: v1

kind: Pod

Summary 33

metadata:

 name: my-pod

spec:

 containers:

 - name: ubuntu

 image: ubuntu:trusty

 command: ["echo"]

 args: ["Hello Readers"]

A valid Kubernetes YAML file has four top-level keys at a minimum. They are
apiVersion, kind, metadata, and spec.

apiVersion dictates which version of the Kubernetes API will be used to create the
resource. kind specifies what type of resource the YAML file is referencing. metadata
provides a location to name the resource, as well as adding annotations and name-spacing
information (more on that later). And finally, the spec key will contain all the resource-
specific information that Kubernetes needs to create the resource in your cluster.

Don't worry about kind and spec quite yet – we'll get to what a Pod is in Chapter 3,
Running Application Containers on Kubernetes.

Summary
In this chapter, we learned the background behind container orchestration, an
architectural overview of a Kubernetes cluster, how a cluster authenticates and authorizes
API calls, and how to communicate with the API via imperative and declarative patterns
using kubectl, the officially supported command-line tool for Kubernetes.

In the next chapter, we'll learn several ways to get started with a test cluster, and master
harnessing the kubectl commands you've learned so far.

Questions
1. What is container orchestration?

2. What are the constituent parts of the Kubernetes control plane, and what do
they do?

3. How would you start the Kubernetes API server in ABAC authorization mode?

4. Why is it important to have more than one master node for a production
Kubernetes cluster?

34 Communicating with Kubernetes

5. What is the difference between kubectl apply and kubectl create?

6. How would you switch between contexts using kubectl?

7. What are the downsides of creating a Kubernetes resource declaratively and then
editing it imperatively?

Further reading
• The official Kubernetes documentation: https://kubernetes.io/docs/

home/

• Kubernetes The Hard Way: https://github.com/kelseyhightower/
kubernetes-the-hard-way

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

2
Setting Up Your

Kubernetes Cluster
This chapter contains a review of some of the possibilities for creating a Kubernetes
cluster, which we'll need to be able to learn the rest of the concepts in this book. We'll
start with minikube, a tool to create a simple local cluster, then touch on some additional,
more advanced (and production-ready) tools and review the major managed Kubernetes
services from public cloud providers, before we finally introduce the strategies for creating
a cluster from scratch.

In this chapter, we will cover the following topics:

• Options for creating your first cluster

• minikube – an easy way to start

• Managed services – EKS, GKE, AKS, and more

• Kubeadm – simple conformance

• Kops – infrastructure bootstrapping

• Kubespray – Ansible-powered cluster creation

• Creating a cluster completely from scratch

36 Setting Up Your Kubernetes Cluster

Technical requirements
In order to run the commands in this chapter, you will need to have the kubectl tool
installed. Installation instructions are available in Chapter 1, Communicating with
Kubernetes.

If you are actually going to create a cluster using any of the methods in this chapter,
you will need to review the specific technical requirements for each method in the
relevant project's documentation. For minikube specifically, most machines running
Linux, macOS, or Windows will work. For large clusters, please review the specific
documentation of the tool you plan to use.

The code used in this chapter can be found in the book's GitHub repository at the
following link:

https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter2

Options for creating a cluster
There are many ways to create a Kubernetes cluster, ranging from simple local tools all the
way to fully creating a cluster from scratch.

If you're just getting started with learning Kubernetes, you'll probably want to spin up a
simple local cluster with a tool such as minikube.

If you're looking to build a production cluster for an application, you have several options:

• You can use a tool such as Kops, Kubespray, or Kubeadm to create the cluster
programmatically.

• You can use a managed Kubernetes service.

• You can create a cluster completely from scratch on VMs or physical hardware.

Unless you have extremely specific demands in terms of cluster configuration (and even
then), it is not usually recommended to create your cluster completely from scratch
without using a bootstrapping tool.

For most use cases, the decision will be between using a managed Kubernetes service on a
cloud provider and using a bootstrapping tool.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter2
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter2

minikube – an easy way to start 37

In air-gapped systems, using a bootstrapping tool is the only way to go – but some are
better than others for particular use cases. In particular, Kops is aimed at making it easier
to create and manage clusters on cloud providers such as AWS.

Important note
Not included in this section is a discussion of alternative third-party managed
services or cluster creation and administration tools such as Rancher or
OpenShift. When making a selection for running clusters in production,
it is important to take into account a large variety of factors including the
current infrastructure, business requirements, and much more. To keep things
simple, in this book we will focus on production clusters, assuming no other
infrastructure or hyper-specific business needs – a "clean slate," so to speak.

minikube – an easy way to start
minikube is the easiest way to get started with a simple local cluster. This cluster won't be
set up for high availability, and is not aimed at production uses, but it is a great way to get
started running workloads on Kubernetes in minutes.

Installing minikube
minikube can be installed on Windows, macOS, and Linux. What follows is the
installation instructions for all three platforms, which you can also find by navigating to
https://minikube.sigs.k8s.io/docs/start.

Installing on Windows
The easiest installation method on Windows is to download and run the minikube
installer from https://storage.googleapis.com/minikube/releases/
latest/minikube-installer.exe.

Installing on macOS
Use the following command to download and install the binary. You can find it in the
code repository as well:

Minikube-install-mac.sh

 curl -LO https://storage.googleapis.com/minikube/releases/
latest/minikube-darwin-amd64 \

&& sudo install minikube-darwin-amd64 /usr/local/bin/minikube

https://minikube.sigs.k8s.io/docs/start
https://storage.googleapis.com/minikube/releases/latest/minikube-installer.exe
https://storage.googleapis.com/minikube/releases/latest/minikube-installer.exe

38 Setting Up Your Kubernetes Cluster

Installing on Linux
Use the following command to download and install the binary:

Minikube-install-linux.sh

curl -LO https://storage.googleapis.com/minikube/releases/
latest/minikube-linux-amd64 \

&& sudo install minikube-linux-amd64 /usr/local/bin/minikube

Creating a cluster on minikube
To get started with a cluster on minikube, simply run minikube start, which will
create a simple local cluster with the default VirtualBox VM driver. minikube also has
several additional configuration options that can be reviewed at the documentation site.

Running the minikube start command will automatically configure your
kubeconfig file so you can run kubectl commands without any further configuration
on your newly created cluster.

Managed Kubernetes services
The number of managed cloud providers that offer a managed Kubernetes service is
always growing. However, for the purposes of this book, we will focus on the major public
clouds and their particular Kubernetes offerings. This includes the following:

• Amazon Web Services (AWS) – Elastic Kubernetes Service (EKS)

• Google Cloud – Google Kubernetes Engine (GKE)

• Microsoft Azure – Azure Kubernetes Service (AKS)

Important note
The number and implementation of managed Kubernetes services is always
changing. AWS, Google Cloud, and Azure were selected for this section
of the book because they are very likely to continue working in the same
manner. Whatever managed service you use, make sure to check the official
documentation provided with the service to ensure that the cluster creation
procedure is still the same as what is presented in this book.

AWS – Elastic Kubernetes Service 39

Benefits of managed Kubernetes services
Generally, the major managed Kubernetes service offerings provide a few benefits. Firstly,
all three of the managed service offerings we're reviewing provide a completely managed
Kubernetes control plane.

This means that when you use one of these managed Kubernetes services, you do not need
to worry about your master nodes. They are abstracted away and may as well not exist. All
three of these managed clusters allow you to choose the number of worker nodes when
creating a cluster.

Another benefit of a managed cluster is seamless upgrades from one version of Kubernetes
to another. Generally, once a new version of Kubernetes (not always the newest version) is
validated for the managed service, you should be able to upgrade using a push button or a
reasonably simple procedure.

Drawbacks of managed Kubernetes services
Although a managed Kubernetes cluster can make operations easier in many respects,
there are also some downsides.

For many of the managed Kubernetes services available, the minimum cost for a managed
cluster far exceeds the cost of a minimal cluster created manually or with a tool such
as Kops. For production use cases, this is generally not as much of an issue because
a production cluster should contain a minimum amount of nodes anyway, but for
development environments or test clusters, the additional cost may not be worth the ease
of operations depending on the budget.

Additionally, though abstracting away master nodes makes operations easier, it also
prevents fine tuning or advanced master node functionality that may otherwise be
available on clusters with defined masters.

AWS – Elastic Kubernetes Service
AWS' managed Kubernetes service is called EKS, or Elastic Kubernetes Service. There are
a few different ways to get started with EKS, but we'll cover the simplest way.

40 Setting Up Your Kubernetes Cluster

Getting started
In order to create an EKS cluster, you must provision the proper Virtual Private Cloud
(VPC) and Identity and Access Management (IAM) role settings – at which point you
can create a cluster through the console. These settings can be created manually through
the console, or through infrastructure provisioning tools such as CloudFormation and
Terraform. Full instructions for creating a cluster through the console can be found
at https://docs.aws.amazon.com/en_pv/eks/latest/userguide/
getting-started-console.html.

Assuming you're creating a cluster and VPC from scratch, however, you can instead use a
tool called eksctl to provision your cluster.

To install eksctl, you can find installation instructions for macOS, Linux, and Windows
at https://docs.aws.amazon.com/eks/latest/userguide/getting-
started-eksctl.html.

Once you have eksctl installed, creating a cluster is as simple as using the eksctl
create cluster command:

Eks-create-cluster.sh

eksctl create cluster \

--name prod \

--version 1.17 \

--nodegroup-name standard-workers \

--node-type t2.small \

--nodes 3 \

--nodes-min 1 \

--nodes-max 4 \

--node-ami auto

This will create a cluster of three t2.small instances as worker nodes set up in an
autoscaling group with a minimum of one node and a maximum of four. The Kubernetes
version that is used will be 1.17. Importantly, eksctl starts with a default region, and
depending on the number of nodes chosen, they will be spread throughout multiple
availability zones in that region.

eksctl will also automatically update your kubeconfig file, so you should be able to
run kubectl commands immediately after the cluster creation process is finished.

https://docs.aws.amazon.com/en_pv/eks/latest/userguide/getting-started-console.html
https://docs.aws.amazon.com/en_pv/eks/latest/userguide/getting-started-console.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

Google Cloud – Google Kubernetes Engine 41

Test the configuration with the following code:

kubectl get nodes

You should see a list of your nodes and their associated IPs. Your cluster is ready! Next,
let's take a look at Google's GKE setup process.

Google Cloud – Google Kubernetes Engine
GKE is Google Cloud's managed Kubernetes service. With the gcloud command-line tool,
it is very easy to quickly spin up a GKE cluster.

Getting started
To create a cluster on GKE using gcloud, you can either use Google Cloud's Cloud Shell
service, or run the commands locally. If you want to run the commands locally, you must
install the gcloud CLI via the Google Cloud SDK. See https://cloud.google.com/
sdk/docs/quickstarts for installation instructions.

Once you have gcloud installed, you need to ensure that you have activated the GKE API
in your Google Cloud account.

To easily accomplish this, navigate to https://console.cloud.google.com/
apis/library, then search for kubernetes in the search bar. Click on Kubernetes
Engine API and then click Enable.

Now that the API is activated, set your project and compute zone in Google Cloud by
using the following commands:

gcloud config set project proj_id

gcloud config set compute/zone compute_zone

In the commands, proj_id corresponds to the project ID in Google Cloud that you
want to create your cluster in, and compute_zone corresponds to your desired compute
zone in Google Cloud.

There are actually three types of clusters on GKE, each with different (increasing) levels of
reliability and fault tolerance:

• Single-zone clusters

• Multi-zonal clusters

• Regional clusters

https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://console.cloud.google.com/apis/library
https://console.cloud.google.com/apis/library

42 Setting Up Your Kubernetes Cluster

A single-zone cluster in GKE means a cluster that has a single control plane replica and
one or more worker nodes running in the same Google Cloud zone. If something happens
to the zone, both the control plane and the workers (and thus the workloads) will go
down.

A multi-zonal cluster in GKE means a cluster that has a single control plane replica and
two or more worker nodes running in different Google Cloud zones. This means that
if a single zone (even the zone containing the control plane) goes down, the workloads
running in the cluster will still persist, but the Kubernetes API will be unavailable until the
control plane zone comes back up.

Finally, a regional cluster in GKE means a cluster that has both a multi-zonal control
plane and multi-zonal worker nodes. If any zone goes down, both the control plane and
the workloads on the worker nodes will persist. This is the most expensive and reliable
option.

Now, to actually create your cluster, you can run the following command to create a
cluster named dev with the default settings:

gcloud container clusters create dev \

 --zone [compute_zone]

This command will create a single-zone cluster in your chosen compute zone.

In order to create a multi-zonal cluster, you can run the following command:

gcloud container clusters create dev \

 --zone [compute_zone_1]

 --node-locations [compute_zone_1],[compute_zone_2],[etc]

Here, compute_zone_1 and compute_zone_2 are disparate Google Cloud zones. In
addition, more zones can be added via the node-locations flag.

Finally, to create a regional cluster, you can run the following command:

gcloud container clusters create dev \

 --region [region] \

 --node-locations [compute_zone_1],[compute_zone_2],[etc]

In this case, the node-locations flag is actually optional. If left out, the cluster will be
created with worker nodes in all the zones within the region. If you'd like to change this
default behavior, you can override it using the node-locations flag.

Microsoft Azure – Azure Kubernetes Service 43

Now that you have a cluster running, you need to configure your kubeconfig file to
communicate with the cluster. To do this, simply pass the cluster name into the following
command:

gcloud container clusters get-credentials [cluster_name]

Finally, test the configuration with the following command:

kubectl get nodes

As with EKS, you should see a list of all your provisioned nodes. Success! Finally, let's take
a look at Azure's managed offering.

Microsoft Azure – Azure Kubernetes Service
Microsoft Azure's managed Kubernetes service is called AKS. Creating a cluster on AKS
can be done via the Azure CLI.

Getting started
To create a cluster on AKS, you can use the Azure CLI tool and run the following
command to create a service principal (a role that the cluster will use to access Azure
resources):

az ad sp create-for-rbac --skip-assignment --name
myClusterPrincipal

The result of this command will be a JSON object with information on the service
principal, which we will use in the next step. This JSON object looks like the following:

{

 "appId": "559513bd-0d99-4c1a-87cd-851a26afgf88",

 "displayName": "myClusterPrincipal",

 "name": "http://myClusterPrincipal",

 "password": "e763725a-5eee-892o-a466-dc88d980f415",

 "tenant": "72f988bf-90jj-41af-91ab-2d7cd011db48"

}

44 Setting Up Your Kubernetes Cluster

Now, you can use the values from the previous JSON command to actually create your
AKS cluster:

Aks-create-cluster.sh

az aks create \

 --resource-group devResourceGroup \

 --name myCluster \

 --node-count 2 \

 --service-principal <appId> \

 --client-secret <password> \

 --generate-ssh-keys

This command assumes a resource group named devResourceGroup, and a cluster
named devCluster. For appId and password, use the values from the service
principal creation step.

Finally, to generate the proper kubectl configuration on your machine, you can run the
following command:

az aks get-credentials --resource-group devResourceGroup --name
myCluster

At this point, you should be able to properly run kubectl commands. Test the
configuration with the kubectl get nodes command.

Programmatic cluster creation tools
There are several tools available that will bootstrap a Kubernetes cluster in various
non-managed environments. We'll focus on three of the most popular: Kubeadm, Kops,
and Kubespray. Each tool is aimed at a different use case and generally works by a different
method.

Kubeadm
Kubeadm is a tool created by the Kubernetes community to simplify cluster creation on
infrastructure that is already provisioned. Unlike Kops, Kubeadm does not have the ability
to provision infrastructure on cloud services. It simply creates a best-practices cluster that
will pass Kubernetes conformance tests. Kubeadm is agnostic to infrastructure – it should
work anywhere you can run Linux VMs.

Creating a cluster with Kubeadm 45

Kops
Kops is a popular cluster provisioning tool. It provisions the underlying infrastructure for
your cluster, installs all cluster components, and validates the functionality of your cluster.
It can also be used to perform various cluster operations such as upgrades, node rotations,
and more. Kops currently supports AWS, with (as of the time of writing this book) beta
support for Google Compute Engine and OpenStack, and alpha support for VMware
vSphere and DigitalOcean.

Kubespray
Kubespray is different to both Kops and Kubeadm. Unlike Kops, Kubespray does not
inherently provision cluster resources. Instead, Kubespray allows you to choose between
Ansible and Vagrant in order to perform provisioning, orchestration, and node setup.

When compared to Kubeadm, Kubespray has far fewer integrated cluster creation and life
cycle processes. Newer versions of Kubespray allow you to use Kubeadm specifically for
cluster creation after node setup.

Important note
Since creating a cluster with Kubespray requires some Ansible-specific
domain knowledge, we will keep that discussion out of this book – but
a guide to all things Kubespray can be found at https://github.
com/kubernetes-sigs/kubespray/blob/master/docs/
getting-started.md.

Creating a cluster with Kubeadm
To create a cluster with Kubeadm, you will need your nodes provisioned ahead of time. As
with any other Kubernetes cluster, we'll need VMs or bare-metal servers running Linux.

For the purposes of this book, we will show how to bootstrap a Kubeadm cluster with
only a single master node. For highly available setups, you'll need to run additional join
commands on the other master nodes, which you can find at https://kubernetes.
io/docs/setup/production-environment/tools/kubeadm/high-
availability/.

https://github.com/kubernetes-sigs/kubespray/blob/master/docs/getting-started.md
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/getting-started.md
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/getting-started.md
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

46 Setting Up Your Kubernetes Cluster

Installing Kubeadm
First things first – you'll need to install Kubeadm on all nodes. The installation
instructions for each supported operating system can be found at https://
kubernetes.io/docs/setup/production-environment/tools/kubeadm/
install-kubeadm.

For each node, also make sure to check that all the required ports are open, and that
you've installed your intended container runtime.

Starting the master nodes
To quickly start master nodes with Kubeadm, you only need to run a single command:

kubeadm init

This initialization command can take in several optional arguments – depending on your
preferred cluster setup, networking, and so on, you may need to use them.

In the output of the init command, you'll see a kubeadm join command. Make sure
to save this command.

Starting the worker nodes
In order to bootstrap the worker nodes, you need to run the join command you saved.
The command will be of the following form:

kubeadm join --token [TOKEN] [IP ON MASTER]:[PORT ON MASTER]
--discovery-token-ca-cert-hash sha256:[HASH VALUE]

The token in this command is a bootstrap token. It is used to authenticate nodes with each
other and join new nodes to the cluster. With access to this token comes the power to join
new nodes to the cluster, so treat it as such.

Setting up kubectl
With Kubeadm, kubectl will already be properly set up on the master node. However, to
use kubectl from any other machine or outside the cluster, you can copy the config from
the master to your local machine:

scp root@[IP OF MASTER]:/etc/kubernetes/admin.conf .

kubectl --kubeconfig ./admin.conf get nodes

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm

Creating a cluster with Kops 47

This kubeconfig will be the cluster administrator config – in order to specify other
users (and permissions), you will need to add new service accounts and generate
kubeconfig files for them.

Creating a cluster with Kops
Since Kops will provision infrastructure for you, there is no need to pre-create any nodes.
All you need to do is install Kops, ensure your cloud platform credentials are working, and
create your cluster all at once. Kops can be installed on Linux, macOS, and Windows.

For this tutorial, we will go through creating a cluster on AWS, but you can find
instructions for other supported Kops platforms in the Kops documentation at
https://github.com/kubernetes/kops/tree/master/docs.

Installing on macOS
On OS X, the easiest way to install Kops is using Homebrew:

brew update && brew install kops

Alternatively, you can grab the newest stable Kops binary from the Kops GitHub page at
https://github.com/kubernetes/kops/releases/tag/1.12.3.

Installing on Linux
On Linux, you can install Kops via the following command:

Kops-linux-install.sh

curl -LO https://github.com/kubernetes/kops/releases/
download/$(curl -s https://api.github.com/repos/kubernetes/
kops/releases/latest | grep tag_name | cut -d '"' -f 4)/kops-
linux-amd64

chmod +x kops-linux-amd64

sudo mv kops-linux-amd64 /usr/local/bin/kops

Installing on Windows
To install Kops on Windows, you'll need to download the newest Windows release from
https://github.com/kubernetes/kops/releases/latest, rename it to
kops.exe, and add it to your path variable.

https://github.com/kubernetes/kops/tree/master/docs
https://github.com/kubernetes/kops/releases/tag/1.12.3
https://github.com/kubernetes/kops/releases/latest

48 Setting Up Your Kubernetes Cluster

Setting up credentials for Kops
In order for Kops to work, you'll need AWS credentials on your machine with a few
required IAM permissions. To do this safely, you will want to create an IAM user
specifically for Kops.

First, create an IAM group for the kops user:

aws iam create-group --group-name kops_users

Then, attach the required roles for the kops_users group. To function properly,
Kops will need AmazonEC2FullAccess, AmazonRoute53FullAccess,
AmazonS3FullAccess, IAMFullAccess, and AmazonVPCFullAccess. We can
accomplish this by running the following commands:

Provide-aws-policies-to-kops.sh

aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonEC2FullAccess --group-name kops

aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonRoute53FullAccess --group-name
kops

aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonS3FullAccess --group-name kops

aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/IAMFullAccess --group-name kops

aws iam attach-group-policy --policy-arn
arn:aws:iam::aws:policy/AmazonVPCFullAccess --group-name kops

Finally, create the kops user, add it to the kops_users group, and create programmatic
access keys, which you should save:

aws iam create-user --user-name kops

aws iam add-user-to-group --user-name kops --group-name kops_
users

aws iam create-access-key --user-name kops

Creating a cluster with Kops 49

To allow Kops to access your new IAM credentials, you can use the following commands
to configure your AWS CLI with the access key and secret from the previous command
(create-access-key):

aws configure

export AWS_ACCESS_KEY_ID=$(aws configure get aws_access_key_id)

export AWS_SECRET_ACCESS_KEY=$(aws configure get aws_secret_
access_key)

Setting up state storage
With the proper credentials set up, we can start creating our cluster. In this case, we're
going to build a simple gossip-based cluster so we won't need to mess around with DNS.
To see the possible DNS setups, you can look at the Kops documentation (https://
github.com/kubernetes/kops/tree/master/docs).

First, we'll need a location to store our cluster spec. S3 is perfect for this since we're
on AWS.

As usual with S3, bucket names need to be unique. You can easily create a bucket using the
AWS SDK (make sure to replace my-domain-dev-state-store with your desired S3
bucket name):

aws s3api create-bucket \

 --bucket my-domain-dev-state-store \

 --region us-east-1

It's a best practice to enable bucket encryption and versioning as well:

aws s3api put-bucket-versioning --bucket prefix-example-com-
state-store --versioning-configuration Status=Enabled

aws s3api put-bucket-encryption --bucket prefix-example-
com-state-store --server-side-encryption-configuration
'{"Rules":[{"ApplyServerSideEncryptionByDefault":
{"SSEAlgorithm":"AES256"}}]}'

Finally, to set up variables for Kops, use the following commands:

export NAME=devcluster.k8s.local

export KOPS_STATE_STORE=s3://my-domain-dev-cluster-state-store

https://github.com/kubernetes/kops/tree/master/docs
https://github.com/kubernetes/kops/tree/master/docs

50 Setting Up Your Kubernetes Cluster

Important note
Kops supports several state storage locations such as AWS S3, Google Cloud
Storage, Kubernetes, DigitalOcean, OpenStack Swift, Alibaba Cloud, and
memfs. However, you can just save the Kops state to a local file and use that
instead. The benefit of having a cloud-based state store is the ability for multiple
infrastructure developers to access and update it with versioning controls.

Creating clusters
With Kops, we can deploy clusters of any size. For the purposes of this guide, we will
deploy a production-ready cluster by having both worker and master nodes span three
availability zones. We're going to use the US-East-1 region, and both the masters and
workers will be t2.medium instances.

To create the config for this cluster, you can run the following kops create command:

Kops-create-cluster.sh

kops create cluster \

 --node-count 3 \

 --zones us-east-1a,us-east-1b,us-east-1c \

 --master-zones us-east-1a,us-east-1b,us-east-1c \

 --node-size t2.medium \

 --master-size t2.medium \

 ${NAME}

To see the config that has been created, use the following command:

kops edit cluster ${NAME}

Finally, to create our cluster, run the following command:

kops update cluster ${NAME} --yes

The cluster creation process may take some time, but once it is complete, your
kubeconfig should be properly configured to use kubectl with your new cluster.

Creating a cluster completely from scratch 51

Creating a cluster completely from scratch
Creating a Kubernetes cluster entirely from scratch is a multi-step endeavor that could
likely span multiple chapters of this book. However, since our purpose is to get you up and
running with Kubernetes as quickly as possible, we will refrain from describing the entire
process.

If you are interested in creating a cluster from scratch, either for educational reasons or a
need to finely customize your cluster, a great guide is Kubernetes The Hard Way, which is
a full cluster creation tutorial written by Kelsey Hightower. It can be found at https://
github.com/kelseyhightower/kubernetes-the-hard-way.

Now that we've gotten that out of the way, we can proceed with an overview of the manual
cluster creation process.

Provisioning your nodes
First things first – you'll need some infrastructure to run Kubernetes on. Generally, VMs
are a good candidate for this, though Kubernetes can be run on bare metal as well. If
you're working in an environment where you cannot easily add nodes (which removes
many of the scaling benefits of the cloud, but is definitely possible in enterprise settings),
you'll need enough nodes to meet your application demands. This is more likely to be an
issue in air-gapped environments.

Some of your nodes will be used for the master control plane, while others will solely
be used as workers. There is no need to make the master and worker nodes identical
from a memory or CPU perspective – you could even have some weaker and some more
powerful workers. This pattern results in a non-homogeneous cluster, in which certain
nodes are better suited to particular workloads.

Creating the Kubernetes certificate authority for TLS
In order to function properly, all major control plane components will need a TLS
certificate. To create these, a Certificate Authority (CA) needs to be created, which will in
turn create the TLS certificates.

To create the CA, a Public Key Infrastructure (PKI) needs to be bootstrapped. For this
task, you can use any PKI tool, but the one used in the Kubernetes docs is cfssl.

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

52 Setting Up Your Kubernetes Cluster

Once the PKI, CA, and TLS certificates have been created for all components, the next
step is to create config files for the control plane and worker node components.

Creating config files
Config files need to be created for the kubelet, kube-proxy, kube-controller-
manager, and kube-scheduler components. They will use the certificates in these
config files to authenticate with kube-apiserver.

Creating an etcd cluster and configuring encryption
Creating the data encryption config is handled via a YAML file with a data encryption
secret. At this point, it is required to start the etcd cluster.

To do this, systemd files are created on each node with the etcd process config. Then
systemctl is used on each node to start the etcd servers.

Here is a sample systemd file for etcd. The systemd files for the other control plane
components will be similar to this:

Example-systemd-control-plane

[Unit]

Description=etcd

Documentation=https://github.com/coreos

[Service]

Type=notify

ExecStart=/usr/local/bin/etcd \\

 --name ${ETCD_NAME} \\

 --cert-file=/etc/etcd/kubernetes.pem \\

 --key-file=/etc/etcd/kubernetes-key.pem \\

 --peer-cert-file=/etc/etcd/kubernetes.pem \\

 --peer-key-file=/etc/etcd/kubernetes-key.pem \\

 --trusted-ca-file=/etc/etcd/ca.pem \\

 --peer-trusted-ca-file=/etc/etcd/ca.pem \\

 --peer-client-cert-auth \\

 --initial-cluster-state new \\

 --data-dir=/var/lib/etcd

Restart=on-failure

Creating a cluster completely from scratch 53

RestartSec=5

[Install]

WantedBy=multi-user.target

This service file provides a runtime definition for our etcd component, which will be
started on each master node. To actually start etcd on our node, we run the following
command:

{

 sudo systemctl daemon-reload

 sudo systemctl enable etcd

 sudo systemctl start etcd

}

This enables the etcd service along with automatic restarts when the node is restarted.

Bootstrapping the control plane component
Bootstrapping the control plane components on the master nodes is similar to the process
used to create the etcd cluster. systemd files are created for each component – the API
server, the controller manager, and the scheduler – and then a systemctl command is
used to start each component.

The previously created config files and certificates also need to be included on each master
node.

Let's take a look at our service file definition for the kube-apiserver component,
broken down into its sections as follows. The Unit section is just a quick description of
our systemd file:

[Unit]

Description=Kubernetes API Server

Documentation=https://github.com/kubernetes/kubernetes

Api-server-systemd-example

This second piece is the actual start command for the services, along with any variables to
be passed to the services:

[Service]

ExecStart=/usr/local/bin/kube-apiserver \\

54 Setting Up Your Kubernetes Cluster

 --advertise-address=${INTERNAL_IP} \\

 --allow-privileged=true \\

 --apiserver-count=3 \\

 --audit-log-maxage=30 \\

 --audit-log-maxbackup=3 \\

 --audit-log-maxsize=100 \\

 --audit-log-path=/var/log/audit.log \\

 --authorization-mode=Node,RBAC \\

 --bind-address=0.0.0.0 \\

 --client-ca-file=/var/lib/kubernetes/ca.pem \\

 --enable-admission-plugins=NamespaceLifecycle,NodeRestrictio
n,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota
\\

 --etcd-cafile=/var/lib/kubernetes/ca.pem \\

 --etcd-certfile=/var/lib/kubernetes/kubernetes.pem \\

 --etcd-keyfile=/var/lib/kubernetes/kubernetes-key.pem \\

 --etcd-

 --service-account-key-file=/var/lib/kubernetes/service-
account.pem \\

 --service-cluster-ip-range=10.10.0.0/24 \\

 --service-node-port-range=30000-32767 \\

 --tls-cert-file=/var/lib/kubernetes/kubernetes.pem \\

 --tls-private-key-file=/var/lib/kubernetes/kubernetes-key.pem
\\

 --v=2

Finally, the Install section allows us to specify a WantedBy target:

Restart=on-failure

RestartSec=5

 [Install]

WantedBy=multi-user.target

The service files for kube-scheduler and kube-controller-manager will be
very similar to the kube-apiserver definition, and once we're ready to start the
components on the node, the process is easy:

{

 sudo systemctl daemon-reload

Creating a cluster completely from scratch 55

 sudo systemctl enable kube-apiserver kube-controller-manager
kube-scheduler

 sudo systemctl start kube-apiserver kube-controller-manager
kube-scheduler

}

Similarly to etcd, we want to ensure the services restart on a node shutdown.

Bootstrapping the worker node
It's a similar story on the worker nodes. Service specs for kubelet, the container
runtime, cni, and kube-proxy need to be created and run using systemctl.
The kubelet config will specify the aforementioned TLS certificate so that it can
communicate with the control plane via the API server.

Let's take a look at what our kubelet service definition looks like:

Kubelet-systemd-example

[Unit]

Description=Kubernetes Kubelet

Documentation=https://github.com/kubernetes/kubernetes

After=containerd.service

Requires=containerd.service

[Service]

ExecStart=/usr/local/bin/kubelet \\

 --config=/var/lib/kubelet/kubelet-config.yaml \\

 --container-runtime=remote \\

 --container-runtime-endpoint=unix:///var/run/containerd/
containerd.sock \\

 --image-pull-progress-deadline=2m \\

 --kubeconfig=/var/lib/kubelet/kubeconfig \\

 --network-plugin=cni \\

 --register-node=true \\

 --v=2

Restart=on-failure

RestartSec=5

56 Setting Up Your Kubernetes Cluster

[Install]

WantedBy=multi-user.target

As you can see, this service definition references cni, the container runtime, and the
kubelet-config file. The kubelet-config file contains the TLS information we
need for our workers.

After bootstrapping the workers and master, the cluster should be functional via the use of
the admin kubeconfig file that was created as part of the TLS setup.

Summary
In this chapter, we reviewed several methods for creating a Kubernetes cluster. We
looked at minimal local cluster creation using minikube, setting up clusters on managed
Kubernetes services on Azure, AWS, and Google Cloud, creating clusters using the Kops
provisioning tool, and finally, manually creating a cluster from scratch.

Now that we have the skills to create a Kubernetes cluster in several different
environments, we can move on to using Kubernetes to run applications.

In the next chapter, we will learn how to start running applications on Kubernetes. The
knowledge you've gained about how Kubernetes works at the architectural level should
make it much easier to understand the concepts in the next few chapters.

Questions
1. What purpose does minikube serve?

2. What are some downsides to using a managed Kubernetes service?

3. How does Kops compare to Kubeadm? What are the major differences?

4. Which platforms does Kops support?

5. When manually creating a cluster, how are the major cluster components specified?
How are they run on each node?

Further reading
• The official Kubernetes documentation: https://kubernetes.io/

docs/home/

• Kubernetes The Hard Way: https://github.com/kelseyhightower/
kubernetes-the-hard-way

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

3
Running Application

Containers on
Kubernetes

This chapter contains a comprehensive overview of the smallest Lego block that
Kubernetes provides – the Pod. Included is an explanation of the PodSpec YAML format
and possible configurations, and a quick discussion of how Kubernetes handles and
schedules Pods. The Pod is the most basic way to run applications on Kubernetes and is
used in all higher-order application controllers.

In this chapter, we will cover the following topics:

• What is a Pod?

• Namespaces

• The Pod life cycle

• The Pod resource spec

• Pod scheduling

58 Running Application Containers on Kubernetes

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool, along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl
tool.

The code used in this chapter can be found in the book's GitHub repository at the
following link:

https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter3

What is a Pod?
The Pod is the simplest compute resource in Kubernetes. It specifies one or more
containers to be started and run by the Kubernetes scheduler on a node. Pods have many
potential configurations and extensions but remain the most basic way to run applications
on Kubernetes.

Important note
A Pod by itself is not a very good way to run applications on Kubernetes. Pods
should be treated like fdisposable things in order to take advantage of the true
capabilities of a container orchestrator like Kubernetes. This means treating
containers (and therefore Pods) like cattle, not pets. To really make use of
containers and Kubernetes, applications should be run in self-healing, scalable
groups. The Pod is the building block of these groups, and we'll get into how to
configure applications this way in later chapters.

Implementing Pods
Pods are implemented using Linux isolation tenets such as groups and namespaces, and
generally can be thought of as a logical host machine. Pods run one or more containers
(which can be based on Docker, CRI-O, or other runtimes) and these containers can
communicate with each other in the same ways that different processes on a VM can
communicate.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter3
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter3

Implementing Pods 59

In order for containers within two different Pods to communicate, they need to access the
other Pod (and container) via its IP. By default, only containers running on the same Pod
can use lower-level methods of communication, though it is possible to configure different
Pods with the availability to talk to each other via host IPC.

Pod paradigms
At the most basic level, there are two types of Pods:

• Single-container Pods

• Multi-container Pods

It is generally a best practice to include a single container per Pod. This approach allows
you to scale the different parts of your application separately, and generally keeps things
simple when it comes to creating a Pod that starts and runs without issues.

Multi-container Pods, on the other hand, are more complex but can be useful in various
circumstances:

• If there are multiple parts of your application that run in separate containers
but are tightly coupled, you can run them both inside the same Pod to make
communication and filesystem access seamless.

• When implementing the sidecar pattern, where utility containers are injected
alongside your main application to handle logging, metrics, networking, or
advanced functionality such as a Service Mesh (more on this in Chapter 14, Service
Meshes and Serverless).

The following diagram shows a common sidecar implementation:

Figure 3.1 – Common sidebar implementation

60 Running Application Containers on Kubernetes

In this example, we have a single Pod with two containers: our application container
running a web server, and a logging application that pulls logs from our server Pod and
forwards them to our logging infrastructure. This is a very applicable use of the sidecar
pattern, though many log collectors work at the node level, not at the Pod level, so this is
not a universal way of collecting logs from our app containers in Kubernetes.

Pod networking
As we just mentioned, Pods have their own IP addresses that can be used in inter-pod
communication. Each Pod has an IP address as well as ports, which are shared among the
containers running in a Pod if there is more than one container.

Within a Pod, as we mentioned before, containers can communicate without calling the
wrapping Pod's IP – instead they can simply use localhost. This is because containers
within a Pod share a network namespace – in essence, they communicate via the same
bridge, which is implemented using a virtual network interface.

Pod storage
Storage in Kubernetes is a large topic on its own, and we will review it in depth in Chapter
7, Storage on Kubernetes – but for now, you can think of Pod storage as either persistent
or non-persistent volumes attached to a Pod. Non-persistent volumes can be used by a
Pod to store data or files depending on the type, but they are deleted when the Pod shuts
down. Persistent-type volumes will remain past Pod shutdown and can even be used to
share data between multiple Pods or applications.

Before we can continue with our discussion of Pods, we will take a quick moment to
discuss namespaces. Since we'll be working with kubectl commands during our work
with Pods, it's important to know how namespaces tie into Kubernetes and kubectl,
since it can be a big "gotcha."

Namespaces
We talked briefly about namespaces in the section on authorization in Chapter 1,
Communicating with Kubernetes, but we will reiterate and expand on their purpose here.
Namespaces are a way to logically separate different areas within your cluster. A common
use case is having a namespace per environment – one for dev, one for staging, one for
production – all living inside the same cluster.

As we mentioned in the Authorization section, it is possible to specify user permissions on
a per-namespace basis – for instance, letting a user deploy new applications and resources
to the dev namespace but not to production.

Implementing Pods 61

In your running cluster, you can see what namespaces exist by running kubectl get
namespaces or kubectl get ns, which should result in the following output:

NAME STATUS AGE

default Active 1d

kube-system Active 1d

kube-public Active 1d

To create a namespace imperatively, you can simply run kubectl create
namespace staging, or run kubectl apply -f /path/to/file.yaml with
the following YAML resource spec:

Staging-ns.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: staging

As you can see, a Namespace spec is very simple. Let's move on to something more
complex – the PodSpec itself.

The Pod life cycle
To quickly see which Pods are running in your cluster, you can run kubectl get
pods or kubectl get pods --all-namespaces to get Pods in either the current
namespace (defined by your kubectl context, or the default namespace if none is
specified) or all namespaces, respectively.

The output of kubectl get pods looks like this:

NAME READY STATUS RESTARTS AGE

my-pod 1/1 Running 0 9s

As you can see, Pods have a STATUS value that tells us in which state the Pod currently is.

62 Running Application Containers on Kubernetes

The values for Pod state are as follows:

• Running: In the Running status, a Pod has successfully spun up its container(s)
without any issues. If the Pod has a single container, and it's in Running status,
then the container has not completed or exited its process. It could also currently
be restarting, which you can tell by checking the READY column. If, for instance,
the READY value is 0/1, that means that the container in the Pod is currently not
passing health checks. This could be for a variety of reasons: the container could still
be spinning up, a database connection could be non-functional, or some important
configuration could be preventing the application process from starting.

• Succeeded: If your Pod container(s) are set to run a command that can complete
or exit (not a long-running command, such as starting a web server), the Pod
will show the Succeeded state if those containers have completed their process
command.

• Pending: Pending statuses designate that at least one container in the Pod is
waiting for its image. This is likely because the container image is still being fetched
from an external repository, or because the Pod itself is waiting to be scheduled by
kube-scheduler.

• Unknown: The Unknown status means that Kubernetes cannot tell what state
the Pod is actually in. This usually means that the node that the Pod lives on is
experiencing some form of error. It may be out of disk space, disconnected from the
rest of the cluster, or otherwise be encountering problems.

• Failed: In the Failed status, one or more of the containers in the Pod has
terminated with a failure status. Additionally, the other containers in the Pod must
have terminated in either success or failure. This can happen for a variety of reasons
due to the cluster removing Pods or something inside the container application
breaking the process.

Understanding the Pod resource spec
Since the Pod resource spec is the first one we've really dug into, we will spend our time
detailing the various parts of the YAML file and how they fit together.

Let's start things off with a fully spec'd-out Pod file, which we can then pick apart and
review:

Simple-pod.yaml

apiVersion: v1

kind: Pod

Implementing Pods 63

metadata:

 name: myApp

 namespace: dev

 labels:

 environment: dev

 annotations:

 customid1: 998123hjhsad

spec:

 containers:

 - name: my-app-container

 image: busybox

This Pod YAML file is somewhat more complicated than the one that we looked at in the
first chapter. It exposes some new Pod functionality that we will review shortly.

API version
Let's start at line 1: apiVersion. As we mentioned in Chapter 1, Communicating
with Kubernetes, apiVersion tells Kubernetes which version of the API to look at
when creating and configuring your resource. Pods have been around for a long time in
Kubernetes, so the PodSpec is solidified into API version v1. Other resource types may
contain group names in addition to version names – for instance, a CronJob resource
in Kubernetes uses batch/v1beta1 apiVersion, while the Job resource uses the
batch/v1 apiVersion. In both of these, batch corresponds to the API group name.

Kind
The kind value corresponds to the actual name of the resource type in Kubernetes. In
this case, we're trying to spec out a Pod, so that's what we put. The kind value is always in
camel case, such as Pod, ConfigMap, CronJob, and so on.

Important note
For a full list of kind values, check the official Kubernetes documentation at
https://kubernetes.io/docs/home/. New Kubernetes kind
values are added in new releases so the ones reviewed in this book may not be
an exhaustive list.

https://kubernetes.io/docs/home/

64 Running Application Containers on Kubernetes

Metadata
Metadata is a top-level key that can have several different values underneath. First of all,
name is the resource name, which is what the resource will display as via kubectl and
what it is stored as in etcd. namespace corresponds to the namespace that the resource
should be created in. If no namespace is specified in the YAML spec, the resource will be
created in the default namespace – unless a namespace is specified in the apply or
create commands.

Next, labels are key-value pairs that are used to add metadata to a resource. labels
are special compared to other metadata because they are used by default in Kubernetes
native selectors to filter and select resources – but they can also be used for custom
functionality.

Finally, the metadata block can play host to multiple annotations which, like
labels, can be used by controllers and custom Kubernetes functionality to provide
additional configuration and feature-specific data. In this PodSpec, we have several
annotations specified in our metadata:

pod-with-annotations.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

 namespace: dev

 labels:

 environment: dev

 annotations:

 customid1: 998123hjhsad

 customid2: 1239808908sd

spec:

 containers:

 - name: my-app-container

 image: busybox

Generally, it is better to use labels for Kubernetes-specific functionality and selectors
while using annotations for adding data or extension functionality – this is just a
convention.

Implementing Pods 65

Spec
spec is the top-level key that contains the resource-specific configuration. In this
case, since our kind value is Pod, we'll add some configuration that is specific to our
Pod. All further keys will be indented under this spec key and will represent our Pod
configuration.

Containers
The containers key expects a list of one or more containers that will run within
a Pod. Each container spec will expose its own configuration values, which are indented
under the container list item in your resource YAML. We will review some of these
configurations here, but for a full list, check the Kubernetes documentation
(https://kubernetes.io/docs/home/).

Name
Inside a container spec, name pertains to what the container will be named within a Pod.
Container names can be used to specifically access the logs of a particular container using
the kubectl logs command, but we'll get to that later. For now, ensure you choose
a clear name for each container in your Pod to make things easier when it comes to
debugging.

Image
For each container, image is used to specify the name of the Docker (or other runtime)
image that should be started within the Pod. Images will be pulled from the configured
repository, which is the public Docker Hub by default, but can be a private repository
as well.

And that's it – that's all you need to specify a Pod and run it in Kubernetes. Everything
from this point on in the Pod section falls under the additional configuration umbrella.

Pod resource specifications
Pods can be configured to have specific amounts of memory and compute allocated
to them. This prevents particularly hungry applications from impacting cluster
performance and can also help prevent memory leaks. There are two possible resources
that can be specified – cpu and memory. For each of these, there are two different types
of specifications, Requests and Limits, for a total of four possible resource
specification keys.

https://kubernetes.io/docs/home/

66 Running Application Containers on Kubernetes

Memory requests and limits can be configured with any typical memory number suffix, or
its power-of-two equivalent – for instance, 50 Mi (mebibytes), 50 MB (megabytes), or 1 Gi
(gibibytes).

CPU requests and limits can be configured either by using m which corresponds to 1
milli-CPU, or by just using a decimal number. So 200m is equivalent to 0.2, which equals
20% or one fifth of a logical CPU. This quantity will be the same amount of compute
power regardless of the number of cores. 1 CPU equals a virtual core in AWS or a core in
GCP. Let's look at how these resource requests and limits look in our YAML file:

pod-with-resource-limits.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app-container

 image: mydockername

 resources:

 requests:

 memory: "50Mi"

 cpu: "100m"

 limits:

 memory: "200Mi"

 cpu: "500m"

In this Pod, we have a container running a Docker image that is specified with both
requests and limits on cpu and memory. In this case, our container image name,
mydockername, is a placeholder - but if you want to test the Pod resource limits in this
example, you can use the busybox image.

Implementing Pods 67

Container start commands
When a container starts in a Kubernetes Pod, it runs the default start script for the
container – for instance, the script specified in the Docker container spec. In order to
override this functionality with different commands or additional arguments, you can
provide the command and args keys. Let's look at a container configured with a start
command and some arguments:

pod-with-start-command.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app-container

 image: mydockername

 command: ["run"]

 args: ["--flag", "T", "--run-type", "static"]

As you can see, we specify a command as well as a list of arguments as an array of strings,
separated with commas where spaces would be.

Init containers
init containers are special containers within a Pod that start, run, and shut down before
the normal Pod container(s) start.

init containers can be used for many different use cases, such as initializing files before
an application starts or ensuring that other applications or services are running before
starting a Pod.

If multiple init containers are specified, they will run in order until all init containers
have shut down. For this reason, init containers must run a script that completes and
has an endpoint. If your init container script or application keeps running, the normal
container(s) in your Pod will not start.

68 Running Application Containers on Kubernetes

In the following Pod, the init container is running a loop to check that our config-
service exists via nslookup. Once it sees that config-service is up, the script
ends, which triggers our my-app app container to start:

pod-with-init-container.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 initContainers:

 - name: init-before

 image: busybox

 command: ['sh', '-c', 'until nslookup config-service; do
echo config-service not up; sleep 2; done;']

Important note
When an init container fails, Kubernetes will automatically restart the
Pod, similar to the usual Pod startup functionality. This functionality can be
changed by changing restartPolicy at the Pod level.

Here's a diagram showing the typical Pod startup flow in Kubernetes:

Implementing Pods 69

Figure 3.2 – Init container flowchart

If a Pod has more than one initContainer, they will be invoked sequentially. This is
valuable for times where you set up initContainers with modular steps that must be
executed in order. The following YAML shows this:

pod-with-multiple-init-containers.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 initContainers:

 - name: init-step-1

 image: step1-image

 command: ['start-command']

70 Running Application Containers on Kubernetes

 - name: init-step-2

 image: step2-image

 command: ['start-command']

For instance, in this Pod YAML file, the step-1 init container needs to succeed
before init-step-2 is invoked, and both need to show success before the my-app
container will be started.

Introducing different types of probes in Kubernetes
In order to know when a container (and therefore a Pod) has failed, Kubernetes needs to
know how to test that the container is functioning. We do this by defining probes, which
Kubernetes can run at a specified interval to determine whether the container is working.

There are three types of probes that Kubernetes lets us configure – readiness, liveness, and
startup.

Readiness probes
First off, readiness probes can be used to determine whether a container is ready to
perform a function such as accepting traffic via HTTP. These probes are helpful in the
beginning stages of a running application, where it may still be fetching the configuration,
for instance, and not yet be ready to accept connections.

Let's take a look at what a Pod with a readiness probe configured looks like. What follows
is a PodSpec with a readiness probe attached:

pod-with-readiness-probe.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 ports:

 - containerPort: 8080

 readinessProbe:

Implementing Pods 71

 exec:

 command:

 - cat

 - /tmp/thisfileshouldexist.txt

 initialDelaySeconds: 5

 periodSeconds: 5

For starters, as you can see, probes are defined per container, not per Pod. Kubernetes will
run all probes per container and use that to determine the total health of the Pod.

Liveness probes
Liveness probes can be used to determine whether an application has failed for some
reason (for instance, due to a memory error). For application containers that run a long
time, liveness probes can come in handy as a method to help Kubernetes recycle old and
broken Pods for new ones. Though probes in and of themselves won't cause a container to
restart, other Kubernetes resources and controllers will check the probe status and use it to
restart Pods when necessary. Here is a PodSpec with a liveness probe definition attached
to it:

pod-with-liveness-probe.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 ports:

 - containerPort: 8080

 livenessProbe:

 exec:

 command:

 - cat

 - /tmp/thisfileshouldexist.txt

 initialDelaySeconds: 5

72 Running Application Containers on Kubernetes

 failureThreshold: 3

 periodSeconds: 5

As you can see, our liveness probe is specified in the same way as our readiness probe,
with one addition – failureThreshold.

The failureThreshold value will determine how many times Kubernetes will attempt
the probe before taking action. For liveness probes, Kubernetes will restart the Pod once
the failureThreshold is crossed. For readiness probes, Kubernetes will simply mark
the Pod as Not Ready. The default value for this threshold is 3, but it can be changed to
any value greater than or equal to 1.

In this case, we are using the exec mechanism with our probe. We will review the various
probe mechanisms available shortly.

Startup probes
Finally, startup probes are a special type of probe that will only run once, on container
startup. Some (often older) applications will take a long time to start up in a container, so
by providing some extra leeway when a container starts up the first time, you can prevent
the liveness or readiness probes failing and causing a restart. Here's a startup probe
configured with our Pod:

pod-with-startup-probe.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 ports:

 - containerPort: 8080

 startupProbe:

 exec:

 command:

 - cat

Implementing Pods 73

 - /tmp/thisfileshouldexist.txt

 initialDelaySeconds: 5

 successThreshold: 2

 periodSeconds: 5

Startup probes provide a benefit greater than simply extending the time between liveness
or readiness probes – they allow Kubernetes to maintain a quick reaction time when
addressing problems that happen after startup and (more importantly) to prevent slow-
starting applications from restarting constantly. If your application takes many seconds or
even a minute or two to start up, you will have a much easier time implementing a startup
probe.

successThreshold is just what it seems, the opposite side of the coin to
failureThreshold. It specifies how many successes in a row are required before a
container is marked Ready. For applications that can go up and down on startup before
stabilizing (like some self-clustering applications), changing this value can be useful. The
default is 1, and for liveness probes the only possible value is 1, but we can change the
value for readiness and startup probes.

Probe mechanism configuration
There are multiple mechanisms to specify any of the three probes: exec, httpGet, and
tcpSocket.

The exec method allows you to specify a command that will be run inside the container.
A successfully executed command will result in a passed probe, while a command that
fails will result in a fail on the probe. All the probes we've configured so far have used the
exec method, so configuration should be self-evident. If the chosen command (with any
arguments specified in comma-separated list form) fails, the probe will fail.

The httpGet method for probes allows you to specify a URL on the container that will
be hit with an HTTP GET request. If the HTTP request returns a code anywhere between
200 to 400, it will result in a success on the probe. Any other HTTP code will result in a
failure.

The configuration for httpGet looks like this:

pod-with-get-probe.yaml

apiVersion: v1

kind: Pod

metadata:

74 Running Application Containers on Kubernetes

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 ports:

 - containerPort: 8080

 livenessProbe:

 httpGet:

 path: /healthcheck

 port: 8001

 httpHeaders:

 - name: My-Header

 value: My-Header-Value

 initialDelaySeconds: 3

 periodSeconds: 3

Finally, the tcpSocket method will try to open the specified socket on the container and
will use the result to dictate a success or failure. The tcpSocket configuration looks like
this:

pod-with-tcp-probe.yaml

apiVersion: v1

kind: Pod

metadata:

 name: myApp

spec:

 containers:

 - name: my-app

 image: mydockername

 command: ["run"]

 ports:

 - containerPort: 8080

 readinessProbe:

 tcpSocket:

Implementing Pods 75

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

As you can see, this type of probe takes in a port, which will be pinged every time the
check occurs.

Common Pod transitions
Failing Pods in Kubernetes tend to transition between statuses quite a bit. For a first-time
user, this can be intimidating, so it is valuable to break down how the Pod statuses we
listed earlier interact with probe functionality. Just to reiterate, here are our statuses:

• Running

• Succeeded

• Pending

• Unknown

• Failed

A common flow is to run kubectl get pods -w (the -w flag adds a watch to the
command) and see offending Pods transitioning between Pending and Failed.
Typically, what is occurring is that the Pods (and their containers) are spinning up and
pulling images – which is the Pending state since the health checks have not yet started.

Once the initial probe timeout (which as we saw in the previous section is configurable)
elapses, the first probe fails. This can continue for seconds or even minutes depending on
how high the failure threshold is, with the status still pinned at Pending.

Finally, our failure threshold is reached, and our Pod status transitions to Failed.
At this point, one of two things can happen, and the decision is based purely on the
RestartPolicy on the PodSpec, which can either be Always, Never, or OnFailure.
If a Pod fails and the restartPolicy is Never, the Pod will stay in the failed status.
If it is one of the other two options, the Pod will restart automatically, and go back to
Pending, which is the root cause of our never-ending transition cycle.

For a different example, you may see Pods stuck forever in the Pending status. This
can be due to the Pod failing to be scheduled on any node. This could be due to resource
request constraints (which we will cover in depth later in this book, in Chapter 8, Pod
Placement Controls), or other issues such as nodes being unreachable.

76 Running Application Containers on Kubernetes

Finally, with Unknown, typically the node that the Pod is scheduled on is unreachable
for some reason – the node might have shut down, for instance, or is unreachable via the
network.

Pod scheduling
The complexities of Pod scheduling and the ways the Kubernetes lets you influence and
control it will be saved for our Chapter 8, Pod Placement Controls – but for now we will
review the basics.

When deciding where to schedule a Pod, Kubernetes takes many factors into account, but
the most important to consider (when not delving into the more complex controls that
Kubernetes lets us use) are Pod priority, node availability, and resource availability.

The Kubernetes scheduler operates a constant control loop that monitors the cluster for
unbound (unscheduled) Pods. If one or more unbound Pods is found, the scheduler will
use the Pod priority to decide which one to schedule first.

Once the scheduler has decided on a Pod to schedule, it will perform several rounds and
types of checks in order to find the local optima of a node for where to schedule the Pod.
The latter rounds of checks are dictated by granular scheduling controls, which we'll get
into in the Chapter 8, Pod Placement Controls. We'll worry about the first couple of checks
for now.

First, Kubernetes checks to see which nodes are even schedulable at the current moment.
Nodes may be non-functioning or otherwise encountering issues that would prevent new
Pods from being scheduled.

Secondly, Kubernetes filters schedulable nodes by checking to see which of those nodes
match the minimum resource requirement stated in the PodSpec.

At this point, in the absence of any other placement controls, the scheduler will make its
decision and assign our new Pod to a node. When the kubelet on that node sees that it
has a new Pod assigned to it, the Pod will be spun up.

Summary
In this chapter, we learned that Pods are the most basic building block we have to work
with in Kubernetes. It's important to have a strong understanding of Pods and all their
subtleties because all compute on Kubernetes uses Pods as a building block. It's probably
pretty obvious by now, but Pods are very small, individual things that are not very sturdy.
Running an application as a single Pod on Kubernetes with no controller is a bad decision,
and any issue with your Pod will result in downtime.

Questions 77

In the next chapter, we'll see how to prevent this by using Pod controllers to run multiple
replicas of an application at once.

Questions
1. How could you use namespaces to separate application environments?

2. What is a possible reason for a Pod status to be listed as Unknown?

3. What could be a reason for constraining Pod memory resources?

4. If an application running on Kubernetes often does not start in time before a failed
probe restarts the Pod, which probe type should you tune? Readiness, liveness, or
startup?

Further reading
• The official Kubernetes documentation: https://kubernetes.io/docs/

home/

• Kubernetes The Hard Way: https://github.com/kelseyhightower/
kubernetes-the-hard-way

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

Section 2:
Configuring and

Deploying Applications
on Kubernetes

In this section, you'll learn how to configure and deploy applications on Kubernetes, as
well as provisioning storage and exposing your application outside of the cluster.

This part of the book comprises the following chapters:

• Chapter 4, Scaling and Deploying Your Application

• Chapter 5, Services and Ingress – Communicating with the Outside World

• Chapter 6, Kubernetes Application Configuration

• Chapter 7, Storage on Kubernetes

• Chapter 8, Pod Placement Controls

4
Scaling and

Deploying Your
Application

In this chapter, we will learn about the higher-level Kubernetes resources that are used
to run applications and control Pods. First, we'll cover the drawbacks of the Pod, before
moving on to the simplest Pod controller, ReplicaSets. From there we will move on to
Deployments, the most popular method for deploying applications to Kubernetes. Then
we'll cover special resources to help you deploy specific types of applications – Horizontal
Pod Autoscalers, DaemonSets, StatefulSets, and Jobs. Finally, we'll put it all together with a
full example of how to run a complex application on Kubernetes.

In this chapter, we will cover the following topics:

• Understanding Pod drawbacks and their solutions

• Using ReplicaSets

• Controlling Deployments

• Harnessing the Horizontal Pod Autoscaler

82 Scaling and Deploying Your Application

• Implementing DaemonSets

• Reviewing StatefulSets and Jobs

• Putting it all together

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster. See
Chapter 1, Communicating with Kubernetes, for several methods to get up and running
with Kubernetes quickly, and for instructions on how to install the kubectl tool.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter4.

Understanding Pod drawbacks and their
solutions
As we reviewed in the previous chapter, Chapter 3, Running Application Containers on
Kubernetes, a Pod in Kubernetes is an instance of one or more application containers that
run on a node. Creating just one Pod is enough to run an application the same way you
would in any other container.

That being said, using a single Pod to run an application ignores many of the benefits of
running containers in the first place. Containers allow us to treat each instance of our
application as a stateless item that can be scaled up or down to meet demand by spinning
up new instances of the application.

This has the benefits of both allowing us to scale our application easily and making our
application more available by providing multiple instances of our application at a given
time. If one of our instances crashes, the application will still continue to function, and
will automatically scale to pre-crash levels. The way we do this on Kubernetes is by using
a Pod controller resource.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter4
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter4
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter4

Understanding Pod drawbacks and their solutions 83

Pod controllers
Kubernetes provides several choices for Pod controllers out of the box. The simplest
option is to use a ReplicaSet, which maintains a given number of Pod instances for
a particular Pod. If one instance fails, the ReplicaSet will spin up a new instance to
replace it.

Secondly, there are Deployments, which themselves control a ReplicaSet. Deployments are
the most popular controller when it comes to running an application on Kubernetes, and
they make it easy to upgrade applications using a rolling update across a ReplicaSet.

Horizontal Pod Autoscalers take Deployments to the next level by allowing applications to
autoscale to different numbers of instances based on performance metrics.

Finally, there are a few specialty controllers that may be valuable in certain situations:

• DaemonSets, which run an instance of the application on each node and
maintain them

• StatefulSets, where the Pod identity is kept static to assist in running stateful
workloads

• Jobs, which start, run to completion, and then shut down on a specified number
of Pods

The actual behavior of a controller, be it a default Kubernetes controller like a ReplicaSet
or a custom controller (for instance, the PostgreSQL Operator), should be easy to
predict. A simplified view of the standard control loop looks something like the following
diagram:

Figure 4.1 – A basic control loop for a Kubernetes controller

84 Scaling and Deploying Your Application

As you can see, the controller constantly checks the Intended cluster state (we want seven
Pods of this app) against the Current cluster state (we have five Pods of this app running).
When the intended state does not match the current state, the controller will take action
via the API to correct the current state to match the intended state.

By now, you should understand why controllers are necessary on Kubernetes: the Pod
itself is not a powerful enough primitive when it comes to delivering highly available
applications. Let's move on to the simplest such controller: the ReplicaSet.

Using ReplicaSets
ReplicaSets are the simplest Kubernetes Pod controller resource. They replace the older
ReplicationController resource.

The major difference between a ReplicaSet and a ReplicationController is that
a ReplicationController uses a more basic type of selector – the filter that determines
which Pods should be controlled.

While ReplicationControllers use simple equity-based (key=value) selectors,
ReplicaSets use a selector with multiple possible formats, such as matchLabels and
matchExpressions, which will be reviewed in this chapter.

Important note
There shouldn't be any reason to use a ReplicationController over a ReplicaSet
– just stick with ReplicaSets unless you have a really good reason not to.

ReplicaSets allow us to inform Kubernetes to maintain a certain number of Pods for a
particular Pod spec. The YAML for a ReplicaSet is very similar to that for a Pod. In fact,
the entire Pod spec is nested in the ReplicaSet YAML, under the template key.

There are also a few other key differences, which can be observed in the following
code block:

replica-set.yaml

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: myapp-group

 labels:

 app: myapp

Using ReplicaSets 85

spec:

 replicas: 3

 selector:

 matchLabels:

 app: myapp

 template:

 metadata:

 labels:

 app: myapp

 spec:

 containers:

 - name: myapp-container

 image: busybox

As you can see, in addition to the template section, which is essentially a Pod
definition, we have a selector key and a replicas key in our ReplicaSet spec. Let's
start with replicas.

Replicas
The replicas key specifies a replica count, which our ReplicaSet will ensure is always
running at a given time. If a Pod dies or stops working, our ReplicaSet will create a new
Pod to take its place. This makes the ReplicaSet a self-healing resource.

How does a ReplicaSet controller decide when a Pod stops working? It looks at the Pod's
status. If the Pod's current status isn't "Running" or "ContainerCreating", the ReplicaSet will
attempt to start a new Pod.

As we discussed in Chapter 3, Running Application Containers on Kubernetes, the Pod's
status after container creation is driven by the liveness, readiness, and startup probes,
which can be configured specifically for a Pod. This means that you can set up application-
specific ways to know whether a Pod is broken in some way, and your ReplicaSet can jump
in and start a new one in its place.

Selector
The selector key is important because of the way a ReplicaSet works – it is a controller
that is implemented with the selector at its core. The ReplicaSet's job is to ensure that the
number of running Pods that match its selector is correct.

86 Scaling and Deploying Your Application

Let's say, for instance, that you have an existing Pod running your application, MyApp.
This Pod is labeled with a selector key as App=MyApp.

Now let's say you want to create a ReplicaSet with the same app, which will add an
additional three instances of your application. You create a ReplicaSet with the same
selector, and specify three replicas, with the intent of running four instances in total, since
you already have one running.

What will happen once you start the ReplicaSet? You'll find that the total number of Pods
running that application will be three, not four. This is because a ReplicaSet has the ability
to adopt orphaned Pods and bring them under its reign.

When the ReplicaSet starts up, it sees that there is already an existing Pod matching its
selector key. Depending on the number of replicas required, a ReplicaSet will shut
down existing Pods or start new Pods that match the selector in order to create the
correct number.

Template
The template section contains the Pod and supports all the same fields as Pod YAMLs
do, including the metadata section and the spec itself. Most other controllers follow this
pattern – they allow you to define the Pod spec within the larger overall controller YAML.

You should now understand the various parts of the ReplicaSet spec and what they do.
Let's move on to actually running applications using our ReplicaSet.

Testing a ReplicaSet
Now, let's deploy our ReplicaSet.

Copy the replica-set.yaml file listed previously and run it on your cluster using the
following command in the same folder as your YAML file:

kubectl apply -f replica-set.yaml

To check that the ReplicaSet has been created properly, run kubectl get pods to
fetch the Pods in the default namespace.

Since we haven't specified a namespace for our ReplicaSet, it will be created by default.
The kubectl get pods command should give you the following:

NAME READY STATUS RESTARTS
AGE

myapp-group-192941298-k705b 1/1 Running 0

Controlling Deployments 87

1m

myapp-group-192941298-o9sh8 1/1 Running 0
1m

myapp-group-192941298-n8gh2 1/1 Running 0
1m

Now, try deleting one of the ReplicaSet Pods by using the following command:

kubectl delete pod myapp-group-192941298-k705b

A ReplicaSet will always try to keep the specified number of replicas online.

Let's use our kubectl get command to see our running pods again:

NAME READY STATUS RESTARTS
AGE

myapp-group-192941298-u42s0 1/1 ContainerCreating 0
1m

myapp-group-192941298-o9sh8 1/1 Running 0
2m

myapp-group-192941298-n8gh2 1/1 Running 0
2m

As you can see, our ReplicaSet controller is starting a new pod to keep our number of
replicas at three.

Finally, let's delete our ReplicaSet using the following command:

kubectl delete replicaset myapp-group

With our cluster a bit cleaner, let's move on to a more complex controller – Deployments.

Controlling Deployments
Though ReplicaSets contain much of the functionality you would want to run a high
availability application, most of the time you will want to use Deployments to run
applications on Kubernetes.

Deployments have a few advantages over ReplicaSets, and they actually work by owning
and controlling a ReplicaSet.

The main advantage of a Deployment is that it allows you to specify a rollout procedure
– that is, how an application upgrade is deployed to the various pods in the Deployment.
This lets you easily configure controls to stop bad upgrades in their tracks.

88 Scaling and Deploying Your Application

Before we review how to do this, let's look at the entire spec for a Deployment:

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: myapp-deployment

 labels:

 app: myapp

spec:

 replicas: 3

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 25%

 maxUnavailable: 25%

 selector:

 matchLabels:

 app: myapp

 template:

 metadata:

 labels:

 app: myapp

 spec:

 containers:

 - name: myapp-container

 image: busybox

As you can see, this is very similar to the spec for a ReplicaSet. The difference we see here
is a new key in the spec: strategy.

Using the strategy setting, we can tell our Deployment which way to upgrade our
application, either via a RollingUpdate, or Recreate.

Recreate is a very basic deployment method: all Pods in the Deployment will be deleted
at the same time, and new Pods will be created with the new version. Recreate doesn't
give us much control against a bad Deployment – if the new Pods don't start for some
reason, we're stuck with a completely non-functioning application.

Controlling Deployments 89

With RollingUpdate on the other hand, Deployments are slower but far more
controlled. Firstly, the new application will be rolled out bit by bit, Pod by Pod. We can
specify values for maxSurge and maxUnavailable to tune the strategy.

A rolling update works like this – when the Deployment spec is updated with a new
version of the Pod container, the Deployment will take down one Pod at a time, create
a new Pod with the new application version, wait for the new Pod to register Ready as
determined by the readiness check, and then move on to the next Pod.

The maxSurge and maxUnavailable parameters allow you to speed up or slow down
this process. maxUnavailable allows you to tune the maximum number of unavailable
Pods during the rollout process. This can be either a percentage or a fixed number.
maxSurge allows you to tune the maximum number of Pods over the Deployment
replica number that can be created at any given time. Like with maxUnavailable, this
can be a percentage or a fixed number.

The following diagram shows the RollingUpdate procedure:

Figure 4.2 – RollingUpdate process for a Deployment

90 Scaling and Deploying Your Application

As you can see, the RollingUpdate procedure follows several key steps. The
Deployment attempts to update Pods, one by one. Only after a Pod is successfully updated
does the update proceed to the next Pod.

Controlling Deployments with imperative commands
As we've discussed, we can change our Deployment by simply updating its YAML using
declarative methods. However, Kubernetes also gives us some special commands in
kubectl for controlling several aspects of Deployments.

First off, Kubernetes lets us manually scale a Deployment – that is, we can edit the amount
of replicas that should be running.

To scale our myapp-deployment up to five replicas, we can run the following:

kubectl scale deployment myapp-deployment --replicas=5

Similarly, we can roll back our myapp-deployment to an older version if required. To
demonstrate this, first let's manually edit our Deployment to use a new version of our
container:

Kubectl set image deployment myapp-deployment myapp-
container=busybox:1.2 –record=true

This command tells Kubernetes to change the version of our container in our Deployment
to 1.2. Then, our Deployment will go through the steps in the preceding figure to roll out
our change.

Now, let's say that we want to go back to our previous version before we updated the
container image version. We can easily do this using the rollout undo command:

Kubectl rollout undo deployment myapp-deployment

In our previous case, we only had two versions, the initial one and our version with the
updated container, but if we had others, we could specify them in the undo command
like this:

Kubectl rollout undo deployment myapp-deployment –
to-revision=10

This should give you a glimpse into why Deployments are so valuable – they give us fine-
tuned control over rollout for new versions of our application. Next, we'll discuss a smart
scaler for Kubernetes that works in concert with Deployments and ReplicaSets.

Harnessing the Horizontal Pod Autoscaler 91

Harnessing the Horizontal Pod Autoscaler
As we've seen, Deployments and ReplicaSets allow you to specify a total number of
replicas that should be available at a certain time. However, neither of these structures
allow automatic scaling – they must be scaled manually.

Horizontal Pod Autoscalers (HPA) provide this functionality by existing as a higher-
level controller that can change the replica count of a Deployment or ReplicaSet based on
metrics such as CPU and memory usage.

By default, an HPA can autoscale based on CPU utilization, but by using custom metrics
this functionality can be extended.

The YAML file for an HPA looks like this:

hpa.yaml

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: myapp-hpa

spec:

 maxReplicas: 5

 minReplicas: 2

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: myapp-deployment

 targetCPUUtilizationPercentage: 70

In the preceding spec, we have the scaleTargetRef, which specifies what should be
autoscaled by the HPA, and the tuning parameters.

The definition of scaleTargetRef can be a Deployment, ReplicaSet, or
ReplicationController. In this case, we've defined the HPA to scale our previously created
Deployment, myapp-deployment.

For tuning parameters, we're using the default CPU utilization-based scaling, so we can
use targetCPUUtilizationPercentage to define the intended CPU utilization of
each Pod running our application. If the average CPU usage of our Pods increases past
70%, our HPA will scale the Deployment spec up, and if it drops below for long enough, it
will scale the Deployment down.

92 Scaling and Deploying Your Application

A typical scaling event looks like this:

1. The average CPU usage of a Deployment exceeds 70% on three replicas.

2. The HPA control loop notices this increase in CPU utilization.

3. The HPA edits the Deployment spec with a new replica count. This count is
calculated based on CPU utilization, with the intent of a steady state per-node CPU
usage under 70%.

4. The Deployment controller spins up a new replica.

5. This process repeats itself to scale the Deployment up or down.

In summary, the HPA keeps track of CPU and memory utilization and initiates a scaling
event when boundaries are exceeded. Next, we will review DaemonSets, which provide a
very specific type of Pod controller.

Implementing DaemonSets
From now until the end of the chapter, we will be reviewing more niche options when it
comes to running applications with specific requirements.

We'll start with DaemonSets, which are similar to ReplicaSets except that the number of
replicas is fixed at one replica per node. This means that each node in the cluster will keep
one replica of the application active at any time.

Important note
It's important to keep in mind that this functionality will only create one
replica per node in the absence of additional Pod placement controls, such as
Taints or Node Selectors, which we will cover in greater detail in Chapter 8, Pod
Placement Controls.

This ends up looking like the following diagram for a typical DaemonSet:

Figure 4.3 – DaemonSet spread across three nodes

Implementing DaemonSets 93

As you can see in the preceding figure, each node (represented by a box) contains one Pod
of the application, as controlled by the DaemonSet.

This makes DaemonSets great for running applications that collect metrics at the node
level or provide networking processes on a per-node basis. A DaemonSet spec looks
like this:

daemonset-1.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: log-collector

spec:

 selector:

 matchLabels:

 name: log-collector

 template:

 metadata:

 labels:

 name: log-collector

 spec:

 containers:

 - name: fluentd

 image: fluentd

As you can see, this is very similar to your typical ReplicaSet spec, except that we do not
specify the number of replicas. This is because a DaemonSet will try to run a Pod on each
node in your cluster.

If you want to specify a subset of nodes to run your application, you can do this using
a node selector as shown in the following file:

daemonset-2.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: log-collector

spec:

94 Scaling and Deploying Your Application

 selector:

 matchLabels:

 name: log-collector

 template:

 metadata:

 labels:

 name: log-collector

 spec:

 nodeSelector:

 type: bigger-node

 containers:

 - name: fluentd

 image: fluentd

This YAML will restrict our DaemonSet to nodes that match the type=bigger-node
selector in their labels. We will learn much more about Node Selectors in Chapter 8,
Pod Placement Controls. For now, let's discuss a type of controller well suited to running
stateful applications such as databases – the StatefulSet.

Understanding StatefulSets
StatefulSets are very similar to ReplicaSets and Deployments, but with one key difference
that makes them better for stateful workloads. StatefulSets maintain the order and identity
of each Pod, even if the Pods are rescheduled onto new nodes.

For instance, in a StatefulSet of 3 replicas, there will always be Pod 1, Pod 2, and Pod 3,
and those Pods will maintain their identity in Kubernetes and storage (which we'll get to
in Chapter 7, Storage on Kubernetes), regardless of any rescheduling that happens.

Let's take a look at a simple StatefulSet configuration:

statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: stateful

spec:

 selector:

Understanding StatefulSets 95

 matchLabels:

 app: stateful-app

 replicas: 5

 template:

 metadata:

 labels:

 app: stateful-app

 spec:

 containers:

 - name: app

 image: busybox

This YAML will create a StatefulSet with five replicas of our app.

Let's see how the StatefulSet maintains Pod identity differently than a typical Deployment
or ReplicaSet. Let's fetch all Pods using the command:

kubectl get pods

The output should look like the following:

NAME READY STATUS RESTARTS AGE

stateful-app-0 1/1 Running 0 55s

stateful-app-1 1/1 Running 0 48s

stateful-app-2 1/1 Running 0 26s

stateful-app-3 1/1 Running 0 18s

stateful-app-4 0/1 Pending 0 3s

As you can see, in this example, we have our five StatefulSet Pods, each with a numeric
indicator of their identity. This property is extremely useful for stateful applications such
as a database cluster. In the case of running a database cluster on Kubernetes, the identity
of the master versus replica Pods is important, and we can use StatefulSet identities to
easily manage that.

Another point of interest is that you can see the final Pod is still starting up, and that
the Pod ages increase as numeric identity increases. This is because StatefulSet Pods are
created one at a time, in order.

StatefulSets are valuable in concert with persistent Kubernetes storage in order to run
stateful applications. We'll learn more about this in Chapter 7, Storage On Kubernetes, but
for now, let's discuss another controller with a very specific use: Jobs.

96 Scaling and Deploying Your Application

Using Jobs
The purpose of the Job resource in Kubernetes is to run tasks that can complete, which
makes them not ideal for long-running applications, but great for batch jobs or similar
tasks that can benefit from parallelism.

Here's what a Job spec YAML looks like:

job-1.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: runner

spec:

 template:

 spec:

 containers:

 - name: run-job

 image: node:lts-jessie

 command: ["node", "job.js"]

 restartPolicy: Never

 backoffLimit: 4

This Job will start a single Pod, and run a command, node job.js, until it completes,
at which point the Pod will shut down. In this and the future examples, we assume that
the container image used has a file, job.js, that runs the job logic. The node:lts-
jessie container image will not have this by default. This is an example of a Job that
runs without parallelism. As you are likely aware from Docker usage, multiple command
arguments must be passed as an array of strings.

In order to create a Job that can run with parallelism (that is to say, multiple replicas
running the Job at the same time), you need to develop your application code in a way
that it can tell that the Job is completed before ending the process. In order to do this, each
instance of the Job needs to contain code that ensures it does the right part of the greater
batch task and prevents duplicate work from occurring.

There are several application patterns that can enable this, including a mutex lock and
a Work Queue. In addition, the code needs to check the status of the entire batch task,
which could again be handled by updating a value in a database. Once the Job code sees
that the greater task is complete, it should exit.

Using Jobs 97

Once you've done that, you can add parallelism to your job code using the parallelism
key. The following code block shows this:

job-2.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: runner

spec:

 parallelism: 3

 template:

 spec:

 containers:

 - name: run-job

 image: node:lts-jessie

 command: ["node", "job.js"]

 restartPolicy: Never

 backoffLimit: 4

As you can see, we add the parallelism key with three replicas. Further, you can swap
pure job parallelism for a specified number of completions, in which case Kubernetes can
keep track of how many times the Job has been completed. You can still set parallelism for
this case, but if you don't set it, it will default to 1.

This next spec will run a Job 4 times to completion, with 2 iterations running at any given
time:

job-3.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: runner

spec:

 parallelism: 2

 completions: 4

 template:

 spec:

98 Scaling and Deploying Your Application

 containers:

 - name: run-job

 image: node:lts-jessie

 command: ["node", "job.js"]

 restartPolicy: Never

 backoffLimit: 4

Jobs on Kubernetes provide a great way to abstract one-time processes, and many third-
party applications link them into workflows. As you can see, they are very easy to use.

Next, let's look at a very similar resource, the CronJob.

CronJobs
CronJobs are a Kubernetes resource for scheduled job execution. This works very similarly
to CronJob implementations you may find in your favorite programming language or
application framework, with one key difference. Kubernetes CronJobs trigger Kubernetes
Jobs, which provide an additional layer of abstraction that can be used, for instance, to
trigger batch Jobs at night, every night.

CronJobs in Kubernetes are configured using a very typical cron notation. Let's take a look
at the full spec:

cronjob-1.yaml

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: hello

spec:

 schedule: "0 1 * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: run-job

 image: node:lts-jessie

 command: ["node", "job.js"]

 restartPolicy: OnFailure

Using Jobs 99

This CronJob will, at 1 a.m. every day, create a Job that is identical to our previous Job
spec. For a quick review of cron time notation, which will explain the syntax of our 1 a.m.
job, read on. For a comprehensive review of cron notation, check http://man7.org/
linux/man-pages/man5/crontab.5.html.

Cron notation consists of five values, separated by spaces. Each value can be a numeric
integer, character, or combination. Each of the five values represents a time value with the
following format, from left to right:

• Minute

• Hour

• Day of the month (such as 25)

• Month

• Day of the week (where, for example, 3 = Wednesday)

The previous YAML assumes a non-parallel CronJob. If we wanted to increase the batch
capacity of our CronJob, we could add parallelism as we did with our previous Job specs.
The following code block shows this:

cronjob-2.yaml

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: hello

spec:

 schedule: "0 1 * * *"

 jobTemplate:

 spec:

 parallelism: 3

 template:

 spec:

 containers:

 - name: run-job

 image: node:lts-jessie

 command: ["node", "job.js"]

 restartPolicy: OnFailure

http://man7.org/linux/man-pages/man5/crontab.5.html
http://man7.org/linux/man-pages/man5/crontab.5.html

100 Scaling and Deploying Your Application

Note that for this to work, the code in your CronJob container needs to gracefully handle
parallelism, which could be implemented using a work queue or other such pattern.

We've now reviewed all the basic controllers that Kubernetes provides by default. Let's
use our knowledge to run a more complex application example on Kubernetes in the next
section.

Putting it all together
We now have a toolset for running applications on Kubernetes. Let's look at a real-world
example to see how this could all be combined to run an application with multiple tiers
and functionality spread across Kubernetes resources:

Figure 4.4 – Multi-tier application diagram

As you can see, our diagrammed application contains a web tier running a .NET
Framework application, a mid-tier or service tier running Java, a database tier running
Postgres, and finally a logging/monitoring tier.

Putting it all together 101

Our controller choices for each of these tiers are dependent on the applications we
plan to run on each tier. For both the web tier and the mid-tier, we're running stateless
applications and services, so we can effectively use Deployments to handle rolling out
updates, blue/green deploys, and more.

For the database tier, we need our database cluster to know which Pod is a replica and
which is a master – so we use a StatefulSet. And finally, our log collector needs to run on
every node, so we use a DaemonSet to run it.

Now, let's go through example YAML specs for each of our tiers.

Let's start with our JavaScript-based web app. By hosting this application on Kubernetes,
we can do canary tests and blue/green Deployments. As a note, some of the examples in
this section use container image names that aren't publicly available in DockerHub. To use
this pattern, adapt the examples to your own application containers, or just use busybox if
you want to run it without actual application logic.

The YAML file for the web tier could look like this:

example-deployment-web.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webtier-deployment

 labels:

 tier: web

spec:

 replicas: 10

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 50%

 maxUnavailable: 25%

 selector:

 matchLabels:

 tier: web

 template:

 metadata:

 labels:

102 Scaling and Deploying Your Application

 tier: web

 spec:

 containers:

 - name: reactapp-container

 image: myreactapp

In the preceding YAML, we're labeling our applications using the tier label and using
that as our matchLabels selector.

Next up is the mid-tier service layer. Let's take a look at the relevant YAML:

example-deployment-mid.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: midtier-deployment

 labels:

 tier: mid

spec:

 replicas: 8

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 25%

 maxUnavailable: 25%

 selector:

 matchLabels:

 tier: mid

 template:

 metadata:

 labels:

 tier: mid

 spec:

 containers:

 - name: myjavaapp-container

 image: myjavaapp

Putting it all together 103

As you can see in the preceding code, our mid-tier application is pretty similar to the web
tier setup, and we're using another Deployment.

Now comes the interesting part – let's look at the spec for our Postgres StatefulSet. We
have truncated this code block somewhat in order to fit on the page, but you should be
able to see the most important parts:

example-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: postgres-db

 labels:

 tier: db

spec:

 serviceName: "postgres"

 replicas: 2

 selector:

 matchLabels:

 tier: db

 template:

 metadata:

 labels:

 tier: db

 spec:

 containers:

 - name: postgres

 image: postgres:latest

 envFrom:

 - configMapRef:

 name: postgres-conf

 volumeMounts:

 - name: pgdata

 mountPath: /var/lib/postgresql/data

 subPath: postgres

104 Scaling and Deploying Your Application

In the preceding YAML file, we can see some new concepts that we haven't reviewed yet
– ConfigMaps and volumes. We'll get a much closer look at how these work in Chapters 6,
Kubernetes Application Configuration, and Chapter 7, Storage on Kubernetes, respectively,
but for now let's focus on the rest of the spec. We have our postgres container as well as
a port set up on the default Postgres port of 5432.

Finally, let's take a look at our DaemonSet for our logging app. Here's a portion of the
YAML file, which we've again truncated for length:

example-daemonset.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd

 namespace: kube-system

 labels:

 tier: logging

spec:

 updateStrategy:

 type: RollingUpdate

 template:

 metadata:

 labels:

 tier: logging

 spec:

 tolerations:

 - key: node-role.kubernetes.io/master

 effect: NoSchedule

 containers:

 - name: fluentd

 image: fluent/fluentd-kubernetes-daemonset:v1-debian-
papertrail

 env:

 - name: FLUENT_PAPERTRAIL_HOST

 value: "mycompany.papertrailapp.com"

 - name: FLUENT_PAPERTRAIL_PORT

 value: "61231"

Summary 105

 - name: FLUENT_HOSTNAME

 value: "DEV_CLUSTER"

In this DaemonSet, we're setting up FluentD (a popular open source log collector)
to forward logs to Papertrail, a cloud-based log collector and search tool. Again, in
this YAML file, we have some things we haven't reviewed before. For instance, the
tolerations section for node-role.kubernetes.io/master will actually allow
our DaemonSet to place Pods on master nodes, not just worker nodes. We'll review how
this works in Chapter 8, Pod Placement Controls.

We're also specifying environment variables directly in the Pod spec, which is fine for
relatively basic configurations, but could be improved by using Secrets or ConfigMaps
(which we'll review in Chapter 6, Kubernetes Application Configuration) to keep it out of
our YAML code.

Summary
In this chapter, we reviewed some methods of running applications on Kubernetes.
To start, we reviewed why Pods themselves are not enough to guarantee application
availability and introduced controllers. We then reviewed some simple controllers,
including ReplicaSets and Deployments, before moving on to controllers with more
specific uses such as HPAs, Jobs, CronJobs, StatefulSets, and DaemonSets. Finally, we took
all our learning and used it to implement a complex application running on Kubernetes.

In the next chapter, we'll learn how to expose our applications (which are now running
properly with high availability) to the world using Services and Ingress.

Questions
1. What is the difference between a ReplicaSet and a ReplicationController?

2. What's the advantage of a Deployment over a ReplicaSet?

3. What is a good use case for a Job?

4. Why are StatefulSets better for stateful workloads?

5. How might we support a canary release flow using Deployments?

106 Scaling and Deploying Your Application

Further reading
• The official Kubernetes documentation: https://kubernetes.io/docs/

home/

• Documentation on the Kubernetes Job resource: https://kubernetes.io/
docs/concepts/workloads/controllers/job/

• Docs for FluentD DaemonSet installation: https://github.com/fluent/
fluentd-kubernetes-daemonset

• Kubernetes The Hard Way: https://github.com/kelseyhightower/
kubernetes-the-hard-way

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://github.com/fluent/fluentd-kubernetes-daemonset
https://github.com/fluent/fluentd-kubernetes-daemonset
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

5
Services and Ingress

– Communicating
with the Outside

World
This chapter contains a comprehensive discussion of the methods that Kubernetes
provides to allow applications to communicate with each other, and with resources outside
the cluster. You'll learn about the Kubernetes Service resource and all its possible types
– ClusterIP, NodePort, LoadBalancer, and ExternalName – as well as how to implement
them. Finally, you'll learn how to use Kubernetes Ingress.

In this chapter, we will cover the following topics:

• Understanding Services and cluster DNS

• Implementing ClusterIP

• Using NodePort

108 Services and Ingress – Communicating with the Outside World

• Setting up a LoadBalancer Service

• Creating an ExternalName Service

• Configuring Ingress

Technical requirement
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster.
Review Chapter 1, Communicating with Kubernetes, to see several methods for getting up
and running with Kubernetes quickly, and for instructions on how to install the kubectl
tool.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter5.

Understanding Services and cluster DNS
In the last few chapters, we've talked about how to run applications effectively on
Kubernetes using resources including Pods, Deployments, and StatefulSets. However,
many applications, such as web servers, need to be able to accept network requests from
outside their containers. These requests could come either from other applications or from
devices accessing the public internet.

Kubernetes provides several types of resources to handle various scenarios when it comes
to allowing resources outside and inside the cluster to access applications running on
Pods, Deployments, and more.

These fall into two major resource types, Services and Ingress:

• Services have several subtypes – ClusterIP, NodePort, and LoadBalancer – and are
generally used to provide simple access to a single application from inside or outside
the cluster.

• Ingress is a more advanced resource that creates a controller that takes care of
pathname- and hostname-based routing to various resources running inside the
cluster. Ingress works by using rules to forward traffic to Services. You need to use
Services to use Ingress.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter5
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter5
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter5

Understanding Services and cluster DNS 109

Before we get started with our first type of Service resource, let's review how Kubernetes
handles DNS inside the cluster.

Cluster DNS
Let's start by discussing which resources in Kubernetes get their own DNS names by
default. DNS names in Kubernetes are restricted to Pods and Services. Pod DNS names
contain several parts structured as subdomains.

A typical Fully Qualified Domain Name (FQDN) for a Pod running in Kubernetes looks
like this:

my-hostname.my-subdomain.my-namespace.svc.my-cluster-domain.
example

Let's break it down, starting from the rightmost side:

• my-cluster-domain.example corresponds to the configured DNS name for
the Cluster API itself. Depending on the tool used to set up the cluster, and the
environment that it runs in, this can be an external domain name or an internal
DNS name.

• svc is a section that will occur even in a Pod DNS name – so we can just assume it
will be there. However, as you will see shortly, you won't generally be accessing Pods
or Services through their FQDNs.

• my-namespace is pretty self-explanatory. This section of the DNS name will be
whatever namespace your Pod is operating in.

• my-subdomain corresponds to the subdomain field in the Pod spec. This field is
completely optional.

• Finally, my-hostname will be set to whatever the name of the Pod is in the Pod
metadata.

Together, this DNS name allows other resources in the cluster to access a particular Pod.
This generally isn't very helpful by itself, especially if you're using Deployments and
StatefulSets that generally have multiple Pods. This is where Services come in.

Let's take a look at the A record DNS name for a Service:

my-svc.my-namespace.svc.cluster-domain.example

As you can see, it's very similar to the Pod DNS name, with the difference that we only
have one value to the left of our namespace – which is the Service name (again, as with
Pods, this is generated based on the metadata name).

110 Services and Ingress – Communicating with the Outside World

One result of how these DNS names are handled is that within a namespace, you can
access a Service or Pod via just its Service (or Pod) name, and the subdomain.

For instance, take our previous Service DNS name. From within the my-namespace
namespace, the Service can be accessed simply by the DNS name my-svc. From
outside the my-namespace namespace, you can access the Service via my-svc.
my-namespace.

Now that we've learned how in-cluster DNS works, we can discuss how that translates to
the Service proxy.

Service proxy types
Services, explained as simply as possible, provide an abstraction to forward requests to
one or more Pods that are running an application.

When creating a Service, we define a selector that tells the Service which Pods to forward
requests to. Through functionality in the kube-proxy component, when requests hit a
Service, they will be forwarded to the various Pods that match the Service's selector.

There are three possible proxy modes that you can use in Kubernetes:

• Userspace proxy mode: The oldest proxy mode, available since Kubernetes version
1.0. This proxy mode will forward requests to the matched Pods in a round-robin
fashion.

• Iptables proxy mode: Available since 1.1, and the default since 1.2. This offers a
lower overhead than userspace mode and can use round robin or random selection.

• IPVS proxy mode: The newest option, available since 1.8. This proxy mode allows
other load balancing options (not just Round Robin):

a. Round Robin

b. Least Connection (the least number of open connections)

c. Source Hashing

d. Destination Hashing

e. Shortest Expected Delay

f. Never Queue
Relevant to this list is a discussion of what round-robin load balancing is, for those not
familiar.

Implementing ClusterIP 111

Round-robin load balancing involves looping through the potential list of Service
endpoints from beginning to end, per network request. The following diagram shows a
simplified view of this process it pertains to Kubernetes Pods behind a Service:

Figure 5.1 – A Service load-balancing to Pods

As you can see, the Service alternates which Pod it sends requests to. The first request goes
to Pod A, the second goes to Pod B, the third goes to Pod C, and then it loops around.
Now that we know how Services actually handle requests, let's review the major types of
Services, starting with ClusterIP.

Implementing ClusterIP
ClusterIP is a simple type of Service exposed on an internal IP inside the cluster. This type
of Service is not reachable from outside of the cluster. Let's take a look at the YAML file for
our Service:

clusterip-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-svc

Spec:

 type: ClusterIP

 selector:

 app: web-application

112 Services and Ingress – Communicating with the Outside World

 environment: staging

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

As with other Kubernetes resources, we have our metadata block with our name value.
As you can recall from our discussion on DNS, this name value is how you can access
your Service from elsewhere in the cluster. For this reason, ClusterIP is a great option for
Services that only need to be accessed by other Pods within a cluster.

Next, we have our Spec, which consists of three major pieces:

• First, we have our type, which corresponds to the type of our Service. Since the
default type is ClusterIP, you don't actually need to specify a type if you want a
ClusterIP Service.

• Next, we have our selector. Our selector consists of key-value pairs that must
match labels in the metadata of the Pods in question. In this case, our Service will
look for Pods with app=web-application and environment=staging to
forward traffic to.

• Finally, we have our ports block, where we can map ports on our Service to
targetPort numbers on our Pods. In this case, port 80 (the HTTP port) on our
Service will map to port 8080 on our application Pod. More than one port can be
opened on our Service, but the name field is required when opening multiple ports.

Next, let's review the protocol options in depth, since these are important to our
discussion of Service ports.

Protocol
In the case of our previous ClusterIP Service, we chose TCP as our protocol. Kubernetes
currently (as of version 1.19) supports several protocols:

• TCP

• UDP

• HTTP

• PROXY

• SCTP

Using NodePort 113

This is an area where new features are likely coming, especially where HTTP (L7)
services are concerned. Currently, there is not full support of all of these protocols across
environments or cloud providers.

Important note
For more information, you can check the main Kubernetes documentation
(https://kubernetes.io/docs/concepts/services-
networking/service/) for the current state of Service protocols.

Now that we've discussed the specifics of Service YAMLs with Cluster IP, we can move on
to the next type of Service – NodePort.

Using NodePort
NodePort is an external-facing Service type, which means that it can actually be accessed
from outside the Cluster. When creating a NodePort Service, a ClusterIP Service of the
same name will automatically be created and routed to by the NodePort, so you will still
be able to access the Service from inside the cluster. This makes NodePort a good option
for external access to applications when a LoadBalancer Service is not feasible or possible.

NodePort sounds like what it is – this type of Service opens a port on every Node in the
cluster on which the Service can be accessed. This port will be in a range that is by default
between 30000-32767 and will be linked automatically on Service creation.

Here's what our NodePort Service YAML looks like:

nodeport-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-svc

Spec:

 type: NodePort

 selector:

 app: web-application

 ports:

 - name: http

 protocol: TCP

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

114 Services and Ingress – Communicating with the Outside World

 port: 80

 targetPort: 8080

As you can tell, the only difference from the ClusterIP Service is the Service type –
however, it is important to note that our intended port 80 in the ports section will only
be used when accessing the automatically created ClusterIP version of the Service. From
outside the cluster, we'll need to see what the generated port link is to access the Service
on our Node IP.

To do this, we can create our Service with the following command:

kubectl apply -f svc.yaml

And then run this command:

kubectl describe service my-svc

The result of the preceding command will be the following output:

Name: my-svc

Namespace: default

Labels: app=web-application

Annotations: <none>

Selector: app=web-application

Type: NodePort

IP: 10.32.0.8

Port: <unset> 8080/TCP

TargetPort: 8080/TCP

NodePort: <unset> 31598/TCP

Endpoints: 10.200.1.3:8080,10.200.1.5:8080

Session Affinity: None

Events: <none>

Using NodePort 115

From this output, we look to the NodePort line to see that our assigned port for
this Service is 31598. Thus, this Service can be accessed on any node at [NODE_
IP]:[ASSIGNED_PORT].

Alternatively, we can manually assign a NodePort IP to the Service. The YAML for a
manually assigned NodePort is as follows:

manual-nodeport-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-svc

Spec:

 type: NodePort

 selector:

 app: web-application

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

 nodePort: 31233

116 Services and Ingress – Communicating with the Outside World

As you can see, we have chosen a nodePort in the range 30000-32767, in this case,
31233. To see exactly how this NodePort Service works across Nodes, take a look at the
following diagram:

Figure 5.2 – NodePort Service

As you can see, though the Service is accessible at every Node in the cluster (Node
A, Node B, and Node C), network requests are still load-balanced across the Pods in
all Nodes (Pod A, Pod B, and Pod C), not just the Node that is accessed. This is an
effective way to ensure that the application can be accessed from any Node. When using
cloud services, however, you already have a range of tools to spread requests between
servers. The next type of Service, LoadBalancer, lets us use those tools in the context of
Kubernetes.

Setting up a LoadBalancer Service 117

Setting up a LoadBalancer Service
LoadBalancer is a special Service type in Kubernetes that provisions a load balancer based
on where your cluster is running. For instance, in AWS, Kubernetes will provision an
Elastic Load Balancer.

Important note
For a full list of LoadBalancer services and configurations, check the
documentation for Kubernetes Services at https://kubernetes.
io/docs/concepts/services-networking/
service/#loadbalancer.

Unlike with ClusterIP or NodePort, we can amend the functionality of a LoadBalancer
Service in cloud-specific ways. Generally, this is done using an annotations block in the
Service YAML file – which, as we've discussed before, is just a set of keys and values. To
see how this is done for AWS, let's review the spec for a LoadBalancer Service:

loadbalancer-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-svc

 annotations:

 service.beta.kubernetes.io/aws-load-balancer-ssl-cert:
arn:aws..

spec:

 type: LoadBalancer

 selector:

 app: web-application

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

118 Services and Ingress – Communicating with the Outside World

Though we can create a LoadBalancer without any annotations, the supported
AWS-specific annotations give us the ability (as seen in the preceding YAML code) to
specify which TLS certificate (via its ARN in Amazon Certificate Manager) we want to
be attached to our load balancer. AWS annotations also allow configuring logs for load
balancers, and more.

Here are a few key annotations supported by the AWS Cloud Provider as of the writing of
this book:

• service.beta.kubernetes.io/aws-load-balancer-ssl-cert

• service.beta.kubernetes.io/aws-load-balancer-proxy-
protocol

• service.beta.kubernetes.io/aws-load-balancer-ssl-ports

Important note
A full list of annotations and explanations for all providers can be found
on the Cloud Providers page in the official Kubernetes documentation,
at https://kubernetes.io/docs/tasks/administer-
cluster/running-cloud-controller/.

Finally, with LoadBalancer Services, we've covered the Service types you will likely use the
most. However, for special cases where the Service itself runs outside of Kubernetes, we
can use another Service type: ExternalName.

Creating an ExternalName Service
Services of type ExternalName can be used to proxify applications that are not actually
running on your cluster, while still keeping the Service as a layer of abstraction that can be
updated at any time.

Let's set the scene: you have a legacy production application running on Azure that
you want to access from within your cluster. You can access this legacy application
at myoldapp.mydomain.com. However, your team is currently working on
containerizing this application and running it on Kubernetes, and that new version is
currently working in your dev namespace environment on your cluster.

Instead of asking your other applications to talk to different places depending on the
environment, you can always point to a Service called my-svc in both your production
(prod) and development (dev) namespaces.

https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/

Creating an ExternalName Service 119

In dev, this Service could be a ClusterIP Service that leads to your newly
containerized application on Pods. The following YAML shows how the in-development,
containerized Service should work:

clusterip-for-external-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-svc

 namespace: dev

Spec:

 type: ClusterIP

 selector:

 app: newly-containerized-app

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

In the prod namespace, this Service would instead be an ExternalName Service:

externalname-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-svc

 namespace: prod

spec:

 type: ExternalName

 externalName: myoldapp.mydomain.com

Since our ExternalName Service is not actually forwarding requests to Pods, we don't
need a selector. Instead, we specify an ExternalName, which is the DNS name we want
the Service to direct to.

120 Services and Ingress – Communicating with the Outside World

The following diagram shows how an ExternalName Service could be used in this
pattern:

Figure 5.3 – ExternalName Service configuration

In the preceding diagram, our EC2 Running Legacy Application is an AWS VM, external
to the cluster. Our Service B of type ExternalName will route requests out to the VM.
That way, our Pod C (or any other Pod in the cluster) can access our external legacy
application simply through the ExternalName services' Kubernetes DNS name.

With ExternalName, we've finished our review of all the Kubernetes Service types. Let's
move on to a more complex method of exposing applications – the Kubernetes Ingress
resource.

Configuring Ingress
As mentioned at the beginning of the chapter, Ingress provides a granular mechanism for
routing requests into a cluster. Ingress does not replace Services but augments them with
capabilities such as path-based routing. Why is this necessary? There are plenty of reasons,
including cost. An Ingress with 10 paths to ClusterIP Services is a lot cheaper than
creating a new LoadBalancer Service for each path – plus it keeps things simple and easy
to understand.

Ingresses do not work like other Services in Kubernetes. Just creating the Ingress itself will
do nothing. You need two additional components:

• An Ingress controller: you can choose from many implementations, built on tools
such as Nginx or HAProxy.

• ClusterIP or NodePort Services for the intended routes.

First, let's discuss how to configure the Ingress controller.

Configuring Ingress 121

Ingress controllers
Generally, clusters will not come configured with any pre-existing Ingress controllers.
You'll need to select and deploy one to your cluster. ingress-nginx is likely the most
popular choice, but there are several others – see https://kubernetes.io/docs/
concepts/services-networking/ingress-controllers/ for a full list.

Let's learn how to deploy an Ingress controller - for the purposes of this book, we'll stick
with the Nginx Ingress controller created by the Kubernetes community, ingress-
nginx.

Installation may differ from controller to controller, but for ingress-nginx there are
two main parts. First, to deploy the main controller itself, run the following command,
which may change depending on the target environment and newest Nginx Ingress
version:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/controller-v0.41.2/deploy/static/provider/cloud/
deploy.yaml

Secondly, we may need to configure our Ingress depending on which environment we're
running in. For a cluster running on AWS, we can configure the Ingress entry point to use
an Elastic Load Balancer that we create in AWS.

Important note
To see all environment-specific setup instructions, see the ingress-nginx
docs at https://kubernetes.github.io/ingress-nginx/
deploy/.

The Nginx ingress controller is a set of Pods that will auto-update the Nginx configuration
whenever a new Ingress resource (a custom Kubernetes resource) is created. In addition
to the Ingress controller, we will need a way to route requests to the Ingress controller –
known as the entry point.

Ingress entry point
The default nginx-ingress install will also create a singular Service that serves
requests to the Nginx layer, at which point the Ingress rules take over. Depending on how
you configure your Ingress, this can be a LoadBalancer or NodePort Service. In a cloud
environment, you will likely use a cloud LoadBalancer Service as the entry point to the
cluster Ingress.

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.github.io/ingress-nginx/deploy/

122 Services and Ingress – Communicating with the Outside World

Ingress rules and YAML
Now that we have our Ingress controller up and running, we can start configuring our
Ingress rules.

Let's start with a simple example. We have two Services, service-a and service-b,
that we want to expose on different paths via our Ingress. Once your Ingress controller
and any associated Elastic Load Balancers are created (assuming we're running on AWS),
let's first create our Services by working through the following steps:

1. First, let's look at how to create Service A in YAML. Let's call the file service-a.
yaml:

 service-a.yaml
apiVersion: v1

kind: Service

metadata:

 name: service-a

Spec:

 type: ClusterIP

 selector:

 app: application-a

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

2. You can create our Service A by running the following command:

kubectl apply -f service-a.yaml

3. Next, let's create our Service B, for which the YAML code looks very similar:

apiVersion: v1

kind: Service

metadata:

 name: service-b

Spec:

 type: ClusterIP

Configuring Ingress 123

 selector:

 app: application-b

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8000

4. Create our Service B by running the following command:

kubectl apply -f service-b.yaml

5. Finally, we can create our Ingress with rules for each path. Here is the YAML code
for our Ingress that will split requests as necessary based on path-based routing
rules:

 ingress.yaml
apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: my-first-ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - host: my.application.com

 http:

 paths:

 - path: /a

 backend:

 serviceName: service-a

 servicePort: 80

 - path: /b

 backend:

 serviceName: service-b

 servicePort: 80

124 Services and Ingress – Communicating with the Outside World

In our preceding YAML, the ingress has a singular host value, which would correspond
to the host request header for traffic coming through the Ingress. Then, we have two paths,
/a and /b, which lead to our two previously created ClusterIP Services. To put this
configuration in a graphical format, let's take a look at the following diagram:

Figure 5.4 – Kubernetes Ingress example

As you can see, our simple path-based rules result in network requests getting routed
directly to the proper Pods. This is because nginx-ingress uses the Service selector to
get a list of Pod IPs, but does not directly use the Service to communicate with the Pods.
Rather, the Nginx (in this case) config is automatically updated as new Pod IPs come
online.

The host value isn't actually required. If you leave it out, any traffic that comes through
the Ingress, regardless of the host header (unless it matches a different rule that specifies a
host) will be routed according to the rule. The following YAML shows this:

ingress-no-host.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: my-first-ingress

Configuring Ingress 125

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - http:

 paths:

 - path: /a

 backend:

 serviceName: service-a

 servicePort: 80

 - path: /b

 backend:

 serviceName: service-b

 servicePort: 80

This previous Ingress definition will flow traffic to the path-based routing rules even if
there is no host header value.

Similarly, it is possible to split traffic into multiple separate branching paths based on the
host header, like this:

ingress-branching.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: multiple-branches-ingress

spec:

 rules:

 - host: my.application.com

 http:

 paths:

 - backend:

 serviceName: service-a

 servicePort: 80

 - host: my.otherapplication.com

 http:

 paths:

126 Services and Ingress – Communicating with the Outside World

 - backend:

 serviceName: service-b

 servicePort: 80

Finally, you can also secure your Ingress with TLS in many cases, though this functionality
differs on a per Ingress controller basis. For Nginx, this can be done by using a Kubernetes
Secret. We'll get to this functionality in the next chapter but for now, check out the
configuration on the Ingress side:

ingress-secure.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: secured-ingress

spec:

 tls:

 - hosts:

 - my.application.com

 secretName: my-tls-secret

 rules:

 - host: my.application.com

 http:

 paths:

 - path: /

 backend:

 serviceName: service-a

 servicePort: 8080

This configuration will look for a Kubernetes Secret named my-tls-secret in the
default namespace to attach to the Ingress for TLS.

That ends our discussion of Ingress. A lot of Ingress functionality can be specific to which
Ingress controller you decide to use, so check out the documentation for your chosen
implementation.

Summary 127

Summary
In this chapter, we reviewed the various methods that Kubernetes provides in order to
expose applications running on the cluster to the outside world. The major methods
are Services and Ingress. Within Services, you can use ClusterIP Services for in-cluster
routing and NodePort for access to a Service directly via ports on Nodes. LoadBalancer
Services let you use existing cloud load-balancing systems, and ExternalName Services let
you route requests out of the cluster to external resources.

Finally, Ingress provides a powerful tool to route requests in the cluster by path. To
implement Ingress you need to install a third-party or open source Ingress controller on
your cluster.

In the next chapter, we'll talk about how to inject configuration information into your
applications running on Kubernetes using two resource types: ConfigMap and Secret.

Questions
1. What type of Service would you use for applications that are only accessed

internally in a cluster?

2. How can you tell which port a NodePort Service is active on?

3. Why can Ingress be more cost-effective than purely Services?

4. Other than supporting legacy applications, how might ExternalName Services be
useful on a cloud platform?

Further reading
• Information on cloud providers, from the Kubernetes documentation: https://

kubernetes.io/docs/tasks/administer-cluster/running-cloud-
controller/

https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/

6
Kubernetes
Application

Configuration
This chapter describes the main configuration tools that Kubernetes provides. We'll
start by discussing some best practices for injecting configuration into containerized
applications. Next, we will discuss ConfigMaps, a Kubernetes resource aimed at providing
applications with configuration data. Finally, we will cover Secrets, a secure way to
store and provide sensitive data to applications running on Kubernetes. Altogether, this
chapter should give you a great toolset for configuring your production applications on
Kubernetes.

In this chapter, we will cover the following topics:

• Configuring containerized applications using best practices

• Implementing ConfigMaps

• Using Secrets

130 Kubernetes Application Configuration

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool, along with a working Kubernetes cluster.
Review Chapter 1, Communicating with Kubernetes, to find several methods for getting
up and running with Kubernetes quickly, and for instructions on how to install the
kubectl tool.

The code used in this chapter can be found in the book's GitHub repository at
https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter6.

Configuring containerized applications using
best practices
By now, we know how to effectively deploy (as covered in Chapter 4, Scaling and
Deploying Your Application) and expose (as covered in Chapter 5, Services and Ingress –
Communicating with the outside world) containerized applications on Kubernetes. This is
enough to run non-trivial stateless containerized applications on Kubernetes. However,
Kubernetes also provides additional tooling for application configuration and Secrets
management.

Since Kubernetes runs containers, you could always configure your application to use
environment variables baked into your Dockerfile. But this sidesteps some of the real
value of an orchestrator like Kubernetes. We want to be able to change our application
container without rebuilding a Docker image. For this purpose, Kubernetes gives us two
configuration-focused resources: ConfigMaps and Secrets. Let's first look at ConfigMaps.

Understanding ConfigMaps
When running applications in production, developers want the ability to quickly and
easily inject application configuration information. There are many patterns for doing
this – from using a separate configuration server that is queried, to using environment
variables or environment files. These strategies vary in the security and usability they offer.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter6
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter6

Implementing ConfigMaps 131

For containerized applications, environment variables are often the easiest way to go –
but injecting these variables in a secure way can require additional tooling or scripts. In
Kubernetes, the ConfigMap resource lets us do this in a flexible, easy way. ConfigMaps
allow Kubernetes administrators to specify and inject configuration information as either
files or environment variables.

For highly sensitive information such as secret keys, Kubernetes gives us another, similar
resource – Secrets.

Understanding Secrets
Secrets refer to additional application configuration items that need to be stored in
a slightly more secure way – for instance, master keys to restricted APIs, database
passwords, and more. Kubernetes provides a resource called a Secret, which stores
application configuration information in an encoded fashion. This does not inherently
make the Secret more secure, but Kubernetes respects the concept of a secret by not
automatically printing secret information in the kubectl get or kubectl describe
commands. This prevents the Secret from being accidentally printed to a log.

To ensure that Secrets are actually secret, encryption at rest must be enabled on your
cluster for secret data – we'll review how to do this later in this chapter. Available from
Kubernetes 1.13, this functionality lets Kubernetes administrators prevent Secrets from
being stored unencrypted in etcd, and limits access to etcd admins.

Before we do a deep dive into Secrets, let's start by discussing ConfigMaps, which are
better for non-sensitive information.

Implementing ConfigMaps
ConfigMaps provide an easy way to store and inject application configuration data for
containers running on Kubernetes.

Creating a ConfigMap is simple – and they enable two possibilities for actually injecting
the application configuration data:

• Injecting as an environment variable

• Injecting as a file

While the first option operates simply using container environment variables in memory,
the latter option touches on some facets of volumes – a Kubernetes storage medium that
will be covered in the next chapter. We will keep the review short for now and use it as an
introduction to volumes, which will be expanded on in the following chapter, Chapter 7,
Storage on Kubernetes.

132 Kubernetes Application Configuration

When working with ConfigMaps, it can be easier to create them using an imperative
Kubectl command. There are a few possible ways to create ConfigMaps, which also
result in differences in the way data is stored and accessed from the ConfigMap itself. The
first way is to simply create it from a text value, as we will see next.

From text values
Creating a ConfigMap from a text value in a command is done as follows:

kubectl create configmap myapp-config --from-
literal=mycategory.mykey=myvalue

The previous command creates a configmap named myapp-config with a single
key, called mycategory.mykey, that has a value of myvalue. You can also create a
ConfigMap with multiple keys and values, as follows:

kubectl create configmap myapp-config2 --from-
literal=mycategory.mykey=myvalue

--from-literal=mycategory.mykey2=myvalue2

The preceding command results in a ConfigMap with two values in the data section.

To see what your ConfigMap looks like, run the following command:

kubectl get configmap myapp-config2

You will see the following output:

configmap-output.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: myapp-config2

 namespace: default

data:

 mycategory.mykey: myvalue

 mycategory.mykey2: myvalue2

When your ConfigMap data is long, it does not make as much sense to create it directly
from a text value. For longer configs, we can create our ConfigMap from a file.

Implementing ConfigMaps 133

From files
In order to make it easier to create a ConfigMap with many different values, or reuse
existing environment files you already have, you can create a ConfigMap from a file by
following these steps:

1. Let's start by creating our file, which we'll name env.properties:

myconfigid=1125

publicapikey=i38ahsjh2

2. Then, we can create our ConfigMap by running the following command:

kubectl create configmap my-config-map --from-file=env.
properties

3. To check whether our kubectl create command correctly made our
ConfigMap, let's describe it using kubectl describe:

kubectl describe configmaps my-config-map

This should result in the following output:

Name: my-config-map

Namespace: default

Labels: <none>

Annotations: <none>

Data

====

env.properties: 39 bytes

As you can see, this ConfigMap contains our text file (and the number of bytes). Our file
in this case could be any text file – but if you know that your file is formatted properly as
an environment file, you can let Kubernetes know that, in order to make your ConfigMap
a bit easier to read. Let's learn how to do this.

134 Kubernetes Application Configuration

From environment files
If we know that our file is formatted as a normal environment file with key pairs, we can
use a slightly different method to create our ConfigMap – the environment file method.
This method will make our data more obvious in the ConfigMap object, rather than being
hidden inside the file.

Let's use the exact same file as before with our environment-specific creation:

kubectl create configmap my-env-config-map --from-env-file=env.
properties

Now, let's describe our ConfigMap using the following command:

> kubectl describe configmaps my-env-config-map

We get the following output:

Name: my-env-config-map

Namespace: default

Labels: <none>

Annotations: <none>

Data

====

myconfigid:

1125

publicapikey:

i38ahsjh2

Events: <none>

As you can see, by using the -from-env-file method, the data in the env file is
easily viewable when you run kubectl describe. This also means we can mount our
ConfigMap directly as environment variables – more on that shortly.

Mounting a ConfigMap as a volume
To consume data from a ConfigMap in a Pod, you need to mount it to the Pod in the spec.
This mirrors (for good reason, as we'll find out) the way to mount a volume in Kubernetes,
which is a resource that provides storage. For now, however, don't worry about volumes.

Implementing ConfigMaps 135

Let's take a look at our Pod spec, which mounts our my-config-map ConfigMap as
a volume on our Pod:

pod-mounting-cm.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod-mount-cm

spec:

 containers:

 - name: busybox

 image: busybox

 command:

 - sleep

 - "3600"

 volumeMounts:

 - name: my-config-volume

 mountPath: /app/config

 volumes:

 - name: my-config-volume

 configMap:

 name: my-config-map

 restartPolicy: Never

As you can see, our my-config-map ConfigMap is mounted as a volume (my-config-
volume) on the /app/config path for our container to access. We'll get to know more
about how this works in the next chapter on storage.

In some cases, you may want to mount a ConfigMap as environment variables in your
container – we will learn how to do this next.

Mounting a ConfigMap as an environment variable
You can also mount a ConfigMap as an environment variable. This process is pretty
similar to mounting a ConfigMap as a volume.

136 Kubernetes Application Configuration

Let's take a look at our Pod spec:

pod-mounting-cm-as-env.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod-mount-env

spec:

 containers:

 - name: busybox

 image: busybox

 command:

 - sleep

 - "3600"

 env:

 - name: MY_ENV_VAR

 valueFrom:

 configMapKeyRef:

 name: my-env-config-map

 key: myconfigid

 restartPolicy: Never

As you can see, instead of mounting our ConfigMap as a volume, we are simply
referencing it in a container environment variable – MY_ENV_VAR. To do this, we need to
use configMapRef in our valueFrom key and reference the name of our ConfigMap
as well as the key to look at inside the ConfigMap itself.

As we mentioned at the beginning of the chapter in the Configuring containerized
applications using best practices section, ConfigMaps are not secure by default, and their
data is stored as plaintext. For an added layer of security, we can use Secrets instead of
ConfigMaps.

Using Secrets
Secrets work very similarly to ConfigMaps, except that they are stored as encoded text
(specifically, Base64) instead of plaintext.

Using Secrets 137

Creating a Secret is therefore very similar to creating a ConfigMap, with a few key
differences. For starters, creating a Secret imperatively will automatically Base64-encode
the data in the Secret. First, let's look at creating a Secret imperatively from a pair of files.

From files
First, let's try creating a Secret from a file (this also works with multiple files). We can do
this using the kubectl create command:

> echo -n 'mysecretpassword' > ./pass.txt

> kubectl create secret generic my-secret --from-file=./pass.
txt

This should result in the following output:

secret "my-secret" created

Now, let's see what our Secret looks like using kubectl describe:

> kubectl describe secrets/db-user-pass

This command should result in the following output:

Name: my-secret

Namespace: default

Labels: <none>

Annotations: <none>

Type: Opaque

Data

====

pass.txt: 16 bytes

As you can see, the describe command shows the number of bytes contained in the
Secret, and its type Opaque.

Another way to create a Secret is to manually create it using a declarative approach. Let's
look at how to do that next.

138 Kubernetes Application Configuration

Manual declarative approach
When creating a Secret declaratively from a YAML file, you'll need to pre-encode the data
to be stored using an encoding utility, such as the base64 pipe on Linux.

Let's encode our password here using the Linux base64 command:

> echo -n 'myverybadpassword' | base64

bXl2ZXJ5YmFkcGFzc3dvcmQ=

Now, we can declaratively create our Secret using a Kubernetes YAML spec, which we can
name secret.yaml:

apiVersion: v1

kind: Secret

metadata:

 name: my-secret

type: Opaque

data:

 dbpass: bXl2ZXJ5YmFkcGFzc3dvcmQ=

Our secret.yaml spec contains the Base64-encoded string that we created.

To create the Secret, run the following command:

kubectl create -f secret.yaml

Now you know how to create Secrets. Next, let's learn how to mount a Secret for use by a
Pod.

Mounting a Secret as a volume
Mounting Secrets is very similar to mounting ConfigMaps. First, let's take a look at how to
mount a Secret to a Pod as a volume (file).

Let's take a look at our Pod spec. In this case, we are running an example application in
order to test our Secret. Here is the YAML:

pod-mounting-secret.yaml

apiVersion: v1

kind: Pod

metadata:

Using Secrets 139

 name: my-pod-mount-cm

spec:

 containers:

 - name: busybox

 image: busybox

 command:

 - sleep

 - "3600"

 volumeMounts:

 - name: my-config-volume

 mountPath: /app/config

 readOnly: true

 volumes:

 - name: foo

 secret:

 secretName: my-secret

 restartPolicy: Never

The one difference from ConfigMap here is that we specify readOnly on the volume to
prevent any changes to the Secret while the Pod is running. Everything else is the same as
far as how we are mounting the Secret.

Again, we will review volumes in depth in the next chapter, Chapter 7, Storage on
Kubernetes, but for a simple explanation, volumes are a way to add storage to your Pods.
In this example, we mounted our volume, which you can consider a filesystem, to our Pod.
Our Secret is then created as a file in the filesystem.

Mounting a Secret as an environment variable
Similar to file mounting, we can mount our Secret as an environment variable in much the
same way that ConfigMap mounting works.

Let's take a look at another Pod YAML. In this case, we will mount our Secret as an
environment variable:

pod-mounting-secret-env.yaml

apiVersion: v1

kind: Pod

metadata:

140 Kubernetes Application Configuration

 name: my-pod-mount-env

spec:

 containers:

 - name: busybox

 image: busybox

 command:

 - sleep

 - "3600"

 env:

 - name: MY_PASSWORD_VARIABLE

 valueFrom:

 secretKeyRef:

 name: my-secret

 key: dbpass

 restartPolicy: Never

After creating the preceding Pod with kubectl apply, let's run a command to look
into our Pod to see if the variable was properly initialized. This works exactly the same
way as docker exec:

> kubectl exec -it my-pod-mount-env -- /bin/bash

> printenv MY_PASSWORD_VARIABLE

myverybadpassword

It works! You should now have a good understanding of how to create, mount, and use
ConfigMaps and Secrets.

As the final topic concerning Secrets, we will learn how to create secure, encrypted Secrets
using the Kubernetes EncryptionConfig.

Implementing encrypted Secrets
Several managed Kubernetes services (including Amazon's Elastic Kubernetes Service
(EKS)) automatically encrypt etcd data at rest – so you don't need to do anything in
order to implement encrypted Secrets. Cluster provisioners such as Kops have a simple
flag (such as encryptionConfig: true). But if you're creating your cluster the
hard way, you'll need to start the Kubernetes API server with a flag, --encryption-
provider-config, and an EncryptionConfig file.

Using Secrets 141

Important note
Creating a cluster completely from scratch is outside the scope of this
book (take a look at Kubernetes The Hard Way for a great guide on that, at
https://github.com/kelseyhightower/kubernetes-the-
hard-way).

For a quick look at how encryption is handled, take a look at the following
EncryptionConfiguration YAML, which is passed to kube-apiserver on start:

encryption-config.yaml

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - aesgcm:

 keys:

 - name: key1

 secret: c2VjcmV0IGlzIHNlY3VyZQ==

 - name: key2

 secret: dGhpcyBpcyBwYXNzd29yZA==

The preceding EncryptionConfiguration YAML takes a list of the resources that
should be encrypted in etcd, and one or more providers that can be used to encrypt data.
The following providers are allowed as of Kubernetes 1.17:

• Identity: No encryption.

• Aescbc: The recommended encryption provider.

• Secretbox: Faster than Aescbc, and newer.

• Aesgcm: Note that you will need to implement key rotation yourself with Aesgcm.

• Kms: Used with a third-party Secrets store, such as Vault or AWS KMS.

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way

142 Kubernetes Application Configuration

To see the full list, see https://kubernetes.io/docs/tasks/administer-
cluster/encrypt-data/#providers. When multiple providers are added to the
list, Kubernetes will use the first configured provider to encrypt objects. When decrypting,
Kubernetes will go down the list and attempt decryption with each provider – if none
work, it will return an error.

Once we have created a secret (look at any of our previous examples of how to do so),
and our EncryptionConfig is active, we can check whether our Secrets are actually
encrypted.

Checking whether your Secrets are encrypted
The easiest way to check whether your secret is actually encrypted in etcd is to fetch the
value directly from etcd and check the encryption prefix:

1. First, let's go ahead and make a secret key using base64:

> echo -n 'secrettotest' | base64

c2VjcmV0dG90ZXN0

2. Create a file called secret_to_test.yaml with the following content:

apiVersion: v1

kind: Secret

metadata:

 name: secret-to-test

type: Opaque

data:

 myencsecret: c2VjcmV0dG90ZXN0

3. Create the Secret:

kubectl apply -f secret_to_test.yaml

Using Secrets 143

4. With our Secret created, let's check if it is encrypted in etcd by directly querying it.
You shouldn't need to directly query etcd very often, but if you have access to the
certificates used to bootstrap the cluster, it is an easy process:

> export ETCDCTL_API=3

> etcdctl --cacert=/etc/kubernetes/certs/ca.crt

--cert=/etc/kubernetes/certs/etcdclient.crt

--key=/etc/kubernetes/certs/etcdclient.key

get /registry/secrets/default/secret-to-test

Depending on your configured encryption provider, your Secret's data will start
with a provider tag. For instance, a Secret encrypted with the Azure KMS provider
will start with k8s:enc:kms:v1:azurekmsprovider.

5. Now, check to see if the Secret is correctly decrypted (it will still be encoded) via
kubectl:

> kubectl get secrets secret-to-test -o yaml

The output should be myencsecret: c2VjcmV0dG90ZXN0, which is our
unencrypted, encoded Secret value:

> echo 'c2VjcmV0dG90ZXN0' | base64 --decode

> secrettotest

Success!

We now have encryption running on our cluster. Let's find out how to remove it.

Disabling cluster encryption
We can also remove encryption from our Kubernetes resources fairly easily.

First, we need to restart the Kubernetes API server with a blank encryption configuration
YAML. If you self-provisioned your cluster, this should be easy, but on EKS or AKS, this
isn't possible manually. You'll need to follow the cloud provider-specific documentation
on how to disable encryption.

144 Kubernetes Application Configuration

If you've self-provisioned your cluster or used a tool such as Kops or Kubeadm, then
you can restart your kube-apiserver process on all master nodes with the following
EncryptionConfiguration:

encryption-reset.yaml

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - identity: {}

Important note
Note that the identity provider does not need to be the only provider listed, but
it does need to be first, since as we mentioned previously, Kubernetes uses the
first provider to encrypt new/updated objects in etcd.

Now, we will manually recreate all our Secrets, upon which point they will automatically
use the identity provider (unencrypted):

kubectl get secrets --all-namespaces -o json | kubectl replace
-f -

At this point, all of our Secrets are unencrypted!

Summary
In this chapter, we looked at the methods Kubernetes provides for injecting application
configuration. First, we looked at some best practices for configuring containerized
applications. Then, we reviewed the first method that Kubernetes gives us, ConfigMaps,
along with several options for creating and mounting them to Pods. Finally, we looked at
Secrets, which when encrypted are a more secure way to handle sensitive configurations.
By now, you should have all the tools you need to provide secure and insecure
configuration values to your application.

In the next chapter, we'll delve into a topic we already touched on by mounting our Secrets
and ConfigMaps – the Kubernetes volume resource and, more generally, storage on
Kubernetes.

Questions 145

Questions
1. What are the differences between Secrets and ConfigMaps?

2. How are Secrets encoded?

3. What is the major difference between creating a ConfigMap from a regular file, and
creating one from an environment file?

4. How can you make Secrets secure on Kubernetes? Why aren't they secure by
default?

Further reading
• Info on data encryption configuration for Kubernetes can be found in the official

documentation at https://kubernetes.io/docs/tasks/administer-
cluster/encrypt-data/.

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

7
Storage on

Kubernetes
In this chapter, we will learn how to provide application storage on Kubernetes. We'll
review two storage resources on Kubernetes, volumes and persistent volumes. Volumes
are great for transient data needs, but persistent volumes are necessary for running any
serious stateful workload on Kubernetes. With the skills you'll learn in this chapter, you
will be able to configure storage for your applications running on Kubernetes in several
different ways and environments.

In this chapter, we will cover the following topics:

• Understanding the difference between volumes and persistent volumes

• Using volumes

• Creating persistent volumes

• Persistent volume claims

148 Storage on Kubernetes

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster. See
Chapter 1, Communicating with Kubernetes, for several methods to get up and running
with Kubernetes quickly, and for instructions on how to install the kubectl tool.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter7.

Understanding the difference between
volumes and persistent volumes
A completely stateless, containerized application may only need disk space for the
container files themselves. When running applications of this type, no additional
configuration is required on Kubernetes.

However, this is not always true in the real world. Legacy apps that are being moved to
containers may need disk space volumes for many possible reasons. In order to hold files
for use by containers, you need the Kubernetes volume resource.

There are two main storage resources that can be created in Kubernetes:

• Volumes

• Persistent volumes

The distinction between the two is in the name: while volumes are tied to the lifecycle
of a particular Pod, persistent volumes stay alive until deleted and can be shared across
different Pods. Volumes can be handy in sharing data across containers within a Pod,
while persistent volumes can be used for many possible advanced purposes.

Let's look at how to implement volumes first.

Volumes
Kubernetes supports many different subtypes of volumes. Most can be used for either
volumes or persistent volumes, but some are specific to either resource. We'll start with the
simplest and review a few types.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter7
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter7
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter7

Volumes 149

Important note
You can see the full current list of volume types at https://
kubernetes.io/docs/concepts/storage/
volumes/#types-of-volumes.

Here is a short list of volume subtypes:

• awsElasticBlockStore

• cephfs

• ConfigMap

• emptyDir

• hostPath

• local

• nfs

• persistentVolumeClaim

• rbd

• Secret

As you can see, both ConfigMaps and Secrets are actually implemented as types
of volume. Additionally, the list includes cloud provider volume types such as
awsElasticBlockStore.

Unlike persistent volumes, which are created separately from any one Pod, creating
a volume is most often done in the context of a Pod.

To create a simple volume, you can use the following Pod YAML:

pod-with-vol.yaml

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-vol

spec:

 containers:

 - name: busybox

 image: busybox

 volumeMounts:

150 Storage on Kubernetes

 - name: my-storage-volume

 mountPath: /data

 volumes:

 - name: my-storage-volume

 emptyDir: {}

This YAML will create a Pod along with a volume of type emptyDir. Volumes of type
emptyDir are provisioned using whatever storage already exists on the node that the Pod
is assigned to. As mentioned previously, the volume is tied to the lifecycle of the Pod, not
its containers.

This means that in a Pod with multiple containers, all containers will be able to access
volume data. Let's take the following example YAML file for a Pod:

pod-with-multiple-containers.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: busybox

 image: busybox

 volumeMounts:

 - name: config-volume

 mountPath: /shared-config

 - name: busybox2

 image: busybox

 volumeMounts:

 - name: config-volume

 mountPath: /myconfig

 volumes:

 - name: config-volume

 emptyDir: {}

In this example, both containers in the Pod can access the volume data, though at different
paths. Containers can even communicate via files in the shared volume.

Volumes 151

The important parts of the spec are the volume spec itself (the list item under
volumes) and the mount for the volume (the list item under volumeMounts).

Each mount item contains a name, which corresponds to the name of the volume in
the volumes section, and a mountPath, which will dictate to which file path on the
container the volume gets mounted. For instance, in the preceding YAML, the volume
config-volume will be accessible from within the busybox Pod at /shared-
config, and within the busybox2 Pod at /myconfig.

The volume spec itself takes a name – in this case, my-storage, and additional keys/
values specific to the volume type, which in this case is emptyDir and just takes empty
brackets.

Now, let's address the example of a cloud-provisioned volume mounted to a Pod. To
mount an AWS Elastic Block Storage (EBS) volume, for instance, the following YAML
can be used:

pod-with-ebs.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-app

spec:

 containers:

 - image: busybox

 name: busybox

 volumeMounts:

 - mountPath: /data

 name: my-ebs-volume

 volumes:

 - name: my-ebs-volume

 awsElasticBlockStore:

 volumeID: [INSERT VOLUME ID HERE]

This YAML will, as long as your cluster is set up correctly to authenticate with
AWS, attach your existing EBS volume to the Pod. As you can see, we use the
awsElasticBlockStore key to specifically configure the exact volume ID to be
used. In this case, the EBS volume must already exist on your AWS account and region.
This is much easier with AWS Elastic Kubernetes Service (EKS) since it allows us to
automatically provision EBS volumes from within Kubernetes.

152 Storage on Kubernetes

Kubernetes also includes features within the Kubernetes AWS cloud provider to
automatically provision volumes – but these are for use with persistent volumes. We'll look
at how to get these automatically provisioned volumes in the Persistent volumes section.

Persistent volumes
Persistent volumes hold some key advantages over regular Kubernetes volumes. As
mentioned previously, their (persistent volumes) lifecycle is tied to the life of the cluster,
not the life of a single Pod. This means that persistent volumes can be shared between
Pods and reused as long as the cluster is running. For this reason, the pattern matches
much better to external stores such as EBS (a block storage service on AWS) since the
storage itself outlasts a single Pod.

Using persistent volumes actually requires two resources: the PersistentVolume itself
and a PersistentVolumeClaim, which is used to mount a PersistentVolume to
a Pod.

Let's start with the PersistentVolume itself – take a look at the basic YAML for
creating a PersistentVolume:

pv.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: my-pv

spec:

 storageClassName: manual

 capacity:

 storage: 5Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: "/mnt/mydata"

Now let's pick this apart. Starting with the first line in the spec – storageClassName.

Persistent volumes 153

This first config, storageClassName, represents the type of storage we want to use. For
the hostPath volume type, we simply specify manual, but for AWS EBS, for instance,
you could create and use a storage class called gp2Encrypted to match the gp2 storage
type in AWS with EBS encryption enabled. Storage classes are therefore combinations of
configuration that are available for a particular volume type – which can be referenced in
the volume spec.

Moving forward with our AWS StorageClass example, let's provision a new
StorageClass for gp2Encrypted:

gp2-storageclass.yaml

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: gp2Encrypted

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

provisioner: kubernetes.io/aws-ebs

parameters:

 type: gp2

 encrypted: "true"

 fsType: ext4

Now, we can create our PersistentVolume using the gp2Encrypted storage class.
However, there's a shortcut to creating PersistentVolumes using dynamically
provisioned EBS (or other cloud) volumes. When using dynamically provisioned volumes,
we create the PersistentVolumeClaim first, which then automatically generates the
PersistentVolume.

Persistent volume claims
We now know that you can easily create persistent volumes in Kubernetes,
however, that does not allow you to bind storage to a Pod. You need to create a
PersistentVolumeClaim, which claims a PersistentVolume and allows you to
bind that claim to a Pod or multiple Pods.

154 Storage on Kubernetes

Building on our new StorageClass from the last section, let's make a claim that will
automatically result in a new PersistentVolume being created since there are no other
persistent volumes with our desired StorageClass:

pvc.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my-pv-claim

spec:

 storageClassName: gp2Encrypted

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

Running kubectl apply -f on this file should result in a new, autogenerated
Persistent Volume (PV) being created. If your AWS cloud provider is set up correctly, this
will result in the creation of a new EBS volume with type GP2 and encryption enabled.

Before we attach our EBS-backed persistent volume to our Pod, let's confirm that the EBS
volume was created correctly in AWS.

To do so, we can navigate to our AWS console and ensure we are in the same region that
our EKS cluster is running in. Then go to Services > EC2 and click on Volumes in the
left menu under Elastic Block Store. In this section, we should see a line item with an
autogenerated volume of the same size (1 GiB) as our PVC states. It should have the class
of GP2, and it should have encryption enabled. Let's see what this would look like in the
AWS console:

Figure 7.1 – AWS console with autocreated EBS volume

Persistent volumes 155

As you can see, we have our dynamically generated EBS volume properly created in AWS,
with encryption enabled and the gp2 volume type assigned. Now that we have our volume
created, and we've confirmed that it has been created in AWS, we can attach it to our Pod.

Attaching Persistent Volume Claims (PVCs) to Pods
Now we have both a PersistentVolume and a PersistentVolumeClaim,
we can attach them to a Pod for consumption. This process is very similar to attaching
a ConfigMap or Secret – which makes sense, because ConfigMaps and Secrets are
essentially types of volumes!

Check out the YAML that allows us to attach our encrypted EBS volume to a Pod and
name it pod-with-attachment.yaml:

Pod-with-attachment.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 volumes:

 - name: my-pv

 persistentVolumeClaim:

 claimName: my-pv-claim

 containers:

 - name: my-container

 image: busybox

 volumeMounts:

 - mountPath: "/usr/data"

 name: my-pv

Running kubectl apply -f pod-with-attachment.yaml will result in the
creation of a Pod that has our PersistentVolume mounted via our claim to
/usr/data.

156 Storage on Kubernetes

To confirm that the volume has been successfully created, let's exec into our Pod and
create a file in the location that our volume has been mounted:

> kubectl exec -it shell-demo -- /bin/bash

> cd /usr/data

> touch myfile.txt

Now, let's delete the Pod using the following command:

> kubectl delete pod my-pod

And recreate it again using the following command:

> kubectl apply -f my-pod.yaml

If we've done our job right, we should be able to see our file when running kubectl
exec to get into the Pod again:

> kubectl exec -it my-pod -- /bin/bash

> ls /usr/data

> myfile.txt

Success!

We now know how to create a cloud-storage-provided persistent volume for Kubernetes.
However, you may be running Kubernetes on-premise or on your laptop using minikube.
Let's look at some alternate persistent volume subtypes that you can use instead.

Persistent volumes without cloud storage
Our previous examples assume that you are running Kubernetes in a cloud environment
and can make use of storage services provided by the cloud platform (AWS EBS and
others). This, however, is not always possible. You may be running Kubernetes in a data
center environment, or on dedicated hardware.

In this case, there are many potential solutions for providing storage to Kubernetes.
A simple one is to change the volume type to hostPath, which works within the node's
existing storage devices to create persistent volumes. This is great when running on
minikube, for instance, but does not provide as powerful an abstraction as something like
AWS EBS. For a tool with on-premise capabilities similar to cloud storage tools like EBS,
let's look at using Ceph with Rook. For the full documentation, check out the Rook docs
(which will teach you Ceph as well) at https://rook.io/docs/rook/v1.3/ceph-
quickstart.html.

https://rook.io/docs/rook/v1.3/ceph-quickstart.html
https://rook.io/docs/rook/v1.3/ceph-quickstart.html

Persistent volumes without cloud storage 157

Rook is a popular open source Kubernetes storage abstraction layer. It can provide
persistent volumes through a variety of providers, such as EdgeFS and NFS. In this case,
we'll use Ceph, an open source storage project that provides object, block, and file storage.
For simplicity, we'll use block mode.

Installing Rook on Kubernetes is actually pretty simple. We'll take you from installing
Rook to setting up a Ceph cluster, to finally provisioning persistent volumes on our
cluster.

Installing Rook
We're going to use a typical Rook installation default setup provided by the Rook GitHub
repository. This could be highly customized depending on the use case but will allow us to
quickly set up block storage for our workloads. Please refer to the following steps to
do this:

1. First, let's clone the Rook repository:

> git clone --single-branch --branch master https://
github.com/rook/rook.git

> cd cluster/examples/kubernetes/ceph

2. Our next step is to create all the relevant Kubernetes resources, including several
Custom Resource Definitions (CRDs). We'll talk about these in later chapters, but
for now, consider them new Kubernetes resources that are specific to Rook, outside
of the typical Pods, Services, and so on. To create common resources, run the
following command:

> kubectl apply -f ./common.yaml

3. Next, let's start our Rook operator, which will handle provisioning all the necessary
resources for a particular Rook provider, which in this case will be Ceph:

> kubectl apply -f ./operator.yaml

4. Before the next step, ensure that the Rook operator Pod is actually running by using
the following command:

> kubectl -n rook-ceph get pod

https://github.com/rook/rook.git
https://github.com/rook/rook.git

158 Storage on Kubernetes

5. Once the Rook Pod is in the Running state, we can set up our Ceph cluster!
The YAML for this is also in the folder we've cloned from Git. Create it using the
following command:

> kubectl create -f cluster.yaml

This process can take a few minutes. The Ceph cluster is comprised of several different
Pod types, including the operator, Object Storage Devices (OSDs), and managers.

To ensure that our Ceph cluster is working properly, Rook provides a toolbox container
image that allows you to use the Rook and Ceph command-line tools. To start the toolbox,
you can use the toolbox Pod spec provided by the Rook project at https://rook.io/
docs/rook/v0.7/toolbox.html.

Here is a sample of the spec for the toolbox Pod:

rook-toolbox-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: rook-tools

 namespace: rook

spec:

 dnsPolicy: ClusterFirstWithHostNet

 containers:

 - name: rook-tools

 image: rook/toolbox:v0.7.1

 imagePullPolicy: IfNotPresent

As you can see, this Pod uses a special container image provided by Rook. The image
comes with all the tools you need to investigate Rook and Ceph pre-installed.

Once you have the toolbox Pod running, you can use the rookctl and ceph commands
to check on the cluster status (check the Rook docs for specifics).

https://rook.io/docs/rook/v0.7/toolbox.html
https://rook.io/docs/rook/v0.7/toolbox.html

Persistent volumes without cloud storage 159

The rook-ceph-block storage class
Now our cluster is working, we can create our storage class that will be used by our PVs.
We will call this storage class rook-ceph-block. Here's our YAML file (ceph-rook-
combined.yaml), which will include our CephBlockPool (which will handle our
block storage in Ceph – see https://rook.io/docs/rook/v0.9/ceph-pool-
crd.html for more information) as well as the storage class itself:

ceph-rook-combined.yaml

apiVersion: ceph.rook.io/v1

kind: CephBlockPool

metadata:

 name: replicapool

 namespace: rook-ceph

spec:

 failureDomain: host

 replicated:

 size: 3

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: rook-ceph-block

provisioner: rook-ceph.rbd.csi.ceph.com

parameters:

 clusterID: rook-ceph

 pool: replicapool

 imageFormat: "2"

currently supports only `layering` feature.

 imageFeatures: layering

 csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-
provisioner

 csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph

 csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-
node

 csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph

csi-provisioner

https://rook.io/docs/rook/v0.9/ceph-pool-crd.html
https://rook.io/docs/rook/v0.9/ceph-pool-crd.html

160 Storage on Kubernetes

 csi.storage.k8s.io/fstype: xfs

reclaimPolicy: Delete

As you can see, the YAML spec defines both our StorageClass and the
CephBlockPool resource. As we mentioned earlier in this chapter, StorageClass
is how we tell Kubernetes how to fulfill a PersistentVolumeClaim. The
CephBlockPool resource, on the other hand, tells Ceph how and where to create
distributed storage resources – in this case, how much to replicate the storage.

Now we can give some storage to our Pod! Let's create a new PVC with our new
storage class:

rook-ceph-pvc.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: rook-pvc

spec:

 storageClassName: rook-ceph-block

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

Our PVC is of storage class rook-ceph-block, so it will use the new storage class
we just created. Now, let's give the PVC to our Pod in our YAML file:

rook-ceph-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-rook-test-pod

spec:

 volumes:

 - name: my-rook-pv

 persistentVolumeClaim:

Persistent volumes without cloud storage 161

 claimName: rook-pvc

 containers:

 - name: my-container

 image: busybox

 volumeMounts:

 - mountPath: "/usr/rooktest"

 name: my-rook-pv

When the Pod is created, Rook should spin up a new persistent volume and attach it to the
Pod. Let's peer into the Pod to see if it worked properly:

> kubectl exec -it my-rook-test-pod -- /bin/bash

> cd /usr/rooktest

> touch myfile.txt

> ls

We get the following output:

> myfile.txt

Success!

Though we just used Rook's and Ceph's block storage functionality with Ceph, it also has
a filesystem mode, which has some benefits – let's discuss why you may want to use it.

The Rook Ceph filesystem
The downside of Rook's Ceph Block provider is that it can only be written to by one Pod
at a time. In order to create a ReadWriteMany persistent volume with Rook/Ceph,
we need to use the filesystem provider, which supports RWX mode. For more
information, check out the Rook/Ceph docs at https://rook.io/docs/rook/
v1.3/ceph-quickstart.html.

https://rook.io/docs/rook/v1.3/ceph-quickstart.html
https://rook.io/docs/rook/v1.3/ceph-quickstart.html

162 Storage on Kubernetes

Up to creating the Ceph cluster, all the previous steps apply. At this point, we need to
create our filesystem. Let's use the following YAML file to create it:

 rook-ceph-fs.yaml

apiVersion: ceph.rook.io/v1

kind: CephFilesystem

metadata:

 name: ceph-fs

 namespace: rook-ceph

spec:

 metadataPool:

 replicated:

 size: 2

 dataPools:

 - replicated:

 size: 2

 preservePoolsOnDelete: true

 metadataServer:

 activeCount: 1

 activeStandby: true

In this case, we're replicating metadata and data to at least two pools for reliability, as
configured in the metadataPool and dataPool blocks. We are also preserving the
pools on delete using the preservePoolsOnDelete key.

Next, let's create our new storage class specifically for Rook/Ceph filesystem storage. The
following YAML does this:

rook-ceph-fs-storageclass.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: rook-cephfs

provisioner: rook-ceph.cephfs.csi.ceph.com

parameters:

 clusterID: rook-ceph

 fsName: ceph-fs

Persistent volumes without cloud storage 163

 pool: ceph-fs-data0

 csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-
provisioner

 csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph

 csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-
node

 csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph

reclaimPolicy: Delete

This rook-cephfs storage class specifies our previously created pool and describes the
reclaim policy of our storage class. Finally, it uses a few annotations that are explained in
the Rook/Ceph documentation. Now, we can attach this via a PVC to a deployment, not
just a Pod! Take a look at our PV:

rook-cephfs-pvc.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: rook-ceph-pvc

spec:

 storageClassName: rook-cephfs

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

This persistent volume references our new rook-cephfs storage class in
ReadWriteMany mode – we're asking for 1 Gi of this data. Next, we can create our
Deployment:

rook-cephfs-deployment.yaml

apiVersion: v1

kind: Deployment

metadata:

 name: my-rook-fs-test

spec:

164 Storage on Kubernetes

 replicas: 3

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 25%

 maxUnavailable: 25%

 selector:

 matchLabels:

 app: myapp

 template:

 spec:

 volumes:

 - name: my-rook-ceph-pv

 persistentVolumeClaim:

 claimName: rook-ceph-pvc

 containers:

 - name: my-container

 image: busybox

 volumeMounts:

 - mountPath: "/usr/rooktest"

 name: my-rook-ceph-pv

This Deployment references our ReadWriteMany persistent volume claim using the
persistentVolumeClaim block under volumes. When deployed, all of our Pods can
now read and write to the same persistent volume.

After this, you should have a good understanding of how to create persistent volumes and
attach them to Pods.

Summary
In this chapter, we reviewed two methods of providing storage on Kubernetes – volumes
and persistent volumes. First, we discussed the difference between these two methods:
while volumes are tied to the lifetime of the Pod, persistent volumes last until they or the
cluster is deleted. Then, we looked at how to implement volumes and attach them to our
Pods. Lastly, we extended our learning on volumes to persistent volumes, and discovered
how to use several different types of persistent volumes. These skills will help you assign
persistent and non-persistent storage to your applications in many possible environments
– from on-premises to the cloud.

Questions 165

In the next chapter, we'll take a detour from application concerns and discuss how to
control Pod placement on Kubernetes.

Questions
1. What are the differences between volumes and persistent volumes?

2. What is a StorageClass, and how does it relate to a volume?

3. How can you automatically provision cloud resources when creating Kubernetes
resources such as a persistent volume?

4. In which use cases do you think that using volumes instead of persistent volumes
would be prohibitive?

Further reading
Please refer to the following links for more information:

• Ceph Storage Quickstart for Rook: https://github.com/rook/rook/blob/
master/Documentation/ceph-quickstart.md

• Rook Toolbox: https://rook.io/docs/rook/v0.7/toolbox.html

• Cloud providers: https://kubernetes.io/docs/tasks/administer-
cluster/running-cloud-controller/

https://github.com/rook/rook/blob/master/Documentation/ceph-quickstart.md
https://github.com/rook/rook/blob/master/Documentation/ceph-quickstart.md
https://rook.io/docs/rook/v0.7/toolbox.html

8
Pod Placement

Controls
This chapter describes the various ways of controlling Pod placement in Kubernetes, as
well as explaining why it may be a good idea to implement these controls in the first place.
Pod placement means controlling which node a Pod is scheduled to in Kubernetes.
We start with simple controls like node selectors, and then move on to more complex
tools like taints and tolerations, and finish with two beta features, node affinity and
inter-Pod affinity/anti-affinity.

In past chapters, we've learned how best to run application Pods on Kubernetes –
from coordinating and scaling them using deployments, injecting configuration with
ConfigMaps and Secrets, to adding storage with persistent volumes.

Throughout all of this, however, we have always relied on the Kubernetes scheduler to put
Pods on the optimal node without giving the scheduler much information about the Pods
in question. So far, we've added resource limits and requests to our Pods (resource.
requests and resource.limits in the Pod spec). Resource requests specify
a minimum level of free resources on a node that the Pod needs in order to be scheduled,
while resource limits specify the maximum amount of resources a Pod is allowed to use.
However, we have not put any specific requirements on which nodes or set of nodes a Pod
must be run.

168 Pod Placement Controls

For many applications and clusters, this is fine. However, as we'll see in the first section,
there are many cases where using more granular Pod placement controls is a useful
strategy.

In this chapter, we will cover the following topics:

• Identifying use cases for Pod placement

• Using node selectors

• Implementing taints and tolerations

• Controlling Pods with node affinity

• Using inter-Pod affinity and anti-affinity

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl
tool.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter8.

Identifying use cases for Pod placement
Pod placement controls are tools that Kubernetes gives us to decide which node to
schedule a Pod on, or when to completely prevent Pod scheduling due to a lack of the
nodes we want. This can be used in several different patterns, but we'll review a few major
ones. To start with, Kubernetes itself implements Pod placement controls completely by
default – let's see how.

Kubernetes node health placement controls
Kubernetes uses a few default placement controls to specify which nodes are unhealthy in
some way. These are generally defined using taints and tolerations, which we will review in
detail later in this chapter.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter8
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter8
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter8

Identifying use cases for Pod placement 169

Some default taints (which we'll discuss in the next section) that Kubernetes uses are as
follows:

• memory-pressure

• disk-pressure

• unreachable

• not-ready

• out-of-disk

• network-unavailable

• unschedulable

• uninitialized (only for cloud-provider-created nodes)

These conditions can mark nodes as unable to receive new Pods, though there is some
flexibility in how these taints are handled by the scheduler, as we will see later. The
purpose of these system-created placement controls is to prevent unhealthy nodes from
receiving workloads that may not function properly.

In addition to system-created placement controls for node health, there are several use
cases where you, as a user, may want to implement fine-tuned scheduling, as we will see in
the next section.

Applications requiring different node types
In a heterogeneous Kubernetes cluster, every node is not created equal. You may have
some more powerful VMs (or bare metal) and some less – or have different specialized
sets of nodes.

For instance, in a cluster that runs data science pipelines, you may have nodes with GPU
acceleration capabilities to run deep learning algorithms, regular compute nodes to serve
applications, nodes with high amounts of memory to do inference based on completed
models, and more.

Using Pod placement controls, you can ensure that the various pieces of your platform run
on the hardware best suited for the task at hand.

Applications requiring specific data compliance
Similar to the previous example, where application requirements may dictate the need
for different types of compute, certain data compliance needs may require specific types
of nodes.

170 Pod Placement Controls

For instance, cloud providers such as AWS and Azure often allow you to purchase VMs
with dedicated tenancy – which means that no other applications run on the underlying
hardware and hypervisor. This is different from other typical cloud-provider VMs, where
multiple customers may share a single physical machine.

For certain data regulations, this level of dedicated tenancy is required to maintain
compliance. To fulfill this need, you could use Pod placement controls to ensure that the
relevant applications only run on nodes with dedicated tenancy, while reducing costs by
running the control plane on more typical VMs without it.

Multi-tenant clusters
If you are running a cluster with multiple tenants (separated by namespaces, for instance),
you could use Pod placement controls to reserve certain nodes or groups of nodes for
a tenant, to physically or otherwise separate them from other tenants in the cluster. This
is similar to the concept of dedicated hardware in AWS or Azure.

Multiple failure domains
Though Kubernetes already provides high availability by allowing you to schedule
workloads that run on multiple nodes, it is also possible to extend this pattern. We can
create our own Pod scheduling strategies that account for failure domains that stretch
across multiple nodes. A great way to handle this is via the Pod or node affinity or anti-
affinity features, which we will discuss later in this chapter.

For now, let's conceptualize a case where we have our cluster on bare metal with 20 nodes
per physical rack. If each rack has its own dedicated power connection and backup, it can
be thought of as a failure domain. When the power connections fail, all the machines on
the rack fail. Thus, we may want to encourage Kubernetes to run two instances or Pods on
separate racks/failure domains. The following figure shows how an application could run
across failure domains:

Identifying use cases for Pod placement 171

Figure 8.1 – Failure domains

As you can see in the figure, as the application pods are spread across multiple failure
domains, not just multiple nodes in the same failure domain, we can maintain uptime
even if Failure Domain 1 goes down. App A - Pod 1 and App B - Pod 1 are in the same
(red) failure domain. However, if that failure domain (Rack 1) goes down, we will still
have a replica of each application on Rack 2.

We use the word "encourage" here because it is possible to configure some of this
functionality as either a hard requirement or on a best effort basis in the Kubernetes
scheduler.

These examples should give you a solid understanding of some potential use cases for
advanced placement controls.

Let's discuss the actual implementation now, taking each placement toolset one by one.
We'll start with the simplest, node selectors.

172 Pod Placement Controls

Using node selectors and node name
Node selectors are a very simple type of placement control in Kubernetes. Each
Kubernetes node can be labeled with one or more labels in the metadata block, and Pods
can specify a node selector.

To label an existing node, you can use the kubectl label command:

> kubectl label nodes node1 cpu_speed=fast

In this example, we're labeling our node1 node with the label cpu_speed and the
value fast.

Now, let's assume that we have an application that really needs fast CPU cycles to
perform effectively. We can add a nodeSelector to our workload to ensure that it is
only scheduled on nodes with our fast CPU speed label, as shown in the following code
snippet:

pod-with-node-selector.yaml

apiVersion: v1

kind: Pod

metadata:

 name: speedy-app

spec:

 containers:

 - name: speedy-app

 image: speedy-app:latest

 imagePullPolicy: IfNotPresent

 nodeSelector:

 cpu_speed: fast

When deployed, as part of a Deployment or by itself, our speedy-app Pod will only be
scheduled on nodes with the cpu_speed label.

Keep in mind that unlike some other more advanced Pod placement options that we will
review shortly, there is no leeway in node selectors. If there are no nodes that have the
required label, the application will not be scheduled at all.

Implementing taints and tolerations 173

For an even simpler (but far more brittle) selector, you can use nodeName, which
specifies the exact node that the Pod should be scheduled on. You can use it like this:

pod-with-node-name.yaml

apiVersion: v1

kind: Pod

metadata:

 name: speedy-app

spec:

 containers:

 - name: speedy-app

 image: speedy-app:latest

 imagePullPolicy: IfNotPresent

 nodeName: node1

As you can see, this selector will only allow the Pod to be scheduled on node1, so if it isn't
currently accepting Pods for any reason, the Pod will not be scheduled.

For slightly more nuanced placement control, let's move on to taints and tolerations.

Implementing taints and tolerations
Taints and tolerations in Kubernetes work like reverse node selectors. Rather than nodes
attracting Pods due to having the proper labels, which are then consumed by a selector,
we taint nodes, which repels all Pods from being scheduled on the node, and then mark
our Pods with tolerations, which allow them to be scheduled on the tainted nodes.

As mentioned at the beginning of the chapter, Kubernetes uses system-created taints to
mark nodes as unhealthy and prevent new workloads from being scheduled on them. For
instance, the out-of-disk taint will prevent any new pods from being scheduled to
a node with that taint.

Let's take the same example use case that we had with node selectors and apply it using
taints and tolerations. Since this is basically the reverse of our previous setup, let's first give
our node a taint using the kubectl taint command:

> kubectl taint nodes node2 cpu_speed=slow:NoSchedule

Let's pick apart this command. We are giving node2 a taint called cpu_speed and
a value, slow. We also mark this taint with an effect – in this case, NoSchedule.

174 Pod Placement Controls

Once we're done with our example (don't do this quite yet if you're following along with
the commands), we can remove the taint using the minus operator:

> kubectl taint nodes node2 cpu_speed=slow:NoSchedule-

The taint effect lets us add in some granularity into how the scheduler handles the
taints. There are three possible effect values:

• NoSchedule

• NoExecute

• PreferNoSchedule

The first two effects, NoSchedule and NoExecute, provide hard effects – which is to
say that, like node selectors, there are only two possibilities, either the toleration exists
on the Pod (as we'll see momentarily) or the Pod is not scheduled. NoExecute adds to
this base functionality by evicting all Pods on the node that do have the toleration, while
NoSchedule lets existing pods stay put, while preventing any new Pods without the
toleration from joining.

PreferNoSchedule, on the other hand, provides the Kubernetes scheduler with some
leeway. It tells the scheduler to attempt to find a node for a Pod that doesn't have an
untolerated taint, but if none exist, to go ahead and schedule it anyway. It implements
a soft effect.

In our case, we have chosen NoSchedule, so no new Pods will be assigned to the
node – unless, of course, we provide a toleration. Let's do this now. Assume that we have
a second application that doesn't care about CPU clock speeds. It is happy to live on our
slower node. This is the Pod manifest:

pod-without-speed-requirement.yaml

apiVersion: v1

kind: Pod

metadata:

 name: slow-app

spec:

 containers:

 - name: slow-app

 image: slow-app:latest

Implementing taints and tolerations 175

Right now, our slow-app Pod will not run on any node with a taint. We need to provide
a toleration for this Pod in order for it to be scheduled on a node with a taint – which
we can do like this:

pod-with-toleration.yaml

apiVersion: v1

kind: Pod

metadata:

 name: slow-app

spec:

 containers:

 - name: slow-app

 image: slow-app:latest

tolerations:

- key: "cpu_speed"

 operator: "Equal"

 value: "slow"

 effect: "NoSchedule"

Let's pick apart our tolerations entry, which is an array of values. Each value has
a key – which is the same as our taint name. Then there is an operator value. This
operator can be either Equal or Exists. For Equal, you can use the value key as
in the preceding code to configure a value that the taint must equal in order to be tolerated
by the Pod. For Exists, the taint name must be on the node, but it does not matter what
the value is, as in this Pod spec:

pod-with-toleration2.yaml

apiVersion: v1

kind: Pod

metadata:

 name: slow-app

spec:

 containers:

 - name: slow-app

 image: slow-app:latest

tolerations:

176 Pod Placement Controls

- key: "cpu_speed"

 operator: "Exists"

 effect: "NoSchedule"

As you can see, we have used the Exists operator value to allow our Pod to tolerate
any cpu_speed taint.

Finally, we have our effect, which works the same way as the effect on the taint itself.
It can contain the exact same values as the taint effect – NoSchedule, NoExecute, and
PreferNoSchedule.

A Pod with a NoExecute toleration will tolerate the taint associated with it indefinitely.
However, you can add a field called tolerationSeconds in order to have the Pod leave
the tainted node after a prescribed time has elapsed. This allows you to specify tolerations
that take effect after a period of time. Let's look at an example:

pod-with-toleration3.yaml

apiVersion: v1

kind: Pod

metadata:

 name: slow-app

spec:

 containers:

 - name: slow-app

 image: slow-app:latest

tolerations:

- key: "cpu_speed"

 operator: "Equal"

 Value: "slow"

 effect: "NoExecute"

 tolerationSeconds: 60

In this case, the Pod already running on a node with the taint slow when the taint and
toleration are executed will remain on the node for 60 seconds before being rescheduled
to a different node.

Controlling Pods with node affinity 177

Multiple taints and tolerations
When there are multiple taints or tolerations on a Pod and node, the scheduler will check
all of them. There is no OR logic operator here – if any of the taints on the node do not
have a matching toleration on the Pod, it will not be scheduled on the node (with the
exception of PreferNoSchedule, in which case, as before, the scheduler will try to not
schedule on the node if possible). Even if out of six taints on the node, the Pod tolerates
five of them, it will still not be scheduled for a NoSchedule taint, and it will still be
evicted for a NoExecute taint.

For a tool that gives us a much more subtle way of controlling placement, let's look at
node affinity.

Controlling Pods with node affinity
As you can probably tell, taints and tolerations – while much more flexible than node
selectors – still leave some use cases unaddressed and in general only allow a filter pattern
where you can match on a specific taint using Exists or Equals. There may be more
advanced use cases where you want more flexible methods of selecting nodes – and
affinities are a feature of Kubernetes that addresses this.

There are two types of affinity:

• Node affinity

• Inter-Pod affinity

Node affinity is a similar concept to node selectors except that it allows for a much more
robust set of selection characteristics. Let's look at some example YAML and then pick
apart the various pieces:

pod-with-node-affinity.yaml

apiVersion: v1

kind: Pod

metadata:

 name: affinity-test

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

178 Pod Placement Controls

 - matchExpressions:

 - key: cpu_speed

 operator: In

 values:

 - fast

 - medium_fast

 containers:

 - name: speedy-app

 image: speedy-app:latest

As you can see, our Pod spec has an affinity key, and we've specified
a nodeAffinity setting. There are two possible node affinity types:

• requiredDuringSchedulingIgnoredDuringExecution

• preferredDuringSchedulingIgnoredDuringExecution

The functionality of these two types maps directly to how NoSchedule and
PreferNoSchedule work, respectively.

Using
requiredDuringSchedulingIgnoredDuringExecution
node affinities
For requiredDuringSchedulingIgnoredDuringExecution, Kubernetes will
never schedule a Pod without a term matching to a node.

For preferredDuringSchedulingIgnoredDuringExecution, it will attempt to
fulfill the soft requirement but if it cannot, it will still schedule the Pod.

The real capability of node affinity over node selectors and taints and tolerations comes in
the actual expressions and logic that you can implement when it comes to the selector.

The functionalities of the
requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution affinities are quite
different, so we will review each separately.

Controlling Pods with node affinity 179

For our required affinity, we have the ability to specify nodeSelectorTerms –
which can be one or more blocks containing matchExpressions. For each block of
matchExpressions, there can be multiple expressions.

In the code block we saw in the previous section, we have one single node selector term,
a matchExpressions block – which itself has only a single expression. This expression
looks for key, which, just like with node selectors, represents a node label. Next, it has an
operator, which gives us some flexibility on how we want to identify a match. Here are
the possible values for the operator:

• In

• NotIn

• Exists

• DoesNotExist

• Gt (Note: greater than)

• Lt (Note: less than)

In our case, we are using the In operator, which will check to see if the value is one of
several that we specify. Finally, in our values section, we can list one or more values that
must match, based on the operator, before the expression is true.

As you can see, this gives us significantly greater granularity in specifying our selector.
Let's look at our example of cpu_speed using a different operator:

pod-with-node-affinity2.yaml

apiVersion: v1

kind: Pod

metadata:

 name: affinity-test

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: cpu_speed

 operator: Gt

 values:

180 Pod Placement Controls

 - "5"

 containers:

 - name: speedy-app

 image: speedy-app:latest

As you can see, we are using a very granular matchExpressions selector. This ability
to use more advanced operator matching now allows us to ensure that our speedy-app
is only scheduled on nodes that have a high enough clock speed (in this case, 5 GHz).
Instead of classifying our nodes into broad groups like slow and fast, we can be much
more granular in our specifications.

Next, let's look at the other node affinity type –
preferredDuringSchedulingIgnoredDuringExecution.

Using
preferredDuringSchedulingIgnoredDuringExecution
node affinities
The syntax for this is slightly different and gives us even more granularity to affect this
soft requirement. Let's look at a Pod spec YAML that implements this:

pod-with-node-affinity3.yaml

apiVersion: v1

kind: Pod

metadata:

 name: slow-app-affinity

spec:

 affinity:

 nodeAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: cpu_speed

 operator: Lt

 values:

 - "3"

Controlling Pods with node affinity 181

 containers:

 - name: slow-app

 image: slow-app:latest

This looks a bit different from our required syntax.

For preferredDuringSchedulingIgnoredDuringExecution, we have the
ability to assign a weight to each entry, with an associated preference, which can again
be a matchExpressions block with multiple inner expressions that use the same
key-operator-values syntax.

The weight value is the key difference here. Since
preferredDuringSchedulingIgnoredDuringExecution is a soft requirement,
we can list a few different preferences with associated weights, and let the scheduler try
its best to satisfy them. The way this works under the hood is that the scheduler will go
through all the preferences and compute a score for the node based on the weight of each
preference and whether it was satisfied. Assuming all hard requirements are satisfied, the
scheduler will select the node with the highest computed score. In the preceding case,
we have a single preference with a weight of 1, but weight can be anywhere from 1 to 100 –
so let's look at a more complex setup for our speedy-app use case:

pod-with-node-affinity4.yaml

apiVersion: v1

kind: Pod

metadata:

 name: speedy-app-prefers-affinity

spec:

 affinity:

 nodeAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 90

 preference:

 matchExpressions:

 - key: cpu_speed

 operator: Gt

 values:

 - "3"

 - weight: 10

 preference:

182 Pod Placement Controls

 matchExpressions:

 - key: memory_speed

 operator: Gt

 values:

 - "4"

 containers:

 - name: speedy-app

 image: speedy-app:latest

In our journey to ensure that our speedy-app runs on the best possible node, we have
here decided to only implement soft requirements. If no fast nodes exist, we still want
our app to be scheduled and run. To that end, we've specified two preferences – a node
with a cpu_speed of over 3 (3 GHz) and a memory speed of over 4 (4 GHz).

Since our app is far more CPU-bound than memory-bound, we've decided to weight
our preferences appropriately. In this case, cpu_speed carries a weight of 90, while
memory_speed carries a weight of 10.

Thus, any node that satisfies our cpu_speed requirement will have a much higher
computed score than one that only satisfies the memory_speed requirement – but still
less than one that satisfies both. When we're trying to schedule 10 or 100 new Pods for
this app, you can see how this calculation could be valuable.

Multiple node affinities
When we're dealing with multiple node affinities, there are a few key pieces of logic to
keep in mind. First off, even with a single node affinity, if it is combined with a node
selector on the same Pod spec (which is indeed possible), the node selector must be
satisfied before any of the node affinity logic will come into play. This is because node
selectors only implement hard requirements, and there is no OR logical operator between
the two. An OR logical operator would check both requirements and ensure that at least
one of them is true – but node selectors do not let us do this.

Secondly, for a requiredDuringSchedulingIgnoredDuringExecution node
affinity, multiple entries under nodeSelectorTerms are handled in an OR logical
operator. If one, but not all, is satisfied – the Pod will still be scheduled.

Controlling Pods with node affinity 183

Finally, for any nodeSelectorTerm with multiple entries under matchExpressions,
all must be satisfied – this is an AND logical operator. Let's look at an example YAML
of this:

pod-with-node-affinity5.yaml

apiVersion: v1

kind: Pod

metadata:

 name: affinity-test

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: cpu_speed

 operator: Gt

 values:

 - "5"

 - key: memory_speed

 operator: Gt

 values:

 - "4"

 containers:

 - name: speedy-app

 image: speedy-app:latest

In this case, if a node has a CPU speed of 5 but does not meet the memory speed
requirement (or vice versa), the Pod will not be scheduled.

One final thing to note about node affinity is that, as you've probably already noticed,
neither of the two affinity types allows the same NoExecute functionality that was
available to us in our taints and tolerations settings.

One additional node affinity type – requiredDuringSchedulingRequiredDuring
execution – will add this functionality in a future version. As of Kubernetes 1.19, this
does not yet exist.

184 Pod Placement Controls

Next, we will look at inter-pod affinity and anti-affinity, which provides affinity definitions
between Pods, rather than defining rules for nodes.

Using inter-Pod affinity and anti-affinity
Inter-Pod affinity and anti-affinity let you dictate how Pods should run based on which
other Pods already exist on a node. Since the number of Pods in a cluster is typically much
larger than the number of nodes, and some Pod affinity and anti-affinity rules can be
somewhat complex, this feature can put quite a load on your cluster control plane if you
are running many pods on many nodes. For this reason, the Kubernetes documentation
does not recommend using these features with a large number of nodes in your cluster.

Pod affinities and anti-affinities work fairly differently – let's look at each by itself before
discussing how they can be combined.

Pod affinities
As with node affinities, let's dive into the YAML in order to discuss the constituent parts
of a Pod affinity spec:

pod-with-pod-affinity.yaml

apiVersion: v1

kind: Pod

metadata:

 name: not-hungry-app-affinity

spec:

 affinity:

 podAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: hunger

 operator: In

 values:

 - "1"

 - "2"

 topologyKey: rack

 containers:

Using inter-Pod affinity and anti-affinity 185

 - name: not-hungry-app

 image: not-hungry-app:latest

Just like with node affinity, Pod affinity lets us choose between two types:

• preferredDuringSchedulingIgnoredDuringExecution

• requiredDuringSchedulingIgnoredDuringExecution

Again, similar to node affinity, we can have one or more selectors – which are called
labelSelector since we are selecting Pods, not nodes. The matchExpressions
functionality is the same as with node affinity, but Pod affinity adds a brand-new key
called topologyKey.

topologyKey is in essence a selector that limits the scope of where the scheduler should
look to see whether other Pods of the same selector are running. That means that Pod
affinity doesn't only need to mean other Pods of the same type (selector) on the same
node; it can mean groups of multiple nodes.

Let's go back to our failure domain example at the beginning of the chapter. In that
example, each rack was its own failure domain with multiple nodes per rack. To extend
this concept to topologyKey, we could label each node on a rack with rack=1
or rack=2. Then we can use the topologyKey rack, as we have in our YAML, to
designate that the scheduler should check all of the Pods running on nodes with the same
topologyKey (which in this case means all of the Pods on Node 1 and Node 2 in the
same rack) in order to apply Pod affinity or anti-affinity rules.

So, adding this all up, what our example YAML tells the scheduler is this:

• This Pod MUST be scheduled on a node with the label rack, where the value of the
label rack separates nodes into groups.

• The Pod will then be scheduled in a group where there already exists a Pod running
with the label hunger and a value of 1 or 2.

Essentially, we are splitting our cluster into topology domains – in this case, racks – and
prescribing to the scheduler to only schedule similar pods together on nodes that share
the same topology domain. This is the opposite of our first failure domain example, where
we wouldn't want pods to share the same domain if possible – but there are also reasons
that you may want to keep like pods on the same domain. For example, in a multitenant
setting where tenants want dedicated hardware tenancy over a domain, you could ensure
that every Pod that belongs to a certain tenant is scheduled to the exact same topology
domain.

186 Pod Placement Controls

You can use preferredDuringSchedulingIgnoredDuringExecution in the
same way. Before we get to anti-affinities, here's an example with Pod affinities and the
preferred type:

pod-with-pod-affinity2.yaml

apiVersion: v1

kind: Pod

metadata:

 name: not-hungry-app-affinity

spec:

 affinity:

 podAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 50

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: hunger

 operator: Lt

 values:

 - "3"

 topologyKey: rack

 containers:

 - name: not-hungry-app

 image: not-hungry-app:latest

As before, in this code block, we have our weight – in this case, 50 – and our expression
match – in this case, using a less than (Lt) operator. This affinity will induce the scheduler
to try its best to schedule the Pod on a node where it is or with another node on the same
rack that has a Pod running with a hunger of less than 3. The weight is used by the
scheduler to compare nodes – as discussed in the section on node affinities – Controlling
Pods with Node Affinity (see pod-with-node-affinity4.yaml). In this scenario
specifically, the weight of 50 doesn't make any difference because there is only one entry
in the affinity list.

Pod anti-affinities extend this paradigm using the same selectors and topologies – let's
take a look at them in detail.

Using inter-Pod affinity and anti-affinity 187

Pod anti-affinities
Pod anti-affinities allow you to prevent Pods from running on the same topology domain
as pods that match a selector. They implement the opposite logic to Pod affinities. Let's
dive into some YAML and explain how this works:

pod-with-pod-anti-affinity.yaml

apiVersion: v1

kind: Pod

metadata:

 name: hungry-app

spec:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 100

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: hunger

 operator: In

 values:

 - "4"

 - "5"

 topologyKey: rack

 containers:

 - name: hungry-app

 image: hungry-app

Similar to Pod affinity, we use the affinity key as the location to specify our
anti-affinity under podAntiAffinity. Also, as with Pod affinity, we have the ability
to use either preferredDuringSchedulingIgnoredDuringExecution
or requireDuringSchedulingIgnoredDuringExecution. We even use all the
same syntax for the selector as with Pod affinities.

The only actual difference in syntax is the use of podAntiAffinity under the
affinity key.

188 Pod Placement Controls

So, what does this YAML do? In this case, we are recommending to the scheduler
(a soft requirement) that it should attempt to schedule this Pod on a node where it
or any other node with the same value for the rack label does not have any Pods running
with hunger label values of 4 or 5. We're telling the scheduler try not to colocate this Pod
in a domain with any extra hungry Pods.

This feature gives us a great way to separate pods by failure domain – we can specify each
rack as a domain and give it an anti-affinity with a selector of its own kind. This will make
the scheduler schedule clones of the Pod (or try to, in a preferred affinity) to nodes that
are not in the same failure domain, giving the application greater availability in case of
a domain failure.

We even have the option to combine Pod affinities and anti-affinities. Let's look at how
this could work.

Combined affinity and anti-affinity
This is one of those situations where you can really put undue load on your cluster control
plane. Combining Pod affinities with anti-affinities can allow incredibly nuanced rules
that can be passed to the Kubernetes scheduler, which has the Herculean task of working
to fulfill them.

Let's look at some YAML for a Deployment spec that combines these two concepts.
Remember, affinity and anti-affinity are concepts that are applied to Pods – but we
normally do not specify Pods without a controller like a Deployment or a ReplicaSet.
Therefore, these rules are applied at the Pod spec level in the Deployment YAML. We are
only showing the Pod spec part of this deployment for conciseness, but you can find the
full file on the GitHub repository:

pod-with-both-antiaffinity-and-affinity.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hungry-app-deployment

SECTION REMOVED FOR CONCISENESS

 spec:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

Using inter-Pod affinity and anti-affinity 189

 matchExpressions:

 - key: app

 operator: In

 values:

 - other-hungry-app

 topologyKey: "rack"

 podAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - hungry-app-cache

 topologyKey: "rack"

 containers:

 - name: hungry-app

 image: hungry-app:latest

In this code block, we are telling the scheduler to treat the Pods in our Deployment as
such: the Pod must be scheduled onto a node with a rack label such that it or any other
node with a rack label and the same value has a Pod with app=hungry-label-
cache.

Secondly, the scheduler must attempt to schedule the Pod, if possible, to a node with the
rack label such that it or any other node with the rack label and the same value does not
have a Pod with the app=other-hungry-app label running.

To boil this down, we want our Pods for hungry-app to run in the same topology as
the hungry-app-cache, and we do not want them to be in the same topology as the
other-hungry-app if at all possible.

Since with great power comes great responsibility, and our tools for Pod affinity and
anti-affinity are equal parts powerful and performance-reducing, Kubernetes ensures that
some limits are set on the possible ways you can use both of them in order to prevent
strange behavior or significant performance issues.

190 Pod Placement Controls

Pod affinity and anti-affinity limitations
The biggest restriction on affinity and anti-affinity is that you are not allowed to use
a blank topologyKey. Without restricting what the scheduler treats as a single topology
type, some very unintended behavior can happen.

The second limitation is that, by default, if you're using the hard version of anti-affinity –
requiredOnSchedulingIgnoredDuringExecution, you cannot just use any label
as a topologyKey.

Kubernetes will only let you use the kubernetes.io/hostname label, which
essentially means that you can only have one topology per node if you're using required
anti-affinity. This limitation does not exist for either the prefer anti-affinity or either
of the affinities, even the required one. It is possible to change this functionality, but
it requires writing a custom admission controller – which we will discuss in Chapter 12,
Kubernetes Security and Compliance, and Chapter 13, Extending Kubernetes with CRDs.

So far, our work with placement controls has not discussed namespaces. However, with
Pod affinities and anti-affinities, they do hold relevance.

Pod affinity and anti-affinity namespaces
Since Pod affinities and anti-affinities cause changes in behavior based on the location of
other Pods, namespaces are a relevant piece to decide which Pods count for or against an
affinity or anti-affinity.

By default, the scheduler will only look to the namespace in which the Pod with the
affinity or anti-affinity was created. For all our previous examples, we haven't specified
a namespace so the default namespace will be used.

If you want to add one or more namespaces in which Pods will affect the affinity
or anti-affinity, you can do so using the following YAML:

pod-with-anti-affinity-namespace.yaml

apiVersion: v1

kind: Pod

metadata:

 name: hungry-app

spec:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

Summary 191

 - weight: 100

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: hunger

 operator: In

 values:

 - "4"

 - "5"

 topologyKey: rack

 namespaces: ["frontend", "backend", "logging"]

 containers:

 - name: hungry-app

 image: hungry-app

In this code block, the scheduler will look to the frontend, backend, and logging
namespaces when trying to match the anti-affinity (as you can see on the namespaces
key in the podAffinityTerm block). This allows us to constrain which namespaces the
scheduler operates on when validating its rules.

Summary
In this chapter, we learned about a few different controls that Kubernetes provides in
order to enforce certain Pod placement rules via the scheduler. We learned that there are
both "hard" requirements and "soft" rules, the latter of which are given the scheduler's best
effort but do not necessarily prevent Pods that break the rules from being placed. We also
learned a few reasons why you may want to implement scheduling controls – such as
real-life failure domains and multitenancy.

We learned that there are simple ways to influence Pod placement, such as node selectors
and node names – in addition to more advanced methods like taints and tolerations,
which Kubernetes itself also uses by default. Finally, we discovered that there are some
advanced tools that Kubernetes provides for node and Pod affinities and anti-affinities,
which allow us to create complex rulesets for the scheduler to follow.

In the next chapter, we will discuss observability on Kubernetes. We'll learn how to view
application logs and we'll also use some great tools to get a view of what is happening in
our cluster in real time.

192 Pod Placement Controls

Questions
1. What is the difference between node selectors and the Node name field?

2. How does Kubernetes use system-provided taints and tolerations? For what
reasons?

3. Why should you be careful when using multiple types of Pod affinities or anti-
affinities?

4. How could you balance availability across multiple failure zones with colocation for
performance reasons for a three-tier web application? Give an example using node
or Pod affinities and anti-affinities.

Further reading
• For a more in-depth explanation of the default system taints and tolerations, head

to https://kubernetes.io/docs/concepts/scheduling-eviction/
taint-and-toleration/#taint-based-evictions.

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/#taint-based-evictions

Section 3:
Running Kubernetes

in Production

In this section, you'll get a glimpse into day 2 operations on Kubernetes, best practices
for CI/CD, how to customize and extend Kubernetes, and the basics of the greater cloud-
native ecosystem.

This part of the book comprises the following chapters:

• Chapter 9, Observability on Kubernetes

• Chapter 10, Troubleshooting Kubernetes

• Chapter 11, Template Code Generation and CI/CD on Kubernetes

• Chapter 12, Kubernetes Security and Compliance

9
Observability on

Kubernetes
This chapter dives into capabilities that are highly recommended to implement when
running Kubernetes in production. First, we discuss observability in the context of
distributed systems such as Kubernetes. Then, we look at the built-in Kubernetes
observability stack and what functionality it implements. Finally, we learn how to
supplement the built-in observability tooling with additional observability, monitoring,
logging, and metrics infrastructure from the ecosystem. The skills you learn in this
chapter will help you deploy observability tools to your Kubernetes cluster and enable you
to understand how your cluster (and applications running on it) are functioning.

In this chapter, we will cover the following topics:

• Understanding observability on Kubernetes

• Using default observability tooling – metrics, logging, and the dashboard

• Implementing the best of the ecosystem

To start, we will learn the out-of-the-box tools and processes that Kubernetes provides for
observability.

196 Observability on Kubernetes

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl tool.

The code used in this chapter can be found in the book's GitHub repository:

https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter9

Understanding observability on Kubernetes
No production system is complete without a way to monitor it. In software, we define
observability as the ability to, at any point in time, understand how our system is
performing (and, in the best case, why). Observability grants significant benefits in
security, performance, and operational capacity. By knowing how your system is
responding at the VM, container, and application level, you can tune it to perform
efficiently, react quickly to events, and more easily troubleshoot bugs.

For instance, let's take a scenario where your application is running extremely slowly.
In order to find the bottleneck, you may look at the application code itself, the resource
specifications of the Pod, the number of Pods in the deployment, the memory and CPU
usage at the Pod level or Node level, and externalities such as a MySQL database running
outside your cluster.

By adding observability tooling, you would be able to diagnose many of these variables
and figure out what issues may be contributing to your application slowdown.

Kubernetes, as a production-ready container orchestration system, gives us some default
tools to monitor our applications. For the purposes of this chapter, we will separate
observability into four ideas: metrics, logs, traces, and alerts. Let's look at each of them:

• Metrics here represents the ability to see numerical representations of the system's
current state, with specific attention paid to CPU, memory, network, disk space, and
more. These numbers allow us to judge the gap in current state with the system's
maximum capacity and ensure that the system remains available to users.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter9
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter9

Understanding observability on Kubernetes 197

• Logs refers to the practice of collecting text logs from applications and systems.
Logs will likely be a combination of Kubernetes control plane logs and logs from
your application Pods themselves. Logs can help us diagnose the availability of the
Kubernetes system, but they also can help with triaging application bugs.

• Traces refers to collecting distributed traces. Traces are an observability pattern that
delivers end-to-end visibility of a chain of requests – which can be HTTP requests
or otherwise. This topic is especially important in a distributed cloud-native setting
where microservices are used. If you have many microservices and they call each
other, it can be difficult to find bottlenecks or issues when many services are
involved in a single end-to-end request. Traces allow you to view requests broken
down by each leg of a service-to-service call.

• Alerts correspond to the practice of setting automated touch points when certain
events happen. Alerts can be set on both metrics and logs, and delivered through
a host of mediums, from text messages to emails to third-party applications and
everything in between.

Between these four aspects of observability, we should be able to understand the health
of our cluster. However, it is possible to configure many different possible data points for
metrics, logs, and even alerting. Therefore, knowing what to look for is important. The
next section will discuss the most important observability areas for Kubernetes cluster and
application health.

Understanding what matters for Kubernetes cluster
and application health
Among the vast number of possible metrics and logs that Kubernetes or third-party
observability solutions for Kubernetes can provide, we can narrow down some of the ones
that are most likely to cause major issues with your cluster. You should keep these pieces
front and center in whichever observability solution you end up using. First, let's look at
the connection between CPU usage and cluster health.

Node CPU usage
The state of CPU usage across the Nodes in your Kubernetes cluster is a very important
metric to keep an eye on across your observability solution. We've discussed in previous
chapters how Pods can define resource requests and limits for CPU usage. However, it is
still possible for Nodes to oversubscribe their CPU usage when the limits are set higher
than the maximum CPU capacity of the cluster. Additionally, the master Nodes that run
our control plane can also encounter CPU capacity issues.

198 Observability on Kubernetes

Worker Nodes with maxed-out CPUs may perform poorly or throttle workloads running
on Pods. This can easily occur if no limits are set on Pods – or if a Node's total Pod
resource limits are greater than its max capacity, even if its total resource requests are
lower. Master Nodes with capped-out CPUs may hurt the performance of the scheduler,
kube-apiserver, or any of the other control plane components.

In general, CPU usage across worker and master Nodes should be visible in your
observability solution. This is best done via a combination of metrics (for instance on
a charting solution such as Grafana, which you'll learn about later in this chapter) – and
alerts for high CPU usage across the nodes in your cluster.

Memory usage is also an extremely important metric to keep track of, similar to
with CPU.

Node memory usage
As with CPU usage, memory usage is an extremely important metric to observe across
your cluster. Memory usage can be oversubscribed using Pod Resource Limits – and many
of the same issues as with CPU usage can apply for both the master and worker Nodes in
the cluster.

Again, a combination of alerting and metrics is important for visibility into cluster
memory usage. We will learn some tools for this later in this chapter.

For the next major observability piece, we will look not at metrics but at logs.

Control plane logging

The components of the Kubernetes control plane, when running, output logs that can be
used to get an in-depth view of cluster operations. These logs can also significantly help
with troubleshooting, as we'll see in Chapter 10, Troubleshooting Kubernetes. Logs for the
Kubernetes API server, controller manager, scheduler, kube proxy, and kubelet can all be
very useful for certain troubleshooting or observability reasons.

Application logging
Application logging can also be incorporated into an observability stack for Kubernetes
– being able to view application logs along with other metrics can be very helpful to
operators.

Using default observability tooling 199

Application performance metrics
As with application logging, application performance metrics and monitoring are highly
relevant to the performance of your applications on Kubernetes. Memory usage and CPU
profiling at the application level can be a valuable piece of the observability stack.

Generally, Kubernetes provides the data infrastructure for application monitoring and
logging but stays away from providing higher-level functionality such as charting and
searching. With this in mind, let's review the tools that Kubernetes gives us by default to
address these concerns.

Using default observability tooling
Kubernetes provides observability tooling even without adding any third-party solutions.
These native Kubernetes tools form the basis of many of the more robust solutions, so
they are important to discuss. Since observability includes metrics, logs, traces, and alerts,
we will discuss each in turn, focusing first on the Kubernetes-native solutions. First, let's
discuss metrics.

Metrics on Kubernetes
A lot of information about your applications can be gained by simply running kubectl
describe pod. We can see information about our Pod's spec, what state it is in, and key
issues preventing its functionality.

Let's assume we are having some trouble with our application. Specifically, the Pod is not
starting. To investigate, we run kubectl describe pod. As a reminder on kubectl
aliases mentioned in Chapter 1, Communicating with Kubernetes, kubectl describe
pod is the same as kubectl describe pods. Here is an example output from the
describe pod command – we've stripped out everything apart from the Events
information:

Figure 9.1 – Describe Pod Events output

As you can see, this Pod is not being scheduled because our Nodes are all out of memory!
That would be a good thing to investigate further.

200 Observability on Kubernetes

Let's keep going. By running kubectl describe nodes, we can learn a lot about
our Kubernetes Nodes. Some of this information can be very relevant to how our system
is performing. Here's another example output, this time from the kubectl describe
nodes command. Rather than putting the entire output here, which can be quite lengthy,
let's zero in on two important sections – Conditions and Allocated resources.
First, let's review the Conditions section:

Figure 9.2 – Describe Node Conditions output

As you can see, we have included the Conditions block of the kubectl describe
nodes command output. It's a great place to look for any issues. As we can see here, our
Node is actually experiencing issues. Our MemoryPressure condition is true, and the
Kubelet has insufficient memory. No wonder our Pods won't schedule!

Next, check out the Allocated resources block:

Allocated resources:

 (Total limits may be over 100 percent, i.e., overcommitted.)

 CPU Requests CPU Limits Memory Requests Memory Limits

 ------------ ---------- --------------- -------------

 8520m (40%) 4500m (24%) 16328Mi (104%) 16328Mi (104%)

Now we're seeing some metrics! It looks like our Pods are requesting too much memory,
leading to our Node and Pod issues. As you can tell from this output, Kubernetes is
already collecting metrics data about our Nodes, by default. Without that data, the
scheduler would not be able to do its job properly, since maintaining Pod resources
requests with Node capacity is one of its most important functions.

However, by default, these metrics are not surfaced to the user. They are in fact being
collected by each Node's Kubelet and delivered to the scheduler for it to do its job.
Thankfully, we can easily get these metrics by deploying Metrics Server to our cluster.

Metrics Server is an officially supported Kubernetes application that collects metrics
information and surfaces it on an API endpoint for use. Metrics Server is in fact required
to make the Horizontal Pod Autoscaler work, but it is not always included by default,
depending on the Kubernetes distribution.

Using default observability tooling 201

Deploying Metrics Server is very quick. As of the writing of this book, the newest version
can be installed using the following:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/download/v0.3.7/components.yaml

Important note
Full documentation on how to use Metrics Server can be found at https://
github.com/kubernetes-sigs/metrics-server.

Once Metrics Server is running, we can use a brand-new Kubernetes command. The
kubectl top command can be used with either Pods or Nodes to see granular
information about how much memory and CPU capacity is in use.

Let's take a look at some example usage. Run kubectl top nodes to see Node-level
metrics. Here's the output of the command:

Figure 9.3 – Node Metrics output

As you can see, we are able to see both absolute and relative CPU and memory usage.

Important note
CPU cores are measured in millcpu or millicores. 1,000
millicores is equivalent to one virtual CPU. Memory is measured in bytes.

Next, let's take a look at the kubectl top pods command. Run it with the –
namespace kube-system flag to see Pods in the kube-system namespace.

To do this, we run the following command:

Kubectl top pods -n kube-system

And we get the following output:

NAMESPACE NAME CPU(cores) MEMORY(bytes)

default my-hungry-pod 8m 50Mi

default my-lightweight-pod 2m 10Mi

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server

202 Observability on Kubernetes

As you can see, this command uses the same absolute units as kubectl top nodes –
millicores and bytes. There are no relative percentages when looking at Pod-level metrics.

Next, we'll look at how Kubernetes handles logging.

Logging on Kubernetes
We can split up logging on Kubernetes into two areas – application logs and control plane
logs. Let's start with control plane logs.

Control plane logs
Control plane logs refers to the logs created by the Kubernetes control plane components,
such as the scheduler, API server, and others. For a vanilla Kubernetes install, control
plane logs can be found on the Nodes themselves and require direct access to the Nodes
in order to see. For clusters with components set up to use systemd, logs are found using
the journalctl CLI tool (refer to the following link for more information: https://
manpages.debian.org/stretch/systemd/journalctl.1.en.html).

On master Nodes, you can find logs in the following locations on the filesystem:

• At /var/log/kube-scheduler.log, you can find the Kubernetes
scheduler logs.

• At /var/log/kube-controller-manager.log, you can find the controller
manager logs (for instance, to see scaling events).

• At /var/log/kube-apiserver.log, you can find the Kubernetes API
server logs.

On worker Nodes, logs are available in two locations on the filesystem:

• At /var/log/kubelet.log, you can find the kubelet logs.

• At /var/log/kube-proxy.log, you can find the kube proxy logs.

Although, generally, cluster health is influenced by the health of the Kubernetes master
and worker Node components, it is of course also important to keep track of your
application's logs.

Application logs
It's very easy to find application logs on Kubernetes. Before we explain how it works, let's
look at an example.

https://manpages.debian.org/stretch/systemd/journalctl.1.en.html
https://manpages.debian.org/stretch/systemd/journalctl.1.en.html

Using default observability tooling 203

To check logs for a specific Pod, you can use the kubectl logs <pod_name>
command. The output of the command will display any text written to the container's
stdout or stderr. If a Pod has multiple containers, you must include the container
name in the command:

kubectl logs <pod_name> <container_name>

Under the hood, Kubernetes handles Pod logs by using the container engine's logging
driver. Typically, any logs to stdout or stderr are persisted to each Node's disk in the /
var/logs folder. Depending on the Kubernetes distribution, log rotations may be set up
to prevent overuse of Node disk space by logs. In addition, Kubernetes components such
as the scheduler, kubelet, and kube-apiserver also persist logs to Node disk space, usually
within the /var/logs folder. It is important to note how limited this default logging
capability is – a robust observability stack for Kubernetes would certainly include a third-
party solution for log forwarding, as we'll see shortly.

Next, for general Kubernetes observability, we can use Kubernetes Dashboard.

Installing Kubernetes Dashboard
Kubernetes Dashboard provides all of the functionality of kubectl – including viewing
logs and editing resources – in a GUI. It's very easy to get the dashboard set up – let's
see how.

The dashboard can be installed in a single kubectl apply command.
For customizations, check out the Kubernetes Dashboard GitHub page at
https://github.com/kubernetes/dashboard.

To install a version of Kubernetes Dashboard, run the following kubectl command,
replacing the <VERSION> tag with your desired version, based on the version of
Kubernetes you are using (again, check the Dashboard GitHub page for version
compatibility):

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/<VERSION> /aio/deploy/recommended.yaml

In our case, as of the writing of this book, we will use v2.0.4 – the final command
looks like this:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/v2.0.4/aio/deploy/recommended.yaml

Once Kubernetes Dashboard has been installed, there are a few methods to access it.

https://github.com/kubernetes/dashboard

204 Observability on Kubernetes

Important note
It is not usually recommended to use Ingress or a public load balancer service,
because Kubernetes Dashboard allows users to update cluster objects. If for
some reason your login methods for the dashboard are compromised or easy to
figure out, you could be looking at a large security risk.

With that in mind, we can use either kubectl port-forward or kubectl proxy
in order to view our dashboard from our local machine.

For this example, we will use the kubectl proxy command, because we haven't used it
in an example yet.

The kubectl proxy command, unlike the kubectl port-forward command,
requires only one command to proxy to every service running on your cluster. It does
this by proxying the Kubernetes API directly to a port on your local machine, which is
by default 8081. For a full discussion of the Kubectl proxy command, check the
docs at https://kubernetes.io/docs/reference/generated/kubectl/
kubectl-commands#proxy.

In order to access a specific Kubernetes service using kubectl proxy, you just need
to have the right path. The path to access Kubernetes Dashboard after running kubectl
proxy will be the following:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/
services/https:kubernetes-dashboard:/proxy/

As you can see, the kubectl proxy path we put in our browser is on localhost port
8001, and mentions the namespace (kubernetes-dashboard), the service name and
selector (https:kubernetes-dashboard), and a proxy path.

Let's put our Kubernetes Dashboard URL in a browser and see the result:

Figure 9.4 – Kubernetes Dashboard login

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#proxy
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#proxy

Using default observability tooling 205

When we deploy and access Kubernetes Dashboard, we are met with a login screen.
We can either create a Service Account (or use our own) to log in to the dashboard, or
simply link our local Kubeconfig file. By logging in to Kubernetes Dashboard with
a specific Service Account's token, the dashboard user will inherit that Service Account's
permissions. This allows you to specify what type of actions a user will be able to take
using Kubernetes Dashboard – for instance, read-only permissions.

Let's go ahead and create a brand-new Service Account for our Kubernetes Dashboard.
You could customize this Service Account and limit its permissions, but for now we will
give it admin permissions. To do this, follow these steps:

1. We can create a Service Account imperatively using the following Kubectl
command:

kubectl create serviceaccount dashboard-user

This results in the following output, confirming the creation of our Service Account:
serviceaccount/dashboard-user created

2. Now, we need to link our Service Account to a ClusterRole. You could also use a
Role, but we want our dashboard user to be able to access all namespaces. To link
a Service Account to the cluster-admin default ClusterRole using a single
command, we can run the following:

kubectl create clusterrolebinding dashboard-user \
--clusterrole=cluster-admin
--serviceaccount=default:dashboard-user

This command will result in the following output:
clusterrolebinding.rbac.authorization.k8s.io/dashboard-
user created

3. After this command is run, we should be able to log in to our dashboard! First,
we just need to find the token that we will use to log in. A Service Account's token
is stored as a Kubernetes secret, so let's see what it looks like. Run the following
command to see which secret our token is stored in:

kubectl get secrets

206 Observability on Kubernetes

In the output, you should see a secret that looks like the following:
NAME TYPE
DATA AGE

dashboard-user-token-dcn2g kubernetes.io/service-
account-token 3 112s

4. Now, to get our token for signing in to the dashboard, we only need to describe the
secret contents using the following:

kubectl describe secret dashboard-user-token-dcn2g

The resulting output will look like the following:
Name: dashboard-user-token-dcn2g

Namespace: default

Labels: <none>

Annotations: kubernetes.io/service-account.name:
dashboard-user

 kubernetes.io/service-account.uid:
9dd255sd-426c-43f4-88c7-66ss91h44215

Type: kubernetes.io/service-account-token

Data

====

ca.crt: 1025 bytes

namespace: 7 bytes

token: < LONG TOKEN HERE >

5. To log in to the dashboard, copy the string next to token, copy it into the token
input on the Kubernetes Dashboard login screen, and click Sign In. You should be
greeted with the Kubernetes Dashboard overview page!

6. Go ahead and click around the dashboard – you should be able to see all the same
resources you would be able to using kubectl, and you can filter by namespace in the
left-hand sidebar. For instance, here's a view of the Namespaces page:

Using default observability tooling 207

Figure 9.5 – Kubernetes Dashboard detail

7. You can also click on individual resources, and even edit those resources using
the dashboard as long as the Service Account you used to log in has the proper
permissions.

Here's a view of editing a Deployment resource from the deployment detail page:

Figure 9.6 – Kubernetes Dashboard edit view

208 Observability on Kubernetes

Kubernetes Dashboard also lets you view Pod logs and dive into many other resource
types in your cluster. To understand the full capabilities of the dashboard, check the docs
at the previously mentioned GitHub page.

Finally, to round out our discussion of default observability on Kubernetes, let's take
a look at alerting.

Alerts and traces on Kubernetes
Unfortunately, the last two pieces of the observability puzzle – alerts and traces – are
not yet native pieces of functionality on Kubernetes. In order to create this type of
functionality, let's move on to our next section – incorporating open source tooling from
the Kubernetes ecosystem.

Enhancing Kubernetes observability using the
best of the ecosystem
As we've discussed, though Kubernetes provides the basis for powerful visibility
functionality, it is generally up to the community and vendor ecosystem to create higher-
level tooling for metrics, logging, traces, and alerting. For the purposes of this book, we
will focus on fully open source, self-hosted solutions. Since many of these solutions fulfill
multiple visibility pillars between metrics, logs, traces, and alerting, instead of categorizing
solutions into each visibility pillar during our review, we will review each solution
separately.

Let's start with an often-used combination of technologies for metrics and alerts:
Prometheus and Grafana.

Introducing Prometheus and Grafana
Prometheus and Grafana are a typical combination of visibility technologies on
Kubernetes. Prometheus is a time series database, query layer, and alerting system with
many integrations, while Grafana is a sophisticated graphing and visualization layer that
integrates with Prometheus. We'll walk you through the installation and usage of these
tools, starting with Prometheus.

Enhancing Kubernetes observability using the best of the ecosystem 209

Installing Prometheus and Grafana
There are many ways to install Prometheus on Kubernetes, but most use Deployments in
order to scale the service. For our purposes, we will be using the kube-prometheus
project (https://github.com/coreos/kube-prometheus). This project includes
an operator as well as several custom resource definitions (CRDs). It will also
automatically install Grafana for us!

An operator is essentially an application controller on Kubernetes (deployed like other
applications in a Pod) that happens to make commands to the Kubernetes API in order to
correctly run or operate its application.

A CRD, on the other hand, allows us to model custom functionality inside of the
Kubernetes API. We'll learn a lot more about operators and CRDs in Chapter 13,
Extending Kubernetes with CRDs, but for now just think of operators as a way to create
smart deployments where the application can control itself properly and spin up other
Pods and Deployments as necessary – and think of CRDs as a way to use Kubernetes to
store application-specific concerns.

To install Prometheus, first we need to download a release, which may be different
depending on the newest version of Prometheus or your intended version of Kubernetes:

curl -LO https://github.com/coreos/kube-prometheus/archive/
v0.5.0.zip

Next, unzip the file using any tool. First, we're going to need to install the CRDs. In
general, most Kubernetes tooling installation instructions will have you create the CRDs
on Kubernetes first, since any additional setup that uses the CRD will fail if the underlying
CRD has not already been created on Kubernetes.

Let's install them using the following command:

kubectl apply -f manifests/setup

We'll need to wait a few seconds while the CRDs are created. This command will also
create a monitoring namespace for our resources to live in. Once everything is ready,
let's spin up the rest of the Prometheus and Grafana resources using the following:

kubectl apply -f manifests/

https://github.com/coreos/kube-prometheus

210 Observability on Kubernetes

Let's talk about what this command will actually create. The entire stack consists of the
following:

• Prometheus Deployment: Pods of the Prometheus application

• Prometheus Operator: Controls and operates the Prometheus app Pods

• Alertmanager Deployment: A Prometheus component to specify and trigger alerts

• Grafana: A powerful visualization dashboard

• Kube-state-metrics agent: Generates metrics from the Kubernetes API state

• Prometheus Node Exporter: Exports Node hardware- and OS-level metrics to
Prometheus

• Prometheus Adapter for Kubernetes Metrics: Adapter for Kubernetes Resource
Metrics API and Custom Metrics API for ingest into Prometheus

Together, all these components will provide sophisticated visibility into our cluster, from
the command plane down to the application containers themselves.

Once the stack has been created (check by using the kubectl get po -n
monitoring command), we can start using our components. Let's dive into usage,
starting with plain Prometheus.

Using Prometheus
Though the real power of Prometheus is in its data store, query, and alert layer, it does
provide a simple UI to developers. As you'll see later, Grafana provides many more
features and customizations, but it is worth it to get acquainted with the Prometheus UI.

By default, kube-prometheus will only create ClusterIP services for Prometheus,
Grafana, and Alertmanager. It's up to us to expose them outside the cluster. For the
purposes of this tutorial, we're simply going to port forward the service to our local
machine. For production, you may want to use Ingress to route requests to the three
services.

In order to port-forward to the Prometheus UI service, use the port-forward
kubectl command:

Kubectl -n monitoring port-forward svc/prometheus-k8s 3000:9090

Enhancing Kubernetes observability using the best of the ecosystem 211

We need to use port 9090 for the Prometheus UI. Access the service on your machine at
http://localhost:3000.

You should see something like the following screenshot:

Figure 9.7 – Prometheus UI

As you can see, the Prometheus UI has a Graph page, which is what you can see in Figure
9.4. It also has its own UI for seeing configured alerts – but it doesn't allow you to create
alerts via the UI. Grafana and Alertmanager will help us for that task.

To perform a query, navigate to the Graph page and enter the query command into the
Expression bar, then click Execute. Prometheus uses a query language called PromQL –
we won't present it fully to you in this book, but the Prometheus docs are a great way to
learn. You can refer to it using the following link: https://prometheus.io/docs/
prometheus/latest/querying/basics/.

To show how this works, let's enter a basic query, as follows:

kubelet_http_requests_total

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

212 Observability on Kubernetes

This query will list the total number of HTTP requests made to the kubelet on each Node,
for each request category, as shown in the following screenshot:

Figure 9.8 – HTTP requests query

Enhancing Kubernetes observability using the best of the ecosystem 213

You can also see the requests in graph form by clicking the Graph tab next to Table as
shown in the following screenshot:

Figure 9.9 – HTTP requests query – graph view

This provides a time series graph view of the data from the preceding screenshot. As you
can see, the graphing capability is fairly simple.

Prometheus also provides an Alerts tab for configuring Prometheus alerts. Typically,
these alerts are configured via code instead of using the Alerts tab UI, so we will skip
that page in our review. For more information, you can check the official Prometheus
documentation at https://prometheus.io/docs/alerting/latest/
overview/.

Let's move on to Grafana, where we can extend Prometheus powerful data tooling with
visualizations.

https://prometheus.io/docs/alerting/latest/overview/
https://prometheus.io/docs/alerting/latest/overview/

214 Observability on Kubernetes

Using Grafana
Grafana provides powerful tools for visualizing metrics, with many supported charting
types that can update in real time. We can connect Grafana to Prometheus in order to see
our cluster metrics charted on the Grafana UI.

To get started with Grafana, do the following:

1. We will end our current port forwarding (CTRL + C will do the trick) and set up
a new port forward listener to the Grafana UI:

Kubectl -n monitoring port-forward svc/grafana 3000:3000

2. Again, navigate to localhost:3000 to see the Grafana UI. You should be able to
log in with Username: admin and Password: admin, at which point you should be
able to change the initial password as shown in the following screenshot:

Figure 9.10 – Grafana Change Password screen

3. Upon login, you will see the following screen. Grafana does not come preconfigured
with any dashboards, but we can add them easily by clicking the + sign as shown in
the following screenshot:

Figure 9.11 – Grafana main page

Enhancing Kubernetes observability using the best of the ecosystem 215

4. Each Grafana dashboard includes one or more graphs for different sets of metrics.
To add a preconfigured dashboard (instead of creating one yourself), click the plus
sign (+) on the left-hand menu bar and click Import. You should see a page like the
following screenshot:

Figure 9.12 – Grafana Dashboard Import
We can add a dashboard via this page either using the JSON configuration or by
pasting in a public dashboard ID.

5. You can find public dashboards and their associated IDs at https://grafana.
com/grafana/dashboards/315. Dashboard #315 is a great starter dashboard
for Kubernetes – let's add it to the textbox labeled Grafana.com Dashboard and
click Load.

https://grafana.com/grafana/dashboards/315
https://grafana.com/grafana/dashboards/315

216 Observability on Kubernetes

6. Then, on the next page, select the Prometheus data source from the Prometheus
option dropdown, which is used to pick between multiple data sources if available.
Click Import, and the dashboard should be loaded, which will look like the
following screenshot:

Figure 9.13 – Grafana dashboard

This particular Grafana dashboard provides a good high-level overview of network,
memory, CPU, and filesystem utilization across the cluster, and it is broken down per Pod
and container. It is configured with real-time graphs for Network I/O pressure, Cluster
memory usage, Cluster CPU usage, and Cluster filesystem usage – though this last
option may not be enabled depending on how you have installed Prometheus.

Finally, let's look at the Alertmanager UI.

Enhancing Kubernetes observability using the best of the ecosystem 217

Using Alertmanager
Alertmanager is an open source solution for managing alerts generated from Prometheus
alerts. We installed Alertmanager previously as part of our stack – let's take a look at what
it can do:

1. First, let's port-forward the Alertmanager service using the following command:

Kubectl -n monitoring port-forward svc/alertmanager-main
3000:9093

2. As usual, navigate to localhost:3000 to see the UI as shown in the following
screenshot. It looks similar to the Prometheus UI:

Figure 9.14 – Alertmanager UI

Alertmanager works together with Prometheus alerts. You can use the Prometheus
server to specify alert rules, and then use Alertmanager to group similar alerts into single
notifications, perform deduplications, and create silences, which are essentially a way to
mute alerts if they match specific rules.

Next, we will review a popular logging stack for Kubernetes – Elasticsearch, FluentD, and
Kibana.

218 Observability on Kubernetes

Implementing the EFK stack on Kubernetes
Similar to the popular ELK stack (Elasticsearch, Logstash, and Kibana), the EFK stack
swaps out Logstash for the FluentD log forwarder, which is well supported on Kubernetes.
Implementing this stack is easy and allows us to get started with log aggregation and
search functionalities using purely open source tooling on Kubernetes.

Installing the EFK stack
There are many ways to install the EFK Stack on Kubernetes, but the Kubernetes GitHub
repository itself has some supported YAML, so let's just use that:

1. First, clone or download the Kubernetes repository using the following command:

git clone https://github.com/kubernetes/kubernetes

2. The manifests are located in the kubernetes/cluster/addons folder,
specifically under fluentd-elasticsearch:

cd kubernetes/cluster/addons

For a production workload, we would likely make some changes to these manifests
in order to properly customize the configuration for our cluster, but for the
purposes of this tutorial we will leave everything as default. Let's start the process of
bootstrapping our EFK stack.

3. First, let's create the Elasticsearch cluster itself. This runs as a StatefulSet on
Kubernetes, and also provides a Service. To create the cluster, we need to run two
kubectl commands:

kubectl apply -f ./fluentd-elasticsearch/es-statefulset.
yaml

kubectl apply -f ./fluentd-elasticsearch/es-service.yaml

Important note
A word of warning for the Elasticsearch StatefulSet – by default, the resource
request for each Pod is 3 GB of memory, so if none of your Nodes have that
available, you will not be able to deploy it as configured by default.

4. Next, let's deploy the FluentD logging agents. These will run as a DaemonSet – one
per Node – and forward logs from the Nodes to Elasticsearch. We also need to
create the ConfigMap YAML, which contains the base FluentD agent configuration.
This can be further customized to add things such as log filters and new sources.

Enhancing Kubernetes observability using the best of the ecosystem 219

5. To install the DaemonSet for the agents and their configuration, run the following
two kubectl commands:

kubectl apply -f ./fluentd-elasticsearch/fluentd-es-
configmap.yaml

kubectl apply -f ./fluentd-elasticsearch/fluentd-es-ds.
yaml

6. Now that we've created the ConfigMap and the FluentD DaemonSet, we can create
our Kibana application, which is a GUI for interacting with Elasticsearch. This piece
runs as a Deployment, with a Service. To deploy Kibana to our cluster, run the final
two kubectl commands:

kubectl apply -f ./fluentd-elasticsearch/kibana-
deployment.yaml

kubectl apply -f ./fluentd-elasticsearch/kibana-service.
yaml

7. Once everything has been initiated, which may take several minutes, we can access
the Kibana UI in the same way that we did Prometheus and Grafana. To check the
status of the resources we just created, we can run the following:

kubectl get po -A

8. Once all Pods for FluentD, Elasticsearch, and Kibana are in the Ready state, we can
move on. If any of your Pods are in the Error or CrashLoopBackoff stage, consult
the Kubernetes GitHub documentation in the addons folder for more information.

9. Once we've confirmed that our components are working properly, let's use the
port-forward command to access the Kibana UI. By the way, our EFK stack
pieces will live in the kube-system namespace – so our command needs to reflect
that. So, let's use the following command:

kubectl port-forward -n kube-system svc/kibana-logging
8080:5601

This command will start a port-forward to your local machine's port 8080
from the Kibana UI.

220 Observability on Kubernetes

10. Let's check out the Kibana UI at localhost:8080. It should look something like
the following, depending on your exact version and configuration:

Figure 9.15 – Basic Kibana UI
Kibana provides several different features for searching and visualizing logs,
metrics, and more. The most important section of the dashboard for our purposes is
Logging, since we are using Kibana solely as a log search UI in our example.

However, Kibana has many other functions, some of which are comparable
to Grafana. For instance, it includes a full visualization engine, application
performance monitoring (APM) capabilities, and Timelion, an expression engine
for time series data very similar to what is found in Prometheus's PromQL. Kibana's
metrics functionality is similar to Prometheus and Grafana.

11. In order to get Kibana working, we will first need to specify an index pattern. To
do this, click on the Visualize button, then click Add an Index Pattern. Select an
option from the list of patterns and choose the index with the current date on it,
then create the index pattern.

Enhancing Kubernetes observability using the best of the ecosystem 221

Now that we're set up, the Discover page will provide you with search functionality.
This uses the Apache Lucene query syntax (https://www.elastic.co/guide/
en/elasticsearch/reference/6.7/query-dsl-query-string-query.
html#query-string-syntax) and can handle everything from simple string
matching expressions to extremely complex queries. In the following screenshot, we are
doing a simple string match for the letter h:

Figure 9.16 – Discover UI

When Kibana cannot find any results, it gives you a handy set of possible solutions
including query examples, as you can see in Figure 9.13.

https://www.elastic.co/guide/en/elasticsearch/reference/6.7/query-dsl-query-string-query.html#query-string-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/query-dsl-query-string-query.html#query-string-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/query-dsl-query-string-query.html#query-string-syntax

222 Observability on Kubernetes

Now that you know how to create search queries, you can create visualizations from
queries on the Visualize page. These can be chosen from a selection of visualization types
including graphs, charts, and more, and then customized with specific queries as shown in
the following screenshot:

Figure 9.17 – New visualization

Next, these visualizations can be combined into dashboards. This works similarly to
Grafana where multiple visualizations can be added to a dashboard, which can then be
saved and reused.

Enhancing Kubernetes observability using the best of the ecosystem 223

You can also use the search bar to further filter your dashboard visualizations – pretty
nifty! The following screenshot shows how a dashboard can be tied to a specific query:

Figure 9.18 – Dashboard UI

As you can see, a dashboard can be created for a specific query using the Add button.

Next, Kibana provides a tool called Timelion, which is a time series visualization synthesis
tool. Essentially, it allows you to combine separate data sources into a single visualization.
Timelion is very powerful, but a full discussion of its feature set is outside the scope of this
book. The following screenshot shows the Timelion UI – you may notice some similarities
to Grafana, as these two sets of tools offer very similar capabilities:

Figure 9.19 – Timelion UI

224 Observability on Kubernetes

As you can see, in Timelion a query can be used to drive a real-time updating graph, just
like in Grafana.

Additionally, though less relevant to this book, Kibana provides APM functionality,
which requires some further setup, especially with Kubernetes. In this book we lean on
Prometheus for this type of information while using the EFK stack to search logs from our
applications.

Now that we've covered Prometheus and Grafana for metrics and alerting, and the EFK
stack for logging, only one piece of the observability puzzle is left. To solve this, we will
use another excellent piece of open source software – Jaeger.

Implementing distributed tracing with Jaeger
Jaeger is an open source distributed tracing solution compatible with Kubernetes. Jaeger
implements the OpenTracing specification, which is a set of standards for defining
distributed traces.

Jaeger exposes a UI for viewing traces and integrates with Prometheus. The official Jaeger
documentation can be found at https://www.jaegertracing.io/docs/. Always
check the docs for new information, since things may have changed since the publishing
of this book.

Installing Jaeger using the Jaeger Operator
To install Jaeger, we are going to use the Jaeger Operator, which is the first operator
that we've come across in this book. An operator in Kubernetes is simply a pattern for
creating custom application controllers that speak Kubernetes's language. This means that
instead of having to deploy all the various Kubernetes resources for an application, you
can deploy a single Pod (or usually, single Deployment) and that application will talk to
Kubernetes and spin up all the other required resources for you. It can even go further and
self-operate the application, making resource changes when necessary. Operators can be
highly complex, but they make it easier for us as end users to deploy commercial or open
source software on our Kubernetes clusters.

To get started with the Jaeger Operator, we need to create a few initial resources for Jaeger,
and then the operator will do the rest. A prerequisite for this installation of Jaeger is that
the nginx-ingress controller is installed on our cluster, since that is how we will
access the Jaeger UI.

First, we need to create a namespace for Jaeger to live in. We can get this via the kubectl
create namespace command:

kubectl create namespace observability

https://www.jaegertracing.io/docs/

Enhancing Kubernetes observability using the best of the ecosystem 225

Now that our namespace is created, we need to create some CRDs that Jaeger and the
operator will use. We will discuss CRDs in depth in our chapter on extending Kubernetes,
but for now, think of them as a way to co-opt the Kubernetes API to build custom
functionality for applications. Using the following steps, let's install Jaeger:

1. To create the Jaeger CRDs, run the following command:

kubectl create -f https://raw.githubusercontent.com/
jaegertracing/jaeger-operator/master/deploy/crds/
jaegertracing.io_jaegers_crd.yaml

With our CRDs created, the operator needs a few Roles and Bindings to be created
in order to do its work.

2. We want Jaeger to have cluster-wide permission in our cluster, so we will create
some optional ClusterRoles and ClusterRoleBindings as well. To accomplish this,
we run the following commands:

kubectl create -n observability -f https://raw.
githubusercontent.com/jaegertracing/jaeger-operator/
master/deploy/service_account.yaml

kubectl create -n observability -f https://raw.
githubusercontent.com/jaegertracing/jaeger-operator/
master/deploy/role.yaml

kubectl create -n observability -f https://raw.
githubusercontent.com/jaegertracing/jaeger-operator/
master/deploy/role_binding.yaml

kubectl create -f https://raw.githubusercontent.com/
jaegertracing/jaeger-operator/master/deploy/cluster_role.
yaml

kubectl create -f https://raw.githubusercontent.com/
jaegertracing/jaeger-operator/master/deploy/cluster_role_
binding.yaml

3. Now, we finally have all the pieces necessary for our operator to work. Let's install
the operator with one last kubectl command:

kubectl create -n observability -f https://raw.
githubusercontent.com/jaegertracing/jaeger-operator/
master/deploy/operator.yaml

4. Finally, check to see if the operator is running, using the following command:

kubectl get deploy -n observability

226 Observability on Kubernetes

If the operator is running correctly, you will see something similar to the following output,
with one available Pod for the deployment:

Figure 9.20 – Jaeger Operator Pod output

We now have our Jaeger Operator up and running – but Jaeger itself isn't running. Why
is this the case? Jaeger is a highly complex system and can run in different configurations,
and the operator makes it easier to deploy these configurations.

The Jaeger Operator uses a CRD called Jaeger to read a configuration for your Jaeger
instance, at which time the operator will deploy all the necessary Pods and other resources
on Kubernetes.

Jaeger can run in three main configurations: AllInOne, Production, and Streaming.
A full discussion of these configurations is outside the scope of this book (check the
Jaeger docs link shared previously), but we will be using the AllInOne configuration.
This configuration combines the Jaeger UI, Collector, Agent, and Ingestor into a single
Pod, without any persistent storage included. This is perfect for demo purposes – to see
production-ready configurations, check the Jaeger docs.

In order to create our Jaeger deployment, we need to tell the Jaeger Operator about our
chosen configuration. We do that using the CRD that we created earlier – the Jaeger CRD.
Create a new file for this CRD instance:

Jaeger-allinone.yaml

apiVersion: jaegertracing.io/v1

kind: Jaeger

metadata:

 name: all-in-one

 namespace: observability

spec:

 strategy: allInOne

We are just using a small subset of the possible Jaeger type configurations – again, check
the docs for the full story.

Now, we can create our Jaeger instance by running the following:

Kubectl apply -f jaeger-allinone.yaml

Enhancing Kubernetes observability using the best of the ecosystem 227

This command creates an instance of the Jaeger CRD we installed previously. At this point,
the Jaeger Operator should realize that the CRD has been created. In less than a minute,
our actual Jaeger Pod should be running. We can check for it by listing all the Pods in the
observability namespace, with the following command:

Kubectl get po -n observability

As an output, you should see the newly created Jaeger Pod for our all-in-one instance:

NAME READY STATUS RESTARTS AGE

all-in-one-12t6bc95sr-aog4s 1/1 Running 0 5m

The Jaeger Operator creates an Ingress record when we also have an Ingress controller
running on our cluster. This means that we can simply list our Ingress entries using
kubectl to see where to access the Jaeger UI.

You can list ingresses using this command:

Kubectl get ingress -n observability

The output should show your new Ingress for the Jaeger UI as shown:

Figure 9.21 – Jaeger UI Service output

228 Observability on Kubernetes

Now you can navigate to the address listed in your cluster's Ingress record to see the Jaeger
UI. It should look like the following:

Figure 9.22 – Jaeger UI

As you can see, the Jaeger UI is pretty simple. There are three tabs at the top –
Search, Compare, and System Architecture. We will focus on the Search tab, but
for more information about the other two, check the Jaeger docs at https://www.
jaegertracing.io.

The Jaeger Search page lets us search for traces based on many inputs. We can search
based on which Service is included in the trace, or based on tags, duration, or more.
However, right now there's nothing in our Jaeger system.

The reason for this is that even though we have Jaeger up and running, our apps still
need to be configured to send traces to Jaeger. This usually needs to be done at the code
or framework level and is out of the scope of this book. If you want to play around
with Jaeger's tracing capabilities, a sample app is available to install – see the Jaeger
docs page at https://www.jaegertracing.io/docs/1.18/getting-
started/#sample-app-hotrod.

https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io/docs/1.18/getting-started/#sample-app-hotrod
https://www.jaegertracing.io/docs/1.18/getting-started/#sample-app-hotrod

Enhancing Kubernetes observability using the best of the ecosystem 229

With services sending traces to Jaeger, it is possible to see traces. A trace in Jaeger looks
like the following. We've cropped out some of the later parts of the trace for readability,
but this should give you a good idea of what a trace can look like:

Figure 9.23 – Trace view in Jaeger

As you can see, the Jaeger UI view for a trace splits up service traces into constituent parts.
Each service-to-service call, as well as any specific calls within the services themselves,
have their own line in the trace. The horizontal bar chart you see moves from left to right
with time, and each individual call in the trace has its own line. In this trace, you can see
we have HTTP calls, SQL calls, as well as some Redis statements.

You should be able to see how Jaeger and tracing in general can help developers make
sense of a web of service-to-service calls and can help find bottlenecks.

With that review of Jaeger, we have a fully open source solution to every problem in the
observability bucket. However, that does not mean that there is no use case where
a commercial solution makes sense – in many cases it does.

Third-party tooling
In addition to many open source libraries, there are many commercially available products
for metrics, logging, and alerting on Kubernetes. Some of these can be much more
powerful than the open source options.

230 Observability on Kubernetes

Generally, most tooling in metrics and logging will require you to provision resources
on your cluster to forward metrics and logs to your service of choice. In the examples
we've used in this chapter, these services are running in the cluster, though in commercial
products these can often be separate SaaS applications where you log on to analyze your
logs and see your metrics. For instance, with the EFK stack we provisioned in this chapter,
you can pay Elastic for a hosted solution where the Elasticsearch and Kibana pieces of the
solution would be hosted on Elastic's infrastructure, reducing complexity in the solution.
There are also many other solutions in this space, from vendors including Sumo Logic,
Logz.io, New Relic, DataDog, and AppDynamics.

For a production environment, it is common to use separate compute (either a separate
cluster, service, or SaaS tool) to perform log and metric analytics. This ensures that the
cluster running your actual software can be dedicated to the application alone, and any
costly log searching or querying functionality can be handled separately. It also means that
if our application cluster goes down, we can still view logs and metrics up until the point
of the failure.

Summary
In this chapter, we learned about observability on Kubernetes. We first learned about the
four major tenets of observability: metrics, logging, traces, and alerts. Then we discovered
how Kubernetes itself provides tooling for observability, including how it manages logs
and resource metrics and how to deploy Kubernetes Dashboard. Finally, we learned how
to implement and use some key open source tools to provide visualization, searching,
and alerting for the four pillars. This knowledge will help you build robust observability
infrastructure for your future Kubernetes clusters and help you decide what is most
important to observe in your cluster.

In the next chapter, we will use what we learned about observability to help us
troubleshoot applications on Kubernetes.

Questions 231

Questions
1. Explain the difference between metrics and logs.

2. Why would you use Grafana instead of simply using the Prometheus UI?

3. When running an EFK stack in production (so as to keep as much compute off the
production app cluster as possible), which piece(s) of the stack would run on the
production app cluster? And which piece(s) would run off the cluster?

Further reading
• In-depth review of Kibana Timelion: https://www.elastic.co/guide/

en/kibana/7.10/timelion-tutorial-create-time-series-
visualizations.html

https://www.elastic.co/guide/en/kibana/7.10/timelion-tutorial-create-time-series-visualizations.html
https://www.elastic.co/guide/en/kibana/7.10/timelion-tutorial-create-time-series-visualizations.html
https://www.elastic.co/guide/en/kibana/7.10/timelion-tutorial-create-time-series-visualizations.html

10
Troubleshooting

Kubernetes
This chapter reviews the best-practice methods for effectively troubleshooting Kubernetes
clusters and the applications that run on them. This includes a discussion of common
Kubernetes issues, as well as how to debug the masters and workers separately. The
common Kubernetes issues will be discussed and taught in a case study format, split into
cluster issues and application issues.

We will start with a discussion of some common Kubernetes failure modes, before moving
on to how to best troubleshoot clusters and applications.

In this chapter, we will cover the following topics:

• Understanding failure modes for distributed applications

• Troubleshooting Kubernetes clusters

• Troubleshooting applications on Kubernetes

234 Troubleshooting Kubernetes

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl
tool.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter10.

Understanding failure modes for distributed
applications
Kubernetes components (and applications running on Kubernetes) are distributed by
default if they run more than one replica. This can result in some interesting failure
modes, which can be hard to debug.

For this reason, applications on Kubernetes are less prone to failure if they are stateless –
in which case, the state is offloaded to a cache or database running outside of Kubernetes.
Kubernetes primitives such as StatefulSets and PersistentVolumes can make it much easier
to run stateful applications on Kubernetes – and with every release, the experience of
running stateful applications on Kubernetes improves. Still, deciding to run fully stateful
applications on Kubernetes introduces complexity and therefore the potential for failure.

Failure in distributed applications can be introduced by many different factors. Things as
simple as network reliability and bandwidth constraints can cause major issues. These are
so varied that Peter Deutsch at Sun Microsystems helped pen the Fallacies of distributed
computing (along with James Gosling, who added the 8th point), which are commonly
agreed-upon factors for failures in distributed applications. In the paper Fallacies of
distributed computing explained, Arnon Rotem-Gal-Oz discusses the source of these
fallacies (https://www.rgoarchitects.com/Files/fallacies.pdf).

The fallacies are as follows, in numerical order:

1. The network is reliable.

2. Latency is zero.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter10
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter10
https://www.rgoarchitects.com/Files/fallacies.pdf

Understanding failure modes for distributed applications 235

3. Bandwidth is infinite.

4. The network is secure.

5. The topology doesn't change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

Kubernetes has been engineered and developed with these fallacies in mind and is
therefore more tolerant. It also helps address these issues for applications running on
Kubernetes – but not perfectly. It is therefore very possible that your applications, when
containerized and running on Kubernetes, will exhibit problems when faced with any of
these issues. Each fallacy, when assumed to be untrue and taken to its logical conclusion,
can introduce failure modes in distributed applications. Let's go through each of the
fallacies as applied to Kubernetes and applications running on Kubernetes.

The network is reliable
Applications running on multiple logical machines must communicate over the internet
– so any reliability problems in the network can introduce issues. On Kubernetes
specifically, the control plane itself can be distributed in a highly available setup
(which means a setup with multiple master Nodes – see Chapter 1, Communicating with
Kubernetes), which means that failure modes can be introduced at the controller level.
If the network is unreliable, then kubelets may not be able to communicate with the
control plane, leading to Pod placement issues.

Similarly, the Nodes of the control plane may not be able to communicate with each
other – though etcd is of course built with a consensus protocol that can tolerate
communication failures.

Finally, the worker Nodes may not be able to communicate with each other – which, in
a microservices scenario, could cause problems depending on Pod placement. In some
cases, the workers may all be able to communicate with the control plane while still not
being able to communicate with each other, which can cause issues with the Kubernetes
overlay network.

As with general unreliability, latency can also cause many of the same problems.

236 Troubleshooting Kubernetes

Latency is zero
If network latency is significant, many of the same failures as with network unreliability
will also apply. For instance, calls between kubelets and the control plane may fail, leading
to periods of inaccuracy in etcd because the control plane may not be able to contact the
kubelets – or properly update etcd. Similarly, requests could be lost between applications
running on worker Nodes that would otherwise work perfectly if the applications were
collocated on the same Node.

Bandwidth is infinite
Bandwidth limitations can expose similar issues as with the previous two fallacies.
Kubernetes does not currently have a fully supported method to place Pods based on
bandwidth subscription. This means that Nodes that are hitting their network bandwidth
limits can still have new Pods scheduled to them, causing increased failure rates and
latency issues for requests. There have been requests to add this as a core Kubernetes
scheduling feature (basically, a way to schedule on Node bandwidth consumption as with
CPU and memory), but for now, the solutions are mostly restricted to Container Network
Interface (CNI) plugins.

Important note
For instance, the CNI bandwidth plugin supports traffic shaping at the
Pod level – see https://kubernetes.io/docs/concepts/
extend-kubernetes/compute-storage-net/network-
plugins/#support-traffic-shaping.

Third-party Kubernetes networking implementations may also provide additional features
around bandwidth – and many are compatible with the CNI bandwidth plugin.

The network is secure
Network security has effects that reach far beyond Kubernetes – as any insecure network
is privy to a whole class of attacks. Attackers may be able to gain SSH access to the master
or worker Nodes in a Kubernetes cluster, which can cause significant breaches. Since so
much of Kubernetes' magic happens over the network rather than in a single machine,
access to the network is doubly problematic in an attack situation.

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-traffic-shaping
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-traffic-shaping
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-traffic-shaping

Understanding failure modes for distributed applications 237

The topology doesn't change
This fallacy is extra relevant in the context of Kubernetes, since not only can the meta
network topology change with new Nodes being added and removed – the overlay
network topology is also altered directly by the Kubernetes control plane and CNI.

For this reason, an application that is running in one logical location at one moment may
be running in a completely different spot in the network. For this reason, the use of Pod
IPs to identify logical applications is a bad idea – this is one of the purposes of the Service
abstraction (see Chapter 5, Service and Ingress – Communicating with the outside world).
Any application concerns that do not assume an indefinite topology (at least concerning
IPs) within the cluster may have issues. As an example, routing applications to a specific
Pod IP only works until something happens to that Pod. If that Pod shuts down, the
Deployment (for instance) controlling it will start a new Pod to replace it, but the IP will
be completely different. A cluster DNS (and by extension, Services) offers a much better
way to make requests between applications in a cluster, unless your application has the
capability to adjust on the fly to cluster changes such as Pod placements.

There is only one administrator
Multiple administrators and conflicting rules can cause issues in the base network,
and multiple Kubernetes administrators can cause further issues by changing resource
configurations such as Pod resource limits, leading to unintended behavior. Use of
Kubernetes Role-Based Access Control (RBAC) capabilities can help address this by
giving Kubernetes users only the permissions they need (read-only, for instance).

Transport cost is zero
There are two common ways this fallacy is interpreted. Firstly, that the latency cost of
transport is zero – which is obviously untrue, as the speed of data transfer over wires is
not infinite, and lower-level networking concerns add latency. This is essentially identical
to the effects stemming from the latency is zero fallacy.

Secondly, this statement can be interpreted to mean that the cost of creating and operating
a network for the purposes of transport is zero – as in zero dollars and zero cents. While
also being patently untrue (just look at your cloud provider's data transfer fees for proof of
this), this does not specifically correspond to application troubleshooting on Kubernetes,
so we will focus on the first interpretation.

238 Troubleshooting Kubernetes

The network is homogeneous
This final fallacy has less to do with Kubernetes' components, and more to do with
applications running on Kubernetes. However, the fact is that developers operating
in today's environment are well aware that application networking may have different
implementations across applications – from HTTP 1 and 2 to protocols such as gRPC.

Now that we've reviewed some major reasons for application failure on Kubernetes,
we can dive into the actual process of troubleshooting both Kubernetes and applications
that run on Kubernetes.

Troubleshooting Kubernetes clusters
Since Kubernetes is a distributed system that has been designed to tolerate failure where
applications are run, most (but not all) issues tend to be centered on the control plane
and API. A worker Node failing, in most scenarios, will just result in the Pods being
rescheduled to another Node – though compounding factors can introduce issues.

In order to walk through common Kubernetes cluster issue scenarios, we will use a case
study methodology. This should give you all the tools you need to investigate real-world
cluster issues. Our first case study is centered on the failure of the API server itself.

Important note
For the purposes of this tutorial, we will assume a self-managed cluster.
Managed Kubernetes services such as EKS, AKS, and GKE generally remove
some of the failure domains (by autoscaling and managing master Nodes, for
instance). A good rule is to check your managed service documentation first, as
any issues may be specific to the implementation.

Case study – Kubernetes Pod placement failure
Let's set the scene. Your cluster is up and running, but you are experiencing a problem
with Pod scheduling. Pods stay stuck in the Pending state indefinitely. Let's confirm this
with the command:

kubectl get pods

The output of the command is the following:

NAME READY STATUS RESTARTS
AGE

app-1-pod-2821252345-tj8ks 0/1 Pending 0

Troubleshooting Kubernetes clusters 239

2d

app-1-pod-2821252345-9fj2k 0/1 Pending 0
2d

app-1-pod-2821252345-06hdj 0/1 Pending 0
2d

As we can see, none of our Pods are running. Furthermore, we're running three replicas
of the application and none of them are getting scheduled. A great next step would be to
check the Node state and see if there are any issues there. Run the following command to
get the output:

kubectl get nodes

We get the following output:

 NAME STATUS ROLES AGE VERSION

 node-01 NotReady <none> 5m v1.15.6

This output gives us some good information – we only have one worker Node, and it isn't
available for scheduling. When a get command doesn't give us enough information to go
by, describe is usually a good next step.

Let's run kubectl describe node node-01 and check the conditions key.
We've dropped a column in order to fit everything neatly on the page, but the most
important columns are there:

Figure 10.1 – Describe Node Conditions output

What we have here is an interesting split: both MemoryPressure and DiskPressure
are fine, while the OutOfDisk and Ready conditions are unknown with the message
kubelet stopped posting node status. At a first glance this seems nonsensical
– how can MemoryPressure and DiskPressure be fine while the kubelet stopped
working?

The important part is in the LastTransitionTime column. The kubelet's most recent
memory- and disk-specific communication sent positive statuses. Then, at a later time, the
kubelet stopped posting its Node status, leading to Unknown statuses for the OutOfDisk
and Ready conditions.

240 Troubleshooting Kubernetes

At this point, we're certain that our Node is the problem – the kubelet is no longer sending
the Node status to the control plane. However, we don't know why this occurred. It could
be a network error, a problem with the machine itself, or something more specific.
We'll need to dig further to figure it out.

A good next step here is to get closer to our malfunctioning Node, as we can reasonably
assume that it is encountering some sort of issue. If you have access to the node-01 VM
or machine, now is a great time to SSH into it. Once we are in the machine, let's start
troubleshooting further.

First, let's check whether the Node can access the control plane over the network. If not,
this is an obvious reason why the kubelet wouldn't be able to post statuses. Let's assume
a scenario where our cluster control plane (for instance an on-premise load balancer) is
available at 10.231.0.1. In order to check whether our Node can access the Kubernetes
API server, we can ping the control plane as follows:

ping 10.231.0.1

Important note
In order to find the control plane IP or DNS, please check your cluster
configuration. In a managed Kubernetes service such as AWS Elastic
Kubernetes Service or Azure AKS, this will likely be available to view in the
console. If you bootstrapped your own cluster using kubeadm, for instance, this
is a value that you provided during the setup as part of the installation.

Let's check the results:

Reply from 10.231.0.1: bytes=1500 time=28ms TTL=54

Reply from 10.231.0.1: bytes=1500 time=26ms TTL=54

Reply from 10.231.0.1: bytes=1500 time=27ms TTL=54

That confirms it – our Node can indeed talk to the Kubernetes control plane. So, the
network isn't the issue. Next, let's check the actual kubelet service. The Node itself seems
to be operational, and the network is fine, so logically, the kubelet is the next thing
to check.

Kubernetes components run as system services on Linux Nodes.

Troubleshooting Kubernetes clusters 241

Important note
On Windows Nodes, the troubleshooting instructions will be slightly different
– see the Kubernetes documentation for more information (https://
kubernetes.io/docs/setup/production-environment/
windows/intro-windows-in-kubernetes/).

In order to find out the status of our kubelet service, we can run the following
command:

systemctl status kubelet -l

This gives us the following output:

 • kubelet.service - kubelet: The Kubernetes Node Agent

 Loaded: loaded (/lib/systemd/system/kubelet.service;
enabled)

 Drop-In: /etc/systemd/system/kubelet.service.d

 └─10-kubeadm.conf

 Active: activating (auto-restart) (Result: exit-code) since
Fri 2020-05-22 05:44:25 UTC; 3s ago

 Docs: http://kubernetes.io/docs/

 Process: 32315 ExecStart=/usr/bin/kubelet $KUBELET_
KUBECONFIG_ARGS $KUBELET_SYSTEM_PODS_ARGS $KUBELET_NETWORK_ARGS
$KUBELET_DNS_ARGS $KUBELET_AUTHZ_ARGS $KUBELET_CADVISOR_ARGS
$KUBELET_CERTIFICATE_ARGS $KUBELET_EXTRA_ARGS (code=exited,
status=1/FAILURE)

 Main PID: 32315 (code=exited, status=1/FAILURE)

Looks like our kubelet is currently not running – it exited with a failure. This explains
everything we've seen as far as cluster status and Pod issues.

To actually fix the issue, we can first try to restart the kubelet using the command:

systemctl start kubelet

Now, let's re-check the status of our kubelet with our status command:

 • kubelet.service - kubelet: The Kubernetes Node Agent

 Loaded: loaded (/lib/systemd/system/kubelet.service;
enabled)

 Drop-In: /etc/systemd/system/kubelet.service.d

 └─10-kubeadm.conf

https://kubernetes.io/docs/setup/production-environment/windows/intro-windows-in-kubernetes/
https://kubernetes.io/docs/setup/production-environment/windows/intro-windows-in-kubernetes/
https://kubernetes.io/docs/setup/production-environment/windows/intro-windows-in-kubernetes/

242 Troubleshooting Kubernetes

 Active: activating (auto-restart) (Result: exit-code) since
Fri 2020-05-22 06:13:48 UTC; 10s ago

 Docs: http://kubernetes.io/docs/

 Process: 32007 ExecStart=/usr/bin/kubelet $KUBELET_
KUBECONFIG_ARGS $KUBELET_SYSTEM_PODS_ARGS $KUBELET_NETWORK_ARGS
$KUBELET_DNS_ARGS $KUBELET_AUTHZ_ARGS $KUBELET_CADVISOR_ARGS
$KUBELET_CERTIFICATE_ARGS $KUBELET_EXTRA_ARGS (code=exited,
status=1/FAILURE)

 Main PID: 32007 (code=exited, status=1/FAILURE)

It looks like the kubelet failed again. We're going to need to source some additional
information about the failure mode in order to find out what happened.

Let's use the journalctl command to find out if there are any relevant logs:

sudo journalctl -u kubelet.service | grep "failed"

The output should show us logs of the kubelet service where a failure occurred:

May 22 04:19:16 nixos kubelet[1391]: F0522 04:19:16.83719
1287 server.go:262] failed to run Kubelet: Running with swap
on is not supported, please disable swap! or set --fail-
swap-on flag to false. /proc/swaps contained: [Filename
Type Size Used Priority /dev/sda1
partition 6198732 0 -1]

Looks like we've found the cause – Kubernetes does not support running on Linux
machines with swap set to on by default. Our only choices here are either disabling swap
or restarting the kubelet with the --fail-swap-on flag set to false.

In our case, we'll just change the swap setting by using the following command:

sudo swapoff -a

Now, restart the kubelet service:

sudo systemctl restart kubelet

Finally, let's check to see if our fix worked. Check the Nodes using the following
command:

kubectl get nodes

Troubleshooting applications on Kubernetes 243

This should show output similar to the following:

 NAME STATUS ROLES AGE VERSION

 node-01 Ready <none> 54m v1.15.6

Our Node is finally posting a Ready status!

Let's check on our Pod with the following command:

kubectl get pods

This should show output like this:

NAME READY STATUS RESTARTS
AGE

app-1-pod-2821252345-tj8ks 1/1 Running 0
1m

app-1-pod-2821252345-9fj2k 1/1 Running 0
1m

app-1-pod-2821252345-06hdj 1/1 Running 0
1m

Success! Our cluster is healthy, and our Pods are running.

Next, let's look at how to troubleshoot applications on Kubernetes once any cluster issues
are sorted out.

Troubleshooting applications on Kubernetes
A perfectly running Kubernetes cluster may still have application issues to debug.
These could be due to bugs in the application itself, or due to misconfigurations in the
Kubernetes resources that make up the application. As with troubleshooting the cluster,
we will dive into these concepts by using a case study.

Case study 1 – Service not responding
We're going to break this section down into troubleshooting at various levels of the
Kubernetes stack, starting with higher-level components, then ending with a deep dive
into Pod and container debugging.

Let's assume that we have configured our application app-1 to respond to requests via
a NodePort Service, on port 32688. The application listens on port 80.

244 Troubleshooting Kubernetes

We can try to access our application via a curl request on one of our Nodes. The
command will look as follows:

curl http://10.213.2.1:32688

The output of the curl command if it fails will look like the following:

curl: (7) Failed to connect to 10.231.2.1 port 32688:
Connection refused

At this point, our NodePort Service isn't routing requests to any Pod. Following our
typical debug path, let's first see which resources are running in the cluster with the
following command:

kubectl get services

Add the -o wide flag to see additional information. Next, run the following command:

kubectl get services -o wide

This gives us the following output:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

app-1-svc NodePort 10.101.212.57 <none> 80:32688/TCP 3m01s
app=app-1

It is clear that our Service exists with a proper Node port – but our requests are not being
routed to the Pods, as is obvious from the failed curl command.

To see which routes our Service has set up, let's use the get endpoints command. This
will list the Pod IPs, if any, for the Service as configured:

kubectl get endpoints app-1-svc

Let's check the resulting output of the command:

NAME ENDPOINTS

app-1-svc <none>

Well, something is definitely wrong here.

Our Service isn't pointing to any Pods. This likely means that there aren't any Pods
matching our Service selector available. This could be because there are no Pods available
at all – or because those Pods don't properly match the Service selector.

Troubleshooting applications on Kubernetes 245

To check on our Service selector, let's take the next step in the debug path and use the
describe command as follows:

kubectl describe service app-1-svc

This gives us an output like the following:

Name: app-1-svc

Namespace: default

Labels: app=app-11

Annotations: <none>

Selector: app=app-11

Type: NodePort

IP: 10.57.0.15

Port: <unset> 80/TCP

TargetPort: 80/TCP

NodePort: <unset> 32688/TCP

Endpoints: <none>

Session Affinity: None

Events: <none>

As you can see, our Service is configured to talk to the correct port on our application.
However, the selector is looking for Pods that match the label app = app-11. Since
we know our application is named app-1, this could be the cause of our issue.

Let's edit our Service to look for the correct Pod label, app-1, running another
describe command to be sure:

kubectl describe service app-1-svc

This gives the following output:

Name: app-1-svc

Namespace: default

Labels: app=app-1

Annotations: <none>

Selector: app=app-1

Type: NodePort

IP: 10.57.0.15

Port: <unset> 80/TCP

246 Troubleshooting Kubernetes

TargetPort: 80/TCP

NodePort: <unset> 32688/TCP

Endpoints: <none>

Session Affinity: None

Events: <none>

Now, you can see in the output that our Service is looking for the proper Pod selector, but
we still do not have any endpoints. Let's check to see what is going on with our Pods by
using the following command:

kubectl get pods

This shows the following output:

NAME READY STATUS RESTARTS
AGE

app-1-pod-2821252345-tj8ks 0/1 Pending 0
-

app-1-pod-2821252345-9fj2k 0/1 Pending 0
-

app-1-pod-2821252345-06hdj 0/1 Pending 0
-

Our Pods are still waiting to be scheduled. This explains why, even with the proper
selector, our Service isn't functioning. To get some granularity on why our Pods aren't
being scheduled, let's use the describe command:

kubectl describe pod app-1-pod-2821252345-tj8ks

The following is the output. Let's focus on the Events section:

Figure 10.2 – Describe Pod Events output

From the Events section, it looks like our Pod is failing to be scheduled due to container
image pull failure. There are many possible reasons for this – our cluster may not have the
necessary authentication mechanisms to pull from a private repository, for instance – but
that would present a different error message.

Troubleshooting applications on Kubernetes 247

From the context and the Events output, we can probably assume that the issue is that
our Pod definition is looking for a container named myappimage:lates instead of
myappimage:latest.

Let's update our Deployment spec with the proper image name and roll out the update.

Use the following command to get confirmation:

kubectl get pods

The output looks like this:

NAME READY STATUS RESTARTS
AGE

app-1-pod-2821252345-152sf 1/1 Running 0
1m

app-1-pod-2821252345-9gg9s 1/1 Running 0
1m

app-1-pod-2821252345-pfo92 1/1 Running 0
1m

Our Pods are now running – let's check to see that our Service has registered the proper
endpoints. Use the following command to do this:

kubectl describe services app-1-svc

The output should look like this:

Name: app-1-svc

Namespace: default

Labels: app=app-1

Annotations: <none>

Selector: app=app-1

Type: NodePort

IP: 10.57.0.15

Port: <unset> 80/TCP

TargetPort: 80/TCP

NodePort: <unset> 32688/TCP

Endpoints: 10.214.1.3:80,10.214.2.3:80,10.214.4.2
:80

Session Affinity: None

Events: <none>

248 Troubleshooting Kubernetes

Success! Our Service is properly pointing to our application Pods.

In the next case study, we'll dig a bit deeper by troubleshooting a Pod with incorrect
startup parameters.

Case study 2 – Incorrect Pod startup command
Let's assume we have our Service properly configured and our Pods running and passing
health checks. However, our Pod is not responding to requests as we would expect. We are
sure that this is less of a Kubernetes problem and more of an application or configuration
problem.

Our application container works as follows: it takes a startup command with a flag for
color and combines it with a variable for version number based on the container's
image tag, and echoes that back to the requester. We are expecting our application to
return green 3.

Thankfully, Kubernetes gives us some good tools to debug applications, which we can use
to delve into our specific containers.

First, let's curl the application to see what response we get:

curl http://10.231.2.1:32688

red 2

We expected green 3 but got red 2, so it looks like something is wrong with the input,
and the version number variable. Let's start with the former.

As usual, we begin with checking our Pods with the following command:

kubectl get pods

The output should look like the following:

NAME READY STATUS RESTARTS
AGE

app-1-pod-2821252345-152sf 1/1 Running 0
5m

app-1-pod-2821252345-9gg9s 1/1 Running 0
5m

app-1-pod-2821252345-pfo92 1/1 Running 0
5m

Troubleshooting applications on Kubernetes 249

Everything looks good in this output. It seems that our app is running as part of
a Deployment (and therefore, a ReplicaSet) – we can make sure by running the following
command:

kubectl get deployments

The output should look like the following:

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

app-1-pod 3 3 3 3 5m

Let's look a bit closer at our Deployment to see how our Pods are configured using the
following command:

kubectl describe deployment app-1-pod -o yaml

The output looks like the following:

Broken-deployment-output.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: app-1-pod

spec:

 selector:

 matchLabels:

 app: app-1

 replicas: 3

 template:

 metadata:

 labels:

 app: app-1

 spec:

 containers:

 - name: app-1

 image: mycustomrepository/app-1:2

 command: ["start", "-color", "red"]

 ports:

 - containerPort: 80

250 Troubleshooting Kubernetes

Let's see if we can fix our issue, which is really quite simple. We're using the wrong version
of our application, and our startup command is wrong. In this case, let's assume we don't
have a file with our Deployment spec – so let's just edit it in place.

Let's use kubectl edit deployment app-1-pod, and edit the Pod spec to the
following:

fixed-deployment-output.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: app-1-pod

spec:

 selector:

 matchLabels:

 app: app-1

 replicas: 3

 template:

 metadata:

 labels:

 app: app-1

 spec:

 containers:

 - name: app-1

 image: mycustomrepository/app-1:3

 command: ["start", "-color", "green"]

 ports:

 - containerPort: 80

Once the Deployment is saved, you should start seeing your new Pods come up.
Let's double-check by using the following command:

 kubectl get pods

The output should look like the following:

NAME READY STATUS RESTARTS
AGE

app-1-pod-2821252345-f928a 1/1 Running 0

Troubleshooting applications on Kubernetes 251

1m

app-1-pod-2821252345-jjsa8 1/1 Running 0
1m

app-1-pod-2821252345-92jhd 1/1 Running 0
1m

And finally – let's make a curl request to check that everything is working:

curl http://10.231.2.1:32688

The output of the command is as follows:

green 3

Success!

Case study 3 – Pod application malfunction with logs
After spending the previous chapter, Chapter 9, Observability on Kubernetes,
implementing observability to our applications, let's take a look at a case where those
tools can really come in handy. We will use manual kubectl commands for the purposes
of this case study – but know that by aggregating logs (for instance, in our EFK stack
implementation), we could make the process of debugging this application significantly
easier.

In this case study, we once again have a deployment of Pods – to check it, let's run the
following command:

kubectl get pods

The output of the command is as follows:

NAME READY STATUS RESTARTS AGE

app-2-ss-0 1/1 Running 0 10m

app-2-ss-1 1/1 Running 0 10m

app-2-ss-2 1/1 Running 0 10m

It looks like, in this case, we are working with a StatefulSet instead of a Deployment –
a key characteristic here is the incrementing Pod IDs starting from 0.

We can confirm this by checking for StatefulSets using the following command:

kubectl get statefulset

252 Troubleshooting Kubernetes

The output of the command is as follows:

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

app-2-ss 3 3 3 3 10m

Let's take a closer look at our StatefulSet with kubectl get statefulset -o yaml
app-2-ss. By using the get command along with -o yaml we can get our describe
output in the same format as the typical Kubernetes resource YAML.

The output of the preceding command is as follows. We've removed the Pod spec section
to keep it shorter:

statefulset-output.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: app-2-ss

spec:

 selector:

 matchLabels:

 app: app-2

 replicas: 3

 template:

 metadata:

 labels:

 app: app-2

We know that our app is using a service. Let's see which one it is!

Run kubectl get services -o wide. The output should be something like the
following:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

app-2-svc NodePort 10.100.213.13 <none> 80:32714/TCP 3m01s
app=app-2

It's clear that our service is called app-2-svc. Let's see our exact service definition using
the following command:

kubectl describe services app-2-svc

Troubleshooting applications on Kubernetes 253

The output is as follows:

Name: app-2-svc

Namespace: default

Labels: app=app-2

Annotations: <none>

Selector: app=app-2

Type: NodePort

IP: 10.57.0.12

Port: <unset> 80/TCP

TargetPort: 80/TCP

NodePort: <unset> 32714/TCP

Endpoints: 10.214.1.1:80,10.214.2.3:80,10.214.4.4
:80

Session Affinity: None

Events: <none>

To see exactly what our application is returning for a given input, we can use curl on our
NodePort Service:

> curl http://10.231.2.1:32714?equation=1plus1

3

Based on our existing knowledge of the application, we would assume that this call should
return 2, not 3. The application developer on our team has asked us to investigate any
logging output that would help them figure out what the issue is.

We know from previous chapters that you can investigate the logging output with
kubectl logs <pod name>. In our case, we have three replicas of our application,
so we may not be able to find our logs in a single iteration of this command. Let's pick
a Pod at random and see if it was the one that served our request:

> kubectl logs app-2-ss-1

>

It looks like this was not the Pod that served our request, as our application developer
has told us that the application definitely logs to stdout when a GET request is made
to the server.

254 Troubleshooting Kubernetes

Instead of checking through the other two Pods individually, we can use a joint command
to get logs from all three Pods. The command will be as follows:

> kubectl logs statefulset/app-2-ss

And the output is as follows:

> Input = 1plus1

> Operator = plus

> First Number = 1

> Second Number = 2

That did the trick – and what's more, we can see some good insight into our issue.

Everything seems as we would expect, other than the log line reading Second Number.
Our request clearly used 1plus1 as the query string, which would make both the first
number and the second number (split by the operator value) equal to one.

This will take some additional digging. We could triage this issue by sending additional
requests and checking the output in order to guess what is happening, but in this case it
may be better to just get bash access to the Pod and figure out what is going on.

First, let's check our Pod spec, which was removed from the preceding StatefulSet YAML.
To see the full StatefulSet spec, check the GitHub repository:

Statefulset-output.yaml

spec:

 containers:

 - name: app-2

 image: mycustomrepository/app-2:latest

 volumeMounts:

 - name: scratch

 mountPath: /scratch

 - name: sidecar

 image: mycustomrepository/tracing-sidecar

 volumes:

 - name: scratch-volume

 emptyDir: {}

Troubleshooting applications on Kubernetes 255

It looks like our Pod is mounting an empty volume as a scratch disk. It also has two
containers in each Pod – a sidecar used for application tracing, and our app itself.
We'll need this information to ssh into one of the Pods (it doesn't matter which one
for this exercise) using the kubectl exec command.

We can do it using the following command:

kubectl exec -it app-2-ss-1 app2 -- sh.

This command should give you a bash terminal as the output:

> kubectl exec -it app-2-ss-1 app2 -- sh

Now, using the terminal we just created, we should be able to investigate our application
code. For the purposes of this tutorial, we are using a highly simplified Node.js
application.

Let's check our Pod filesystem to see what we're working with using the following
command:

ls

app.js calculate.js scratch

Looks like we have two JavaScript files, and our previously mentioned scratch folder.
It's probably a good bet to assume that app.js contains the logic for bootstrapping and
serving the application, and calculate.js contains our controller code for doing the
calculations.

We can confirm by printing the contents of the calculate.js file:

Broken-calculate.js

cat calculate.js

export const calculate(first, second, operator)

{

 second++;

 if(operator === "plus")

 {

 return first + second;

 }

}

256 Troubleshooting Kubernetes

Even with little to no knowledge of JavaScript, it's pretty obvious what the issue is here.
The code is incrementing the second variable before performing the calculation.

Since we're inside of the Pod, and we're using a non-compiled language, we can actually
edit this file inline! Let's use vi (or any text editor) to correct this file:

vi calculate.js

And edit the file to read as follows:

fixed-calculate.js

export const calculate(first, second, operator)

{

 if(operator === "plus")

 {

 return first + second;

 }

}

Now, our code should run properly. It's important to state that this fix is only temporary.
As soon as our Pod shuts down or gets replaced by another Pod, it will revert to the code
that was originally included in the container image. However, this pattern does allow us to
try out quick fixes.

After exiting the exec session using the exit bash command, let's try our URL again:

> curl http://10.231.2.1:32714?equation=1plus1

2

As you can see, our hotfixed container shows the right result! Now, we can update our
code and Docker image in a more permanent way with our fix. Using exec is a great way
to troubleshoot and debug running containers.

Summary 257

Summary
In this chapter, we learned about troubleshooting applications on Kubernetes. First,
we covered some common failure modes of distributed applications. Then, we learned
how to triage issues with Kubernetes components. Finally, we reviewed several scenarios
where Kubernetes configuration and application debugging were performed. The
Kubernetes debugging and troubleshooting techniques you learned in this chapter will
help you when triaging issues with any Kubernetes clusters and applications you may
work on.

In the next chapter, Chapter 11, Template Code Generation and CI/CD on Kubernetes,
we will look into some ecosystem extensions for templating Kubernetes resource
manifests and continuous integration/continuous deployment with Kubernetes.

Questions
1. How does the distributed systems fallacy, "the topology doesn't change," apply to

applications on Kubernetes?

2. How are the Kubernetes control plane components (and kubelet) implemented at
the OS level?

3. How would you go about debugging an issue where Pods are stuck in the Pending
status? What would be your first step? And your second?

Further reading
• The CNI plugin for traffic shaping: https://kubernetes.io/docs/

concepts/extend-kubernetes/compute-storage-net/network-
plugins/#support-traffic-shaping

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-traffic-shaping
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-traffic-shaping
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#support-traffic-shaping

11
Template Code

Generation and CI/
CD on Kubernetes

This chapter discusses some easier ways to template and configure large Kubernetes
deployments with many resources. It also details a number of methods for implementing
Continuous Integration/Continuous Deployment (CI/CD) on Kubernetes, as well
as the pros and cons associated with each possible method. Specifically, we talk about
in-cluster CI/CD, where some or all of the CI/CD steps are performed in our Kubernetes
cluster, and out-of-cluster CI/CD, where all the steps take place outside our cluster.

The case study in this chapter will include creating a Helm chart from scratch, along with
an explanation of each piece of a Helm chart and how it works.

To begin, we will cover the landscape of Kubernetes resource template generation, and
the reasons why a template generation tool should be used at all. Then, we will cover
implementing CI/CD to Kubernetes, first with AWS CodeBuild, and next with FluxCD.

In this chapter, we will cover the following topics:

• Understanding options for template code generation on Kubernetes

• Implementing templates on Kubernetes with Helm and Kustomize

260 Template Code Generation and CI/CD on Kubernetes

• Understanding CI/CD paradigms on Kubernetes – in-cluster and out-of-cluster

• Implementing in-cluster and out-of-cluster CI/CD with Kubernetes

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster. Refer
to Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl tool.
Additionally, you will need a machine that supports the Helm CLI tool, which typically
has the same prerequisites as kubectl – for details, check out the Helm documentation at
https://helm.sh/docs/intro/install/.

The code used in this chapter can be found in the book's GitHub repository at

https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter11.

Understanding options for template code
generation on Kubernetes
As discussed in Chapter 1, Communicating with Kubernetes, one of the greatest strengths
of Kubernetes is that its API can communicate in terms of declarative resource files. This
allows us to run commands such as kubectl apply and have the control plane ensure
that whatever resources are running in the cluster match our YAML or JSON file.

However, this capability introduces some unwieldiness. Since we want to have all our
workloads declared in configuration files, any large or complex applications, especially if
they include many microservices, could result in a large number of configuration files to
write and maintain.

This issue is further compounded with multiple environments. Say we want development,
staging, UAT, and production environments, this would require four separate YAML
files per Kubernetes resource, assuming we wanted to maintain one resource per file for
cleanliness.

https://helm.sh/docs/intro/install/
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter11
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter11

Understanding options for template code generation on Kubernetes 261

One way to fix these issues is to work with templating systems that support variables,
allowing a single template file to work for multiple applications or multiple environments
by injecting different sets of variables.

There are several popular community-supported open source options for this purpose.
In this book, we will focus on two of the most popular ones:

• Helm

• Kustomize

There are many other options available, including Kapitan, Ksonnet, Jsonnet, and more,
but a full review of all of them is not within the scope of this book. Let's start by reviewing
Helm, which is, in many ways, the most popular templating tool.

Helm
Helm actually plays double duty as a templating/code generation tool and a CI/CD tool.
It allows you to create YAML-based templates that can be hydrated with variables,
allowing for code and template reuse across applications and environments. It also
comes with a Helm CLI tool to roll out changes to applications based on the templates
themselves.

For this reason, you are likely to see Helm all over the Kubernetes ecosystem as the default
way to install tools or applications. We'll be using Helm for both of its purposes in this
chapter.

Now, let's move on to Kustomize, which is quite different to Helm.

Kustomize
Unlike Helm, Kustomize is officially supported by the Kubernetes project, and support is
integrated directly into kubectl. Unlike Helm, Kustomize operates using vanilla YAML
without variables, and instead recommends a fork and patch workflow where sections of
YAML are replaced with new YAML depending on the patch chosen.

Now that we have a basic understanding of how the tools differ, we can use them in
practice.

262 Template Code Generation and CI/CD on Kubernetes

Implementing templates on Kubernetes with
Helm and Kustomize
Now that we know our options, we can implement each of them with an example
application. This will allow us to understand the specifics of how each tool handles
variables and the process of templating. Let's start with Helm.

Using Helm with Kubernetes
As mentioned previously, Helm is an open source project that makes it easy to template
and deploy applications on Kubernetes. For the purposes of this book, we will be focused
on the newest version (as of the time of writing), Helm V3. A previous version, Helm V2,
had more moving parts, including a controller, called Tiller, that would run on the cluster.
Helm V3 is simplified and only contains the Helm CLI tool. It does, however, use custom
resource definitions on the cluster to track releases, as we will see shortly.

Let's start by installing Helm.

Installing Helm
If you want to use a specific version of Helm, you can install it by following the specific
version docs at https://helm.sh/docs/intro/install/. For our use case, we
will simply use the get helm script, which will install the newest version.

You can fetch and run the script as follows:

curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/
helm/helm/master/scripts/get-helm-3

chmod 700 get_helm.sh

./get_helm.sh

Now, we should be able to run helm commands. By default, Helm will automatically
use your existing kubeconfig cluster and context, so in order to switch clusters for
Helm, you just need to use kubectl to change your kubeconfig file, as you would
normally do.

To install an application using Helm, run the helm install command. But how does
Helm decide what and how to install? We'll need to discuss the concepts of Helm charts,
Helm repositories, and Helm releases.

https://helm.sh/docs/intro/install/

Implementing templates on Kubernetes with Helm and Kustomize 263

Helm charts, repositories, and releases
Helm provides a way to template and deploy applications on Kubernetes with variables. In
order to do this, we specify workloads via a set of templates, which is called a Helm chart.

A Helm chart consists of one or more templates, some chart metadata, and a values file
that fills in the template variables with final values. In practice, you would then have one
values file per environment (or app, if you are reusing your template for multiple apps),
which would hydrate the shared template with a new configuration. This combination of
template and values would then be used to install or deploy an application to your cluster.

So, where can you store Helm charts? You can put them in a Git repository as you would
with any other Kubernetes YAML (which works for most use cases), but Helm also
supports the concept of repositories. A Helm repository is represented by a URL and
can contain multiple Helm charts. For instance, Helm has its own official repository at
https://hub.helm.sh/charts. Again, each Helm chart consists of a folder with a
metadata file, a Chart.yaml file, one or more template files, and optionally a values file.

In order to install a local Helm chart with a local values file, you can pass a path for each
to helm install, as shown in the following command:

helm install -f values.yaml /path/to/chart/root

However, for commonly installed charts, you can also install the chart directly from
a chart repository, and you can optionally add a custom repository to your local Helm in
order to be able to install charts easily from non-official sources.

For instance, in order to install Drupal via the official Helm chart, you can run the
following command:

helm install -f values.yaml stable/drupal

This code installs charts out of the official Helm chart repository. To use a custom
repository, you just need to add it to Helm first. For instance, to install cert-manager,
which is hosted on the jetstack Helm repository, we can do the following:

helm repo add jetstack https://charts.jetstack.io

helm install certmanager --namespace cert-manager jetstack/
cert-manager

This code adds the jetstack Helm repository to your local Helm CLI tool, and then
installs cert-manager via the charts hosted there. We also name the release as cert-
manager. A Helm release is a concept implemented using Kubernetes secrets in Helm
V3. When we create a Release in Helm, it will be stored as a secret in the same namespace.

https://hub.helm.sh/charts

264 Template Code Generation and CI/CD on Kubernetes

To illustrate this, we can create a Helm release using the preceding install command.
Let's do it now:

helm install certmanager --namespace cert-manager jetstack/
cert-manager

This command should result in the following output, which may be slightly different
depending on the current version of Cert Manager. We'll split the output into two sections
for readability.

First, the output of the command gives us a status of the Helm release:

NAME: certmanager

LAST DEPLOYED: Sun May 23 19:07:04 2020

NAMESPACE: cert-manager

STATUS: deployed

REVISION: 1

TEST SUITE: None

As you can see, this section contains a timestamp for the deployment, namespace
information, a revision, and a status. Next, we'll see the notes section of the output:

NOTES:

cert-manager has been deployed successfully!

In order to begin issuing certificates, you will need to set up
a ClusterIssuer

or Issuer resource (for example, by creating a 'letsencrypt-
staging' issuer).

More information on the different types of issuers and how to
configure them

can be found in our documentation:

https://cert-manager.io/docs/configuration/

For information on how to configure cert-manager to
automatically provision

Certificates for Ingress resources, take a look at the
`ingress-shim`

Implementing templates on Kubernetes with Helm and Kustomize 265

documentation:

https://cert-manager.io/docs/usage/ingress/

As you can see, our Helm install command has resulted in a success message, which
also gives us some information from cert-manager about how to use it. This output
can be helpful to look at when installing Helm packages, as they sometimes include
documentation such as the previous snippet. Now, to see how our release object looks in
Kubernetes, we can run the following command:

Kubectl get secret -n cert-manager

This results in the following output:

Figure 11.1 – Secrets List output from kubectl

As you can see, one of the secrets has its type as helm.sh/release.v1. This is the
secret that Helm is using to track the Cert Manager release.

Finally, to see the release listed in the Helm CLI, we can run the following command:

helm ls -A

This command will list Helm releases in all namespaces (just like kubectl get pods
-A would list pods in all namespaces). The output will be as follows:

Figure 11.2 – Helm Release List output

Now, Helm has more moving parts, including upgrades, rollbacks and more, and
we'll review these in the next section. In order to show off what Helm can do, we will
create and install a chart from scratch.

266 Template Code Generation and CI/CD on Kubernetes

Creating a Helm chart
So, we want to create a Helm chart for our application. Let's set the stage. Our goal is to
deploy a simple Node.js application easily to multiple environments. To this end, we will
create a chart with the component pieces of our application, and then combine it with
three separate values files (dev, staging, and production) in order to deploy our
application to our three environments.

Let's start with the folder structure of our Helm chart. As we mentioned previously,
a Helm chart consists of templates, a metadata file, and optional values. We're going to
inject the values when we actually install our chart, but we can structure our folder
like this:

Chart.yaml

charts/

templates/

dev-values.yaml

staging-values.yaml

production-values.yaml

One thing we haven't yet mentioned is that you can actually have a folder of Helm charts
inside an existing chart! These subcharts can make it easy to split up complex applications
into components. For the purpose of this book, we will not be using subcharts, but if
your application is getting too complex or modular for a singular chart, this is a valuable
feature.

Also, you can see that we have a different environment file for each environment, which
we will use during our installation command.

So, what does a Chart.yaml file look like? This file will contain some basic metadata
about your chart, and typically looks something like this as a minimum:

apiVersion: v2

name: mynodeapp

version: 1.0.0

The Chart.yaml file supports many optional fields, which you can see at https://
helm.sh/docs/topics/charts/, but for the purposes of this tutorial, we will keep
it simple. The mandatory fields are apiVersion, name, and version.

https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/

Implementing templates on Kubernetes with Helm and Kustomize 267

In our Chart.yaml file, apiVersion corresponds to the version of Helm that the
chart corresponds to. Somewhat confusingly, the current release of Helm, Helm V3,
uses apiVersion v2, while older versions of Helm, including Helm V2, also use
apiVersion v2.

Next, the name field corresponds to the name of our chart. This is pretty self-explanatory,
although remember that we have the ability to name a specific release of a chart –
something that comes in handy for multiple environments.

Finally, we have the version field, which corresponds to the version of the chart. This
field supports SemVer (semantic versioning).

So, what do our templates actually look like? Helm charts use the Go templates library
under the hood (see https://golang.org/pkg/text/template/ for more
information) and support all sorts of powerful manipulations, helper functions, and
much, much more. For now, we will keep things extremely simple to give you an idea of
the basics. A full discussion of Helm chart creation could be a book on its own!

To start, we can use a Helm CLI command to autogenerate our Chart folder, with all the
previous files and folders, minus subcharts and values files, generated for you. Let's try it –
first create a new Helm chart with the following command:

helm create myfakenodeapp

This command will create an autogenerated chart in a folder named myfakenodeapp.
Let's check the contents of our templates folder with the following command:

Ls myfakenodeapp/templates

This command will result in the following output:

helpers.tpl

deployment.yaml

NOTES.txt

service.yaml

This autogenerated chart can help a lot as a starting point, but for the purposes of this
tutorial, we will make these from scratch.

Create a new folder called mynodeapp and put the Chart.yaml file we showed you
earlier in it. Then, create a folder inside called templates.

https://golang.org/pkg/text/template/

268 Template Code Generation and CI/CD on Kubernetes

One thing to keep in mind: a Kubernetes resource YAML is, by itself, a valid Helm
template. There is no requirement to use any variables in your templates. You can just
write regular YAML, and Helm installs will still work.

To show this, let's get started by adding a single template file to our templates folder. Call it
deployment.yaml and include the following non-variable YAML:

deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-myapp

 labels:

 app: frontend-myapp

spec:

 replicas: 2

 selector:

 matchLabels:

 app: frontend-myapp

 template:

 metadata:

 labels:

 app: frontend-myapp

 spec:

 containers:

 - name: frontend-myapp

 image: myrepo/myapp:1.0.0

 ports:

 - containerPort: 80

As you can see, this YAML is just a regular Kubernetes resource YAML. We aren't using
any variables in our template.

Now, we have enough to actually install our chart. Let's do that next.

Implementing templates on Kubernetes with Helm and Kustomize 269

Installing and uninstalling a Helm chart
To install a chart with Helm V3, you run a helm install command from the root
directory of the chart:

helm install myapp .

This installation command creates a Helm release called frontend-app and installs our
chart. Right now, our chart only consists of a single deployment with two pods, and we
should be able to see it running in our cluster with the following command:

kubectl get deployment

This should result in the following output:

NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE

default frontend-myapp 2/2 2 2 2m

As you can see from the output, our Helm install command has successfully created
a deployment object in Kubernetes.

Uninstalling our chart is just as easy. We can install all the Kubernetes resources installed
via our chart by running the following command:

helm uninstall myapp

This uninstall command (delete in Helm V2) just takes the name of our Helm
release.

Now, so far, we have not used any of the real power of Helm – we've been using it as
a kubectl alternative without any added features. Let's change this by implementing
some variables in our chart.

Using template variables
Adding variables to our Helm chart templates is as simple as using double bracket – {{
}} – syntax. What we put in the double brackets will be taken directly from the values
that we use when installing our chart using dot notation.

Let's look at a quick example. So far, we have our app name (and container image name/
version) hardcoded into our YAML file. This constrains us significantly if we want to use
our Helm chart to deploy different applications or different application versions.

270 Template Code Generation and CI/CD on Kubernetes

In order to address this, we're going to add template variables to our chart. Take a look at
this resulting template:

Templated-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-{{ .Release.Name }}

 labels:

 app: frontend-{{ .Release.Name }}

 chartVersion: {{ .Chart.version }}

spec:

 replicas: 2

 selector:

 matchLabels:

 app: frontend-{{ .Release.Name }}

 template:

 metadata:

 labels:

 app: frontend-{{ .Release.Name }}

 spec:

 containers:

 - name: frontend-{{ .Release.Name }}

 image: myrepo/{{ .Values.image.name }}

:{{ .Values.image.tag }}

 ports:

 - containerPort: 80

Let's go over this YAML file and review our variables. We're using a few different types of
variables in this file, but they all use the same dot notation.

Helm actually supports a few different top-level objects. These are the main objects
you can reference in your templates:

• .Chart: Used to reference metadata values in the Chart.yaml file

• .Values: Used to reference values passed into the chart from a values file at
install time

Implementing templates on Kubernetes with Helm and Kustomize 271

• .Template: Used to reference some info about the current template file

• .Release: Used to reference information about the Helm release

• .Files: Used to reference files in the chart that are not YAML templates
(for instance, config files)

• .Capabilities: Used to reference information about the target Kubernetes
cluster (in other words, version)

In our YAML file, we're using several of these. Firstly, we're referencing the name of our
release (contained within the .Release object) in several places. Next, we are leveraging
the Chart object to inject metadata into the chartVersion key. Finally, we are using
the Values object to reference both the container image name and tag.

Now, the last thing we're missing is the actual values that we will inject via values.
yaml, or in the CLI command. Everything else will be created using Chart.yaml,
or values that we will inject at runtime via the helm command itself.

With that in mind, let's create our values file from our template that we will be passing in
our image name and tag. So, let's include those in the proper format:

image:

 name: myapp

 tag: 2.0.1

Now we can install our app via our Helm chart! Do this with the following command:

helm install myrelease -f values.yaml .

As you can see, we are passing in our values with the -f key (you can also use
--values). This command will install the release of our application.

Once we have a release, we can upgrade to a new version or roll back to an old one using
the Helm CLI – we'll cover this in the next section.

Upgrades and rollbacks
Now that we have an active Helm release, we can upgrade it. Let's make a small change to
our values.yaml:

image:

 name: myapp

 tag: 2.0.2

272 Template Code Generation and CI/CD on Kubernetes

To make this a new version of our release, we also need to change our chart YAML:

apiVersion: v2

name: mynodeapp

version: 1.0.1

Now, we can upgrade our release using the following command:

helm upgrade myrelease -f values.yaml .

If, for any reason, we wanted to roll back to an earlier version, we can do so with the
following command:

helm rollback myrelease 1.0.0

As you can see, Helm allows for seamless templating, releases, upgrades, and rollbacks of
applications. As we mentioned previously, Kustomize hits many of the same points but
does it in a much different way – let's see how.

Using Kustomize with Kubernetes
While Helm charts can get quite complex, Kustomize uses YAML without any variables,
and instead uses a patch and override-based method of applying different configurations
to a base set of Kubernetes resources.

Using Kustomize is extremely simple, and as we mentioned earlier in the chapter, there's
no prerequisite CLI tool. Everything works by using the kubectl apply -k /path/
kustomize.yaml command without installing anything new. However, we will also
demonstrate the flow using the Kustomize CLI tool.

Important note
In order to install the Kustomize CLI tool, you can check the installation
instructions at https://kubernetes-sigs.github.io/
kustomize/installation.

Currently, the installation uses the following command:

curl -s "https://raw.githubusercontent.com/\

kubernetes-sigs/kustomize/master/hack/install_kustomize.sh" |
bash

https://kubernetes-sigs.github.io/kustomize/installation
https://kubernetes-sigs.github.io/kustomize/installation

Implementing templates on Kubernetes with Helm and Kustomize 273

Now that we have Kustomize installed, let's apply Kustomize to our existing use case.
We're going to start from our plain Kubernetes YAML (before we started adding Helm
variables):

plain-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-myapp

 labels:

 app: frontend-myapp

spec:

 replicas: 2

 selector:

 matchLabels:

 app: frontend-myapp

 template:

 metadata:

 labels:

 app: frontend-myapp

 spec:

 containers:

 - name: frontend-myapp

 image: myrepo/myapp:1.0.0

 ports:

 - containerPort: 80

With our initial deployment.yaml created, we can now create a Kustomization file,
which we call kustomize.yaml.

When we later call a kubectl command with the -k parameter, kubectl will look for
this kustomize YAML file and use it to determine which patches to apply to all the other
YAML files passed to the kubectl command.

274 Template Code Generation and CI/CD on Kubernetes

Kustomize lets us patch individual values or set common values to be automatically set. In
general, Kustomize will create new lines, or update old lines if the key already exists in the
YAML. There are three ways to apply these changes:

• Specify changes directly in a Kustomization file.

• Use the PatchStrategicMerge strategy with a patch.yaml file along with
a Kustomization file.

• Use the JSONPatch strategy with a patch.yaml file along with
a Kustomization file.

Let's start with using a Kustomization file specifically to patch the YAML.

Specifying changes directly in a Kustomization file
If we want to directly specify changes within the Kustomization file, we can do so, but our
options are somewhat limited. The types of keys we can use for a Kustomization file are
as follows:

• resources – Specifies which files are to be customized when patches are applied

• transformers – Ways to directly apply patches from within the
Kustomization file

• generators – Ways to create new resources from the Kustomization file

• meta – Sets metadata fields that can influence generators, transformers, and
resources

If we want to specify direct patches in our Kustomization file, we need to use transformers.
The aforementioned PatchStrategicMerge and JSONPatch merge strategies are
two types of transformers. However, to directly apply changes to the Kustomization
file, we can use one of several transformers, which include commonLabels, images,
namePrefix, and nameSuffix.

In the following Kustomization file, we are applying changes to our initial deployment
YAML using both commonLabels and images transformers.

Deployment-kustomization-1.yaml:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

resources:

- deployment.yaml

Implementing templates on Kubernetes with Helm and Kustomize 275

namespace: default

commonLabels:

 app: frontend-app

images:

 - name: frontend-myapp

 newTag: 2.0.0

 newName: frontend-app-1

This particular Kustomization.yaml file updates the image tag from 1.0.0 to
2.0.0, updates the name of the app from frontend-myapp to frontend-app, and
updates the name of the container from frontend-myapp to frontend-app-1.

For a full rundown of the specifics of each of these transformers, you can check the
Kustomize docs at https://kubernetes-sigs.github.io/kustomize/.
The Kustomize file assumes that deployment.yaml is in the same folder as itself.

To see the result when our Kustomize file is applied to our deployment, we can use the
Kustomize CLI tool. We will use the following command to generate the kustomized
output:

kustomize build deployment-kustomization1.yaml

This command will give the following output:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-myapp

 labels:

 app: frontend-app

spec:

 replicas: 2

 selector:

 matchLabels:

 app: frontend-app

 template:

 metadata:

 labels:

 app: frontend-app

 spec:

https://kubernetes-sigs.github.io/kustomize/

276 Template Code Generation and CI/CD on Kubernetes

 containers:

 - name: frontend-app-1

 image: myrepo/myapp:2.0.0

 ports:

 - containerPort: 80

As you can see, the customizations from our Kustomization file have been applied.
Because a kustomize build command outputs Kubernetes YAML, we can easily
deploy the output to Kubernetes as follows:

kustomize build deployment-kustomization.yaml | kubectl apply
-f -

Next, let's see how we can patch our deployment using a YAML file with
PatchStrategicMerge.

Specifying changes using PatchStrategicMerge
To illustrate a PatchStrategicMerge strategy, we once again start with our same
deployment.yaml file. This time, we will issue our changes via a combination of the
kustomization.yaml file and a patch.yaml file.

First, let's create our kustomization.yaml file, which looks like this:

 Deployment-kustomization-2.yaml:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

resources:

- deployment.yaml

namespace: default

patchesStrategicMerge:

 - deployment-patch-1.yaml

As you can see, our Kustomization file references a new file, deployment-patch-1.
yaml, in the patchesStrategicMerge section. Any number of patch YAML files can
be added here.

Implementing templates on Kubernetes with Helm and Kustomize 277

Then, our deployment-patch-1.yaml file is a simple file that mirrors our
deployment with the changes we intend to make. Here is what it looks like:

Deployment-patch-1.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-myapp

 labels:

 app: frontend-myapp

spec:

 replicas: 4

This patch file is a subset of the fields in the original deployment. In this case, it simply
updates the replicas from 2 to 4. Once again, to apply the changes, we can use the
following command:

 kustomize build deployment-kustomization2.yaml

However, we can also use the -k flag in a kubectl command! This is how it looks:

Kubectl apply -k deployment-kustomization2.yaml

This command is the equivalent of the following:

kustomize build deployment-kustomization2.yaml | kubectl apply
-f -

Similar to PatchStrategicMerge, we can also specify JSON-based patches in our
Kustomization – let's look at that now.

Specifying changes using JSONPatch
To specify changes with a JSON patch file, the process is very similar to that involving
a YAML patch.

278 Template Code Generation and CI/CD on Kubernetes

First, we need our Kustomization file. It looks like this:

Deployment-kustomization-3.yaml:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

resources:

- deployment.yaml

namespace: default

patches:

- path: deployment-patch-2.json

 target:

 group: apps

 version: v1

 kind: Deployment

 name: frontend-myapp

As you can see, our Kustomize file has a section, patches, which references a JSON
patch file along with a target. You can reference as many JSON patches as you want in
this section. target is used to determine which Kubernetes resource specified in the
resources section will receive the patch.

Finally, we need our patch JSON itself, which looks like this:

Deployment-patch-2.json:

[

 {

 "op": "replace",

 "path": "/spec/template/spec/containers/0/name",

 "value": "frontend-myreplacedapp"

 }

]

This patch, when applied will perform the replace operation on the name of our first
container. You can follow the path along with our original deployment.yaml file to see
that it references the name of that first container. It will replace this name with the new
value, frontend-myreplacedapp.

Understanding CI/CD paradigms on Kubernetes – in-cluster and out-of-cluster 279

Now that we have a solid foundation in Kubernetes resource templating and releases with
Kustomize and Helm, we can move on to the automation of deployments to Kubernetes.
In the next section, we'll look at two patterns to accomplishing CI/CD with Kubernetes.

Understanding CI/CD paradigms on
Kubernetes – in-cluster and out-of-cluster
Continuous integration and deployment to Kubernetes can take many forms.

Most DevOps engineers will be familiar with tools such as Jenkins, TravisCI, and others.
These tools are fairly similar in that they provide an execution environment to build
applications, perform tests, and call arbitrary Bash scripts in a controlled environment.
Some of these tools run commands inside containers, while others don't.

When it comes to Kubernetes, there are multiple schools of thought in how and where
to use these tools. There is also a newer breed of CI/CD platforms that are much more
tightly coupled to Kubernetes primitives, and many that are architected to run on the
cluster itself.

To thoroughly discuss how tooling can pertain to Kubernetes, we will split our pipelines
into two logical steps:

1. Build: Compiling, testing applications, building container images, and sending to
image repositories

2. Deploy: Updating Kubernetes resources via kubectl, Helm, or a different tool

For the purposes of this book, we are going to focus mostly on the second deploy-focused
step. Though many of the options available handle both build and deploy steps, the build
step can happen just about anywhere, and is not worth our focus in a book relating to the
specifics of Kubernetes.

With this in mind, to discuss our tooling options, we will split our set of tools into two
categories as far as the Deploy part of our pipelines:

• Out-of-cluster CI/CD

• In-cluster CI/CD

280 Template Code Generation and CI/CD on Kubernetes

Out-of-cluster CI/CD
In the first pattern, our CI/CD tool runs outside of our target Kubernetes cluster.
We call this out-of-cluster CI/CD. There is a gray area where the tool may run in
a separate Kubernetes cluster that is focused on CI/CD, but we will ignore that option
for now as the difference between the two categories is still mostly valid.

You'll often find industry standard tooling such as Jenkins used with this pattern, but any
CI tool that has the ability to run scripts and retain secret keys in a secure way can work
here. A few examples are GitLab CI, CircleCI, TravisCI, GitHub Actions, and AWS
CodeBuild. Helm is also a big part of this pattern, as out-of-cluster CI scripts can call
Helm commands in lieu of kubectl.

Some of the strengths of this pattern are to be found in its simplicity and extensibility.
This is a push-based pattern where changes to code synchronously trigger changes in
Kubernetes workloads.

Some of the weaknesses of out-of-cluster CI/CD are scalability when pushing to many
clusters, and the need to keep cluster credentials in the CI/CD pipeline so it has the ability
to call kubectl or Helm commands.

In-cluster CI/CD
In the second pattern, our tool runs on the same cluster that our applications run on,
which means that CI/CD happens within the same Kubernetes context as our applications,
as pods. We call this in-cluster CI/CD. This in-cluster pattern can still have the "build"
steps occur outside the cluster, but the deploy step happens from within the cluster.

These types of tools have been gaining popularity since Kubernetes was released, and
many use custom resource definitions and custom controllers to do their jobs. Some
examples are FluxCD, Argo CD, JenkinsX, and Tekton Pipelines. The GitOps pattern,
where a Git repository is used as the source of truth for what applications should be
running on a cluster, is popular in these tools.

Some of the strengths of the in-cluster CI/CD pattern are scalability and security. By
having the cluster "pull" changes from GitHub via a GitOps operating model, the solution
can be scaled to many clusters. Additionally, it removes the need to keep powerful cluster
credentials in the CI/CD system, instead having GitHub credentials on the cluster itself,
which can be much better from a security standpoint.

The weaknesses of the in-cluster CI/CD pattern include complexity, since this pull-based
operation is slightly asynchronous (as git pull usually occurs on a loop, not always
occurring exactly when changes are pushed).

Implementing in-cluster and out-of-cluster CI/CD with Kubernetes 281

Implementing in-cluster and out-of-cluster CI/
CD with Kubernetes
Since there are so many options for CI/CD with Kubernetes, we will choose two
options and implement them one by one so you can compare their feature sets. First,
we'll implement CI/CD to Kubernetes on AWS CodeBuild, which is a great example
implementation that can be reused with any external CI system that can run Bash scripts,
including Bitbucket Pipelines, Jenkins, and others. Then, we'll move on to FluxCD, an
in-cluster GitOps-based CI option that is Kubernetes-native. Let's start with the external
option.

Implementing Kubernetes CI with AWS Codebuild
As mentioned earlier, our AWS CodeBuild CI implementation will be easy to duplicate
in any script- based CI system. In many cases, the pipeline YAML definition we'll use is
near identical. Also, as we discussed earlier, we are going to skip the actual building of the
container image. We will instead focus on the actual deployment piece.

To quickly introduce AWS CodeBuild, it is a script-based CI tool that runs Bash scripts,
like many other similar tools. In the context of AWS CodePipeline, a higher-level tool,
multiple separate AWS CodeBuild steps can be combined into larger pipelines.

In our example, we will be using both AWS CodeBuild and AWS CodePipeline. We will
not be discussing in depth how to use these two tools, but instead will keep our discussion
tied specifically to how to use them for deployment to Kubernetes.

Important note
We highly recommend that you read and review the documentation for
both CodePipeline and CodeBuild, since we will not be covering all of
the basics in this chapter. You can find the documentation at https://
docs.aws.amazon.com/codebuild/latest/userguide/
welcome.html for CodeBuild, and https://docs.aws.amazon.
com/codepipeline/latest/userguide/welcome.html for
CodePipeline.

In practice, you would have two CodePipelines, each with one or more CodeBuild steps.
The first CodePipeline is triggered on a code change in either AWS CodeCommit
or another Git repository (such as GitHub).

The first CodeBuild step for this pipeline runs tests and builds the container image,
pushing the image to AWS Elastic Container Repository (ECR). The second CodeBuild
step for the first pipeline deploys the new image to Kubernetes.

https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

282 Template Code Generation and CI/CD on Kubernetes

The second CodePipeline is triggered anytime we commit a change to our secondary Git
repository with Kubernetes resource files (infrastructure repository). It will update the
Kubernetes resources using the same process.

Let's start with the first CodePipeline. As mentioned earlier, it contains two
CodeBuild steps:

1. First, to test and build the container image and push it to the ECR

2. Second, to deploy the updated container to Kubernetes

As we mentioned earlier in this section, we will not be spending much time on the
code-to-container-image pipeline, but here is an example (not production ready)
codebuild YAML for implementing this first step:

Pipeline-1-codebuild-1.yaml:

version: 0.2

phases:

 build:

 commands:

 - npm run build

 test:

 commands:

 - npm test

 containerbuild:

 commands:

 - docker build -t $ECR_REPOSITORY/$IMAGE_NAME:$IMAGE_TAG
.

 push:

 commands:

 - docker push_$ECR_REPOSITORY/$IMAGE_NAME:$IMAGE_TAG

This CodeBuild pipeline consists of four phases. CodeBuild pipeline specs are written
in YAML, and contain a version tag that corresponds to the version of the CodeBuild
spec. Then, we have a phases section, which is executed in order. This CodeBuild first
runs a build command, and then runs a test command in the test phase. Finally, the
containerbuild phase creates the container image, and the push phase pushes the
image to our container repository.

Implementing in-cluster and out-of-cluster CI/CD with Kubernetes 283

One thing to keep in mind is that every value with a $ in front of it in CodeBuild is an
environment variable. These can be customized via the AWS Console or the AWS CLI,
and some can come directly from the Git repository.

Let's now take a look at the YAML for the second CodeBuild step of our first
CodePipeline:

Pipeline-1-codebuild-2.yaml:

version: 0.2

phases:

 install:

 commands:

 - curl -o kubectl https://amazon-eks.s3.us-west-2.
amazonaws.com/1.16.8/2020-04-16/bin/darwin/amd64/kubectl

 - chmod +x ./kubectl

 - mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl &&
export PATH=$PATH:$HOME/bin

 - echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc

 - source ~/.bashrc

 pre_deploy:

 commands:

 - aws eks --region $AWS_DEFAULT_REGION update-kubeconfig
--name $K8S_CLUSTER

 deploy:

 commands:

 - cd $CODEBUILD_SRC_DIR

 - kubectl set image deployment/$KUBERNETES-DEPLOY-NAME
myrepo:"$IMAGE_TAG"

Let's break this file down. Our CodeBuild setup is broken down into three phases:
install, pre_deploy, and deploy. In the install phase, we install the kubectl
CLI tool.

284 Template Code Generation and CI/CD on Kubernetes

Then, in the pre_deploy phase, we use an AWS CLI command and a couple of
environment variables to update our kubeconfig file for communicating with our EKS
cluster. In any other CI tool (or when not using EKS) you could use a different method
for giving cluster credentials to your CI tool. It is important to use a safe option here, as
including the kubeconfig file directly in your Git repository is not secure. Typically,
some combination of environment variables would be great here. Jenkins, CodeBuild,
CircleCI, and more have their own systems for this.

Finally, in the deploy phase, we use kubectl to update our deployment (also contained
in an environment variable) with the new image tag specified in the first CodeBuild step.
This kubectl rollout restart command will ensure that new pods are started for
our deployment. In combination with using the imagePullPolicy of Always, this
will result in our new application version being deployed.

In this case, we are patching our deployment with a specific image tag name in the ECR.
The $IMAGE_TAG environment variable will be auto populated with the newest tag
from GitHub so we can use that to automatically roll out the new container image to
our deployment.

Next, let's take a look at our second CodePipeline. This one contains only one step – it
listens to changes from a separate GitHub repository, our "infrastructure repository". This
repository does not contain code for our applications themselves, but instead Kubernetes
resource YAMLs. Thus, we can change a Kubernetes resource YAML value – for instance,
the number of replicas in a deployment, and see it updated in Kubernetes after the
CodePipeline runs. This pattern can be extended to use Helm or Kustomize very easily.

Let's take a look at the first, and only, step of our second CodePipeline:

Pipeline-2-codebuild-1.yaml:

version: 0.2

phases:

 install:

 commands:

 - curl -o kubectl https://amazon-eks.s3.us-west-2.
amazonaws.com/1.16.8/2020-04-16/bin/darwin/amd64/kubectl

 - chmod +x ./kubectl

 - mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl &&
export PATH=$PATH:$HOME/bin

 - echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc

 - source ~/.bashrc

 pre_deploy:

Implementing in-cluster and out-of-cluster CI/CD with Kubernetes 285

 commands:

 - aws eks --region $AWS_DEFAULT_REGION update-kubeconfig
--name $K8S_CLUSTER

 deploy:

 commands:

 - cd $CODEBUILD_SRC_DIR

 - kubectl apply -f .

As you can see, this CodeBuild spec is quite similar to our previous one. As before,
we install kubectl and prep it for use with our Kubernetes cluster. Since we are running
on AWS, we do it using the AWS CLI, but this could be done any number of ways,
including by just adding a Kubeconfig file to our CodeBuild environment.

The difference here is that instead of patching a specific deployment with a new version of
an application, we are running an across-the-board kubectl apply command while
piping in our entire infrastructure folder. This could then make any changes performed
in Git be applied to the resources in our cluster. For instance, if we scaled our deployment
from 2 replicas to 20 replicas by changing the value in the deployment.yaml file,
it would be deployed to Kubernetes in this CodePipeline step and the deployment
would scale up.

Now that we've covered the basics of using an out-of-cluster CI/CD environment to make
changes to Kubernetes resources, let's take a look at a completely different CI paradigm,
where the pipeline runs on our cluster.

Implementing Kubernetes CI with FluxCD
For our in-cluster CI tool, we will be using FluxCD. There are several options for
in-cluster CI, including ArgoCD and JenkinsX, but we like FluxCD for its relative
simplicity, and for the fact that it automatically updates pods with new container versions
without any additional configuration. As an added twist, we will use FluxCD's Helm
integration for managing deployments. Let's start with the installation of FluxCD
(we'll assume you already have Helm installed from the previous parts of the chapter).
These installations follow the official FluxCD installation instructions for Helm
compatibility, as of the time of writing of this book.

The official FluxCD docs can be found at https://docs.fluxcd.io/, and
we highly recommend you give them a look! FluxCD is a very complex tool, and we are
only scratching the surface in this book. A full review is not in scope – we are simply
trying to introduce you to the in-cluster CI/CD pattern and relevant tooling.

Let's start our review by installing FluxCD on our cluster.

https://docs.fluxcd.io/

286 Template Code Generation and CI/CD on Kubernetes

Installing FluxCD (H3)
FluxCD can easily be installed using Helm in a few steps:

1. First, we need to add the Flux Helm chart repository:

helm repo add fluxcd https://charts.fluxcd.io

2. Next, we need to add a custom resource definition that FluxCD requires in order to
be able to work with Helm releases:

kubectl apply -f https://raw.githubusercontent.com/
fluxcd/helm-operator/master/deploy/crds.yaml

3. Before we can install the FluxCD Operator (which is the core of FluxCD
functionality on Kubernetes) and the FluxCD Helm Operator, we need to create
a namespace for FluxCD to live in:

kubectl create namespace flux

Now we can install the main pieces of FluxCD, but we'll need to give FluxCD some
additional information about our Git repository.

Why? Because FluxCD uses a GitOps pattern for updates and deployments. This
means that FluxCD will actively reach out to our Git repository every few minutes,
instead of responding to Git hooks such as CodeBuild, for instance.

FluxCD will also respond to new ECR images via a pull-based strategy, but we'll get
to that in a bit.

4. To install the main pieces of FluxCD, run the following two commands and
replace GITHUB_USERNAME and REPOSITORY_NAME with the GitHub user and
repository that you will be storing your workload specs (Kubernetes YAML or Helm
charts) in.

Implementing in-cluster and out-of-cluster CI/CD with Kubernetes 287

This instruction set assumes that the Git repository is public, which it likely
isn't. Since most organizations use private repositories, FluxCD has specific
configurations to handle this case – just check the docs at https://docs.
fluxcd.io/en/latest/tutorials/get-started-helm/. In fact,
to see the real power of FluxCD, you'll need to give it advanced access to your
Git repository in any case, since FluxCD can write to your Git repository and
automatically update manifests as new container images are created. However,
we won't be getting into that functionality in this book. The FluxCD docs are
definitely worth a close read as this is a complex piece of technology with many
features. To tell FluxCD which GitHub repository to look at, you can set variables
when installing using Helm, as in the following command:

helm upgrade -i flux fluxcd/flux \

--set git.url=git@github.com:GITHUB_USERNAME/REPOSITORY_
NAME \

--namespace flux

helm upgrade -i helm-operator fluxcd/helm-operator \

--set git.ssh.secretName=flux-git-deploy \

--namespace flux

As you can see, we need to pass our GitHub username, the name of our repository,
and a name that will be used for our GitHub secret in Kubernetes.

At this point, FluxCD is fully installed in our cluster and pointed at our
infrastructure repository on Git! As mentioned before, this GitHub repository will
contain Kubernetes YAML or Helm charts on the basis of which FluxCD will update
workloads running in the cluster.

5. To actually give Flux something to do, we need to create the actual manifest for
Flux. We do so using a HelmRelease YAML file, which looks like the following:

 helmrelease-1.yaml:
apiVersion: helm.fluxcd.io/v1

kind: HelmRelease

metadata:

 name: myapp

 annotations:

 fluxcd.io/automated: "true"

 fluxcd.io/tag.chart-image: glob:myapp-v*

https://docs.fluxcd.io/en/latest/tutorials/get-started-helm/
https://docs.fluxcd.io/en/latest/tutorials/get-started-helm/

288 Template Code Generation and CI/CD on Kubernetes

spec:

 releaseName: myapp

 chart:

 git: ssh://git@github.
com/<myuser>/<myinfrastructurerepository>/myhelmchart

 ref: master

 path: charts/myapp

 values:

 image:

 repository: myrepo/myapp

 tag: myapp-v2

Let's pick this file apart. We are specifying the Git repository where Flux will find
the Helm chart for our application. We are also marking the HelmRelease with an
automated annotation, which tells Flux to go and poll the container image repository
every few minutes and see whether there is a new version to deploy. To aid this, we
include a chart-image filter pattern, which the tagged container image must match in
order to trigger a redeploy. Finally, in the values section, we have Helm values that will be
used for the initial installation of the Helm chart.

To give FluxCD this information, we simply need to add this file to the root of our GitHub
repository and push up a change.

Once we add this release file, helmrelease-1.yaml, to our Git repository, Flux will
pick it up within a few minutes, and then look for the specified Helm chart in the chart
value. There's just one problem – we haven't made it yet!

Currently, our infrastructure repository on GitHub only contains our single Helm release
file. The folder contents look like this:

helmrelease1.yaml

Implementing in-cluster and out-of-cluster CI/CD with Kubernetes 289

To close the loop and allow Flux to actually deploy our Helm chart, we need to add it to
this infrastructure repository. Let's do so, making the final folder contents in our GitHub
repository look like this:

helmrelease1.yaml

myhelmchart/

 Chart.yaml

 Values.yaml

 Templates/

 … chart templates

Now, when FluxCD next checks the infrastructure repository on GitHub, it will first find
the Helm release YAML file, which will then point it to our new Helm chart.

FluxCD, with a new release and a Helm chart, will then deploy our Helm chart to
Kubernetes!

Then, any time a change is made to either the Helm release YAML or any file in our Helm
chart, FluxCD will pick it up and, within a few minutes (on its next loop), will deploy
the change.

In addition, any time a new container image with a matching tag to the filter pattern is
pushed to the image repository, a new version of the app will automatically be deployed
– it's that easy. This means that FluxCD is listening to two locations – the infrastructure
GitHub repository and the container repository, and will deploy any changes to either
location.

You can see how this maps to our out-of-cluster CI/CD implementation where we had one
CodePipeline to deploy new versions of our App container, and another CodePipeline to
deploy any changes to our infrastructure repository. FluxCD does the same thing in
a pull-based way.

290 Template Code Generation and CI/CD on Kubernetes

Summary
In this chapter, we learned about template code generation on Kubernetes. We reviewed
how to create flexible resource templates using both Helm and Kustomize. With this
knowledge, you will be able to template your complex applications using either solution,
create, or deploy releases. Then, we reviewed two types of CI/CD on Kubernetes; first,
external CI/CD deployment to Kubernetes via kubectl, and then in-cluster CI paradigms
using FluxCD. With these tools and techniques, you will be able to set up CI/CD to
Kubernetes for production applications.

In the next chapter, we will review security and compliance on Kubernetes, an important
topic in today's software environment.

Questions
1. What are two differences between Helm and Kustomize templating?

2. How should Kubernetes API credentials be handled when using an external CI/CD
setup?

3. What are some of the reasons as to why an in-cluster CI setup may be preferable to
an out-of-cluster setup? And vice versa?

Further reading
• Kustomize docs: https:https://kubernetes-sigs.github.io/

kustomize/

• Helm docs https://docs.fluxcd.io/en/latest/tutorials/
get-started-helm/

https://kubernetes-sigs.github.io/kustomize/
https://kubernetes-sigs.github.io/kustomize/
https://docs.fluxcd.io/en/latest/tutorials/get-started-helm/
https://docs.fluxcd.io/en/latest/tutorials/get-started-helm/

12
Kubernetes Security

and Compliance
In this chapter, you will learn about some of the key pieces of Kubernetes security.
We'll discuss some recent Kubernetes security issues, and the finding of a recent
audit that was performed on Kubernetes. Then, we'll look at implementing security at
each level of our cluster, starting with the security of Kubernetes resources and their
configurations, moving on to container security, and then finally, runtime security with
intrusion detection. To start, we will discuss some key security concepts as they relate to
Kubernetes.

In this chapter, we will cover the following topics:

• Understanding security on Kubernetes

• Reviewing CVEs and security audits for Kubernetes

• Implementing tools for cluster configuration and container security

• Handling intrusion detection, runtime security, and compliance on Kubernetes

292 Kubernetes Security and Compliance

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool, along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl
tool.

Additionally, you will need a machine that supports the Helm CLI tool, which typically
has the same prerequisites as kubectl – for details, check the Helm documentation at
https://helm.sh/docs/intro/install/.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter12.

Understanding security on Kubernetes
When discussing security on Kubernetes, it is very important to note security boundaries
and shared responsibility. The Shared Responsibility Model is a common term used to
describe how security is handled in public cloud services. It states that the customer is
responsible for the security of their applications, and the security of their configuration
of public cloud components and services. The public cloud provider, on the other hand,
is responsible for the security of the services themselves as well as the infrastructure they
run on, all the way to the data center and physical layer.

Similarly, security on Kubernetes is shared. Though upstream Kubernetes is not
a commercial product, the thousands of Kubernetes contributors and significant
organizational heft from large tech companies ensure that the security of Kubernetes
components is maintained. Additionally, the large ecosystem of individual contributors
and companies using the technology ensures that it gets better as CVEs are reported
and handled. Unfortunately, as we will discuss in the next section, the complexity of
Kubernetes means that there are many possible attack vectors.

Applying the shared responsibility model then, as a developer you are responsible for the
security of how you configure Kubernetes components, the security of the applications
that you run on Kubernetes, and access-level security in your cluster configuration. While
the security of your applications and containers themselves are not quite in scope for this
book, they are definitely important to Kubernetes security. We will spend most of our time
discussing configuration-level security, access security, and runtime security.

https://helm.sh/docs/intro/install/
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter12
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter12

Reviewing CVEs and security audits for Kubernetes 293

Either Kubernetes itself or the Kubernetes ecosystem provides tooling, libraries, and full-
blown products to handle security at each of these levels – and we'll be reviewing some of
these options in this chapter.

Now, before we discuss these solutions, it's best to start with a base understanding of why
they may be needed in the first place. Let's move on to the next section, where we'll detail
some issues that Kubernetes has encountered in the realm of security.

Reviewing CVEs and security audits for
Kubernetes
Kubernetes has encountered several Common Vulnerabilities and Exposures (CVEs)
in its storied history. The MITRE CVE database, at the time of writing, lists 73 CVE
announcements from 2015 to 2020 when searching for kubernetes. Each one of these
is related either directly to Kubernetes, or to a common open source solution that runs on
Kubernetes (like the NGINX ingress controller, for instance).

Several of these were critical enough to require hotfixes to the Kubernetes source, and
thus they list the affected versions in the CVE description. A full list of all CVEs related
to Kubernetes can be found at https://cve.mitre.org/cgi-bin/cvekey.
cgi?keyword=kubernetes. To give you an idea of some of the issues that have been
found, let's review a few of these CVEs in chronological order.

Understanding CVE-2016-1905 – Improper admission
control
This CVE was one of the first major security issues with production Kubernetes. The
National Vulnerability Database (a NIST website) gives this issue a base score of 7.7,
putting it in the high-impact category.

With this issue, a Kubernetes admission controller would not ensure that a kubectl
patch command followed admission rules, allowing users to completely work around the
admission controller – a nightmare in a multitenant scenario.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kubernetes
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kubernetes

294 Kubernetes Security and Compliance

Understanding CVE-2018-1002105 – Connection
upgrading to the backend
This CVE was likely the most critical to date in the Kubernetes project. In fact, NVD gives
it a 9.8 criticality score! In this CVE, it was found that it was possible in some versions
of Kubernetes to piggyback on an error response from the Kubernetes API server and
then upgrade the connection. Once the connection was upgraded, it was possible to send
authenticated requests to any backend server in the cluster. This allowed a malicious user
to essentially emulate a perfectly authenticated TLS request without proper credentials.

In addition to these CVEs (and likely partially driven by them), the CNCF sponsored
a third-party security audit of Kubernetes in 2019. The results of the audit are open source
and publicly available and are worth a review.

Understanding the 2019 security audit results
As we mentioned in the previous section, the 2019 Kubernetes security audit was
performed by a third party, and the results of the audit are completely open source.
The full audit report with all sections can be found at https://www.cncf.io/
blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/.

In general, this audit focused on the following pieces of Kubernetes functionality:

• kube-apiserver

• etcd

• kube-scheduler

• kube-controller-manager

• cloud-controller-manager

• kubelet

• kube-proxy

• The Container Runtime

The intent was to focus on the most important and relevant pieces of Kubernetes when it
came to security. The results of the audit included not just a full security report, but also
a threat model and a penetration test, as well as a whitepaper.

Diving deep into the audit results is not in the scope of this book, but there are some
major takeaways that are great windows into the crux of many of the biggest Kubernetes
security issues.

https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/

Implementing tools for cluster configuration and container security 295

In short, the audit found that since Kubernetes is a complex, highly networked system
with many different settings, there are many possible configurations that inexperienced
engineers may perform and in doing so, open their cluster to outside attackers.

This idea of Kubernetes being complex enough that an insecure configuration could
happen easily is important to note and take to heart.

The entire audit is worth a read – for those with significant knowledge of network security
and containers, it is an excellent view of some of the security decisions that were made as
part of the development of Kubernetes as a platform.

Now that we have discussed where Kubernetes security issues have been found, we can
start looking into ways to increase the security posture of your clusters. Let's start with
some default Kubernetes functionality for security.

Implementing tools for cluster configuration
and container security
Kubernetes gives us many inbuilt options for the security of cluster configurations
and container permissions. Since we've already talked about RBAC, TLS Ingress, and
encrypted Kubernetes Secrets, let's discuss a few concepts that we haven't had time to
review yet: admission controllers, Pod security policies, and network policies.

Using admission controllers
Admission controllers are an often overlooked but extremely important Kubernetes
feature. Many of Kubernetes' advanced features use admission controllers under the
hood. In addition, you can create new admission controller rules in order to add custom
functionality to your cluster.

There are two general types of admission controllers:

• Mutating admission controllers

• Validating admission controllers

Mutating admission controllers take in Kubernetes resource specifications and return
an updated resource specification. They also perform side-effect calculations or make
external calls (in the case of custom admission controllers).

296 Kubernetes Security and Compliance

On the other hand, validating admission controllers simply accept or deny Kubernetes
resource API requests. It is important to know that both types of controllers only act
on create, update, delete, or proxy requests. These controllers cannot mutate or change
requests to list resources.

When a request of one of those types comes into the Kubernetes API server, it will first
run the request through all the relevant mutating admission controllers. Then, the output,
which may be mutated, will pass through the validating admission controllers, before
finally being acted upon (or not, if the call is denied by an admission controller) in the
API server.

Structurally, the Kubernetes-provided admission controllers are functions or
"plugins," which run as part of the Kubernetes API server. They rely on two
webhook controllers (which are admission controllers themselves, just special ones):
MutatingAdmissionWebhook and ValidatingAdmissionWebhook. All other admission
controllers use either one of these webhooks under the hood, depending on their type.
In addition, any custom admission controllers you write can be attached to either one of
these webhooks.

Before we look at the process of creating a custom admission controller, let's review
a few of the default admission controllers that Kubernetes provides. For a full list,
check the Kubernetes official documentation at https://kubernetes.io/docs/
reference/access-authn-authz/admission-controllers/#what-does-
each-admission-controller-do.

Understanding default admission controllers
There are quite a few default admission controllers present in a typical Kubernetes setup –
many of which are required for some fairly important basic functionality. Here are some
examples of default admission controllers.

The NamespaceExists admission controller
The NamespaceExists admission controller checks any incoming Kubernetes resource
(other than namespaces themselves). This is to check whether the namespace attached to
the resource exists. If not, it denies the resource request at the admission controller level.

The PodSecurityPolicy admission controller
The PodSecurityPolicy admission controller supports Kubernetes Pod security policies,
which we will learn about momentarily. This controller prevents resources that do not
follow Pod security policies from being created.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do

Implementing tools for cluster configuration and container security 297

In addition to the default admission controllers, we can create custom admission
controllers.

Creating custom admission controllers
Creating a custom admission controller can be done dynamically using one of the two
webhook controllers. The way this works is as follows:

1. You must write your own server or script that runs separately to the Kubernetes
API server.

2. Then, you configure one of the two previously mentioned webhook triggers to make
a request with resource data to your custom server controller.

3. Based on the result, the webhook controller will then tell the API server whether or
not to proceed.

Let's start with the first step: writing a quick admission server.

Writing a server for a custom admission controller
To create our custom admission controller server (which will accept webhooks from
the Kubernetes control plane), we can use any programming language. As with most
extensions to Kubernetes, Go has the best support and libraries that make the task of
writing a custom admission controller easier. For now, we will use some pseudocode.

The control flow for our server will look something like this:

Admission-controller-server.pseudo

// This function is called when a request hits the

// "/mutate" endpoint

function acceptAdmissionWebhookRequest(req)

{

 // First, we need to validate the incoming req

 // This function will check if the request is formatted
properly

 // and will add a "valid" attribute If so

 // The webhook will be a POST request from Kubernetes in the

 // "AdmissionReviewRequest" schema

 req = validateRequest(req);

 // If the request isn't valid, return an Error

298 Kubernetes Security and Compliance

 if(!req.valid) return Error;

 // Next, we need to decide whether to accept or deny the
Admission

 // Request. This function will add the "accepted" attribute

 req = decideAcceptOrDeny(req);

 if(!req.accepted) return Error;

 // Now that we know we want to allow this resource, we need
to

 // decide if any "patches" or changes are necessary

 patch = patchResourceFromWebhook(req);

 // Finally, we create an AdmissionReviewResponse and pass it
back

 // to Kubernetes in the response

 // This AdmissionReviewResponse includes the patches and

 // whether the resource is accepted.

 admitReviewResp = createAdmitReviewResp(req, patch);

 return admitReviewResp;

}

Now that we have a simple server for our custom admission controller, we can configure
a Kubernetes admission webhook to call it.

Configuring Kubernetes to call a custom admission controller server
In order to tell Kubernetes to call our custom admission server, it needs a place to call. We
can run our custom admission controller anywhere – it doesn't need to be on Kubernetes.

That being said, it's easy for the purposes of this chapter to run it on Kubernetes. We won't
go through the full manifest, but let's assume we have a Service and a Deployment that it
is pointed at, running a container that is our server. The Service would look something
like this:

Implementing tools for cluster configuration and container security 299

Service-webhook.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-custom-webhook-server

spec:

 selector:

 app: my-custom-webhook-server

 ports:

 - port: 443

 targetPort: 8443

It's important to note that our server needs to use HTTPS in order for Kubernetes to
accept webhook responses. There are many ways to configure this, and we won't get into
it in this book. The certificate can be self-signed, but the common name of the certificate
and CA needs to match the one used when setting up the Kubernetes cluster.

Now that we have our server running and accepting HTTPS requests, let's tell Kubernetes
where to find it. To do this, we use MutatingWebhookConfiguration.

An example of MutatingWebhookConfiguration is shown in the following
code block:

Mutating-webhook-config-service.yaml

apiVersion: admissionregistration.k8s.io/v1beta1

kind: MutatingWebhookConfiguration

metadata:

 name: my-service-webhook

webhooks:

 - name: my-custom-webhook-server.default.svc

 rules:

 - operations: ["CREATE"]

 apiGroups: [""]

 apiVersions: ["v1"]

 resources: ["pods", "deployments", "configmaps"]

 clientConfig:

 service:

300 Kubernetes Security and Compliance

 name: my-custom-webhook-server

 namespace: default

 path: "/mutate"

 caBundle: ${CA_PEM_B64}

Let's pick apart the YAML for our MutatingWebhookConfiguration. As you can
see, we can configure more than one webhook in this configuration – though we've only
done one in this example.

For each webhook, we set name, rules, and a configuration. The name is simply
the identifier for the webhook. The rules allow us to configure exactly in which cases
Kubernetes should make a request to our admission controller. In this case, we have
configured our webhook to fire whenever a CREATE event for resources of the types
pods, deployments, and configmaps occurs.

Finally, we have the clientConfig, where we specify exactly where and how
Kubernetes should make the webhook request. Since we're running our custom server
on Kubernetes, we specify the Service name as in the previous YAML, in addition to the
path on our server to hit ("/mutate" is a best practice here), and the CA of the cluster
to compare to the certificate of the HTTPS termination. If your custom admission server
is running somewhere else, there are other possible configuration fields – check the docs if
you need them (https://kubernetes.io/docs/reference/access-authn-
authz/admission-controllers/).

Once we create the MutatingWebhookConfiguration in Kubernetes, it is easy
to test the validation. All we need to do is create a Pod, Deployment, or ConfigMap as
normal, and check whether our requests are denied or patched according to the logic in
our server.

Let's assume for now that our server is set to deny any Pod with a name that
includes the string deny-me. It is also set up to add an error response to the
AdmissionReviewResponse.

Let's use a Pod spec as follows:

To-deny-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod-to-deny

spec:

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

Implementing tools for cluster configuration and container security 301

 containers:

 - name: nginx

 image: nginx

Now, we can create our Pod to check the admission controller. We can use the following
command:

kubectl create -f to-deny-pod.yaml

This results in the following output:

Error from server (InternalError): error when creating
"to-deny-pod.yaml": Internal error occurred: admission webhook
"my-custom-webhook-server.default.svc" denied the request: Pod
name contains "to-deny"!

And that's it! Our custom admission controller has successfully denied a Pod that doesn't
match the conditions we specified in our server. For resources that are patched (not
denied, but altered), kubectl will not show any special response. You will need to fetch
the resource in question to see the patch in action.

Now that we've explored custom admission controllers, let's look at another way to impose
cluster security practices – Pod security policies.

Enabling Pod security policies
The basics of Pod security policies are that they allow a cluster administrator to create
rules that Pods must follow in order to be scheduled onto a node. Technically, Pod
security policies are just another type of admission controller. However, this feature
is officially supported by Kubernetes and is worth an in-depth discussion, since many
options are available.

Pod security policies can be used to prevent Pods from running as root, put limits on
ports and volumes used, restrict privilege escalation, and much more. We will review
a subset of Pod security policy capabilities now, but for a full list of Pod security policy
configuration types, check the official PSP documentation at https://kubernetes.
io/docs/concepts/policy/pod-security-policy/.

As a final note, Kubernetes also supports low-level primitives for controlling container
permissions – namely AppArmor, SELinux, and Seccomp. These configurations are outside
the scope of this book, but they can be useful for highly secure environments.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

302 Kubernetes Security and Compliance

Steps to create a Pod security policy
There are several steps to implementing Pod security policies:

1. First, the Pod security policy admission controller must be enabled.

2. This will prevent all Pods from being created in your cluster since it requires
a matched Pod security policy and role to be able to create a Pod. You will likely
want to create your Pod security policies and roles before enabling the admission
controller for this reason.

3. After the admission controller is enabled, the policy itself must be created.

4. Then, a Role or ClusterRole object must be created with access to the Pod
security policy.

5. Finally, that role can be bound with a ClusterRoleBinding or RoleBinding to
a user or service accountService account, allowing Pods created with that
service account to use permissions available to the Pod security policy.

In some cases, you may not have the Pod security policy admission controller enabled by
default on your cluster. Let's look at how to enable it.

Enabling the Pod security policy admission controller
In order to enable the PSP admission controller, the kube-apiserver must be started
with a flag that specifies admission controllers to start with. On managed Kubernetes
(EKS, AKS, and others), the PSP admission controller will likely be enabled by default,
along with a privileged Pod security policy created for use by the initial admin user. This
prevents the PSP from causing any issues with creating Pods in the new cluster.

If you're self-managing Kubernetes and you haven't yet enabled the PSP admission
controller, you can do so by restarting the kube-apiserver component with the
following flags:

kube-apiserver --enable-admission-plugins=PodSecurityPolicy,Ser
viceAccount…<all other desired admission controllers>

If your Kubernetes API server is run using a systemd file (as it would be if following
Kubernetes: The Hard Way), you should update the flags there instead. Typically, systemd
files are placed in the /etc/systemd/system/ folder.

Implementing tools for cluster configuration and container security 303

In order to find out which admission plugins are already enabled, you can run the
following command:

kube-apiserver -h | grep enable-admission-plugins

This command will present a long list of admission plugins that are enabled. For instance,
you will see the following admission plugins in the output:

NamespaceLifecycle, LimitRanger, ServiceAccount…

Now that we are sure the PSP admission controller is enabled, we can actually create a PSP.

Creating the PSP resource
Pod security policies themselves can be created using typical Kubernetes resource YAML.
Here's a YAML file for a privileged Pod security policy:

Privileged-psp.yaml

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: privileged-psp

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:
'*'

spec:

 privileged: true

 allowedCapabilities:

 - '*'

 volumes:

 - '*'

 hostNetwork: true

 hostPorts:

 - min: 2000

 max: 65535

 hostIPC: true

 hostPID: true

 allowPrivilegeEscalation: true

 runAsUser:

304 Kubernetes Security and Compliance

 rule: 'RunAsAny'

 supplementalGroups:

 rule: 'RunAsAny'

 fsGroup:

 rule: 'RunAsAny'

This Pod security policy allows the user or service account (via a RoleBinding or
ClusterRoleBinding) to create Pods that have privileged capabilities. For instance, the
Pod using this PodSecurityPolicy would be able to bind to the host network on
ports 2000-65535, run as any user, and bind to any volume type. In addition, we have an
annotation for a seccomp restriction on allowedProfileNames – to give you an idea
of how Seccomp and AppArmor annotations work with PodSecurityPolicies.

As we mentioned previously, just creating the PSP does nothing. For any service
account or user that will be creating privileged Pods, we need to give them access
to the Pod security policy via a Role and RoleBinding (or ClusterRole and
ClusterRoleBinding).

In order to create a ClusterRole that has access to this PSP, we can use the following
YAML:

Privileged-clusterrole.yaml

apiVersion: rbac.authorization.k8s.io

kind: ClusterRole

metadata:

 name: privileged-role

rules:

- apiGroups: ['policy']

 resources: ['podsecuritypolicies']

 verbs: ['use']

 resourceNames:

 - privileged-psp

Implementing tools for cluster configuration and container security 305

Now, we can bind our newly created ClusterRole to the user or service account with
which we intend to create privileged Pods. Let's do this with a ClusterRoleBinding:

Privileged-clusterrolebinding.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: privileged-crb

roleRef:

 kind: ClusterRole

 name: privileged-role

 apiGroup: rbac.authorization.k8s.io

subjects:

- kind: Group

 apiGroup: rbac.authorization.k8s.io

 name: system:authenticated

In our case, we want to let every authenticated user on the cluster create privileged Pods,
so we bind to the system:authenticated group.

Now, it is likely that we do not want all our users or Pods to be privileged. A more realistic
Pod security policy places restrictions on what Pods are capable of.

Let's take a look at some example YAML of a PSP that has these restrictions:

unprivileged-psp.yaml

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: unprivileged-psp

spec:

 privileged: false

 allowPrivilegeEscalation: false

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

306 Kubernetes Security and Compliance

 - 'secret'

 - 'downwardAPI'

 - 'persistentVolumeClaim'

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 rule: 'MustRunAsNonRoot'

 supplementalGroups:

 rule: 'MustRunAs'

 ranges:

 - min: 1

 max: 65535

 fsGroup:

 rule: 'MustRunAs'

 ranges:

 - min: 1

 max: 65535

 readOnlyRootFilesystem: false

As you can tell, this Pod security policy is vastly different in the restrictions it imposes
on created Pods. No Pods under this policy are allowed to run as root or escalate to root.
They also have restrictions on the types of volumes they can bind to (this section has been
highlighted in the preceding code snippet) – and they cannot use host networking or bind
directly to host ports.

In this YAML, both the runAsUser and supplementalGroups sections control
the Linux user ID and group IDs that can run or be added by the container, while the
fsGroup key controls the filesystem groups that can be used by the container.

In addition to using rules like MustRunAsNonRoot, it is possible to directly specify
which user ID a container can run with – and any Pods not running specifically with that
ID in their spec will not be able to schedule onto a Node.

Implementing tools for cluster configuration and container security 307

For a sample PSP that restricts users to a specific ID, look at the following YAML:

Specific-user-id-psp.yaml

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: specific-user-psp

spec:

 privileged: false

 allowPrivilegeEscalation: false

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 rule: 'MustRunAs'

 ranges:

 - min: 1

 max: 3000

 readOnlyRootFilesystem: false

This Pod security policy, when applied, will prevent any Pods from running as user ID 0
or 3001, or higher. In order to create a Pod that satisfies this condition, we use the runAs
option in the securityContext in a Pod spec.

Here is an example Pod that satisfies this constraint and would be successfully scheduled
even with this Pod security policy in place:

Specific-user-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: specific-user-pod

spec:

 securityContext:

 runAsUser: 1000

 containers:

 - name: test

308 Kubernetes Security and Compliance

 image: busybox

 securityContext:

 allowPrivilegeEscalation: false

As you can see, in this YAML, we give our Pod a specific user to run with, ID 1000.
We also disallowed our Pod from escalating to root. This Pod spec would successfully
schedule even when specific-user-psp is in place.

Now that we've discussed how Pod security policies can secure Kubernetes by placing
restrictions on how a Pod runs, we can move onto network policies, where we can restrict
how Pods network.

Using network policies
Network policies in Kubernetes work similar to firewall rules or route tables. They allow
users to specify a group of Pods via a selector and then determine how and where those
Pods can communicate.

For network policies to work, your chosen Kubernetes network plugin (such as, Weave,
Flannel, or Calico) must support the network policy spec. Network policies can be created
as all other Kubernetes resources are – through a YAML file. Let's start with a very simple
network policy.

Here is a network policy spec that restricts access to Pods with the label app=server:

Label-restriction-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: frontend-network-policy

spec:

 podSelector:

 matchLabels:

 app: server

 policyTypes:

 - Ingress

 ingress:

 - from:

 - podSelector:

 matchLabels:

Implementing tools for cluster configuration and container security 309

 app: frontend

 ports:

 - protocol: TCP

 port: 80

Now, let's pick apart this network policy YAML since it will help us explain some more
complicated network policies as we progress.

First, in our spec, we have a podSelector, which works similarly to node selectors in
functionality. Here, we are using matchLabels to specify that this network policy will
only affect Pods with the label app=server.

Next, we specify a policy type for our network policy. There are two policy types:
ingress and egress. A network policy can specify one or both types. ingress refers
to making network rules that come into effect for connections to the matched Pods,
and egress refers to network rules that come into effect for connections leaving the
matched Pods.

In this specific network policy, we are simply dictating a single ingress rule: the only
traffic that will be accepted by Pods with the label app=server is traffic that originates
from Pods with the label app:frontend. Additionally, the only port that will accept
traffic on Pods with the label app=server is 80.

There can be multiple from blocks in an ingress policy set that correspond to multiple
traffic rules. Similarly, with egress, there can be multiple to blocks.

It is important to note that network policies work by namespace. By default, if there
isn't a single network policy in a namespace, there are no restrictions on Pod-to-Pod
communication within that namespace. However, as soon as a specific Pod is selected by
a single network policy, all traffic to and from that Pod must explicitly match a network
policy rule. If it doesn't match a rule, it will be blocked.

With this in mind, we can easily create policies that enforce broad restrictions on Pod
networking. Let's take a look at the following network policy:

Full-restriction-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: full-restriction-policy

 namespace: development

spec:

310 Kubernetes Security and Compliance

 policyTypes:

 - Ingress

 - Egress

 podSelector: {}

In this NetworkPolicy, we specify that we will be including both an Ingress and
Egress policy, but we don't write a block for either of them. This has the effect of
automatically denying any traffic for both Egress and Ingress since there are no rules
for traffic to match against.

Additionally, our {} Pod selector value corresponds to selecting every Pod in the
namespace. The end result of this rule is that every Pod in the development namespace
will not be able to accept ingress traffic or send egress traffic.

Important note
It is also important to note that network policies are interpreted by combining
all the separate network policies that affect a Pod and then applying the
combination of all those rules to Pod traffic.

This means that even though we have restricted all ingress and egress traffic in the
development namespace in our preceding example, we can still enable it for specific
Pods by adding another network policy.

Let's assume that now our development namespace has complete traffic restriction for
Pods, we want to allow a subset of Pods to receive network traffic on port 443 and send
traffic on port 6379 to a database Pod. In order to do this, we simply need to create a new
network policy that, by the additive nature of policies, allows this traffic.

This is what the network policy looks like:

Override-restriction-network-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: override-restriction-policy

 namespace: development

spec:

 podSelector:

 matchLabels:

Implementing tools for cluster configuration and container security 311

 app: server

 policyTypes:

 - Ingress

 - Egress

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: frontend

 ports:

 - protocol: TCP

 port: 443

 egress:

 - to:

 - podSelector:

 matchLabels:

 app: database

 ports:

 - protocol: TCP

 port: 6379

In this network policy, we are allowing our server Pods in the development namespace
to receive traffic from frontend Pods on port 443 and send traffic to database Pods on
port 6379.

If instead, we wanted to open up all Pod-to-Pod communication without any restrictions,
while still actually instituting a network policy, we could do so with the following YAML:

All-open-network-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: allow-all-egress

spec:

 podSelector: {}

 egress:

 - {}

312 Kubernetes Security and Compliance

 ingress:

 - {}

 policyTypes:

 - Egress

 - Ingress

Now we have discussed how we can use network policies to set rules on Pod-to-Pod
traffic. However, it is also possible to use network policies as an external-facing firewall
of sorts. To do this, we create network policy rules based not on Pods as origin or
destination, but external IPs.

Let's look at an example network policy where we are restricting communication to and
from a Pod, with a specific IP range as the target:

External-ip-network-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: specific-ip-policy

spec:

 podSelector:

 matchLabels:

 app: worker

 policyTypes:

 - Ingress

 - Egress

 ingress:

 - from:

 - ipBlock:

 cidr: 157.10.0.0/16

 except:

 - 157.10.1.0/24

 egress:

 - to:

 - ipBlock:

 cidr: 157.10.0.0/16

Handling intrusion detection, runtime security, and compliance on Kubernetes 313

 except:

 - 157.10.1.0/24

In this network policy, we are specifying a single Ingress rule and a single Egress rule.
Each of these rules accepts or denies traffic based not on which Pod it is coming from but
on the source IP of the network request.

In our case, we have selected a /16 subnet mask range (with a specified /24 CIDR
exception) for both our Ingress and Egress rules. This has the side effect of
preventing any traffic from within our cluster from reaching these Pods since none of our
Pod IPs will match the rules in a default cluster networking setup.

However, traffic from outside the cluster in the specified subnet mask (and not in the
exception range) will be able to both send traffic to the worker Pods and also be able to
accept traffic from the worker Pods.

With the end of our discussion on network policies, we can move onto a completely
different layer of the security stack – runtime security and intrusion detection.

Handling intrusion detection, runtime
security, and compliance on Kubernetes
Once you have set your Pod security policies and network policies – and generally
ensured that your configuration is as watertight as possible – there are still many attack
vectors that are possible in Kubernetes. In this section, we will focus on attacks from
within a Kubernetes cluster. Even with highly specific Pod security policies in place
(which definitely do help, to be clear), it is possible for containers and applications
running in your cluster to perform unexpected or malicious operations.

In order to solve this problem, many professionals look to runtime security tools, which
allow constant monitoring and alerting of application processes. For Kubernetes, a
popular open source tool that can accomplish this is Falco.

Installing Falco
Falco bills itself as a behavioral activity monitor for processes on Kubernetes. It can
monitor both your containerized applications running on Kubernetes as well as the
Kubernetes components themselves.

314 Kubernetes Security and Compliance

How does Falco work? In real time, Falco parses system calls from the Linux kernel. It
then filters these system calls through rules – which are sets of configurations that can be
applied to the Falco engine. Whenever a rule is broken by a system call, Falco triggers an
alert. It's that simple!

Falco ships with an extensive set of default rules that add significant observability at the
kernel level. Custom rules are of course supported by Falco – and we will show you how to
write them.

First, however, we need to install Falco on our cluster! Luckily, Falco can be installed using
Helm. However, it is very important to note that there are a few different ways to install
Falco, and they differ significantly in how effective they can be in the event of a breach.

We're going to be installing Falco using the Helm chart, which is simple and works well
for managed Kubernetes clusters, or any scenario where you may not have direct access to
the worker nodes.

However, for the best possible security posture, Falco should be installed directly onto the
Kubernetes nodes at the Linux level. The Helm chart, which uses a DaemonSet is great
for ease of use but is inherently not as secure as a direct Falco installation. To install Falco
directly to your nodes, check the installation instructions at https://falco.org/
docs/installation/.

With that caveat out of the way, we can install Falco using Helm:

1. First, we need to add the falcosecurity repo to our local Helm:

helm repo add falcosecurity https://falcosecurity.github.
io/charts

helm repo update

Next, we can proceed with actually installing Falco using Helm.

Important note
The Falco Helm chart has many possible variables that can be changed in the
values file – for a full review of those, you can check the official Helm chart
repo at https://github.com/falcosecurity/charts/tree/
master/falco.

https://falco.org/docs/installation/
https://falco.org/docs/installation/
https://github.com/falcosecurity/charts/tree/master/falco
https://github.com/falcosecurity/charts/tree/master/falco

Handling intrusion detection, runtime security, and compliance on Kubernetes 315

2. To install Falco, run the following:

helm install falco falcosecurity/falco

This command will install Falco using the default values, which you can see at https://
github.com/falcosecurity/charts/blob/master/falco/values.yaml.

Next, let's dive into what Falco offers a security-conscious Kubernetes administrator.

Understanding Falco's capabilities
As mentioned previously, Falco ships with a set of default rules, but we can easily add
more rules using new YAML files. Since we're using the Helm version of Falco, passing
custom rules to Falco is as simple as either creating a new values file or editing the default
one with custom rules.

Adding custom rules looks like this:

Custom-falco.yaml

customRules:

 my-rules.yaml: |-

 Rule1

 Rule2

 etc...

Now is a good time to discuss the structure of a Falco rule. To illustrate, let's borrow a few
lines of rules from the Default Falco ruleset that ships with the Falco Helm chart.

When specifying Falco configuration in YAML, we can use three different types of keys to
help compose our rules. These are macros, lists, and rules themselves.

The specific rule we're looking at in this example is called Launch Privileged
Container. This rule will detect when a privileged container has been started and log
some information about the container to STDOUT. Rules can do all sorts of things when it
comes to alerts, but logging to STDOUT is a good way to increase observability when high-
risk events happen.

First, let's look at the rule entry itself. This rule uses a few helper entries, several macros,
and lists – but we'll get to those in a second:

- rule: Launch Privileged Container

 desc: Detect the initial process started in a privileged
container. Exceptions are made for known trusted images.

https://github.com/falcosecurity/charts/blob/master/falco/values.yaml
https://github.com/falcosecurity/charts/blob/master/falco/values.yaml

316 Kubernetes Security and Compliance

 condition: >

 container_started and container

 and container.privileged=true

 and not falco_privileged_containers

 and not user_privileged_containers

 output: Privileged container started (user=%user.name
command=%proc.cmdline %container.info image=%container.image.
repository:%container.image.tag)

 priority: INFO

 tags: [container, cis, mitre_privilege_escalation, mitre_
lateral_movement]

As you can see, a Falco rule has several parts. First, we have the rule name and
description. Then, we specify the triggering condition for the rule – which acts as a filter
for Linux system calls. If a system call matches all the logic filters in the condition
block, the rule is triggered.

When a rule is triggered, the output key allows us to set a format for how the text of
the output appears. The priority key lets us assign a priority, which can be one of
emergency, alert, critical, error, warning, notice, informational,
and debug.

Finally, the tags key applies tags to the rule in question, making it easier to categorize
rules. This is especially important when using alerts that aren't simply plain text STDOUT
entries.

The syntax for condition is especially important here, and we will focus on how this
system of filtering works.

First off, since the filters are essentially logical statements, you will see some familiar
syntax (if you have ever programmed or written pseudocode) – and, and not, and so on.
This syntax is pretty simple to learn, and a full discussion of it – the Sysdig filter syntax
– can be found at https://github.com/draios/sysdig/wiki/sysdig-user-
guide#filtering.

As a note, the Falco open source project was originally created by Sysdig, which is why it
uses the common Sysdig filter syntax.

Next, you will see reference to container_started and container, as well as
falco_privileged_containers and user_privileged_containers. These
are not plain strings but the use of macros – references to other blocks in the YAML that
specify additional functionality, and generally make it much easier to write rules without
repeating a lot of configuration.

https://github.com/draios/sysdig/wiki/sysdig-user-guide#filtering
https://github.com/draios/sysdig/wiki/sysdig-user-guide#filtering

Handling intrusion detection, runtime security, and compliance on Kubernetes 317

To see how this rule really works, let's look at a full reference for all the macros that were
referenced in the preceding rule:

- macro: container

 condition: (container.id != host)

- macro: container_started

 condition: >

 ((evt.type = container or

 (evt.type=execve and evt.dir=< and proc.vpid=1)) and

 container.image.repository != incomplete)

- macro: user_sensitive_mount_containers

 condition: (container.image.repository = docker.io/sysdig/
agent)

- macro: falco_privileged_containers

 condition: (openshift_image or

 user_trusted_containers or

 container.image.repository in (trusted_images) or

 container.image.repository in (falco_privileged_
images) or

 container.image.repository startswith istio/
proxy_ or

 container.image.repository startswith quay.io/
sysdig)

- macro: user_privileged_containers

 condition: (container.image.repository endswith sysdig/agent)

You will see in the preceding YAML that each macro is really just a reusable block of
Sysdig filter syntax, often using other macros to accomplish the rule functionality. Lists,
not pictured here, are like macros except that they do not describe filter logic. Instead,
they include a list of string values that can be used as part of a comparison using the
filter syntax.

318 Kubernetes Security and Compliance

For instance, (trusted_images) in the falco_privileged_containers macro
references a list called trusted_images. Here's the source for that list:

- list: trusted_images

 items: []

As you can see, this particular list is empty in the default rules, but a custom ruleset could
use a list of trusted images in this list, which would then automatically be consumed by all
the other macros and rules that use the trusted_image list as part of their filter rules.

As mentioned previously, in addition to tracking Linux system calls, Falco can also track
Kubernetes control plane events as of Falco v0.13.0.

Understanding Kubernetes audit event rules in Falco
Structurally, these Kubernetes audit event rules work the same way as Falco's Linux
system call rules. Here's an example of one of the default Kubernetes rules in Falco:

- rule: Create Disallowed Pod

 desc: >

 Detect an attempt to start a pod with a container image
outside of a list of allowed images.

 condition: kevt and pod and kcreate and not allowed_k8s_
containers

 output: Pod started with container not in allowed list
(user=%ka.user.name pod=%ka.resp.name ns=%ka.target.namespace
images=%ka.req.pod.containers.image)

 priority: WARNING

 source: k8s_audit

 tags: [k8s]

This rule acts on Kubernetes audit events in Falco (essentially, control plane events) to
alert when a Pod is created that isn't on the list allowed_k8s_containers. The
default k8s audit rules contain many similar rules, most of which output formatted logs
when triggered.

Now, we talked about Pod security policies a bit earlier in this chapter – and you may
be seeing some similarities between PSPs and Falco Kubernetes audit event rules. For
instance, take this entry from the default Kubernetes Falco rules:

- rule: Create HostNetwork Pod

 desc: Detect an attempt to start a pod using the host

Handling intrusion detection, runtime security, and compliance on Kubernetes 319

network.

 condition: kevt and pod and kcreate and ka.req.pod.host_
network intersects (true) and not ka.req.pod.containers.image.
repository in (falco_hostnetwork_images)

 output: Pod started using host network (user=%ka.user.name
pod=%ka.resp.name ns=%ka.target.namespace images=%ka.req.pod.
containers.image)

 priority: WARNING

 source: k8s_audit

 tags: [k8s]

This rule, which is triggered when a Pod is attempting to start using the host network,
maps directly to host network PSP settings.

Falco capitalizes on this similarity by letting us use Falco as a way to trial new
Pod security policies without applying them cluster-wide and causing issues with
running Pods.

For this purpose, falcoctl (the Falco command-line tool) comes with the convert
psp command. This command takes in a Pod security policy definition and turns it into
a set of Falco rules. These Falco rules will just output logs to STDOUT when triggered
(instead of causing Pod scheduling failures like a PSP mismatch), which makes it much
easier to test out new Pod security policies in an existing cluster.

To learn how to use the falcoctl conversion tool, check out the official Falco
documentation at https://falco.org/docs/psp-support/.

Now that we have a good grounding on the Falco tool, let's discuss how it can be used to
implement compliance controls and runtime security.

Mapping Falco to compliance and runtime security use
cases
Because of its extensibility and ability to audit low-level Linux system calls, Falco is a great
tool for continuous compliance and runtime security.

On the compliance side, it is possible to leverage Falco rulesets that map specifically to the
requirements of a compliance standard – for instance, PCI or HIPAA. This allows users to
quickly detect and act on any processes that do not comply with the standard in question.
There are open and closed source Falco rulesets for several standards.

https://falco.org/docs/psp-support/

320 Kubernetes Security and Compliance

Similarly, for runtime security, Falco exposes an alerting/eventing system, which means
that any runtime events that trigger an alert can also trigger automated intervention and
remediation processes. This can work for both security and compliance. As an example,
if a Pod triggers a Falco alert for non-compliance, a process can work off that alert and
delete the offending Pod immediately.

Summary
In this chapter, we learned about security in the context of Kubernetes. First, we reviewed
the basics of security on Kubernetes – which layers of the security stack are relevant to our
cluster and some broad strokes of how to manage that complexity. Next, we learned about
some of the major security issues that Kubernetes has encountered, as well as discussing
the results of the 2019 security audit.

Then, we implemented security at two different levels of the stack in Kubernetes – first,
in configuration with Pod security policies and network policies, and finally, runtime
security with Falco.

In the next chapter, we will learn how to make Kubernetes your own by building custom
resources. This will allow you to add significant new functionality to your cluster.

Questions
1. What are the names of the two webhook controllers that a custom admission

controller can use?

2. What effect does a blank NetworkPolicy for ingress have?

3. What sort of Kubernetes control plane events would be valuable to track in order to
prevent attackers from altering Pod functionality?

Further reading
• Kubernetes CVE Database: https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=kubernetes

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kubernetes
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kubernetes

Section 4:
Extending

Kubernetes

In this section, you will take the knowledge you've gained in the previous sections and
apply it to advanced patterns on Kubernetes. We'll extend default Kubernetes functionality
using custom resource definitions, implement a service mesh and serverless patterns on
your cluster, and run some stateful workloads.

This part of the book comprises the following chapters:

• Chapter 13, Extending Kubernetes with CRDs

• Chapter 14, Service Meshes and Serverless

• Chapter 15, Stateful Workloads on Kubernetes

13
Extending

Kubernetes with
CRDs

This chapter explains the many possibilities for extending the functionality of Kubernetes.
It begins with a discussion of the Custom Resource Definition (CRD), a Kubernetes-
native way to specify custom resources that can be acted on by the Kubernetes API using
familiar kubectl commands such as get, create, describe, and apply. It is
followed by a discussion of the Operator pattern, an extension of the CRD. It then details
some of the hooks that cloud providers attach to their Kubernetes implementations, and
ends with a brief introduction to the greater cloud-native ecosystem. Using the concepts
learned in this chapter, you will be able to architect and develop extensions to your
Kubernetes cluster, unlocking advanced usage patterns.

The case study in this chapter will include creating two simple CRDs to support
an example application. We'll begin with CRDs, which will give you a good base
understanding of how extensions can build on the Kubernetes API.

In this chapter, we will cover the following topics:

• How to extend Kubernetes with Custom Resource Definitions (CRDs)

• Self-managing functionality with Kubernetes operators

324 Extending Kubernetes with CRDs

• Using cloud-specific Kubernetes extensions

• Integrating with the ecosystem

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up
and running with Kubernetes quickly, and for instructions on how to install the
kubectl tool.

The code used in this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/
master/Chapter13.

How to extend Kubernetes with custom
resource definitions
Let's start with the basics. What is a CRD? We know that Kubernetes has an API
model where we can perform operations against resources. Some examples of
Kubernetes resources (which you should be well acquainted with by now) are Pods,
PersistentVolumes, Secrets, and others.

Now, what if we want to implement some custom functionality in our cluster, write our
own controllers, and store the state of our controllers somewhere? We could, of course,
store the state of our custom functionality in a SQL or NoSQL database running on
Kubernetes or elsewhere (which is actually one of the strategies for extending Kubernetes)
– but what if our custom functionality acts more as an extension of Kubernetes
functionality, instead of a completely separate application?

In cases like this, we have two options:

• Custom resource definitions

• API aggregation

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter13
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter13
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter13

How to extend Kubernetes with custom resource definitions 325

API aggregation allows advanced users to build their own resource APIs outside of the
Kubernetes API server and use their own storage – and then aggregate those resources at
the API layer so they can be queried using the Kubernetes API. This is obviously highly
extensible and is essentially just using the Kubernetes API as a proxy to your own custom
functionality, which may or may not actually integrate with Kubernetes.

The other option is CRDs, where we can use the Kubernetes API and underlying data
store (etcd) instead of building our own. We can use the kubectl and kube api
methods that we know to interact with our own custom functionality.

In this book, we will not discuss API aggregation. While definitely more flexible than
CRDs, this is an advanced topic that deserves a thorough understanding of the Kubernetes
API and a thorough perusal of the Kubernetes documentation to do it right. You can
learn more about API aggregation in the Kubernetes documentation at https://
kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
apiserver-aggregation/.

So, now that we know that we are using the Kubernetes control plane as our own
stateful store for our new custom functionality, we need a schema. Similar to how the
Pod resource spec in Kubernetes expects certain fields and configurations, we can tell
Kubernetes what we expect for our new custom resources. Let's go through the spec for
a CRD now.

Writing a custom resource definition
For CRDs, Kubernetes uses the OpenAPI V3 specification. For more information on
OpenAPI V3, you can check the official documentation at https://github.com/
OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md, but
we'll soon see how exactly this translates into Kubernetes CRD definitions.

Let's take a look at an example CRD spec. Now let's be clear, this is not how YAMLs of
any specific record of this CRD would look. Instead, this is simply where we define the
requirements for the CRD inside of Kubernetes. Once created, Kubernetes will accept
resources matching the spec and we can start making our own records of this type.

Here's an example YAML for a CRD spec, which we are calling delayedjob. This highly
simplistic CRD is intended to start a container image job on a delay, which prevents users
from having to script in a delayed start for their container. This CRD is quite brittle, and
we don't recommend anyone actually use it, but it does well to highlight the process of
building a CRD. Let's start with a full CRD spec YAML, then break it down:

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md

326 Extending Kubernetes with CRDs

Custom-resource-definition-1.yaml

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: delayedjobs.delayedresources.mydomain.com

spec:

 group: delayedresources.mydomain.com

 versions:

 - name: v1

 served: true

 storage: true

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 delaySeconds:

 type: integer

 image:

 type: string

 scope: Namespaced

 conversion:

 strategy: None

 names:

 plural: delayedjobs

 singular: delayedjob

 kind: DelayedJob

 shortNames:

 - dj

Let's review the parts of this file. At first glance, it looks like your typical Kubernetes
YAML spec – and that's because it is! In the apiVersion field, we have
apiextensions.k8s.io/v1, which is the standard since Kubernetes 1.16
(before then it was apiextensions.k8s.io/v1beta1). Our kind will always be
CustomResourceDefinition.

How to extend Kubernetes with custom resource definitions 327

The metadata field is when things start to get specific to our resource. We need to
structure the name metadata field as the plural form of our resource, then a period,
then its group. Let's take a quick diversion from our YAML file to discuss how groups
work in the Kubernetes API.

Understanding Kubernetes API groups
Groups are a way that Kubernetes segments resources in its API. Each group corresponds
to a different subpath of the Kubernetes API server.

By default, there is a legacy group called the core group – which corresponds to resources
accessed on the /api/v1 endpoint in the Kubernetes REST API. By extension, these
legacy group resources have apiVersion: v1 in their YAML specs. An example of one
of the resources in the core group is the Pod.

Next, there is the set of named groups – which correspond to resources that can be
accessed on REST URLs formed as /apis/<GROUP NAME>/<VERSION>. These
named groups form the bulk of Kubernetes resources. However, the oldest and most basic
resources, such as the Pod, Service, Secret, and Volume, are in the core group. An example
of a resource that is in a named group is the StorageClass resource, which is in the
storage.k8s.io group.

Important note
To see which resource is in which group, you can check the official Kubernetes
API docs for whatever version of Kubernetes you are using. For example, the
version 1.18 docs would be at https://kubernetes.io/docs/
reference/generated/kubernetes-api/v1.18.

CRDs can specify their own named group, which means that the specific CRD will be
available on a REST endpoint that the Kubernetes API server can listen on. With that in
mind, let's get back to our YAML file, so we can talk about the main portion of the CRD –
the versions spec.

Understanding custom resource definition versions
As you can see, we have chosen the group delayedresources.mydomain.com.
This group would theoretically hold any other CRDs of the delayed kind – for instance,
DelayedDaemonSet or DelayedDeployment.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18

328 Extending Kubernetes with CRDs

Next, we have the main portion of our CRD. Under versions, we can define one
or more CRD versions (in the name field), along with the API specification for that
version of the CRD. Then, when you create an instance of your CRD, you can define
which version you will be using for the version parameter in the apiVersion key
of your YAML – for instance, apps/v1, or in this case, delayedresources.
mydomain.com/v1.

Each version item also has a served attribute, which is essentially a way to define
whether the given version is enabled or disabled. If served is false, the version will not
be created by the Kubernetes API, and the API requests (or kubectl commands) for that
version will fail.

In addition, it is possible to define a deprecated key on a specific version, which
will cause Kubernetes to return a warning message when requests are made to the
API using the deprecated version. This is how a CRD. yaml file with a deprecated version
looks – we have removed some of the spec to keep the YAML short:

Custom-resource-definition-2.yaml

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: delayedjob.delayedresources.mydomain.com

spec:

 group: delayedresources.mydomain.com

 versions:

 - name: v1

 served: true

 storage: false

 deprecated: true

 deprecationWarning: "DelayedJob v1 is deprecated!"

 schema:

 openAPIV3Schema:

 …

 - name: v2

 served: true

 storage: true

 schema:

 openAPIV3Schema:

How to extend Kubernetes with custom resource definitions 329

 ...

 scope: Namespaced

 conversion:

 strategy: None

 names:

 plural: delayedjobs

 singular: delayedjob

 kind: DelayedJob

 shortNames:

 - dj

As you can see, we have marked v1 as deprecated, and also include a deprecation warning
for Kubernetes to send as a response. If we do not include a deprecation warning, a default
message will be used.

Moving further down, we have the storage key, which interacts with the served
key. The reason this is necessary is that while Kubernetes supports multiple active (aka
served) versions of a resource at the same time, only one of those versions can be stored
in the control plane. However, the served attribute means that multiple versions of
a resource can be served by the API. So how does that even work?

The answer is that Kubernetes will convert the CRD object from whatever the stored
version is to the version you ask for (or vice versa, when creating a resource).

How is this conversion handled? Let's skip past the rest of the version attributes to the
conversion key to see how.

The conversion key lets you specify a strategy for how Kubernetes will convert CRD
objects between whatever your served version is and whatever the stored version is.
If the two versions are the same – for instance, if you ask for a v1 resource and the stored
version is v1, then no conversion will happen.

The default value here as of Kubernetes 1.13 is none. With the none setting, Kubernetes
will not do any conversion between fields. It will simply include the fields that are
supposed to be present on the served (or stored, if creating a resource) version.

The other possible conversion strategy is Webhook, which allows you to define a custom
webhook that will take in one version and do the proper conversion to your intended
version. Here is an example of our CRD with a Webhook conversion strategy – we've cut
out some of the version schema for conciseness:

330 Extending Kubernetes with CRDs

Custom-resource-definition-3.yaml

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: delayedjob.delayedresources.mydomain.com

spec:

 group: delayedresources.mydomain.com

 versions:

 - name: v1

 served: true

 storage: true

 schema:

 openAPIV3Schema:

 ...

 scope: Namespaced

 conversion:

 strategy: Webhook

 webhook:

 clientConfig:

 url: "https://webhook-conversion.com/delayedjob"

 names:

 plural: delayedjobs

 singular: delayedjob

 kind: DelayedJob

 shortNames:

 - dj

As you can see, the Webhook strategy lets us define a URL that requests will be made to
with information about the incoming resource object, its current version, and the version
it needs to be converted to.

The idea is that our Webhook server will then handle the conversion and pass back the
corrected Kubernetes resource object. The Webhook strategy is complex and can have
many possible configurations, which we will not get into in depth in this book.

How to extend Kubernetes with custom resource definitions 331

Important note
To see how conversion Webhooks can be configured, check the official
Kubernetes documentation at https://kubernetes.io/docs/
tasks/extend-kubernetes/custom-resources/custom-
resource-definition-versioning/.

Now, back to our version entry in the YAML! Under the served and storage keys,
we see the schema object, which contains the actual specification of our resource. As
previously mentioned, this follows the OpenAPI Spec v3 schema.

The schema object, which was removed from the preceding code block for space reasons,
is as follows:

Custom-resource-definition-3.yaml (continued)

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 delaySeconds:

 type: integer

 image:

 type: string

As you can see, we support a field for delaySeconds, which will be an integer, and
image, which is a string that corresponds to our container image. If we really wanted to
make the DelayedJob production-ready, we would want to include all sorts of other
options to make it closer to the original Kubernetes Job resource – but that isn't our
intent here.

Moving further back in the original code block, outside the versions list, we see
some other attributes. First is the scope attribute, which can be either Cluster
or Namespaced. This tells Kubernetes whether to treat instances of the CRD object
as namespace-specific resources (such as Pods, Deployments, and so on) or instead as
cluster-wide resources – like namespaces themselves, since getting namespace objects
within a namespace doesn't make any sense!

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/

332 Extending Kubernetes with CRDs

Finally, we have the names block, which lets you define both a plural and singular form of
your resource name, to be used in various situations (for instance, kubectl get pods
and kubectl get pod both work).

The names block also lets you define the camel-cased kind value, which will be used in
the resource YAML, as well as one or more shortNames, which can be used to refer to
the resource in the API or kubectl – for instance, kubectl get po.

With our CRD specification YAML explained, let's take a look at an instance of our
CRD – as defined by the spec we just reviewed, the YAML will look like this:

Delayed-job.yaml

apiVersion: delayedresources.mydomain.com/v1

kind: DelayedJob

metadata:

 name: my-instance-of-delayed-job

spec:

 delaySeconds: 6000

 image: "busybox"

As you can see, this is just like our CRD defined this object. Now, with all our pieces in
place, let's test out our CRD!

Testing a custom resource definition
Let's go ahead and test out our CRD concept on Kubernetes:

1. First, let's create the CRD spec in Kubernetes – the same way we would create any
other object:

kubectl apply -f delayedjob-crd-spec.yaml

This will result in the following output:
customresourcedefinition "delayedjob.delayedresources.
mydomain.com" has been created

2. Now, Kubernetes will accept requests for our DelayedJob resource. We can test
this out by finally creating one using the preceding resource YAML:

kubectl apply -f my-delayed-job.yaml

Self-managing functionality with Kubernetes operators 333

If we've defined our CRD properly, we will see the following output:

delayedjob "my-instance-of-delayed-job" has been created

As you can see, the Kubernetes API server has successfully created our instance of
DelayedJob!

Now, you may be asking a very relevant question – now what? This is an excellent
question, because the truth is that we have accomplished nothing more so far than
essentially adding a new table to the Kubernetes API database.

Just because we gave our DelayedJob resource an application image and
a delaySeconds field does not mean that any functionality like what we intend will
actually occur. By creating our instance of DelayedJob, we have just added an entry to
that table. We can fetch it, edit it, or delete it using the Kubernetes API or kubectl
commands, but no application functionality has been implemented.

In order to actually get our DelayedJob resource to do something, we need a custom
controller that will take our instance of DelayedJob and do something with it. In
the end, we still need to implement actual container functionality using the official
Kubernetes resources – Pods et al.

This is what we're going to discuss now. There are many ways to build custom controllers
for Kubernetes, but a popular way is the Operator pattern. Let's move onto the next
section to see how we can give our DelayedJob resource a life of its own.

Self-managing functionality with Kubernetes
operators
No discussion of Kubernetes operators would be possible without first discussing the
Operator Framework. A common misconception is that operators are specifically built
via the Operator Framework. The Operator Framework is an open source framework
originally created by Red Hat to make it easy to write Kubernetes operators.

In reality, an operator is simply a custom controller that interfaces with Kubernetes and
acts on resources. The Operator Framework is one opinionated way to make Kubernetes
operators, but there are many other open source frameworks you can use – or, you can
make one from scratch!

When building an operator using frameworks, two of the most popular options are the
aforementioned Operator Framework and Kubebuilder.

334 Extending Kubernetes with CRDs

Both of these projects have a lot in common. They both make use of controller-
tools and controller-runtime, which are two libraries for building Kubernetes
controllers that are officially supported by the Kubernetes project. If you are building an
operator from scratch, using these officially supported controller libraries will make things
much easier.

Unlike the Operator Framework, Kubebuilder is an official part of the Kubernetes project,
much like the controller-tools and controller-runtime libraries – but both
projects have their pros and cons. Importantly, both these options, and the Operator
pattern in general, have the controller running on the cluster. It may seem obvious that
this is the best option, but you could run your controller outside of the cluster and have
it work the same. To get started with the Operator Framework, check the official GitHub
at https://github.com/operator-framework. For Kubebuilder, you can check
https://github.com/kubernetes-sigs/kubebuilder.

Most operators, regardless of the framework, follow a control-loop paradigm – let's see
how this idea works.

Mapping the operator control loop
A control loop is a control scheme in system design and programming that consists of
a never-ending loop of logical processes. Typically, a control loop implements a measure-
analyze-adjust approach, where it measures the current state of the system, analyzes what
changes are required to bring it in line with the intended state, and then adjusts the system
components to bring it in line with (or at least closer to) the intended state.

In Kubernetes operators or controllers specifically, this operation usually works like this:

1. First, a watch step – that is, watching the Kubernetes API for changes in the
intended state, which is stored in etcd.

2. Then, an analyze step – which is the controller deciding what to do to bring the
cluster state in line with the intended state.

3. And lastly, an update step – which is updating the cluster state to fulfill the intent
of the cluster changes.

To help understand the control loop, here is a diagram showing how the pieces fit
together:

https://github.com/operator-framework
https://github.com/kubernetes-sigs/kubebuilder

Self-managing functionality with Kubernetes operators 335

Figure 13.1 – Measure Analyze Update Loop

Let's use the Kubernetes scheduler – which is itself a control loop process – to
illustrate this:

1. Let's start with a hypothetical cluster in a steady state: all Pods are scheduled, Nodes
are healthy, and everything is operating normally.

2. Then, a user creates a new Pod.

We've discussed before that the kubelet works on a pull basis. This means that when
a kubelet creates a Pod on its Node, that Pod was already assigned to that Node via the
scheduler. However, when Pods are first created via a kubectl create or kubectl
apply command, the Pod isn't scheduled or assigned anywhere. This is where our
scheduler control loop starts:

1. The first step is Measure, where the scheduler reads the state of the Kubernetes API.
When listing Pods from the API, it discovers that one of the Pods is not assigned to
a Node. It now moves to the next step.

2. Next, the scheduler performs an analysis of the cluster state and Pod requirements
in order to decide which Node the Pod should be assigned to. As we discussed in
previous chapters, this takes into account Pod resource limits and requests, Node
statuses, placement controls, and so on, which makes it a fairly complex process.
Once this processing is complete, the update step can start.

336 Extending Kubernetes with CRDs

3. Finally, Update – the scheduler updates the cluster state by assigning the Pod to the
Node obtained from the step 2 analysis. At this point, the kubelet takes over on its
own control loop and creates the relevant container(s) for the Pod on its Node.

Next, let's take what we learned from the scheduler control loop and apply it to our very
own DelayedJob resource.

Designing an operator for a custom resource
definition
Actually, coding an operator for our DelayedJob CRD is outside the scope of our
book since it requires knowledge of a programming language. If you're choosing
a programming language to build an operator with, Go offers the most interoperability
with the Kubernetes SDK, controller-tools, and controller-runtime, but any
programming language where you can write HTTP requests will work, since that
is the basis for all of the SDKs.

However, we will still walk through the steps of implementing an operator for our
DelayedJob CRD with some pseudocode. Let's take it step by step.

Step 1: Measure
First comes the Measure step, which we will implement in our pseudocode as a while
loop that runs forever. In a production implementation, there would be debouncing,
error handling, and a bunch of other concerns, but we'll keep it simple for this illustrative
example.

Take a look at the pseudo code for this loop, which is essentially the main function of our
application:

Main-function.pseudo

// The main function of our controller

function main() {

 // While loop which runs forever

 while() {

 // fetch the full list of delayed job objects from the
cluster

 var currentDelayedJobs = kubeAPIConnector.
list("delayedjobs");

 // Call the Analysis step function on the list

Self-managing functionality with Kubernetes operators 337

 var jobsToSchedule =
analyzeDelayedJobs(currentDelayedJobs);

 // Schedule our Jobs with added delay

 scheduleDelayedJobs(jobsToSchedule);

 wait(5000);

 }

}

As you can see, the loop in our main function calls the Kubernetes API to find a list of the
delayedjobs CRDs stored in etcd. This is the measure step. It then calls the analysis
step, and with the results of that, calls the update step to schedule any DelayedJobs that
need to be scheduled.

Important note
Keep in mind that the Kubernetes scheduler is still going to do the actual
container scheduling in this example – but we need to boil down our
DelayedJob into an official Kubernetes resource first.

After the update step, our loop waits for a full 5 seconds before performing the loop again.
This sets the cadence of the control loop. Next, let's move on to the analysis step.

Step 2: Analyze
Next, let's review the Analysis step of our operator, which is the analyzeDelayedJobs
function in our controller pseudocode:

Analysis-function.pseudo

// The analysis function

function analyzeDelayedJobs(listOfDelayedJobs) {

 var listOfJobsToSchedule = [];

 foreach(dj in listOfDelayedJobs) {

 // Check if dj has been scheduled, if not, add a Job object
with

 // added delay command to the to schedule array

 if(dj.annotations["is-scheduled"] != "true") {

 listOfJobsToSchedule.push({

 Image: dj.image,

 Command: "sleep " + dj.delaySeconds + "s",

338 Extending Kubernetes with CRDs

 originalDjName: dj.name

 });

 }

 }

 return listOfJobsToSchedule;

}

As you can see, the preceding function loops through the list of DelayedJob
objects from the cluster as passed from the Measure loop. It then checks to see if the
DelayedJob has been scheduled yet by checking the value of one of the object's
annotations. If it hasn't been scheduled yet, it adds an object to an array called
listOfJobsToSchedule, which contains the image specified in the DelayedJob
object, a command to sleep for the number of seconds that was specified in the
DelayedJob object, and the original name of the DelayedJob, which we will use to
mark as scheduled in the Update step.

Finally, in the Analyze step the analyzeDelayedJobs function returns our newly
created listOfJobsToSchedule array back to the main function. Let's wrap up
our Operator design with the final update step, which is the scheduleDelayedJobs
function in our main loop.

Step 3: Update
Finally, the Update part of our control loop will take the outputs from our analysis and
update the cluster as necessary to create the intended state. Here's the pseudocode:

Update-function.pseudo

// The update function

function scheduleDelayedJobs(listOfJobs) {

 foreach(job in listOfDelayedJobs) {

 // First, go ahead and schedule a regular Kubernetes Job

 // which the Kube scheduler can pick up on.

 // The delay seconds have already been added to the job
spec

 // in the analysis step

 kubeAPIConnector.create("job", job.image, job.command);

 // Finally, mark our original DelayedJob with a "scheduled"

 // attribute so our controller doesn't try to schedule it
again

Using cloud-specific Kubernetes extensions 339

 kubeAPIConnector.update("delayedjob", job.originalDjName,

 annotations: {

 "is-scheduled": "true"

 });

 }

}

In this case, we are taking our regular Kubernetes object, which was derived from our
DelayedJob object, and creating it in Kubernetes so the Kube scheduler can pick up on
it, create the relevant Pod, and manage it. Once we create the regular Job object with the
delay, we also update our DelayedJob CRD instance with an annotation that sets the
is-scheduled annotation to true, preventing it from getting rescheduled.

This completes our control loop – from this point, the Kube scheduler takes over and
our CRD is given life as a Kubernetes Job object, which controls a Pod, which is finally
assigned to a Node and a container is scheduled to run our code!

This example is of course highly simplified, but you would be surprised how many
Kubernetes operators perform a simple control loop to coordinate CRDs and boil them
down to basic Kubernetes resources. Operators can get very complicated and perform
application-specific functions such as backing up databases, emptying Persistent Volumes,
and others – but this functionality is usually tightly coupled to whatever is being
controlled.

Now that we've discussed the Operator pattern in a Kubernetes controller, we can talk
about some of the open source options for cloud-specific Kubernetes controllers.

Using cloud-specific Kubernetes extensions
Usually available by default in managed Kubernetes services such as Amazon EKS, Azure
AKS, and Google Cloud's GKE, cloud-specific Kubernetes extensions and controllers can
integrate tightly with the cloud platform in question and make it easy to control other
cloud resources from Kubernetes.

Even without adding any additional third-party components, a lot of this cloud-specific
functionality is available in upstream Kubernetes via the cloud-controller-manager
(CCM) component, which contains many options for integrating with the major cloud
providers. This is the functionality that is usually enabled by default in the managed
Kubernetes services on each public cloud – but they can be integrated with any cluster
running on that specific cloud platform, managed or not.

340 Extending Kubernetes with CRDs

In this section, we will review a few of the more common cloud extensions to Kubernetes,
both in cloud-controller-manager (CCM) and functionality that requires the installation
of other controllers such as external-dns and cluster-autoscaler. Let's start with some of
the heavily used CCM functionality.

Understanding the cloud-controller-manager
component
As reviewed in Chapter 1, Communicating with Kubernetes, CCM is an officially supported
Kubernetes controller that provides hooks into the functionality of several public cloud
services. To function, the CCM component needs to be started with access permissions
to the cloud service in question – for instance, an IAM role in AWS.

For officially supported clouds such as AWS, Azure, and Google Cloud, CCM can simply
be run as a DaemonSet within the cluster. We use a DaemonSet since CCM can perform
tasks such as creating persistent storage in the cloud provider, and it needs to be able to
attach storage to specific Nodes. If you're using a cloud that isn't officially supported,
you can run CCM for that specific cloud, and you should follow the specific instructions
in that project. These alternate types of CCM are usually open source and can be found
on GitHub. For the specifics of installing CCM, let's move on to the next section.

Installing cloud-controller-manager
Typically, CCM is configured when the cluster is created. As mentioned in the previous
section, managed services such as EKS, AKS, and GKE will already have this component
enabled, but even Kops and Kubeadm expose the CCM component as a flag in the
installation process.

Assuming you have not installed CCM any other way and plan to use one of the officially
supported public clouds from the upstream version, you can install CCM as a DaemonSet.

First, you will need a ServiceAccount:

Service-account.yaml

apiVersion: v1

kind: ServiceAccount

metadata:

 name: cloud-controller-manager

 namespace: kube-system

Using cloud-specific Kubernetes extensions 341

This ServiceAccount will be used to give the necessary access to the CCM.

Next, we'll need a ClusterRoleBinding:

Clusterrolebinding.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: system:cloud-controller-manager

subjects:

- kind: ServiceAccount

 name: cloud-controller-manager

 namespace: kube-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

As you can see, we need to give the cluster-admin role access to our CCM service
account. The CCM will need to be able to edit Nodes, among other things.

Finally, we can deploy the CCM DaemonSet itself. You will need to fill in this YAML file
with the proper settings for your specific cloud provider – check your cloud provider's
documentation on Kubernetes for this information.

The DaemonSet spec is quite long, so we'll review it in two parts. First, we have the
template for the DaemonSet with the required labels and names:

Daemonset.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

 labels:

 k8s-app: cloud-controller-manager

 name: cloud-controller-manager

 namespace: kube-system

spec:

 selector:

342 Extending Kubernetes with CRDs

 matchLabels:

 k8s-app: cloud-controller-manager

 template:

 metadata:

 labels:

 k8s-app: cloud-controller-manager

As you can see, to match our ServiceAccount, we are running the CCM in the
kube-system namespace. We are also labeling the DaemonSet with the k8s-app label
to distinguish it as a Kubernetes control plane component.

Next, we have the spec of the DaemonSet:

Daemonset.yaml (continued)

 spec:

 serviceAccountName: cloud-controller-manager

 containers:

 - name: cloud-controller-manager

 image: k8s.gcr.io/cloud-controller-manager:<current ccm
version for your version of k8s>

 command:

 - /usr/local/bin/cloud-controller-manager

 - --cloud-provider=<cloud provider name>

 - --leader-elect=true

 - --use-service-account-credentials

 - --allocate-node-cidrs=true

 - --configure-cloud-routes=true

 - --cluster-cidr=<CIDR of the cluster based on Cloud
Provider>

 tolerations:

 - key: node.cloudprovider.kubernetes.io/uninitialized

 value: "true"

 effect: NoSchedule

 - key: node-role.kubernetes.io/master

 effect: NoSchedule

 nodeSelector:

 node-role.kubernetes.io/master: ""

Using cloud-specific Kubernetes extensions 343

As you can see, there are a couple of places in this spec that you will need to review
your chosen cloud provider's documentation or cluster networking setup to find the
proper values. Particularly in the networking flags such as --cluster-cidr and
--configure-cloud-routes, where values could change based on how you have set
up your cluster, even on a single cloud provider.

Now that we have CCM running on our cluster one way or another, let's dive into some of
the capabilities it provides.

Understanding the cloud-controller-manager
capabilities
The default CCM provides capabilities in a few key areas. For starters, the CCM contains
subsidiary controllers for Nodes, routes, and Services. Let's review each in turn to see
what it affords us, starting with the Node/Node lifecycle controller.

The CCM Node/Node lifecycle controller
The CCM Node controller makes sure that the cluster state, as far as which Nodes are in
the cluster, is equivalent to what is in the cloud provider's systems. A simple example of
this is autoscaling groups in AWS. When using AWS EKS (or just Kubernetes on AWS
EC2, though that requires additional configuration), it is possible to configure worker
node groups in an AWS autoscaling group that will scale up or down depending on the
CPU or memory usage of the nodes. When these nodes are added and initialized by the
cloud provider, the CCM nodes controller will ensure that the cluster has a node resource
for each Node presented by the cloud provider.

Next, let's move on to the routes controller.

The CCM routes controller
The CCM routes controller takes care of configuring your cloud provider's networking
settings in a way that supports a Kubernetes cluster. This can include the allocation of IPs
and setting routes between Nodes. The services controller also handles networking – but
the external aspect.

344 Extending Kubernetes with CRDs

The CCM services controller
The CCM services controller provides a lot of the "magic" of running Kubernetes on
a public cloud provider. One such aspect that we reviewed in Chapter 5, Services and
Ingress – Communicating with the Outside World, is the LoadBalancer service. For
instance, on a cluster configured with AWS CCM, a Service of type LoadBalancer
will automatically configure a matching AWS Load Balancer resource, providing an easy
way to expose services in your cluster without dealing with NodePort settings or even
Ingress.

Now that we understand what the CCM provides, we can venture further and talk
about a couple of the other cloud provider extensions that are often used when running
Kubernetes on the public cloud. First, let's look at external-dns.

Using external-dns with Kubernetes
The external-dns library is an officially supported Kubernetes add-on that allows the
cluster to configure external DNS providers to provide DNS resolution for services and
ingress in an automated fashion. The external-dns add-on supports a broad range of
cloud providers such as AWS and Azure, and also other DNS services such as Cloudflare.

Important note
In order to install external-dns, you can check the official GitHub
repository at https://github.com/kubernetes-sigs/
external-dns.

Once external-dns is implemented on your cluster, it's simple to create new DNS
records in an automated fashion. To test external-dns with a service, we simply need
to create a service in Kubernetes with the proper annotation.

Let's see what this looks like:

service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-service-with-dns

 annotations:

 external-dns.alpha.kubernetes.io/hostname: myapp.mydomain.
com

https://github.com/kubernetes-sigs/external-dns
https://github.com/kubernetes-sigs/external-dns

Using cloud-specific Kubernetes extensions 345

spec:

 type: LoadBalancer

 ports:

 - port: 80

 name: http

 targetPort: 80

 selector:

 app: my-app

As you can see, we only need to add an annotation for the external-dns controller to
check, with the domain record to be created in DNS. The domain and hosted zone must
of course be accessible by your external-dns controller – for instance, on AWS Route
53 or Azure DNS. Check the specific documentation on the external-dns GitHub
repository for specifics.

Once the Service is up and running, external-dns will pick up the annotation and
create a new DNS record. This pattern is excellent for multi-tenancy or per-version
deploys since with something like a Helm chart, variables can be used to change the
domain depending on which version or branch of the application is deployed – for
instance, v1.myapp.mydomain.com.

For Ingress, this is even easier – you just need to specify a host on your Ingress record,
like so:

ingress.yaml

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: my-domain-ingress

 annotations:

 kubernetes.io/ingress.class: "nginx".

spec:

 rules:

 - host: myapp.mydomain.com

 http:

 paths:

 - backend:

 serviceName: my-app-service

 servicePort: 80

346 Extending Kubernetes with CRDs

This host value will automatically create a DNS record pointing to whatever method your
Ingress is using – for instance, a Load Balancer on AWS.

Next, let's talk about how the cluster-autoscaler library works.

Using the cluster-autoscaler add-on
Similar to external-dns, cluster-autoscaler is an officially supported add-on
for Kubernetes that supports some major cloud providers with specific functionality. The
purpose of cluster-autoscaler is to trigger the scaling of the number of Nodes in
a cluster. It performs this process by controlling the cloud provider's own scaling
resources, such as AWS autoscaling groups.

The cluster autoscaler will perform an upward scaling action the moment any single Pod
fails to schedule due to resource constraints on a Node, but only if a Node of the existing
Node size (for instance, a t3.medium sized Node in AWS) would allow the Pod to be
scheduled.

Similarly, the cluster autoscaler will perform a downward scaling action the moment any
Node could be emptied of Pods without causing memory or CPU pressure on any of the
other Nodes.

To install cluster-autoscaler, simply follow the correct instructions from your
cloud provider, for the cluster type and intended version of the cluster-autoscaler.
For instance, the AWS installation instructions for cluster-autoscaler on EKS are
found at https://aws.amazon.com/premiumsupport/knowledge-center/
eks-cluster-autoscaler-setup/.

Next, let's look at how you can find open and closed source extensions for Kubernetes by
examining the Kubernetes ecosystem.

Integrating with the ecosystem
The Kubernetes (and more generally, cloud-native) ecosystem is massive, consisting of
hundreds of popular open source software libraries, and thousands more fledgling ones.
This can be tough to navigate since every month brings new technologies to vet, and
acquisitions, rollups, and companies going out of business can turn your favorite open
source library into an unmaintained mess.

https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-autoscaler-setup/
https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-autoscaler-setup/

Integrating with the ecosystem 347

Thankfully, there is some structure in this ecosystem, and it's worth knowing about it
in order to help navigate the dearth of options in cloud-native open source. The first big
structural component of this is the Cloud Native Computing Foundation or CNCF.

Introducing the Cloud Native Computing Foundation
The CNCF is a sub-foundation of the Linux Foundation, which is a non-profit entity
that hosts open source projects and coordinates an ever-changing list of companies that
contribute to and use open source software.

The CNCF was founded almost entirely to shepherd the future of the Kubernetes
project. It was announced alongside the 1.0 release of Kubernetes and has since grown to
encompass hundreds of projects in the cloud-native space – from Prometheus to Envoy to
Helm, and many more.

The best way to see an overview of the CNCF's constituent projects is to check out the
CNCF Cloud Native Landscape, which can be found at https://landscape.cncf.
io/.

The CNCF Landscape is a good place to start if you are interested in possible solutions
to a problem you are experiencing with Kubernetes or cloud-native. For every category
(monitoring, logging, serverless, service mesh, and others), there are several open source
options to vet and choose from.

This is both a strength and weakness of the current ecosystem of cloud-native
technologies. There are a significant number of options available, which makes the correct
path often unclear, but also means that you will likely be able to find a solution that is
close to your exact needs.

The CNCF also operates an official Kubernetes forum, which can be joined from the
Kubernetes official website at kubernetes.io. The URL of the Kubernetes forums is
https://discuss.kubernetes.io/.

Finally, it is relevant to mention KubeCon/CloudNativeCon, a large conference that is run
by the CNCF and encompasses topics including Kubernetes itself and many ecosystem
projects. KubeCon gets larger every year, with almost 12,000 attendees for KubeCon North
America in 2019.

https://landscape.cncf.io/
https://landscape.cncf.io/
http://kubernetes.io
https://discuss.kubernetes.io/

348 Extending Kubernetes with CRDs

Summary
In this chapter, we learned about extending Kubernetes. First, we talked about CRDs
– what they are, some relevant use cases, and how to implement them in your cluster.
Next, we reviewed the concept of an operator in Kubernetes and discussed how to use an
operator, or custom controller, to give life to your CRD.

Then, we discussed cloud-provider-specific extensions to Kubernetes including
cloud-controller-manager, external-dns, and cluster-autoscaler.
Finally, we wrapped up with an introduction to the cloud-native open source ecosystem
at large and some great ways to discover projects for your use case.

The skills you used in this chapter will help you extend your Kubernetes cluster to
interface with your cloud provider as well as your own custom functionality.

In the next chapter, we'll talk about two nascent architectural patterns as applied to
Kubernetes – serverless and service meshes.

Questions
1. What is the difference between a served version and a stored version of a CRD?

2. What are three typical parts of a custom controller or operator control loop?

3. How does cluster-autoscaler interact with existing cloud provider scaling
solutions such as AWS autoscaling groups?

Further reading
• CNCF Landscape: https://landscape.cncf.io/

• Official Kubernetes Forums: https://discuss.kubernetes.io/

https://landscape.cncf.io/
https://discuss.kubernetes.io/

14
Service Meshes and

Serverless
This chapter discusses advanced Kubernetes patterns. First, it details the in-vogue service
mesh pattern, where observability and service-to-service discovery are handled by
a sidecar proxy, as well as a guide to setting up Istio, a popular service mesh. Lastly, it
describes the serverless pattern and how it can be applied in Kubernetes. The major case
study in this chapter will include setting up Istio for an example application and service
discovery, along with Istio ingress gateways.

Let's start with a discussion of the sidecar proxy, which builds the foundation of service-
to-service connectivity for service meshes.

In this chapter, we will cover the following topics:

• Using sidecar proxies

• Adding a service mesh to Kubernetes

• Implementing serverless on Kubernetes

350 Service Meshes and Serverless

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool, along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up
and running with Kubernetes quickly, and for instructions on how to install the
kubectl tool.

The code used in this chapter can be found in the book's GitHub repository at
https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter14.

Using sidecar proxies
As we mentioned earlier in this book, a sidecar is a pattern where a Pod contains another
container in addition to the actual application container to be run. This additional "extra"
container is the sidecar. Sidecars can be used for a number of different reasons. Some of
the most popular uses for sidecars are monitoring, logging, and proxying.

For logging, a sidecar container can fetch application logs from the application container
(since they can share volumes and communicate on localhost), before sending the logs
to a centralized logging stack, or parsing them for the purpose of alerting. It's a similar
story for monitoring, where the sidecar Pod can track and send metrics about the
application Pod.

With a sidecar proxy, when requests come into the Pod, they first go to the proxy
container, which then routes requests (after logging or performing other filtering) to the
application container. Similarly, when requests leave the application container, they first
go to the proxy, which can provide routing out of the Pod.

Normally, proxy sidecars such as NGINX only provide proxying for requests coming
into a Pod. However, in the service mesh pattern, both requests coming into and leaving
the Pod go through the proxy, which provides the foundation for the service mesh
pattern itself.

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter14
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter14

Using sidecar proxies 351

Refer to the following diagram to see how a sidecar proxy can interact with an application
container:

Figure 14.1 – Proxy sidecar

As you can see, the sidecar proxy is in charge of routing requests to and from the
application container in the Pod, allowing for functionality such as service routing,
logging, and filtering.

The sidecar proxy pattern is an alternative to a DaemonSet-based proxy, where a proxy
Pod on each node handles proxying to other Pods on that node. The Kubernetes proxy
itself is similar to a DaemonSet pattern. Using a sidecar proxy can provide more flexibility
than using a DaemonSet proxy, at the expense of performance efficiency, since many extra
containers need to be run.

Some popular proxy options for Kubernetes include the following:

• NGINX

• HAProxy

• Envoy

While NGINX and HAProxy are more traditional proxies, Envoy was built specifically for
a distributed, cloud-native environment. For this reason, Envoy forms the core of popular
service meshes and API gateways built for Kubernetes.

Before we get to Envoy, let's discuss the installation of other proxies as sidecars.

352 Service Meshes and Serverless

Using NGINX as a sidecar reverse proxy
Before we specify how NGINX can be used as a sidecar proxy, it is relevant to note that in
an upcoming Kubernetes release, the sidecar will be a Kubernetes resource type that will
allow easy injection of sidecar containers to large numbers of Pods. Currently however,
sidecar containers must be specified at the Pod or controller (ReplicaSet, Deployment, and
others) level.

Let's take a look at how we can configure NGINX as a sidecar, with the following
Deployment YAML, which we will not create just yet. This process is a bit more manual
than using the NGINX Ingress Controller.

We've split the YAML into two parts for space reasons and trimmed some of the fat, but
you can see it in its entirety in the code repository. Let's start with the containers spec for
our deployment:

Nginx-sidecar.yaml:

 spec:

 containers:

 - name: myapp

 image: ravirdv/http-responder:latest

 imagePullPolicy: IfNotPresent

 - name: nginx-sidecar

 image: nginx

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: secrets

 mountPath: /app/cert

 - name: config

 mountPath: /etc/nginx/nginx.conf

 subPath: nginx.conf

As you can see, we specify two containers, both our main app container, myapp, and the
nginx sidecar, where we inject some configuration via volume mounts, as well as some
TLS certificates.

Using sidecar proxies 353

Next, let's look at the volumes spec in the same file, where we inject some certs (from a
secret) and config (from a ConfigMap):

 volumes:

 - name: secrets

 secret:

 secretName: nginx-certificates

 items:

 - key: server-cert

 path: server.pem

 - key: server-key

 path: server-key.pem

 - name: config

 configMap:

 name: nginx-configuration

As you can see, we need both a cert and a secret key.

Next, we need to create the NGINX configuration using ConfigMap. The NGINX
configuration looks like this:

nginx.conf:

http {

 sendfile on;

 include mime.types;

 default_type application/octet-stream;

 keepalive_timeout 80;

 server {

 ssl_certificate /app/cert/server.pem;

 ssl_certificate_key /app/cert/server-key.pem;

 ssl_protocols TLSv1.2;

 ssl_ciphers
EECDH+AES128:RSA+AES128:EECDH+AES256:RSA+AES256:
!EECDH+3DES:!RSA+3DES:!MD5;

 ssl_prefer_server_ciphers on;

 listen 443 ssl;

 server_name localhost;

 location / {

354 Service Meshes and Serverless

 proxy_set_header X-Forwarded-For $proxy_add_x_
forwarded_for;

 proxy_set_header Host $http_host;

 proxy_pass http://127.0.0.1:5000/;

 }

 }

}

worker_processes 1;

events {

 worker_connections 1024;

}

As you can see, we have some basic NGINX configuration. Importantly, we have the
proxy_pass field, which proxies requests to a port on 127.0.0.1, or localhost. Since
containers in a Pod can share localhost ports, this acts as our sidecar proxy. We won't
review all the other lines for the purposes of this book, but check the NGINX docs for
more information about what each line means (https://nginx.org/en/docs/).

Now, let's create the ConfigMap from this file. Use the following command to
imperatively create the ConfigMap:

kubectl create cm nginx-configuration --from-file=nginx.conf=./
nginx.conf

This will result in the following output:

Configmap "nginx-configuration" created

Next, let's make our certificates for TLS in NGINX, and embed them in a Kubernetes
secret. You will need the CFSSL (CloudFlare's PKI/TLS open source toolkit) library
installed to follow these instructions, but you can use any other method to create your
cert.

First, we need to create the Certificate Authority (CA). Start with the JSON configuration
for the CA:

nginxca.json:

{

 "CN": "mydomain.com",

 "hosts": [

https://nginx.org/en/docs/

Using sidecar proxies 355

 "mydomain.com",

 "www.mydomain.com"

],

 "key": {

 "algo": "rsa",

 "size": 2048

 },

 "names": [

 {

 "C": "US",

 "ST": "MD",

 "L": "United States"

 }

]

}

Now, use CFSSL to create the CA certificate:

cfssl gencert -initca nginxca.json | cfssljson -bare nginxca

Next, we will require the CA config:

Nginxca-config.json:

{

 "signing": {

 "default": {

 "expiry": "20000h"

 },

 "profiles": {

 "client": {

 "expiry": "43800h",

 "usages": [

 "signing",

 "key encipherment",

 "client auth"

]

 },

356 Service Meshes and Serverless

 "server": {

 "expiry": "20000h",

 "usages": [

 "signing",

 "key encipherment",

 "server auth",

 "client auth"

]

 }

 }

 }

}

And we'll also need a cert request config:

Nginxcarequest.json:

{

 "CN": "server",

 "hosts": [

 ""

],

 "key": {

 "algo": "rsa",

 "size": 2048

 }

}

Now, we can actually make our certs! Use the following command:

cfssl gencert -ca=nginxca.pem -ca-key=nginxca-key.
pem -config=nginxca-config.json -profile=server
-hostname="127.0.0.1" nginxcarequest.json | cfssljson -bare
server

As the final step for our cert secrets, create the Kubernetes secret from the certificate files'
output by means of the last cfssl command:

kubectl create secret generic nginx-certs --from-file=server-
cert=./server.pem --from-file=server-key=./server-key.pem

Using sidecar proxies 357

Now, we can finally create our deployment:

kubectl apply -f nginx-sidecar.yaml

This produces the following output:

deployment "myapp" created

In order to check the NGINX proxy functionality, let's create a service to direct to our
deployment:

Nginx-sidecar-service.yaml:

apiVersion: v1

kind: Service

metadata:

 name:myapp

 labels:

 app: myapp

spec:

 selector:

 app: myapp

 type: NodePort

 ports:

 - port: 443

 targetPort: 443

 protocol: TCP

 name: https

Now, accessing any node of the cluster using https should result in a working HTTPS
connection! However, since our cert is self-signed, browsers will display an insecure
message.

Now that you've seen how NGINX can be used as a sidecar proxy with Kubernetes, let's
move on to a more modern, cloud-native proxy sidecar – Envoy.

Using Envoy as a sidecar proxy
Envoy is a modern proxy built for cloud-native environments. In the Istio service mesh,
which we'll review later in this chapter, Envoy acts as both a reverse and forward proxy.
Before we get to Istio, however, let's try our hand at deploying Envoy as a proxy.

358 Service Meshes and Serverless

We will tell Envoy where to route various requests using routes, listeners, clusters, and
endpoints. This functionality is what forms the core of Istio, which we will review later in
this chapter.

Let's go through each of the Envoy configuration pieces to see how it all works.

Envoy listeners
Envoy allows the configuration of one or more listeners. With each listener, we specify a
port for Envoy to listen on, as well as any filters we want to apply to the listener.

Filters can provide complex functionality, including caching, authorization, Cross-Origin
Resource Sharing (CORS) configuration, and more. Envoy supports the chaining of
multiple filters together.

Envoy routes
Certain filters have route configuration, which specifies domains from which requests
should be accepted, route matching, and forwarding rules.

Envoy clusters
A Cluster in Envoy represents a logical service where requests can be routed to based-on
routes in listeners. A cluster likely contains more than one possible IP address in a cloud-
native setting, so it supports load balancing configurations such as round robin.

Envoy endpoints
Finally, endpoints are specified within a cluster as one logical instance of a service. Envoy
supports fetching a list of endpoints from an API (this is essentially what happens in the
Istio service mesh) and load balancing between them.

In a production Envoy deployment on Kubernetes, it is likely that some form of dynamic,
API-driven Envoy configuration is going to be used. This feature of Envoy is called xDS,
and is used by Istio. Additionally, there are other open source products and solutions that
use Envoy along with xDS, including the Ambassador API gateway.

For the purposes of this book, we will look at some static (non-dynamic) Envoy
configuration; that way, we can pick apart each piece of the config, and you'll have a good
idea of how everything works when we review Istio.

Let's now dive into an Envoy configuration for a setup where a single Pod needs to be able
to route requests to two services, Service 1 and Service 2. The setup looks like this:

Using sidecar proxies 359

Figure 14.2 – Outbound envoy proxy

As you can see, the Envoy sidecar in our application Pod will have configurations to
route to two upstream services, Service 1 and Service 2. Both services have two possible
endpoints.

In a dynamic setting with Envoy xDS, the Pod IPs for the endpoints would be loaded
from the API, but for the purposes of our review, we will show the static Pod IPs in the
endpoints. We will completely ignore Kubernetes Services and instead directly access
Pod IPs in a round robin configuration. In a service mesh scenario, Envoy would also be
deployed on all of the destination Pods, but we'll keep it simple for now.

Now, let's look at how this network map is configured in an envoy configuration YAML
(which you can find in its entirety in the code repository). This is, of course, very different
from a Kubernetes resource YAML – we will get to that part later. The entire configuration
has a lot of YAML involved, so let's take it piece by piece.

360 Service Meshes and Serverless

Understanding Envoy configuration files
First off, let's look at the first few lines of our config—some basic information about our
Envoy setup:

Envoy-configuration.yaml:

admin:

 access_log_path: "/dev/null"

 address:

 socket_address:

 address: 0.0.0.0

 port_value: 8001

As you can see, we specify a port and address for Envoy's admin. As with the following
configuration, we are running Envoy as a sidecar so the address will always be local –
0.0.0.0. Next, we start our list of listeners with an HTTPS listener:

static_resources:

 listeners:

 - address:

 socket_address:

 address: 0.0.0.0

 port_value: 8443

 filter_chains:

 - filters:

 - name: envoy.filters.network.http_connection_manager

 typed_config:

 "@type": type.googleapis.com/envoy.config.filter.
network.http_connection_manager.v2.HttpConnectionManager

 stat_prefix: ingress_https

 codec_type: auto

 route_config:

 name: local_route

 virtual_hosts:

 - name: backend

 domains:

 - "*"

 routes:

Using sidecar proxies 361

 - match:

 prefix: "/service/1"

 route:

 cluster: service1

 - match:

 prefix: "/service/2"

 route:

 cluster: service2

 http_filters:

 - name: envoy.filters.http.router

 typed_config: {}

As you can see, for each Envoy listener, we have a local address and port for the listener
(this listener is an HTTPS listener). Then, we have a list of filters – though in this case,
we only have one. Each envoy filter type has slightly different configuration, and we won't
review it line by line (check the Envoy docs for more information at https://www.
envoyproxy.io/docs), but this particular filter matches two routes, /service/1
and /service/2, and routes them to two envoy clusters. Still under our first HTTPS
listener section of the YAML, we have the TLS configuration, including certs:

 transport_socket:

 name: envoy.transport_sockets.tls

 typed_config:

 "@type": type.googleapis.com/envoy.extensions.
transport_sockets.tls.v3.DownstreamTlsContext

 common_tls_context:

 tls_certificates:

 certificate_chain:

 inline_string: |

 <INLINE CERT FILE>

 private_key:

 inline_string: |

 <INLINE PRIVATE KEY FILE>

https://www.envoyproxy.io/docs
https://www.envoyproxy.io/docs

362 Service Meshes and Serverless

As you can see, this configuration passes in a private_key and a certificate_
chain. Next, we have our second and final listener, an HTTP listener:

 - address:

 socket_address:

 address: 0.0.0.0

 port_value: 8080

 filter_chains:

 - filters:

 - name: envoy.filters.network.http_connection_manager

 typed_config:

 "@type": type.googleapis.com/envoy.config.filter.
network.http_connection_manager.v2.HttpConnectionManager

 codec_type: auto

 stat_prefix: ingress_http

 route_config:

 name: local_route

 virtual_hosts:

 - name: backend

 domains:

 - "*"

 routes:

 - match:

 prefix: "/service1"

 route:

 cluster: service1

 - match:

 prefix: "/service2"

 route:

 cluster: service2

 http_filters:

 - name: envoy.filters.http.router

 typed_config: {}

Using sidecar proxies 363

As you can see, this configuration is quite similar to that of our HTTPS listener, except
that it listens on a different port, and does not include certificate information. Next, we
move into our cluster configuration. In our case, we have two clusters, one for service1
and one for service2. First off, service1:

 clusters:

 - name: service1

 connect_timeout: 0.25s

 type: strict_dns

 lb_policy: round_robin

 http2_protocol_options: {}

 load_assignment:

 cluster_name: service1

 endpoints:

 - lb_endpoints:

 - endpoint:

 address:

 socket_address:

 address: service1

 port_value: 5000

And next, Service 2:

 - name: service2

 connect_timeout: 0.25s

 type: strict_dns

 lb_policy: round_robin

 http2_protocol_options: {}

 load_assignment:

 cluster_name: service2

 endpoints:

 - lb_endpoints:

 - endpoint:

 address:

 socket_address:

 address: service2

 port_value: 5000

364 Service Meshes and Serverless

For each of these clusters, we specify where requests should be routed, and to which port.
For instance, for our first cluster, requests are routed to http://service1:5000.
We also specify a load balancing policy (in this case, round robin) and a timeout for the
connections. Now that we have our Envoy configuration, we can go ahead and create our
Kubernetes Pod and inject our sidecar along with the envoy configuration. We'll also split
this file into two since it is a bit too big to understand as is:

Envoy-sidecar-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-service

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: my-service

 spec:

 containers:

 - name: envoy

 image: envoyproxy/envoy:latest

 ports:

 - containerPort: 9901

 protocol: TCP

 name: envoy-admin

 - containerPort: 8786

 protocol: TCP

 name: envoy-web

As you can see, this is a typical deployment YAML. In this case, we actually have two
containers. First off is the Envoy proxy container (or sidecar). It listens on two ports. Next
up, moving further down the YAML, we have a volume mount for that first container (to
hold the Envoy config) as well as a start command and arguments:

 volumeMounts:

 - name: envoy-config-volume

Using sidecar proxies 365

 mountPath: /etc/envoy-config/

 command: ["/usr/local/bin/envoy"]

 args: ["-c", "/etc/envoy-config/config.yaml", "--v2-
config-only", "-l", "info","--service-cluster","myservice","--
service-node","myservice", "--log-format", "[METADATA][%Y-%m-%d
%T.%e][%t][%l][%n] %v"]

Finally, we have our second container in the Pod, which is an application container:

- name: my-service

 image: ravirdv/http-responder:latest

 ports:

 - containerPort: 5000

 name: svc-port

 protocol: TCP

 volumes:

 - name: envoy-config-volume

 configMap:

 name: envoy-config

 items:

 - key: envoy-config

 path: config.yaml

As you can see, this application responds on port 5000. Lastly, we also have our Pod-level
volume definition to match the Envoy config volume mounted in the Envoy container.
Before we create our deployment, we need to create a ConfigMap with our Envoy
configuration. We can do this using the following command:

kubectl create cm envoy-config

--from-file=config.yaml=./envoy-config.yaml

This will result in the following output:

Configmap "envoy-config" created

Now we can create our deployment with the following command:

kubectl apply -f deployment.yaml

366 Service Meshes and Serverless

This will result in the following output:

Deployment "my-service" created

Finally, we need our downstream services, service1 and service2. For this purpose,
we will continue to use the http-responder open source container image, which
will respond on port 5000. The deployment and service specs can be found in the code
repository, and we can create them using the following commands:

kubectl create -f service1-deployment.yaml

kubectl create -f service1-service.yaml

kubectl create -f service2-deployment.yaml

kubectl create -f service2-service.yaml

Now, we can test our Envoy configuration! From our my-service container, we can
make a request to localhost on port 8080, with the /service1 path. This should direct
to one of our service1 Pod IPs. To make this request we use the following command:

Kubectl exec <my-service-pod-name> -it -- curl localhost:8080/
service1

We've set up out services to echo their names on a curl request. Look at the following
output of our curl command:

Service 1 Reached!

Now that we've looked at how Envoy works with a static configuration, let's move on to a
dynamic service mesh based on Envoy – Istio.

Adding a service mesh to Kubernetes
A service mesh pattern is a logical extension of the sidecar proxy. By attaching sidecar
proxies to every Pod, a service mesh can control functionality for service-to-service
requests, such as advanced routing rules, retries, and timeouts. In addition, by having
every request pass through a proxy, service meshes can implement mutual TLS encryption
between services for added security and can give administrators incredible observability
into requests in their cluster.

Adding a service mesh to Kubernetes 367

There are several service mesh projects that support Kubernetes. The most popular are as
follows:

• Istio

• Linkerd

• Kuma

• Consul

Each of these service meshes has different takes on the service mesh pattern. Istio is likely
the single most popular and comprehensive solution, but is also quite complex. Linkerd
is also a mature project, but is easier to configure (though it uses its own proxy instead
of Envoy). Consul is an option that supports Envoy in addition to other providers, and
not just on Kubernetes. Finally, Kuma is an Envoy-based option that is also growing in
popularity.

Exploring all the options is beyond the scope of this book, so we will stick with Istio, as it
is often considered the default solution. That said, all of these meshes have strengths and
weaknesses, and it is worth looking at each one when planning to adopt the service mesh.

Setting up Istio on Kubernetes
Although Istio can be installed with Helm, the Helm installation option is no longer the
officially supported installation method.

Instead, we use the Istioctl CLI tool to install Istio with configuration onto our
clusters. This configuration can be completely customized, but for the purposes of this
book, we will just use the "demo" configuration:

1. The first step to installing Istio on a cluster is to install the Istio CLI tool. We can do
this with the following command, which installs the newest version of the CLI tool:

curl -L https://istio.io/downloadIstio | sh -

2. Next, we'll want to add the CLI tool to our path for ease of use:

cd istio-<VERSION>

export PATH=$PWD/bin:$PATH

368 Service Meshes and Serverless

3. Now, let's install Istio! Istio configurations are called profiles and, as mentioned
previously, they can be completely customized using a YAML file.

For this demonstration, we'll use the inbuilt demo profile with Istio, which provides
some basic setup. Install profile using the following command:

istioctl install --set profile=demo

This will result in the following output:

Figure 14.3 – Istioctl profile installation output

4. Since the sidecar resource has not been released yet as of Kubernetes 1.19, Istio
will itself inject Envoy proxies into any namespace that is labeled with istio-
injection=enabled.

To label any namespace with this, run the following command:
kubectl label namespace my-namespace istio-
injection=enabled

5. To test easily, label the default namespace with the preceding label command.
Once the Istio components come up, any Pods in that namespace will automatically
be injected with the Envoy sidecar, just like we created manually in the previous
section.

In order to remove Istio from the cluster, run the following command:
istioctl x uninstall --purge

This should result in a confirmation message telling you that Istio has been
removed.

Adding a service mesh to Kubernetes 369

6. Now, let's deploy a little something to test our new mesh with! We will deploy three
different application services, each with a deployment and a service resource:

a. Service Frontend

b. Service Backend A

c. Service Backend B

Here's the Deployment for Service Frontend:

 Istio-service-deployment.yaml:
apiVersion: apps/v1

kind: Deployment

metadata:

 name: service-frontend

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: service-frontend

 version: v2

 spec:

 containers:

 - name: service-frontend

 image: ravirdv/http-responder:latest

 ports:

 - containerPort: 5000

 name: svc-port

 protocol: TCP

And here's the Service for Service Frontend:

 Istio-service-service.yaml:
apiVersion: v1

kind: Service

metadata:

 name: service-frontend

spec:

370 Service Meshes and Serverless

 selector:

 name: service-frontend

 ports:

 - protocol: TCP

 port: 80

 targetPort: 5000

The YAML for Service Backends A and B will be the same as Service Frontend, apart
from swapping the names, image names, and selector labels.

7. Now that we have a couple of services to route to (and between), let's start setting up
some Istio resources!

First thing's first, we need a Gateway resource. In this case, we are not using
the NGINX Ingress Controller, but that's fine because Istio provides a Gateway
resource that can be used for ingress and egress. Here's what an Istio Gateway
definition looks like:

 Istio-gateway.yaml:
apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: myapplication-gateway

spec:

 selector:

 istio: ingressgateway

 servers:

 - port:

 number: 80

 name: http

 protocol: HTTP

 hosts:

 - "*"

These Gateway definitions look pretty similar to ingress records. We have name,
and selector, which Istio uses to decide which Istio Ingress Controller to use.
Next, we have one or more servers, which are essentially ingress points on our
gateway. In this case, we do not restrict the host, and we accept requests on port 80.

Adding a service mesh to Kubernetes 371

8. Now that we have a gateway for getting requests into our cluster, we can start setting
up some routes. We do this in Istio using VirtualService. VirtualService
in Istio is a set of routes that should be followed when requests to a particular
hostname are made. In addition, we can use a wildcard host to make global
rules for requests from anywhere in the mesh. Let's take a look at an example
VirtualService configuration:

 Istio-virtual-service-1.yaml:
apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: myapplication

spec:

 hosts:

 - "*"

 gateways:

 - myapplication-gateway

 http:

 - match:

 - uri:

 prefix: /app

 - uri:

 prefix: /frontend

 route:

 - destination:

 host: service-frontend

 subset: v1

In this VirtualService, we route requests to any host to our entry point at
Service Frontend if it matches one of our uri prefixes. In this case, we are matching
on the prefix, but you can use exact matching as well by swapping out prefix with
exact in the URI matcher.

372 Service Meshes and Serverless

9. So, now we have a setup fairly similar to what we would expect with an NGINX
Ingress, with entry into the cluster dictated by a route match.

However, what's that v1 in our route? This actually represents a version of our
Frontend Service. Let's go ahead and specify this version using a new resource
type – the Istio DestinationRule. Here's what a DestinationRule config
looks like:

 Istio-destination-rule-1.yaml:
apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: service-frontend

spec:

 host: service-frontend

 subsets:

 - name: v1

 labels:

 version: v1

 - name: v2

 labels:

 version: v2

As you can see, we specify two different versions of our frontend service in Istio,
each looking at a label selector. From our previous Deployment and Service, you
see that our current frontend service version is v2, but we could be running both
in parallel! By specifying our v2 version in the ingress virtual service, we tell Istio
to route all requests to v2 of the service. In addition, we have our v1 version also
configured, which is referenced in the previous VirtualService. This hard rule
is only one possible way to route requests to different subsets in Istio.

Now, we've managed to route traffic into our cluster via a gateway, and to a virtual
service subset based on a destination rule. At this point, we are effectively "inside"
our service mesh!

Adding a service mesh to Kubernetes 373

10. Now, from our Service Frontend, we want to be able to route to Service Backend A
and Service Backend B. How do we do this? More virtual services is the answer! Let's
take a look at a virtual service for Backend Service A:

 Istio-virtual-service-2.yaml:
apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: myapplication-a

spec:

 hosts:

 - service-a

 http:

 route:

 - destination:

 host: service-backend-a

 subset: v1

As you can see, this VirtualService routes to a v1 subset for our service,
service-backend-a. We'll also need another VirtualService for
service-backend-b, which we won't include in full (but looks nearly
identical). To see the full YAML, check the code repository for istio-virtual-
service-3.yaml.

11. Once our virtual services are ready, we require some destination rules! The
DestinationRule for Backend Service A is as follows:

 Istio-destination-rule-2.yaml:
apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: service-backend-a

spec:

 host: service-backend-a

 trafficPolicy:

 tls:

 mode: ISTIO_MUTUAL

374 Service Meshes and Serverless

 subsets:

 - name: v1

 labels:

 version: v1

And the DestinationRule for Backend Service B is similar, just with different subsets.
We won't include the code, but check istio-destination-rule-3.yaml in the
code repository for the exact specifications.

These destination rules and virtual services add up to make the following routing diagram:

Figure 14.4 – Istio routing diagram

As you can see, requests from Frontend Service Pods can route to Backend Service A
version 1 or Backend Service B version 3, and each backend service can route to the
other as well. These requests to Backend Service A or B additionally engage one of the
most valuable features of Istio – mutual (two-way) TLS. In this setup, TLS security is
maintained between any two points in the mesh, and this all happens automatically!

Next, let's take a look at using serverless patterns with Kubernetes.

Implementing serverless on Kubernetes 375

Implementing serverless on Kubernetes
Serverless patterns on cloud providers have quickly been gaining in popularity. Serverless
architectures consist of compute that can automatically scale up and down, even scaling
all the way to zero (where zero compute capacity is being used to serve a function or
other application). Function-as-a-Service (FaaS) is an extension of the serverless pattern,
where function code is the only input, and the serverless system takes care of routing
requests to compute and scale as necessary. AWS Lambda, Azure Functions, and Google
Cloud Run are some of the more popular FaaS/serverless options officially supported by
cloud providers. Kubernetes also has many different serverless frameworks and libraries
that can be used to run serverless, scale-to-zero workloads as well as FaaS on Kubernetes.
Some of the most popular ones are as follows:

• Knative

• Kubeless

• OpenFaaS

• Fission

A full discussion of all serverless options on Kubernetes is beyond the scope of this book,
so we'll focus on two different ones, which aim to serve two vastly different use cases:
OpenFaaS and Knative.

While Knative is highly extensible and customizable, it uses multiple coupled components
that add complexity. This means that some added configuration is necessary to get started
with an FaaS solution, since functions are just one of many other patterns that Knative
supports. OpenFaaS, on the other hand, makes getting up and running with serverless and
FaaS on Kubernetes extremely easy. Both technologies are valuable for different reasons.

For this chapter's tutorial, we will look at Knative, one of the most popular serverless
frameworks, and one that also supports FaaS via its eventing feature.

Using Knative for FaaS on Kubernetes
As mentioned previously, Knative is a modular set of building blocks for serverless
patterns on Kubernetes. For this reason, it requires a bit of configuration before we can get
to the actual functions. Knative can also be installed with Istio, which it uses as a substrate
for routing and scaling serverless applications. Other non-Istio routing options are also
available.

376 Service Meshes and Serverless

To use Knative for FaaS, we will need to install both Knative Serving and Knative Eventing.
While Knative Serving will allow us to run our serverless workloads, Knative Eventing
will provide the pathway to make FaaS requests to these scale-to-zero workloads. Let's
accomplish this by following these steps:

1. First, let's install the Knative Serving components. We will begin by installing the
CRDs:

kubectl apply --filename https://github.com/knative/
serving/releases/download/v0.18.0/serving-crds.yaml

2. Next, we can install the serving components themselves:

kubectl apply --filename https://github.com/knative/
serving/releases/download/v0.18.0/serving-core.yaml

3. At this point, we'll need to install a networking/routing layer for Knative to use.
Let's use Istio:

kubectl apply --filename https://github.com/knative/
net-istio/releases/download/v0.18.0/release.yaml

4. We'll need the gateway IP address from Istio. Depending on where you're running
this (in other words, AWS or locally), this value may differ. Pull it using the
following command:

Kubectl get service -n istio-system istio-ingressgateway

5. Knative requires a specific DNS setup for enabling the serving component. The
easiest way to do this in a cloud setting is to use xip.io "Magic DNS," though
this will not work for Minikube-based clusters. If you're running one of these (or
just want to see all the options available), check out the Knative docs at https://
knative.dev/docs/install/any-kubernetes-cluster/.

To set up Magic DNS, use the following command:
kubectl apply --filename https://github.com/knative/
serving/releases/download/v0.18.0/serving-default-domain.
yaml

https://knative.dev/docs/install/any-kubernetes-cluster/
https://knative.dev/docs/install/any-kubernetes-cluster/

Implementing serverless on Kubernetes 377

6. Now that we've installed Knative Serving, let's install Knative Eventing to deliver
our FaaS requests. First, we'll need more CRDs. Install them using the following
command:

kubectl apply --filename https://github.com/knative/
eventing/releases/download/v0.18.0/eventing-crds.yaml

7. Now, install the eventing components just like we did with serving:

kubectl apply --filename https://github.com/knative/
eventing/releases/download/v0.18.0/eventing-core.yaml

At this point, we need to add a queue/messaging layer for our eventing system to
use. Did we mention that Knative supports lots of modular components?

Important note
To make things easy, let's just use the basic in-memory messaging layer, but
it's good to know all the options available to you. As regards modular options
for messaging channels, check the docs at https://knative.dev/
docs/eventing/channels/channels-crds/. For event source
options, you can look at https://knative.dev/docs/eventing/
sources/.

8. To install the in-memory messaging layer, use the following command:

kubectl apply --filename https://github.com/knative/
eventing/releases/download/v0.18.0/in-memory-channel.yaml

9. Thought we were done? Nope! One last thing. We need to install a broker, which
will take events from the messaging layer and get them processed in the right place.
Let's use the default broker layer, the MT-Channel broker layer. You can install it
using the following command:

kubectl apply --filename https://github.com/knative/
eventing/releases/download/v0.18.0/mt-channel-broker.yaml

https://knative.dev/docs/eventing/channels/channels-crds/
https://knative.dev/docs/eventing/channels/channels-crds/
https://knative.dev/docs/eventing/sources/
https://knative.dev/docs/eventing/sources/

378 Service Meshes and Serverless

With that, we are finally done. We have installed an end-to-end FaaS implementation
via Knative. As you can tell, this was not an easy task. What makes Knative amazing is
the same thing that makes it a pain – it offers so many different modular options and
configurations that even when selecting the most basic options for each step, we've
still taken a lot of time to explain the install. There are other options available, such as
OpenFaaS, which are a bit easier to get up and running with, and we'll look into that in
the next section! On the Knative side, however, now that we have our setup finally ready,
we can add in our FaaS.

Implementing an FaaS pattern in Knative
Now that we have Knative set up, we can use it to implement an FaaS pattern where events
will trigger some code running in Knative through a trigger. To set up a simple FaaS, we
will require three things:

• A broker to route our events from an entry point

• A consumer service to actually process our events

• A trigger definition that specifies when to route events to the consumer for
processing

First thing's first, our broker needs to be created. This is simple and similar to creating an
ingress record or gateway. Our broker YAML looks like this:

Knative-broker.yaml:

apiVersion: eventing.knative.dev/v1

kind: broker

metadata:

 name: my-broker

 namespace: default

Next, we can create a consumer service. This component is really just our application
that is going to process events – our function itself! Rather than showing you even more
YAML than you've already seen, let's assume our consumer service is just a regular
old Kubernetes Service called service-consumer, which routes to a four-replica
deployment of Pods running our application.

Implementing serverless on Kubernetes 379

Finally, we're going to need a trigger. This determines how and which events will be routed
from the broker. The YAML for a trigger looks like this:

Knative-trigger.yaml:

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: my-trigger

spec:

 broker: my-broker

 filter:

 attributes:

 type: myeventtype

 subscriber:

 ref:

 apiVersion: v1

 kind: Service

 name: service-consumer

In this YAML, we create a Trigger rule that any event that comes through our broker,
my-broker, and has a type of myeventtype, will automatically be routed to our
consumer, service-consumer. For full documentation on trigger filters in Knative,
check out the docs at https://knative.dev/development/eventing/
triggers/.

So, how do we create some events? First, check the broker URL using the following
command:

kubectl get broker

This should result in the following output:

NAME READY REASON URL
AGE

my-broker True http://broker-ingress.knative-
eventing.svc.cluster.local/default/my-broker 1m

https://knative.dev/development/eventing/triggers/
https://knative.dev/development/eventing/triggers/

380 Service Meshes and Serverless

We can now finally test our FaaS solution. Let's spin up a quick Pod from which we can
make requests to our trigger:

kubectl run -i --tty --rm debug --image=radial/busyboxplus:curl
--restart=Never -- sh

Now, from inside this Pod, we can go ahead and test our trigger, using curl. The request
we need to make needs to have a Ce-Type header that equals myeventtype, since this
is what our trigger requires. Knative uses headers in the form Ce-Id, Ce-Type, as shown
in the following code block, to do the routing.

The curl request will look like the following:

curl -v "http://broker-ingress.knative-eventing.svc.cluster.
local/default/my-broker" \

 -X POST \

 -H "Ce-Id: anyid" \

 -H "Ce-Specversion: 1.0" \

 -H "Ce-Type: myeventtype" \

 -H "Ce-Source: any" \

 -H "Content-Type: application/json" \

 -d '{"payload":"Does this work?"}'

As you can see, we are sending a curl http request to the broker URL. Additionally,
we are passing some special headers along with the HTTP request. Importantly, we are
passing type=myeventtype, which our filter on our trigger requires in order to send
the request for processing.

In this example, our consumer service echoes back the payload key of the body JSON,
along with a 200 HTTP response, so running this curl request gives us the following:

> HTTP/1.1 200 OK

> Content-Type: application/json

{

 "Output": "Does this work?"

}

Success! We have tested our FaaS and it returns what we are expecting. From here, our
solution will scale up and down to zero along with the number of events, and, as with
everything Knative, there are many more customizations and configuration options to
tailor our solution precisely to what we need.

Implementing serverless on Kubernetes 381

Next up, we'll look at the same pattern with OpenFaaS instead of Knative in order to
highlight the differences between the two approaches.

Using OpenFaaS for FaaS on Kubernetes
Now that we've discussed getting started with Knative, let's do the same with OpenFaaS.
First, to install OpenFaaS itself, we are going to use the Helm charts from the faas-
netes repository, found at https://github.com/openfaas/faas-netes.

Installing OpenFaaS components with Helm
First, we will create two namespaces to hold our OpenFaaS components:

• openfaas to hold the actual service components of OpenFaas

• openfaas-fn to hold our deployed functions

We can add these two namespaces using a nifty YAML file from the faas-netes
repository using the following command:

kubectl apply -f https://raw.githubusercontent.com/openfaas/
faas-netes/master/namespaces.yml

Next, we need to add the faas-netes Helm repository with the following Helm
command:

helm repo add openfaas https://openfaas.github.io/faas-netes/

helm repo update

Finally, we actually deploy OpenFaaS!

The Helm chart for OpenFaaS at the preceding faas-netes repository has several
possible variables, but we will use the following configuration to ensure that an initial set
of authentication credentials are created, and that ingress records are deployed:

helm install openfaas openfaas/openfaas \

 --namespace openfaas \

 --set functionNamespace=openfaas-fn \

 --set ingress.enabled=true \

 --set generateBasicAuth=true

https://github.com/openfaas/faas-netes

382 Service Meshes and Serverless

Now, that our OpenFaaS infrastructure has been deployed to our cluster, we'll want to
fetch the credentials that were generated as part of the Helm install. The Helm chart will
create these as part of a hook and store them in a secret, so we can get them by running
the following command:

OPENFAASPWD=$(kubectl get secret basic-auth -n openfaas -o
jsonpath="{.data.basic-auth-password}" | base64 --decode)

That is all the Kubernetes setup we require!

Moving on, let's install the OpenFaas CLI, which will make it extremely easy to manage
our OpenFaas functions.

Installing the OpenFaaS CLI and deploying functions
To install the OpenFaaS CLI, we can use the following command (for Windows, check the
preceding OpenFaaS documents):

curl -sL https://cli.openfaas.com | sudo sh

Now, we can get started with building and deploying some functions. This is easiest to do
via the CLI.

When building and deploying functions for OpenFaaS, the OpenFaaS CLI provides an
easy way to generate boilerplates, and build and deploy functions for specific languages. It
does this via "templates," and supports various flavors of Node, Python, and more. For
a full list of the template types, check the templates repository at https://github.
com/openfaas/templates.

The templates created using the OpenFaaS CLI are similar to what you would expect
from a hosted serverless platform such as AWS Lambda. Let's create a brand-new Node.js
function using the following command:

faas-cli new my-function –lang node

This results in the following output:

Folder: my-function created.

Function created in folder: my-function

Stack file written: my-function.yml

As you can see, the new command generates a folder, and within it some boilerplate for
the function code itself, and an OpenFaaS YAML file.

https://github.com/openfaas/templates
https://github.com/openfaas/templates

Implementing serverless on Kubernetes 383

The OpenFaaS YAML file will appear as follows:

My-function.yml:

provider:

 name: openfaas

 gateway: http://localhost:8080

functions:

 my-function:

 lang: node

 handler: ./my-function

 image: my-function

The actual function code (inside the my-function folder) consists of a function file –
handler.js – and a dependencies manifest, package.json. For other languages,
these files will be different, and we won't delve into the specifics of dependencies in Node.
However, we will edit the handler.js file to return some text. This is what the edited
file looks like:

Handler.js:

"use strict"

module.exports = (context, callback) => {

 callback(undefined, {output: "my function succeeded!"});

}

This JavaScript code will return a JSON response with our text.

Now that we have our function and handler, we can move on to building and deploying
our function. The OpenFaaS CLI makes it simple to build the function, which we can do
with the following command:

faas-cli build -f /path/to/my-function.yml

The output of this command is long, but when it is complete, we will have a new container
image built locally with our function handler and dependencies embedded!

384 Service Meshes and Serverless

Next, we push our container image to a container repository as we would for any other
container. The OpenFaaS CLI has a neat wrapper command for this, which will push the
image to Docker Hub or an alternate container image repository:

faas-cli push -f my-function.yml

Now, we can deploy our function to OpenFaaS. Once again, this is made easy by the CLI.
Deploy it using the following command:

faas-cli deploy -f my-function.yml

Everything is now set up for us to test our function, deployed on OpenFaaS! We used
an ingress setting when deploying OpenFaaS so requests can go through that ingress.
However, our generated YAML file from our new function is set to make requests on
localhost:8080 for development purposes. We could edit that file to the correct
URL for our ingress gateway (refer to the docs at https://docs.openfaas.com/
deployment/kubernetes/ for how to do that), but instead, let's just do a shortcut to
get OpenFaaS open on our localhost.

Let's use a kubectl port-forward command to open our OpenFaaS service on
localhost port 8080. We can do this as follows:

export OPENFAAS_URL=http://127.0.0.1:8080

kubectl port-forward -n openfaas svc/gateway 8080:8080

Now, let's add our previously generated auth credentials to the OpenFaaS CLI, as follows:

echo -n $OPENFAASPWD | faas-cli login -g $OPENFAAS_URL -u admin
--password-stdin

Finally, all we need to do in order to test our function is to run the following command:

faas-cli invoke -f my-function.yml my-function

This results in the following output:

Reading from STDIN - hit (Control + D) to stop.

This is my message

{ output: "my function succeeded!"});}

As you can see, we've successfully received our intended response!

https://docs.openfaas.com/deployment/kubernetes/
https://docs.openfaas.com/deployment/kubernetes/

Summary 385

Finally, if we want to delete this specific function, we can do so with the following
command, similar to how we would use kubectl delete -f:

faas-cli rm -f my-function.yml

And that's it! Our function has been removed.

Summary
In this chapter, we learned about service mesh and serverless patterns on Kubernetes. In
order to set the stage for these, we first discussed running sidecar proxies on Kubernetes,
specifically with the Envoy proxy.

Then, we moved on to service mesh, and learned how to install and configure the Istio
service mesh for service-to-service routing with mutual TLS.

Finally, we moved on to serverless patterns on Kubernetes, where you learned how to
configure and install Knative, and an alternative, OpenFaaS, for serverless eventing, and
FaaS on Kubernetes.

The skills you used in this chapter will help you to build service mesh and serverless
patterns on Kubernetes, setting you up for fully automated service-to-service discovery
and FaaS eventing.

In the next (and final) chapter, we'll discuss running stateful applications on Kubernetes.

Questions
1. What is the difference between static and dynamic Envoy configurations?

2. What are the four major pieces of Envoy configuration?

3. What are some of the downsides to Knative, and how does OpenFaaS compare?

Further reading
• CNCF landscape: https://landscape.cncf.io/

• Official Kubernetes forums: https://discuss.kubernetes.io/

https://landscape.cncf.io/
https://discuss.kubernetes.io/

15
Stateful Workloads

on Kubernetes
This chapter details the current state of the industry when it comes to running stateful
workloads in databases. We will discuss the use of Kubernetes (and popular open source
projects) for running databases, storage, and queues on Kubernetes. Case study tutorials
will include running object storage, a database, and a queue system on Kubernetes.

In this chapter, we will first understand how stateful applications run on Kubernetes and
then learn how to use Kubernetes storage for stateful applications. We will then learn
how to run databases on Kubernetes, as well as covering messaging and queues. Let's
start with a discussion of why stateful applications are much more complex than stateless
applications on Kubernetes.

In this chapter, we will cover the following topics:

• Understanding stateful applications on Kubernetes

• Using Kubernetes storage for stateful applications

• Running databases on Kubernetes

• Implementing messaging and queues on Kubernetes

388 Stateful Workloads on Kubernetes

Technical requirements
In order to run the commands detailed in this chapter, you will need a computer that
supports the kubectl command-line tool along with a working Kubernetes cluster.
See Chapter 1, Communicating with Kubernetes, for several methods for getting up and
running with Kubernetes quickly, and for instructions on how to install the kubectl tool.

The code used in this chapter can be found in the book's GitHub repository:

https://github.com/PacktPublishing/Cloud-Native-with-
Kubernetes/tree/master/Chapter15

Understanding stateful applications on
Kubernetes
Kubernetes provides excellent primitives for running both stateless and stateful
applications, but stateful workloads have taken longer to mature on Kubernetes. However,
in recent years, some high-profile Kubernetes-based stateful application frameworks and
projects have proven the increasing maturity of stateful applications on Kubernetes. Let's
review some of these first in order to set the stage for the rest of the chapter.

Popular Kubernetes-native stateful applications
There are many types of stateful applications. Though most applications are stateful, only
certain components in those applications store state data. We can remove these specific
stateful components from applications and focus on those components in our review.
In this book, we'll talk about databases, queues, and object storage, leaving out persistent
storage components such as those we reviewed in Chapter 7, Storage on Kubernetes.
We'll also go over a few, less generic components as honorable mentions. Let's start
with databases!

https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter15
https://github.com/PacktPublishing/Cloud-Native-with-Kubernetes/tree/master/Chapter15

Understanding stateful applications on Kubernetes 389

Kubernetes-compatible databases
In addition to typical databases (DBs) and key-value stores such as Postgres, MySQL,
and Redis that can be deployed on Kubernetes with StatefulSets or community operators,
there are some major made-for-Kubernetes options:

• CockroachDB: A distributed SQL database that can be deployed seamlessly on
Kubernetes

• Vitess: A MySQL sharding orchestrator that allows global scalability for MySQL,
also installable on Kubernetes via an operator

• YugabyteDB: A distributed SQL database similar to CockroachDB that also
supports Cassandra-like querying

Next, let's look at queuing and messaging on Kubernetes.

Queues, streaming, and messaging on Kubernetes
Again, there are industry-standard options such as Kafka and RabbitMQ that can be
deployed on Kubernetes using community Helm charts and operators, in addition to some
purpose-made open- and closed-source options:

• NATS: Open source messaging and streaming system

• KubeMQ: Kubernetes-native message broker

Next, let's look at object storage on Kubernetes.

Object storage on Kubernetes
Object storage takes volume-based persistent storage from Kubernetes and adds on
an object storage layer, similar to (and in many cases compatible with the API of)
Amazon S3:

• Minio: S3-compatible object storage built for high performance.

• Open IO: Similar to Minio, this has high performance and supports S3 and
Swift storage.

Next, let's look at a few honorable mentions.

390 Stateful Workloads on Kubernetes

Honorable mentions
In addition to the preceding generic components, there are some more specialized (but
still categorical) stateful applications that can be run on Kubernetes:

• Key and auth management: Vault, Keycloak

• Container registries: Harbor, Dragonfly, Quay

• Workflow management: Apache Airflow with a Kubernetes Operator

Now that we've reviewed a few categories of stateful applications, let's talk about how these
state-heavy applications are typically implemented on Kubernetes.

Understanding strategies for running stateful
applications on Kubernetes
Though there is nothing inherently wrong with deploying a stateful application on
Kubernetes with a ReplicaSet or Deployment, you will find that the majority of stateful
applications on Kubernetes use StatefulSets. We talked about StatefulSets in Chapter 4,
Scaling and Deploying Your Application, but why are they so useful for applications? We
will review and answer this question in this chapter.

The main reason is Pod identity. Many distributed stateful applications have their own
clustering mechanism or consensus algorithm. In order to smooth over the process for
these types of applications, StatefulSets provide static Pod naming based on an ordinal
system, starting from 0 to n. This, in combination with a rolling update and creation
method, makes it much easier for applications to cluster themselves, which is extremely
important for cloud-native databases such as CockroachDB.

To illustrate how and why StatefulSets can help run stateful applications on Kubernetes,
let's look at how we might run MySQL on Kubernetes with StatefulSets.

Now, to be clear, running a single Pod of MySQL on Kubernetes is extremely simple.
All we need to do is find a MySQL container image and ensure that it has the proper
configuration and startup command.

However, when we look to scale our database, we start to run into issues. Unlike a simple
stateless application, where we can scale our deployment without creating new state,
MySQL (like many other DBs) has its own method of clustering and consensus. Each
member of a MySQL cluster knows about the other members, and most importantly, it
knows which member of the cluster is the leader. This is how databases like MySQL can
offer consistency guarantees and Atomicity, Consistency, Isolation, Durability (ACID)
compliance.

Understanding stateful applications on Kubernetes 391

Therefore, since each member in a MySQL cluster needs to know about the other
members (and most importantly, the master), we need to run our DB Pods in a way that
means they have a common way to find and communicate with the other members of the
DB cluster.

The way that StatefulSets offer this is, as we mentioned at the beginning of the section,
via ordinal Pod numbering. This way, applications that need to self-cluster while running
on Kubernetes know that a common naming scheme starting from 0 to n will be used.
In addition, when a Pod at a specific ordinal restarts – for instance, mysql-pod-2 – the
same PersistentVolume will be mounted to the new Pod that starts in that ordinal spot.
This allows for stateful consistency between restarts for a single Pod in a StatefulSet, which
makes it much easier for applications to form a stable cluster.

To see how this works in practice, let's look at a StatefulSet specification for MySQL.

Running MySQL on StatefulSets
The following YAML spec is adapted from the Kubernetes documentation version. It
shows how we can run MySQL clusters on StatefulSets. We will review each part of the
YAML spec separately, so we can understand exactly how the mechanisms interact with
StatefulSet guarantees.

Let's start with the first part of the spec:

statefulset-mysql.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: mysql

spec:

 selector:

 matchLabels:

 app: mysql

 serviceName: mysql

 replicas: 3

 template:

 metadata:

 labels:

 app: mysql

392 Stateful Workloads on Kubernetes

As you can see, we are going to be creating a MySQL cluster with three replicas.

There isn't much else exciting about this piece, so let's move onto the start of
initContainers. There will be quite a few containers running in this Pod between
initContainers and regular containers, so we will explain each separately. What
follows is the first initContainer instance:

 spec:

 initContainers:

 - name: init-mysql

 image: mysql:5.7

 command:

 - bash

 - "-c"

 - |

 set -ex

 [[`hostname` =~ -([0-9]+)$]] || exit 1

 ordinal=${BASH_REMATCH[1]}

 echo [mysqld] > /mnt/conf.d/server-id.cnf

 echo server-id=$((100 + $ordinal)) >> /mnt/conf.d/
server-id.cnf

 if [[$ordinal -eq 0]]; then

 cp /mnt/config-map/master.cnf /mnt/conf.d/

 else

 cp /mnt/config-map/slave.cnf /mnt/conf.d/

 fi

 volumeMounts:

 - name: conf

 mountPath: /mnt/conf.d

 - name: config-map

 mountPath: /mnt/config-map

This first initContainer, as you can see, is the MySQL container image. Now, this
doesn't mean that we won't have the MySQL container running constantly in the Pod.
This is a pattern you will tend to see fairly often with complex applications. Sometimes
the same container image is used as both an initContainer instance and a normally
running container in a Pod. This is because that container has the correct embedded
scripts and tools to do common setup tasks programmatically.

Understanding stateful applications on Kubernetes 393

In this example, the MySQL initContainer creates a file, /mnt/conf.d/
server-id.cnf, and adds a server ID, corresponding to the Pod's ordinal ID in
the StatefulSet, to the file. When writing the ordinal ID, it adds 100 as an offset, to get
around the reserved value in MySQL of a server-id ID of 0.

Then, depending on whether the Pod ordinal D is 0 or not, it copies configuration for
either a master or slave MySQL server to the volume.

Next, let's look at the second initContainer in the following section (we've left out
some code with volume mount information for brevity, but the full code is available in the
GitHub repository of the book):

 - name: clone-mysql

 image: gcr.io/google-samples/xtrabackup:1.0

 command:

 - bash

 - "-c"

 - |

 set -ex

 [[-d /var/lib/mysql/mysql]] && exit 0

 [[`hostname` =~ -([0-9]+)$]] || exit 1

 ordinal=${BASH_REMATCH[1]}

 [[$ordinal -eq 0]] && exit 0 ncat --recv-
only mysql-$(($ordinal-1)).mysql 3307 | xbstream -x -C /var/
lib/mysql

 xtrabackup --prepare --target-dir=/var/lib/mysql

As you can see, this initContainer isn't MySQL at all! Instead, the container image is
a tool called Xtra Backup. Why do we need this container?

Consider a situation where a brand-new Pod, with a brand-new, empty PersistentVolume
joins the cluster. In this scenario, the data replication processes will need to copy all of the
data via replication from the other members in the MySQL cluster. With large databases,
this process could be exceedingly slow.

For this reason, we have an initContainer instance that loads in data from another
MySQL Pod in the StatefulSet, so that the data replication capabilities of MySQL have
something to start with. In a case where there is already data in the MySQL Pod, this
loading of data does not occur. The [[-d /var/lib/mysql/mysql]] && exit
0 line is the one that checks to see whether there is existing data.

394 Stateful Workloads on Kubernetes

Once these two initContainer instances have successfully completed their tasks, we
have all our MySQL configuration courtesy of the first initContainer, and we have
a somewhat recent set of data from another member in the MySQL StatefulSet.

Now, let's move on to the actual containers in the StatefulSet definition, starting with
MySQL itself:

 containers:

 - name: mysql

 image: mysql:5.7

 env:

 - name: MYSQL_ALLOW_EMPTY_PASSWORD

 value: "1"

 ports:

 - name: mysql

 containerPort: 3306

 volumeMounts:

 - name: data

 mountPath: /var/lib/mysql

 subPath: mysql

 - name: conf

 mountPath: /etc/mysql/conf.d

As you can see, this MySQL container setup is fairly basic. In addition to an environment
variable, we mount the previously created configuration. This pod also has some liveness
and readiness probe configuration – check the GitHub repository of this book for those.

Now, let's move on and check out our final container, which will look familiar – it's
actually another instance of Xtra Backup! Let's see how it is configured:

- name: xtrabackup

containerPort: 3307

command:

- bash

- "-c"

- |

set -ex

cd /var/lib/mysql
if [[-f xtrabackup_slave_info && "x$(<xtrabackup_slave_info)"
!= "x"]]; thencat xtrabackup_slave_info | sed -E 's/;$//g' >

Understanding stateful applications on Kubernetes 395

change_master_to.sql.inrm -f xtrabackup_slave_info xtrabackup_
binlog_info

elif [[-f xtrabackup_binlog_info]]; then[[`cat xtrabackup_
binlog_info` =~ ^(.*?)[[:space:]]+(.*?)$]] || exit 1

rm -f xtrabackup_binlog_info xtrabackup_slave_info

echo "CHANGE MASTER TO MASTER_LOG_FILE='${BASH_REMATCH[1]}',\

MASTER_LOG_POS=${BASH_REMATCH[2]}" > change_master_to.sql.in

fi
if [[-f change_master_to.sql.in]]; then

echo "Waiting for mysqld to be ready (accepting connections)"

until mysql -h 127.0.0.1 -e "SELECT 1"; do sleep 1; done

echo "Initializing replication from clone position"

mysql -h 127.0.0.1 \

-e "$(<change_master_to.sql.in), \

MASTER_HOST='mysql-0.mysql', \

MASTER_USER='root', \

MASTER_PASSWORD='', \

MASTER_CONNECT_RETRY=10; \

START SLAVE;" || exit 1

mv change_master_to.sql.in change_master_to.sql.orig

fi
exec ncat --listen --keep-open --send-only --max-conns=1 3307
-c \

"xtrabackup --backup --slave-info --stream=xbstream
--host=127.0.0.1 --user=root"

This container setup is a bit complex, so let's review it section by section.

We know from our initContainers that Xtra Backup loads in data from another Pod
in the StatefulSet in order to get the Pod somewhat ready for replicating, to and from
other members in the StatefulSet.

The Xtra Backup container in this case is the one that actually starts that replication! This
container will first check to see whether the Pod it is running on is supposed to be a slave
Pod in the MySQL cluster. If so, it will start a data replication process from the master.

396 Stateful Workloads on Kubernetes

Finally, the Xtra Backup container will also open a listener on port 3307, which will
send a clone of the data in the Pod, if requested. This is the setup that sends clone data
to the other Pods in the StatefulSet when they request a clone. Remember that the first
initContainer looks at other Pods in the StatefulSet, in order to get a clone. In the
end, each Pod in the StatefulSet is able to request clones in addition to running a process
that can send data clones to other Pods.

Finally, to wrap up our spec, let's look at volumeClaimTemplate. This section of the
spec also lists volume mounts for the previous container and the volume setup for the Pod
(but we've left that out for brevity. Check the GitHub repository of this book for the rest):

 volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 10Gi

As you can see, there's nothing especially interesting about the volume setup
for the last container or the volume list. However, it's worthwhile to note the
volumeClaimTemplates section, because the data will remain the same as long as
a Pod restarts at the same ordinal spot. A new Pod added to the cluster will instead start
with a blank PersistentVolume, which will trigger the initial data clone.

All together, these features of StatefulSets, in combination with the correct configuration
of Pods and tooling, allow for the easy scaling of a stateful DB on Kubernetes.

Now that we've talked about why stateful Kubernetes applications may use StatefulSets,
let's go ahead and implement some to prove it! We'll start with an object storage
application.

Deploying object storage on Kubernetes
Object storage is different from filesystem or block storage. It presents a higher-level
abstraction that encapsulates a file, gives it an identifier, and often includes versioning. The
file can then be accessed via its specific identifier.

Deploying object storage on Kubernetes 397

The most popular object storage service is probably AWS S3, but Azure Blob Storage and
Google Cloud Storage are similar alternatives. In addition, there are several self-hosted
object storage technologies that can be run on Kubernetes, which we reviewed in the
previous section.

For this book, we will review the configuration and usage of Minio on Kubernetes. Minio
is an object storage engine that emphasizes high performance and can be deployed on
Kubernetes, in addition to other orchestration technologies such as Docker Swarm and
Docker Compose.

Minio supports Kubernetes deployments using both an operator and a Helm chart. In this
book, we will focus on the operator, but for more information on the Helm chart, check
out the Minio docs at https://docs.min.io/docs. Let's get started with the Minio
Operator, which will let us review some cool community extensions to kubectl.

Installing the Minio Operator
Installing the Minio Operator will be quite different from anything we have done so
far. Minio actually provides a kubectl plugin in order to manage the installation and
configuration of the operator and Minio as a whole.

We haven't spoken much about kubectl plugins in this book, but they are a growing
part of the Kubernetes ecosystem. kubectl plugins can provide additional functionality
in the form of new kubectl commands.

In order to install the minio kubectl plugin, we use Krew, which is a plugin manager for
kubectl that makes it easy to search and add kubectl plugins with a single command.

Installing Krew and the Minio kubectl plugin
So first, let's install Krew. The installation process varies depending on your OS and
environment, but for macOS, it looks like the following (check out the Krew docs at
https://krew.sigs.k8s.io/docs for more information):

1. First, let's install the Krew CLI tool with the following Terminal commands:

(

 set -x; cd "$(mktemp -d)" &&

 curl -fsSLO "https://github.com/kubernetes-sigs/krew/
releases/latest/download/krew.tar.gz" &&

 tar zxvf krew.tar.gz &&

 KREW=./krew-"$(uname | tr '[:upper:]'
'[:lower:]')_$(uname -m | sed -e 's/x86_64/amd64/' -e 's/

https://docs.min.io/docs
https://krew.sigs.k8s.io/docs

398 Stateful Workloads on Kubernetes

arm.*$/arm/')" &&

 "$KREW" install krew

)

2. Now, we can add Krew to our PATH variable with the following command:

export PATH="${KREW_ROOT:-$HOME/.krechw}/bin:$PATH"

In a new shell, we can now start using Krew! Krew is accessed using kubectl
krew commands.

3. To install the Minio kubectl plugin, you can run the following krew command:

kubectl krew install minio

Now, with the Minio kubectl plugin installed, let's look at getting Minio set up on our
cluster.

Starting the Minio Operator
First off, we need to actually install the Minio Operator on our cluster. This deployment
will control all the Minio tasks that we need to do later:

1. We can install the Minio Operator using the following command:

kubectl minio init

This will result in the following output:
CustomResourceDefinition tenants.minio.min.io: created

ClusterRole minio-operator-role: created

ServiceAccount minio-operator: created

ClusterRoleBinding minio-operator-binding: created

MinIO Operator Deployment minio-operator: created

2. To check whether the Minio Operator is ready to go, let's check on our Pods with
the following command:

kubectl get pods

Deploying object storage on Kubernetes 399

You should see the Minio Operator Pod running in the output:

NAMESPACE NAME READY STATUS
RESTARTS AGE

default minio-operator-85ccdcfb6-r8g8b 1/1
Running 0 5m37s

We now have the Minio Operator running properly on Kubernetes. Next up, we can create
a Minio tenant.

Creating a Minio tenant
The next step is to create a tenant. Since Minio is a multi-tenant system, each tenant
has its own namespace separation for buckets and objects, in addition to separate
PersistentVolumes. Additionally, the Minio Operator starts Minio in Distributed Mode
with a highly available setup and data replication.

Before creating our Minio tenant, we need to install a Container Storage Interface
(CSI) driver for Minio. CSI is a standardized way to interface between storage providers
and containers – and Kubernetes implements CSI in order to allow third-party storage
providers to write their own drivers for seamless integration to Kubernetes. Minio
recommends the Direct CSI driver in order to manage PersistentVolumes for Minio.

To install the Direct CSI driver, we need to run a kubectl apply command with
Kustomize. However, the Direct CSI driver installation requires some environment
variables to be set in order to create the Direct CSI configuration with the proper
configuration, as shown:

1. First, let's go ahead and create this environment file based on the Minio
recommendations:

 default.env
DIRECT_CSI_DRIVES=data{1...4}

DIRECT_CSI_DRIVES_DIR=/mnt

KUBELET_DIR_PATH=/var/lib/kubelet

As you can see, this environment file determines where the Direct CSI driver will
mount volumes.

400 Stateful Workloads on Kubernetes

2. Once we've created default.env, let's load these variables into memory using the
following command:

export $(cat default.env)

3. Finally, let's install the Direct CSI driver with the following command:

kubectl apply -k github.com/minio/direct-csi

This should result in the following output:
kubenamespace/direct-csi created

storageclass.storage.k8s.io/direct.csi.min.io created

serviceaccount/direct-csi-min-io created

clusterrole.rbac.authorization.k8s.io/direct-csi-min-io
created

clusterrolebinding.rbac.authorization.k8s.io/direct-csi-
min-io created

configmap/direct-csi-config created

secret/direct-csi-min-io created

service/direct-csi-min-io created

deployment.apps/direct-csi-controller-min-io created

daemonset.apps/direct-csi-min-io created

csidriver.storage.k8s.io/direct.csi.min.io created

4. Before we go ahead and create our Minio tenant, let's check to see whether our CSI
Pods started up properly. Run the following command to check:

kubectl get pods –n direct-csi

You should see output similar to the following if the CSI Pods have started:
NAME READY
STATUS RESTARTS AGE

direct-csi-controller-min-io-cd598c4b-hn9ww 2/2
Running 0 9m

direct-csi-controller-min-io-cd598c4b-knvbn 2/2
Running 0 9m

direct-csi-controller-min-io-cd598c4b-tth6q 2/2
Running 0 9m

direct-csi-min-io-4qlt7 3/3
Running 0 9m

direct-csi-min-io-kt7bw 3/3

Deploying object storage on Kubernetes 401

Running 0 9m

direct-csi-min-io-vzdkv 3/3
Running 0 9m

5. Now with our CSI driver installed, let's create our Minio tenant – but first, let's
take a look at the YAML that the kubectl minio tenant create command
generates:

kubectl minio tenant create --name my-tenant --servers 2
--volumes 4 --capacity 1Gi -o > my-minio-tenant.yaml

If you want to directly create the Minio tenant without examining the YAML, use
the following command instead:

kubectl minio tenant create --name my-tenant --servers 2
--volumes 4 --capacity 1Gi

This command will just create the tenant without showing you the YAML first.
However, since we are using the Direct CSI implementation, we will need to update
the YAML. So, using just the command will not work. Let's take a look at the
generated YAML file now.

We won't look at the file in its entirety for space reasons, but let's look at some parts
of the Tenant Custom Resource Definition (CRD), which the Minio Operator
will use to create the necessary resources to host our Minio tenant. First, let's look at
the upper portion of the spec, which should look like this:

 my-minio-tenant.yaml
apiVersion: minio.min.io/v1

kind: Tenant

metadata:

 creationTimestamp: null

 name: my-tenant

 namespace: default

scheduler:

 name: ""

spec:

 certConfig:

 commonName: ""

 organizationName: []

 dnsNames: []

402 Stateful Workloads on Kubernetes

 console:

 consoleSecret:

 name: my-tenant-console-secret

 image: minio/console:v0.3.14

 metadata:

 creationTimestamp: null

 name: my-tenant

 replicas: 2

 resources: {}

 credsSecret:

 name: my-tenant-creds-secret

 image: minio/minio:RELEASE.2020-09-26T03-44-56Z

 imagePullSecret: {}

As you can see, this file specifies an instance of the Tenant CRD. This first part
of our spec has two containers specified, a container for the Minio console and
one for the Minio server itself. In addition, the replicas value mirrors what
we specified in our kubectl minio tenant create command. Finally, it
specifies the name of a secret for the Minio console.

Next, let's look at the bottom portion of the Tenant CRD:
 liveness:

 initialDelaySeconds: 10

 periodSeconds: 1

 timeoutSeconds: 1

 mountPath: /export

 requestAutoCert: true

 zones:

 - resources: {}

 servers: 2

 volumeClaimTemplate:

 apiVersion: v1

 kind: persistentvolumeclaims

 metadata:

 creationTimestamp: null

 spec:

 accessModes:

 - ReadWriteOnce

Deploying object storage on Kubernetes 403

 resources:

 requests:

 storage: 256Mi

 status: {}

 volumesPerServer: 2

status:

 availableReplicas: 0

 currentState: ""

As you can see, the Tenant resource specifies a number of servers (also specified
by the creation command) that matches the number of replicas. It also specifies
the name of the internal Minio Service, as well as a volumeClaimTemplate
instance to be used.

This spec, however, does not work for our purposes, since we are using the Direct
CSI. Let's update the zones key with a new volumeClaimTemplate that uses
the Direct CSI, as follows (save this file as my-updated-minio-tenant.yaml).
Here's just the zones portion of that file, which we updated:

 my-updated-minio-tenant.yaml
zones:

 - resources: {}

 servers: 2

 volumeClaimTemplate:

 metadata:

 name: data

 spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 256Mi

 storageClassName: direct.csi.min.io

6. Let's now go ahead and create our Minio tenant! We can do this using the following
command:

kubectl apply -f my-updated-minio-tenant.yaml

404 Stateful Workloads on Kubernetes

This should result in the following output:

tenant.minio.min.io/my-tenant created

secret/my-tenant-creds-secret created

secret/my-tenant-console-secret created

At this point, the Minio Operator will start creating the necessary resources for our new
Minio tenant, and after a couple of minutes, you should see some Pods start up in addition
to the operator, which will look similar to the following:

Figure 15.1 – Minio Pods output

We now have our Minio tenant completely up and running! Next, let's take a look at the
Minio console to see how our tenant looks.

Accessing the Minio console
First, in order to get the login information for the console, we will need to fetch the
content of two keys, which are kept in the autogenerated <TENANT NAME>-console-
secret secret.

To fetch the access key and the secret key (which in our case will be autogenerated)
for the console, let's use the two following commands. In our case, we use our
my-tenant tenant to get the access key:

echo $(kubectl get secret my-tenant-console-secret
-o=jsonpath='{.data.CONSOLE_ACCESS_KEY}' | base64 --decode)

And to get the secret key, we use this:

echo $(kubectl get secret my-tenant-console-secret
-o=jsonpath='{.data.CONSOLE_SECRET_KEY}' | base64 --decode)

Now, our Minio console will be available on a service, <TENANT NAME>-console.

Let's access this console using a port-forward command. In our case, this will be
as follows:

kubectl port-forward service/my-tenant-console 8081:9443

Deploying object storage on Kubernetes 405

Our Minio console will then be available at https://localhost:8081 on your
browser. You will need to accept the browser security warning since we haven't set up
TLS certificates for the console for localhost in this example. Put in the access key and
secret key you got from the previous steps to log in!

Now that we're logged into the console, we can start adding to our Minio tenant. First, let's
create a bucket. To do this, click Buckets on the left sidebar, then click the Create Bucket
button.

In the popup, enter the name of the bucket (in our case, we will use my-bucket) and
submit the form. You should see a new bucket in the list – see the following screenshot for
an example:

Figure 15.2 – Bucket

We now have our distributed Minio setup ready, together with a bucket to upload to. Let's
wrap this example up by uploading a file to our brand-new object storage system!

We're going to do this upload using the Minio CLI, which makes the process of interacting
with S3-compatible storage such as Minio much easier. Instead of using the Minio CLI
from our local machine, we will run a container image preloaded with the Minio CLI
from within Kubernetes, since the TLS setup will only work when accessing Minio from
within the cluster.

406 Stateful Workloads on Kubernetes

First, we'll need to fetch the Minio access key and secret, which are different from the
console access key and secret we fetched earlier. To get these keys, run the following
console commands (in our case, our tenant is my-tenant). First, get the access key:

echo $(kubectl get secret my-tenant-creds-secret
-o=jsonpath='{.data.accesskey}' | base64 --decode)

Then, get the secret key:

echo $(kubectl get secret my-tenant-creds-secret
-o=jsonpath='{.data.secretkey}' | base64 --decode)

Now, let's start up that pod with the Minio CLI. To do this, let's use this Pod spec:

minio-mc-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: minio-mc

spec:

 containers:

 - name: mc

 image: minio/mc

 command: ["/bin/sh", "-c", "sleep 10000000s"]

 restartPolicy: OnFailure

Create this Pod using this:

kubectl apply -f minio-mc-pod.yaml

Then, to exec into this minio-mc Pod, we run the usual exec command:

Kubectl exec -it minio-mc -- sh

Now, let's configure access for our newly created Minio distributed cluster in the Minio
CLI. We can do this with the following command (the --insecure flag is required in
this config):

mc config host add my-minio https://<MINIO TENANT POD IP>:9000
--insecure

Deploying object storage on Kubernetes 407

The Pod IP for this command can be the IP for either of our tenant Minio Pods – in our
case, these are my-tenant-zone-0-0 and my-tenant-zone-0-1. Once you run
this command, you will be prompted for the access key and secret key. Enter them, and
you will see a confirmation message if successful, which will look like this:

Added `my-minio` successfully.

Now, to test that the CLI configuration is working, we can create another test bucket using
the following command:

mc mb my-minio/my-bucket-2 --insecure

This should result in the following output:

Bucket created successfully `my-minio/my-bucket-2`.

As a final test of our setup, let's upload a file to our Minio bucket!

First, still on the minio-mc Pod, create a text file named test.txt. Fill the file with
whatever text you'd like.

Now, let's upload it to our recently created bucket using this:

mc mv test.txt my-minio/my-bucket-2 --insecure

You should see a loading bar with the upload, which should end with the entire file size as
uploaded.

As one last check, go to the Dashboard page on the Minio console and see whether the
object shows up, as shown in the following figure:

Figure 15.3 – Dashboard

As you can see, our file was successfully uploaded!

That's it for Minio – there is a lot more you can do in terms of configuration, but that is
outside the scope of this book. Check the docs at https://docs.min.io/ for more
information.

https://docs.min.io/

408 Stateful Workloads on Kubernetes

Next up, let's look at running DBs on Kubernetes.

Running DBs on Kubernetes
Now that we've taken a look at object storage workloads on Kubernetes, we can move on
to databases. As we've discussed previously in this chapter and elsewhere in the book,
many databases support running on Kubernetes, with varying levels of maturity.

First off, there are several legacy and existing DB engines that support deploying to
Kubernetes. Often, these engines will have supported Helm charts or operators. For
instance, SQL databases such as PostgreSQL and MySQL have Helm charts and operators
supported by various different organizations. NoSQL databases such as MongoDB also
have supported ways to deploy to Kubernetes.

In addition to these previously existing database engines, container orchestrators such as
Kubernetes have lead to the creation of a new category – the NewSQL database.

These databases offer the incredible scalability of NoSQL databases in addition to
SQL-compliant APIs. They can be thought of as a way to easily scale SQL on Kubernetes
(and other orchestrators). CockroachDB is a popular choice here, as is Vitess, which isn't
so much a replacement NewSQL database as it is a way to easily scale the MySQL engine.

In this chapter, we will focus on deploying CockroachDB, which is a modern NewSQL
database built for distributed environments and perfect for Kubernetes.

Running CockroachDB on Kubernetes
To run CockroachDB on our cluster, we will use the official CockroachDB Helm chart:

1. The first thing we need to do is to add the CockroachDB Helm chart repository,
using the following command:

helm repo add cockroachdb https://charts.cockroachdb.com/

This should result in the following output:
"cockroachdb" has been added to your repositories

Running DBs on Kubernetes 409

2. Before we install the chart, let's create a custom values.yaml file in order to
tweak some of the default settings for CockroachDB. Our file for this demo looks
like the following:

 Cockroach-db-values.yaml
storage:

 persistentVolume:

 size: 2Gi

statefulset:

 resources:

 limits:

 memory: "1Gi"

 requests:

 memory: "1Gi"

conf:

 cache: "256Mi"

 max-sql-memory: "256Mi"

As you can see, we are specifying a PersistentVolume size of 2 GB, Pod
memory limits and requests of 1 GB, and the contents of a configuration file
for CockroachDB. This configuration file includes settings for cache and max
memory, which are set to 25% of the size of the memory limits at 256 MB.
This ratio is a CockroachDB best practice. Keep in mind that these are not all
production-ready settings, but they will work for our demo.

3. At this point, let's go ahead and create our CockroachDB cluster using the following
Helm command:

helm install cdb --values cockroach-db-values.yaml
cockroachdb/cockroachdb

If successful, you will see a lengthy deploy message from Helm, which we will not
reproduce here. Let's check to see exactly what was deployed on our cluster using
the following command:

kubectl get po

410 Stateful Workloads on Kubernetes

You will see output similar to the following:
NAMESPACE NAME
READY STATUS RESTARTS AGE

default cdb-cockroachdb-0
0/1 Running 0 57s

default cdb-cockroachdb-1
0/1 Running 0 56s

default cdb-cockroachdb-2
1/1 Running 0 56s

default cdb-cockroachdb-init-8p2s2
0/1 Completed 0 57s

As you can see, we have three Pods in a StatefulSet in addition to a setup Pod that
was used for some initialization tasks.

4. In order to check to see whether our cluster is functional, we can use a command
that is handily given to us in the CockroachDB Helm chart output (it will vary
depending on your Helm release name):

kubectl run -it --rm cockroach-client \

 --image=cockroachdb/cockroach \

 --restart=Never \

 --command -- \

 ./cockroach sql --insecure --host=cdb-
cockroachdb-public.default

If successful, a console will be opened with a prompt similar to the following:

root@cdb-cockroachdb-public.default:26257/defaultdb>

In the next section, we will test CockroachDB with SQL.

Testing CockroachDB with SQL
Now, we can run SQL commands to our new CockroachDB database!

1. First, let's create a database with the following command:

CREATE DATABASE mydb;

Running DBs on Kubernetes 411

2. Next, let's create a simple table:

CREATE TABLE mydb.users (

 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

 first_name STRING,

 last_name STRING,

 email STRING

);

3. Then, let's add some data with this command:

INSERT INTO mydb.users (first_name, last_name, email)

 VALUES

 ('John', 'Smith', 'jsmith@fake.com');

4. Finally, let's confirm the data using this:

SELECT * FROM mydb.users;

That should give you the following output:

 id | first_name | last_name
| email

---------------------------------------+------------+----------
-+------------------

 e6fa342f-8fe5-47ad-adde-e543833ffd28 | John | Smith
| jsmith@fake.com

(1 row)

Success!

As you can see, we have a fully functional distributed SQL database. Let's move on to the
final stateful workload type that we will review: messaging.

412 Stateful Workloads on Kubernetes

Implementing messaging and queues on
Kubernetes
For messaging, we will be implementing RabbitMQ, an open source message queue
system that supports Kubernetes. Messaging systems are typically used in applications
to decouple various components of the application in order to support the scale and
throughput, as well as asynchronous patterns such as retries and service worker fleets.
For instance, instead of one service calling another service directly, a service could place
a message onto a persistent message queue, at which point it would be picked up by
a worker container that is listening to the queue. This allows for easy horizontal scaling
and greater tolerance of entire component downtime as compared to a load balancing
approach.

RabbitMQ is one of many options for message queues. As we mentioned in the first
section of the chapter, RabbitMQ is an industry-standard option for message queues,
not necessarily a queue system built for Kubernetes specifically. However, it's still a great
choice and very easy to deploy, as we will see shortly.

Let's start with implementing RabbitMQ on Kubernetes!

Deploying RabbitMQ on Kubernetes
Installing RabbitMQ on Kubernetes can be easily done via an operator or via a Helm
chart. For the purposes of this tutorial, we will use the Helm chart:

1. First, let's add the proper helm repository (provided by Bitnami):

helm repo add bitnami https://charts.bitnami.com/bitnami

2. Next, let's create a custom values file to tweak some parameters:

 Values-rabbitmq.yaml
auth:

 user: user

 password: test123

persistence:

 enabled: false

As you can see, in this case, we are disabling persistence, which is great for
a quick demo.

Implementing messaging and queues on Kubernetes 413

3. Then, RabbitMQ can easily be installed on the cluster using the following
command:

helm install rabbitmq bitnami/rabbitmq --values values-
rabbitmq.yaml

Once successful, you will see a confirmation message from Helm. The RabbitMQ
Helm chart also includes a management UI, so let's use that to validate that our
installation worked.

4. First, let's start a port forward to the rabbitmq service:

kubectl port-forward --namespace default svc/rabbitmq
15672:15672

Then, we should be able to access the RabbitMQ management UI on http://
localhost:15672. It will look like the following:

Figure 15.4 – RabbitMQ management console login

5. Now, we should be able to log in to the dashboard using the username and
password specified in the values file. Upon login, you will see the RabbitMQ
dashboard main view.

Importantly, you will see a list of the nodes in your RabbitMQ cluster. In our case,
we only have a single node, which will display as follows:

Figure 15.5 – RabbitMQ management console node item
For each node, you can see the name and some metadata, including memory,
uptime, and more.

414 Stateful Workloads on Kubernetes

6. In order to add a new queue navigate to Queues on the top bar, click Add a new
queue toward the bottom of the screen. Fill out the form as follows, then click
Add queue:

Figure 15.6 – RabbitMQ management console queue creation
If successful, the screen should refresh with your new queue added to the list. This
means our RabbitMQ setup is working properly!

7. Finally, now that we have a queue, we can publish a message to it. To do this, click
on your newly created queue on the Queues page, then click Publish Message.

8. Write any text in the Payload text box and click Publish Message. You should see a
confirmation popup telling you that your message has been published successfully,
and the screen should refresh, showing your message on the queue, as shown in the
following figure:

Figure 15.7 – RabbitMQ management console queue status

9. Finally, to emulate fetching messages from the queue, click on Get messages near
the bottom of the page, which should expand to show a new section, and then click
the Get Message(s) button. You should see an output of the message you sent,
proving that the queue system works!

Summary 415

Summary
In this chapter, we learned about running stateful workloads on Kubernetes. First, we
reviewed a high-level overview of some of the types of stateful workloads and some
examples of each. Then, we moved on to actually deploying one of these workloads – an
object storage system – on Kubernetes. Next, we did the same with a NewSQL database,
CockroachDB, showing you how to easily deploy a CockroachDB cluster on Kubernetes.

Finally, we showed you how to deploy the RabbitMQ message queue on Kubernetes using
a Helm chart. The skills you used in this chapter will help you deploy and use popular
stateful application patterns on Kubernetes.

If you've made it this far, thanks for sticking with us through all 15 chapters of this book!
I hope that you have learned how to use a broad spectrum of Kubernetes functionality
and that you now have all the tools you need in order to build and deploy complex
applications on Kubernetes.

Questions
1. What cloud storage offering is Minio's API compatible with?

2. What are the benefits of a StatefulSet for a distributed database?

3. In your words, what makes stateful applications difficult to run on Kubernetes?

Further reading
• Minio Quickstart Documentation: https://docs.min.io/docs/minio-

quickstart-guide.html

• CockroachDB Kubernetes Guide: https://www.cockroachlabs.com/
docs/v20.2/orchestrate-a-local-cluster-with-kubernetes

https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://www.cockroachlabs.com/docs/v20.2/orchestrate-a-local-cluster-with-kubernetes
https://www.cockroachlabs.com/docs/v20.2/orchestrate-a-local-cluster-with-kubernetes

Assessments

Chapter 1 – Communicating with Kubernetes
1. Container orchestration is a software pattern where multiple containers are

controlled and scheduled in order to serve an application.

2. The Kubernetes API server (kube-apiserver) handles requests to update
Kubernetes resources. The scheduler (kube-scheduler) decides where to place
(schedule) containers. The controller manager (kube-controller-manager)
ensures that the desired configuration of Kubernetes resources is reflected in the
cluster. etcd provides a data store for the cluster configuration.

3. The kube-apiserver must be started with the --authorization-
mode=ABAC and --authorization-policy-file=filename parameters.

4. For high availability of the control plane, in case of a failure of one of the master
nodes.

5. In the event that a resource has already been created, kubectl create will fail
because the resource already exists, while kubectl apply will attempt to apply
any YAML changes to the resource.

6. The kubectl use-context command can be used to switch between multiple
contexts within a kubeconfig file. To change between kubeconfig files, the
KUBECONFIG environment variable can be set to the path of the new file.

7. Imperative commands do not provide a history of changes to a resource.

Chapter 2 – Setting Up Your Kubernetes
Cluster

1. Minikube makes it easy to set up a local Kubernetes cluster for development.

2. In some cases, there may be a fixed minimum cost for the cluster that is larger than
a self-provisioned cluster. Some managed options also have license costs in addition
to the cost of compute.

418 Assessments

3. Kubeadm is agnostic to infrastructure providers, while Kops supports only several
major providers with deeper integration and compute provisioning.

4. As of the writing of this book, AWS, Google Cloud Platform, Digital Ocean,
VMware, and OpenStack, in various levels of production readiness.

5. Typically, the cluster components are defined in the systemd service definitions,
which allows the automatic restart of services if a node shuts down and restarts at
the OS level.

Chapter 3 – Running Application Containers on
Kubernetes

1. If you had development, staging, and production environments, you could make
one namespace for each.

2. The Node that the Pod is running in could be in a broken state where the control
plane cannot reach it. Typically, when a Node gracefully exits the cluster, the Pod
will simply be rescheduled instead of showing an Unknown status.

3. To prevent memory-hungry Pods from taking over the entire Node and causing
indeterminate behavior in other Pods on the Node.

4. You should add more delay to the Startup probe if you have one. If not, you will
need to add one, or add a delay to the Readiness probe.

Chapter 4 – Scaling and Deploying Your
Application

1. ReplicationControllers have less flexibility in how the selector is configured – only
key-value selectors are allowed.

2. Deployments allow you to specify how updates are rolled out.

3. Jobs work well for batch tasks, or tasks that can be scaled horizontally with a clear
completion target.

4. StatefulSets provide an ordinal Pod identity that stays the same when those Pods
restart.

5. In addition to an existing version, a new Deployment can be created with the canary
version. Then, both versions can be accessed in parallel.

Chapter 5 – Services and Ingress – Communicating with the Outside World 419

Chapter 5 – Services and Ingress –
Communicating with the Outside World

1. You would use a ClusterIP service.

2. You can use the kubectl describe command to see what port on the Nodes a
NodePort service is active on.

3. In a cloud environment where you often have to pay per load balancer, Ingress
allows you to specify multiple routing rules while only having to pay for one load
balancer.

4. ExternalName services can be used to easily route to other pieces of infrastructure
in your cloud environment – such as managed databases and object storage.

Chapter 6 – Kubernetes Application
Configuration

1. Secrets are stored encoded and optionally encrypted in etcd. ConfigMaps are
stored in plain text.

2. They are Base64-encoded.

3. The data will be more visible when describing the ConfigMap. The key-value pattern
is also easier to use when mounting the ConfigMap as an environment variable.

4. Depending on how you set up your cluster, your secrets may not be encrypted at
all. If a cluster's EncryptionConfiguration is not set, secrets will only be Base64-
encoded – and they can easily be decoded. By creating your cluster with an
EncryptionConfiguration, your secrets will be stored encrypted in etcd. This is not
a security panacea, but encryption at rest is certainly necessary to improve security
for secrets.

420 Assessments

Chapter 7 – Storage on Kubernetes
1. Volumes are tied to the life cycle of a Pod and are deleted when the Pod is deleted.

Persistent Volumes will remain until a cluster is deleted, or they are specifically
deleted themselves.

2. StorageClasses define the type of a Persistent Volume. They can be used to
distinguish between different types of storage, such as between faster SSD storage
and slower hard drives – or different types of cloud storage. StorageClasses
determine where a PersistentVolumeClaim and Persistent Volume will go to get
provisioned storage.

3. Use a managed Kubernetes service with integrated storage provisioning or add a
cloud-controller-manager configuration to your cluster.

4. Any application that needs to store state for longer than the life of an individual
Pod would not work with Volumes. Any application that needs to have state that is
tolerant to Pod failure needs a Persistent Volume.

Chapter 8 – Pod Placement Controls
1. Node Selectors can be used to match against Node labels and multiple Nodes can

fulfill the requirements. Using a Node name means that you specify the single Node
where the Pod must be placed.

2. Kubernetes implements some default taints to ensure that Pods do not get scheduled
on Nodes that are malfunctioning or lack resources. In addition, Kubernetes taints
the master Nodes to prevent scheduling of user applications on the masters.

3. Too many affinities and anti-affinities can slow down the scheduler or cause it to
become unresponsive. Determining Pod placement in cases with a lot of affinities or
anti-affinities is very compute-heavy.

4. Using anti-affinities, you could prevent Pods from co-existing with like Pods in
the same failure domain. Nodes in the same failure domain would be labeled with
a failure domain or zone identifier. Anti-affinity would look for Pods matching
the specific tier of the application level in the same failure domain, and prevent
scheduling on Nodes matching that domain. The end result would be each tier of
the three-tier application being spread out among multiple failure domains.

Chapter 9 – Observability on Kubernetes 421

Chapter 9 – Observability on Kubernetes
1. Metrics correspond to numerical values that present application/compute

performance and/or usage across many categories, including disk, CPU, memory,
latency, and so on. Logs correspond to the application, Node, or control plane text
logs.

2. The Grafana UI is highly customizable and can be used to present complex
Prometheus (or another data source's) queries in an elegant, flexible way.

3. FluentD would need to run on the production cluster in order to collect logs.
Elasticsearch and Kibana could run on a separate cluster or other infrastructure.

Chapter 10 – Troubleshooting Kubernetes
1. One of the strengths of Kubernetes is the ability to scale the cluster easily by adding

nodes or changing Pod placement by using controls such as taints and tolerations.
In addition, Pod restarts can result in completely different IPs for the same
application. This means that both the compute and network topologies can be ever-
changing.

2. The kubelet is typically run as a Linux service with systemd, with control
available using systemctl and logs in journalctl.

3. There are a few different methodologies to use, but generally, you would want to
check whether all Nodes are ready and schedulable; whether there are any Pod
Placement Controls precluding scheduling of the Pod; and whether there is any
dependent storage, ConfigMaps, or secrets that do not exist.

Chapter 11 – Template Code Generation and
CI/CD on Kubernetes

1. Helm Charts use templates and variables, while Kustomize uses a patch-based
strategy. Kustomize is built into recent versions of kubectl, while Helm uses a
separate CLI tool.

2. The configuration should emphasize security, since deploy credentials could be
used to deploy attacker workloads to your cluster. Using either secure environment
variables or access management controls on your cloud provider are two good
strategies. The credentials should absolutely not be placed in any Git repository.

422 Assessments

3. In-cluster setups can be preferable since Kubernetes credentials are not required to
be provided by an external system. Out-of-cluster setups are usually simpler, and
more synchronous than in-cluster setups, where a control loop determines when
changes are made to the resource configuration.

Chapter 12 – Kubernetes Security and
Compliance

1. MutatingAdmissionWebhook and ValidatingAdmissionWebhook.

2. A NetworkPolicy with a blank Pod Selector has the effect of selecting all Pods. A
NetworkPolicy with all Pods selected, and Ingress and Egress types added without
any rules, will have the effect of automatically denying all ingress and egress to all
Pods in the namespace of the NetworkPolicy.

3. We would want to track any API requests where resources are patched or updated,
because attackers could update a Deployment, Pod, or another resource with
malicious containers.

Chapter 13 – Extending Kubernetes with CRDs
1. The stored version is the version that is actually stored in the data store. Served

versions are any versions that are accepted by the API for read or write operations.
The served versions are converted into the stored version when stored in etcd.

2. Measure, Analyze, and Update (typically).

3. Depending on the cloud provider, the cluster-autoscaler addon will directly update
autoscaling groups in order to add or remove Nodes.

Chapter 14 – Service Meshes and Serverless
1. A static Envoy configuration refers to an Envoy configuration that is manually

created or written by a user. A dynamic Envoy configuration (like those provided by
Istio) will constantly adapt to new containers, as well as new routing and filter rules,
from an external controller or data plane.

2. Listeners, Routes, Clusters, and Endpoints.

3. Knative requires many components in order to run. This allows for plenty of
customization but makes it more difficult to set up and operate than OpenFaaS.

Chapter 15 – Stateful Workloads on Kubernetes 423

Chapter 15 – Stateful Workloads on
Kubernetes

1. Minio is an AWS S3-compatible storage tool.

2. StatefulSets assist self-clustering applications such as distributed databases by
providing stable, ordinal Pod identities, in addition to Persistent Volume stability.

3. In Kubernetes, Pods can be short-lived, and stateful applications can be distributed.
This means that the process of maintaining state between Pods (for instance, the
database consensus) can become difficult if Pods change identity and storage needs
to be replicated from scratch.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Kubernetes

Gigi Sayfan

ISBN: 978-1-83921-125-6

• Master the fundamentals of Kubernetes architecture and design

• Build and run stateful applications and complex microservices on Kubernetes

• Use tools like Kubectl, secrets, and Helm to manage resources and storage

• Master Kubernetes Networking with load balancing options like Ingress

• Achieve high-availability Kubernetes clusters

• Improve Kubernetes observability with tools like Prometheus, Grafana, and Jaeger

• Extend Kubernetes working with Kubernetes API, plugins, and webhooks

http://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256

426 Other Books You May Enjoy

Kubernetes and Docker - An Enterprise Guide

Scott Surovich, Marc Boorshtein

ISBN: 978-1-83921-340-3

• Create a multinode Kubernetes cluster using kind

• Implement Ingress, MetalLB, and ExternalDNS

• Configure a cluster OIDC using impersonation

• Map enterprise authorization to Kubernetes

• Secure clusters using PSPs and OPA

• Enhance auditing using Falco and EFK

• Back up your workload for disaster recovery and cluster migration

• Deploy to a platform using Tekton, GitLab, and ArgoCD

http://www.packtpub.com/product/kubernetes-and-docker-an-enterprise-guide/9781839213403

Leave a review - let other readers know what you think 427

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

Symbols
2019 security audit results 294, 295

A
admission controllers

types 295
using 295, 296

Alert Manager UI
using 217

anti-affinity
using 184

Apache Mesos 21
application

logging 198
performance metrics 199

Application Health 197
application performance

monitoring (APM) 220
applications, troubleshooting

on Kubernetes
case studies 243-248

Attribute-Based Access
Control (ABAC) 28

authentication methods 25, 26
authorization methods

about 27
Attribute-Based Access

Control (ABAC) 28
Role-Based Access Control

(RBAC) 27, 28
AWS Codebuild

Kubernetes CI, implementing
with 281-285

Azure Kubernetes Service
about 43
cluster, creating 43, 44

C
CCM node 343
CCM routes controller 343
CCM services controller 344
Certificate Authorities (CAs) 26
Certificate Authority (CA) 51, 354
Certificate Signing Request (CSR) 26
CI/CD paradigms

on Kubernetes 279
cloud-controller-manager (CCM)

about 339
capabilities 343
component 340

430 Index

installing 340-343
Cloud Native Computing

Foundation (CNCF) 347
cloud-specific Kubernetes extensions

using 339
cluster

creating 51
creating, on minikube 38
creating, options 36
creating, with Kops 47, 50
creating, with Kubeadm 45

cluster-autoscaler 340
cluster-autoscaler add-on

using 346
cluster configuration

tools, implementing for 295
cluster DNS 108-110
ClusterIP

implementing 111, 112
protocol 112

ClusterRoleBinding 304
CockroachDB

running, on Kubernetes 408-410
testing, with SQL 410, 411

Common Vulnerabilities and
Exposures (CVEs)

reviewing 293
config files

creating 52
ConfigMap

creating, from text value 132
mounting, as environment

variable 135, 136
mounting, as volume 134, 135

ConfigMaps
about 130
creating, from environment files 134
creating, from files 133

implementing 131
containerized applications

configuring 130
Container Network Interface

(CNI) 24, 236
container orchestration

about 20
benefits 20

container runtime 23, 24
Container Runtime Interface (CRI) 24
container security

tools, implementing for 295
Container Storage Interface (CSI) 399
Continuous Integration/Continuous

Deployment (CI/CD) 31, 259
control plane component

bootstrapping 53, 54
credentials

setting up, for Kops 48, 49
CronJobs 98-100
cron notation

reference link 99
Cross-Origin Resource Sharing

(CORS) 358
custom admission controllers

creating 297
server, writing for 297, 298

custom admission controller server
Kubernetes, configuring to call 298-301

Custom Resource Definition (CRD)
about 209, 323, 401
operator, designing for 336
testing 332, 333
used, for extending Kubernetes 324, 325
versions 327-332
writing 325-327

CVE-2016-1905
improper admission control 293

Index 431

CVE-2018-1002105
connection, upgrading to backend 294

D
DaemonSets

implementing 92-94
databases (DBs)

about 389
running, on Kubernetes 408

declarative commands
versus imperative commands 30

default admission controllers 296
Deployment

controlling 87-90
controlling, with imperative

commands 90
distributed applications

failure modes 234-237
distributed tracing

implementing, with Jaeger 224
Docker Compose 397
Docker Swarm 21, 397

E
ecosystem

integrating with 346
EFK Stack

implementing, on Kubernetes 218
installing 218-223

EKS cluster
creating 40

eksctl
reference link 40

Elastic Block Storage (EBS) 151
Elastic Container Repository (ECR) 281
Elastic Kubernetes Service

(EKS) 39, 140, 151
encrypted Secrets

implementing 140, 141
encryption

configuring 52, 53
environment files

ConfigMap, creating from 134
environment variable

ConfigMap, mounting as 135, 136
Secret, mounting as 139, 140

Envoy
clusters 358
configuration files 360-366
endpoints 358, 359
listeners 358
routes 358
URL 361
using, as sidecar proxy 357

etcd 22, 23
etcd cluster

creating 52, 53
external-dns

about 340
using, with Kubernetes 344-346

ExternalName Service
creating 118-120

F
Faasnetes repository

URL 381
FaaS pattern

implementing, in Knative 378-380
Falco

capabilities 315-318
installation link 314
installing 313-315
Kubernetes audit event rules,

432 Index

using in 318, 319
mapping, to compliance use cases 319
mapping, to runtime security

use cases 319
files

ConfigMap, creating from 133
Secret, creating from 137

FluxCD
Kubernetes CI, implementing with 285
URL 285

FluxCD (H3)
installing 286-289

Fully Qualified Domain Name
(FQDN) 109

Function-as-a-service (FaaS) 375

G
Google Kubernetes Engine (GKE)

about 41
cluster, creating 41-43
multi-zonal cluster 42
regional cluster 42
single zone cluster 42

Grafana
about 208
installing 209, 210
using 214-216

H
Helm

about 261
installing 262
rollbacks 271
upgrading 271
used, for implementing templates

on Kubernetes 262

used, for installing OpenFaaS
components 381

using, with Kubernetes 262
Helm charts

about 263-265
creating 266-268
installing 269
template variables, using 269-271
uninstalling 269

Helm releases 263-265
Helm repositories 263-265
Horizontal Pod Autoscalers (HPA)

about 91
harnessing 91

I
imperative commands

Deployment, controlling 90
versus declarative commands 30

in-cluster CI/CD
about 280
implementing, with Kubernetes 281

Ingress
about 108
configuring 120

Ingress controller
about 121
entry point 121
reference link 121
rules 122-126
YAML 122-126

ingress-nginx documentation
reference link 121

init containers 67-70
inter-Pod affinity

using 184
intrusion detection

Index 433

handling 313
Iptables proxy mode 110
IPVS proxy mode 110
Istio

setting up, on Kubernetes 367-374

J
Jaeger

distributed tracing,
implementing with 224

installing, with Jaeger Operator 224-229
Jaeger Operator

used, for installing Jaeger 224-229
Jobs

using 96-98
JSONPatch

used, for specifying changes 277-279

K
Kafka 389
kind value

reference link 63
Knative

FaaS pattern, implementing 378-380
Knative docs

URL 376
Knative, for FaaS

Kubernetes 378
using, on Kubernetes 375-377

Kops
about 45
cluster, creating 47, 50
credentials, setting up for 48, 49
installing, on Linux 47
installing, on macOS 47
installing, on Windows 47

state storage, setting up 49
Krew

installing 397, 398
Kubeadm

about 44
cluster, creating 45
installing 46
master nodes, starting 46
worker nodes, starting 46

kube-apiserver 22
Kubebuilder 333
kubeconfig

setting up 30
kube-controller-manager 22
kubectl

commands 31, 32
setting up 29, 46
using 29

kubelet 24
kube-proxy 23, 24
Kubernetes

about 21
addons 24
alerts and traces 208
application logs 202, 203
architecture 21
CI/CD paradigms on 279
CockroachDB, running on 408-410
compliance on 313
configuring, to call custom admission

controller server 298-301
control plane logs 202
DBs, running on 408
EFK Stack, implementing on 218
extending, with custom resource

definition (CRD) 324, 325
external-dns, using with 344-346
Helm, using with 262

434 Index

in-cluster CI/CD, implementing
with 281

Istio, setting up 367-374
Knative for FaaS, using 375-378
Kustomize, using with 272, 273
logging on 202
messaging 389
messaging, implementing 412
metrics on 199-201
object storage, deploying on 396
object storage on 389
OpenFaaS, using for FaaS 381
out-of-cluster CI/CD,

implementing with 281
probes types 70
queues 389
queues, implementing 412
RabbitMQ, running on 412-414
security audits for 293
security on 292
serverless, implementing 375
service mesh, adding 366
stateful applications on 388
strategies, for running stateful

applications on 390, 391
streaming 389
templates, implementing

with Helm on 262
templates, implementing with

Kustomize on 262
Kubernetes API groups 327
Kubernetes API server 22
Kubernetes audit event rules

using, in Falco 318, 319
Kubernetes certificate authority

creating, for TLS 51
Kubernetes certificate infrastructure

for security 26

for TLS 26
Kubernetes CI

implementing, with AWS
Codebuild 281-285

implementing, with FluxCD 285
Kubernetes Cluster 197
Kubernetes clusters

troubleshooting 238
Kubernetes-compatible databases 389
Kubernetes controller manager 23
Kubernetes control plane 22

logging 198
Kubernetes Dashboard

installing 203-208
Kubernetes-native stateful applications

about 388
honorable mentions 390
kubernetes-compatible databases 389
messaging 389
object storage on 389
queues 389
streaming 389

Kubernetes nodes 21
Kubernetes observability

enhancing, with ecosystem 208
Kubernetes operators

self-managing functionality with 333
Kubernetes Pod placement failure

case study 238-242
Kubernetes resource YAML files

writing 32, 33
Kubernetes scheduler 22, 23
Kubernetes worker nodes 23
Kubespray

about 45
reference link 45

Kustomization file
changes, specifying directly in 274-276

Index 435

Kustomize
about 261
used, for implementing templates

on Kubernetes 262
using, with Kubernetes 272, 273

L
Linux

Kops, installing on 47
minikube, installing on 38

liveness probes 71, 72
LoadBalancer Service

setting up 117, 118

M
macOS

Kops, installing on 47
minikube, installing on 37

managed Kubernetes services
about 38
benefits 39
drawbacks 39

minikube
about 37
cluster, creating on 38
installing 37
installing, on Linux 38
installing, on macOS 37
installing, on Windows 37
reference link 37

Minio console
accessing 404-407

Minio kubectl plugin
installing 397, 398

Minio Operator
installing 397

working with 398, 399
Minio tenant

creating 399-404
multi-container pods 59
multiple taints 177
multiple tolerations 177
multi-tier application

implementing 100-105
MutatingAdmissionWebhook 296
MySQL

running, on StatefulSets 391-396

N
namespace 25
NamespaceExists admission

controller 296
network policies

using 308-313
NGINX

using, as sidecar reverse proxy 352-357
node affinity

Pods, controlling with 177, 178
node CPU

usage 197, 198
node lifecycle controller 343
node memory

usage 198
node name

using 172, 173
NodePort

using 113-116
nodes

provisioning 51
node selectors

using 172, 173

O

436 Index

observability, on Kubernetes
about 196
alerts 197
logs 197
metrics 196
traces 197

observability tooling
using 199

OpenFaaS
using, for FaaS on Kubernetes 381

OpenFaaS CLI
functions, deploying 382-384
installing 382-384

OpenFaaS components
installing, with Helm 381

Operator control loop
mapping 334, 335

operator, designing for Custom
Resource Definition (CRD)

analyze step 337, 338
measure step 336, 337
steps 336
update step 338, 339

orchestration, tools
Apache Mesos 21
Docker Swarm 21
Kubernetes 21

out-of-cluster CI/CD
about 280
implementing, with Kubernetes 281

P
PatchStrategicMerge

used, for specifying changes 276, 277
persistent volumes (PVs)

about 152, 153
attaching, to Pods 155, 156

claims 153-155
persistent volumes (PVs),

without cloud storage
about 156
rook-ceph-block storage class 159-161
Rook Ceph filesystem 161-164
Rook, installing 157, 158

Pod
about 58
drawbacks 82
implementing 58
life cycle 61
namespaces 60, 61
networking 60
paradigms 59
solutions 82
storage 60

Pod affinities
about 184-186
limitations 190
namespaces 190, 191

Pod anti-affinities
about 187
combining, with Pod affinities 188, 189
limitations 190
namespaces 190, 191

Pod controllers 83, 84
Pod placement

use cases, identifying for 168
Pod placement, use cases

data compliance, requisites 169, 170
different node types, requisites 169
Kubernetes node health placement

controls 168, 169
multiple failure domains 170, 171
multi-tenant clusters 170

Pod resource specifications
about 62-66

Index 437

API version 63
container key 65
image 65
init containers 67-70
kind value 63
liveness probes 71, 72
metadata 64
name 65
Pod scheduling 76
Pod transitions 75, 76
probe mechanism configuration 73-75
probes types, in Kubernetes 70
readiness probes 70, 71
spec key 65
startup probes 72, 73

Pods
controlling, with multiple

node affinitie 182, 183
controlling, with node affinity 177, 178
controlling, with preferredDuring

SchedulingIgnoredDuringExecution
node affinities 180-182

controlling, with requiredDuring
SchedulingIgnoredDuringExecution
node affinities 178-180

persistent volumes, attaching to 155, 156
Pod scheduling 76
Pod security policies

creating, steps 302
enabling 301

Pod security policy admission controller
enabling 302

PodSecurityPolicy admission
controller 296

Pod security policy resource
creating 303-308

Pod state, values
failed 62

pending 62
running 62
succeeded 62
unknown 62

Pod transitions 75
preferredDuringSchedulingIgnored

DuringExecution node affinities
used, for controlling Pods 180-182

probe mechanism configuration 73-75
probes types

in Kubernetes 70
programmatic cluster creation tools

Kops 45
Kubeadm 44
Kubespray 45

Prometheus
about 208
installing 209, 210
using 210-213

protocol 112
proxy modes

Iptables proxy mode 110
IPVS proxy mode 110
Userspace proxy mode 110

Public Key Infrastructure (PKI) 51

R
RabbitMQ

about 389
deploying, on Kubernetes 412-414

readiness probes 70, 71
ReplicaSets

replicas key 85
selector key 85
template section 86
testing 86
using 84, 85

438 Index

replicas key 85
requiredDuringScheduling

IgnoredDuringExecution
node affinities

used, for controlling Pods 178-180
Role-Based Access Control

(RBAC) 27, 28, 237
RoleBinding 304
runtime security

handling 313

S
Secret

about 131
cluster encryption, disabling 143, 144
creating, from files 137
encryption, checking 142, 143
manual declarative approach 138
mounting, as environment

variable 139, 140
mounting, as volume 138, 139
using 136

selector key 85
self-managing functionality

with Kubernetes operators 333
server

writing, for custom admission
controller 297, 298

serverless patterns
implementing, on Kubernetes 375

service mesh
adding, to Kubernetes 366, 367

Service protocols
reference link 113

Services

about 108
proxy types 110, 111

sidecar proxy
Envoy, using 357, 358
using 350, 351

sidecar reverse proxy
NGINX, using as 352-357

single-container pods 59
SQL

CockroachDB, testing with 410, 411
startup probes 72, 73
stateful applications

on Kubernetes 388
StatefulSets

about 94, 95
MySQL, running on 391-396

T
taints

implementing 173-176
template code generation, on Kubernetes

Helm 261
Kustomize 261
options 260, 261

text values
ConfigMap, creating from 132

third-party tooling 229, 230
tolerations

implementing 173-176

U
users 25
userspace proxy mode 110

V

Index 439

ValidatingAdmissionWebhook 296
volumes

about 148-151
ConfigMap, mounting as 134, 135
Secret, mounting as 138, 139
types, reference link 149
versus persistent volumes 148

W
Windows

Kops, installing on 47
minikube, installing on 37

worker node
bootstrapping 55, 56

X
xDS 358
Xtra Backup 394

	Cover
	Title Page
	Copyrights and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Setting Up Kubernetes
	Chapter 1: Communicating with Kubernetes
	Technical requirements
	Introducing container orchestration
	What is container orchestration?
	Benefits of container orchestration
	Popular orchestration tools

	Kubernetes' architecture
	Kubernetes node types
	The Kubernetes control plane
	The Kubernetes API server
	The Kubernetes scheduler
	The Kubernetes controller manager
	etcd
	The Kubernetes worker nodes
	kubelet
	kube-proxy
	The container runtime
	Addons

	Authentication and authorization on Kubernetes
	Namespaces
	Users
	Authentication methods
	Kubernetes' certificate infrastructure for TLS and security
	Authorization options
	RBAC
	ABAC

	Using kubectl and YAML
	Setting up kubectl and kubeconfig
	Imperative versus declarative commands
	Writing Kubernetes resource YAML files

	Summary
	Questions
	Further reading

	Chapter 2: Setting Up Your Kubernetes Cluster
	Technical requirements
	Options for creating a cluster
	minikube – an easy way to start
	Installing minikube
	Creating a cluster on minikube

	Managed Kubernetes services
	Benefits of managed Kubernetes services
	Drawbacks of managed Kubernetes services

	AWS – Elastic Kubernetes Service
	Getting started

	Google Cloud – Google Kubernetes Engine
	Getting started

	Microsoft Azure – Azure Kubernetes Service
	Getting started

	Programmatic cluster creation tools
	Kubeadm
	Kops
	Kubespray

	Creating a cluster with Kubeadm
	Installing Kubeadm
	Starting the master nodes
	Starting the worker nodes
	Setting up kubectl

	Creating a cluster with Kops
	Installing on macOS
	Installing on Linux
	Installing on Windows
	Setting up credentials for Kops
	Setting up state storage
	Creating clusters

	Creating a cluster completely from scratch
	Provisioning your nodes
	Creating the Kubernetes certificate authority for TLS
	Creating config files
	Creating an etcd cluster and configuring encryption
	Bootstrapping the control plane component
	Bootstrapping the worker node

	Summary
	Questions
	Further reading

	Chapter 3: Running Application Containers on Kubernetes
Using Pods
	Technical requirements
	What is a Pod?
	Implementing Pods
	Pod paradigms
	Pod networking
	Pod storage
	Namespaces
	The Pod life cycle
	Understanding the Pod resource spec

	Summary
	Questions
	Further reading

	Section 2:
Configuring and Deploying Applications on Kubernetes
	Chapter 4: Scaling and Deploying Your Application
	Technical requirements
	Understanding Pod drawbacks and their solutions
	Pod controllers

	Using ReplicaSets
	Replicas
	Selector
	Template
	Testing a ReplicaSet

	Controlling Deployments
	Controlling Deployments with imperative commands

	Harnessing the Horizontal Pod Autoscaler
	Implementing DaemonSets
	Understanding StatefulSets
	Using Jobs
	CronJobs

	Putting it all together
	Summary
	Questions
	Further reading

	Chapter 5: Services and Ingress – Communicating with the Outside World
	Technical requirement
	Understanding Services and cluster DNS
	Cluster DNS
	Service proxy types

	Implementing ClusterIP
	Protocol

	Using NodePort
	Setting up a LoadBalancer Service
	Creating an ExternalName Service
	Configuring Ingress
	Ingress controllers

	Summary
	Questions
	Further reading

	Chapter 6: Kubernetes Application Configuration
	Technical requirements
	Configuring containerized applications using best practices
	Understanding ConfigMaps
	Understanding Secrets

	Implementing ConfigMaps
	From text values
	From files
	From environment files
	Mounting a ConfigMap as a volume
	Mounting a ConfigMap as an environment variable

	Using Secrets
	From files
	Manual declarative approach
	Mounting a Secret as a volume
	Mounting a Secret as an environment variable
	Implementing encrypted Secrets
	Checking whether your Secrets are encrypted
	Disabling cluster encryption

	Summary
	Questions
	Further reading

	Chapter7: Storage on Kubernetes
	Technical requirements
	Understanding the difference between volumes and persistent volumes
	Volumes
	Persistent volumes
	Persistent volume claims
	Attaching Persistent Volume Claims (PVCs) to Pods

	Persistent volumes without cloud storage
	Installing Rook
	The rook-ceph-block storage class
	The Rook Ceph filesystem

	Summary
	Questions
	Further reading

	Chapter 8: Pod Placement Controls
	Technical requirements
	Identifying use cases for Pod placement
	Kubernetes node health placement controls
	Applications requiring different node types
	Applications requiring specific data compliance
	Multi-tenant clusters
	Multiple failure domains

	Using node selectors and node name
	Implementing taints and tolerations
	Multiple taints and tolerations

	Controlling Pods with node affinity
	Using requiredDuringSchedulingIgnoredDuringExecution node affinities
	Using preferredDuringSchedulingIgnoredDuringExecution node affinities
	Multiple node affinities

	Using inter-Pod affinity and anti-affinity
	Pod affinities
	Pod anti-affinities
	Combined affinity and anti-affinity
	Pod affinity and anti-affinity limitations
	Pod affinity and anti-affinity namespaces

	Summary
	Questions
	Further reading

	Section 3:
Running Kubernetes in Production
	Chapter 9: Observability on Kubernetes
	Technical requirements
	Understanding observability on Kubernetes
	Understanding what matters for Kubernetes cluster and application health

	Using default observability tooling
	Metrics on Kubernetes
	Logging on Kubernetes
	Installing Kubernetes Dashboard
	Alerts and traces on Kubernetes

	Enhancing Kubernetes observability using the best of the ecosystem
	Introducing Prometheus and Grafana
	Implementing the EFK stack on Kubernetes
	Implementing distributed tracing with Jaeger
	Third-party tooling

	Summary
	Questions
	Further reading

	Chapter 10: Troubleshooting Kubernetes
	Technical requirements
	Understanding failure modes for distributed applications
	The network is reliable
	Latency is zero
	Bandwidth is infinite
	The network is secure
	The topology doesn't change
	There is only one administrator
	Transport cost is zero
	The network is homogeneous

	Troubleshooting Kubernetes clusters
	Case study – Kubernetes Pod placement failure

	Troubleshooting applications on Kubernetes
	Case study 1 – Service not responding
	Case study 2 – Incorrect Pod startup command
	Case study 3 – Pod application malfunction with logs

	Summary
	Questions
	Further reading

	Chapter 11: Template Code Generation and CI/CD on Kubernetes
	Technical requirements
	Understanding options for template code generation on Kubernetes
	Helm
	Kustomize

	Implementing templates on Kubernetes with Helm and Kustomize
	Using Helm with Kubernetes
	Using Kustomize with Kubernetes

	Understanding CI/CD paradigms on Kubernetes – in-cluster and out-of-cluster
	Out-of-cluster CI/CD
	In-cluster CI/CD

	Implementing in-cluster and out-of-cluster CI/CD with Kubernetes
	Implementing Kubernetes CI with AWS Codebuild
	Implementing Kubernetes CI with FluxCD

	Summary
	Questions
	Further reading

	Chapter 12: Kubernetes Security and Compliance
	Technical requirements
	Understanding security on Kubernetes
	Reviewing CVEs and security audits for Kubernetes
	Understanding CVE-2016-1905 – Improper admission control
	Understanding CVE-2018-1002105 – Connection upgrading to the backend
	Understanding the 2019 security audit results

	Implementing tools for cluster configuration and container security
	Using admission controllers
	Enabling Pod security policies
	Using network policies

	Handling intrusion detection, runtime security, and compliance on Kubernetes
	Installing Falco
	Understanding Falco's capabilities
	Mapping Falco to compliance and runtime security use cases

	Summary
	Questions
	Further reading

	Section 4:
Extending Kubernetes
	Chapter 13: Extending Kubernetes with CRDs
	Technical requirements
	How to extend Kubernetes with custom resource definitions
	Writing a custom resource definition

	Self-managing functionality with Kubernetes operators
	Mapping the operator control loop
	Designing an operator for a custom resource definition

	Using cloud-specific Kubernetes extensions
	Understanding the cloud-controller-manager component
	Installing cloud-controller-manager
	Understanding the cloud-controller-manager capabilities
	Using external-dns with Kubernetes
	Using the cluster-autoscaler add-on

	Integrating with the ecosystem
	Introducing the Cloud Native Computing Foundation

	Summary
	Questions
	Further reading

	Chapter 14: Service Meshes and Serverless
	Technical requirements
	Using sidecar proxies
	Using NGINX as a sidecar reverse proxy
	Using Envoy as a sidecar proxy

	Adding a service mesh to Kubernetes
	Setting up Istio on Kubernetes

	Implementing serverless on Kubernetes
	Using Knative for FaaS on Kubernetes
	Using OpenFaaS for FaaS on Kubernetes

	Summary
	Questions
	Further reading

	Chapter 15: Stateful Workloads on Kubernetes
	Technical requirements
	Understanding stateful applications on Kubernetes
	Popular Kubernetes-native stateful applications
	Understanding strategies for running stateful applications on Kubernetes

	Deploying object storage on Kubernetes
	Installing the Minio Operator
	Installing Krew and the Minio kubectl plugin
	Starting the Minio Operator
	Creating a Minio tenant
	Accessing the Minio console

	Running DBs on Kubernetes
	Running CockroachDB on Kubernetes
	Testing CockroachDB with SQL

	Implementing messaging and queues on Kubernetes
	Deploying RabbitMQ on Kubernetes

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 – Communicating with Kubernetes
	Chapter 2 – Setting Up Your Kubernetes Cluster
	Chapter 3 – Running Application Containers on Kubernetes
	Chapter 4 – Scaling and Deploying Your Application
	Chapter 5 – Services and Ingress – Communicating with the Outside World
	Chapter 6 – Kubernetes Application Configuration
	Chapter 7 – Storage on Kubernetes
	Chapter 8 – Pod Placement Controls
	Chapter 9 – Observability on Kubernetes
	Chapter 10 – Troubleshooting Kubernetes
	Chapter 11 – Template Code Generation and CI/CD on Kubernetes
	Chapter 12 – Kubernetes Security and Compliance
	Chapter 13 – Extending Kubernetes with CRDs
	Chapter 14 – Service Meshes and Serverless
	Chapter 15 – Stateful Workloads on Kubernetes

	Other Books You May Enjoy
	Index

