
		
			[image: B14870_Low_Res.png]
		

	
		
			The

			Kubernetes

			Workshop

		

		
			Learn how to build and run highly scalable workloads on Kubernetes

		

		
			Zachary Arnold, Sahil Dua, Wei Huang, Faisal Masood, Melony Qin, and Mohammed Abu Taleb

		

		
			The Kubernetes Workshop

			Copyright © 2020 Packt Publishing

			All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this course to ensure the accuracy of the information presented. However, the information contained in this course is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this course.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Authors: Zachary Arnold, Sahil Dua, Wei Huang, Faisal Masood, Melony Qin, and Mohammed Abu Taleb

			Reviewers: Cory Cordell, Simon Krenger, Alok Malakar, and Craig Newton

			Managing Editors: Prachi Jain, Clara Joseph, and Aniket Shedge

			Acquisitions Editors: Royluis Rodrigues, Kunal Sawant, Sneha Shinde, Archie Vankar, and Alicia Wooding

			Production Editor: Salma Patel

			Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill, Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira, Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur, Nitesh Thakur, and Jonathan Wray

			First published: September 2020

			Production reference: 1230920

			ISBN: 978-1-83882-075-6

			Published by Packt Publishing Ltd.

			Livery Place, 35 Livery Street

			Birmingham B3 2PB, UK

		

		
			Table of Contents

			Preface

			1. Introduction to Kubernetes and Containers

			Introduction

			The Evolution of Software Development

			Virtual Machines versus Containers

			Docker Basics

			What's behind docker run?

			Dockerfiles and Docker Images

			Exercise 1.01: Creating a Docker Image and Uploading It to Docker Hub

			Exercise 1.02: Running Your First Application in Docker

			The Essence of Linux Container Technology

			Namespace

			Exercise 1.03: Joining a Container to the Network Namespace of Another Container

			Cgroups

			Containerization: The Mindset Change

			Several Applications in One Container

			One Application in One Container

			A Comparison of These Approaches

			The Need for Container Orchestration

			Container Interactions

			Network and Storage

			Resource Management and Scheduling

			Failover and Recovery

			Scalability

			Service Exposure

			Delivery Pipeline

			Orchestrator: Putting All the Things Together

			Welcome to the Kubernetes World

			Activity 1.01: Creating a Simple Page Count Application

			Summary

			2. An Overview of Kubernetes

			Introduction

			Setting up Kubernetes

			An Overview of Minikube

			Exercise 2.01: Getting Started with Minikube and Kubernetes Clusters

			Kubernetes Components Overview

			etcd

			API Server

			Scheduler

			Controller Manager

			Where Is the kubelet?

			kube-proxy

			Kubernetes Architecture

			Container Network Interface

			Migrating Containerized Application to Kubernetes

			Pod Specification

			Applying a YAML Manifest

			Exercise 2.02: Running a Pod in Kubernetes

			Service Specification

			Exercise 2.03: Accessing a Pod via a Service

			Services and Pods

			Delivering Kubernetes-Native Applications

			Exercise 2.04: Scaling a Kubernetes Application

			Pod Life Cycle and Kubernetes Components

			Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle

			Activity 2.01: Running the Pageview App in Kubernetes

			A Glimpse into the Advantages of Kubernetes for Multi-Node Clusters

			Summary

			3. kubectl – Kubernetes Command Center

			Introduction

			How kubectl Communicates with Kubernetes

			Setting up Environments with Autocompletion and Shortcuts

			Exercise 3.01: Setting up Autocompletion

			Setting up the kubeconfig Configuration File

			Common kubectl Commands

			Frequently Used kubectl Commands to Create, Manage, and Delete Kubernetes Objects

			Walkthrough of Some Simple kubectl Commands

			Some Useful Flags for the get Command

			Populating Deployments in Kubernetes

			Exercise 3.02: Creating a Deployment

			Exercise 3.03: Updating a Deployment

			Exercise 3.04: Deleting a Deployment

			Activity 3.01: Editing a Live Deployment for a Real-Life Application

			Summary

			4. How to Communicate with Kubernetes (API Server)

			Introduction

			The Kubernetes API Server

			Kubernetes HTTP Request Flow

			Authentication

			Authorization

			Admission Control

			Exercise 4.01: Starting Minikube with a Custom Set of Modules

			Validation

			The Kubernetes API

			Tracing kubectl HTTP Requests

			API Resource Type

			Scope of API Resources

			Namespace-Scoped Resources

			Cluster-Scoped Resources

			API Groups

			Core Group

			Named Group

			System-Wide

			API Versions

			Exercise 4.02: Getting Information about API Resources

			How to Enable/Disable API Resources, Groups, or Versions

			Exercise 4.03: Enabling and Disabling API Groups and Versions on a Minikube Cluster

			Interacting with Clusters Using the Kubernetes API

			Accessing the Kubernetes API Server Using kubectl as a Proxy

			Creating Objects Using curl

			Exercise 4.04: Creating and Verifying a Deployment Using kubectl proxy and curl

			Direct Access to the Kubernetes API Using Authentication Credentials

			Method 1: Using Client Certificate Authentication

			Method 2: Using a ServiceAccount Bearer Token

			Activity 4.01: Creating a Deployment Using a ServiceAccount Identity

			Summary

			5. Pods

			Introduction

			Pod Configuration

			Exercise 5.01: Creating a Pod with a Single Container

			Name

			Namespace

			Exercise 5.02: Creating a Pod in a Different Namespace by Specifying the Namespace in the CLI

			Exercise 5.03: Creating a Pod in a Different Namespace by Specifying the Namespace in the Pod Configuration YAML file

			Exercise 5.04: Changing the Namespace for All Subsequent kubectl Commands

			Node

			Status

			Containers

			Exercise 5.05: Using CLI Commands to Create a Pod Running a Container

			Exercise 5.06: Creating a Pod Running a Container That Exposes a Port

			Exercise 5.07: Creating a Pod Running a Container with Resource Requirements

			Exercise 5.08: Creating a Pod with Resource Requests That Can't Be Met by Any of the Nodes

			Exercise 5.09: Creating a Pod with Multiple Containers Running inside It

			Life Cycle of a Pod

			Phases of a Pod

			Probes/Health Checks

			Types of Probes

			Liveness Probe

			Readiness Probe

			Configuration of Probes

			Implementation of Probes

			Command Probe

			HTTP Request Probe

			TCP Socket Probe

			Restart Policy

			Exercise 5.10: Creating a Pod Running a Container with a Liveness Probe and No Restart Policy

			Exercise 5.11: Creating a Pod Running a Container with a Liveness Probe and a Restart Policy

			Exercise 5.12: Creating a Pod Running a Container with a Readiness Probe

			Best Practices While Using Probes

			Activity 5.01: Deploying an Application in a Pod

			Summary

			6. Labels and Annotations

			Introduction

			Labels

			Constraints for Labels

			Label Keys

			Label Values

			Why Do We Need Labels?

			Organizing Pods by Organization/Team/Project

			Running Selective Pods on Specific Nodes

			Exercise 6.01: Creating a Pod with Labels

			Exercise 6.02: Adding Labels to a Running Pod

			Exercise 6.03: Modifying And/Or Deleting Existing Labels for a Running Pod

			Selecting Kubernetes Objects Using Label Selectors

			Equality-Based Selectors

			Exercise 6.04: Selecting Pods Using Equality-Based Label Selectors

			Set-Based Selectors

			Exercise 6.05: Selecting Pods Using Set-Based Label Selectors

			Exercise 6.06: Selecting Pods Using a Mix of Label Selectors

			Annotations

			Constraints for Annotations

			Annotation Keys

			Annotation Values

			Use Case for Annotations

			Exercise 6.07: Adding Annotations to Help with Application Debugging

			Working with Annotations

			Activity 6.01: Creating Pods with Labels/Annotations and Grouping Them as per Given Criteria

			Summary

			7. Kubernetes Controllers

			Introduction

			ReplicaSets

			ReplicaSet Configuration

			Replicas

			Pod Template

			Pod Selector

			Exercise 7.01: Creating a Simple ReplicaSet with nginx Containers

			Labels on the ReplicaSet

			Selectors for the ReplicaSet

			Replicas

			Pods Status

			Pods Template

			Events

			Exercise 7.02: Deleting Pods Managed by a ReplicaSet

			Exercise 7.03: Creating a ReplicaSet Given That a Matching Pod Already Exists

			Exercise 7.04: Scaling a ReplicaSet after It Is Created

			Deployment

			Deployment Configuration

			Strategy

			Exercise 7.05: Creating a Simple Deployment with Nginx Containers

			Labels and Annotations on the Deployment

			Selectors for the Deployment

			Replicas

			Rolling Back a Deployment

			Exercise 7.06: Rolling Back a Deployment

			StatefulSets

			StatefulSet Configuration

			Use Cases for StatefulSets

			DaemonSets

			Use Cases for DaemonSets

			DaemonSet Configuration

			Jobs

			Job Configuration

			A Use Case for Jobs in Machine Learning

			Exercise 7.07: Creating a Simple Job That Finishes in Finite Time

			Activity 7.01: Creating a Deployment Running an Application

			Summary

			8. Service Discovery

			Introduction

			Service

			Service Configuration

			Types of Services

			NodePort Service

			Exercise 8.01: Creating a Simple NodePort Service with Nginx Containers

			ClusterIP Service

			Service Configuration

			Exercise 8.02: Creating a Simple ClusterIP Service with Nginx Containers

			Choosing a Custom IP Address for the Service

			Exercise 8.03: Creating a ClusterIP Service with a Custom IP

			LoadBalancer Service

			ExternalName Service

			Ingress

			Activity 8.01: Creating a Service to Expose the Application Running on a Pod

			Summary

			9. Storing and Reading Data on Disk

			Introduction

			Volumes

			How to Use Volumes

			Defining Volumes

			Mounting Volumes

			Types of Volumes

			emptyDir

			hostPath

			Exercise 9.01: Creating a Pod with an emptyDir Volume

			Exercise 9.02: Creating a Pod with an emptyDir Volume Shared by Three Containers

			Persistent Volumes

			PersistentVolume Configuration

			storageClassName

			capacity

			volumeMode

			accessModes

			persistentVolumeReclaimPolicy

			PV Status

			PersistentVolumeClaim Configuration

			storageClassName

			resources

			volumeMode

			accessMode

			selectors

			How to Use Persistent Volumes

			Step 1 – Provisioning the Volume

			Step 2 – Binding the Volume to a Claim

			Step 3 – Using the Claim

			Exercise 9.03: Creating a Pod That Uses PersistentVolume for Storage

			Dynamic Provisioning

			Activity 9.01: Creating a Pod That Uses a Dynamically Provisioned PersistentVolume

			Summary

			10. ConfigMaps and Secrets

			Introduction

			What Is a ConfigMap?

			Exercise 10.01: Creating a ConfigMap from Literal Values and Mounting It on a Pod Using Environment Variables

			Defining a ConfigMap from a File and Loading It onto a Pod

			Exercise 10.02: Creating a ConfigMap from a File

			Exercise 10.03: Creating a ConfigMap from a Folder

			What Is a Secret?

			Secret versus ConfigMap

			Exercise 10.04: Defining a Secret from Literal Values and Loading the Values onto the Pod as an Environment Variable

			Exercise 10.05: Defining a Secret from a File and Loading the Values onto the Pod as a File

			Exercise 10.06: Creating a TLS Secret

			Exercise 10.07: Creating a docker-registry Secret

			Activity 10.01: Using a ConfigMap and Secret to Promote an Application through Different Stages

			Summary

			11. Build Your Own HA Cluster

			Introduction

			How the Components of Kubernetes Work Together to Achieve High Availability

			etcd

			Networking and DNS

			Nodes' and Master Servers' Locations and Resources

			Container Network Interface and Cluster DNS

			Container Runtime Interfaces

			Container Storage Interfaces

			Building a High-Availability Focused Kubernetes Cluster

			Self-Managed versus Vendor-Managed Kubernetes Solutions

			kops

			Other Commonly Used Tools

			Authentication and Identity in Kubernetes

			Exercise 11.01: Setting up Our Kubernetes Cluster

			Kubernetes Service Accounts

			Exercise 11.02: Deploying an Application on Our HA Cluster

			Activity 11.01: Testing the Resilience of a Highly Available Cluster

			Deleting Our Cluster

			Summary

			12. Your Application and HA

			Introduction

			An Overview of Infrastructure Life Cycle Management

			Terraform

			Exercise 12.01: Creating an S3 Bucket with Terraform

			Exercise 12.02: Creating a Cluster with EKS Using Terraform

			Kubernetes Ingress

			Highly Available Applications Running on Top of Kubernetes

			Exercise 12.03: Deploying a Multi-Replica Non-HA Application in Kubernetes

			Working with Stateful Applications

			The CI/CD Pipeline

			Exercise 12.04: Deploying an Application with State Management

			Activity 12.01: Expanding the State Management of Our Application

			Summary

			13. Runtime and Network Security in Kubernetes

			Introduction

			Threat Modeling

			The 4Cs of Cloud Native Security

			Cluster Security

			Kubernetes RBAC

			Role

			RoleBinding

			ClusterRole

			ClusterRoleBinding

			Some Important Notes about RBAC Policies

			ServiceAccount

			Exercise 13.01: Creating a Kubernetes RBAC ClusterRole

			NetworkPolicies

			Exercise 13.02: Creating a NetworkPolicy

			PodSecurityPolicy

			Exercise 13.03: Creating and Testing a PodSecurityPolicy

			Activity 13.01: Securing Our App

			Summary

			14. Running Stateful Components in Kubernetes

			Introduction

			Stateful Apps

			Understanding StatefulSets

			Deployments versus StatefulSets

			Further Refactoring Our Application

			Exercise 14.01: Deploying a Counter App with a MySQL Backend

			Exercise 14.02: Testing the Resilience of StatefulSet Data in PersistentVolumes

			Helm

			Exercise 14.03: Chart-ifying Our Redis-Based Counter Application

			Activity 14.01: Chart-ifying Our StatefulSet Deployment

			Summary

			15. Monitoring and Autoscaling in Kubernetes

			Introduction

			Kubernetes Monitoring

			Kubernetes Metrics API/Metrics Server

			Prometheus

			Grafana

			Monitoring Your Applications

			Exercise 15.01: Setting up the Metrics Server and Observing Kubernetes Objects

			Autoscaling in Kubernetes

			HorizontalPodAutoscaler

			Exercise 15.02: Scaling Workloads in Kubernetes

			ClusterAutoscaler

			Exercise 15.03: Configuring the ClusterAutoscaler

			Activity 15.01: Autoscaling Our Cluster Using ClusterAutoscaler

			Deleting Your Cluster Resources

			Summary

			16. Kubernetes Admission Controllers

			Introduction

			How Admission Controllers Work

			Creating Controllers with Custom Logic

			The Mutating Admission Webhook

			The Validating Admission Webhook

			How a Webhook Works

			Exercise 16.01: Modifying a ConfigMap Object through a Patch

			Guidelines for Building a Mutating Admission WebHook

			Exercise 16.02: Deploying a Webhook

			Configuring the Webhook to Work with Kubernetes

			How to Encode a Certificate in Base64 Format

			Activity 16.01: Creating a Mutating Webhook That Adds an Annotation to a Pod

			Validating a Webhook

			Coding a Simple Validating WebHook

			Activity 16.02: Creating a Validating Webhook That Checks for a Label in a Pod

			Controlling the Effect of a Webhook on Selected Namespaces

			Exercise 16.03: Creating a Validating Webhook with the Namespace Selector Defined

			Summary

			17. Advanced Scheduling in Kubernetes

			Introduction

			The Kubernetes Scheduler

			The Pod Scheduling Process

			Filtering

			Scoring

			Assigning

			Timeline of Pod Scheduling

			Managing the Kubernetes Scheduler

			Node Affinity and Anti-Affinity

			Exercise 17.01: Running a Pod with Node Affinity

			Pod Affinity and Anti-Affinity

			Exercise 17.02: Running Pods with Pod Affinity

			Pod Priority

			Exercise 17.03: Pod Priority and Preemption

			Taints and Tolerations

			Exercise 17.04: Taints and Tolerations

			Using a Custom Kubernetes Scheduler

			Activity 17.01: Configuring a Kubernetes Scheduler to Schedule Pods

			Summary

			18. Upgrading Your Cluster without Downtime

			Introduction

			The Need to Upgrade Your Kubernetes Cluster

			Kubernetes Components – Refresher

			A Word of Caution

			The Upgrade Process

			Some Considerations for kops

			An overview of the Upgrade Process

			The Importance of Automation

			Backing up the etcd Datastore

			Exercise 18.01: Taking a Snapshot of the etcd Datastore

			Draining a Node and Making It Non-Schedulable

			Exercise 18.02: Draining All the Pods from the Nodes

			Upgrading Kubernetes Master Components

			Exercise 18.03: Upgrading Kubernetes Master Components

			Upgrading Kubernetes Worker Nodes

			Exercise 18.04: Upgrading the Worker Nodes

			Activity 18.01: Upgrading the Kubernetes Platform from Version 1.15.7 to 1.15.10

			Summary

			19. Custom Resource Definitions in Kubernetes

			Introduction

			What Is a Custom Controller?

			The Relationship between a CRD, a CR, and a Controller

			Standard Kubernetes API Resources

			Why We Need Custom Resources?

			Example Use Case 1

			Example Use Case 2

			Example Use Case 3

			How Our Custom Resources Are Defined

			apiVersion

			kind

			spec

			namespaceName and podLiveForThisMinutes

			The Definition of a CRD

			Exercise 19.01: Defining a CRD

			Exercise 19.02: Defining a CR Using a CRD

			Writing the Custom Controller

			The Components of the Custom Controller

			Activity 19.01: CRD and Custom Controller in Action

			Adding Data to Our Custom Resource

			Exercise 19.03: Adding Custom Information to the CR List Command

			Summary

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

	
		
			Preface

		

		
			About the Book

			Thanks to its extensive support for managing hundreds of containers that run cloud-native applications, Kubernetes is the most popular open source container orchestration platform that makes cluster management easy. This workshop adopts a practical approach to get you acquainted with the Kubernetes environment and its applications.

			Starting with an introduction to the fundamentals of Kubernetes, you'll install and set up your Kubernetes environment. You'll understand how to write YAML files and deploy your first simple web application container using Pod. You'll then assign human-friendly names to Pods, explore various Kubernetes entities and functions, and discover when to use them. As you work through the chapters, this Kubernetes book will show you how you can make full-scale use of Kubernetes by applying a variety of techniques for designing components and deploying clusters. You'll also get to grips with security policies for limiting access to certain functions inside the cluster. Toward the end of the book, you'll get a rundown of Kubernetes advanced features for building your own controller and upgrading to a Kubernetes cluster without downtime.

			By the end of this workshop, you'll be able to manage containers and run cloud-based applications efficiently using Kubernetes.

			Audience

			Whether you are new to the world of web programming or are an experienced developer or software engineer looking to use Kubernetes for managing and scaling containerized applications, you'll find this workshop useful. A basic understanding of Docker and containerization is necessary to make the most of this book.

			About the Chapters

			Chapter 1, Introduction to Kubernetes and Containers, begins with containerization technologies as well as various underlying Linux technologies that enable containerization. The chapter ends by introducing Kubernetes into the picture, while laying out the advantages it brings to the table.

			Chapter 2, An Overview of Kubernetes, gives you your first hands-on introduction to Kubernetes and provides an overview of the architecture of Kubernetes.

			Chapter 3, kubectl – Kubernetes Command Center, lays out the various ways of using kubectl while underlining the principle of declarative management.

			Chapter 4, How to Communicate with Kubernetes (API Server), dives into the details of the Kubernetes API server and the various ways of communicating with it.

			Chapter 5, Pods, introduces the basic Kubernetes object used to deploy any application.

			Chapter 6, Labels and Annotations, covers the basic mechanism used in Kubernetes to group, classify, and link different objects.

			Chapter 7, Kubernetes Controllers, introduces various Kubernetes controllers, such as Deployments and StatefulSets, among others, which are some of the key enablers of the declarative management approach.

			Chapter 8, Service Discovery, describes how you can make different Kubernetes objects discoverable within the cluster as well as from outside the cluster.

			Chapter 9, Storing and Reading Data on Disk, explains the various data storage abstractions offered by Kubernetes to enable applications to read and store data on disks.

			Chapter 10, ConfigMaps and Secrets, teaches you how to decouple application configuration data from the application itself, while looking at the advantages of taking this approach.

			Chapter 11, Build Your Own HA Cluster, walks you through setting up your own highly available, multi-node Kubernetes cluster on the Amazon Web Services (AWS) platform.

			Chapter 12, Your Application and HA, lays out some concepts behind continuous integration using Kubernetes and demonstrates a few of them using a highly available, multi-node, managed Kubernetes cluster running on Amazon Elastic Kubernetes Service.

			Chapter 13, Runtime and Network Security in Kubernetes, gives you an overview of the ways in which your application and cluster can be attacked, before covering the access control and security features offered by Kubernetes.

			Chapter 14, Running Stateful Components in Kubernetes, teaches you how to properly use different Kubernetes abstractions to reliably deploy stateful applications.

			Chapter 15, Monitoring and Autoscaling in Kubernetes, covers the ways in which you can monitor different Kubernetes objects and then use that information to scale the capacity of your cluster.

			Chapter 16, Kubernetes Admission Controllers, describes how Kubernetes allows us to extend the functionalities provided by the API server to implement custom policies before a request is accepted by the API server.

			Chapter 17, Advanced Scheduling in Kubernetes, describes how the scheduler places pods on the Kubernetes cluster. You will use advanced features to influence scheduler placement decisions for the pods.

			Chapter 18, Upgrading Your Cluster without Downtime, teaches you how you can upgrade your Kubernetes platform to a newer version without suffering any downtime for your platform or application.

			Chapter 19, Custom Resource Definitions in Kubernetes, shows you one of the main ways in which to extend the functionalities provided by Kubernetes. You will see how custom resources allow you to implement concepts specific to your own domain on your cluster.

			Note

			The solution to the activities presented in the chapters can be found at this address: https://packt.live/304PEoD.

			Conventions

			Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, and user input are shown as follows: "Create a file named sample-pod.yaml in your current working directory."

			A block of code, a terminal command, or text to create a YAML file is set as follows:

			kubectl -n webhooks create secret tls webhook-server-tls \

			--cert "tls.crt" \

			--key "tls.key"

			New important words are shown like this: "Kubernetes provides this capability via Admission Controllers."

			Key parts of code snippets are highlighted as follows:

			kind: Pod

			metadata:

			 name: infra-libraries-application-staging

			 namespace: metadata-activity

			 labels:

			 environment: staging

			 team: infra-libraries

			 annotations:

			 team-link: "https://jira-link/team-link-2"

			spec:

			 containers:

			Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "On the left sidebar, click on Configuration and then on Data Sources."

			Long code snippets are truncated and the corresponding names of the code files on GitHub are placed at the top of the truncated code. The permalinks to the entire code are placed below the code snippet. It should look as follows:

			mutatingcontroller.go

			46 //create the response with patch bytes

			47 var admissionResponse *v1beta1.AdmissionResponse

			48 admissionResponse = &v1beta1.AdmissionResponse {

			49 allowed: true,

			50 Patch: patchBytes,

			51 PatchType: func() *v1beta1.PatchType {

			52 pt := v1beta1.PatchTypeJSONPatch

			53 return &pt

			54 }(),

			55 }

			The complete code for this example can be found at https://packt.live/35ieNiX.

			Setting Up Your Environment

			Before we explore the book in detail, we need to set up specific software and tools. In the following section, we shall see how to do that.

			Hardware Requirements

			You need at least a dual core CPU with virtualization support, 4 GB of memory, and 20 GB of free disk space.

			Operating System Requirements

			Our recommended operating system is Ubuntu 20.04 LTS or macOS 10.15. If you are using Windows, you can dual boot Ubuntu. We have provided the instructions for that at the end of this section.

			Virtualization

			You need to have virtualization features enabled on your hardware as well as your operating system.

			In Linux, you can run the following command to check whether virtualization is enabled:

			grep -E --color 'vmx|svm' /proc/cpuinfo

			You should get a non-empty response to this command. If you get an empty response, then you don't have virtualization enabled.

			In macOS, run the following command:

			sysctl -a | grep -E --color 'machdep.cpu.features|VMX'

			If virtualization is enabled, you should be able to see VMX in your output.

			Note

			You will not be able to follow the instructions in the book if your host environment is virtualized, since Minikube (by default) runs all Kubernetes components in a virtual machine, which will not work if the host environment itself is virtualized. It is possible to use Minikube without a hypervisor, but your results may sometimes be different compared to our demonstrations in this book. Therefore, our recommendation is that one of the recommended operating systems is directly installed on your machine.

			Installation and Setup

			This section lists installation instructions for all the software that you will need for this book. Since we are recommending Ubuntu, we will use the APT package manager to install most of the required software in Ubuntu.

			For macOS, we recommend that you use Homebrew for convenience. You can install it by running this script in your terminal:

			/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

			The terminal output for this script will show you what changes will be applied and then ask for your confirmation. Once confirmed, the installation can be completed.

			Updating Your Package Lists

			Before you use APT to install any packages in Ubuntu, make sure that your package lists are up to date. Use the following command:

			sudo apt update

			Furthermore, you may choose to upgrade any upgradable packages on your machine by using the following command:

			sudo apt upgrade

			Similarly, in the case of macOS, update the package lists for Homebrew using the following command:

			brew update

			Installing Git

			The code bundle for this workshop is available on our GitHub repository. You can use Git to clone the repository to get all the code files.

			Use the following command to install Git on Ubuntu:

			sudo apt install git-all

			If you use Xcode on macOS, it is likely that you may already have Git installed. You can check that by running this command:

			git --version

			If you get a Command not found error, then you don't have it installed. You can install it via Homebrew using this command:

			brew install git

			jq

			jq is a JSON parser that is useful for extracting any information from API responses in JSON format. You can install it using the following command on Ubuntu:

			sudo apt install jq

			You can use the following command for installation on macOS:

			brew install jq

			Tree

			Tree is a package that will allow you to see the directory structure in the terminal. You can install it using the following command on Ubuntu:

			sudo apt install tree

			You can use the following command for installation on macOS:

			brew install tree

			The AWS CLI

			The AWS command line tool is a CLI tool that you can use from your terminal to manage your AWS resources. You can install it using the installation instructions at this URL: https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html.

			Minikube and kubectl

			Minikube allows us to create a single-node Kubernetes cluster for learning and testing purposes. kubectl is a command line interface tool that allows us to communicate with our cluster. You will find detailed installation instructions for these tools in Chapter 2, An Overview of Kubernetes.

			Even if you have Minikube installed already, we recommend that you work with the version that is specified in Chapter 2, An Overview of Kubernetes, in order to guarantee the reproducibility of all instructions in this book.

			Minikube requires you to have a hypervisor installed. We will go with VirtualBox.

			VirtualBox

			VirtualBox is an open source hypervisor that can be used by Minikube to virtualize a node for our cluster. Use the following command to install VirtualBox on Ubuntu:

			sudo apt install virtualbox

			For installation on macOS, first get the appropriate file from this link:

			https://www.virtualbox.org/wiki/Downloads.

			Then, follow the installation instructions mentioned here:

			https://www.virtualbox.org/manual/ch02.html#installation-mac.

			Docker

			Docker is the default containerization engine used by Kubernetes. You will learn more about Docker in Chapter 1, Introduction to Kubernetes and Containers.

			To install Docker, follow the installation instructions at this link:

			https://docs.docker.com/engine/install/.

			To install Docker in Mac, following the installation instructions at the following link:

			https://docs.docker.com/docker-for-mac/install/.

			To install Docker in Ubuntu, following the installation instructions at the following link:

			https://docs.docker.com/engine/install/ubuntu/.

			Go

			Go is a programming language that is used to build the applications demonstrated in this book. Also, Kubernetes is written in Go. To install Go on your machine, use the following command for Ubuntu:

			sudo apt install golang-go

			For installation on macOS, use the following instructions:

			
					Use the following command to install Go:brew install golang
Note
The code is tested with Go versions 1.13 and 1.14. Please make sure that you have these versions although the code is expected to work for all 1.x versions.

					Now, we need to set a few environment variables. Use the following commands:mkdir - p $HOME/go
export GOPATH=$HOME/go
export GOROOT="$(brew --prefix golang)/libexec"
export PATH="$PATH:${GOPATH}/bin:${GOROOT}/bin"

			

			kops

			kops is a command line interface tool that allows you to set up a Kubernetes cluster on AWS. The actual process of installing Kubernetes using kops is covered in Chapter 11, Build Your Own HA Cluster. To ensure the reproducibility of the instructions given in this book, we recommend that you install kops version 1.15.1.

			For installation on Ubuntu, follow these steps:

			
					Download the binary for kops version 1.15.1 using the following command:curl -LO https://github.com/kubernetes/kops/releases/download/1.15.0/kops-linux-amd64

					Now, make the binary executable using the following command:chmod +x kops-linux-amd64

					Add the executable to your path:sudo mv kops-linux-amd64 /usr/local/bin/kops

					Check whether kops has been successfully installed by running the following command:kops version
If kops has been successfully installed, you should get a response stating the version as 1.15.0.

			

			For installation on macOS, follow these steps:

			
					Download the binary for kops version 1.15.1 using the following command:curl -LO https://github.com/kubernetes/kops/releases/download/1.15.0/kops-darwin-amd64

					Now, make the binary executable using the following command:chmod +x kops-darwin-amd64

					Add the executable to your path:sudo mv kops-darwin-amd64 /usr/local/bin/kops

					Check whether kops has been successfully installed by running the following command:kops version
If kops has been successfully installed, you should get a response stating the version as 1.15.0.

			

			Dual-Booting Ubuntu for Windows Users

			In this section, you will find instructions on how to dual-boot Ubuntu if you are running Windows.

			Note

			Before installing any operating system, it is highly recommended that you back up your system state as well as all of your data.

			Resizing Partitions

			If you have Windows set up on your machine, it is most likely that your hard disk is completely utilized – that is, all of the available space is partitioned and formatted. We need to have some unallocated space on the hard disk. Hence, we will resize a partition with plenty of free space to make space for our Ubuntu partitions:

			
					Open the Computer Management utility. Press Win + R and enter compmgmt.msc:[image: Figure 0.1: The Computer Management utility on Windows

]
Figure 0.1: The Computer Management utility on Windows

					In the left side pane, go to the Storage > Disk Management option as shown here:[image: Figure 0.2: Disk Management

]
Figure 0.2: Disk Management
You will see a summary of all your partitions in the lower half of the screen. You can also see the drive letters associated with all of the partitions and information about the Windows boot drive. If you have a partition that has plenty of free space (20 GB +) and is neither the boot drive (C:), nor the recovery partition, nor the EFI system partition, this will be the ideal option to choose. If there's no such partition, then you can resize the C: drive.

					In this example, we will choose the D: drive. You can right-click on any partition and open Properties to check the free space available:[image: Figure 0.3: Checking the properties of the D: drive

]
Figure 0.3: Checking the properties of the D: drive
Now, before we resize the partition, we need to ensure that there are no errors on the filesystem or any hardware faults. We will do this by using the chkdsk utility on Windows.

					Open Command Prompt by pressing Win + R and entering cmd.exe. Now, run the following command:chkdsk D: /f
Replace the drive letter with the one that you want to use. You should see a response similar to the following:
[image: Figure 0.4: Scanning a drive for any filesystem errors

]
Figure 0.4: Scanning a drive for any filesystem errors
Note that in this screenshot, Windows reports that it has scanned the filesystem and found no problems. If any problems are encountered for your case, you should get them fixed first to prevent the loss of data.

					Now, come back to the Computer Management window, right-click on the desired drive, and then click on Shrink Volume, as shown here:[image: Figure 0.5: Opening the Shrink Volume dialog box

]
Figure 0.5: Opening the Shrink Volume dialog box

					In the prompt window, enter the amount of space you want to clear in the only field that you can edit. In this example, we are clearing approximately 25 GB of disk space by shrinking our D: drive:[image: Figure 0.6: Clearing 25 GB by shrinking the existing volume

]
Figure 0.6: Clearing 25 GB by shrinking the existing volume

					After you shrink your drive, you should be able to see unallocated space on your drive, as seen here:[image: Figure 0.7: Unallocated space after shrinking the volume

]

			

			Figure 0.7: Unallocated space after shrinking the volume

			Now we are ready to install Ubuntu. But first, we need to download it and create a bootable USB, which is one of the most convenient installation media.

			Creating a Bootable USB Drive to Install Ubuntu

			You will need a flash drive with a minimum capacity of 4 GB. Note that all the data on this will be erased:

			
					Download the ISO image for Ubuntu Desktop from this link: https://releases.ubuntu.com/20.04/.

					Next, we need to burn the ISO image to a USB flash disk and create a bootable USB drive. There are many tools available for this, and you can use any of them. In this example, we are using Rufus, which is free and open source. You can get it from this link: https://www.fosshub.com/Rufus.html.

					Once you have installed Rufus, plug in your USB flash disk and open Rufus. Ensure that the proper Device option is selected, as shown in the following screenshot.

					Press the SELECT button under Boot selection and then open the Ubuntu 18.04 image that you have downloaded.

					The choice for Partition scheme will depend on how your BIOS and your disk drive are configured. GPT will be the best option for most modern systems, while MBR will be compatible with older systems:[image: Figure 0.8: Configurations for Rufus

]
Figure 0.8: Configurations for Rufus

					You may leave all other options on default, and then press START. After completion, close Rufus. You now have a bootable USB drive ready to install Ubuntu.

			

			Installing Ubuntu

			Now, we will use the bootable USB drive to install Ubuntu:

			
					To install Ubuntu, boot using the bootable installation media that we just created. In most cases, you should be able to do that by simply having the USB drive plugged in while starting up your machine. If you don't automatically boot into the Ubuntu setup, go into your BIOS settings and ensure that your USB device is at the highest boot priority and that Secure Boot is turned off. The instructions for entering the BIOS setup are usually displayed on the splash screen (the screen with your PC manufacturer logo when you start up your computer) that is displayed during POST checks. You may also have the option to enter a boot menu while starting up. Usually, you have to hold down Delete, F1, F2, F12, or some other key while your PC boots up. It depends on your motherboard's BIOS.You should see a screen with a Try Ubuntu or Install Ubuntu option. If you don't see this screen, and instead you see a shell with a message that begins with Minimal BASH Like Line Editing is Supported..., then it is likely that there may have been some data corruption while downloading the ISO file or creating your bootable USB drive. Check the integrity of the downloaded ISO file by calculating the MD5, SHA1, or SHA256 hash of your downloaded file and comparing it to the ones you can find in the files named MD5SUMS, SHA1SUMS, or SHA256SUMS on the Ubuntu download page mentioned earlier. Then, repeat the steps in the previous section to reformat and recreate the bootable USB drive.
If you have set the highest boot priority to the correct USB device in the BIOS and you are still unable to boot using your USB device (your system may just ignore it and boot into Windows instead), then there are two most likely issues:
- The USB drive was not properly configured to be recognized as a bootable device or the GRUB bootloader was not properly set up. Verifying the integrity of your downloaded image and recreating the bootable USB drive should fix this in most cases.
- You have chosen the wrong Partition scheme option for your system configuration. Try the other one and recreate the USB drive.

					Once you boot your machine using the USB drive, select Install Ubuntu.

					Choose the language that you want and then press Continue.

					On the next screen, choose the appropriate keyboard layout and continue to the next screen.

					On the next screen, select Normal installation.Check the Download updates while installing Ubuntu and Install third-party software for graphics and Wi-Fi hardware and additional media formats options.
Then, continue to the next screen.

					On the next screen, select Install Ubuntu alongside Windows Boot Manager, and then click Install now. You will see a prompt describing the changes that Ubuntu will make to your system, such as the new partitions that will be created. Confirm the changes and proceed to the next screen.

					On the next screen, choose your region and press Continue.

					On the next screen, set your name (optional), username, computer name, and password, and then press Continue.The installation should now begin. It will take a while depending on your system configurations. Once the installation is complete, you will be prompted to restart your computer. Unplug your USB drive, and then click Restart Now.
If you forget to remove your USB drive, you may boot back into the Ubuntu installation. In that case, just exit the setup. If a live instance of Ubuntu has been started up, restart your machine. Remember to remove the USB drive this time.
If, after restarting, you boot directly into Windows with no option to choose the operating system, the likely issue is that the GRUB bootloader installed by Ubuntu has not taken precedence over the Windows bootloader. In some systems, the precedence/priority for bootloaders on your hard disk is set in the BIOS. You will need to explore your BIOS settings menu to find the appropriate setting. It may be named something similar to UEFI Hard Disk Drive Priorities. Ensure that GRUB/Ubuntu is set to the highest priority.

			

			Other Requirements

			Docker Hub account: You can create a free Docker account at this link: https://hub.docker.com/.

			AWS account: You will need your own AWS account and some basic knowledge about using AWS. You can create an account here: https://aws.amazon.com/.

			Note

			The requirements of the exercises and activities in this book go beyond the AWS free tier, so you should be aware that you will incur bills for the use of the cloud service. You can use the pricing information available here: https://aws.amazon.com/pricing/.

			Accessing the Code Files

			You can find the complete code files of this book at https://packt.live/3bE3zWY.

			After installing Git, you can clone the repository using the following command:

			git clone https://github.com/PacktWorkshops/Kubernetes-Workshop

			cd Kubernetes-Workshop

			If you have any issues or questions about installation, please email us at workshops@packt.com.

		

		
			
			

		

	
		
			
			

		

		
			1. Introduction to Kubernetes and Containers

		

		
			Overview

			The chapter begins by describing the evolution of software development and delivery, beginning with running software on bare-metal machines, through to the modern approach of containerization. We will also take a look at the underlying Linux technologies that enable containerization. By the end of the chapter, you will be able to run a basic Docker container from an image. You will also be able to package a custom application to make your own Docker image. Next, we will take a look at how we can control the resource limits and group for a container. Finally, the end of the chapter describes why we need to have a tool such as Kubernetes, along with a short introduction to its strengths.

			Introduction

			About a decade ago, there was a lot of discussion over software development paradigms such as service-oriented architecture, agile development, and software design patterns. In hindsight, those were all great ideas, but only a few of them were practically adopted a decade ago.

			One of the major reasons for the lack of adoption of these paradigms is that the underlying infrastructure couldn't offer the resources or capabilities for abstracting fine-grained software components and managing an optimal software development life cycle. Hence, a lot of duplicated efforts were still required for resolving some common issues of software development such as managing software dependencies and consistent environments, software testing, packaging, upgrading, and scaling.

			In recent years, with Docker at the forefront, containerization technology has provided a new encapsulation mechanism that allows you to bundle your application, its runtime, and its dependencies, and also brings in a new angle to view the development of software. By using containerization technology, the underlying infrastructure gets abstracted away so that applications can be seamlessly moved among heterogeneous environments. However, along with the rising volume of containers, you may need orchestration tools to help you to manage their interactions with each other as well as to optimize the utilization of the underlying hardware.

			That's where Kubernetes comes into play. Kubernetes provides a variety of options to automate deployment, scaling, and the management of containerized applications. It has seen explosive adoption in recent years and has become the de-facto standard in the container orchestration field.

			As this is the first chapter of this book, we will start with a brief history of software development over the past few decades, and then illustrate the origins of containers and Kubernetes. We will focus on explaining what problems they can solve, and three key reasons why their adoption has seen a considerable rise in recent years.

			The Evolution of Software Development

			Along with the evolution of virtualization technology, it's common for companies to use virtual machines (VMs) to manage their software products, either in the public cloud or an on-premises environment. This brings huge benefits such as automatic machine provisioning, better hardware resource utilization, resource abstraction, and more. More critically, for the first time, it employs the separation of computing, network, and storage resources to unleash the power of software development from the tediousness of hardware management. Virtualization also brings in the ability to manipulate the underlying infrastructure programmatically. So, from a system administrator and developer's perspective, they can better streamline the workflow of software maintenance and development. This is a big move in the history of software development.

			However, in the past decade, the scope and life cycle of software development have changed vastly. Earlier, it was not uncommon for software to be developed in big monolithic chunks with a slow-release cycle. Nowadays, to catch up with the rapid changes of business requirements, a piece of software may need to be broken down into individual fine-grained subcomponents, and each component may need to have its release cycle so that it can be released as often as possible to get feedback from the market earlier. Moreover, we may want each component to be scalable and cost-effective.

			So, how does this impact application development and deployment? In comparison to the bare-metal era, adopting VMs doesn't help much since VMs don't change the granularity of how different components are managed; the entire software is still deployed on a single machine, only it is a virtual one instead of a physical one. Making a number of interdependent components work together is still not an easy task.

			A straightforward idea here is to add an abstraction layer to connect the machines with the applications running on them. This is so that application developers would only need to focus on the business logic to build the applications. Some examples of this are Google App Engine (GAE) and Cloud Foundry.

			The first issue with these solutions is the lack of consistent development experience among different environments. Developers develop and test applications on their machines with their local dependencies (both at the programming language and operating system level); while in a production environment, the application has to rely on another set of dependencies underneath. And we still haven't talked about the software components that need the cooperation of different developers in different teams.

			The second issue is that the hard boundary between applications and the underlying infrastructure would limit the applications from being highly performant, especially if the application is sensitive to the storage, compute, or network resources. For instance, you may want the application to be deployed across multiple availability zones (isolated geographic locations within data centers where cloud resources are managed), or you may want some applications to coexist, or not to coexist, with other particular applications. Alternatively, you may want some applications to adhere to particular hardware (for example, solid-state drives). In such cases, it becomes hard to focus on the functionality of the app without exposing the topological characteristics of the infrastructure to upper applications.

			In fact, in the life cycle of software development, there is no clear boundary between the infrastructure and applications. What we want to achieve is to manage the applications automatically, while making optimal use of the infrastructure.

			So, how could we achieve this? Docker (which we will introduce later in this chapter) solves the first issue by leveraging Linux containerization technologies to encapsulate the application and its dependencies. It also introduces the concept of Docker images to make the software aspect of the application runtime environment lightweight, reproducible, and portable.

			The second issue is more complicated. That's where Kubernetes comes in. Kubernetes leverages a battle-tested design rationale called the Declarative API to abstract the infrastructure as well as each phase of application delivery such as deployment, upgrades, redundancy, scaling, and more. It also offers a series of building blocks for users to choose, orchestrate, and compose into the eventual application. We will gradually move on to study Kubernetes, which is the core of this book, toward the end of this chapter.

			Note

			If not specified particularly, the term "container" might be used interchangeably with "Linux container" throughout this book.

			Virtual Machines versus Containers

			A virtual machine (VM), as the name implies, aims to emulate a physical computer system. Technically, VMs are provisioned by a hypervisor, and the hypervisor runs on the host OS. The following diagram illustrates this concept:

			
				
					[image: Figure 1.1: Running applications on VMs

]
				

			

			Figure 1.1: Running applications on VMs

			Here, the VMs have full OS stacks, and the OS running on the VM (called the Guest OS) must rely on the underlying hypervisor to function. The applications and operating system reside and run inside the VM. Their operations go through the guest OS's kernel and are then translated to the system calls by the hypervisor, which are eventually executed on the host OS.

			Containers, on the other hand, don't need a hypervisor underneath. By leveraging some Linux containerization technologies such as namespaces and cgroups (which we will revisit later), each container runs independently on the host OS. The following diagram illustrates containerization, taking Docker containers as an example:

			
				
					[image: Figure 1.2: Running applications in containers

]
				

			

			Figure 1.2: Running applications in containers

			It's worth mentioning that we put Docker beside the containers instead of between the containers and the host OS. That's because, technically, it's not necessary to have Docker Engine hosting those containers. Docker Engine plays more of a manager role to manage the life cycle of the containers. It is also inappropriate to liken Docker Engine to the hypervisor because once a container is up and running, we don't need an extra layer to "translate" the application operations to be understandable by the host OS. From Figure 1.2, you can also tell that applications inside the containers are essentially running directly on the host OS.

			When we spin up a container, we don't need to bring up an entire OS; instead, it leverages the features of the Linux kernel on the host OS. Therefore, containers start up faster, function with less overhead, and require much less space compared to VMs. The following is a table comparing VMs with containers:

			
				
					[image: Figure 1.3: Comparison of VMs and Containers

]
				

			

			Figure 1.3: Comparison of VMs and Containers

			Looking at this comparison, it seems that containers win in all aspects except for isolation. The Linux container technologies that are leveraged by the containers are not new. The key Linux kernel features, namespace, and cgroup (which we will study later in this chapter) have existed for more than a decade. There were some older container implementations such as LXC and Cloud Foundry Warden before the emergence of Docker. Now, an interesting question is: given that container technology has so many benefits, why has it been adopted in recent years instead of a decade ago? We will find some answers to this question in the following sections.

			Docker Basics

			Until now, we have seen the different advantages that containerization provides as opposed to running applications on a VM. Docker is the most commonly used containerization technology by a wide margin. In this section, we will start with some Docker basics and perform some exercises to get you first-hand experience of working with Docker.

			Note

			Apart from Docker, there are other container managers such as containerd and podman. They behave differently in terms of features and user experiences, for example, containerd and podman are claimed to be more lightweight than Docker, and better fit than Kubernetes. However, they are all Open Container Initiatives (OCI) compliant to guarantee the container images are compatible.

			Although Docker can be installed on any OS, you should be aware that, on Windows and macOS, it actually creates a Linux VM (or uses equivalent virtualization technology such as HyperKit in macOS) and embeds Docker into the VM. In this chapter, we will use Ubuntu 18.04 LTS as the OS and the Docker Community Edition 18.09.7.

			Before you proceed, please ensure that Docker is installed as per the instructions in the Preface. You can confirm whether Docker is installed by querying the version of Docker using the following command:

			docker --version

			You should see the following output:

			Docker version 18.09.7, build 2d0083d

			Note

			All the commands in the following sections are executed as root. Enter sudo -s in the terminal, followed by the admin password when prompted, to get root access.

			What's behind docker run?

			After Docker is installed, running a containerized application is quite simple. For demonstration purposes, we will use the Nginx web server as an example application. We can simply run the following command to start up the Nginx server:

			docker run -d nginx

			You should see the similar result:

			
				
					[image: Figure 1.4: Starting up Nginx

]
				

			

			Figure 1.4: Starting up Nginx

			This command involves several actions, described as follows:

			
					docker run tells Docker Engine to run an application.

					The -d parameter (short for --detach) forces the application to run in the background so that you won't see the output of the application in the terminal. Instead, you have to run docker logs <container ID> to implicitly get the output.Note
The "detached" mode usually implies that the application is a long-running service.

					The last parameter, nginx, indicates the image name on which the application is based. The image encapsulates the Nginx program as well as its dependencies.

			

			The output logs explain a brief workflow: first, it tried to fetch the nginx image locally, which failed, so it retrieved the image from a public image repository (Docker Hub, which we will revisit later). Once the image is downloaded locally, it uses that image to start an instance, and then outputs an ID (in the preceding example, this is 96c374…), identifying the running instance. As you can observe, this is a hexadecimal string, and you can use the beginning four or more unique characters in practice to refer to any instance. You should see that even the terminal outputs of the docker commands truncate the ID.

			The running instance can be verified using the following command:

			docker ps

			You should see the following result:

			
				
					[image: Figure 1.5: Getting a list of all the running Docker containers

]
				

			

			Figure 1.5: Getting a list of all the running Docker containers

			The docker ps command lists all the running containers. In the preceding example, there is only one container running, which is nginx. Unlike a typical Nginx distribution that runs natively on a physical machine or VM, the nginx container functions in an isolated manner. The nginx container does not, by default, expose its service on host ports. Instead, it serves at the port of its container, which is an isolated entity. We can get to the nginx service by calling on port 80 of the container IP.

			First, let's get the container IP by running the following command:

			docker inspect --format '{{.NetworkSettings.IPAddress}}' <Container ID or NAME>

			You should see the following output (it may vary depending on your local environment):

			172.17.0.2

			As you can see, in this case, the nginx container has an IP address of 172.17.0.2. Let's check whether Nginx responds by accessing this IP on port 80:

			curl <container IP>:80

			You should see the following output:

			
				
					[image: Figure 1.6: Response of the Nginx container

]
				

			

			Figure 1.6: Response of the Nginx container

			As you can see in Figure 1.6, we get a response, which is displayed in the terminal as the source HTML of the default home page.

			Usually, we don't rely on the internal IP to access the service. A more practical way is to expose the service on some port of the host. To map the host port 8080 to the container port 80, use the following command:

			docker run -p 8080:80 -d nginx

			You should see a similar response:

			39bf70d02dcc5f038f62c276ada1675c25a06dd5fb772c5caa19f02edbb0622a

			The -p 8080:80 parameter tells Docker Engine to start the container and map the traffic on port 8080 of the host to the inside container at port 80. Now, if we try to access the localhost on port 8080, we will be able to access the containerized nginx service. Let's try it out:

			curl localhost:8080

			You should see the same output as in Figure 1.6.

			Nginx is an example of a type of workload that doesn't have a fixed termination time, that is, it does not just show output and then terminates. This is also known as a long-running service. The other type of workload, which just runs to completion and exits, is called a short-time service, or simply a job. For containers running jobs, we can omit the -d parameter. Here is an example of a job:

			docker run hello-world

			You should see the following response:

			
				
					[image: Figure 1.7: Running the hello-world image

]
				

			

			Figure 1.7: Running the hello-world image

			Now, if you run docker ps, which is intended to list running containers, it doesn't show the hello-world container. This is as expected since the container has finished its job (that is, printing out the response text that we saw in the previous screenshot) and exited. To be able to find the exited container, you can run the same command with the -a flag, which will show all the containers:

			docker ps -a

			You should see the following output:

			
				
					[image: Figure 1.8: Checking our exited container

]
				

			

			Figure 1.8: Checking our exited container

			For a container that has stopped, you can delete it using docker rm <container ID>, or rerun it with docker run <container ID>. Alternatively, if you rerun the docker run hello-world, it will again bring up a new container with a new ID and exit after it finishes its job. You can try this out yourself as follows:

			docker run hello-world

			docker ps -a

			You should see the following output:

			
				
					[image: Figure 1.9: Checking multiple exited containers

]
				

			

			Figure 1.9: Checking multiple exited containers

			Thus, you can see that running multiple containers based on the same underlying image is pretty straightforward.

			By now, you should have a very basic understanding of how a container is launched, and how to check its status.

			Dockerfiles and Docker Images

			In the VM era, there was no standard or unified way to abstract and pack various kinds of applications. The traditional way was to use a tool, such as Ansible, to manage the installation and update the processes for each application. This is still used nowadays, but it involves lots of manual operations and is error-prone due to inconsistencies between different environments. From a developer's perspective, applications are developed on local machines, which are vastly different from the staging and eventual production environment.

			So, how does Docker resolve these issues? The innovation it brings is called Dockerfile and Docker image. A Dockerfile is a text file that abstracts a series of instructions to build a reproducible environment including the application itself as well as all of its dependencies.

			By using the docker build command, Docker uses the Dockerfile to generate a standardized entity called a Docker image, which you can run on almost any OS. By leveraging Docker images, developers can develop and test applications in the same environment as the production one, because the dependencies are abstracted and bundled within the same image. Let's take a step back and look at the nginx application we started earlier. Use the following command to list all the locally downloaded images:

			docker images

			You should see the following list:

			
				
					[image: Figure 1.10: Getting a list of images

]
				

			

			Figure 1.10: Getting a list of images

			Unlike VM images, Docker images only bundle the necessary files such as application binaries, dependencies, and the Linux root filesystem. Internally, a Docker image is separated into different layers, with each layer being stacked on top of another one. In this way, upgrading the application only requires an update to the relevant layers. This reduces both the image footprint as well as the upgrade time.

			The following figure shows the hierarchical layers of a hypothetical Docker image that is built from the base OS layer (Ubuntu), the Java web application runtime layer (Tomcat), and the topmost user application layer:

			
				
					[image: Figure 1.11: An example of stacked layers in a container

]
				

			

			Figure 1.11: An example of stacked layers in a container

			Note that it is common practice to use the images of a popular OS as a starting point for building Docker images (as you will see in the following exercise) since it conveniently includes the various components required to develop an application. In the preceding hypothetical container, the application would use Tomcat as well as some dependencies included in Ubuntu in order to function properly. This is the only reason that Ubuntu is included as the base layer. If we wanted, we could bundle the required dependencies without including the entire Ubuntu base image. So, don't confuse this with the case of a VM, where including a guest OS is necessary.

			Let's take a look at how we can build our own Docker image for an application in the following exercise.

			Exercise 1.01: Creating a Docker Image and Uploading It to Docker Hub

			In this exercise, we will build a Docker image for a simple application written in Go.

			We're going to use Go in this exercise so that the source code and its language dependencies can be compiled into a single executable binary. However, you're free to use any programming language you prefer; just remember to bundle the language runtime dependencies if you're going to use Java, Python, Node.js, or any other language:

			
					For this exercise, we will create a file named Dockerfile. Note that this filename has no extension. You can use your preferred text editor to create this file with the following content:FROM alpine:3.10
COPY k8s-for-beginners /
CMD ["/k8s-for-beginners"]
Note
From the terminal, whenever you create a file using any simple text editor such as vim or nano or using the cat command, it will be created in the current working directory in any Linux distro or even macOS. The default working directory when you open the terminal is /home/. If you prefer to use a different directory, please take that into account when following any of the exercise steps throughout this book.
The first line specifies which base image to use as the foundation. This example uses Alpine, a popular base image that takes only about 5 MB and is based on Alpine Linux. The second line copies a file called k8s-for-beginners from the directory where the Dockerfile is located to the root folder of the image. In this example, we will build a tiny web server and compile it to a binary with the name k8s-for-beginners, which will be placed in the same directory as the Dockerfile. The third line specifies the default startup command. In this case, we just start our sample web server.

					Next, let's build our sample web server. Create a file named main.go with the following content:package main
import (
 "fmt"
 "log"
 "net/http"
)
func main() {
 http.HandleFunc("/", handler)
 log.Fatal(http.ListenAndServe("0.0.0.0:8080", nil))
}
func handler(w http.ResponseWriter, r *http.Request) {
 log.Printf("Ping from %s", r.RemoteAddr)
 fmt.Fprintln(w, "Hello Kubernetes Beginners!")
}
As you can observe from func main(), this application serves as a web server that accepts an incoming HTTP request at port 8080 on the root path and responds with the message Hello Kubernetes Beginners.

					To verify this program works, you can just run go run main.go, and then open http://localhost:8080 on the browser. You're expected to get the "Hello Kubernetes Beginners!" output.

					Use go build to compile runtime dependencies along with the source code into one executable binary. Run the following command in the terminal:CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -o k8s-for-beginners
Note
Unlike step 3, the arguments GOOS=linux GOARCH=amd64 tell the Go compiler to compile the program on a specific platform, which turns out to be compatible with the Linux distro we are going to build this problem into. CGO_ENABLED=0 is aimed to generate a statically linked binary so that it can work with some minimum-tailored image (For example, alpine).

					Now, check whether the k8s-for-beginners file is created:ls
You should see the following response:
Dockerfile k8s-for-beginners main.go

					Now we have both the Dockerfile and the runnable binary. Build the Docker image by using the following command:docker build -t k8s-for-beginners:v0.0.1 .
Don't miss the dot (.) at the end of this command. You should see the following response:
[image: Figure 1.12: Output of docker build command

]
Figure 1.12: Output of docker build command
There are two parameters in the command that we used: -t k8s-for-beginners:v0.0.1 provides a tag on the image with format <imagename:version>, while . (the dot at the end of the command) denotes the path to look for the Dockerfile. In this case, . refers to the current working directory.
Note
If you clone the GitHub repository for this chapter, you will find that we have provided a copy of the Dockerfile in each directory so that you can conveniently run the docker build command by navigating to the directory.

					Now, we have the k8s-for-beginners:v0.0.1 image available locally. You can confirm that by running the following command:docker images
You should see the following response:
[image: Figure 1.13: Verifying whether our Docker image has been created

]

			

			Figure 1.13: Verifying whether our Docker image has been created

			An interesting thing to observe is that the image merely consumes 11.4 MB, which includes both the Linux system files and our application. A tip here is to only include necessary files in the Docker image to make it compact so that it is easy to distribute and manage.

			Now that we have built our image, we will run it in a container in the next exercise. Another thing to note is that, currently, this image resides on our local machine, and we can build a container using it only on our machine. However, the advantage of packaging an application with its dependencies is that it can be easily run on different machines. To easily facilitate that, we can upload our images to online Docker image repositories such as Docker Hub (https://hub.docker.com/).

			Note:

			In addition to Docker Hub, there are other public image repositories such as quay.io, gcr.io, and more. You can refer to the documentation of the respective repository to configure it properly in your Docker client.

			Exercise 1.02: Running Your First Application in Docker

			In Exercise 1.01, Creating a Docker Image and Uploading it to Docker Hub, we packaged the web application into a Docker image. In this exercise, we will run it and push it to Docker Hub:

			
					First, we should clean up any leftover containers from the previous exercise by running the following command in the terminal:docker rm -f $(docker ps -aq)
You should see the following response:
43c01e2055cf
286bc0c92b3a
39bf70d02dcc
96c374000f6f
We have seen that docker ps -a returns the information of all the containers. The extra q in the -aq flag means "quiet" and the flag will only display numeric IDs. These IDs will be passed to docker rm -f, and, therefore, all the containers will be removed forcefully.

					Run the following command to start the webserver:docker run -p 8080:8080 -d k8s-for-beginners:v0.0.1
You should see the following response:
9869e9b4ab1f3d5f7b2451a7086644c1cd7393ac9d78b6b4c1bef6d423fd25ac
As you can see in the preceding command, we are mapping the internal port 8080 of the container to the host machine's port 8080. The 8080:8080 parameter preceded by -p maps port 8080 of the container to port 8080 on the host machine. The -d parameter indicates the detached mode. By default, Docker checks the local registry first. So, in this case, the local Docker image will be used for launching the container.

					Now, let us check whether it works as expected by sending an HTTP request to localhost at port 8080: curl localhost:8080
The curl command checks for a response from the stated address. You should see the following response:
Hello Kubernetes Beginners!

					We can also observe the logs of the running container by using the following commands:docker logs <container ID>
You should see the following logs:
2019/11/18 05:19:41 Ping from 172.17.0.1:41416
Note
Before running the following commands, you should register for a Docker Hub account and have your username and password ready.

					Finally, we need to log in to Docker Hub, and then push the local image to the remote Docker Hub registry. Use the following command:docker login
Now enter the username and password to your Docker Hub account when prompted. You should see the following response:
[image: Figure 1.14: Logging in to Docker Hub

]
Figure 1.14: Logging in to Docker Hub

					Next, we will push the local image, k8s-for-beginners:v0.0.1, to the remote Docker Hub registry. Run the following command:docker push k8s-for-beginners:v0.0.1
You should see the following response:
[image: Figure 1.15: Failing to push the image to Docker Hub

]
Figure 1.15: Failing to push the image to Docker Hub
But wait, why does it say, "requested access to the resource is denied"? That is because the parameter followed by the docker push must comply with a <username/imagename:version> naming convention. In the previous exercise, we specified a local image tag, k8s-for-beginners:v0.0.1, without a username. In the docker push command, if no username is specified, it will try to push to the repository with the default username, library, which also hosts some well-known libraries such as Ubuntu, nginx, and more.

					To push our local image to our own user, we need to give a compliant name for the local image by running docker tag <imagename:version> <username/imagename:version>, as shown in the following command:docker tag k8s-for-beginners:v0.0.1 <your_DockerHub_username>/k8s-for-beginners:v0.0.1

					You can verify that the image has been properly tagged using the following command:docker images
You should see the following output:
[image: Figure 1.16: Checking the tagged Docker image

]
Figure 1.16: Checking the tagged Docker image
After tagging it properly, you can tell that the new image actually has the same IMAGE ID as the old one, which implies they're the same image.

					Now that we have the image tagged appropriately, we're ready to push this image to Docker Hub by running the following command:docker push <your_username>/k8s-for-beginners:v0.0.1
You should see a response similar to this:
[image: Figure 1.17: Image successfully pushed to Docker Hub

]
Figure 1.17: Image successfully pushed to Docker Hub

					The image will be live after a short time on Docker Hub. You can verify it by replacing the <username> with your username in the following link: https://hub.docker.com/repository/docker/<username>/k8s-for-beginners/tags.You should be able to see some information regarding your image, similar to the following image:
[image: Figure 1.18: The Docker Hub page for our image

]

			

			Figure 1.18: The Docker Hub page for our image

			Now our Docker image is publicly accessible for anyone to use, just like the nginx image we used at the beginning of this chapter.

			In this section, we learned how to build Docker images and push them to Docker Hub. Although it looks inconspicuous, it is the first time we have a unified mechanism to manage the applications, along with their dependencies, consistently across all environments. Docker images and their underlying layered filesystem are also the primary reason why container technology has been widely adopted in recent years, as opposed to a decade ago.

			In the next section, we will dive a little deeper into Docker to see how it leverages Linux container technologies.

			The Essence of Linux Container Technology

			All things look elegant and straightforward from the outside. But what's the magic working underneath to make a container so powerful? In this section, we will try to open the hood to take a look inside. Let us take a look at a few Linux technologies that lay the foundation for containers.

			Namespace

			The first key technology relied upon by containers is called a Linux namespace. When a Linux system starts up, it creates a default namespace (the root namespace). Then, by default, the processes created later join the same namespace, and, hence, they can interact with each other boundlessly. For example, two processes are able to view the files in the same folder, and also interact through the localhost network. This sounds pretty straightforward, but technically it's all credited to the root namespace, which connects all the processes.

			To support advanced use cases, Linux offers the namespace API to enable different processes being grouped into different namespaces so that only the processes that belong to the same namespace can be aware of each other. In other words, different groups of processes are isolated. This also explains why we mentioned earlier that the isolation of Docker is process-level. The following is a list of the types of namespaces supported in the Linux kernel:

			
					Mount namespaces

					PID (Process ID) namespaces

					Network namespaces

					IPC (Inter-Process Communication) namespaces

					UTS (Unix Time-sharing System) namespaces

					User namespaces (since Linux kernel 3.8)

					Cgroup namespaces (since Linux kernel 4.6)

					Time namespaces (to be implemented in a future version of the Linux kernel)

			

			For the sake of brevity, we will choose two easy ones (UTS and PID) and use concrete examples to explain how they're reflected in Docker later.

			Note

			If you are running macOS, some of the following commands will need to be used differently, since we are exploring Linux features. Docker on macOS runs inside a Linux VM using HyperKit. So, you need to open another terminal session and log into the VM:

			screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty

			After this command, you may see an empty screen. Press Enter, and you should have root access to the VM that is running Docker. To exit the session, you can press Ctrl + A + K, and then press Y when asked for confirmation for killing the window.

			We recommend that you use a different terminal window to access the Linux VM. We will mention which commands need to be run in this terminal session if you are using macOS. If you are using any Linux OS, you can ignore this and simply run all the commands in the same terminal session, unless mentioned otherwise in the instructions.

			Once a Docker container is created, Docker creates and associates a number of namespaces with the container. For example, let's take a look at the sample container we created in the previous section. Let's use the following command:

			docker inspect --format '{{.State.Pid}}' <container ID>

			The preceding command checks the PID of the container running on the host OS. You should see a response similar to the following:

			5897

			In this example, the PID is 5897, as you can see in the preceding response. Now, run this command in the Linux VM:

			ps -ef | grep k8s-for-beginners

			This should give an output similar to this:

			
				
					[image: Figure 1.19: Checking the PID of our process

]
				

			

			Figure 1.19: Checking the PID of our process

			The ps -ef command lists all the running processes on the host OS, and | grep k8s-for-beginners then filters this list to display the processes that have k8s-for-beginners in their name. We can see that the process also has the PID 5897, which is consistent with the first command. This reveals an important fact that a container is nothing but a particular process running directly on the host OS.

			Next, run this command:

			ls -l /proc/<PID>/ns

			For macOS, run this command in the VM terminal. You should see the following output:

			
				
					[image: Figure 1.20: Listing the different namespaces created for our container

]
				

			

			Figure 1.20: Listing the different namespaces created for our container

			This command checks the /proc folder (which is a Linux pseudo-filesystem) to list all the namespaces created along with the start of the container. The result shows some well-known namespaces (take a look at the highlighted rectangle) such as uts, pid, net, and more. Let's take a closer look at them.

			The uts namespace is created to enable the container to have its hostname instead of the host's hostname. By default, a container is assigned its container ID as the hostname, and it can be changed using the -h parameter while running a container, as shown here:

			docker run -h k8s-for-beginners -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners

			This should give the following response:

			df6a15a8e2481ec3e46dedf7850cb1fbef6efafcacc3c8a048752da24ad793dc

			Using the returned container ID, we can enter the container and check its hostname using the following two commands one after the other:

			docker exec -it <container ID> sh

			hostname

			You should see the following response:

			k8s-for-beginners

			The docker exec command tries to enter into the container and execute the sh command to launch the shell inside the container. And once we're inside the container, we run the hostname command to check the hostname from inside the container. From the output, we can tell that the -h parameter is in effect because we can see k8s-for-beginners as the hostname.

			In addition to the uts namespace, the container is also isolated in its own PID namespace, so it can only view the processes launched by itself, and the launching process (specified by CMD or ENTRYPOINT in the Dockerfile that we created in Exercise 1.01, Creating a Docker Image and Uploading it to Docker Hub) is assigned PID 1. Let's take a look at this by entering the following two commands one after the other:

			docker exec -it <container ID> sh

			ps

			You should see the following response:

			
				
					[image: Figure 1.21: The list of processes inside our container

]
				

			

			Figure 1.21: The list of processes inside our container

			Docker provides the --pid option for a container to join another container's PID namespace.

			In addition to the uts and pid namespaces, there are some other namespaces that Docker leverages. We will examine the network namespace ("net" in Figure 1.20) in the next exercise.

			Exercise 1.03: Joining a Container to the Network Namespace of Another Container

			In this exercise, we will recreate the k8s-for-beginners container without host mapping, and then create another container to join its network namespace:

			
					As with the previous exercise, remove all the existing containers by running the following command:docker rm -f $(docker ps -aq)
You should see an output similar to this:
43c01e2055cf
286bc0c92b3a
39bf70d02dcc
96c374000f6f

					Now, begin by running our container using the following command:docker run -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners
You should see the following response:
33003ddffdf4d85c5f77f2cae2528cb2035d37f0a7b7b46947206ca104bbbaa5

					Next, we will get the list of running containers so that we can see the container ID:docker ps
You should see the following response:
[image: Figure 1.22: Getting a list of all of the running containers

]
Figure 1.22: Getting a list of all of the running containers

					Now, we will run an image called netshoot in the same network namespace as the container that we created in step 1, by using the --net parameter:docker run -it --net container:<container ID> nicolaka/netshoot
Use the container ID of our previous container that we obtained in the previous step. You should see a response that is similar to the following:
[image: Figure 1.23: Starting up the netshoot container

]
Figure 1.23: Starting up the netshoot container
nicolaka/netshoot is a tiny image packaged with some commonly used network libraries such as iproute2, curl, and more.

					Now, let's run the curl command inside netshoot to check whether we are able to access the k8s-for-beginners container:curl localhost:8080
You should see the following response:
Hello Kubernetes Beginners!
The preceding example proves that the netshoot container was created by joining the network namespace of k8s-for-beginners; otherwise, accessing port 8080 on localhost wouldn't have got us a response.

					This can also be verified by double-checking the network namespace IDs of the two containers, which we will do in the following steps.To confirm our result, let us first open another terminal without exiting the netshoot container. Get the list of containers to ensure both containers are running:
docker ps
You should see a response as follows:
[image: Figure 1.24: Checking whether both of the k8s-for-beginners and netshoot

containers are online

]
Figure 1.24: Checking whether both of the k8s-for-beginners and netshoot containers are online

					Next, get the PID of the k8s-for-beginners container:docker inspect --format '{{.State.Pid}}' <container ID>
You should see the following response:
7311
As you can see, the PID for this example is 7311.

					Now get the pseudo-filesystem of the process using the preceding PID:ls -l /proc/<PID>/ns/net
If you are using macOS, run this command on the Linux VM in another terminal session. Use the PID you obtained in the previous step in this command. You should see the following response:
lrwxrwxrwx 1 root root 0 Nov 19 08:11 /proc/7311/ns/net -> 'net:[4026532247]'

					Similarly, get the PID of the netshoot container using the following command:docker inspect --format '{{.State.Pid}}' <container ID>
Use the appropriate container ID from step 6 in this command. You should see the following response:
8143
As you can see, the PID of the netshoot container is 8143.

					Next, we can get its pseudo-filesystem using its PID or by using this command:ls -l /proc/<PID>/ns/net
If you are using macOS, run this command on the Linux VM in another session. Use the PID from the previous step in this command. You should see the following response:
lrwxrwxrwx 1 root root 0 Nov 19 09:15 /proc/8143/ns/net -> 'net:[4026532247]'
As you can observe from the outputs of step 8 and step 10, the two containers share the same network namespace (4026532247).

					As a final cleanup step, let's remove all of the containers:docker rm -f $(docker ps -aq)
You should see a response similar to the following:
61d0fa62bc49
33003ddffdf4

					What if you want to join a container to the host's root namespace? Well, --net host is a good way of achieving that. To demonstrate this, we will start a container using the same image, but with the --net host parameter:docker run --net host -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners
You should see the following response:
8bf56ca0c3dc69f09487be759f051574f291c77717b0f8bb5e1760c8e20aebd0

					Now, list all of the running containers:docker ps
You should see the following response:
[image: Figure 1.25: Listing all the containers

]
Figure 1.25: Listing all the containers

					Get the PID of the running container using the following command:docker inspect --format '{{.State.Pid}}' <container ID>
Use the appropriate container ID in this command. You should see the following response:
8380

					Find the network namespace ID by looking up the PID:ls -l /proc/<PID>/ns/net
If you are using macOS, run this command on the Linux VM. Use the appropriate PID in this command. You should see the following response:
lrwxrwxrwx 1 root root 0 Nov 19 09:20 /proc/8380/ns/net -> 'net:[4026531993]'
You may be confused by the 4026531993 namespace. By giving the --net host parameter, shouldn't Docker bypass the creation of a new namespace? The answer to this is that it's not a new namespace; in fact, it's the aforementioned Linux root namespace. We will confirm this in the next step.

					Get the namespace of PID 1 of the host OS:ls -l /proc/1/ns/net
If you are using macOS, run this command on the Linux VM. You should see the following response:
lrwxrwxrwx 1 root root 0 Nov 19 09:20 /proc/1/ns/net -> 'net:[4026531993]'
As you can see in this output, this namespace of the host is the same as that of the container we saw in step 15.

			

			From this exercise, we can get an impression of how a container is isolated into different namespaces, and also which Docker parameter can be used to relate it with other namespaces.

			Cgroups

			By default, no matter which namespace a container joins, it can use all of the available resources of the host. That is, for sure, not what we want when we are running multiple containers on a system; otherwise, a few containers may hog the resources shared among all the containers.

			To address this, the cgroups (short for Control Groups) feature was introduced in Linux kernel version 2.6.24 onward to limit the resource usage of processes. Using this feature, a system administrator can control the most important resources, such as memory, CPU, disk space, and network bandwidth.

			In Ubuntu 18.04 LTS, a series of cgroups under path /sys/fs/cgroup/<cgroup type> are created by default.

			Note

			You can run mount -t cgroup in order to view all the cgroups in Ubuntu; though, we are leaving them out of the scope of this book since they are not very relevant to us.

			Right now, we don't quite care about the system processes and their cgroups; we just want to focus on how Docker is related in the whole cgroups picture. Docker has its cgroups folders under the path /sys/fs/cgroup/<resource kind>/docker. Use the find command to retrieve the list:

			find /sys/fs/cgroup/* -name docker -type d

			If you are using macOS, run this command on the Linux VM in another session. You should see the following results:

			
				
					[image: Figure 1.26: Getting all the cgroups related to Docker

]
				

			

			Figure 1.26: Getting all the cgroups related to Docker

			Each folder is read as a control group, and the folders are hierarchical, meaning that each cgroup has a parent from which it inherits properties, all the way up to the root cgroup, which is created at the system start.

			To illustrate how a cgroup works in Docker, we will use the memory cgroup, highlighted in Figure 1.26 as an example.

			But first, let's remove all existing containers using the following command:

			docker rm -f $(docker ps -aq)

			You should see a response similar to the following:

			61d0fa62bc49

			Let's confirm that by using the following command:

			docker ps

			You should see an empty list as follows:

			CONTAINER ID IMAGE COMMAND CREATED STATUS

			 PORTS NAMES

			Let's see whether there is a cgroup memory folder:

			find /sys/fs/cgroup/memory/docker/* -type d

			If you are using macOS, run this command on the Linux VM. You should then see the following response:

			root@ubuntu: ~# find /sys/fs/cgroup/memory/docker/* -type d

			No folders show up. Now, let's run a container:

			docker run -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners

			You should see the output similar to the following:

			8fe77332244b2ebecbda27a4496268264218c4e59614d59b5849a22b12941e1

			Check the cgroup folder again:

			find /sys/fs/cgroup/memory/docker/* -type d

			If you are using macOS, run this command on the Linux VM. You should see this response:

			/sys/fs/cgroup/memory/docker/8fe77332244b2ebecbda27a4496268264218c4e59614d59b5849a22b12941e1

			By now, you can see that once we create a container, Docker creates its cgroup folder under a specific resource kind (in our example, it's memory). Now, let's take a look at which files are created in this folder:

			ls /sys/fs/cgroup/memory/docker/8fe77332244b2ebecbd8a2704496268264218c4e59614d59b5849022b12941e1

			If you are using macOS, run this command on the Linux VM. Please use the appropriate path that you obtained from the previous screenshot for your instance. You should see the following list of files:

			
				
					[image: Figure 1.27: Exploring memory cgroups created by Docker

]
				

			

			Figure 1.27: Exploring memory cgroups created by Docker

			We won't go through every setting here. The setting we're interested in is memory.limit_in_bytes, as highlighted previously, which denotes how much memory the container can use. Let's see what value is written in this file:

			cat /sys/fs/cgroup/memory/docker/8fe77332244b2ebecbd8a2704496268264218c4e59614d59b5849022b12941e1/memory.limit_in_bytes

			If you are using macOS, run this command on the Linux VM. You should see the following response:

			9223372036854771712

			The value 9223372036854771712 is the largest positive signed integer (263 – 1) in a 64-bit system, which means unlimited memory can be used by this container.

			To discover how Docker deals with the containers that overuse claimed memory, we're going to show you another program that consumes a certain amount of RAM. The following is a Golang program used to consume 50 MB of RAM incrementally and then hold the entire program (sleep for 1 hour) so as to not exit:

			package main

			import (

			 "fmt"

			 "strings"

			 "time"

)

			func main() {

			 var longStrs []string

			 times := 50

			 for i := 1; i <= times; i++ {

			 fmt.Printf("===============%d===============\n", i)

			 // each time we build a long string to consume 1MB (1000000 * 1byte) RAM

			 longStrs = append(longStrs, buildString(1000000, byte(i)))

			 }

			 // hold the application to exit in 1 hour

			 time.Sleep(3600 * time.Second)

			}

			// buildString build a long string with a length of `n`.

			func buildString(n int, b byte) string {

			 var builder strings.Builder

			 builder.Grow(n)

			 for i := 0; i < n; i++ {

			 builder.WriteByte(b)

			 }

			 return builder.String()

			}

			You may try building an image using this code, as shown in Exercise 1.01, Creating a Docker Image and Uploading it to Docker Hub. This code will be used in place of the code provided in step 2 of that exercise, and then you can tag the image with <username>/memconsumer. Now, we can test resource limitations. Let's use the Docker image and run it with the --memory (or -m) flag to instruct Docker that we only want to use a certain amount of RAM.

			If you are using Ubuntu or any other Debian-based Linux, to continue with the chapter, you may need to manually enable cgroup memory and swap capabilities if you see the following warning message when running this command:

			docker info > /dev/null

			This is the warning message that you may see:

			WARNING: No swap limit support

			The steps to enable cgroup memory and swap capabilities are as follows:

			Note

			The following three steps are not applicable if you are using macOS.

			
					Edit the /etc/default/grub file (you may need root privileges for this). Add or edit the GRUB_CMDLINE_LINUX line to add the following two key-value pairs:GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"

					Run update-grub using root privileges.

					Reboot the machine.

			

			Next, we should be able to limit the container memory usage to 100 MB by running the following command:

			docker run --name memconsumer -d --memory=100m --memory-swap=100m packtworkshops/the-kubernetes-workshop:memconsumer

			Note

			This command pulls the image that we have provided for this demonstration. If you have built your image, you can use that by using <your_username>/<tag_name> in the preceding command.

			You should see the following response:

			WARNING: Your kernel does not support swap limit capabilities or the cgroup is not mounted. Memory limited without swap.

			366bd13714cadb099c7ef6056e3b72853735473938b2e633a5cdbf9e94273143

			This command disables usage on the swap memory (since we specify the same value on --memory and --memory-swap) so as to gauge the consumption of memory easily.

			Let's check the status of our container:

			docker ps

			You should see the following response:

			
				
					[image: Figure 1.28: Getting the list of containers

]
				

			

			Figure 1.28: Getting the list of containers

			Now, let's confirm the restrictions placed on the container by reading the cgroup file for the container:

			cat /sys/fs/cgroup/memory/docker/366bd13714cadb099c7ef6056e3b7285373547e9e8b2e633a5cdbf9e94273143/memory.limit_in_bytes

			If you are using macOS, run this command on the Linux VM. Please use the appropriate path in this command. You should see the following response:

			104857600

			The container is launched with a request of 100 MB of RAM, and it runs without any problem since it internally only consumes 50 MB of RAM. From the cgroup setting, you can observe that the value has been updated to 104857600, which is exactly 100 MB.

			But what if the container requests less than 50 MB, while the program running in it requires more than 50 MB? How will Docker and Linux respond to that? Let's take a look.

			First, let's remove any running containers:

			docker rm -f $(docker ps -aq)

			You should see the following response:

			366bd13714ca

			Next, we're going to run the container again, but we will request only 20 MB of memory:

			docker run --name memconsumer -d --memory=20m --memory-swap=20m packtworkshops/the-kubernetes-workshop:memconsumer

			You should see this response:

			298541bc46855a749f9f8944860a73f3f4f2799ebda7969a5eada60e3809539bab

			Now, let's check the status of our container:

			docker ps

			You should see an empty list like this:

			CONTAINER ID IMAGE COMMAND CREATED STATUS

			 PORTS NAMES

			As you can see, we cannot see our container. Let's list all kinds of containers:

			docker ps -a

			You should see the following output:

			
				
					[image: Figure 1.29: Getting a list of all containers

]
				

			

			Figure 1.29: Getting a list of all containers

			We found our container. It has been forcibly killed. It can be verified by checking the container logs:

			docker logs memconsumer

			You should see the following output:

			
				
					[image: Figure 1.30: The logs of our terminated container

]
				

			

			Figure 1.30: The logs of our terminated container

			The container tried to increase the memory consumed by 1 MB each time, and when it came to the memory limit (20 MB), it was killed.

			From the preceding examples, we have seen how Docker exposes flags to end-users, and how those flags interact with underlying Linux cgroups to limit resource usage.

			Containerization: The Mindset Change

			In the previous sections, we looked at the anatomy of Linux namespaces and cgroups. We explained that a container is essentially a process running natively on the host OS. It is a special process with additional limitations such as OS-level isolation from other processes and the control of resource quotas.

			Since Docker 1.11, containerd has been adopted as the default container runtime, instead of directly using Docker Daemon (dockerd) to manage containers. Let's take a look at this runtime. First, restart our container normally:

			docker run -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners

			You should see the following response:

			c7ee681ff8f73fa58cf0b37bc5ce08306913f27c5733c725f7fe97717025625d

			We can use ps -aef --forest to list all of the running processes in a hierarchy, and then use | grep containerd to filter the output by the containerd keyword. Finally, we can use -A 1 to output one extra line (using -A 1) so that at least one running container shows up:

			ps -aef --forest | grep containerd -A 1

			If you are using macOS, run this command on the Linux VM without the --forest flag. You should see the following response:

			
				
					[image: Figure 1.31: Getting processes related to containerd

]
				

			

			Figure 1.31: Getting processes related to containerd

			In the output, we can see that containerd (PID 1037) acts as the top parent process, and it manages containerd-shim (PID 19374), and containerd-shim manages most of the child processes of k8s-for-beginners (PID 19394), which is the container we started.

			Keeping the core idea of a container in mind can help you while migrating any VM-based applications to container-based ones. Basically, there are two patterns to deploy applications in containers:

			Several Applications in One Container

			This kind of implementation requires a supervisor application to launch and hold the container. And then, we can put applications into the container as child processes of the supervisor. The supervisor has several variants:

			
					A customized wrapper script: This needs complicated scripting to control the failures of managed applications.

					A third-party tool such as supervisord or systemd: Upon application failures, the supervisor is responsible for getting it restarted.

			

			One Application in One Container

			This kind of implementation does not require any supervisor as in the previous case. In fact, the life cycle of the application is tied to the life cycle of the container.

			A Comparison of These Approaches

			By deploying several applications in a single container, we are essentially treating a container as a VM. This container as a lightweight VM approach was once used as a promotion slogan of container technologies. However, as explained, they vary in a lot of aspects. Of course, this way can save the migration efforts from the VM-based development/deployment model to the containers, but it also introduces several drawbacks in the following aspects:

			
					Application life cycle control: Looking from the outside, the container is exposed as one state, as it is essentially a single host process. The life cycles of the internal applications are managed by the "supervisor", and, therefore, cannot be observed from the outside. So, looking from the outside, you may observe that a container stays healthy, but some applications inside it may be restarting persistently. It may keep restarting due to a fatal error in one of its internal applications, which you may not be able to point out.

					Version upgrade: If you want to upgrade any one of the different applications in a container, you may have to pull down the entire container. This causes unnecessary downtime for the other applications in that container, which don't need a version upgrade. Thus, if the applications require components that are developed by different teams, their release cycles have to be tightly coupled.

					Horizontal scaling: If only one application needs to be scaled out, you have no option but to scale out the whole container, which will also replicate all the other applications. This leads to a waste of resources on the applications that don't need scaling.

					Operational concerns: Checking the logs of the applications becomes more challenging as the standard output (stdout) and error (stderr) of the container don't represent the logs of the applications inside containers. You have to make an extra effort to manage those logs, such as installing additional monitoring tools to diagnose the health of each application.

			

			Technically, having multiple applications in a single container works, and it doesn't require many mindset changes from a VM perspective. However, when we adopt the container technology to enjoy its benefits, we need to make a trade-off between migration conveniences and long-term maintainability.

			The second way (that is, having one application in one container) enables a container to automatically manage the life cycle of the only application present inside it. In this way, we can unify container management by leveraging native Linux capabilities, such as getting an application status by checking the container state and fetching application logs from the stdout/stderr of the container. This enables you to manage each application in its own release cycle.

			However, this is not an easy task. It requires you to rethink the relationship and dependencies of different components so as to break the monolithic applications into microservices. This may require a certain amount of refactoring of the architectural design to include both source code and delivery pipeline changes.

			To summarize, adopting container technology is a break-up-and-reorganize journey. It not only takes time for the technology to mature but also, more importantly, it requires changes in people's mindsets. Only with this mindset change can you restructure the applications as well as the underlying infrastructure to unleash the value of containers and enjoy their real benefits. It's the second reason that container technologies only started to rise in recent years instead of a decade ago.

			The Need for Container Orchestration

			The k8s-for-beginners container we built in Exercise 1.01, Creating a Docker Image and Uploading it to Docker Hub, is nothing but a simple demonstration. In the case of a serious workload deployed in a production environment, and to enable hundreds of thousands of containers running in a cluster, we have many more things to consider. We need a system to manage the following problems:

			Container Interactions

			As an example, suppose that we are going to build a web app with a frontend container displaying information and accepting user requests, and a backend container serving as a datastore that interacts with the frontend container. The first challenge is to figure out how to specify the address of the backend container to the frontend container. It is not a good idea to hardcode the IP, as the container IP is not static. In a distributed system, it is not uncommon for containers or machines to fail due to unexpected issues. So, the link between any two containers must be discoverable and effective across all the machines. On the other hand, the second challenge is that we may want to limit which containers (for example, the backend container) can be visited by which kind of containers (for example, its corresponding frontend ones).

			Network and Storage

			All the examples that we gave in the previous sections used containers running on the same machine. This is pretty straightforward, as the underlying Linux namespaces and cgroup technologies were designed to work within the same OS entity. If we want to run thousands of containers in a production environment, which is pretty common, we have to resolve the network connectivity issue to ensure that different containers across different machines are able to connect with each other. On the other hand, local or temporary on-disk storage doesn't always work for all workloads. Applications may need the data to be stored remotely and be available to be mounted at will to any machine in the cluster the container is run on, no matter if the container is starting up for the first time or restarting after a failure.

			Resource Management and Scheduling

			We have seen that a container leverages Linux cgroups to manage its resource usage. To be a modern resource manager, it needs to build an easy-to-use resource model to abstract resources such as CPU, RAM, disk, and GPU. We need to manage a number of containers efficiently, and to provision and free up resources in time so as to achieve high cluster utilization.

			Scheduling involves assigning an appropriate machine in the cluster for each of our workloads to run on. We will take a closer look at scheduling as we proceed further in this book. To ensure that each container has the best machine to run, the scheduler (a Kubernetes component that takes care of scheduling) needs to have a global view of the distribution of all containers across the different machines in the cluster. Additionally, in large data centers, the containers would need to be distributed based on the physical locations of the machines or the availability zones of the cloud services. For example, if all containers supporting a service are allocated to the same physical machine, and that machine happens to fail, the service will experience a period of outage regardless of how many replicas of the containers you had deployed.

			Failover and Recovery

			Application or machine errors are quite common in a distributed system. Therefore, we must consider container and machine failures. When containers encounter fatal errors and exit, they should be able to be restarted on the same or another suitable machine that is available. We should be able to detect machine faults or network partitions so as to reschedule the containers from problematic machines to healthy ones. Moreover, the reconciliation process should be autonomous, to make sure the application is always running in its desired state.

			Scalability

			As demand increases, you may want to scale up an application. Take a web frontend application as an example. We may need to run several replicas of it and use a load balancer to distribute the incoming traffic evenly among the many replicas of containers supporting the service. To walk one step further, depending on the volume of incoming requests, you may want the application to be scaled dynamically, either horizontally (by having more or fewer replicas), or vertically (by allocating more or fewer resources). This takes the difficulty of system design to another level.

			Service Exposure

			Suppose we've tackled all the challenges mentioned previously; that's to say, all things are working great within the cluster. Well, here comes another challenge: how can the applications be accessed externally? On one hand, the external endpoint needs to be associated with the underlying on-premises or cloud environment so that it can leverage the infrastructure's API to make itself always accessible. On the other hand, to keep the internal network traffic always going through, the external endpoint needs to be associated with internal backing replicas dynamically – any unhealthy replicas need to be taken out and backfilled automatically to ensure that the application remains online. Moreover, L4 (TCP/UDP) and L7 (HTTP, HTTPS) traffic has different characteristics in terms of packets, and, therefore, needs to be treated in slightly different ways to ensure efficiency. For example, the HTTP header information can be used to reuse the same public IP to serve multiple backend applications.

			Delivery Pipeline

			From a system administrator's point of view, a healthy cluster must be monitorable, operable, and autonomous in responding to failures. This requires the applications deployed on to the cluster to follow a standardized and configurable delivery pipeline so that it can be managed well at different phases, as well as in different environments.

			An individual container is typically used only for completing a single functionality, which is not enough. We need to provide several building blocks to connect the containers all together to accomplish a complicated task.

			Orchestrator: Putting All the Things Together

			We don't mean to overwhelm you, but the aforementioned problems are very serious, and they arise as a result of the large number of containers that need to be automatically managed. Compared to the VM era, containers do open another door for application management in a large, distributed cluster. However, this also takes container and cluster management challenges to another level. In order to connect the containers to each other to accomplish the desired functionality in a scalable, high-performant, and self-recovering manner, we need a well-designed container orchestrator. Otherwise, we would not be able to migrate our applications from VMs to containers. It's the third reason why containerization technologies began to be adopted on a large scale in recent years, particularly upon the emergence of Kubernetes – which is the de facto container orchestrator nowadays.

			Welcome to the Kubernetes World

			Unlike typical software that usually evolves piece by piece, Kubernetes got a kick-start as it was designed based on years of experience on Google's internal large-scale cluster management software such as Borg and Omega. That's to say, Kubernetes was born equipped with lots of best practices in the container orchestration and management field. Since day one, the team behind it understood the real pain points and came up with proper designs for tackling them. Concepts such as pods, one IP per pod, declarative APIs, and controller patterns, among others that were first introduced by Kubernetes, seemed to be a bit "impracticable", and some people at that time might have questioned their real value. However, 5 years later, those design rationales remain unchanged and have proven to be the key differentiators from other software.

			Kubernetes resolves all the challenges mentioned in the previous section. Some of the well-known features that Kubernetes provides are:

			
					Native support for application life cycle managementThis includes built-in support for application replicating, autoscaling, rollout, and rollback. You can describe the desired state of your application (for example, how many replicas, which image version, and so on), and Kubernetes will automatically reconcile the real state to meet its desired state. Moreover, when it comes to rollout and rollback, Kubernetes ensures that the old replicas are replaced by new ones gradually to avoid downtime of the application.

					Built-in health-checking supportBy implementing some "health check" hooks, you can define when the containers can be viewed as ready, alive, or failed. Kubernetes will only start directing traffic to a container when it's healthy as well as ready. It will also restart the unhealthy containers automatically.

					Service discovery and load balancingKubernetes provides internal load balancing between different replicas of a workload. Since containers can fail occasionally, Kubernetes doesn't use an IP for direct access. Instead, it uses an internal DNS and exposes each service with a DNS record for communication within a cluster.

					Configuration managementKubernetes uses labels to describe the machines and workloads. They're respected by Kubernetes' components to manage containers and dependencies in a loosely coupled and flexible fashion. Moreover, the simple but powerful labels can be used to achieve advanced scheduling features (for example, taint/toleration and affinity/anti-affinity).
In terms of security, Kubernetes provides the Secret API to allow you to store and manage sensitive information. This can help application developers to associate the credentials with your applications securely. From a system administrator's point of view, Kubernetes also provides varied options for managing authentication and authorization.
Moreover, some options such as ConfigMaps aim to provide fine-grained mechanics to build a flexible application delivery pipeline.

					Network and storage abstractionKubernetes initiates the standards to abstract the network and storage specifications, which are known as the CNI (Container Network Interface) and CSI (Container Storage Interface). Each network and storage provider follows the interface and provides its implementation. This mechanism decouples the interface between Kubernetes and heterogeneous providers. With that, end users can use standard Kubernetes APIs to orchestrate their workloads in a portable manner.

			

			Under the hood, there are some key concepts supporting the previously mentioned features, and, more critically, Kubernetes provides different extension mechanics for end-users to build customized clusters or even their own platform:

			
					The Declarative APIThe Declarative API is a way to describe what you want to be done. Under this contract, we just specify the desired final state rather than describing the steps to get there.
The declarative model is widely used in Kubernetes. It not only enables Kubernetes' core features to function in a fault-tolerant way but also serves as a golden rule to build Kubernetes extension solutions.

					Concise Kubernetes coreIt is common for a software project to grow bigger over time, especially for famous open source software such as Kubernetes. More and more companies are getting involved in the development of Kubernetes. But fortunately, since day one, the forerunners of Kubernetes set some baselines to keep Kubernetes' core neat and concise. For example, instead of binding to a particular container runtime (for example, Docker or Containerd), Kubernetes defines an interface (CRI or the container runtime interface) to be technology-agnostic so that users can choose which runtime to use. Also, by defining the CNI (Container Network Interface), it delegates the pod and host's network routing implementation to different projects such as Calico and Weave Net. In this way, Kubernetes is able to keep its core manageable, and also encourage more vendors to join, so the end-users can have more choices to avoid vendor lock-ins.

					Configurable, pluggable, and extensible designAll Kubernetes' components provide configuration files and flags for users to customize the functionalities. And each core component is implemented strictly to adhere to the public Kubernetes API; for advanced users, you can choose to implement a part of or the entire component yourself to fulfill a special requirement, as long as it is subject to the API. Moreover, Kubernetes provides a series of extension points to extend Kubernetes' features, as well as building your platform.

			

			In the course of this book, we will walk you through the high-level Kubernetes architecture, its core concepts, best practices, and examples to help you master the essentials of Kubernetes, so that you can build your applications on Kubernetes, and also extend Kubernetes to accomplish complex requirements.

			Activity 1.01: Creating a Simple Page Count Application

			In this activity, we will create a simple web application that counts the number of visitors. We will containerize this application, push it to a Docker image registry, and then run the containerized application.

			A PageView Web App

			We will first build a simple web application to show the pageviews of a particular web page:

			
					Use your favorite programming language to write an HTTP server to listen on port 8080 at the root path (/). Once it receives a request, it adds 1 to its internal variable and responds with the message Hello, you're visitor #i, where i is the accumulated number. You should be able to run this application on your local development environment.Note
In case you need help with the code, we have provided a sample piece of code written in Go, which is also used for the solution to this activity. You can get this from the following link: https://packt.live/2DcCQUH.

					Compose a Dockerfile to build the HTTP server and package it along with its dependencies into a Docker image. Set the startup command in the last line to run the HTTP server.

					Build the Dockerfile and push the image to a public Docker images registry (for example, https://hub.docker.com/).

					Test your Docker images by launching a Docker container. You should use either Docker port mapping or an internal container IP to access the HTTP server.

			

			You can test whether your application is working by repeatedly accessing it using the curl command as follows:

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #1.

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #2.

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #3.

			Bonus Objective

			Until now, we have implemented the basics of Docker that we have learned in this chapter. However, we can demonstrate the need to link different containers by extending this activity.

			For an application, usually, we need multiple containers to focus on different functionalities and then connect them together as a fully functional application. Later on, in this book, you will learn how to do this using Kubernetes; however, for now, let's connect the containers directly.

			We can enhance this application by attaching a backend datastore to it. This will allow it to persist its state even after the container is terminated, that is, it will retain the number of visitors. If the container is restarted, it will continue the count instead of resetting it. Here are some guidelines for building on top of the application that you have built so far.

			A Backend Datastore

			We may lose the pageview number when the container dies, so we need to persist it into a backend datastore:

			
					Run one of the three well-known datastores: Redis, MySQL, or MongoDB within a container.Note
The solution to this activity can be found at the following address: https://packt.live/304PEoD. We have implemented Redis for our datastore.
You can find more details about the usage of the Redis container at this link: https://hub.docker.com/_/redis.
If you wish to use MySQL, you can find details about its usage at this link: https://hub.docker.com/_/mysql.
If you wish to use MongoDB, you can find details about its usage at this link: https://hub.docker.com/_/mongo.

					You may need to run the container using the --name db flag to make it discoverable. If you are using Redis, the command should look like this:docker run --name db -d redis

			

			Modifying the Web App to Connect to a Backend Datastore

			
					Every time a request comes in, you should modify the logic to read the pageview number from the backend, then add 1 to its internal variable, and respond with a message of Hello, you're visitor #i, where i is the accumulated number. At the same time, store the added pageview number in the datastore. You may need to use the datastore's specific SDK Software Development Kit (SDK) to connect to the datastore. You can put the connection URL as db:<db port> for now.Note
You may use the source code from the following link: https://packt.live/3lBwOhJ.
If you are using the code from this link, ensure that you modify it to map to the exposed port on your datastore.

					Rebuild the web app with a new image version.

					Run the web app container using the --link db:db flag.

					Verify that the pageview number is returned properly.

					Kill the web app container and restart it to see whether the pageview number gets restored properly.

			

			Once you have created the application successfully, test it by accessing it repeatedly. You should see it working as follows:

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #1.

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #2.

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #3.

			Then, kill the container and restart it. Now, try accessing it. The state of the application should be persisted, that is, the count must continue from where it was before you restarted the container. You should see a result as follows:

			root@ubuntu:~# curl localhost: 8080

			Hello, you're visitor #4.

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			In this chapter, we walked you through a brief history of software development and explained some of the challenges in the VM era. With the emergence of Docker, containerization technologies open a new gate in terms of resolving the problems that existed with earlier methods of software development.

			We walked you through the basics of Docker and detailed the underlying features of Linux such as namespaces and cgroups, which enable containerization. We then brought up the concept of container orchestration and illustrated the problems it aims to solve. Finally, we gave a very brief overview of some of the key features and methodologies of Kubernetes.

			In the next chapter, we will dive a little deeper and take a look at Kubernetes' architecture to understand how it works.

		

		
			
			

		

	
		
			
			

		

		
			2. An Overview of Kubernetes

		

		
			Overview

			In this chapter, we will have our first hands-on introduction to Kubernetes. This chapter will give you a brief overview of the different components of Kubernetes and how they work together. We will also try our hand at working with some fundamental Kubernetes components.

			By the end of this chapter, you will have a single-node Minikube environment set up where you can run many of the exercises and activities in this book. You will be able to understand the high-level architecture of Kubernetes and identify the roles of the different components. You will also learn the basics required to migrate containerized applications to a Kubernetes environment.

			Introduction

			We ended the previous chapter by providing a brief and abstract introduction to Kubernetes, as well as some of its advantages. In this chapter, we will provide you with a much more concrete high-level understanding of how Kubernetes works. First, we will walk you through how to install Minikube, which is a handy tool that creates a single-node cluster and provides a convenient learning environment for Kubernetes. Then, we will take a 10,000-foot overview of all the components, including their responsibilities and how they interact with each other. After that, we will migrate the Docker application that we built in the previous chapter to Kubernetes and illustrate how it can enjoy the benefits afforded by Kubernetes, such as creating multiple replicas, and version updates. Finally, we will explain how the application responds to external and internal traffic.

			Having an overview of Kubernetes is important before we dive deeper into the different aspects of it so that when we learn more specifics about the different aspects, you will have an idea of where they fit in the big picture. Also, when we go even further and explore how to use Kubernetes to deploy applications in a production environment, you will have an idea of how everything is taken care of in the background. This will also help you with optimization and troubleshooting.

			Setting up Kubernetes

			Had you asked the question, "How do you easily install Kubernetes?" three years ago, it would have been hard to give a compelling answer. Embarrassing, but true. Kubernetes is a sophisticated system, and getting it installed and managing it well isn't an easy task.

			However, as the Kubernetes community has expanded and matured, more and more user-friendly tools have emerged. As of today, based on your requirements, there are a lot of options to choose from:

			
					If you are using physical (bare-metal) servers or virtual machines (VMs), Kubeadm is a good fit.

					If you're running on cloud environments, Kops and Kubespray can ease Kubernetes installation, as well as integration with the cloud providers. In fact, we will teach you how to deploy Kubernetes on AWS using Kops in Chapter 11, Build Your Own HA Cluster, and we will take another look at the various options we can use to set up Kubernetes.

					If you want to drop the burden of managing the Kubernetes control plane (which we will learn about later in this chapter), almost all cloud providers have their Kubernetes managed services, such as Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes Service (AKS), and IBM Kubernetes Service (IKS).

					If you just want a playground to study Kubernetes in, Minikube and Kind can help you spin up a Kubernetes cluster in minutes.

			

			We will use Minikube extensively throughout this book as a convenient learning environment. But before we proceed to the installation process, let's take a closer look at Minikube itself.

			An Overview of Minikube

			Minikube is a tool that can be used to set up a single-node cluster, and it provides handy commands and parameters to configure the cluster. It primarily aims to provide a local testing environment. It packs a VM containing all the core components of Kubernetes that get installed onto your host machine, all at once. This allows it to support any operating system, as long as there is a virtualization tool (also known as a Hypervisor) pre-installed. The following are the most common Hypervisors supported by Minikube:

			
					VirtualBox (works for all operating systems)

					KVM (Linux-specific)

					Hyperkit (macOS-specific)

					Hyper-V (Windows-specific)

			

			Regarding the required hardware resources, the minimum requirement is 2 GB RAM and any dual-core CPU that supports virtualization (Intel VT or AMD-V), but you will, of course, need a more powerful machine if you are trying out heavier workloads.

			Just like any other modern software, Kubernetes provides a handy command-line client called kubectl that allows users to interact with the cluster conveniently. In the next exercise, we will set up Minikube and use some basic kubectl commands. We will go into more detail about kubectl in the next chapter.

			Exercise 2.01: Getting Started with Minikube and Kubernetes Clusters

			In this exercise, we will use Ubuntu 20.04 as the base operating system to install Minikube, using which we can start a single-node Kubernetes cluster easily. Once the Kubernetes cluster has been set up, you should be able to check its status and use kubectl to interact with it:

			Note

			Since this exercise deals with software installations, you will need to be logged in as root/superuser. A simple way to switch to being a root user is to run the following command: sudo su -.

			In step 9 of this exercise, we will create a regular user and then switch back to it.

			
					First, ensure that VirtualBox is installed. You can confirm this by using the following command:which VirtualBox
You should see the following output:
/usr/bin/VirtualBox
If VirtualBox has been successfully installed, the which command should show the path of the executable, as shown in the preceding screenshot. If not, then please ensure that you have installed VirtualBox as per the instructions provided in the Preface.

					Download the Minikube standalone binary by using the following command:curl -Lo minikube https://github.com/kubernetes/minikube/releases/download/<version>/minikube-<ostype-arch> && chmod +x minikube
In this command, <version> should be replaced with a specific version, such as v1.5.2 (which is the version we will use in this chapter) or the latest. Depending on your host operating system, <ostype-arch> should be replaced with linux-amd64 (for Ubuntu) or darwin-amd64 (for macOS).
Note
To ensure compatibility with the commands provided in this book, we recommend that you install Minikube version v1.5.2.
You should see the following output:
[image: Figure 2.1: Downloading the Minikube binary

]
Figure 2.1: Downloading the Minikube binary
The preceding command contains two parts: the first command, curl, downloads the Minikube binary, while the second command, chmod, changes the permission to make it executable.

					Move the binary into the system path (in the example, it's /usr/local/bin) so that we can directly run Minikube, regardless of which directory the command is run in:mv minikube /usr/local/bin
When executed successfully, the move (mv) command does not give a response in the terminal.

					After running the move command, we need to confirm that the Minikube executable is now in the correct location:which minikube
You should see the following output:
/usr/local/bin/minikube
Note
If the which minikube command doesn't give you the expected result, you may need to explicitly add /usr/local/bin to your system path by running export PATH=$PATH:/usr/local/bin.

					You can check the version of Minikube using the following command:minikube version
You should see the following output:
minikube version: v1.5.2
commit: 792dbf92a1de583fcee76f8791cff12e0c9440ad-dirty

					Now, let's download kubectl version v1.16.2 (so that it's compatible with the version of Kubernetes that our setup of Minikube will create later) and make it executable by using the following command:curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.16.2/bin/<ostype>/amd64/kubectl && chmod +x kubectl
As mentioned earlier, <ostype> should be replaced with linux (for Ubuntu) or darwin (for macOS).
You should see the following output:
[image: Figure 2.2: Downloading the kubectl binary

]
Figure 2.2: Downloading the kubectl binary

					Then, move it to the system path, just like we did for the executable of Minikube earlier:mv kubectl /usr/local/bin

					Now, let's check whether the executable for kubectl is at the correct path:which kubectl
You should see the following response:
/usr/local/bin/kubectl

					Since we are currently logged in as the root user, let's create a regular user called k8suser by running the following command:useradd k8suser
Enter your desired password when you are prompted for it. You will also be prompted to enter other details, such as your full name. You may choose to skip those details by simply pressing Enter. You should see an output similar to the following:
[image: Figure 2.3: Creating a new Linux user

]
Figure 2.3: Creating a new Linux user
Enter Y and hit Enter to confirm the final prompt for creating a user, as shown at the end of the previous screenshot.

					Now, switch user from root to k8suser:su - k8suser
You should see the following output:
root@ubuntu:~# su – k8suser
k8suser@ubuntu:~$

					Now, we can create a Kubernetes cluster using minikube start:minikube start --kubernetes-version=v1.16.2
Note
If you want to manage multiple clusters, Minikube provides a --profile <profile name> parameter to each cluster.
It will take a few minutes to download the VM images and get everything set up. After Minikube has started up successfully, you should see a response that looks similar to the following:
[image: Figure 2.4: Minikube first startup

]
Figure 2.4: Minikube first startup
As we mentioned earlier, Minikube starts up a VM instance with all the components of Kubernetes inside it. By default, it uses VirtualBox, and you can use the --vm-driver flag to specify a particular hypervisor driver (such as hyperkit for macOS). Minikube also provides the --kubernetes-version flag so you can specify the Kubernetes version you want to use. If not specified, it will use the latest version that was available when the Minikube release was finalized. In this chapter, to ensure compatibility of the Kubernetes version with the kubectl version, we have specified Kubernetes version v1.16.2 explicitly.
The following commands should help establish that the Kubernetes cluster that was started by Minikube is running properly.

					Use the following command to get the basic status of the various components of the cluster:minikube status
You should see the following response:
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

					Now, let's look at the version of the kubectl client and Kubernetes server:kubectl version --short
You should see the following response:
Client Version: v1.16.2
Server Version: v1.16.2

					Let's learn how many machines comprise the cluster and get some basic information about them:kubectl get node
You should see a response similar to the following:
NAME STATUS ROLES AGE VERSION
minikube Ready master 2m41s v1.16.2

			

			After finishing this exercise, you should have Minikube set up with a single-node Kubernetes cluster. In the next section, we will enter the Minikube VM to take a look at how the cluster is composed and the various components of Kubernetes that make it work.

			Kubernetes Components Overview

			By completing the previous exercise, you have a single-node Kubernetes cluster up and running. Before playing your first concert, let's hold on a second and pull the curtains aside to take a look backstage to see how Kubernetes is architected behind the scenes, and then check how Minikube glues its various components together inside its VM.

			Kubernetes has several core components that make the wheels of the machine turn. They are as follows:

			
					API server

					etcd

					Controller manager

					Scheduler

					Kubelet

			

			These components are critical for the functioning of a Kubernetes cluster.

			Besides these core components, you would deploy your applications in containers, which are bundled together as pods. We will learn more about pods in Chapter 5, Pods. These pods, and several other resources, are defined by something called API objects.

			An API object describes how a certain resource should be honored in Kubernetes. We usually define API objects using a human-readable manifest file, and then use a tool (such as kubectl) to parse it and hand it over to a Kubernetes API server. Kubernetes then tries to create the resource specified in the object and match its state to the desired state in the object definition, as mentioned in the manifest file. Next, we will walk you through how these components are organized and behave in a single-node cluster created by Minikube.

			Minikube provides a command called minikube ssh that's used to gain SSH access from the host machine (in our machine, it's the physical machine running Ubuntu 20.04) to the minikube virtual machine, which serves as the sole node in our Kubernetes cluster. Let's see how that works:

			minikube ssh

			You will see the following output:

			
				
					[image: Figure 2.5: Accessing the Minikube VM via SSH

]
				

			

			Figure 2.5: Accessing the Minikube VM via SSH

			Note

			All the commands that will be shown later in this section are presumed to have been run inside the Minikube VM, after running minikube ssh.

			Container technology brings the convenience of encapsulating your application. Minikube is no exception – it leverages containers to glue the Kubernetes components together. In the Minikube VM, Docker is pre-installed so that it can manage the core Kubernetes components. You can take a look at this by running docker ps; however, the result may be overwhelming as it includes all the running containers – both the core Kubernetes components and add-ons, as well as all the columns – which will output a very large table.

			To simplify the output and make it easier to read, we will pipe the output from docker ps into two other Bash commands:

			
					grep -v pause: This will filter the results by not displaying the "sandbox" containers.Without grep -v pause, you would find that each container is "paired" with a "sandbox" container (in Kubernetes, it's implemented as a pause image). This is because, as mentioned in the previous chapter, Linux containers can be associated (or isolated) by joining the same (or different) Linux namespace. In Kubernetes, a "sandbox" container is used to bootstrap a Linux namespace, and then the containers that run the real application are able to join that namespace. Finer details about how all this works under the hood have been left out of scope for the sake of brevity.
Note
If not specified explicitly, the term "namespace" is used interchangeably with "Kubernetes namespace" across this book. In terms of "Linux namespace", "Linux" would not be omitted to avoid confusion.

					awk '{print $NF}': This will only print the last column with a container name.Thus, the final command is as follows:
docker ps | grep -v pause | awk '{print $NF}'
You should see the following output:
[image: Figure 2.6: Getting the list of containers by running the Minikube VM

]

			

			Figure 2.6: Getting the list of containers by running the Minikube VM

			The highlighted containers shown in the preceding screenshot are basically the core components of Kubernetes. We'll discuss each of these in detail in the following sections.

			etcd

			A distributed system may face various kinds of failures (network, storage, and so on) at any moment. To ensure it still works properly when failures arise, critical cluster metadata and state must be stored in a reliable way.

			Kubernetes abstracts the cluster metadata and state as a series of API objects. For example, the node API object represents a Kubernetes worker node's specification, as well as its latest status.

			Kubernetes uses etcd as the backend key-value database to persist the API objects during the life cycle of a Kubernetes cluster. It is important to note that nothing (internal cluster resources or external clients) is allowed to talk to etcd without going through the API server. Any updates to or requests from etcd are made only via calls to the API server.

			In practice, etcd is usually deployed with multiple instances to ensure the data is persisted in a secure and fault-tolerant manner.

			API Server

			The API server allows standard APIs to access Kubernetes API objects. It is the only component that talks to backend storage (etcd).

			Additionally, by leveraging the fact that it is the single point of contact for communicating to etcd, it provides a convenient interface for clients to "watch" any API objects that they may be interested in. Once the API object has been created, updated, or deleted, the client that is "watching" will get instant notifications so they can act upon those changes. The "watching" client is also known as the "controller", which has become a very popular entity that's used in both built-in Kubernetes objects and Kubernetes extensions.

			Note

			You will learn more about the API server in Chapter 4, How to Communicate with Kubernetes (API Server), and about controllers in Chapter 7, Kubernetes Controllers.

			Scheduler

			The scheduler is responsible for distributing the incoming workloads to the most suitable node. The decision regarding distribution is made by the scheduler's understanding of the whole cluster, as well as a series of scheduling algorithms.

			Note

			You will learn more about the scheduler in Chapter 17, Advanced Scheduling in Kubernetes.

			Controller Manager

			As we mentioned earlier in the API Server subsection, the API server exposes ways to "watch" almost any API object and notify the watchers about the changes in the API objects being watched.

			It works pretty much like a Publisher-Subscriber pattern. The controller manager acts as a typical subscriber and watches the only API objects that it is interested in, and then attempts to make appropriate changes to move the current state toward the desired state described in the object.

			For example, if it gets an update from the API server saying that an application claims two replicas, but right now there is only one living in the cluster, it will create the second one to make the application adhere to its desired replica number. The reconciliation process keeps running across the controller manager's life cycle to ensure that all applications stay in their expected state.

			The controller manager aggregates various kinds of controllers to honor the semantics of API objects, such as Deployments and Services, which we will introduce later in this chapter.

			Where Is the kubelet?

			Note that etcd, the API server, the scheduler, and the controller manager comprise the control plane of Kubernetes. A machine that runs these components is called a master node. The kubelet, on the other hand, is deployed on each worker machine.

			In our single-node Minikube cluster, the kubelet is deployed on the same node that carries the control plane components. However, in most production environments, it is not deployed on any of the master nodes. We will learn more about production environments when we deploy a multi-node cluster in Chapter 11, Build Your Own HA Cluster.

			The kubelet primarily aims at talking to the underlying container runtime (for example, Docker, containerd, or cri-o) to bring up the containers and ensure that the containers are running as expected. Also, it's responsible for sending the status update back to the API server.

			However, as shown in the preceding screenshot, the docker ps command doesn't show anything named kubelet. To start, stop, or restart any software and make it auto-restart upon failure, usually, we need a tool to manage its life cycle. In Linux, systemd has that responsibility. In Minikube, the kubelet is managed by systemd and runs as a native binary instead of a Docker container. We can run the following command to check its status:

			systemctl status kubelet

			You should see an output similar to the following:

			
				
					[image: Figure 2.7: Status of kubelet

]
				

			

			Figure 2.7: Status of kubelet

			By default, the kubelet has the configuration for staticPodPath in its config file (which is stored at /var/lib/kubelet/config.yaml). kubelet is instructed to continuously watch the changes in files under that path, and each file under that path represents a Kubernetes component. Let's understand what this means by first finding staticPodPath in the kubelet's config file:

			grep "staticPodPath" /var/lib/kubelet/config.yaml

			You should see the following output:

			staticPodPath: /etc/kubernetes/manifests

			Now, let's see the contents of this path:

			ls /etc/kubernetes/manifests

			You should see the following output:

			addon-manager.yaml.tmpl kube-apiserver.yaml kube-scheduler.yaml

			etcd.yaml kube-controller-manager.yaml

			As shown in the list of files, the core components of Kubernetes are defined by objects that have a definition specified in YAML files. In the Minikube environment, in addition to managing the user-created pods, the kubelet also serves as a systemd equivalent in order to manage the life cycle of Kubernetes system-level components, such as the API server, the scheduler, the controller manager, and other add-ons. Once any of these YAML files is changed, the kubelet auto-detects that and updates the state of the cluster so that it matches the desired state defined in the updated YAML configuration.

			We will stop here without diving deeper into the design of Minikube. In addition to "static components", the kubelet is also the manager of "regular applications" to ensure that they're running as expected on the node and evicts pods according to the API specification or upon resource shortage.

			kube-proxy

			kube-proxy appears in the output of the docker ps command, but it was not present at /etc/kubernetes/manifests when we explored that directory in the previous subsection. This implies its role – it's positioned more as an add-on component instead of a core one.

			kube-proxy is designed as a distributed network router that runs on every node. Its ultimate goal is to ensure that inbound traffic to a Service (this is an API object that we will introduce later) endpoint can be routed properly. Moreover, if multiple containers are serving one application, it is able to balance the traffic in a round-robin manner by leveraging the underlying Linux iptables/IPVS technology.

			There are also some other add-ons such as CoreDNS, though we will skip those so that we can focus on the core components and get a high-level picture.

			Note

			Sometimes, kube-proxy and CoreDNS are also considered core components of a Kubernetes installation. To some extent, that's technically true as they're mandatory in most cases; otherwise, the Service API object won't work. However, in this book, we're leaning more toward categorizing them as "add-ons" as they focus on the implementation of one particular Kubernetes API resource instead of general workflow. Also, kube-proxy and CoreDNS are defined in addon-manager.yaml.tmpl instead of being portrayed on the same level as the other core Kubernetes components.

			Kubernetes Architecture

			In the previous section, we gained a first impression of the core Kubernetes components: etcd, the API server, the scheduler, the controller manager, and the kubelet. These components, plus other add-ons, comprise the Kubernetes architecture, which can be seen in the following diagram:

			
				
					[image: Figure 2.8: Kubernetes architecture

]
				

			

			Figure 2.8: Kubernetes architecture

			At this point, we won't look at each component in too much detail. However, at a high-level view, it's critical to understand how the components communicate with each other and why they're designed in that way.

			The first thing to understand is which components the API server can interact with. From the preceding diagram, we can easily tell that the API server can talk to almost every other component (except the container runtime, which is handled by the kubelet) and that it also serves to interact with end-users directly. This design makes the API server act as the "heart" of Kubernetes. Additionally, the API server also scrutinizes incoming requests and writes API objects into the backend storage (etcd). This, in other words, makes the API server the throttle of security control measures such as authentication, authorization, and auditing.

			The second thing to understand is how the different Kubernetes components (except for the API server) interact with each other. It turns out that there is no explicit connection among them – the controller manager doesn't talk to the scheduler, nor does the kubelet talk to kube-proxy.

			You read that right – they do need to work in coordination with each other to accomplish many functionalities, but they never directly talk to each other. Instead, they communicate implicitly via the API server. More precisely, they communicate by watching, creating, updating, or deleting corresponding API objects. This is also known as the controller/operator pattern.

			Container Network Interface

			There are several networking aspects to take into consideration, such as how a pod communicates with its host machine's network interface, how a node communicates with other nodes, and, eventually, how a pod communicates with any pod across different nodes. As the network infrastructure differs vastly in the cloud or on-premises environments, Kubernetes chooses to solve those problems by defining a specification called the Container Network Interface (CNI). Different CNI providers can follow the same interface and implement their logic that adheres to the Kubernetes standards to ensure that the whole Kubernetes network works. We will revisit the idea of the CNI in Chapter 11, Build Your Own HA Cluster. For now, let's return to our discussion of how the different Kubernetes components work.

			Later in this chapter, Exercise 2.05, How Kubernetes Manages a Pod's Life Cycle, will help you consolidate your understanding of this and clarify a few things, such as how the different Kubernetes components operate synchronously or asynchronously to ensure a typical Kubernetes workflow, and what would happen if one or more of these components malfunctions. The exercise will help you better understand the overall Kubernetes architecture. But before that, let's introduce our containerized application from the previous chapter to the Kubernetes world and explore a few benefits of Kubernetes.

			Migrating Containerized Application to Kubernetes

			In the previous chapter, we built a simple HTTP server called k8s-for-beginners, and it runs as a Docker container. It works perfectly for a sample application. However, what if you have to manage thousands of containers, and coordinate and schedule them properly? How can you upgrade a service without downtime? How do you keep a service healthy upon unexpected failure? These problems exceed the abilities of a system that simply uses containers alone. What we need is a platform that can orchestrate, as well as manage, our containers.

			We have told you that Kubernetes is the solution that we need. Next, we will walk you through a series of exercises regarding how to orchestrate and run containers in Kubernetes using a Kubernetes native approach.

			Pod Specification

			A straightforward thought is that we wish to see what the equivalent API call or command to run a container in Kubernetes is. As explained in Chapter 1, Introduction to Kubernetes and Containers, a container can join another container's namespace so that they can access each other's resources (for example, network, storage, and so on) without additional overhead. In the real world, some applications may need several containers working closely, either in parallel or in a particular order (the output of one will be processed by another). Also, some generic containers (for example, logging agent, network throttling agent, and so on) may need to work closely with their target containers.

			Since an application may often need several containers, a container is not the minimum operational unit in Kubernetes; instead, it introduces a concept called pods to bundle one or multiple containers. Kubernetes provides a series of specifications to describe how this pod is supposed to be, including several specifics such as images, resource requests, startup commands, and more. To send this pod spec to Kubernetes, particularly to the Kubernetes API server, we're going to use kubectl.

			Note

			We will learn more about pods in Chapter 5, Pods, but we will use them in this chapter for the purpose of simple demonstrations. You can refer to the complete list of available pod specifications at this link: https://godoc.org/k8s.io/api/core/v1#PodSpec.

			Next, let's learn how to run a single container in Kubernetes by composing the pod spec file (also called the specification, manifest, config, or configuration file). In Kubernetes, you can use YAML or JSON to write this specification file, though YAML is commonly used since it is more human-readable and editable.

			Consider the following YAML spec for a very simple pod:

			kind: Pod

			apiVersion: v1

			metadata:

			 name: k8s-for-beginners

			spec:

			 containers:

			 - name: k8s-for-beginners

			 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

			Let's go through the different fields briefly:

			
					kind tells Kubernetes which type of object you want to create. Here, we are creating a Pod. In later chapters, you will see many other kinds, such as Deployment, StatefulSet, ConfigMap, and so on.

					apiVersion specifies a particular version of an API object. Different versions may behave a bit differently.

					metadata includes some attributes that can be used to uniquely identify the pod, such as name and namespace. If we don't specify a namespace, it goes in the default namespace.

					spec contains a series of fields describing the pod. In this example, there is one container that has its image URL and name specified.

			

			Pods are one of the simplest Kubernetes objects to deploy, so we will use them to learn how to deploy objects using YAML manifests in the following exercise.

			Applying a YAML Manifest

			Once we have a YAML manifest ready, we can use kubectl apply -f <yaml file> or kubectl create -f <yaml file> to instruct the API server to persist the API resources defined in this manifest. When you create a pod from scratch for the first time, it doesn't make much difference which of the two commands you use. However, we may often need to modify the YAML (let's say, for example, if we want to upgrade the image version) and reapply it. If we use the kubectl create command, we have to delete and recreate it. However, with the kubectl apply command, we can rerun the same command and the delta change will be calculated and applied automatically by Kubernetes.

			This is very convenient from an operational point of view. For example, if we use some form of automation, it is much simpler to repeat the same command. So, we will use kubectl apply across the following exercise, regardless of whether it's the first time it's being applied or not.

			Note

			A detailed on kubectl can be obtained in Chapter 4, How to Communicate with Kubernetes (API Server).

			Exercise 2.02: Running a Pod in Kubernetes

			In the previous exercise, we started up Minikube and looked at the various Kubernetes components running as pods. Now, in this exercise, we shall deploy our pod. Follow these steps to complete this exercise:

			Note

			If you have been trying out the commands from the Kubernetes Components Overview section, don't forget to leave the SSH session by using the exit command before beginning this exercise. Unless otherwise specified, all commands using kubectl should run on the host machine and not inside the Minikube VM.

			
					In Kubernetes, we use a spec file to describe an API object such as a pod. As mentioned earlier, we will stick to YAML as it is more human-readable and editable friendly. Create a file named k8s-for-beginners-pod.yaml (using any text editor of your choice) with the following content:kind: Pod
apiVersion: v1
metadata:
 name: k8s-for-beginners
spec:
 containers:
 - name: k8s-for-beginners
 image: packtworkshops/the-kubernetes-workshop:k8s-for- beginners
Note
Please replace the image path in the last line of the preceding YAML file with the path to your image that you created in the previous chapter.

					On the host machine, run the following command to create this pod:kubectl apply -f k8s-for-beginners-pod.yaml
You should see the following output:
pod/k8s-for-beginners created

					Now, we can use the following command to check the pod's status:kubectl get pod
You should see the following response:
NAME READY STATUS RESTARTS AGE
k8s-for-beginners 1/1 Running 0 7s
By default, kubectl get pod will list all the pods using a table format. In the preceding output, we can see the k8s-for-beginners pod is running properly and that it has one container that is ready (1/1). Moreover, kubectl provides an additional flag called -o so we can adjust the output format. For example, -o yaml or -o json will return the full output of the pod API object in YAML or JSON format, respectively, as it's stored version in Kubernetes' backend storage (etcd).

					You can use the following command to get more information about the pod:kubectl get pod -o wide
You should see the following output:
[image: Figure 2.9: Getting more information about pods

]
Figure 2.9: Getting more information about pods
As you can see, the output is still in the table format and we get additional information such as IP (the internal pod IP) and NODE (which node the pod is running on).

					You can get the list of nodes in our cluster by running the following command:kubectl get node
You should see the following response:
NAME STATUS ROLES AGE VERSION
minikube Ready master 30h v1.16.2

					The IP listed in Figure 2.9 refers to the internal IP Kubernetes assigned for this pod, and it's used for pod-to-pod communication, not for routing external traffic to pods. Hence, if you try to access this IP from outside the cluster, you will get nothing. You can try that using the following command from the host machine, which will fail:curl 172.17.0.4:8080
Note
Remember to change 172.17.0.4 to the value you get for your environment in step 4, as seen in Figure 2.9.
The curl command will just hang and return nothing, as shown here:
k8suser@ubuntu:~$ curl 172.17.0.4:8080
^C
You will need to press Ctrl + C to abort it.

					In most cases, end-users don't need to interact with the internal pod IP. However, just for observation purposes, let's SSH into the Minikube VM:minikube ssh
You will see the following response in the terminal:
[image: Figure 2.10: Accessing the Minikube VM via SSH

]
Figure 2.10: Accessing the Minikube VM via SSH

					Now, try calling the IP from inside the Minikube VM to verify that it works:curl 172.17.0.4:8080
You should get a successful response:
Hello Kubernetes Beginners!

			

			With this, we have successfully deployed our application in a pod on the Kubernetes cluster. We can confirm that it is working since we get a response when we call the application from inside the cluster. Now, you may end the Minikube SSH session using the exit command.

			Service Specification

			The last part of the previous section proves that network communication works great among different components inside the cluster. But in the real world, you would not expect users of your application to gain SSH access into your cluster to use your applications. So, you would want your application to be accessed externally.

			To facilitate just that, Kubernetes provides a concept called a Service to abstract the network access to your application's pods. A Service acts as a network proxy to accept network traffic from external users and then distributes it to internal pods. However, there should be a way to describe the association rule between the Service and the corresponding pods. Kubernetes uses labels, which are defined in the pod definitions, and label selectors, which are defined in the Service definition, to describe this relationship.

			Note

			You will learn more about labels and label selectors in Chapter 6, Labels and Annotations.

			Let's consider the following sample spec for a Service:

			kind: Service

			apiVersion: v1

			metadata:

			 name: k8s-for-beginners

			spec:

			 selector:

			 tier: frontend

			 type: NodePort

			 ports:

			 - port: 80

			 targetPort: 8080

			Similar to a pod spec, here, we define kind and apiVersion, while name is defined under the metadata field. Under the spec field, there are several critical fields to take note of:

			
					selector defines the labels to be selected to match a relationship with the corresponding pods, which, as you will see in the following exercise, are supposed to be labeled properly.

					type defines the type of Service. If not specified, the default type is ClusterIP, which means it's only used within the cluster, that is, internally. Here, we specify it as NodePort. This means the Service will expose a port in each node of the cluster and associate the port with the corresponding pods. Another well-known type is called LoadBalancer, which is typically not implemented in a vanilla Kubernetes offering. Instead, Kubernetes delegates the implementation to each cloud provider, such as GKE, EKS, and so on.

					ports include a series of port fields, each with a targetPort field. The targetPort field is the actual port that's exposed by the destination pod.Thus, the Service can be accessed internally via <service ip>:<port>. Now, for example, if you have an NGINX pod running internally and listening on port 8080, then you should define targetPort as 8080. You can specify any arbitrary number for the port field, such as 80 in this case. Kubernetes will set up and maintain the mapping between <service IP>:<port> and <pod IP>:<targetPort>. In the following exercise, we will learn how to access the Service from outside the cluster and bring external traffic inside the cluster via the Service.

			

			In the following exercise, we will define Service manifests and create them using kubectl apply commands. You will learn that the common pattern for resolving problems in Kubernetes is to find out the proper API objects, then compose the detailed specs using YAML manifests, and finally create the objects to bring them into effect.

			Exercise 2.03: Accessing a Pod via a Service

			In the previous exercise, we observed that an internal pod IP doesn't work for anyone outside the cluster. In this exercise, we will create Services that will act as connectors to map the external requests to the destination pods so that we can access the pods externally without entering the cluster. Follow these steps to complete this exercise:

			
					Firstly, let's tweak the pod spec from Exercise 2.02, Running a Pod in Kubernetes, to apply some labels. Modify the contents of the k8s-for-beginners-pod1.yaml file, as follows:kind: Pod
apiVersion: v1
metadata:
 name: k8s-for-beginners
 labels:
 tier: frontend
spec:
 containers:
 - name: k8s-for-beginners
 image: packtworkshops/the-kubernetes-workshop:k8s-for- beginners
Here, we added a label pair, tier: frontend, under the labels field.

					Because the pod name remains the same, let's rerun the apply command so that Kubernetes knows that we're trying to update the pod's spec, instead of creating a new pod:kubectl apply -f k8s-for-beginners-pod1.yaml
You should see the following response:
pod/k8s-for-beginners configured
Behind the scenes, for the kubectl apply command, kubectl generates the difference of the specified YAML and the stored version in the Kubernetes server-side storage (that is, etcd). If the request is valid (that is, we have not made any errors in the specification format or the command), kubectl will send an HTTP patch to the Kubernetes API server. Hence, only the delta changes will be applied. If you look at the message that's returned, you'll see it says pod/k8s-for-beginners configured instead of created, so we can be sure it's applying the delta changes and not creating a new pod.

					You can use the following command to explicitly display the labels that have been applied to existing pods:kubectl get pod --show-labels
You should see the following response:
NAME READY STATUS RESTARTS AGE LABELS
k8s-for-beginners 1/1 Running 0 16m tier=frontend
Now that the pod has the tier: frontend attribute, we're ready to create a Service and link it to the pods.

					Create a file named k8s-for-beginners-svc.yaml with the following content:kind: Service
apiVersion: v1
metadata:
 name: k8s-for-beginners
spec:
 selector:
 tier: frontend
 type: NodePort
 ports:
 - port: 80
 targetPort: 8080

					Now, let's create the Service using the following command:kubectl apply -f k8s-for-beginners-svc.yaml
You should see the following response:
service/k8s-for-beginners created

					Use the get command to return the list of created Services and confirm whether our Service is online:kubectl get service
You should see the following response:
[image: Figure 2.11: Getting the list of Services

]
Figure 2.11: Getting the list of Services
So, you may have noticed that the PORT(S) column outputs 80:32571/TCP. Port 32571 is an auto-generated port that's exposed on every node, which is done intentionally so that external users can access it. Now, before moving on to the next step, exit the SSH session.

					Now, we have the "external port" as 32571, but we still need to find the external IP. Minikube provides a utility we can use to easily access the k8s-for-beginners Service:minikube service k8s-for-beginners
You should see a response that looks similar to the following:
[image: Figure 2.12: Getting the URL and port to access the NodePort Service

]
Figure 2.12: Getting the URL and port to access the NodePort Service
Depending on your environment, this may also automatically open a browser web page so you can access the Service. From the URL, you will be able to see that the Service port is 32571. The external IP is actually the IP of the Minikube VM.

					You can also access our application from outside the cluster via the command line:curl http://192.168.99.100:32571
You should see the following response:
Hello Kubernetes Beginners!

			

			As a summary, in this exercise, we created a NodePort Service to enable external users to access the internal pods without entering the cluster. Under the hood, there are several layers of traffic transitions that make this happen:

			
					The first layer is from the external user to the machine IP at the auto-generated random port (3XXXX).

					The second layer is from the random port (3XXXX) to the Service IP (10.X.X.X) at port 80.

					The third layer is from the Service IP (10.X.X.X) ultimately to the pod IP at port 8080.

			

			The following is a diagram illustrating these interactions:

			
				
					[image: Figure 2.13: Routing traffic from a user outside the cluster

to the pod running our application

]
				

			

			Figure 2.13: Routing traffic from a user outside the cluster to the pod running our application

			Services and Pods

			In step 3 of the previous exercise, you may have noticed that the Service tries to match pods by labels (the selector field under the spec section) instead of using a fixed pod name or something similar. From a pod's perspective, it doesn't need to know which Service is bringing traffic to it. (In some rare cases, it can even be mapped to multiple Services; that is, multiple Services may be sending traffic to a pod.)

			This label-based matching mechanism is widely used in Kubernetes. It enables the API objects to be loosely coupled at runtime. For example, you can specify tier: frontend as the label selector, which will, in turn, be associated with the pods that are labeled as tier: frontend.

			Due to this, by the time the Service is created, it doesn't matter if the backing pods exist or not. It's totally acceptable for backing pods to be created later, and after they are created, the Service object will become associated with the correct pods. Internally, the whole mapping logic is implemented by the service controller, which is part of the controller manager component. It's also possible that a Service may have two matching pods at a time, and later a third pod is created with matching labels, or one of the existing pods gets deleted. In either case, the service controller can detect such changes and ensure that users can always access their application via the Service endpoint.

			It's a very commonly used pattern in Kubernetes to orchestrate your application using different kinds of API objects and then glue them together by using labels or other loosely coupled conventions. It's also the key part of container orchestration.

			Delivering Kubernetes-Native Applications

			In the previous sections, we migrated a Docker-based application to Kubernetes and successfully accessed it from inside the Minikube VM, as well as externally. Now, let's see what other benefits Kubernetes can provide if we design our application from the ground up so that it can be deployed using Kubernetes.

			Along with the increasing usage of your application, it may be common to run several replicas of certain pods to serve a business functionality. In this case, grouping different containers in a pod alone is not sufficient. We need to go ahead and create groups of pods that are working together. Kubernetes provides several abstractions for groups of pods, such as Deployments, DaemonSets, Jobs, CronJobs, and so on. Just like the Service object, these objects can also be created by using a spec that's been defined in a YAML file.

			To start understanding the benefits of Kubernetes, let's use a Deployment to demonstrate how to replicate (scale up/down) an application in multiple pods.

			Abstracting groups of pods using Kubernetes gives us the following advantages:

			
					Creating replicas of pods for redundancy: This is the main advantage of abstractions of groups of pods such as Deployments. A Deployment can create several pods with the given spec. A Deployment will automatically ensure that the pods that it creates are online, and it will automatically replace any pods that fail.

					Easy upgrades and rollbacks: Kubernetes provides different strategies that you can use to upgrade your applications, as well as rolling versions back. This is important because in modern software development, the software is often developed iteratively, and updates are released frequently. An upgrade can change anything in the Deployment specification. It can be an update of labels or any other field(s), an image version upgrade, an update on its embedded containers, and so on.

			

			Let's take a look at some notable aspects of the spec of a sample Deployment:

			k8s-for-beginners-deploy.yaml

			apiVersion: apps/v1

			kind: Deployment

			metadata:

			 name: k8s-for-beginners

			spec:

			 replicas: 3

			 selector:

			 matchLabels:

			 tier: frontend

			 template:

			 metadata:

			 labels:

			 tier: frontend

			 spec:

			 containers:

			 - name: k8s-for-beginners

			 image: packtworkshops/the-kubernetes-workshop:k8s-for- beginners

			In addition to wrapping the pod spec as a "template", a Deployment must also specify its kind (Deployment), as well as the API version (apps/v1).

			Note

			For some historical reason, the spec name apiVersion is still being used. But technically speaking, it literally means apiGroupVersion. In the preceding Deployment example, it belongs to the apps group and is version v1.

			In the Deployment spec, the replicas field instructs Kubernetes to start three pods using the pod spec defined in the template field. The selector field plays the same role as we saw in the case of the Service – it aims to associate the Deployment object with specific pods in a loosely coupled manner. This is particularly useful if you want to bring any preexisting pods under the management of your new Deployment.

			The replica number defined in a Deployment or other similar API object represents the desired state of how many pods are supposed to be running continuously. If some of these pods fail for some unexpected reason, Kubernetes will automatically detect that and create a corresponding number of pods to take their place. We will explore that in the following exercise.

			We'll see a Deployment in action in the following exercise.

			Exercise 2.04: Scaling a Kubernetes Application

			In Kubernetes, it's easy to increase the number of replicas running the application by updating the replicas field of a Deployment spec. In this exercise, we'll experiment with how to scale a Kubernetes application up and down. Follow these steps to complete this exercise:

			
					Create a file named k8s-for-beginners-deploy.yaml using the content shown here:apiVersion: apps/v1
kind: Deployment
metadata:
 name: k8s-for-beginners
spec:
 replicas: 3
 selector:
 matchLabels:
 tier: frontend
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - name: k8s-for-beginners
 image: packtworkshops/the-kubernetes-workshop:k8s-for- beginners
If you take a closer look, you'll see that this Deployment spec is largely based on the pod spec from earlier exercises (k8s-for-beginners-pod1.yaml), which you can see under the template field.

					Next, we can use kubectl to create the Deployment:kubectl apply -f k8s-for-beginners-deploy.yaml
You should see the following output:
deployment.apps/k8s-for-beginners created

					Given that the Deployment has been created successfully, we can use the following command to show all the Deployment's statuses, such as their names, running pods, and so on:kubectl get deploy
You should get the following response:
NAME READY UP-TO-DATE AVAILABLE AGE
k8s-for-beginners 3/3 3 3 41s
Note
As shown in the previous command, we are using deploy instead of deployment. Both of these will work and deploy is an allowed short name for deployment. You can find a quick list of some commonly used short names at this link: https://kubernetes.io/docs/reference/kubectl/overview/#resource-types.
You can also view the short names by running kubectl api-resources, without specifying the resource type.

					A pod called k8s-for-beginners exists that we created in the previous exercise. To ensure that we see only the pods being managed by the Deployment, let's delete the older pod:kubectl delete pod k8s-for-beginners
You should see the following response:
pod "k8s-for-beginners" deleted

					Now, get a list of all the pods:kubectl get pod
You should see the following response:
[image: Figure 2.14: Getting the list of pods

]
Figure 2.14: Getting the list of pods
The Deployment has created three pods, and their labels (specified in the labels field in step 1) happen to match the Service we created in the previous section. So, what will happen if we try to access the Service? Will the network traffic going to the Service be smartly routed to the new three pods? Let's test this out.

					To see how the traffic is distributed to the three pods, we can simulate a number of consecutive requests to the Service endpoint by running the curl command inside a Bash for loop, as follows:for i in $(seq 1 30); do curl <minikube vm ip>:<service node port>; done
Note
In this command, use the same IP and port that you used in the previous exercise if you are running the same instance of Minikube. If you have restarted Minikube or have made any other changes, please get the proper IP of your Minikube cluster by following step 9 of the previous exercise.
Once you've run the command with the proper IP and port, you should see the following output:
[image: Figure 2.15: Repeatedly accessing our application

]
Figure 2.15: Repeatedly accessing our application
From the output, we can tell that all 30 requests get the expected response.

					You can run kubectl logs <pod name> to check the log of each pod. Let's go one step further and figure out the exact number of requests each pod has responded to, which might help us find out whether the traffic was evenly distributed. To do that, we can pipe the logs of each pod into the wc command to get the number of lines:kubectl logs <pod name> | wc -l
Run the preceding command three times, copying the pod name you obtained, as shown in Figure 2.16:
[image: Figure 2.16: Getting the logs of each of the three pod replicas running our application

]
Figure 2.16: Getting the logs of each of the three pod replicas running our application
The result shows that the three pods handled 9, 10, and 11 requests, respectively. Due to the small sample size, the distribution is not absolutely even (that is, 10 for each), but it is sufficient to indicate the default round-robin distribution strategy used by a Service.
Note
You can read more about how kube-proxy leverages iptables to perform the internal load balancing by looking at the official documentation: https://kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables.

					Next, let's learn how to scale up a Deployment. There are two ways of accomplishing this: one way is to modify the Deployment's YAML config, where we can set the value of replicas to another number (such as 5), while the other way is to use the kubectl scale command, as follows:kubectl scale deploy k8s-for-beginners --replicas=5
You should see the following response:
deployment.apps/k8s-for-beginners scaled

					Let's verify whether there are five pods running:kubectl get pod
You should see a response similar to the following:
[image: Figure 2.17: Getting the list of pods

]
Figure 2.17: Getting the list of pods
The output shows that the existing three pods are kept and that two new pods are created.

					Similarly, you can specify replicas that are smaller than the current number. In our example, let's say that we want to shrink the replica's number to 2. The command for this would look as follows:kubectl scale deploy k8s-for-beginners --replicas=2
You should see the following response:
deployment.apps/k8s-for-beginners scaled

					Now, let's verify the number of pods:kubectl get pod
You should see a response similar to the following:
[image: Figure 2.18: Getting the list of pods

]
Figure 2.18: Getting the list of pods
As shown in the preceding screenshot, there are two pods, and they are both running as expected. Thus, in Kubernetes' terms, we can say, "the Deployment is in its desired state".

					 We can run the following command to verify this:kubectl get deploy
You should see the following response:
NAME READY UP-TO-DATE AVAILABLE AGE
k8s-for-beginners 2/2 2 2 19m

					Now, let's see what happens if we delete one of the two pods:kubectl delete pod <pod name>
You should get the following response:
pod "k8s-for-beginners-66644bb776-7j9mw" deleted

					Check the status of the pods to see what has happened:kubectl get pod
You should see the following response:
[image: Figure 2.19: Getting the list of pods

]

			

			Figure 2.19: Getting the list of pods

			We can see that there are still two pods. From the output, it's worth noting that the first pod name is the same as the second pod in Figure 2.18 (this is the one that was not deleted), but that the highlighted pod name is different from any of the pods in Figure 2.18. This indicates that the highlighted one is the pod that was newly created to replace the deleted one. The Deployment created a new pod so that the number of running pods satisfies the desired state of the Deployment.

			In this exercise, we have learned how to scale a deployment up and down. You can scale other similar Kubernetes objects, such as DaemonSets and StatefulSets, in the same way. Also, for such objects, Kubernetes will try to auto-recover the failed pods.

			Pod Life Cycle and Kubernetes Components

			The previous sections in this chapter briefly described the Kubernetes components and how they work internally with each other. On the other hand, we also demonstrated how to use some Kubernetes API objects (Pods, Services, and Deployments) to compose your applications.

			But how is a Kubernetes API object managed by different Kubernetes components? Let's consider a pod as an example. Its life cycle can be illustrated as follows:

			
				
					[image: Figure 2.20: The process behind the creation of a pod

]
				

			

			Figure 2.20: The process behind the creation of a pod

			This entire process can be broken down as follows:

			
					A user starts to deploy an application by sending a Deployment YAML manifest to the Kubernetes API server. The API server verifies the request and checks whether it's valid. If it is, it persists the Deployment API object to its backend datastore (etcd).Note
For any step that evolves by modifying API objects, interactions have to happen between etcd and the API server, so we don't list the interactions as extra steps explicitly.

					By now, the pod hasn't been created yet. The controller manager gets a notification from the API server that a Deployment has been created.

					Then, the controller manager checks whether the desired number of replica pods are running already.

					If there are not enough pods running, it creates the appropriate number of pods. The creation of pods is accomplished by sending a request with the pod spec to the API server. It's quite similar to how a user would apply the Deployment YAML, but with the major difference being that this happens inside the controller manager in a programmatic manner.

					Although pods have been created, they're nothing but some API objects stored in etcd. Now, the scheduler gets a notification from the API server saying that new pods have been created and no node has been assigned for them to run.

					The scheduler checks the resource usage, as well as existing pods allocation, and then calculates the node that fits best for each new pod. At the end of this step, the scheduler sends an update request to the API server by setting the pod's nodeName spec to the chosen node.

					By now, the pods have been assigned a proper node to run on. However, no physical containers are running. In other words, the application doesn't work yet. Each kubelet (running on different worker nodes) gets notifications, indicating that some pods are expected to be run. Each kubelet will then check whether the pods to be run have been assigned the node that a kubelet is running on.

					Once the kubelet determines that a pod is supposed to be on its node, it calls the underlying container runtime (Docker, containerd, or cri-o, for instance) to spin up the containers on the host. Once the containers are up, the kubelet is responsible for reporting its status back to the API server.

			

			With this basic flow in mind, you should now have a vague understanding of the answers to the following questions:

			
					Who is in charge of pod creation? What's the state of the pod upon creation?

					Who is responsible for placing a pod? What's the state of the pod after placement?

					Who brings up the concrete containers?

					Who is in charge of the overall message delivery process to ensure that all components work together?

			

			In the following exercise, we will use a series of concrete experiments to help you solidify this understanding. This will allow you to see how things work in practice.

			Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle

			As a Kubernetes cluster comprises multiple components, and each component works simultaneously, it's usually difficult to know what's exactly happening in each phase of a pod's life cycle. To solve this problem, we will use a film editing technique to "play the whole life cycle in slow motion", so as to observe each phase. We will turn off the master plane components and then attempt to create a pod. Then, we will respond to the errors that we see, and slowly bring each component online, one by one. This will allow us to slow down and examine each stage of the process of pod creation step-by-step. Follow these steps to complete this exercise:

			
					First, let's delete the Deployment and Service we created earlier by using the following command:kubectl delete deploy k8s-for-beginners && kubectl delete service k8s-for-beginners
You should see the following response:
deployment.apps "k8s-for-beginners" deleted
service "k8s-for-beginners" deleted

					Prepare two terminal sessions: one (host terminal) to run commands on your host machine and another (Minikube terminal) to pass commands inside the Minikube VM via SSH. Thus, your Minikube session will be initiated like this:minikube ssh
You will see the following output:
[image: Figure 2.21: Accessing the Minikube VM via SSH

]
Figure 2.21: Accessing the Minikube VM via SSH
Note
All kubectl commands are expected to be run in the host terminal session, while all docker commands are to be run in the Minikube terminal session.

					In the Minikube session, clean up all stopped Docker containers:docker rm $(docker ps -a -q)
You should see the following output:
[image: Figure 2.22: Cleaning up all stopped Docker containers

]
Figure 2.22: Cleaning up all stopped Docker containers
You may see some error messages such as "You cannot remove a running container ...". This is because the preceding docker rm command runs against all containers (docker ps -a -q), but it won't stop any running containers.

					In the Minikube session, stop the kubelet by running the following command:sudo systemctl stop kubelet
This command does not show any response upon successful execution.
Note
Later in this exercise, we will manually stop and start other Kubernetes components, such as the API server, that are managed by the kubelet in a Minikube environment. Hence, it's required that you stop the kubelet first in this exercise; otherwise, the kubelet will automatically restart its managed components.
Note that in typical production environments, unlike Minikube, it's not necessary to run the kubelet on the master node to manage the master plane components; the kubelet is only a mandatory component on worker nodes.

					After 30 seconds, check the cluster's status by running the following command in your host terminal session:kubectl get node
You should see the following response:
NAME STATUS ROLES AGE VERSION
minikube NotReady master 32h v1.16.2
It's expected that the status of the minikube node is changed to NotReady because the kubelet has been stopped.

					In your Minikube session, stop kube-scheduler, kube-controller-manager, and kube-apiserver. As we saw earlier, all of these are running as Docker containers. Hence, you can use the following commands, one after the other:docker stop $(docker ps | grep kube-scheduler | grep -v pause | awk '{print $1}')
docker stop $(docker ps | grep kube-controller-manager | grep -v pause | awk '{print $1}')
docker stop $(docker ps | grep kube-apiserver | grep -v pause | awk '{print $1}')
You should see the following responses:
[image: Figure 2.23: Stopping the containers running Kubernetes components

]
Figure 2.23: Stopping the containers running Kubernetes components
As we explained in the Kubernetes Components Overview section, the grep -v pause | awk '{print $1}' command can fetch the exact container ID ($1 = the first column) of the required Docker containers. Then, the docker pause command can pause that running Docker container.
Now, the three major Kubernetes components have been stopped.

					Now, you need to create a Deployment spec on your host machine. Create a file named k8s-for-beginners-deploy2.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: k8s-for-beginners
spec:
 replicas: 1
 selector:
 matchLabels:
 tier: frontend
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - name: k8s-for-beginners
 image: packtworkshops/the-kubernetes-workshop:k8s-for- beginners

					Try to create the Deployment by running the following command on your host session:kubectl apply -f k8s-for-beginners-deploy2.yaml
You should see a response similar to this:
[image: Figure 2.24: Trying to create a new Deployment

]
Figure 2.24: Trying to create a new Deployment
Unsurprisingly, we got a network timeout error since we intentionally stopped the Kubernetes API server. If the API server is down, you cannot run any kubectl commands or use any equivalent tools (such as Kubernetes Dashboard) that rely on API requests:
The connection to the server 192.168.99.100:8443 was refused – did you specify the right host or port?

					Let's see what happens if we restart the API server and try to create the Deployment once more. Restart the API server container by running the following command in your Minikube session:docker start $(docker ps -a | grep kube-apiserver | grep -v pause | awk '{print $1}')
This command tries to find the container ID of the stopped container carrying the API server, and then it starts it. You should get a response like this:
9e1cf098b67c

					Wait for 10 seconds. Then, check whether the API server is online. You can run any simple kubectl command for this. Let's try getting the list of nodes by running the following command in the host session:kubectl get node
You should see the following response:
NAME STATUS ROLES AGE VERSION
minikube NotReady master 32h v1.16.2
As you can see, we are able to get a response without errors.

					Let's try to create the Deployment again:kubectl apply -f k8s-for-beginners-deploy2.yaml
You should see the following response:
deployment.apps/k8s-for-beginners created

					Let's check whether the Deployment has been created successfully by running the following command:kubectl get deploy
You should see the following response:
NAME READY UP-TO-DATE AVAILABLE AGE
k8s-for-beginners 0/1 0 0 113s
From the preceding screenshot, there seems to be something wrong as in the READY column, we can see 0/1, which indicates that there are 0 pods associated with this Deployment, while the desired number is 1 (which we specified in the replicas field in the Deployment spec).

					Let's check that all the pods that are online:kubectl get pod
You should get a response similar to the following:
No resources found in default namespace.
We can see that our pod has not been created. This is because the Kubernetes API server only creates the API objects; the implementation of any API object is carried out by other components. For example, in the case of Deployment, it's kube-controller-manager that creates the corresponding pod(s).

					Now, let's restart the kube-controller-manager. Run the following command in your Minikube session:docker start $(docker ps -a | grep kube-controller-manager | grep -v pause | awk '{print $1}')
You should see a response similar to the following:
35facb013c8f

					After waiting for a few seconds, check the status of the Deployment by running the following command in the host session:kubectl get deploy
You should see the following response:
NAME READY UP-TO-DATE AVAILABLE AGE
k8s-for-beginners 0/1 1 0 5m24s
As we can see, the pod that we are looking for is still not online.

					Now, check the status of the pod:kubectl get pod
You should see the following response:
[image: Figure 2.25: Getting the list of pods

]
Figure 2.25: Getting the list of pods
The output is different from the one in step 15, as in this case, one pod was created by kube-controller-manager. However, we can see Pending under the STATUS column. This is because assigning a pod to a suitable node is not the responsibility of kube-controller-manager; it's the responsibility of kube-scheduler.

					Before starting kube-scheduler, let's take a look at some additional information about the pod:kubectl get pod -o wide
You should see the following response:
[image: Figure 2.26: Getting more information about the pod

]
Figure 2.26: Getting more information about the pod
The highlighted NODE column indicates that no node has been assigned to this pod. This proves that the scheduler is not working properly, which we know because we took it offline. If the scheduler were to be online, this response would indicate that there is no place to land this pod.
Note
You will learn a lot more about pod scheduling in Chapter 17, Advanced Scheduling in Kubernetes.

					Let's restart kube-scheduler by running the following command in the Minikube session:docker start $(docker ps -a | grep kube-scheduler | grep -v pause | awk '{print $1}')
You should see a response similar to the following:
11d8a27e3ee0

					We can verify that kube-scheduler is working by running the following command in the host session:kubectl describe pod k8s-for-beginners-66644bb776-kvwfr
Please get the pod name from the response you get at step 17, as seen in Figure 2.26. You should see the following output:
Name: k8s-for-beginners-66644bb776-kvwfr
Namespace: default
Priority: 0
Node: <none>
We are truncating the output screenshots for a better presentation. Please take a look at the following excerpt, highlighting the Events section:
[image: Figure 2.27: Examining the events reported by the pod

]
Figure 2.27: Examining the events reported by the pod
In the Events section, we can see that the kube-scheduler has tried scheduling, but it reports that there is no node available. Why is that?
This is because, earlier, we stopped the kubelet, and the Minikube environment is a single-node cluster, so there is no available node(s) with a functioning kubelet for the pod to be placed.

					Let's restart the kubelet by running the following command in the Minikube session:sudo systemctl start kubelet
This should not give any response in the terminal upon successful execution.

					In the host terminal, verify the status of the Deployment by running the following command in the host session:kubectl get deploy
You should see the following response:
NAME READY UP-TO-DATE AVAILABLE AGE
k8s-for-beginners 1/1 1 1 11m
Now, everything looks healthy as the Deployment shows 1/1 under the READY column, which means that the pod is online.

					Similarly, verify the status of the pod:kubectl get pod -o wide
You should get an output similar to the following:
[image: Figure 2.28: Getting more information about the pod

]

			

			Figure 2.28: Getting more information about the pod

			We can see Running under STATUS and that it's been assigned to the minikube node.

			In this exercise, we traced each phase of a pod's life cycle by breaking the Kubernetes components and then recovering them one by one. Now, based on the observations we made about this exercise; we have better clarity regarding the answers to the questions that were raised before this exercise:

			
					Steps 12 – 16: We saw that in the case of a Deployment, a controller manager is responsible for requesting the creation of pods.

					Steps 17 – 19: The scheduler is responsible for choosing a node to place in the pod. It assigns the node by setting a pod's nodeName spec to the desired node. Associating a pod to a node, at this moment, merely happened at the level of the API object.

					Steps 20 – 22: The kubelet actually brings up the containers to get our pod running.

			

			Throughout a pod's life cycle, Kubernetes components cooperate by updating a pod's spec properly. The API server serves as the key component that accepts pod update requests, as well as to report pod changes to interested parties.

			In the following activity, we will bring together the skills we learned in the chapter to find out how we can migrate from a container-based environment to a Kubernetes environment in order to run our application.

			Activity 2.01: Running the Pageview App in Kubernetes

			In Activity 1.01, Creating a Simple Page Count Application, in the previous chapter, we built a web application called Pageview and connected it to a Redis backend datastore. So, here is a question: without making any changes to the source code, can we migrate the Docker-based application to Kubernetes and enjoy Kubernetes' benefits immediately? Try it out in this activity with the guidelines given.

			This activity is divided into two parts: in the first part, we will create a simple pod with our application that is exposed to traffic outside the cluster by a Service and connected to a Redis datastore running as another pod. In the second part, we will scale the application to three replicas.

			Connecting the Pageview App to a Redis Datastore Using a Service

			Similar to the --link option in Docker, Kubernetes provides a Service that serves as an abstraction layer to expose one application (let's say, a series of pods tagged with the same set of labels) that can be accessed internally or externally. For example, as we discussed in this chapter, a frontend app can be exposed via a NodePort Service so that it can be accessed by external users. In addition to that, in this activity, we need to define an internal Service in order to expose the backend application to the frontend application. Follow these steps:

			
					In Activity 1.01, Creating a Simple Page Count Application, we built two Docker images – one for the frontend Pageview web app and another for the backend Redis datastore. You can use the skills we learned in this chapter to migrate them into Kubernetes YAMLs.

					Two pods (each managed by a Deployment) for the application is not enough. We also have to create the Service YAML to link them together.Ensure that the targetPort field in the manifest is consistent with the exposed port that was defined in the Redis image, which was 6379 in this case. In terms of the port field, theoretically, it can be any port, as long as it's consistent with the one specified in the Pageview application.
The other thing worth mentioning here is the name field of the pod for Redis datastore. It's the symbol that's used in the source code of the Pageview app to reference the Redis datastore.
Now, you should have three YAMLs – two pods and a Service. Apply them using kubectl -f <yaml file name>, and then use kubectl get deploy,service to ensure that they're created successfully.

					At this stage, the Pageview app should function well since it's connected to the Redis app via the Service. However, the Service only works as the internal connector to ensure they can talk to each other inside the cluster.To access the Pageview app externally, we need to define a NodePort Service. Unlike the internal Service, we need to explicitly specify the type as NodePort.

					Apply the external Service YAML using kubectl -f <yaml file name>.

					Run minikube service <external service name> to fetch the Service URL.

					Access the URL multiple times to ensure that the Pageview number gets increased by one each time.

			

			With that, we have successfully run the Pageview application in Kubernetes. But what if the Pageview app is down? Although Kubernetes can create a replacement pod automatically, there is still downtime between when the failure is detected and when the new pod is ready.

			A common solution is to increase the replica number of the application so that the whole application is available as long as there is at least one replica running.

			Running the Pageview App in Multiple Replicas

			The Pageview app can certainly work with a single replica. However, in a production environment, high availability is essential and is achieved by maintaining multiple replicas across nodes to avoid single points of failure. (This will be covered in detail in upcoming chapters.)

			In Kubernetes, to ensure the high availability of an application, we can simply increase the replica number. Follow these steps to do so:

			
					Modify the Pageview YAML to change replicas to 3.

					Apply these changes by running kubectl apply -f <pageview app yaml>.

					By running kubectl get pod, you should be able to see three Pageview pods running.

					Access the URL shown in the output of the minikube service command multiple times.Check the logs of each pod to see whether the requests are handled evenly among the three pods.

					Now, let's verify the high availability of the Pageview app. Terminate any arbitrary pods continuously while keeping one healthy pod. You can achieve this manually or automatically by writing a script. Alternatively, you can open another terminal and check whether the Pageview app is always accessible.

			

			If you opt for writing scripts to terminate the pods, you will see results similar to the following:

			
				
					[image: Figure 2.29: Killing pods via a script

]
				

			

			Figure 2.29: Killing pods via a script

			Assuming that you take a similar approach and write a script to check whether the application is online, you should see an output similar to the following:

			
				
					[image: Figure 2.30: Repeatedly accessing the application via the script

]
				

			

			Figure 2.30: Repeatedly accessing the application via the script

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			A Glimpse into the Advantages of Kubernetes for Multi-Node Clusters

			You can only truly appreciate the advantages of Kubernetes after seeing it in the context of a multi-node cluster. This chapter, like many of the other chapters in this book, uses a single-node cluster (Minikube environment) to demonstrate the features that Kubernetes provides. However, in a real-world production environment, Kubernetes is deployed with multiple workers and master nodes. Only then can you ensure that a fault in a single node won't impact the general availability of the application. And reliability is just one of the many benefits that a multi-node Kubernetes cluster can bring to us.

			But wait – isn't it true that we can implement applications and deploy them in a highly available manner without using Kubernetes? That's true, but that usually comes with a lot of management hassle, both in terms of managing the application as well as the infrastructure. For example, during the initial Deployment, you may have to intervene manually to ensure that all redundant containers are not running on the same machine. In the case of a node failure, you will have to not only ensure that a new replica is respawned properly but to guarantee high availability, you also need to ensure that the new one doesn't land on the nodes that are already running existing replicas. This can be achieved either by using a DevOps tool or injecting logic on the application side. However, either way is very complex. Kubernetes provides a unified platform that we can use to wire apps to proper nodes by describing the high availability features we want using Kubernetes primitives (API objects). This pattern frees the minds of application developers, as they only need to consider how to build their applications. Features that are required for high availability, such as failure detection and recovery, are taken care of by Kubernetes under the hood.

			Summary

			In this chapter, we used Minikube to provision a single-node Kubernetes cluster and gave a high-level overview of Kubernetes' core components, as well as its key design rationale. After that, we migrated an existing Docker container to Kubernetes and explored some basic Kubernetes API objects, such as pods, Services, and Deployments. Lastly, we intentionally broke a Kubernetes cluster and restored it one component at a time, which allowed us to understand how the different Kubernetes components work together to get a pod up and running on a node.

			Throughout this chapter, we have used kubectl to manage our cluster. We provided a quick introduction to this tool, but in the following chapter, we will take a closer look at this powerful tool and explore the various ways in which we can use it.

		

		
			
			

		

	
		
			
			

		

		
			3. kubectl – Kubernetes Command Center

		

		
			Overview

			In this chapter, we will demystify some common kubectl commands and see how we can use kubectl to control our Kubernetes cluster. We will begin this chapter by taking a brief look at what the end-to-end process looks like when using kubectl commands to communicate with a Kubernetes cluster. Then, we will set up a few shortcuts and autocompletion for the Bash terminal. We will begin with the basics of using kubectl by learning how to create, delete, and manage Kubernetes objects. We will learn about the two approaches to managing resources in Kubernetes - declarative and imperative - with exercises. By the end of this chapter, you will also have learned how to update a live application running on your Kubernetes cluster in real-time using kubectl.

			Introduction

			In Chapter 1, Introduction to Kubernetes and Containers, we saw that Kubernetes is a portable and highly extensible open-source container orchestration tool. It provides very powerful capabilities that can be used to manage containerized workloads at scale. In the previous chapter, you got the big picture of how the different components of Kubernetes work together to achieve the desired goals. We also demonstrated some basic usage of kubectl in Chapter 2, An Overview of Kubernetes. In this chapter, we will take a closer look at this utility and look at how we can make use of its potential.

			To reiterate, kubectl is a command-line utility for interacting with Kubernetes clusters and performing various operations. There are two ways to use kubectl while managing your cluster - imperative management, which focuses on commands rather than the YAML manifests to achieve the desired state, and declarative management, which focuses on creating and updating YAML manifest files. kubectl can support both these management techniques to manage Kubernetes API objects (also called Kubernetes API primitives). In the previous chapter, we saw how the various components constantly try to change the state of the cluster from the actual state to the desired state. This can be achieved by using kubectl commands or YAML manifests.

			kubectl allows you to send commands to Kubernetes clusters. The kubectl command can be used to deploy applications, inspect, and manage Kubernetes objects, or troubleshoot and view logs. Interestingly, even though kubectl is the standard tool for controlling and communicating with a Kubernetes cluster, it doesn't come with Kubernetes. So, even if you are running kubectl on any of the nodes of your cluster, you need to install the kubectl binary separately, which we did in Exercise 2.01, Getting Started with Minikube and Kubernetes Clusters, in the previous chapter.

			This chapter will walk you through the behind-the-scenes functionality of kubectl and provide more insights into how to use kubectl commands to interact with some commonly used Kubernetes objects. We will learn how to set up some shortcuts for kubectl. We will walk you through not only creating new objects with kubectl but also making changes to a live Deployment in Kubernetes. But before that, let's take a peek behind the curtains and get an idea of exactly how kubectl communicates with Kubernetes.

			How kubectl Communicates with Kubernetes

			As we saw in the previous chapter, the API server manages communications between the end-user and Kubernetes, and it also acts as an API gateway to the cluster. To achieve this, it implements the RESTful API over the HTTP and HTTPS protocols to perform CRUD operations to populate and modify Kubernetes API objects such as pods, services, and more based upon the instructions sent by a user via kubectl. These instructions can be in various forms. For example, to retrieve information for pods running in the cluster, we would use the kubectl get pods command, while to create a new pod, we would use the kubectl run command.

			First, let's take a look at what happens behind the scenes when you run a kubectl command. Take a look at the following illustration, which provides an overview of the process, and then we will take a closer look at the different details of the process:

			
				
					[image: Figure 3.1: A representative flowchart for the kubectl utility

]
				

			

			Figure 3.1: A representative flowchart for the kubectl utility

			A kubectl command is translated into an API call, which is then sent to the API server. The API server then authenticates and validates the requests. Once the authentication and validation stages have been successful, the API server retrieves and updates data in etcd and responds with the requested information.

			Setting up Environments with Autocompletion and Shortcuts

			In most Linux environments, you can set up autocompletion for kubectl commands before you start working with the instructions mentioned in this chapter. Learning how autocompletion and shortcuts work in Linux environments will be significantly helpful for those who are interested in getting certifications such as Certified Kubernetes Administrator (CKA) and Certified Kubernetes Application Developer (CKAD), which are conferred by the Linux Foundation. We'll learn how to set up autocompletion in the following exercise.

			Exercise 3.01: Setting up Autocompletion

			In this exercise, we will show you how to set up autocompletion and an alias for kubectl commands in Bash. This is a useful feature that will help you save time and avoid typos. Perform the following steps to complete this exercise:

			
					We will need the bash-completion package, so install it if it is not already installed. You can go to the GitHub repository to get installation instructions for various platforms, at https://github.com/scop/bash-completion. If you are running Ubuntu 20.04, you can install it via the APT package manager using the following command:sudo apt-get install bash-completion

					You can use the following command to set up autocomplete in Bash:source <(kubectl completion bash)
Note
This command, as well as the subsequent commands in this exercise, will not show any responses in the terminal upon successful execution.

					If you want to make autocomplete persistent in your Bash shell, you can use the following command, which will write kubectl autocomplete to the .bashrc file in your current user directory:echo "source <(kubectl completion bash)" >> ~/.bashrc

					You can also set up an alias for your kubectl commands by using the alias keyword, as follows:alias k=kubectl

					Similarly, if you want to set up an alias for some specific commands, you can use commands similar to the following:alias kcdp='kubectl describe po'
alias kcds='kubectl describe svc'
alias kcdd='kubectl describe deploy'

					Finally, you can use the following command to set up the completion of kubectl commands when you press Tab:complete -F __start_kubectl k
Note
You can also to set up autocomplete in zsh (an alternative to the Bash shell) by using the following commands:
source <(kubectl completion zsh)
echo "if [$commands[kubectl]]; then source <(kubectl completion zsh); fi" >> ~/.zshrc

			

			By the end of this exercise, you will have an autocomplete set up for your Bash shell. You can also use aliases such as k instead of kubectl in your commands. However, to avoid confusion and maintain a standardized structure, we will use the full commands throughout this book.

			Setting up the kubeconfig Configuration File

			In most enterprise environments, there is generally more than one Kubernetes cluster, depending on the strategy of the organization. An administrator, developer, or any other role dealing with Kubernetes clusters would need to interact with several of those clusters and switch between them to perform different operations on different clusters.

			A configuration file makes things a lot easier. You can use this file to store information about different clusters, users, namespaces, and authentication mechanisms. Such configuration files are referred to as kubeconfig files. Note that kubeconfig is a generic way to refer to kubectl configuration files and that it is not the name of the config file. kubectl uses such files to store the information needed for us to choose a cluster and communicate with its API server.

			By default, kubectl looks for the file in the $HOME/.kube directory. In most scenarios, you can specify a KUBECONFIG environment variable or use the --kubeconfig flag to specify the kubeconfig files. Those files are usually saved in $HOME/.kube/config.

			Note

			You can find out more about how to configure access to multiple clusters by setting up the KUBECONFIG environment variable and the --kubeconfig flag at https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable.

			Security contexts are used to define the privilege and access control settings for the pods. We will revisit the idea of access control and security in Chapter 13, Runtime and Network Security in Kubernetes.

			Let's take a look at the kubeconfig file to understand how this works. You can view the kubeconfig file using the following command:

			kubectl config view

			Alternatively, you can also use the following command:

			cat $HOME/.kube/config

			You should get an output similar to the following:

			
				
					[image: Figure 3.2: The output of kubectl config view command

]
				

			

			Figure 3.2: The output of kubectl config view command

			A context is a set of information that you need to access a cluster. It contains the name of the cluster, the user, and the namespace. The current-context field in Figure 3.2 shows the current context that you are working with. If you want to switch the current context, you can use the following command:

			kubectl config use-context <the cluster you want to switch to>

			For example, if we wanted to switch to a context named minikube, we would use the following command:

			kubectl config use-context minikube

			This would give an output similar to the following:

			Switched to context "minikube".

			Common kubectl Commands

			As previously described, kubectl is a CLI tool that is used to communicate with the Kubernetes API server. kubectl has a lot of useful commands for working with Kubernetes. In this section, we're going to walk you through some commonly used kubectl commands and shortcuts that are used to manage Kubernetes objects.

			Frequently Used kubectl Commands to Create, Manage, and Delete Kubernetes Objects

			There are several simple kubectl commands that you will use almost all the time. In this section, we will take a look at some of the basic kubectl commands:

			
					get <object>: You can use this command to get the list of the desired types of objects. Using all instead of specifying an object type will get the list of all kinds of objects. By default, this will get the list of specified object types in the default namespace. You can use the -n flag to get objects from a specific namespace; for example, kubectl get pod -n mynamespace.

					describe <object-type> <object-name>: You can use this command to check all the relevant information of a specific object; for example, kubectl describe pod mypod.

					logs <object-name>: You can use this command to check all the relevant logs of a specific object to find out what happened when that object was created; for example, kubectl logs mypod.

					edit <object-type> <object-name>: You can use this command to edit a specific object; for example, kubectl edit pod mypod.

					delete <object-type> <object-name>: You can use this command to delete a specific object; for example, kubectl delete pod mypod.

					create <filename.yaml>: You can use this command to create a bunch of Kubernetes objects that have been defined in the YAML manifest file; for example, kubectl create -f your_spec.yaml.

					apply <filename.yaml>: You can use this command to create or update a bunch of Kubernetes objects that have been defined in the YAML manifest file; for example, kubectl apply -f your_spec.yaml.

			

			Walkthrough of Some Simple kubectl Commands

			In this section, we're going to walk you through some of the commonly used kubectl commands. This section is mostly for demonstration purposes, so you may not see the exact output that you see in these images. However, this section will help you understand how these commands are used. You will use most of them extensively in later exercises, as well as throughout this book. Let's take a look:

			
					If you want to display nodes, use the following command:kubectl get nodes
You will see an output similar to the following:
[image: Figure 3.3: The output of kubectl get nodes command

]

			

			Figure 3.3: The output of kubectl get nodes command

			Since we set up aliases in Exercise 3.01, Setting up Autocompletion, you can also get the same result using the following command:

			k get no

			
					If you want to display all current namespaces, you can use the following command:kubectl get namespaces
You should see an output similar to the following:
NAME STATUS AGE
default Active 7m5s
kube-node-lease Active 7m14s
kube-public Active 7m14s
kube-system Active 7m15s
You can also get the same result using the following shortened command:
k get ns

					If you want to check the version of kubectl, you can use the following command:kubectl version
You will see an output similar to the following:
Client version: version.Info{Major:"1", Minor:"17", GitVersion:"v1.17.2, GitCommit: 59603c6e503c87169aea6106f57b9f242f64df89", GitTreeState:"clean", BuildDate:"2020-01-21T22:17:28Z, GoVersion:"go1.13.5", Compiler:"gc", Platform:"linux/amd64}
Server version: version.Info{Major:"1", Minor:"17", GitVersion:"v1.17.2, GitCommit: 59603c6e503c87169aea6106f57b9f242f64df89", GitTreeState:"clean", BuildDate:"2020-01-18T23:22:30Z, GoVersion:"go1.13.5", Compiler:"gc", Platform:"linux/amd64}

					If you want to see some information regarding your current Kubernetes cluster, you can use the following command:kubectl cluster-info
You should see an output similar to the following:
[image: Figure 3.4: The output of kubectl cluster-info command

]

			

			Figure 3.4: The output of kubectl cluster-info command

			Before we move on further with the demonstrations, we will mention a few commands that you can use to create a sample application, which we have already provided in the GitHub repository for this chapter. Use the following command to fetch the YAML specification for all the objects required to run the application:

			curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter03/Activity03.01/sample-application.yaml --output sample-application.yaml

			Now, you can deploy the sample-application.yaml file using the following command:

			kubectl apply -f sample-application.yaml

			If you can see the following output, this means that the sample application has been successfully created in your Kubernetes cluster:

			deployment.apps/redis-back created

			service/redis-back created

			deployment.apps/melonvote-front created

			service/melonvote-front created

			Now that you have deployed the provided application, if you try any of the commands shown later in this section, you will see the various objects, events, and so on related to this application. Note that your output may not exactly match the images shown here:

			
					You can use the following command to get everything in your cluster under the default namespace:kubectl get all
This will give an output similar to the following:
[image: Figure 3.5: The output of kubectl get all command

]

			

			Figure 3.5: The output of kubectl get all command

			
					Events describe what has happened so far in the Kubernetes cluster, and you can use events to get a better insight into your cluster and aid in any troubleshooting efforts. To list all the events in the default namespace, use the following command:kubectl get events
This will give an output similar to the following:
[image: Figure 3.6: The output of kubectl get events command

]

			

			Figure 3.6: The output of kubectl get events command

			
					A service is an abstraction that's used to expose an application to the end-user. You will learn more about services in Chapter 8, Service Discovery. You can use the following command to list all services:kubectl get services
This will give an output similar to the following:
[image: Figure 3.7: The output of kubectl get services command

]

			

			Figure 3.7: The output of kubectl get services command

			You can get the same result using the following shortened command:

			k get svc

			
					A Deployment is an API object that allows us to easily manage and update pods. You will learn more about Deployments in Chapter 7, Kubernetes Controllers. You can get the list of Deployments using the following command:kubectl get deployments
This should give a response similar to the following:
NAME READY UP-TO-DATE AVAILABLE AGE
aci-helloworld 1/1 1 1 34d
melonvote-front 1/1 1 1 7d6h
redis-back 1/1 1 1 7d6h
You can also get the same result using the following shortened version of the command:
k get deploy

			

			Some Useful Flags for the get Command

			As you have seen, the get command is a pretty standard command that is used when we need to get the list of objects in our cluster. It also has several useful flags. Let's take a look at a few of them here:

			
					If you want to list a particular type of resource from all your namespaces, you can add the --all-namespaces flag in the command. For example, if we want to list all Deployments from all namespaces, we can use the following command:kubectl get deployments --all-namespaces
This will give an output similar to this:
[image: Figure 3.8: The output of kubectl get deployments under all namespaces

]

			

			Figure 3.8: The output of kubectl get deployments under all namespaces

			You can also see that there is an additional column on the left-hand side that specifies the namespaces of the respective Deployments.

			
					If you want to list a specific type of resource from a specific namespace, you can use the -n flag. Here, the -n flag stands for namespace. For example, if you want to list all Deployments in a namespace called keda, the following command would be used:kubectl get deployments -n keda
This command would show an output similar to the following:
[image: Figure 3.9: The output of kubectl get deployments under the keda namespace

]

			

			Figure 3.9: The output of kubectl get deployments under the keda namespace

			
					You can add the --show-labels flag to display the labels of the objects in the list. For example, if you wanted to get the list of all the pods in the default namespace, along with their labels, you would use the following command:kubectl get pods --show-labels
This command should give an output similar to the following:
[image: Figure 3.10: The output of kubectl get pods with all labels

]

			

			Figure 3.10: The output of kubectl get pods with all labels

			There is an additional column on the right-hand side that specifies the labels of the pods.

			
					You can use the -o wide flag to display more information about objects. Here, the -o flag stands for output. Let's look at a simple example of how to use this flag:kubectl get pods -o wide
This will give an output similar to the following:
[image: Figure 3.11: The output of kubectl get pods with additional information

]

			

			Figure 3.11: The output of kubectl get pods with additional information

			You can also see there are additional columns on the right-hand side that specify which nodes the pods are running on, as well as the internal IP addresses of the node. You can find more ways to use the -o flag at https://kubernetes.io/docs/reference/kubectl/overview/#output-options.

			Note

			We will limit this section to commands that are commonly used to limit the scope of this chapter. You can find a lot more kubectl commands at https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands.

			Populating Deployments in Kubernetes

			As we mentioned earlier, Deployment is a convenient way to manage and update pods. Defining a Deployment in Kubernetes is an effective and efficient way to provide declarative updates for the application running in your cluster.

			You can create a Deployment by using kubectl imperative commands or by using declarative YAML manifest files. In the following exercise, we're going to deploy an application (we will go with Nginx for this exercise) in Kubernetes and learn how to interact with Deployments using kubectl commands, as well as how to modify the YAML manifest file.

			Exercise 3.02: Creating a Deployment

			There are two ways to create a Deployment in Kubernetes – using the kubectl create/run command and creating a manifest file in YAML format and then using the kubectl apply command. We can achieve the same goal with those two options. Let's try both and then compare them:

			
					Create a Deployment using the following command directly:kubectl create deployment kubeserve --image=nginx:1.7.8
You can expect an output similar to the following:
deployment.apps/kubeserve created
Note
You can also create a Deployment using the kubectl run command. To achieve the same results here, you could use the following commands:
kubectl run nginx --image=nginx:1.7.8
kubectl run nginx --image=nginx:1.7.8 --replicas=3

					You can also create a Deployment by defining the YAML manifest file for your Deployment. Use your preferred text editor to create a file named sample-deployment.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: kubeserve
 labels:
 app: kubeserve
spec:
 replicas : 3
 selector:
 matchLabels:
 app: kubeserve
 template:
 metadata:
 labels:
 app: kubeserve
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
In this YAML definition, the replicas field defines the number of replica pods in this Deployment.

					Use the following command to apply the configuration you've defined in the YAML manifest file:kubectl apply -f sample-deployment.yaml
The sample output will look as follows:
kubectl apply -f sample-deployment.yaml

					Use the following command to check the Deployments that currently exist in the default namespace:kubectl get deployments
The output will look as follows:
NAME READY UP-TO-DATE AVAILABLE AGE
aci-helloworld 1/1 1 1 27d
kubeserve 3/3 3 3 26m

			

			In this exercise, we have seen the differences in using the different approaches to create a Deployment. The kubectl create command is widely used for testing. For most enterprise solutions where modern DevOps approaches are implemented, it makes more sense to use YAML definitions to conveniently define configurations, and then track them with source control tools such as Git. When your organization integrates YAML definitions with DevOps tools, it makes the solution more manageable and traceable.

			Now that we have seen how to create a Deployment, in the next exercise, we will learn how to modify or update a Deployment that is already running. This is something that you will need to do quite often as the software is updated to new versions, bugs are identified and fixed, the demands on your application change, or your organization moves on to completely new solutions. We will also learn how to roll back a Deployment to an earlier version, which is something that you will want to do if an update does not lead to the expected outcome.

			Exercise 3.03: Updating a Deployment

			In this exercise, we will update the application that we deployed in the previous exercise to a more recent version and demonstrate how we can roll back the Deployment to a previous version if necessary.

			Similar to the two approaches that we saw for creating a Deployment, there are two ways to update an application as well – using the kubectl set image command and updating the YAML manifest file and then using the kubectl apply command. These steps will guide you through both approaches:

			
					First, let's get the details of the current Deployment using the following command:kubectl describe deploy kubeserve
You'll get an output similar to the following:
[image: Figure 3.12: Describing the kubeserve Deployment

]
Figure 3.12: Describing the kubeserve Deployment

					You can update the image using the following command:kubectl set image deployment/kubeserve nginx=nginx:1.9.1 –-record
The image subcommand indicates that we want to update the image field of the object, as defined in the YAML manifest that we saw in Step 2 of the previous exercise.
Then, we specify the object in the <object-type>/<object name> format.
The next part, nginx=nginx:1.9.1, tells Kubernetes to look for the specific image tagged as 1.9.1 in the Docker Hub repository of NGINX. You can check out the available tags at https://hub.docker.com/_/nginx?tab=tags.
The --record flag is very helpful when you want to save the updates that have been made by your kubectl commands to the current resource.
By applying this, you'll get an output similar to the following:
deployment.extensions/kubeserve image updated

					Now, let's get the details of the Deployment using the following command:kubectl describe deploy kubeserve
You should see the following output:
[image: Figure 3.13: Using the kubectl describe command to check the

image version in the container

]

Figure 3.13: Using the kubectl describe command to check the image version in the container
In the preceding screenshot, you can see that the image has been successfully updated to version 1.9.1.
Another way to achieve the same result is to modify the YAML file and then use the kubectl apply command. We will use the same YAML file that we created in the previous exercise. If you do not have the YAML file for an object, you can export the YAML manifest using the following command:
kubectl get deploy kubeserve -o yaml > kubeserve-spec.yaml
This command will output a file named kubeserve-spec.yaml with the manifest that is in effect in the cluster. Then, you can use vim, nano, or any other text editor to edit it and then apply the edited kubeserve-spec.yaml manifest using the kubectl apply command, as shown in the previous exercise, with the addition of the --record flag.

					If you want to perform a rollback, you can use the following command:kubectl rollout undo deployments kubeserve
You'll see an output similar to the following:
deployment.extensions/kubeserve rolled back

					You can use the kubectl rollout history command to check all the revisions for a specific Deployment, as shown here:kubectl rollout history deployment kubeserve
You'll see an output similar to the following:
[image: Figure 3.14: The output of the kubectl rollout history command

]
Figure 3.14: The output of the kubectl rollout history command

					You can also use the following command to check the details of a specific revision:kubectl rollout history deployment kubeserve --revision=3
The output for this command will be as follows:
[image: Figure 3.15: Checking the details of revision 3

]
Figure 3.15: Checking the details of revision 3

					You can roll back a Deployment to a specific revision by specifying the --to-revision flag:kubectl rollout undo deployments kubeserve --to-revision=3
You'll see an output similar to the following:
deployment.extensions/kubeserve rolled back

			

			In this exercise, we have learned how to update an already existing Deployment, as well as how to roll back a Deployment to its earlier specs.

			Deployments allow us to define a desired state for the replica pod in a declarative way. We will revisit how Deployment works and discover more about it in Chapter 7, Kubernetes Controllers. If you delete the individual pod replica intentionally or if the pod fails for any reason, since we define a Deployment with a set number of replicas, the Deployment will keep recreating the pod as many times as you delete it. This is what we call auto-healing. Therefore, you need to delete the Deployment itself, which will also delete all the pods managed by it. We will learn how to do that in the following exercise.

			Exercise 3.04: Deleting a Deployment

			In this exercise, we will delete the Deployment we created in the previous exercise:

			
					Get a list of existing Deployments using the following command:kubectl get deployment
You can expect an output similar to the following:
NAME READY UP-TO-DATE AVAILABLE AGE
aci-helloworld 1/1 1 1 27d
kubeserve 3/3 3 3 26m
melonkedaaf 0/0 0 0 26d

					Let's say that, for the purpose of this exercise, we want to delete the kubeserve Deployment that we created in the previous exercise. Use the following command to delete the Deployment:kubectl delete deployment kubeserve
The sample output will be similar to the following:
deployment.extensions "kubeserve" deleted

					Get the list of Deployments to check and make sure that the target Deployment has been deleted successfully:kubectl get deployment
You should see an output similar to the following:
NAME READY UP-TO-DATE AVAILABLE AGE
aci-helloworld 1/1 1 1 27d
kubeserve 0/0 0 0 26d

			

			You can use the kubectl delete command to delete any other object as well. However, as we mentioned earlier, in cases such as pods managed by Deployments, it is pointless to delete individual pods as the Deployment will just recreate them, so you need to delete the Deployment.

			Activity 3.01: Editing a Live Deployment for a Real-Life Application

			Imagine that you are a SysOps engineer who has been asked to manage a cluster and deploy a web application. You have deployed it to your Kubernetes cluster and made it available to the public. You have been monitoring this application ever since it was deployed successfully, and you've detected that the web application has been experiencing throttling issues during peak times. Based on your monitoring, the solution that you want to implement is to assign more memory and CPU to this application. Therefore, you need to edit the Deployment so that you can allocate enough CPU and memory resources to run the application and test this application at the end. You need to demonstrate that your web application is up and running and that it can be accessed through a public IP address via a browser of your choice.

			To simulate this scenario, we're going to deploy a sample application in a Kubernetes cluster and show you how to edit a live Deployment. Editing a live Deployment is something that you will need to do when fixing issues or for testing purposes.

			You can use the following command to get the YAML manifest file that you're going to use in this activity:

			curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter03/Activity03.01/sample-application.yaml --output sample-application.yaml

			This manifest file defines all the different objects that are required to run the application, as well as the application itself.

			Note

			This manifest has been adapted from an open-source sample provided by Microsoft Azure, available at https://github.com/Azure-Samples/azure-voting-app-redis.

			Perform the following steps to complete this activity:

			
					First, deploy the target web application using the kubectl apply command and the provided YAML definition file.

					Get the IP address of the service that exposes your application. For this simple scenario, this will be similar to Exercise 2.03, Accessing a Pod via a Service, from the previous chapter. Later chapters will explain how to work with ingress controllers and create ingress resources to expose the frontend applications.

					Use the kubectl edit command to edit the live deployment. You will need to edit the deployment named melonvote-front. The following are the fields that you need to modify to satisfy the requirements of this scenario. You can simply double these values:a) resources.limits.cpu: This is the resource limit for CPU usage.
b) resources.limits.memory: This is the resource limit for memory usage.
c) resources.requests.cpu: This is the minimum CPU usage requested to get your application up and running.
d) resources.requests.memory: This is the minimum memory usage requested to get your application up and running.

			

			By the end of this activity, you will be able to see the UI of the application that you deployed with Kubernetes:

			
				
					[image: Figure 3.16: Expected output of the activity

]
				

			

			Figure 3.16: Expected output of the activity

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			This chapter demystified how kubectl allows us to control our Kubernetes cluster using API calls. First, we learned how to set up an environment for kubectl commands and looked at a number of shortcuts. Furthermore, we covered how to create, edit, and delete a Kubernetes object using kubectl commands and looked at a Deployment as an example. Finally, we deployed a real-life application and showed you how to edit a live Deployment. Every example in this chapter has been applied in a general context; however, we believe that the skills developed in this chapter can help you resolve specific problems that you might encounter in a professional environment.

			In the next chapter, you'll explore the other side of this bridge and dive deeper into how the API server works. You will also take a closer look at REST API requests and how the API server deals with them.

		

	
		
			
			

		

		
			4. How to Communicate with Kubernetes (API Server)

		

		
			Overview

			In this chapter, we will build a foundational understanding of the Kubernetes API server and the various ways of interacting with it. We will learn how kubectl and other HTTP clients communicate with the Kubernetes API server. We will use some practical demonstrations to trace these communications and see the details of HTTP requests. Then, we will also see how we can look up the API details so that you can write your own API request from scratch. By the end of this chapter, you will be able to create API objects by directly communicating with the API server using any HTTP client, such as curl, to make RESTful API calls to the API server.

			Introduction

			As you will recall from Chapter 2, An Overview of Kubernetes, the API server acts as the central hub that communicates with all the different components in Kubernetes. In the previous chapter, we took a look at how we can use kubectl to instruct the API server to do various things.

			In this chapter, we will take a further look into the components that make up the API server. As the API server is at the center of our entire Kubernetes system, it is important to learn how to effectively communicate with the API server itself and how API requests are processed. We will also look at various API concepts, such as resources, API groups, and API versions, which will help you understand the HTTP requests and responses that are made to the API server. Finally, we will interact with the Kubernetes API using multiple REST clients to achieve many of the same results we did in the previous chapter using the kubectl command-line tool.

			The Kubernetes API Server

			In Kubernetes, all communications and operations between the control plane components and external clients, such as kubectl, are translated into RESTful API calls that are handled by the API server. Effectively, the API server is a RESTful web application that processes RESTful API calls over HTTP to store and update API objects in the etcd datastore.

			The API server is also a frontend component that acts as a gateway to and from the outside world, which is accessed by all clients, such as the kubectl command-line tool. Even the cluster components in the control plane interact with each other only through the API server. Additionally, it is the only component that interacts directly with the etcd datastore. Since the API server is the only way for clients to access the cluster, it must be properly configured to be accessible by clients. You will usually see the API server implemented as kube-apiserver.

			Note

			We will explain the RESTful API in more detail in the The Kubernetes API section later in this chapter.

			Now, let's recall how the API server looks in our Minikube cluster by running the following command:

			kubectl get pods -n kube-system

			You should see the following response:

			
				
					[image: Figure 4.1: Observing how the API server is implemented in Minikube

]
				

			

			Figure 4.1: Observing how the API server is implemented in Minikube

			As we saw in previous chapters, in the Minikube environment, the API server is referred to as kube-apiserver-minikube in the kube-system namespace. As you can see in the preceding screenshot, we have a single instance of the API server: kube-apiserver-minikube.

			The API server is stateless (that is, its behavior will be consistent regardless of the state of the cluster) and is designed to scale horizontally. Usually, for the high availability of clusters, it is recommended to have at least three instances to handle the load and fault tolerance better.

			Kubernetes HTTP Request Flow

			As we learned in earlier chapters, when we run any kubectl command, the command is translated into an HTTP API request in JSON format and is sent to the API server. Then, the API server returns a response to the client, along with any requested information. The following diagram shows the API request life cycle and what happens inside the API server when it receives a request:

			
				
					[image: Figure 4.2: API server HTTP request flow

]
				

			

			Figure 4.2: API server HTTP request flow

			As you can see in the preceding figure, the HTTP request goes through the authentication, authorization, and admission control stages. We will take a look at each of these in the following subtopics.

			Authentication

			In Kubernetes, every API call needs to authenticate with the API server, regardless of whether it comes from outside the cluster, such as those made by kubectl, or a process inside the cluster, such as those made by kubelet.

			When an HTTP request is sent to the API server, the API server needs to authenticate the client sending this request. The HTTP request will contain the information required for authentication, such as the username, user ID, and group. The authentication method will be determined by either the header or the certificate of the request. To deal with these different methods, the API server has different authentication plugins, such as ServiceAccount tokens, which are used to authenticate ServiceAccounts, and at least one other method to authenticate users, such as X.509 client certificates.

			Note

			The cluster administrator usually defines authentication plugins during cluster creation. You can learn more about the various authentication strategies and authentication plugins at https://kubernetes.io/docs/reference/access-authn-authz/authentication/.

			We will take a look at the implementation of certificate-based authentication in Chapter 11, Build Your Own HA Cluster.

			The API server will call those plugins one by one until one of them authenticates the request. If all of them fail, then the authentication fails. If the authentication succeeds, then the authentication phase is complete and the request proceeds to the authorization phase.

			Authorization

			After authentication is successful, the attributes from the HTTP request are sent to the authorization plugin to determine whether the user is permitted to perform the requested action. There are various levels of privileges that different users may have; for example, can a given user create a pod in the requested namespace? Can the user delete a Deployment? These kinds of decisions are made in the authorization phase.

			Consider an example where you have two users. A user called ReadOnlyUser (just a hypothetical name) should be allowed to list pods in the default namespace only, and ClusterAdmin (another hypothetical name) should be able to perform all tasks across all namespaces:

			
				
					[image: Figure 4.3: Privileges for our two users

]
				

			

			Figure 4.3: Privileges for our two users

			To understand this better, take a look at the following demonstration:

			Note

			We will not dive into too much detail about how to create users as this will be discussed in Chapter 13, Runtime and Network Security in Kubernetes. For this demonstration, the users, along with their permissions, are already set up, and the limitation of their privileges is demonstrated by switching contexts.

			
				
					[image: Figure 4.4: Demonstrating different user privileges

]
				

			

			Figure 4.4: Demonstrating different user privileges

			Notice, from the preceding screenshot, that the ReadOnlyUser can only list pods in the default namespace, but when trying to perform other tasks, such as deleting a pod in the default namespace or listing pods in other namespaces, the user will get a Forbidden error. This Forbidden error is returned by the authorization plugin.

			kubectl provides a tool that you can call by using kubectl auth can-i to check whether an action is allowed for the current user.

			Let's consider the following examples in the context of the previous demonstration. Let's say that the ReadOnlyUser runs the following commands:

			kubectl auth can-i get pods --all-namespaces

			kubectl auth can-i get pods -n default

			The user should see the following responses:

			
				
					[image: Figure 4.5: Checking privileges for ReadOnlyUser

]
				

			

			Figure 4.5: Checking privileges for ReadOnlyUser

			Now, after switching context, let's say that the ClusterAdmin user runs the following commands:

			kubectl auth can-i delete pods

			kubectl auth can-i get pods

			kubectl auth can-i get pods --all-namespaces

			The user should see the following response:

			
				
					[image: Figure 4.6: Checking privileges for ClusterAdmin

]
				

			

			Figure 4.6: Checking privileges for ClusterAdmin

			Unlike authentication phase modules, authorization modules are checked in sequence. If multiple authorization modules are configured, and if any authorizer approves or denies a request, that decision is immediately returned, and no other authorizer will be contacted.

			Admission Control

			After the request is authenticated and authorized, it goes to the admission control modules. These modules can modify or reject requests. If the request is only trying to perform a READ operation, it bypasses this stage; but if it is trying to create, modify, or delete, it will be sent to the admission controller plugins. Kubernetes comes with a set of predefined admission controllers, although you can define custom admission controllers as well.

			These plugins may modify the incoming object, in some cases to apply system-configured defaults or even to deny the request. Like authorization modules, if any admission controller module rejects the request, then the request is dropped and it will not process further.

			Some examples are as follows:

			
					If we configure a custom rule that every object should have a label (which you will learn how to do in Chapter 16, Kubernetes Admission Controllers), then any request to create an object without a label will be rejected by the admission controllers.

					When you delete a namespace, it goes to the Terminating state, where Kubernetes will try to evict all the resources in it before deleting it. So, we cannot create any new objects in this namespace. NamespaceLifecycle is what prevents that.

					When a client tries to create a resource in a namespace that does not exist, the NamespaceExists admission controller rejects the request.

			

			Out of the different modules included in Kubernetes, not all of the admission control modules are enabled by default, and the default modules usually change based on the Kubernetes version. Providers of cloud-based Kubernetes solutions, such as Amazon Web Services (AWS), Google, and Azure, control which plugins can be enabled by default. Cluster administrators can also decide which modules to enable or disable when initializing the API server. By using the --enable-admission-plugins flag, administrators can control which modules should be enabled other than the default ones. On the other hand, the --disable-admission-plugins flag controls which modules from the default modules should be disabled.

			Note

			You will learn more about admission controllers, including creating custom ones, in Chapter 16, Kubernetes Admission Controllers.

			As you will recall from Chapter 2, An Overview of Kubernetes, when we created a cluster using the minikube start command, Minikube enabled several modules for us by default. Let's take a closer look at that in the next exercise in which we will not only view the different API modules enabled for us by default but also start Minikube with a custom set of modules.

			Exercise 4.01: Starting Minikube with a Custom Set of Modules

			In this exercise, we will take a look at how to view the different API modules enabled for our instance of Minikube, and then restart Minikube using a custom set of API modules:

			
					If Minikube is not already running on your machine, start it up by using the following command:minikube start
You should see the following response:
[image: Figure 4.7: Starting up Minikube

]
Figure 4.7: Starting up Minikube

					Now, let's see which modules are enabled by default. Use the following command:kubectl describe pod kube-apiserver-minikube -n kube-system | grep enable-admission-plugins
You should see the following response:
[image: Figure 4.8: Default modules enabled in Minikube

]
Figure 4.8: Default modules enabled in Minikube
As you can observe from the preceding output, Minikube has enabled the following modules for us: NamespaceLifecycle, LimitRanger, ServiceAccount, DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, MutatingAdmissionWebhook, ValidatingAdmissionWebhook, and ResourceQuota.
Note
To know more about modules, please refer the following link: https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

					Another way to check the modules is to view the API server manifest by running the following command:kubectl exec -it kube-apiserver-minikube -n kube-system -- kube-apiserver -h | grep "enable-admission-plugins" | grep -vi deprecated
Note
We used grep -vi deprecated because there is another flag, --admission-control, that we are discarding from the output, as this flag will be deprecated in future versions.
kubectl has the exec command, which allows us to execute a command to our running pods. This command will execute kube-apiserver -h inside our kube-apiserver-minikube pod and return the output to our shell:
[image: Figure 4.9: Checking the modules enabled by default in Minikube

]
Figure 4.9: Checking the modules enabled by default in Minikube

					Now, we will start Minikube with our desired configuration. Use the following command:minikube start --extra-config=apiserver.enable-admission-plugins="LimitRanger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,MutatingAdmissionWebhook"
As you can see here, the minikube start command has the --extra-config configurator flag, which allows us to pass additional configurations to our cluster installation. In our case, we can use the --extra-config flag, along with --enable-admission-plugins, and specify the plugins we need to enable. Our command should produce this output:
[image: Figure 4.10: Restarting Minikube with a custom set of modules

]
Figure 4.10: Restarting Minikube with a custom set of modules

					Now, let's compare this instance of Minikube with our earlier one. Use the following command:kubectl describe pod kube-apiserver-minikube -n kube-system | grep enable-admission-plugins
You should see the following response:
[image: Figure 4.11: Checking a custom set of modules for Minikube

]

			

			Figure 4.11: Checking a custom set of modules for Minikube

			If you compare the set of modules seen here to the ones in Figure 4.7, you will notice that only the specified plugins were enabled; while the DefaultTolerationSeconds, NodeRestriction, and ValidatingAdmissionWebhook modules are no longer enabled.

			Note

			You can revert to the default configurations in Minikube by running minikube start again.

			Validation

			After letting the request pass through all three stages, the API server then validates the object—that is, it checks whether the object specification, which is carried in JSON format in the response body, meets the required format and standard.

			After successful validation, the API server stores the object in the etcd datastore and returns a response to the client. After that, as you learned in Chapter 2, An Overview of Kubernetes, other components, such as the scheduler and the controller manager, take over to find a suitable node and actually implement the object on your cluster.

			The Kubernetes API

			The Kubernetes API uses JSON over HTTP for its requests and responses. It follows the REST architectural style. You can use the Kubernetes API to read and write Kubernetes resource objects.

			Note

			For more details about the RESTful API, please refer to https://restfulapi.net/.

			Kubernetes API allows clients to create, update, delete, or read a description of an object via standard HTTP methods (or HTTP verbs), such as the examples in the following table:

			
				
					[image: Figure 4.12: HTTP verbs and their usage

]
				

			

			Figure 4.12: HTTP verbs and their usage

			In the context of Kubernetes API calls, it is helpful to understand how these HTTP methods map to API request verbs. So, let's take a look at which verbs are sent through which methods:

			
					GET: get, list, and watchSome example kubectl commands are kubectl get pod, kubectl describe pod <pod-name>, and kubectl get pod -w.

					POST: createAn example kubectl command is kubectl create -f <filename.yaml>.

					PATCH: patchAn example kubectl command is kubectl set image deployment/kubeserve nginx=nginx:1.9.1.

					DELETE: deleteAn example kubectl command is kubectl delete pod <pod-name>.

					PUT: updateAn example kubectl command is kubectl apply -f <filename.yaml>.
Note
If you have not encountered these commands yet, you will in the upcoming chapters. Feel free to refer back to this chapter or the following Kubernetes documentation to find out how each API request works for any command: https://kubernetes.io/docs/reference/kubernetes-api/.

			

			As mentioned earlier, these API calls carry JSON data, and all of them have a JSON schema identified by the Kind and apiVersion fields. Kind is a string that identifies the type of JSON schema that an object should have, and apiVersion is a string that identifies the version of the JSON schema the object should have. The next exercise should give you a better idea about this.

			You can refer to the Kubernetes API reference documentation to see the different HTTP methods in action, at https://kubernetes.io/docs/reference/kubernetes-api/.

			For example, if you need to create a Deployment in a specific namespace, under WORKLOADS APIS, you can navigate to Deployment v1 apps > Write Operations > Create. You will see the HTTP request and different examples using kubectl or curl. The following page from the API reference docs should give you an idea of how to use this reference:

			
				
					[image: Figure 4.13: HTTP request for the kubectl create command

]
				

			

			Figure 4.13: HTTP request for the kubectl create command

			You will need to keep the version of your API server in mind when you refer to the previously mentioned documentation. You can find your Kubernetes API server version by running kubectl version --short command and looking for Server Version. For example, if your Kubernetes API server version is running version 1.14, you should navigate to the Kubernetes version 1.14 reference documentation (https://v1-14.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/) to look up the relevant API information.

			The best way to understand this is by tracing a kubectl command. Let's do exactly that in the following section.

			Tracing kubectl HTTP Requests

			Let's try tracing the HTTP requests that kubectl sends to the API server to better understand them. Before we begin, let's get all the pods in the kube-system namespace by using the following command:

			kubectl get pods -n kube-system

			This command should display the output in a table view, as you can see in the following screenshot:

			
				
					[image: Figure 4.14: Getting the list of pods in the kube-system namespace

]
				

			

			Figure 4.14: Getting the list of pods in the kube-system namespace

			Behind the scenes, since kubectl is a REST client, it invokes an HTTP GET request to the API server endpoint and requests information from /api/v1/namespaces/kube-system/pods.

			We can enable verbose output by adding --v=8 to our kubectl command. v indicates the verbosity of the command. The higher the number, the more details we get in the response. This number can range from 0 to 10. Let's see the output with verbosity of 8:

			kubectl get pods -n kube-system --v=8

			This should give output as follows:

			
				
					[image: Figure 4.15: Output of a get pods command with a verbosity of 8

]
				

			

			Figure 4.15: Output of a get pods command with a verbosity of 8

			Let's examine the preceding output bit by bit to get a better understanding of it:

			
					The first part of the output is as follows:[image: Figure 4.16: Part of the output indicating the loading of the config file

]

			

			Figure 4.16: Part of the output indicating the loading of the config file

			From this, we can see that kubectl loaded the configuration from our kubeconfig file, which has the API server endpoint, port, and credentials, such as the certificate or the authentication token.

			
					This is the next part of the output:[image: Figure 4.17: Part of the output indicating the HTTP GET request

]

			

			Figure 4.17: Part of the output indicating the HTTP GET request

			In this, you can see the HTTP GET request mentioned as GET https://192.168.99.100:8443/api/v1/namespaces/kube-system/pods?limit=500. This line contains the operation that we need to perform against the API server, and /api/v1/namespaces/kube-system/pods is the API path. You can also see limit=500 at the end of the URL path, which is the chunk size; kubectl fetches a large number of resources in chunks to improve latency. We will see some examples relating to retrieving large results sets in chunks later in this chapter.

			
					The next part of the output is as follows:[image: Figure 4.18: Part of the output indicating request headers

]

			

			Figure 4.18: Part of the output indicating request headers

			As you can see in this part of the output, Request Headers describes the resource to be fetched or the client requesting the resource. In our example, the output has two parts for content negotiation:

			a) Accept: This is used by HTTP clients to tell the server what content types they'll accept. In our example, we can see that kubectl informed the API server about the application/json content type. If this does not exist in the request header, the server will return the default preconfigured representation type, which is the same as application/json for the Kubernetes API as it uses the JSON schema. We can also see that it is requesting the output as a table view, which is indicated by as=Table in this line.

			b) User-Agent: This header contains information about the client that is requesting this information. In this case, we can see that kubectl is providing information about itself.

			
					Let's examine the next part:[image: Figure 4.19: Part of the output indicating the response status

]

			

			Figure 4.19: Part of the output indicating the response status

			Here, we can see that the API server returns the 200 OK HTTP status code, which indicates that the request has been processed successfully on the API server. We can also see the time taken to process this request, which is 10 milliseconds.

			
					Let's look at the next part:[image: Figure 4.20: Part of the output indicating the response headers

]

			

			Figure 4.20: Part of the output indicating the response headers

			As you can see, this part shows the Response Headers, which include details such as the date and time of the request, in our example.

			
					Now, let's come to the main response sent by the API server:[image: Figure 4.21: Part of the output indicating the response body

]

			

			Figure 4.21: Part of the output indicating the response body

			The Response Body contains the resource data that was requested by the client. In our case, this is information about the pods in the kube-system namespace. Here, this information is in raw JSON format before kubectl can present it as a neat table. However, the highlighted section at the end of the previous screenshot shows that the response body does not have all the JSON output that we requested; part of the Response Body is truncated. This is because --v=8 displays the HTTP request content with truncation of the response content.

			To see the full response body, you can run the same command with --v=10, which does not truncate the output at all. The command would look like as follows:

			kubectl get pods -n kube-system --v=10

			We will not examine the command with --v=10 verbosity for the sake of brevity.

			
					Now, we come to the final part of the output that we are examining:[image: Figure 4.22: Part of the output indicating the final result

]

			

			Figure 4.22: Part of the output indicating the final result

			This is the final output as a table, which is what was requested. kubectl has taken the raw JSON data and formatted it as a neat table for us.

			Note

			You can learn more about kubectl verbosity and debugging flags at https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging.

			API Resource Type

			In the previous section, we saw that the HTTP URL was made up of an API resource, API group, and API version. Now, let's learn about the resource type defined in the URL, such as pods, namespaces, and services. In JSON form, this is called Kind:

			
					Collection of resource: This represents a collection of instances for a resource type, such as all pods in all namespaces. In a URL, this would be as follows:GET /api/v1/pods

					Single resource: This represents a single instance of a resource type, such as retrieving details of a specific pod in a given namespace. The URL for this case would be as follows:GET /api/v1/namespaces/{namespace}/pods/{name}

			

			Now that we have learned about various aspects of a request made to the API server, let's learn about the scope of API resources in the next section.

			Scope of API Resources

			All resource types can either be cluster-scoped resources or namespace-scoped resources. The scope of a resource affects the access of that resource and how that resource is managed. Let's look at the differences between namespace and cluster scope.

			Namespace-Scoped Resources

			As we saw in Chapter 2, An Overview of Kubernetes, Kubernetes makes use of Linux namespaces to organize most Kubernetes resources. Resources in the same namespace share the same control access policies and authorization checks. When a namespace is deleted, all resources in that namespace are also deleted.

			Let's see what forms the request paths for interacting with namespace-scoped resources take:

			
					Return the information about a specific pod in a namespace:GET /api/v1/namespaces/{my-namespace}/pods/{pod-name}

					Return the information about a collection of all Deployments in a namespace:GET /apis/apps/v1/namespaces/{my-namespace}/deployments

					Return the information about all instances of the resource type (in this case, services) across all namespaces:GET /api/v1/services
Notice that when we are looking for information against all namespaces, it will not have namespace in the URL.

			

			You can get a full list of namespace-scoped API resources by using the following command:

			kubectl api-resources --namespaced=true

			You should see a response similar to this:

			
				
					[image: Figure 4.23: Listing out all the namespace-scoped resources

]
				

			

			Figure 4.23: Listing out all the namespace-scoped resources

			Cluster-Scoped Resources

			Most Kubernetes resources are namespace-scoped, but the namespace resource itself is not namespace-scoped. Resources that are not scoped within namespaces are cluster-scoped. Other examples of cluster-scoped resources are nodes. Since a node is cluster-scoped, you can deploy a pod on the desired node regardless of what namespace you want the pod to be in, and a node can host different pods from different namespaces.

			Let's see how the request paths for interacting with cluster-scoped resources look:

			
					Return the information about a specific node in the cluster:GET /api/v1/nodes/{node-name}

					Return the information of all instances of the resource type (in this case, nodes) in the cluster:GET /api/v1/nodes

					You can get a full list of cluster-scoped API resources by using the following command:kubectl api-resources --namespaced=false
You should see an output similar to this:
[image: Figure 4.24: Listing out all cluster-scoped resources

]

			

			Figure 4.24: Listing out all cluster-scoped resources

			API Groups

			An API group is a collection of resources that are logically related to each other. For example, Deployments, ReplicaSets, and DaemonSets all belong to the apps API group: apps/v1.

			Note

			You will learn about Deployments, ReplicaSets, and DaemonSets in detail in Chapter 7, Kubernetes Controllers. In fact, this chapter will talk about many API resources that you will encounter in later chapters.

			The --api-group flag can be used to scope the output to a specific API group, as we will see in the following sections. Let's take a closer look at the various API groups in the following sections.

			Core Group

			This is also called the legacy group. It contains objects such as pods, services, nodes, and namespaces. The URL path for these is /api/v1, and nothing other than the version is specified in the apiVersion field. For example, consider the following screenshot where we are getting information about a pod:

			
				
					[image: Figure 4.25: API group of a pod

]
				

			

			Figure 4.25: API group of a pod

			As you can see here, the apiVersion: v1 field indicates that this resource belongs to the core group.

			Resources showing a blank entry in the kubectl api-resources command output are part of the core group. You can also specify an empty argument flag (--api-group='') to only display the core group resources, as follows:

			kubectl api-resources --api-group=''

			You should see an output as follows:

			
				
					[image: Figure 4.26: Listing out the resources in the core API group

]
				

			

			Figure 4.26: Listing out the resources in the core API group

			Named Group

			This group includes objects for whom the request URL is in the /apis/$NAME/$VERSION format. Unlike the core group, named groups contain the group name in the URL. For example, let's consider the following screenshot where we have information about a Deployment:

			
				
					[image: Figure 4.27: The API group of a Deployment

]
				

			

			Figure 4.27: The API group of a Deployment

			As you can see, the highlighted field showing apiVersion: apps/v1 indicates that this resource belongs to the apps API group.

			You can also specify the --api-group='<NamedGroup Name>' flag to display the resources in that specified named group. For example, let's list out the resources under the apps API group by using the following command:

			kubectl api-resources --api-group='apps'

			This should give the following response:

			
				
					[image: Figure 4.28: Listing out the resources in the apps API group

]
				

			

			Figure 4.28: Listing out the resources in the apps API group

			All of these resources in the preceding screenshot are clubbed together because they are part of the apps named group, which we specified in our query command.

			As another example, let's look at the rbac.authorization.k8s.io API group, which has resources to determine authorization policies. We can look at the resources in that group by using the following command:

			kubectl api-resources --api-group='rbac.authorization.k8s.io'

			You should see the following response:

			
				
					[image: Figure 4.29: Listing out the resources in the rbac.authorization.k8s.io API group

]
				

			

			Figure 4.29: Listing out the resources in the rbac.authorization.k8s.io API group

			System-Wide

			This group consists of system-wide API endpoints, such as /version, /healthz, /logs, and /metrics. For example, let's consider the output of the following command:

			kubectl version --short --v=6

			This should give an output similar to this:

			
				
					[image: Figure 4.30: Request URL for the kubectl version command

]
				

			

			Figure 4.30: Request URL for the kubectl version command

			As you can see in this screenshot, when you run kubectl --version, this goes to the /version special entity, as seen in the GET request URL.

			API Versions

			In the Kubernetes API, there is the concept of API versioning; that is, the Kubernetes API supports multiple versions of a type of resource. These different versions may act differently. Each one has a different API path, such as /api/v1 or /apis/extensions/v1beta1.

			The different API versions differ in terms of stability and support:

			
					Alpha: This version is indicated by alpha in the apiVersion field—for example, /apis/batch/v1alpha1. The alpha version of resources is disabled by default as it is not intended for production clusters but can be used by early adopters and developers who are willing to provide feedback and suggestions and report bugs. Also, support for alpha resources may be dropped without notice by the time the final stable version of Kubernetes is finalized.

					Beta: This version is indicated by beta in the apiVersion field—for example, /apis/certificates.k8s.io/v1beta1. The beta version of resources is enabled by default, and the code behind it is well tested. However, using it is recommended for scenarios that are not business-critical because it is possible that changes in subsequent releases may reduce incompatibilities; that is, some features may not be supported for a long time.

					Stable: For these versions, the apiVersion field just contains the version number without any mention of alpha or beta—for example, /apis/networking.k8s.io/v1. The Stable version of resources is supported for many subsequent versions releases of Kubernetes. So, this version of API resources is recommended for any critical use cases.

			

			You can get a complete list of the API versions enabled in your cluster by using the following command:

			kubectl api-versions

			You should see a response similar to this:

			
				
					[image: Figure 4.31: List of enabled versions of API resources

]
				

			

			Figure 4.31: List of enabled versions of API resources

			An interesting thing that you may observe in this screenshot is that some API resources, such as autoscaling, have multiple versions; for example, for autoscaling, there is v1beta1, v1beta2, and v1. So, what is the difference between them and which one should you use?

			Let's again consider the example of autoscaling. This feature allows you to scale the number of pods in a replication controller, such as Deployments, ReplicaSets, or StatefulSets, based on specific metrics. For example, you can autoscale the number of pods from 3 to 10 if the average CPU load exceeds 50%.

			In this case, the difference in the versions is that of feature support. The Stable release for autoscaling is autoscaling/v1, which only supports scaling the number of pods based on the average CPU metric. The beta release for autoscaling, which is autoscaling/v2beta1, supports scaling based on CPU and memory utilization. The newer version in the beta release, which is autoscaling/v2beta2, supports scaling the number of pods based on custom metrics in addition to CPU and memory. However, since the beta release is still not meant to be used for business-critical scenarios when you create an autoscaling resource, it will use the autoscaling/v1 version. However, you can still use other versions to use additional features by specifying the beta version in the YAML file until the required features are added to the stable release.

			All of this information can seem overwhelming. However, Kubernetes provides ways to access all the information you need to navigate your way around the API resources. You can use kubectl to access the Kubernetes docs and get the necessary information about the various API resources. Let's see how that works in the following exercise.

			Exercise 4.02: Getting Information about API Resources

			Let's say that we want to create an ingress object. For the purposes of this exercise, you don't need to know much about ingress; we will learn about it in the upcoming chapters.

			We will use kubectl to get more information about the Ingress API resource, determine which API versions are available, and find out which groups it belongs to. If you recall from previous sections, we need this information for the apiVersion field of our YAML manifest. Then, we also get the information required for the other fields of our manifest file:

			
					Let's first ask our cluster for all the available API resources that match the ingresses keyword:kubectl api-resources | grep ingresses
This command will filter the list of all the API resources by the ingresses keyword. You should get the following output:
ingresses ing extensions true Ingress
ingresses ing networking.k8s.io true Ingress
We can see that we have ingress resources on two different API groups—extensions and networking.k8s.io.

					We have also seen how we can get API resources belonging to specific groups. Let's check the API groups that we saw in the previous step:kubectl api-resources --api-group="extensions"
You should get the following output:
NAME SHORTNAMES APIGROUP NAMESPACED KIND
ingresses ing extensions true Ingress
Now, let's check the other group:
kubectl api-resources --api-group="networking.k8s.io"
You should see the following output:
[image: Figure 4.32: Listing out the resources in the networking.k8s.io API group

]
Figure 4.32: Listing out the resources in the networking.k8s.io API group
However, if we were to use an ingress resource, we still don't know whether we should use the one from the extensions group or the networking.k8s.io group. In the next step, we will get some more information that will help us decide that.

					Use the following command to get more information:kubectl explain ingress
You should get this response:
[image: Figure 4.33: Getting details of the ingress resource from the extensions API group

]
Figure 4.33: Getting details of the ingress resource from the extensions API group
As you can see, the kubectl explain command describes the API resource, as well as the details about the fields associated with it. We can also see that ingress uses the extensions/v1beta1 API version, but if we read the DESCRIPTION, it mentions that this group version of ingress is deprecated by networking.k8s.io/v1beta1. Deprecated means that the standard is in the process of being phased out, and even though it is currently supported, it is not recommended for use.
Note
If you compare this to the different versions of autoscaling that we saw just before this exercise, you may think that the logical upgrade path from v1beta would be v2beta, and that would totally make sense. However, the ingress resource was moved from the extensions group to the networking.k8s.io group, and so this bucks the naming trend.

					It is not a good idea to use a deprecated version, so let's say that you want to use the networking.k8s.io/v1beta1 version instead. However, we need to get more information about it first. We can add a flag to the kubectl explain command to get information about a specific version of an API resource, as follows:kubectl explain ingress --api-version=networking.k8s.io/v1beta1
You should see this response:
[image: Figure 4.34: Getting details of the ingress resource from the networking.k8s.io API group

]
Figure 4.34: Getting details of the ingress resource from the networking.k8s.io API group

					We can also filter the output of the kubectl explain command by using the JSONPath identifier. This allows us to get information about the various fields that we need to specify while defining the YAML manifest. So, for example, if we would like to see the spec fields for Ingress, the command will be as follows:kubectl explain ingress.spec --api-version=networking.k8s.io/v1beta1
This should give a response as follows:
[image: Figure 4.35: Filtering the output of the kubectl explain command

to get the spec fields of ingress

]
Figure 4.35: Filtering the output of the kubectl explain command to get the spec fields of ingress

					We can dive deeper to get more details about the nested fields. For example, if you wanted to get more details about the backend field of ingress, we can specify ingress.spec.backend to get the required information:kubectl explain ingress.spec.backend --api-version=networking.k8s.io/v1beta1
This will give the following output:
[image: Figure 4.36: Filtering the output of the kubectl explain command

to get the spec.backend field of ingress

]

			

			Figure 4.36: Filtering the output of the kubectl explain command to get the spec.backend field of ingress

			Similarly, we can repeat this for any field that you need information about, which is handy for building or modifying a YAML manifest. So, we have seen that the kubectl explain command is very useful when you are looking for more details and documentation about an API resource. It is also very useful when creating or modifying objects using YAML manifest files.

			How to Enable/Disable API Resources, Groups, or Versions

			In a typical cluster, not all API groups are enabled by default. It depends on the cluster use case as determined by the administrators. For example, some Kubernetes cloud providers disable resources that use the alpha level for stability and security reasons. However, those can still be enabled on the API server by using the --runtime-config flag, which accepts comma-separated lists.

			To be able to create any resource, the group and version should be enabled in the cluster. For example, when you try to create a CronJob that uses apiVersion: batch/v2alpha1 in its manifest file, if the group/version is not enabled, you will get an error similar to the following:

			No matches for kind "CronJob" in version "batch/v2alpha1".

			To enable batch/v2alpha1, you will need to set --runtime-config=batch/v2alpha1 on the API server. This can be done either during the creation of the cluster or by updating the /etc/kubernetes/manifests/kube-apiserver.yaml manifest file. The flag also supports disabling an API group or version by setting a false value to the specific version—for example, --runtime-config=batch/v1=false.

			--runtime-config also supports the api/all special key, which is used to control all API versions. For example, to turn off all API versions except v1, you can pass the --runtime-config=api/all=false,api/v1=true flag. Let's try our own hands-on example of creating and disabling API groups and versions in the following exercise.

			Exercise 4.03: Enabling and Disabling API Groups and Versions on a Minikube Cluster

			In this exercise, we will create specific API versions while starting up Minikube, disable certain API versions in our running cluster, and then enable/disable resources in an entire API group:

			
					Start Minikube with the flag shown in the following command:minikube start --extra-config=apiserver.runtime-config=batch/v2alpha1
You should see the following response:
[image: Figure 4.37: Starting up Minikube with an additional API resource group

]
Figure 4.37: Starting up Minikube with an additional API resource group
Note
You can refer to the minikube start documentation for further details about the --extra-config flag, at https://minikube.sigs.k8s.io/docs/handbook/config/.

					You can confirm it is enabled by checking the details about the kube-apiserver-minikube pod. Use the describe pod command and filter the results by the runtime keyword:kubectl describe pod kube-apiserver-minikube -n kube-system | grep runtime
You should see the following response:
--runtime-config=batch/v2alpha1

					Another way to confirm this is by looking at the enabled API versions by using the following command:kubectl api-versions | grep batch/v2alpha1
You should see the following response:
batch/v2alpha1

					Now, let's create a resource called a CronJob, which uses batch/v2alpha1 to confirm that our API server accepts the API. Create a file named sample-cronjob.yaml with the following contents:apiVersion: batch/v2alpha1
kind: CronJob
metadata:
 name: hello
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: hello
 image: busybox
 args:
 - /bin/sh
 - -c
 - date; echo Hello from the Kubernetes cluster
 restartPolicy: OnFailure

					Now, create a CronJob by using this YAML file:kubectl create -f sample-cronjob.yaml
You should see the following output:
cronjob.batch/hello created
As you can see, the API server accepted our YAML file and the CronJob is created successfully.

					Now, let's disable batch/v2alpha1 on our cluster. To do that, we need to access the Minikube virtual machine (VM) using SSH, as demonstrated in previous chapters:minikube ssh
You should see this response:
[image: Figure 4.38: Accessing the Minikube VM via SSH

]
Figure 4.38: Accessing the Minikube VM via SSH

					Open the API server manifest file. This is the template Kubernetes uses for the API server pods. We will use vi to modify this file, although you can use any text editor of your preference:sudo vi /etc/kubernetes/manifests/kube-apiserver.yaml
You should see a response like the following:
[image: Figure 4.39: The API server spec file

]
Figure 4.39: The API server spec file
Look for the line that contains --runtime-config=batch/v2alpha1 and change it to --runtime-config=batch/v2alpha1=false. Then, save the modified file.

					End the SSH session by using the following command:exit

					For the changes in the API server manifest to take effect, we need to restart the API server and the controller manager. Since these are deployed as stateless pods, we can simply delete them and they will automatically get deployed again. First, let's delete the API server by running this command:kubectl delete pods -n kube-system -l component=kube-apiserver
You should see this output:
pod "kube-apiserver-minikube" deleted
Now, let's delete the controller manager:
kubectl delete pods -n kube-system -l component=kube-controller-manager
You should see this output:
pod "kube-controller-manager-minikube" deleted
Note that for both of these commands, we did not delete the pods by their names. The -l flag looks for labels. These commands deleted all the pods in the kube-system namespace that had labels that match the ones specified after the -l flag.

					We can confirm that batch/v2alpha1 is no longer shown in API versions by using the following command:kubectl api-versions | grep batch/v2alpha1
This command will not give you any response, indicating that we have disabled batch/v2alpha1.

			

			So, we have seen how we can enable or disable a specific group or version of API resources. But this is still a broad approach. What if you wanted to disable a specific API resource?

			For our example, let's say that you want to disable ingress. We saw in the previous exercise that we have ingresses in the extensions as well as networking.k8s.io API groups. If you are targeting a specific API resource, you need to specify its group and version. Let's say that you want to disable ingress from the extensions group because it is deprecated. In this group, we have just one version of ingresses, which is v1beta, as you can observe from Figure 4.33.

			To achieve this, all we have to do is modify the --runtime-config flag to specify the resource that we want. So, if we wanted to disable ingress from the extensions group, the flag would be as follows:

			--runtime-config=extensions/v1beta1/ingresses=false

			To disable the resource, we can use this flag when starting up Minikube, as shown in step 1 of this exercise, or we can add this line to the API server's manifest file, as shown in step 7 of this exercise. Recall from this exercise that if we instead want to enable the resource, we just need to remove the =false part from the end of this flag.

			Interacting with Clusters Using the Kubernetes API

			Up until now, we've been using the Kubernetes kubectl command-line tool, which made interacting with our cluster quite convenient. It does that by extracting the API server address and authentication information from the client kubeconfig file, which is located in ~/.kube/config by default, as we saw in the previous chapter. In this section, we will look at the different ways to directly access the API server with HTTP clients such as curl.

			There are two possible ways to directly access the API server via the REST API—by using kubectl in proxy mode or by providing the location and authentication credentials directly to the HTTP client. We will explore both methods to understand the pros and cons of each one.

			Accessing the Kubernetes API Server Using kubectl as a Proxy

			kubectl has a great feature called kubectl proxy, which is the recommended approach for interacting with the API server. This is recommended because it is easier to use and provides a more secure way of doing so because it verifies the identity of the API server by using a self-signed certificate, which prevents man-in-the-middle (MITM) attacks.

			kubectl proxy routes the requests from our HTTP client to the API server while taking care of authentication by itself. Authentication is also handled by using the current configuration in our kubeconfig file.

			In order to demonstrate how to use kubectl proxy, let's first create an NGINX Deployment with two replicas in the default namespace and view it using kubectl get pods:

			kubectl create deployment mynginx --image=nginx:latest

			This should give an output like the following:

			deployment.apps/mynginx created

			Now, we can scale our Deployment to two replicas with the following command:

			kubectl scale deployment mynginx --replicas=2

			You should see an output similar to this:

			deployment.apps/mynginx scaled

			Let's now check whether the pods are up and running:

			kubectl get pods

			This gives an output similar to the following:

			NAME READY STATUS RESTARTS AGE

			mynginx-565f67b548-gk5n2 1/1 Running 0 2m30s

			mynginx-565f67b548-q6slz 1/1 Running 0 2m30s

			To start a proxy to the API server, run the kubectl proxy command:

			kubectl proxy

			This should give output as follows:

			Starting to serve on 127.0.0.1:8001

			Note from the preceding screenshot that the local proxy connection is running on 127.0.0.1:8001, which is the default. We can also specify a custom port by adding the --port=<YourCustomPort> flag, while adding an & (ampersand) sign at the end of our command to allow the proxy to run in the terminal background so that we can continue working in the same terminal window. So, the command would look like this:

			kubectl proxy --port=8080 &

			This should give the following response:

			[1] 48285

			AbuTalebMBP:~ mohammed$ Starting to serve on 127.0.0.1:8080

			The proxy is run as a background job, and in the preceding screenshot, [1] indicates the job number and 48285 indicates its process ID. To exit a proxy running in the background, you can run fg to bring the job back to the foreground:

			fg

			This will show the following response:

			kubectl proxy --port=8080

			^C

			After getting the proxy to the foreground, we can simply use Ctrl + C to exit it (if there's no other job running).

			Note

			If you are not familiar with job control, you can learn about it at https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html.

			We can now start exploring the API using curl:

			curl http://127.0.0.1:8080/apis

			Recall that even though we are mostly using YAML for convenience, the data is stored in etcd in JSON format. You will see a long response that begins something like this:

			
				
					[image: Figure 4.40: The response from the API server

]
				

			

			Figure 4.40: The response from the API server

			But how do we find the exact path to query the Deployment we created earlier? Also, how do we query the pods created by that Deployment?

			You can start by asking yourself a few questions:

			
					What are the API version and API group used by Deployments?In Figure 4.27, we saw that the Deployments are in apps/v1, so we can start by adding that to the path:
curl http://127.0.0.1:8080/apis/apps/v1

					Is it a namespace-scoped resource or a cluster-scoped resource? If it is a namespace-scoped resource, what is the name of the namespace?We also saw in the scope of the API resources section that Deployments are namespace-scoped resources. When we created the Deployment, since we did not specify a different namespace, it went to the default namespace. So, in addition to the apiVersion field, we would need to add namespaces/default/deployments to our path:
curl http://127.0.0.1:8080/apis/apps/v1/namespaces/default/deployments
This will return a large output with the JSON data that is stored on this path. This is the part of the response that gives us the information that we need:
[image: Figure 4.41: Getting information about all the Deployments using curl

]

			

			Figure 4.41: Getting information about all the Deployments using curl

			As you can see in this output, this lists all the Deployments in the default namespace. You can infer that from "kind": "DeploymentList". Also, note that the response is in JSON format and is not neatly presented as a table.

			Now, we can specify a specific Deployment by adding it to our path:

			curl http://127.0.0.1:8080/apis/apps/v1/namespaces/default/deployments/mynginx

			You should see this response:

			
				
					[image: Figure 4.42: Getting information about our NGINX Deployment using curl

]
				

			

			Figure 4.42: Getting information about our NGINX Deployment using curl

			You can use this method with any other resource as well.

			Creating Objects Using curl

			When you use any HTTP client, such as curl, to send requests to the API server to create objects, you need to change three things:

			
					Change the HTTP request method to POST. By default, curl will use the GET method. To create objects, we need to use the POST method, as we learned in The Kubernetes API section. You can change this using the -X flag.

					Change the HTTP request header. We need to modify the header to inform the API server what the intention of the request is. We can modify the header using the -H flag. In this case, we need to set the header to 'Content-Type: application/yaml'.

					Include the spec of the object to be created. As you learned in the previous two chapters, each API resource is persisted in the etcd as an API object, which is defined by a YAML spec/manifest file. To create an object, you need to use the --data flag to pass the YAML manifest to the API server so that it can persist it in etcd as an object.

			

			So, the curl command, which we will implement in the following exercise, will look something like this:

			curl -X POST <URL-path> -H 'Content-Type: application/yaml' --data <spec/manifest>

			At times, you will have the manifest files handy. However, that may not always be the case. Also, we have not yet seen what manifests for namespaces look like.

			Let's consider a case where we want to create a namespace. Usually, you would create a namespace as follows:

			kubectl create namespace my-namespace

			This will give the following response:

			namespace/my-namespace created

			Here, you can see that we created a namespace called my-namespace. However, for passing the request without using kubectl, we need the spec used to define a namespace. We can get that by using the --dry-run=client and -o flags:

			kubectl create namespace my-second-namespace --dry-run=client -o yaml

			This will give the following response:

			
				
					[image: Figure 4.43: Getting the spec for a namespace using dry-run

]
				

			

			Figure 4.43: Getting the spec for a namespace using dry-run

			When you run a kubectl command with the --dry-run=client flag, the API server takes it through all the stages of a normal command, except that it does not persist the changes into etcd. So, the command is authenticated, authorized, and validated, but changes are not permanent. This is a great way to test whether a certain command works, and also to get the manifest that the API server would have created for this command, as you can see in the previous screenshot. Let's see how to put this in practice and use curl to create a Deployment.

			Exercise 4.04: Creating and Verifying a Deployment Using kubectl proxy and curl

			For this exercise, we will create an NGINX Deployment called nginx-example with three replicas in a namespace called example. We will do this by sending our requests to the API server with curl via kubectl proxy:

			
					First, let's start our proxy:kubectl proxy &
This should give the following response:
[1] 50034
AbuTalebMBP:~ mohammed$ Starting to serve on 127.0.0.1:8080
The proxy started as a background job and is listening on the localhost at port 8001.

					Since the example namespace does not exist, we should create that namespace before creating the Deployment. As we learned in the previous section, we need to get the spec that should be used to create the namespace. Let's use the following command:kubectl create namespace example --dry-run -o yaml
Note
For Kubernetes versions 1.18+, please use --dry-run=client.
This will give the following output:
[image: Figure 4.44: Getting the spec required for our namespace

]
Figure 4.44: Getting the spec required for our namespace
Now, we have the spec required for creating the namespace.

					Now, we need to send a request to the API server using curl. Namespaces belong to the core group and hence the path will be /api/v1/namespaces. The final curl command to create the namespace after adding all required parameters should look like the following:curl -X POST http://127.0.0.1:8001/api/v1/namespaces -H 'Content- Type: application/yaml' --data "
apiVersion: v1
kind: Namespace
metadata:
 creationTimestamp: null
 name: example
spec: {}
status: {}
"
Note
You can discover the required path for any resource, as shown in the previous exercise. In this command, the double-quotes (") after --data allow you to enter multi-line input in Bash, which is delimited by another double-quote at the end. So, you can copy the output from the previous step here before the delimiter.
Now, if everything was correct in our command, you should get a response like the following:
[image: Figure 4.45: Using curl to send a request to create a namespace

]
Figure 4.45: Using curl to send a request to create a namespace

					The same procedure applies to Deployment. So, first, let's use the kubectl create command with --dry-run=client to get an idea of how our YAML data looks:kubectl create deployment nginx-example -n example --image=nginx:latest --dry-run -o yaml
Note
For Kubernetes versions 1.18+, please use --dry-run=client.
You should get the following response:
[image: Figure 4.46: Using curl to send a request to create a Deployment

]
Figure 4.46: Using curl to send a request to create a Deployment
Note
Notice that the namespace will not show if you are using the --dry-run=client flag because we need to specify it in our API path.

					Now, the command for creating the Deployment will be constructed similarly to the command for creating the namespace. Note that the namespace is specified in the API path:curl -X POST http://127.0.0.1:8001/apis/apps/v1/namespaces/example/ deployments -H 'Content-Type: application/yaml' --data "
apiVersion: apps/v1
kind: Deployment
metadata:
 creationTimestamp: null
 labels:
 run: nginx-example
 name: nginx-example
spec:
 replicas: 3
 selector:
 matchLabels:
 run: nginx-example
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:
 run: nginx-example
 spec:
 containers:
 - image: nginx:latest
 name: nginx-example
 resources: {}
status: {}
"
If everything is correct, you should get a response like the following from the API server:
[image: Figure 4.47: Response from API server after creating a Deployment

]

			

			Figure 4.47: Response from API server after creating a Deployment

			Note that the kubectl proxy process is still running in the background. If you are done with interacting with the API server using kubectl proxy, then you may want to stop the proxy from running in the background. To do that, run the fg command to bring the kubectl proxy process to the foreground and then press Ctrl + C.

			So, we have seen how we can interact with the API server using kubectl proxy, and by using curl, we have been able to create an NGINX Deployment in a new namespace.

			Direct Access to the Kubernetes API Using Authentication Credentials

			Instead of using kubectl in proxy mode, we can provide the location and credentials directly to the HTTP client. This approach can be used if you are using a client that may get confused by proxies, but it is less secure than using the kubectl proxy due to the risk of MITM attacks. To mitigate this risk, it is recommended that you import the root certificate and verify the identity of the API server when using this method.

			When thinking about accessing the cluster using credentials, we need to understand how authentication is configured and what authentication plugins are enabled in our cluster. Several authentication plugins can be used, which allow different ways of authenticating with the server:

			
					Client certificates

					ServiceAccount bearer tokens

					Authenticating proxy

					HTTP basic authNote
Note that the preceding list includes only some of the authentication plugins. You can learn more about authentication at https://kubernetes.io/docs/reference/access-authn-authz/authentication/.

			

			Let's check what authentication plugins are enabled in our cluster by looking at the API server running process using the following command and looking at the flags passed to the API server:

			kubectl exec -it kube-apiserver-minikube -n kube-system -- /bin/sh -c "apt update ; apt -y install procps ; ps aux | grep kube-apiserver"

			This command will first install/update procps (a tool used to inspect processes) within the API server, which is running as a pod on our Minikube server. Then, it will get the list of processes and filter it by using the kube-apiserver keyword. You will get a long output, but here is the part that we are interested in:

			
				
					[image: Figure 4.48: Getting the details flags passed to the API server

]
				

			

			Figure 4.48: Getting the details flags passed to the API server

			The following two flags from this screenshot tell us some important information:

			
					--client-ca-file=/var/lib/minikube/certs/ca.crt

					--service-account-key-file=/var/lib/minikube/certs/sa.pub

			

			These flags tell us that we have two different authentication plugins configured—X.509 client certificates (based on the first flag) and ServiceAccount tokens (based on the second flag). We will now learn how to use both of these authentication methods for communicating with the API server.

			Method 1: Using Client Certificate Authentication

			X.509 certificates are used for authenticating external requests, which is the current configuration in our kubeconfig file. The --client-ca-file=/var/lib/minikube/certs/ca.crt flag indicates the certificate authority that is used to validate client certificates, which will authenticate with the API server. An X.509 certificate defines a subject, which is what identifies a user in Kubernetes. For example, the X.509 certificate used for SSL by https://www.google.com/ has a subject containing the following information:

			Common Name = www.google.com

			Organization = Google LLC

			Locality = Mountain View

			State = California

			Country = US

			When an X.509 certificate is used for authenticating a Kubernetes user, the Common Name of the subject is used as the username for the user, and the Organization field is used as the group membership of that user.

			Kubernetes uses a TLS protocol for all of its API calls as a security measure. The HTTP client that we have been using so far, curl, can work with TLS. Earlier, kubectl proxy took care of communicating over TLS for us, but if we want to do it directly using curl, we need to add three more details to all of our API calls:

			
					--cert: The client certificate path

					--key: The private key path

					--cacert: The certificate authority path

			

			So, if we combine them, the command syntax should look as follows:

			curl --cert <ClientCertificate> --key <PrivateKey> --cacert <CertificateAuthority> https://<APIServerAddress:port>/api

			In this section, we will not create these certificates, but instead, we will be using the certificates that were created when we bootstrapped our cluster using Minikube. All the relevant information can be taken from our kubeconfig file, which was prepared by Minikube when we initialized the cluster. Let's see that file:

			kubectl config view

			You should get the following response:

			
				
					[image: Figure 4.49: The API server IP and authentication certificates in kubeconfig

]
				

			

			Figure 4.49: The API server IP and authentication certificates in kubeconfig

			The final command should look like the following: you can see that we can explore the API:

			curl --cert ~/.minikube/client.crt --key ~/.minikube/client.key --cacert ~/.minikube/ca.crt https://192.168.99.110:8443/api

			You should get the following response:

			
				
					[image: Figure 4.50: Response from API server

]
				

			

			Figure 4.50: Response from API server

			So, we can see that the API server is responding to our calls. You can use this method to achieve everything that we have done in the previous section using kubectl proxy.

			Method 2: Using a ServiceAccount Bearer Token

			Service accounts are meant to authenticate processes running within the cluster, such as pods, to allow internal communication with the API server. They use signed bearer JSON Web Tokens (JWTs) to authenticate with the API server. These tokens are stored in Kubernetes objects called Secrets, which are a type of entities used to store sensitive information, such as the aforementioned authentication tokens. The information stored inside a Secret is Base64-encoded.

			So, each ServiceAccount has a corresponding secret associated with it. When a pod uses a ServiceAccount to authenticate with the API server, the secret is mounted on the pod and the bearer token is decoded and then mounted at the following location inside a pod: /run/secrets/kubernetes.io/serviceaccount. This can then be used by any process in the pod to authenticate with the API server. Authentication by use of ServiceAccounts is enabled by a built-in module known as an admission controller, which is enabled by default.

			However, ServiceAccounts alone are not sufficient; once authenticated, Kubernetes also needs to permit any actions for that ServiceAccount (which is the authorization phase). This is managed by Role-Based Access Control (RBAC) policies. In Kubernetes, you can define certain Roles, and then use RoleBinding to bind those Roles to certain users or ServiceAccounts.

			A Role defines what actions (API verbs) are allowed and which API groups and resources can be accessed. A RoleBinding defines which user or ServiceAccount can assume that Role. A ClusterRole is similar to a Role, except that a Role is namespace-scoped, while a ClusterRole is a cluster-scoped policy. The same distinction is true for RoleBinding and ClusterRoleBinding.

			Note

			You will learn more about secrets in Chapter 10, ConfigMaps and Secrets; more on RBAC in Chapter 13, Runtime and Network Security in Kubernetes; and admission controllers in Chapter 16, Kubernetes Admission Controllers.

			Every namespace contains a ServiceAccount called default. We can see that by using the following command:

			kubectl get serviceaccounts --all-namespaces

			You should see the following response:

			
				
					[image: Figure 4.51: Examining default ServiceAccounts for each namespace

]
				

			

			Figure 4.51: Examining default ServiceAccounts for each namespace

			As mentioned earlier, a ServiceAccount is associated with a secret that contains the CA certificate of the API server and a bearer token. We can view the ServiceAccount-associated secret in the default namespace, as follows:

			kubectl get secrets

			You should get the following response:

			NAME TYPE DATA AGE

			default-token-wtkk5 kubernetes.io/service-account-token 3 10h

			We can see that we have a secret named default-token-wtkk5 (where wtkk5 is a random string) in our default namespace. We can view the content of the Secret resource by using the following command:

			kubectl get secrets default-token-wtkk5 -o yaml

			This command will get the object definition as it is stored in etcd and display it in YAML format so that it is easy to read. This will produce an output as follows:

			
				
					[image: Figure 4.52: Displaying the information stored in a secret

]
				

			

			Figure 4.52: Displaying the information stored in a secret

			Note from the preceding secret that namespace, token, and the CA certificate of the API server (ca.crt) are Base64-encoded. You can decode it using base64 --decode in your Linux terminal, as follows:

			echo "<copied_value>" | base64 --decode

			Copy and paste the value from ca.crt or token in the preceding command. This will output the decoded value, which you can then write to a file or a variable for later use. However, in this demonstration, we will show another method to get the values.

			Let's take a peek into one of our pods:

			kubectl exec -it <pod-name> -- /bin/bash

			This command enters the pod and then runs a Bash shell on it. Then, once we have the shell running inside a pod, we can explore the various mount points available in the pod:

			df -h

			This will give an output similar to the following:

			
				
					[image: Figure 4.53: The mount point for the bearer token

]
				

			

			Figure 4.53: The mount point for the bearer token

			The mount point can be explored further:

			ls /var/run/secrets/kubernetes.io/serviceaccount

			You should see an output similar to the following:

			ca.crt namespace token

			As you can see here, the mount point contains the API server CA certificate, the namespace this secret belongs to, and the JWT bearer token. If you are trying these commands on your terminal, you can exit the pod's shell by entering an exit.

			If we try to access the API server using curl from inside the pod, we would need to provide the CA path and the token. Let's try to list all the pods in the pod's namespace by accessing the API server from inside a pod.

			We can create a new Deployment and start a Bash terminal with the following procedure:

			kubectl run my-bash --rm --restart=Never -it --image=ubuntu -- bash

			This may take a few seconds to start up, and then you will get a response similar to this:

			If you don't see a command prompt, try pressing enter.

			root@my-bash: /#

			This will start up a Deployment running Ubuntu and immediately take us inside the pod and open up the Bash shell. The --rm flag in this command will delete the pod after all the processes inside the pod are terminated—that is, after we leave the pod using the exit command. But for now, let's install curl:

			apt update && apt -y install curl

			This should produce a response similar to this:

			
				
					[image: Figure 4.54: Installing curl

]
				

			

			Figure 4.54: Installing curl

			Now that we have installed curl, let's try to list the pods using curl by accessing the API path:

			curl https://kubernetes/api/v1/namespaces/$NAMESPACE/pods

			You should see the following response:

			
				
					[image: Figure 4.55: Trying to access the API without TLS

]
				

			

			Figure 4.55: Trying to access the API without TLS

			Notice that the command has failed. This happened since Kubernetes forces all communication to use TLS, which usually rejects insecure connections (without any authentication tokens). Let's add the --insecure flag, which will allow an insecure connection with curl, and observe the results:

			curl --insecure https://kubernetes/api/v1/namespaces/$NAMESPACE/pods

			You should get a response as follows:

			
				
					[image: Figure 4.56: Anonymous request to the API server

]
				

			

			Figure 4.56: Anonymous request to the API server

			We can see that we were able to reach the server using an insecure connection. However, the API server treated our request as anonymous since there was no identity provided to our command.

			Now, to make commands easier, we can add the namespace, CA certificate (ca.crt), and the token to variables so that the API server knows the identity of the service account generating the API request:

			CACERT=/run/secrets/kubernetes.io/serviceaccount/ca.crt

			TOKEN=$(cat /run/secrets/kubernetes.io/serviceaccount/token)

			NAMESPACE=$(cat /run/secrets/kubernetes.io/serviceaccount/namespace)

			Note that here we can use the values directly as they are in plaintext (not encoded) when looking from inside a pod, compared to having to decode them from a Secret. Now, we have all the parameters ready. When using bearer token authentication, the client should send this token in the header of the request, which is the authorization header. This should look like this: Authorization: Bearer <token>. Since we have added the token into a variable, we can simply use that. Let's run the curl command to see whether we can list the pods using the identity of the ServiceAccount:

			curl --cacert $CACERT -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/$NAMESPACE/pods

			You should get the following response:

			
				
					[image: Figure 4.57: Request to the API server using the default ServiceAccount

]
				

			

			Figure 4.57: Request to the API server using the default ServiceAccount

			Notice that we were able to reach the API server, and the API server verified the "system:serviceaccount:default:default" identity, which is represented in this format: system:<resource_type>:<namespace>:<resource_name> However, we still got a Forbidden error because ServiceAccounts do not have any permissions by default. We need to manually assign permissions to our default ServiceAccount in order to be able to list pods. This can be done by creating a RoleBinding and linking it to the view ClusterRole.

			Open another terminal window, ensuring that you don't close the terminal session running the my-bash pod (because the pod will be deleted and you will lose your progress if you close it). Now, in the second terminal session, you can run the following command to create a rolebinding defaultSA-view to attach the view ClusterRole to the ServiceAccount:

			kubectl create rolebinding defaultSA-view \

			 --clusterrole=view \

			 --serviceaccount=default:default \

			 --namespace=default

			Note

			The view ClusterRole should already exist for your Kubernetes cluster, as it is one of the default ClusterRoles available for use.

			As you might recall from the previous chapter, this is an imperative approach to creating resources; you will learn how to create manifests for RBAC policies in Chapter 13, Runtime and Network Security in Kubernetes. Note that we have to specify the ServiceAccount as <namespace>:<ServiceAccountName>, and we have a --namespace flag since a RoleBinding can only apply to the ServiceAccounts within that namespace. You should get the following response:

			rolebinding.rbac.authorization.k8s.io/defaultSA-view created

			Now, go back to the terminal window where we accessed the my-bash pod. With the necessary permissions set, let's try our curl command again:

			curl --cacert $CACERT -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/$NAMESPACE/pods

			You should get the following response:

			
				
					[image: Figure 4.58: Successful response from the API server

]
				

			

			Figure 4.58: Successful response from the API server

			Our ServiceAccount can now authenticate with the API server, and it is authorized to list pods in the default namespace.

			It is also valid to use ServiceAccount bearer tokens outside the cluster. You may want to use tokens instead of certificates as an identity for long-standing jobs since the token does not expire as long as the ServiceAccount exists, whereas a certificate has an expiry date set by the certificate-issuing authority. An example of this is CI/CD pipelines, where external services commonly use ServiceAccount bearer tokens for authentication.

			Activity 4.01: Creating a Deployment Using a ServiceAccount Identity

			In this activity, we will bring together all that we have learned in this chapter. We will be using various operations on our cluster and using different methods to access the API server.

			Perform the following operations using kubectl:

			
					Create a new namespace called activity-example.

					Create a new ServiceAccount called activity-sa.

					Create a new RoleBinding called activity-sa-clusteradmin to attach the activity-sa ServiceAccount to the cluster-admin ClusterRole (which exists by default). This step is to ensure that our ServiceAccount has the necessary permissions to interact with the API server as a cluster admin.

			

			Perform the following operations using curl with bearer tokens for authentication:

			
					Create a new NGINX Deployment with the identity of the activity-sa ServiceAccount.

					List the pods in your Deployment. Once you use curl to check the Deployment, if you have successfully gone through the previous steps, you should get a response that looks something like this:[image: Figure 4.59: Expected response when checking the Deployment

]
Figure 4.59: Expected response when checking the Deployment

					Finally, delete the namespace with all associated resources. When using curl to delete a namespace, you should see a response with phase set to terminating for the status field of the namespace resource, as in the following screenshot:"status": {
 "phase": "Terminating"
Note
The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			

			Summary

			In this chapter, we took a closer look at the Kubernetes API server, the way that Kubernetes uses the RESTful API, and how API resources are defined. We learned that all commands from the kubectl command-line utility are translated into RESTful HTTP API calls and are sent to the API server. We learned that API calls go through multiple stages, including authentication, authorization, and admission control. We also had a closer look at each stage and some of the modules involved.

			Then, we learned about some API resources, how they are categorized as namespace-scoped or cluster-scoped resources, and their API group and API version. We then learned how we can use this information to build an API path for interacting with the Kubernetes API.

			We also applied what we learned by making an API call directly to the API server, using the curl HTTP client to interact with objects by using different authentication methods, such as ServiceAccounts and an X.509 certificate.

			In the next few chapters, we will inspect most of the commonly used API objects more closely, mainly focusing on the different functionalities offered by these objects to enable us to deploy and maintain our application in a Kubernetes cluster. We will begin this series of chapters by taking a look at the basic unit of deployment in Kubernetes (pods) in the next chapter.

		

		
			
			

		

	
		
			
			

		

		
			5. Pods

		

		
			Overview

			This chapter introduces the concept of pods and teaches how to properly configure and deploy them. We will begin by creating a simple pod with your application container running in it. We will explain what the different aspects of pod configuration mean and decide which configuration to use based on your application or use case. You will be able to define resource allocation requirements and limits for pods. We will then move on to see how we can debug the pod, check the logs, and make changes to it when needed. Some more useful tools for managing faults in pods, such as liveness and readiness probes and restart policies, are also covered in this chapter.

			Introduction

			In the previous chapter, we learned how to use kubectl to interact with the Kubernetes API. In this chapter and the upcoming chapters, we will use that knowledge to interact with the API to create various types of Kubernetes objects.

			In a Kubernetes system, many entities represent the state of the cluster and what the cluster's workload looks like. These entities are known as Kubernetes objects. Kubernetes objects describe various things, for example, what containers will be running in the cluster, what resources they will be using, how those containers will interact with each other, and how they will be exposed to the outer world.

			A pod is the basic building block of Kubernetes, and it can be described as the basic unit of deployment. Just like we define a process as a program in execution, we can define a pod as a running process in the Kubernetes world. Pods are the smallest unit of replication in Kubernetes. A pod can have any number of containers running in it. A pod is basically a wrapper around containers running on a node. Using pods instead of individual containers has a few benefits. For example, containers in a pod have shared volumes, Linux namespaces, and cgroups. Each pod has a unique IP address and the port space is shared by all the containers in that pod. This means that different containers inside a pod can communicate with each other using their corresponding ports on localhost.

			Ideally, we should use multiple containers in a pod only when we want them to be managed and located together in the Kubernetes cluster. For example, we may have a container running our application and another container that fetches logs from the application container and forwards them to some central storage. In this case, we would want both of our containers to stay together, to share the same IP so that they can communicate over localhost, and to share the same storage so that the second container can read the logs our application container is generating.

			In this chapter, we will cover what a pod is, how it works, and how to define its pod spec, which describes the state of a pod. We will go through different phases of the life cycle of a pod and learn how to control the pods using health checks or probes. Let's begin by learning how a pod is configured.

			Pod Configuration

			In order to be able to successfully configure a pod, we must first be able to read and understand a pod configuration file. Here is an example pod configuration file:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-name

			spec:

			 containers:

			 - name: container1-name

			 image: container1-image

			 - name: container2-name

			 image: container2-image

			We can break down the configuration of a pod into four main components:

			
					apiVersion: Version of the Kubernetes API we are going to use.

					kind: The kind of Kubernetes object we are trying to create, which is a Pod in this case.

					metadata: Metadata or information that uniquely identifies the object we're creating.

					spec: Specification of our pod, such as container name, image name, volumes, and resource requests.

			

			apiVersion, kind, and metadata apply to all types of Kubernetes objects and are required fields. spec is also a required field; however, its layout is different for different types of objects.

			The following exercise demonstrates how to use such a pod configuration file to create a simple pod.

			Exercise 5.01: Creating a Pod with a Single Container

			In this exercise, we aim to create our first simple pod that runs a single container. To complete this exercise, perform the following steps:

			
					Create a file called single-container-pod.yaml with the following contents:apiVersion: v1
kind: Pod
metadata:
 name: first-pod
spec:
 containers:
 - name: my-first-container
 image: nginx

					Run the following command in Terminal to create a pod with the preceding configuration:kubectl create -f single-container-pod.yaml
You should see the following response:
pod/first-pod created
The output indicates that the pod has been created.

					Verify that the pod was created by getting the list of all the pods using this command:kubectl get pods
You should see the following response:
NAME READY STATUS RESTARTS AGE
first-pod 1/1 Running 0 5m44s

					Now that we have created our first pod, let's look into it in more detail. To do that, we can describe the pod we just created using the following command in Terminal:kubectl describe pod first-pod
You should see the following output:
[image: Figure 5.1: Describing first-pod

]

			

			Figure 5.1: Describing first-pod

			The output shows various details about the pod we just created. In the following sections, we shall go through the highlighted sections of the preceding output to find out more about the pod that's running.

			Name

			This field states the name of the pod, and it is also sometimes referred to as the pod ID. Pod names are unique in a particular namespace. A pod name can be a maximum of 253 characters long. The characters allowed in a pod name are numerals (0-9), lowercase letters (a-z), hyphens (-), and dots (.).

			Consider the second line in the output shown in Figure 5.1:

			Name: first-pod

			It is the same as the one we mentioned in our YAML configuration.

			Namespace

			Kubernetes supports namespaces to create multiple virtual clusters within the same physical cluster. We may need to use namespaces if we want to provide separate environments to our different teams working on the same cluster. Namespaces also help in scoping the object names. For example, you cannot have two pods with the same name within the same namespace. However, it's possible to have two pods with the same name in two different namespaces. Now, consider the second line in the output shown in Figure 5.1:

			Namespace: default

			We can either temporarily change the namespace of the request by passing the --namespace argument for a particular kubectl command, or we can update the kubectl config to change the namespace for all subsequent kubectl commands. To create a new namespace, we can use the following command:

			kubectl create namespaces <namespace-name>

			There are two ways to create pods in different namespaces – by using a CLI command, or by specifying the namespace in the pod configuration. The following exercises demonstrate how you can create pods in different namespaces to reap the benefits of namespaces that were mentioned earlier.

			Exercise 5.02: Creating a Pod in a Different Namespace by Specifying the Namespace in the CLI

			In this exercise, we will create a pod in a namespace other than default. We will do that using the same pod configuration from Exercise 5.01, Creating a Pod with a Single Container, by specifying the namespace in the command argument. Follow these steps to complete the exercise:

			
					Run the following command to view all the available namespaces in our Kubernetes cluster:kubectl get namespaces
You should see the following list of namespaces:
NAME STATUS AGE
default Active 16d
kube-node-lease Active 16d
kube-public Active 16d
kube-system Active 16d
The output shows all the namespaces in our Kubernetes cluster. The default namespace is, as the word implies, the default namespace for all Kubernetes objects created without any namespace.

					Run the following command to create the pod with the single-container-pod.yaml pod configuration but in a different namespace:kubectl --namespace kube-public create -f single-container-pod.yaml
You should see the following response:
pod/first-pod created
Note
If you create a pod in a particular namespace, you can only view it by switching to that namespace.

					Verify that the pod was created in the kube-public namespace:kubectl --namespace kube-public get pods
You should see the following response:
NAME READY STATUS RESTARTS AGE
first-pod 1/1 Running 0 8s

			

			The output here shows that we have successfully created the pod in the kube-public namespace.

			The next exercise demonstrates how to create a pod in different namespace based on a YAML file.

			Exercise 5.03: Creating a Pod in a Different Namespace by Specifying the Namespace in the Pod Configuration YAML file

			In this exercise, we shall add a line to the YAML configuration file to specify that all pods created using this file use a specified namespace.

			
					Run the following command to view all the available namespaces in our Kubernetes cluster:kubectl get namespaces
You should see the following list of namespaces:
NAME STATUS AGE
default Active 16d
kube-node-lease Active 16d
kube-public Active 16d
kube-system Active 16d

					Next, create a file named single-container-pod-with-namespace.yaml with the following configuration:apiVersion: v1
kind: Pod
metadata:
 name: first-pod-with-namespace
 namespace: kube-public
spec:
 containers:
 - name: my-first-container
 image: nginx

					Run the following command to create a pod with the single-container-pod-with-namespace.yaml pod configuration:kubectl create -f single-container-pod-with-namespace.yaml
You should see the following response:
pod/first-pod-with-namespace created

					Verify that the pod was created in the kube-public namespace:kubectl --namespace kube-public get pods
You should see the following list of pods:
NAME READY STATUS RESTARTS AGE
first-pod 1/1 Running 0 5m2s
first-pod-with-namespace 1/1 Running 0 46s
The output shows that the new pod we created occupies the kube-public namespace. Any other pods created using the single-container-pod-with-namespace.yaml pod configuration will occupy the same namespace.

			

			In the following exercise, we shall change the default kubectl namespace so that all pods without a defined namespace take our newly defined namespace instead of default.

			Exercise 5.04: Changing the Namespace for All Subsequent kubectl Commands

			In this exercise, we will change the namespace for all subsequent kubectl commands from default to kube-public.

			
					Run the following command to view all the available namespaces in our Kubernetes cluster:kubectl get namespaces
You should see the following list of namespaces:
NAME STATUS AGE
default Active 16d
kube-node-lease Active 16d
kube-public Active 16d
kube-system Active 16d

					Run the following command to change the namespace for all subsequent requests by modifying the current context:kubectl config set-context $(kubectl config current-context) --namespace kube-public
You should see the following response:
Context "minikube" modified.

					Run the following command to list all the pods in the kube-public namespace without using the namespace argument:kubectl get pods
You should see the following list of pods:
NAME READY STATUS RESTARTS AGE
first-pod 1/1 Running 0 48m
first-pod-with-namespace 1/1 Running 0 44m
The output shows that the preceding command lists all the pods that we have created in the kube-public namespace. We saw in Exercise 5.01, Creating a Pod with a Single Container, that the kubectl get pods command shows pods in the default namespace. But here, we get results from the kube-public namespace instead.

					In this step, we will undo the changes so that it doesn't affect the upcoming exercises in this chapter. We will change the default namespace to default again to avoid any confusion:kubectl config set-context $(kubectl config current-context) --namespace default
You should see the following response:
Context "minikube" modified.

			

			In this exercise, we have seen how to change and reset the default namespace of the context.

			Node

			As you have learned in earlier chapters, nodes are the various machines running in our cluster. This field reflects the node in the Kubernetes cluster where this pod was running. Knowing what node a pod is running on can help us with debugging issues with that pod. Observe the sixth line of the output shown in Figure 5.1:

			Node: minikube/10.0.2.15

			We can list all the nodes in our Kubernetes cluster by running the following command:

			kubectl get nodes

			You should see the following response:

			NAME STATUS ROLES AGE VERSION

			minikube Ready <none> 16d v1.14.3

			In this case, there's only one node in our cluster because we are using Minikube for these exercises:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: firstpod

			spec:

			 nodeName: my-favorite-node # run this pod on a specific node

			 containers:

			 - name: my-first-pod

			 image: nginx

			If we have more than one node in our cluster, we can configure our pod to run on a particular node by adding the following nodeName field to the configuration, as seen in the sixth line in the previous spec.

			Note

			In a production environment, nodeName is typically not used for assigning a certain pod to run on the desired node. In the next chapter, we will learn about nodeSelector, which is a better way to control which node the pod gets assigned to.

			Status

			This field tells us the status of the pod so that we can take appropriate action, such as starting or stopping a pod as required. While this demonstration shows one of the ways to get the status of the pod, in actual practice, you would want to automate actions based on the pod status. Consider the tenth line of the output shown in Figure 5.1:

			Status: Running

			This states that the current status of the pod is Running. This field reflects which phase of its life cycle a pod is in. We will talk about various phases of a pod's life cycle in the next section of this chapter.

			Containers

			Earlier in this chapter, we saw that we can bundle various containers inside a pod. This field lists all the containers that we have created in this pod. Consider the output field from line 12 onwards in Figure 5.1:

			
				
					[image: Figure 5.2: Containers field from the describe command

]
				

			

			Figure 5.2: Containers field from the describe command

			We have only one in this case. We can see that the name and the image of the container are the same as we specified in the YAML configuration. The following is a list of the other fields that we can set:

			
					Image: Name of the Docker image

					Args: The arguments to the entry point for the container

					Command: The command to run on the container once it starts

					Ports: A list of ports to expose from the container

					Env: A list of environment variables to be set in the container

					resources: The resource requirements of the container

			

			In the following exercise, we shall create a container using a simple command.

			Exercise 5.05: Using CLI Commands to Create a Pod Running a Container

			In this exercise, we will create a pod that will run a container by running a command.

			
					First, let's create a file named pod-with-container-command.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: command-pod
spec:
 containers:
 - name: container-with-command
 image: ubuntu
 command:
 - /bin/bash
 - -ec
 - while :; do echo '.'; sleep 5; done

					Run the following command to create the pod using the configuration defined in the pod-with-container-command.yaml file:kubectl create -f pod-with-container-command.yaml
You should see the following response:
pod/command-pod created
The YAML file we created in the previous step instructs the pod to start a container with an Ubuntu image and run the following command:
/bin/bash -ec "while :; do echo '.'; sleep 5; done"
This command should print a dot (.) character on a new line every 5 seconds.

					Let's check the logs of this pod to verify that it's doing what it's expected to do. To check the logs of a pod, we can use the kubectl logs command:kubectl logs command-pod -f
You should see the following response:
[image: Figure 5.3: Following logs for command-pod

]

			

			Figure 5.3: Following logs for command-pod

			In the log, which keeps updating periodically, we see a dot (.) character printed on a new line every 5 seconds. Thus, we have successfully created the desired container.

			Note

			The -f flag is to follow the logs on the container. That is, the log keeps updating in real-time. If we skip that flag, we will see the logs without following them.

			In the next exercise, we shall run a container that opens up a port, which is something that you would have to do regularly to make the container accessible to the rest of your cluster or the internet.

			Exercise 5.06: Creating a Pod Running a Container That Exposes a Port

			In this exercise, we will create a pod that runs a container that will expose a port that we can access from outside the pod.

			
					First, let's create a file named pod-with-exposed-port.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: port-exposed-pod
spec:
 containers:
 - name: container-with-exposed-port
 image: nginx
 ports:
 - containerPort: 80

					Run the following command to create the pod using the pod-with-exposed-port.yaml file:kubectl create -f pod-with-exposed-port.yaml
You should see the following response:
pod/port-exposed-pod created
This pod should create a container and expose its port 80. We have configured the pod to run a container with an nginx image, which is a popular web server.

					Next, we will forward port 80 from the pod to localhost:sudo kubectl port-forward pod/port-exposed-pod 80
You should see the following response:
Forwarding from 127.0.0.1:80 -> 80
Forwarding from [::1] -> 80
This will expose port 80 from the pod to localhost port 80.
Note
We will need to keep this command running in one terminal.

					Now, we can simply enter either http://localhost or http://127.0.0.1 in the address bar of the browser.

					Alternatively, we can run the following command and see the HTML source code of the default index page in the response:curl 127.0.0.1
You should see the following output:
[image: Figure 5.4: Getting the HTML source using curl

]
Figure 5.4: Getting the HTML source using curl

					Next, let's verify that the pod is actually receiving the request by checking the logs using the kubectl logs command:kubectl logs port-exposed-pod
You should see the following response:
[image: Figure 5.5: Checking the logs for the nginx pod

]

			

			Figure 5.5: Checking the logs for the nginx pod

			The log shows that our container that is running an nginx image is receiving our HTTP request to localhost and responding as expected.

			We can also define the minimum and maximum resource allocation for our containers. This is useful for managing the resources used by our deployments. This can be achieved using the following two fields in the YAML configuration file:

			
					limits: Describes the maximum amount of resources allowed for this container.

					requests: Describes the minimum amount of resources required for this container.

			

			We can use these fields to define the minimum and maximum memory and CPU resources for our containers. The CPU resource is measured in CPU units. 1 CPU unit means that the container has access to 1 logical CPU core.

			In the next exercise, we shall create a container with defined resource requirements.

			Exercise 5.07: Creating a Pod Running a Container with Resource Requirements

			In this exercise, we will create a pod with a container that has resource requirements. First of all, let's see how we can configure the container's resource requirements:

			
					Create a file named pod-with-resource-requirements.yaml with a pod configuration that specifies both limits and requests for memory and CPU resources, as shown here:apiVersion: v1
kind: Pod
metadata:
 name: resource-requirements-pod
spec:
 containers:
 - name: container-with-resource-requirements
 image: nginx
 resources:
 limits:
 memory: "128M"
 cpu: "1"
 requests:
 memory: "64M"
 cpu: "0.5"
In this YAML file, we define the minimum memory requirement for the container to be 64 MB and the maximum memory that the container can occupy to be 128 MB. If the container tries to allocate more than 128 MB of memory, it will be killed with a status of OOMKilled.
The minimum CPU requirement for CPU is 0.5 (which can also be understood as 500 milli-CPUs and can be written as 500m instead of 0.5) and the container will only be allowed to use a maximum of 1 CPU unit.

					Next, we will create the pod that uses this YAML configuration with the kubectl create command:kubectl create -f pod-with-resource-requirements.yaml
You should see the following response:
pod/resource-requirements-pod created

					Next, let's make sure the pod is created with the correct resource requirements. Check the pod definitions using the describe command:kubectl describe pod resource-requirements-pod
You should see the following output:
[image: Figure 5.6: Describing resource-requirements-pod

]

			

			Figure 5.6: Describing resource-requirements-pod

			The highlighted fields in the output show that the pod has been assigned the limits and requests sections that we stated in the YAML file.

			What happens if we define unrealistic resource requirements for our pod? Let's explore that in the following exercise.

			Exercise 5.08: Creating a Pod with Resource Requests That Can't Be Met by Any of the Nodes

			In this exercise, we will create a pod with large resource requests that are too big for the nodes in the cluster and see what happens.

			
					Create a file named pod-with-huge-resource-requirements.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: huge-resource-requirements-pod
spec:
 containers:
 - name: container-with-huge-resource-requirements
 image: nginx
 resources:
 limits:
 memory: "128G"
 cpu: "1000"
 requests:
 memory: "64G"
 cpu: "500"
In this YAML file, we define the minimum requirement to be 64 GB of memory and 500 CPU cores. It is unlikely that the machine that you are running this exercise on would meet those requirements.

					Next, we will create the pod that uses this YAML configuration with the kubectl create command:kubectl create -f pod-with-huge-resource-requirements.yaml
You should see the following response:
pod/huge-resource-requirements-pod created

					Now, let's see what's going on with our pod. Get its status using the kubectl get command:kubectl get pod huge-resource-requirements-pod
You should see the following response:
[image: Figure 5.7: Getting the status of huge-resource-requirements-pod

]
Figure 5.7: Getting the status of huge-resource-requirements-pod
We see that the pod has been in the Pending state for almost a minute. That's unusual!

					Let's dig deeper and describe the pod using the following command:kubectl describe pod huge-resource-requirements-pod
You should see the following output:
[image: Figure 5.8: Describing huge-resource-requirements-pod

]

			

			Figure 5.8: Describing huge-resource-requirements-pod

			Let's focus on the last line of the output. We can clearly see that there's a warning stating that the Kubernetes controller couldn't find any nodes that satisfy the CPU and memory requirements of the pod. Hence, the pod scheduling has failed.

			To summarize, pod scheduling works on the basis of resource requirements. A pod will only be scheduled on a node that satisfies all its resource requirements. If we do not specify a resource (memory or CPU) limit, there's no upper bound on the number of resources a pod can use.

			This poses the risk of one bad pod consuming too much CPU or allocating too much memory that impacts the other pods running in the same namespace/cluster. Hence, it's a good idea to add resource requests and limits to the pod configuration in a production environment.

			As mentioned earlier in the chapter, a pod can run more than one container. In the following exercise, we will create a pod with more than one container.

			Exercise 5.09: Creating a Pod with Multiple Containers Running inside It

			In this exercise, we will create a pod with multiple containers. For that, we can use the configuration that we used in the previous section, with the only difference being that the containers field will now contain more than one container spec. Follow these steps to complete the exercise:

			
					Create a file named multiple-container-pod.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: multi-container-pod
spec:
 containers:
 - name: first-container
 image: nginx
 - name: second-container
 image: ubuntu
 command:
 - /bin/bash
 - -ec
 - while :; do echo '.'; sleep 5; done

					Next, we will create a pod that uses the preceding YAML configuration with the kubectl create command:kubectl create -f multiple-container-pod.yaml
You should see the following response:
pod/multi-container-pod created

					Next, we will describe the pod and see what containers it is running:kubectl describe pod multi-container-pod
You should see the following output:
[image: Figure 5.9: Describing multi-container-pod

]

			

			Figure 5.9: Describing multi-container-pod

			As can be seen from the preceding output, we have two containers running in a single pod. Now, we need to make sure we can access the logs from either container.

			We can specify the container name to get the logs for a particular container running in a pod, as shown here:

			kubectl logs <pod-name> <container-name>

			For example, to see the logs for a second container that is printing out dots on a new line every 5 seconds, use this command:

			kubectl logs multi-container-pod second-container -f

			You should see the following response:

			
				
					[image: Figure 5.10: The logs for second-container inside multi-container-pod

]
				

			

			Figure 5.10: The logs for second-container inside multi-container-pod

			The output we see here is similar to Exercise 5.05, Using CLI Commands to Create a Pod Running a Container, as we have essentially used a similar container as we defined there.

			Thus, we have created a pod with multiple containers and accessed the logs of the desired container.

			Life Cycle of a Pod

			Now that we know how to run a pod and how to configure it for our use cases, in this section, we will talk about the life cycle of a pod to understand how it works in more detail.

			Phases of a Pod

			Every pod has a pod status that tells us what stage of its life cycle a pod is in. We can see the pod status by running the kubectl get command:

			kubectl get pod

			You will see the following response:

			NAME READY STATUS RESTARTS AGE

			first-pod 1/1 Running 0 5m44s

			For our first pod, named first-pod, we see that the pod is in the Running state.

			Let's see what the different states that a pod can have in its life cycle are:

			
					Pending: This means that the pod has been submitted to the cluster, but the controller hasn't created all its containers yet. It may be downloading images or waiting for the pod to be scheduled on one of the cluster nodes.

					Running: This state means that the pod has been assigned to one of the cluster nodes and at least one of the containers is either running or is in the process of starting up.

					Succeeded: This state means that the pod has run, and all of its containers have been terminated with success.

					Failed: This state means the pod has run and at least one of the containers has terminated with a non-zero exit code, that is, it has failed to execute its commands.

					Unknown: This means that the state of the pod could not be found. This may be because of the inability of the controller to connect with the node that the pod was assigned to.Note
The get pod command cannot get evicted or deleted pods. To do that, you can use the --show-all flag, but it has been deprecated since Kubernetes v1.15.

			

			Probes/Health Checks

			A probe is a health check that can be configured to check the health of the containers running in a pod. A probe can be used to determine whether a container is running or ready to receive requests. A probe may return the following results:

			
					Success: The container passed the health check.

					Failure: The container failed the health check.

					Unknown: The health check failed for unknown reasons.

			

			Types of Probes

			The following types of probes are available for us to use.

			Liveness Probe

			This is a health check that's used to determine whether a particular container is running or not. If a container fails the liveness probe, the controller will try to restart the pod on the same node according to the restart policy configured for the pod.

			It's a good idea to specify a liveness probe when we want the container to be terminated and restarted when a particular check fails.

			Readiness Probe

			This is a health check that's used to determine whether a particular container is ready to receive requests or not. How we define the readiness of a container depends largely on the application running inside the container.

			For example, for a container serving a web application, readiness may mean that the container has loaded all static assets, established a connection with the database, started the webserver, and opened a specific port on the host to start serving requests. On the other hand, for a container serving some data, the readiness probe should succeed only when it has loaded all the data from disk and is ready to start serving the requests for that data.

			If a container fails its readiness probe, the Kubernetes controller will ensure that the pod doesn't receive any requests. If a container specifies a readiness probe, its default state will be Failure until the readiness probe succeeds. The container will start receiving requests only after the readiness probe returns with the Success state. If no readiness probe is configured, the container will start receiving requests as soon as it starts.

			Configuration of Probes

			There are a bunch of generic fields we can use to configure the probes:

			
				
					[image: Figure 5.11: Table showing configuration fields for probes

]
				

			

			Figure 5.11: Table showing configuration fields for probes

			Implementation of Probes

			Probes (liveness or readiness) can be implemented by passing a command to the container, getting it to fetch some resources, or trying to connect to it, as we shall see in this section. We can use different implementations for liveness and readiness probes within the same container.

			Command Probe

			In the command implementation of a probe, the controller will get the container to execute the specified command in order to perform the probe on the container. For this implementation, we use the command field. This field specifies the command to execute in order to perform the probe on the container. It can either be a string or an array.

			The following example shows how liveness and readiness probe configuration can be used in the container spec:

			livenessProbe:

			 exec:

			 command:

			 - cat

			 - /tmp/health

			 initialDelaySeconds:

			 periodSeconds: 15

			 failureThreshold: 3

			readinessProbe:

			 exec:

			 command:

			 - cat

			 - /tmp/health

			 initialDelaySeconds:

			 periodSeconds: 15

			HTTP Request Probe

			In this type of probe, the controller will send a GET HTTP request to the given address (host and port) to perform the probe on the container. It's possible to set the custom HTTP headers to be sent in the probe request.

			We can set the following fields to configure an HTTP request probe:

			
					host: Hostname to which the request will be made. It defaults to the pod IP address.

					path: Path to make the request to.

					port: Name or number of the port to make the request to.

					httpHeaders: Custom headers to be set in the request.

					scheme: Scheme to use while making the request. The default value is HTTP.

			

			Here's an example of an HTTP request probe for liveness and readiness:

			livenessProbe:

			 httpGet:

			 path: /health-check

			 port: 8080

			 initialDelaySeconds: 10

			 periodSeconds: 20

			readinessProbe:

			 httpGet:

			 path: /health-check

			 port: 8080

			 initialDelaySeconds: 5

			 periodSeconds: 10

			TCP Socket Probe

			In this implementation of a probe, the controller will try to establish a connection on the given host and the specified port number. We can use the following two fields for this probe:

			
					host: Hostname to which the connection will be established. It defaults to the pod IP address.

					port: Name or number of the port to connect to.

			

			Here's an example of a TCP socket probe:

			livenessProbe:

			 tcpSocket:

			 port: 8080

			 initialDelaySeconds: 10

			 periodSeconds: 20

			readinessProbe:

			 tcpSocket:

			 port:8080

			 initialDelaySeconds: 5

			 periodSeconds: 10

			Restart Policy

			We can specify restartPolicy in the pod specification to instruct the controller about the conditions required to restart the pod. The default value of restartPolicy is Always. It can take the following values:

			
					Always: Always restart the pod when it terminates.

					OnFailure: Restart the pod only when it terminates with failure.

					Never: Never restart the pod after it terminates.

			

			If we want the pod to crash and restart when it has some issues or becomes unhealthy, we should set the restart policy to either Always or OnFailure.

			In the following exercise, we shall create a liveness probe with the command implementation.

			Exercise 5.10: Creating a Pod Running a Container with a Liveness Probe and No Restart Policy

			In this exercise, we will create a pod with a liveness probe and no restart policy. Not specifying a restart policy for a pod means that the default policy of Always will be used.

			
					Create liveness-probe.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: liveness-probe
spec:
 containers:
 - name: ubuntu-container
 image: ubuntu
 command:
 - /bin/bash
 - -ec
 - touch /tmp/live; sleep 30; rm /tmp/live; sleep 600
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/live
 initialDelaySeconds: 5
 periodSeconds: 5
This pod configuration means that there will be a container created from an Ubuntu image and the following command will be run once it starts:
/bin/bash -ec "touch /tmp/live; sleep 30; rm /tmp/live; sleep 600"
The preceding command creates an empty file at path /tmp/live, sleeps for 30 seconds, deletes the /tmp/live file, and then sleeps for 10 minutes before terminating with success.
Next, we have a liveness probe that executes the following command every 5 seconds with an initial delay of 5 seconds:
cat /tmp/live

					Run the following command to create the pod using liveness-probe.yaml:kubectl create -f liveness-probe.yaml

					When the container starts, the liveness probe will succeed because the command will execute successfully. Now, let's wait for at least 30 seconds and run the describe command:kubectl describe pod liveness-probe
You should see the following output:
[image: Figure 5.12: Describing liveness-probe: first failure

]
Figure 5.12: Describing liveness-probe: first failure
In the last line, which is highlighted, we can see that the liveness probe has failed for the first time.

					Let's wait for a few more seconds until the probe has failed three times and run the same command again:kubectl describe pod liveness-probe
You should see the following output:
[image: Figure 5.13: Describing liveness-probe: after three failures

]
Figure 5.13: Describing liveness-probe: after three failures
The last two highlighted lines in the output tell us that the liveness probe has failed three times. And now, the pod will be killed and restarted.

					Next, we will verify that the pod has been restarted at least once using the following command:kubectl get pod liveness-probe
You should see the following response:
NAME READY STATUS RESTARTS AGE
liveness-probe 1/1 Running 1 89s

			

			This output shows that the pod has been restarted upon failing the liveness probe.

			Let's now take a look at what happens if we set the restart policy to Never.

			Exercise 5.11: Creating a Pod Running a Container with a Liveness Probe and a Restart Policy

			In this exercise, we will use the same pod configuration from the last exercise, the only difference being that the restartPolicy field will be set to Never. Follow these steps to complete the activity:

			
					Create liveness-probe-with-restart-policy.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: liveness-probe-never-restart
spec:
 restartPolicy: Never
 containers:
 - name: ubuntu-container
 image: ubuntu
 command:
 - /bin/bash
 - -ec
 - touch /tmp/ready; sleep 30; rm /tmp/ready; sleep 600
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/ready
 initialDelaySeconds: 5
 periodSeconds: 5

					Run the following command to create the pod using liveness-probe.yaml:kubectl create -f liveness-probe-with-restart-policy.yaml
You should see the following response:
pod/liveness-probe-never-restart created

					Let's wait for around one minute and run the describe command:kubectl describe pod liveness-probe-never-restart
You should see the following output:
[image: Figure 5.14: Describing liveness-probe-never-restart

]

			

			Figure 5.14: Describing liveness-probe-never-restart

			As we can see, in the last two highlighted lines, the controller will only kill the container and will never attempt to restart it, respecting the restart policy specified in the pod specification.

			In the following exercise, we shall take a look at the implementation of a readiness probe.

			Exercise 5.12: Creating a Pod Running a Container with a Readiness Probe

			In this exercise, we will create a pod with a container that has a readiness probe.

			
					Create a file named readiness-probe.yaml with the following pod configuration:apiVersion: v1
kind: Pod
metadata:
 name: readiness-probe
spec:
 containers:
 - name: ubuntu-container
 image: ubuntu
 command:
 - /bin/bash
 - -ec
 - sleep 30; touch /tmp/ready; sleep 600
 readinessProbe:
 exec:
 command:
 - cat
 - /tmp/ready
 initialDelaySeconds: 10
 periodSeconds: 5
The preceding pod configuration specifies that there will be a container created from an Ubuntu image and the following command will be run once it starts:
/bin/bash -ec "sleep 30; touch /tmp/ready; sleep 600"
The preceding command sleeps for 30 seconds, creates an empty file at /tmp/ready, and then sleeps for 10 minutes before terminating with success.
Next, we have a readiness probe that executes the following command every 5 seconds with an initial delay of 10 seconds:
cat /tmp/ready

					Run the following command to create the pod using readiness-probe.yaml:kubectl create -f readiness-probe.yaml
You should see the following response:
pod/readiness-probe created
When the container starts, the default value of the readiness probe will be Failure. It will wait for 10 seconds before executing the probe for the first time.

					Let's check the state of the pod:kubectl get pod readiness-probe
You should see the following response:
NAME READY STATUS RESTARTS AGE
readiness-probe 0/1 Running 0 8s
We can see that the pod is not ready yet.

					Now, let's try to find more information about this pod using the describe command. If we wait for more than 10 seconds after the container starts, we will see that the readiness probe starts failing:kubectl describe pod readiness-probe
You should see the following output:
[image: Figure 5.15: Describing readiness-probe

]
Figure 5.15: Describing readiness-probe
That output tells us that the readiness probe has failed once already. If we wait for a while and run that command again, we will see that the readiness probe keeps failing until 30 seconds have elapsed since the starting time of the container. After that, the readiness probe will start succeeding since a file will be created at /tmp/ready.

					Let's check the state of the pod again:kubectl get pod readiness-probe
You should see the following response:
NAME READY STATUS RESTARTS AGE
readiness-probe 1/1 Running 0 66s

			

			We can see that the probe has succeeded, and the pod is now in the Ready state.

			Best Practices While Using Probes

			An incorrect use of probes will not help you achieve the intended purpose or may even break a pod. Follow these practices to make proper use of probes:

			
					For liveness probes, initialDelaySeconds should be significantly larger than the time it takes for the application to start up. Otherwise, the container is likely to get stuck in a restart loop where it keeps failing the liveness probe and hence keeps on getting restarted by the controller.

					For readiness probes, initialDelaySeconds could be small because we want to enable the traffic to the pod as soon as the container is ready, and polling the container more frequently while it's starting up doesn't cause any harm in most cases.

					For readiness probes, we should be careful with setting failureThreshold to make sure our readiness probe doesn't give up prematurely in case of temporary outages or issues with the system.

			

			Activity 5.01: Deploying an Application in a Pod

			Imagine you are working with a team of developers who have built an awesome application that they want you to deploy in a pod. The application has a process that starts up and takes approximately 20 seconds to load all the required assets. Once the application starts up, it's ready to start receiving requests. If, for some reason, the application crashes, you would want the pod to restart itself as well. They have given you the task of creating the pod using a configuration that will satisfy these needs for the application developers in the best way possible.

			We have provided a pre-made application image to emulate the behavior of the application mentioned above. You can get it by using this line in your pod spec:

			image: packtworkshops/the-kubernetes-workshop:custom-application-for- pods-chapter

			Note

			Ideally, you would want to create this pod in a different namespace to keep it separate from the rest of the stuff that you created during the exercises. So, feel free to create a namespace and create the pod in that namespace.

			Here are the high-level steps to complete this activity:

			
					Create a new namespace for your pod.

					Create a pod configuration that's suitable for the application requirements. Ensure that you use an appropriate namespace, restart policy, readiness and liveness probes, and container image given by application developers.

					Create a pod using the configuration you've just created.

					Make sure the pod is running as per the requirements.Note
The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			

			Summary

			In this chapter, we have explored various components of pod configuration and learned when to use what. We should now be able to create a pod and choose the right values of various fields in the pod configuration according to the needs of your application. This ability puts us in a position where we can use our strong understanding of this essential, basic building block and extend it to develop a full-fledged application that's deployed reliably.

			In the next chapter, we will discuss how we can add labels and arbitrary metadata to pods and use them to identify or search for pods. That will help us to organize our pods as well as choose a subset of them when required.

		

		
			
			

		

	
		
			
			

		

		
			6. Labels and Annotations

		

		
			Overview

			Metadata is extremely useful for any organization and has its use in managing potentially thousands of resources in a cluster. This chapter teaches you how to add metadata to your pods or any other Kubernetes objects. You will be introduced to the concept of labels and annotations. We will also explain their use cases so that you can decide whether to use labels or annotations for a particular use case. You'll utilize labels to organize your objects by using label selectors to select or filter organized sets of objects. You'll also use annotations to add unstructured metadata information to objects.

			Introduction

			In the previous chapter, we created various kinds of pods and managed their life cycles. Once we start working with different pods, ideally, we would want to organize, group, and filter them based on certain properties. To do that, we need to add some information to our pods so that we can later use that information to organize them. We have already seen the use of the name and namespace fields as metadata for the pods. In addition to those fields, we can also add key-value pairs to the pods in order to add extra information as labels and annotations.

			In this chapter, we will assign metadata to these pods in order to identify the pods through queries based on some metadata and then add additional unstructured metadata. We will cover labels and annotations in detail and examine the differences between them. We will use both labels and annotations and see when to use one or the other.

			Labels

			Labels are the metadata that contain identifiable information pertaining to the Kubernetes objects. These are basically key-value pairs that can be attached to objects such as pods. Each key must be unique for an object. Labels contain information that is meaningful to users. Labels can be attached to pods at the time of creation and can also be added or modified during their runtime too. Here is an example of how labels in a YAML file would appear:

			metadata:

			 labels:

			 key1: value1

			 key2: value2

			Constraints for Labels

			As noted earlier, labels are key-value pairs. There are certain rules that label keys and values should follow. These constraints exist because this way, the queries using labels can be evaluated faster by using optimized data structures and algorithms internally. Kubernetes internally maintains the mappings of labels to corresponding objects using optimized data structures to make these queries faster.

			Label Keys

			Here's an example of what a label key looks like:

			label_prefix.com/worker-node-1

			As we can see, the label key consists of two parts: the label prefix and the label name. Let's take a closer look at these two parts:

			
					Label prefix: The label prefix is optional and must be a DNS subdomain. It cannot be longer than 253 characters and cannot contain spaces. The label prefix is always followed by a forward slash (/). If no prefix is used, the label key is assumed to be private to the user. Some of the prefixes, such as kubernetes.io/ and k8s.io/, are reserved for use solely by the Kubernetes core systems.In our example, label_prefix.com/ is the prefix for that label key.

					Label name: The label name is required and can be up to 63 characters long. The label name can only start and end with alphanumeric characters (a – z, A – Z, 0 – 9); however, it can contain dashes (-), underscores (_), dots (.), and alphanumeric characters in between. A label name cannot have spaces or line breaks.In the example of label_prefix.com/worker-node-1, the name for the label key is worker-node-1.

			

			Label Values

			Label values can be up to 63 characters long. Similar to label names, label values should also start and end with alphanumeric characters. However, they can contain dashes (-), underscores (_), dots (.), and alphanumeric characters in between. A label value cannot have spaces or line breaks.

			Why Do We Need Labels?

			Labels are generally used for organizing a subset of objects. These objects can then be filtered on the basis of these labels. With labels, you can also run your specific pods on selected nodes. Both of these scenarios are explained in detail in the following section.

			Organizing Pods by Organization/Team/Project

			One of the use cases for labels could be using labels based on teams or organizations in your company. Let's say that your organization has several teams working on different projects. You can enable different teams to list only their pods and even those specific to certain projects. Expanding on this, if you are an infrastructure service provider, you can use an organization label to apply changes only to the pods associated with a particular client organization. For such use cases, you can use label keys such as team, org, and project. The following is an example labels section for such a use case:

			metadata:

			 labels:

			 environment: production

			 team: devops-infra

			 project: test-k8s-infra

			Running Selective Pods on Specific Nodes

			Another useful scenario can be when you want your pod to be assigned to a certain node with specific hardware or other properties. This can be achieved by adding labels to the nodes that have special hardware or other properties. We can use nodeSelector to assign the pod to any node that has a particular label. Consider the following example:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-with-node-selector

			spec:

			 containers:

			 - name: first-container

			 image: nginx

			 nodeSelector:

			 region: east-us

			 disktype: ssd

			The preceding pod template can be used to make sure the pod will be assigned to a node that is in the east-us region and has ssd storage. This check is based on the labels added to the nodes. So, we need to ensure that the appropriate region and disktype labels are assigned to all nodes where applicable.

			Note

			Please note that the exact node labels to be used in the nodeSelector section will be provided by the cloud infrastructure provider and that the label keys and values may change. The values used in this example are just to demonstrate the use case.

			In the upcoming exercises, we will show you how you can create pods with labels, add labels to a running pod, and modify and/or delete existing labels for a running pod.

			Exercise 6.01: Creating a Pod with Labels

			In this exercise, we aim to create a pod with some labels. In order to complete this exercise successfully, perform the following steps:

			
					Create a file called pod-with-labels.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-labels
 labels:
 app: nginx
 foo: bar
spec:
 containers:
 - name: first-container
 image: nginx
As can be seen in the preceding snippet, we have added the app and foo labels and assigned them the values of nginx and bar, respectively. Now, we need to create a pod with these labels and verify whether the labels have actually been included in the pod, which will be the focus of the next few steps.

					Run the following command in the Terminal to create the pod with the preceding configuration:kubectl create -f pod-with-labels.yaml
You should see the following response:
pod/pod-with-labels created

					Verify that the pod was created by using the kubectl get command:kubectl get pod pod-with-labels
The following output indicates that the pod has been created:
NAME READY STATUS RESTARTS AGE
pod-with-labels 1/1 Running 0 4m4s

					Verify that the labels metadata was actually added to the pod using the kubectl describe command:kubectl describe pod pod-with-labels
This should lead to the following output:
[image: Figure 6.1: Describing pod-with-labels

]

			

			Figure 6.1: Describing pod-with-labels

			The output shows various details relating to the pod (as we have seen in the previous chapter as well). In this case, we will focus on the highlighted section of the output, which shows that the desired labels, app=nginx, and foo=bar, were actually added to the pod. Note that, in this exercise, we added labels while creating the pod. However, how can you add labels to a pod when a pod is already running? The next exercise will answer this question.

			Exercise 6.02: Adding Labels to a Running Pod

			In this exercise, we aim to create a pod without labels and then add labels once the pod is running. In order to complete this exercise successfully, perform the following steps:

			
					Create a file called pod-without-initial-labels.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-without-initial-labels
spec:
 containers:
 - name: first-container
 image: nginx
Note that we have not yet added any labels to our pod.

					Run the following command in the Terminal to create the pod with the configuration mentioned in the previous step:kubectl create -f pod-without-initial-labels.yaml
You should see the following response:
pod/pod-without-initial-labels created

					Verify that the pod was created by using the kubectl get command:kubectl get pod pod-without-initial-labels
The following output indicates that the pod has been created:
[image: Figure 6.2: Checking the status of pod-without-initial-labels

]
Figure 6.2: Checking the status of pod-without-initial-labels

					Check if the labels metadata was actually added to the pod using the kubectl describe command:kubectl describe pod pod-without-initial-labels
You should see the following output:
[image: Figure 6.3: Describing pod-without-initial-labels

]
Figure 6.3: Describing pod-without-initial-labels
In the highlighted section of the output, we can note that the Labels field is empty. Hence, we can verify that, by default, no label was added to the pod. In the next few steps, we will add a label and then run the pod again to verify whether the label was actually included in the pod.

					Add a label using the kubectl label command as follows:kubectl label pod pod-without-initial-labels app=nginx
You should see the following response:
pod/pod-without-initial-labels labeled
The output shows that the pod-without-initial-labels pod was labeled.

					Verify that the label was actually added in the last step by using the kubectl describe command:kubectl describe pod pod-without-initial-labels
You should see the following output:
[image: Figure 6.4: Verifying that the app=nginx label was added

]
Figure 6.4: Verifying that the app=nginx label was added
We can observe in the highlighted section of the output that the app=nginx label was actually added to the pod. In the preceding case, we only added a single label. However, you can add multiple labels to a pod, as will be done in the next steps.

					Next, let's add multiple labels in the same command. We can do this by passing multiple labels in the key=value format, separated by spaces:kubectl label pod pod-without-initial-labels foo=bar foo2=baz
You should see the following response:
pod/pod-without-initial-labels labeled

					Verify that the two labels were added to the pod using the kubectl describe command:kubectl describe pod pod-without-initial-labels
You should see the following output:
[image: Figure 6.5: Verifying that the new two labels were also added

]

			

			Figure 6.5: Verifying that the new two labels were also added

			In the highlighted section of the output, we can see that the two new labels, foo=bar, and foo2=baz, were also added to the pod.

			In the next exercise, we will see how we can delete and modify the existing labels for a pod that is already running.

			Exercise 6.03: Modifying And/Or Deleting Existing Labels for a Running Pod

			In this exercise, we aim to create a pod with some labels and modify and delete the labels while the pod is running. In order to complete this exercise successfully, perform the following steps:

			
					Create a file called pod-with-some-labels.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-some-labels
 labels:
 app: nginx
spec:
 containers:
 - name: first-container
 image: nginx
As you can see in the pod definition, we have added just one label, app, with the value of nginx.

					Run the following command in the Terminal to create the pod with the preceding configuration:kubectl create -f pod-with-some-labels.yaml
You should see the following response:
pod/pod-with-some-labels created

					Verify that the pod was created by using the kubectl get command:kubectl get pod pod-with-some-labels
The following output indicates that the pod has been created:
[image: Figure 6.6: Checking the status of the pod-with-some-labels pod

]
Figure 6.6: Checking the status of the pod-with-some-labels pod

					Verify that the labels were added as specified in the pod configuration using the kubectl describe command:kubectl describe pod pod-with-some-labels
You should see the following output:
[image: Figure 6.7: Verifying that the labels were added to pod-with-some-labels

]
Figure 6.7: Verifying that the labels were added to pod-with-some-labels
Once we are sure that the app=nginx label is present, we will modify this label in the next step.

					Modify the app=nginx label to app=nginx-application using the kubectl label command:kubectl label --overwrite pod pod-with-some-labels app=nginx-application
You should see the following response:
pod/pod-with-some-labels labeled

					Verify that the value of label was modified from nginx to nginx-application using the kubectl describe command:kubectl describe pod pod-with-some-labels
The following screenshot shows the output of this command:
[image: Figure 6.8: Verifying that the label value has been modified

]
Figure 6.8: Verifying that the label value has been modified
As highlighted in the output, we can see that the label with the app key has a new value, nginx-application.

					Delete the label with the app key using the kubectl label command:kubectl label pod pod-with-some-labels app-
Note the hyphen at the end of the preceding command. You should see the following response:
pod/pod-with-some-labels labeled

					Verify that the label with the app key was actually deleted using the kubectl describe command:kubectl describe pod pod-with-some-labels
You should see the following output:
[image: Figure 6.9: Verifying that the desired label was actually deleted from the pod

]

			

			Figure 6.9: Verifying that the desired label was actually deleted from the pod

			As highlighted in the preceding output, we can again note that the label with the app key was deleted and, hence, the pod now has no label. Thus, we have learned how to modify and delete an existing label for a running pod.

			Selecting Kubernetes Objects Using Label Selectors

			In order to group various objects based on their labels, we use a label selector. It allows users to identify a set of objects matching certain criteria.

			We can use the following syntax for the kubectl get command and pass the label selector using the -l or --label argument:

			kubectl get pods -l {label_selector}

			In the following exercises, we will see how to use this command in an actual scenario. Before that, let's understand what kinds of {label_selector} arguments we can use in these commands.

			Currently, there are two types of label selectors: equality-based and set-based.

			Equality-Based Selectors

			Equality-based selectors allow Kubernetes objects to be selected according to label keys and values. These kinds of selectors allow us to match all objects that have specific label values for given label keys. In fact, we have inequality-based selectors as well.

			Overall, there are three kinds of operators: =, ==, and !=.

			The first two are actually identical in operation, and denote equality-based operations, while the third one denotes inequality-based operations. While using these kinds of selectors, we can specify more than one condition using any of the preceding operators.

			For example, if we are using label keys such as environment and team, we may want to use the following selectors:

			environment=production

			The preceding selector matches all the objects that have a label key environment and the corresponding production value:

			team!=devops-infra

			The preceding selector matches all the objects that either doesn't have a team label key or those for which a team label key exists, and the corresponding value is not equal to devops-infra.

			Similarly, we can also use both the selectors together, separated by commas (,):

			environment=production,team!=devops-infra

			In the preceding example, the selector will match all the objects that match both the criteria specified by the two selectors. The comma acts as a logical AND (&&) operator between the two selectors specified. Let's now try our hands at the implementation of these selectors in the following exercises.

			Exercise 6.04: Selecting Pods Using Equality-Based Label Selectors

			In this exercise, we aim to create some pods with different labels and then select them using equality-based selectors. In order to complete this exercise successfully, perform the following steps:

			
					Create a file called pod-frontend-production.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: frontend-production
 labels:
 environment: production
 role: frontend
spec:
 containers:
 - name: application-container
 image: nginx
As we can see, this is the template for the pod with the following two labels: environment=production and role=frontend.

					Create another file called pod-backend-production.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: backend-production
 labels:
 environment: production
 role: backend
spec:
 containers:
 - name: application-container
 image: nginx
This is the template for the pod with the following two labels: environment=production and role=backend.

					Create another file called pod-frontend-staging.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: frontend-staging
 labels:
 environment: staging
 role: frontend
spec:
 containers:
 - name: application-container
 image: nginx
This is the template for the pod with the following two labels: environment=staging and role=frontend.

					Create all three pods using the following three commands:kubectl create -f pod-frontend-production.yaml
You should see the following response:
pod/frontend-production created
Now, run the following command:
kubectl create -f pod-backend-production.yaml
The following response indicates that the pod has been created:
pod/backend-production created
Now, run the following command:
kubectl create -f pod-frontend-staging.yaml
This should give the following response:
pod/frontend-staging created

					Verify that all three pods are created with correct labels using the --show-labels argument to the kubectl get command. First, let's check the frontend-production pod:kubectl get pod frontend-production --show-labels
The following response indicates that the frontend-production pod has been created:
[image: Figure 6.10: Verifying labels for the frontend-production pod

]
Figure 6.10: Verifying labels for the frontend-production pod

					Now, check the backend-production pod:kubectl get pod backend-production --show-labels
The following response indicates that the backend-production pod has been created:
[image: Figure 6.11: Verifying labels for the backend-production pod

]
Figure 6.11: Verifying labels for the backend-production pod

					Finally, check the frontend-staging pod:kubectl get pod frontend-staging --show-labels
The following response indicates that the frontend-staging pod has been created:
[image: Figure 6.12: Verifying labels for the frontend-staging pod

]
Figure 6.12: Verifying labels for the frontend-staging pod

					Now, we will use label selectors to see all the pods that are assigned to the production environment. We can do this by using environment=production as the label selector with the kubectl get command:kubectl get pods -l environment=production
In the following output, we can see that it only shows those pods that have a label with the environment key and the production value:
NAME READY STATUS RESTARTS AGE
backend-production 1/1 Running 0 67m
frontend-production 1/1 Running 0 68m
You can confirm from Figure 6.10 and Figure 6.11 that these are the pods with the environment=production label.

					Next, we will use label selectors to see all the pods that have the frontend role and the staging environment. We can do this by using the label selector with the kubectl get command, as shown here:kubectl get pods -l role=frontend,environment=staging
In the following output, we can see that it only shows those pods that have staging as the environment and frontend as the role:
NAME READY STATUS RESTARTS AGE
frontend-staging 1/1 Running 0 72m

			

			In this exercise, we have used label selectors to select particular pods. Such label selectors for the get command provide a convenient way to choose the required set of pods based on the labels. This also represents a common scenario, where you would want to apply some changes only to the pods involved in the production or staging environment, or the frontend or backend infrastructure.

			Set-Based Selectors

			Set-based selectors allow Kubernetes objects to be selected on the basis of a set of values for given keys. These kinds of selectors allow us to match all objects that have a given label key with a value in a given set of values.

			There are three kinds of operators: in, notin, and exists. Let's see what these operators mean with the help of some examples:

			environment in (production, staging)

			In the preceding example, the selector matches all the objects that have an environment label key and the value is either production or staging:

			team notin (devops-infra)

			The selector in the preceding example matches all the objects that have a team label key and the value is anything other than devops-infra. It also matches those objects that don't have the team label key:

			!critical

			In the preceding example, the selector is equivalent to the exists operation. It matches all the objects that don't have the critical label key. It doesn't check for a value at all.

			Note

			The two types of selectors can also be used together, as we will observe in Exercises 6.06, Selecting Pods Using a Mix of Label Selectors.

			Let's implement the set-based selectors in the following exercise.

			Exercise 6.05: Selecting Pods Using Set-Based Label Selectors

			In this exercise, we aim to create some pods with different labels and then select them using set-based selectors.

			Note

			In this exercise, we assume that you have successfully completed Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors. We will be reusing the pods created in that exercise.

			In order to complete this exercise successfully, perform the following steps:

			
					Open the terminal and verify that the frontend-production pod we created in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors, is still running and has the required labels. We will be using the --show-labels argument with the kubectl get command:kubectl get pod frontend-production --show-labels
The following response indicates that the frontend-production pod exists:
[image: Figure 6.13: Verifying labels for the frontend-production pod

]
Figure 6.13: Verifying labels for the frontend-production pod

					Verify that the backend-production pod we created in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors is still running and has the required labels using the kubectl get command with the --show-labels argument:kubectl get pod backend-production --show-labels
The following response indicates that the backend-production pod exists:
[image: Figure 6.14: Verifying labels for the backend-production pod

]
Figure 6.14: Verifying labels for the backend-production pod

					Verify that the frontend-staging pod we created in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors is still running and has the required labels using the kubectl get command with the --show-labels argument:kubectl get pod frontend-staging --show-labels
The following response indicates that the frontend-staging pod exists:
[image: Figure 6.15: Verifying labels for the frontend-staging pod

]
Figure 6.15: Verifying labels for the frontend-staging pod

					Now, we will use the label selectors to match all the pods for which the environment is production, and the role is either frontend or backend. We can do this by using the label selector with the kubectl get command as shown here:kubectl get pods -l 'role in (frontend, backend),environment in (production)'
You should see the following response:
NAME READY STATUS RESTARTS AGE
backend-production 1/1 Running 0 82m
frontend-production 1/1 Running 0 82m

					Next, we will use the label selectors to match all those pods that have the environment label and whose role is anything other than backend. We also want to exclude those pods that don't have the role label set:kubectl get pods -l 'environment,role,role notin (backend)'
This should produce the following output:
NAME READY STATUS RESTARTS AGE
frontend-production 1/1 Running 0 86m
frontend-staging 1/1/ Running 0 86m

			

			In this example, we have the set-based selectors that can be used to get the desired pods. We can also combine these with selector-based pods, as we shall see in the following exercise.

			Exercise 6.06: Selecting Pods Using a Mix of Label Selectors

			In this exercise, we aim to create some pods with different labels and then select them using a combination of equality-based and set-based selectors.

			Note

			In this exercise, we assume that you have successfully completed Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors. We will be reusing the pods created in that exercise.

			In order to complete this exercise successfully, perform the following steps:

			
					Open the terminal and verify that the frontend-production pod we created in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors, is still running and has the required labels. We will be using the --show-labels argument with the kubectl get command:kubectl get pod frontend-production --show-labels
The following response indicates that the frontend-production pod exists:
[image: Figure 6.16: Verifying labels for the frontend-production pod

]
Figure 6.16: Verifying labels for the frontend-production pod

					Verify that the backend-production pod we created in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors is still running and has the required labels using the kubectl get command with the --show-labels argument:kubectl get pod backend-production --show-labels
The following response indicates that the backend-production pod exists:
[image: Figure 6.17: Verifying labels for the backend-production pod

]
Figure 6.17: Verifying labels for the backend-production pod

					Verify that the frontend-staging pod we created in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors is still running and has the required labels using the kubectl get command with the --show-labels argument:kubectl get pod frontend-staging --show-labels
The following response indicates that the frontend-staging pod exists:
[image: Figure 6.18: Verifying labels for the frontend-staging pod

]
Figure 6.18: Verifying labels for the frontend-staging pod

					Now, we will use the label selectors to match all the pods that have a frontend role and whose environment is one of production, staging, or dev:kubectl get pods -l 'role=frontend,environment in (production,staging,dev)'
This command should give the following list of pods:
NAME READY STATUS RESTARTS AGE
frontend-production 1/1 Running 0 95m
frontend-staging 1/1 Running 0 95m

			

			In the output, we can only see those pods that have a frontend role, whereas the environment can be any one of the given values. Thus, we have seen that a mix of different types of selectors can be used as required.

			Annotations

			As we have seen previously, labels are used to add the identifying metadata that we can later use to filter or select objects by. However, labels have certain constraints in terms of what we can store in the values, such as the limitation of 63 characters and alphanumeric characters at the beginning and end. Annotations, on the other hand, have fewer constraints in terms of what kind of data can be stored in them. However, we cannot filter or select objects by using annotations.

			Annotations are also key-value pairs that can be used to store the unstructured information pertaining to the Kubernetes objects. Here is an example of how annotations in a YAML file would appear:

			metadata:

			 annotations:

			 key1: value1

			 key2: value2

			Constraints for Annotations

			As noted in the previous section, annotations are key-value pairs, just like labels. However, the rules for annotations are more relaxed than the rules for label keys and values. The reason for more relaxed constraints is the lack of support for filtering or selecting objects using annotations. This is because the key-value pairs of annotations are not stored in a lookup-efficient data structure. Hence, there are fewer restrictions here.

			Annotation Keys

			Similar to label keys, annotation keys also have two parts: a prefix and a name. The constraints for both annotation prefixes and names are the same as those for the label prefixes and names, respectively.

			Here's an example of how an annotation key may appear:

			annotation_prefix.com/worker-node-identifier

			Annotation Values

			There are no restrictions in terms of what kinds of data annotation values may contain.

			Use Case for Annotations

			Annotations are generally used to add metadata that won't be used to filter or select objects. It's used to add metadata that will be used by users or tools to get more subjective information regarding the Kubernetes objects. Let's look at some of the scenarios where using annotations can be useful:

			
					Annotations can be used to add timestamps, commit SHA, issue tracker links, or names/information about users who are responsible for specific objects in an organization. In this case, we can use the following type of metadata, depending on our use case:metadata:
 annotations:
 timestamp: 123456789
 commit-SHA: d6s9shb82365yg4ygd782889us28377gf6
 JIRA-issue: "https://your-jira-link.com/issue/ABC-1234"
 owner: "https://internal-link.to.website/username"

					Annotations can also be used to add information about client libraries or tools. We can add information such as the name of the library, the version used, and public documentation links. This information can later be used for debugging issues in our application:metadata:
 annotations:
 node-version: 13.1.0
 node-documentation: "https://nodejs.org/en/docs/"

					We can also use annotations to store the previous pod configuration deployed. This can be really helpful in figuring out what configuration was deployed before the current revision and what has changed: metadata:
 annotations:
 previous-configuration: "{ some json containing the previously deployed configuration of the object }"

					Annotations can also be used to store the configuration or checkpoints that can be helpful in the deployment process for our applications.

			

			We will learn how to add annotations to a pod in the following exercise.

			Exercise 6.07: Adding Annotations to Help with Application Debugging

			In this exercise, we will add some arbitrary metadata to our pod. In order to complete this exercise successfully, perform the following steps:

			
					Create a file called pod-with-annotations.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-annotations
 annotations:
 commit-SHA: d6s9shb82365yg4ygd782889us28377gf6
 JIRA-issue: "https://your-jira-link.com/issue/ABC-1234"
 timestamp: "123456789"
 owner: "https://internal-link.to.website/username"
spec:
 containers:
 - name: application-container
 image: nginx
The highlighted part in the pod definition shows the annotations that we have added.

					Run the following command in the Terminal to create the pod using the kubectl create command:kubectl create -f pod-with-annotations.yaml
You should get the following response:
pod/pod-with-annotations created

					Run the following command in the Terminal to verify that the pod was created as desired:kubectl get pod pod-with-annotations
You should see the following list of pods:
NAME READY STATUS RESTARTS AGE
pod-with-annotations 1/1 Running 0 29s

					Run the following command in the Terminal to verify that the created pod has the desired annotations:kubectl describe pod pod-with-annotations
You should see the following output of this command:
[image: Figure 6.19: Verifying annotations for the pod-with-annotations pod

]

			

			Figure 6.19: Verifying annotations for the pod-with-annotations pod

			As we can see in the highlighted section of the preceding output, the desired metadata has been added as annotations to the pod. Now, this data can be used by any deployment tools or clients who may know about the key names used.

			Working with Annotations

			In the previous exercise, we created a pod with annotations. Similar to labels, we can add annotations to a running pod and modify/delete the annotations of a running pod. This can be achieved by running similar commands as those for labels. The following list presents you with the various operations that can be performed on annotations along with the relevant commands:

			
					Thus, we can add annotations to a running pod by using the following command:kubectl annotate pod <pod_name> <annotation_key>=<annotation_label>
In the preceding command, we can add multiple annotations similar to multiple labels, as in step 7 of Exercise 6.02, Adding Labels to a Running Pod.

					We can also modify (overwrite) an annotation as follows:kubectl annotate --overwrite pod <pod_name> <annotation_key>=<annotation_label>

					Finally, we can delete an annotation using the following command:kubectl annotate pod <pod_name> <annotation_key>-

			

			Note the hyphen at the end of the preceding command. Now that we have learned about labels and annotations as well as the various ways in which we can use them, let's bring all of this together in the following activity.

			Activity 6.01: Creating Pods with Labels/Annotations and Grouping Them as per Given Criteria

			Consider that you're working on supporting two teams called product-development and infra-libraries. Both teams have some application pods for different environments (production or staging). The teams also want to mark their pods as critical if that is indeed the case.

			In short, you need to create three pods as per the following metadata requirements:

			
					An arbitrary-product-application pod that runs in a production environment and is owned by the product-development team. This needs to be marked as a non-critical pod.

					An infra-libraries-application pod that runs in a production environment and is owned by the infra-libraries team. This needs to be marked as a critical pod.

					An infra-libraries-application-staging pod that runs in a staging environment and is owned by the infra-libraries team. Since it runs in staging, the criticality of the pod does not need to be indicated.

			

			In addition to this, both teams also want to add another piece of metadata – "team-link" in which they want to store the internal link of the team's contact information.

			You should be able to perform the following tasks once all three pods have been created:

			
					Group all the pods that run in the production environment and are critical.

					Group all the pods that are not critical among all environments.Note
Ideally, you would want to create this pod to be in a different namespace so as to keep it separate from the rest of the stuff that you created during the exercises. Therefore, feel free to create a namespace and create the pod in that namespace.

			

			The high-level steps to perform this activity are as follows:

			
					Create a namespace for this activity.

					Write the pod configurations for all three pods. Ensure that all the metadata requested is added correctly among the labels and annotations.

					Create all three pods using the configurations written in the previous step.

					Make sure that all three pods are running and have all the requested metadata.

					Group all the pods that run in the production environment and are critical.

					Group all the pods that are not critical among all environments.

			

			For the first task, your goal should get the infra-libraries-application pod once you complete the activity, as shown here:

			NAME READY STATUS RESTARTS AGE

			infra-libraries-application 1/1 Running 0 12m

			For the second task, your goal is to obtain arbitrary-product-application and infra-libraries-application-staging once you complete the activity, as shown here:

			NAME READY STATUS RESTARTS AGE

			arbitrary-product-application 1/1 Running 0 14m

			infra-libraries-application-staging 1/1 Running 0 14m

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			In this chapter, we have described labels and annotations and used them to add metadata information, which can either be identifiable information that can be used to filter or select objects, or non-identifiable information that can be used by users or tools to get more context regarding the state of the application. More specifically, we have also organized objects such as pods using labels and annotations. These are important skills that will help you manage your Kubernetes objects more efficiently.

			In the following chapters, as we become familiar with more Kubernetes objects such as Deployments and Services, we will see the further application of labels and label selectors while organizing pods for deployment or discovery.

		

	
		
			
			

		

		
			7. Kubernetes Controllers

		

		
			Overview

			This chapter introduces the concept of Kubernetes controllers and explains how to use them to create replicated Deployments. We will describe the use of different types of controllers, such as ReplicaSets, Deployments, DaemonSets, StatefulSets, and Jobs. You will learn how to choose a suitable controller for specific use cases. Using hands-on exercises, we will guide you through how to use these controllers with the desired configuration to deploy several replicas of Pods for your application. You will also learn how to manage them using various commands.

			Introduction

			In previous chapters, we created different Pods, managed their life cycle manually, and added metadata (labels or annotations) to them to help organize and identify various Pods. In this chapter, we will take a look at a few Kubernetes objects that help you manage several replica Pods declaratively.

			When deploying your application in production, there are several reasons why you would want to have more than one replica of your Pods. Having more than one replica ensures that your application continues to work in cases where one or more Pods fail. In addition to handling failures, replication also allows you to balance the load across the different replicas so that one Pod is not overloaded with a lot of requests, thereby allowing you to easily serve higher traffic than what a single Pod can serve.

			Kubernetes supports different controllers that you can use for replication, such as ReplicaSets, Deployments, DaemonSets, StatefulSets, and Jobs. A controller is an object that ensures that your application runs in the desired state for its entire runtime. Each of these controllers is useful for specific use cases. In this chapter, we will explore some of the most commonly used controllers one by one and understand how and when to use them in real-life scenarios.

			ReplicaSets

			As discussed earlier, having multiple replicas of our application ensures that it is still available even if a few replicas fail. This also makes it easy for us to scale our application to balance the load to serve more traffic. For example, if we are building a web application that's exposed to users, we'd want to have at least two replicas of the application in case one of them fails or dies unexpectedly. We would also want the failed replica to recover on its own. In addition to that, if our traffic starts growing, we would want to increase the number of Pods (replicas) running our application. A ReplicaSet is a Kubernetes controller that keeps a certain number of Pods running at any given time.

			ReplicaSet acts as a supervisor for multiple Pods across the different nodes in a Kubernetes cluster. A ReplicaSet will terminate or start new Pods to match the configuration specified in the ReplicaSet template. For this reason, it is a good idea to use them even if your application only needs one Pod. Even if someone deletes the only running Pod, the ReplicaSet will ensure that a new Pod is created to replace it, thereby ensuring that one Pod is always running.

			A ReplicaSet can be used to reliably run a single Pod indefinitely or to run multiple instances of the same Pod.

			ReplicaSet Configuration

			Let's first look at an example of the configuration of a ReplicaSet, and then we will cover what the different fields mean:

			apiVersion: apps/v1

			kind: ReplicaSet

			metadata:

			 name: nginx-replicaset

			 labels:

			 app: nginx

			spec:

			 replicas: 2

			 selector:

			 matchLabels:

			 environment: production

			 template:

			 metadata:

			 labels:

			 environment: production

			 spec:

			 containers:

			 - name: nginx-container

			 image: nginx

			As with Pod configuration, a ReplicaSet also needs fields such as apiVersion, kind, and metadata. For a ReplicaSet, the API version, apps/v1, is the current version and the kind field will always be ReplicaSet. One field that is different from what we have seen in Pod configuration so far is the spec.

			Now, we will see what information we need to specify in the spec field.

			Replicas

			The replicas field under spec specifies how many Pods the ReplicaSet should keep running concurrently. You can see the following value in the preceding example:

			replicas: 2

			The ReplicaSet will create or delete Pods in order to match this number. The default value for this field, if not specified, is 1.

			Pod Template

			In the template field, we will specify the template of the Pod that we want to run using this ReplicaSet. This Pod template will be exactly the same as the Pod templates we used in the previous two chapters. As usual, we can add metadata in the form of labels and annotations to the Pods. The ReplicaSet will use this Pod template to create new Pods whenever there is a need for them. The following section from the previous example comprises the template:

			template:

			 metadata:

			 labels:

			 environment: production

			 spec:

			 containers:

			 - name: nginx-container

			 image: nginx

			Pod Selector

			This is a really important section. In the selector field under spec, we can specify the label selectors that will be used by the ReplicaSet to identify which Pods to manage:

			selector:

			 matchLabels:

			 environment: production

			The preceding example ensures that our controller will only manage Pods with an environment: production label.

			Let's now proceed to create our first ReplicaSet.

			Exercise 7.01: Creating a Simple ReplicaSet with nginx Containers

			In this exercise, we will create a simple ReplicaSet and examine the Pods created by it. To successfully complete this exercise, perform the following steps:

			
					Create a file called replicaset-nginx.yaml with the following content:apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx-replicaset
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 environment: production
 template:
 metadata:
 labels:
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx
As you can see in the highlighted part of the configuration, we have three fields: replicas, selector, and template. We have set the number of replicas to 2. The Pod selector has been set in such a way that this ReplicaSet will manage the Pods with the environment: production label. The Pod template has the simple Pod configuration that we used in previous chapters. We have ensured that the Pod label selector matches the Pod's labels in the template exactly.

					Run the following command to create the ReplicaSet using the preceding configuration:kubectl create -f replicaset-nginx.yaml
You should see the following response:
replicaset.apps/nginx-replicaset created

					Verify that the ReplicaSet was created by using the kubectl get command:kubectl get rs nginx-replicaset
Note that rs is a short form of replicaset in all kubectl commands.
You should see the following response:
NAME DESIRED CURRENT READY AGE
nginx-replicaset 2 2 2 30s
As you can see, we have a ReplicaSet with two desired replicas, as we defined in replicaset-nginx.yaml in step 1.

					Verify that the Pods were actually created by using the following command:kubectl get pods
You should get the following response:
NAME READY STATUS RESTARTS AGE
nginx-replicaset-b8fwt 1/1 Running 0 51s
nginx-replicaset-k4h9r 1/1 Running 0 51s
We can see that the names of the Pods created by the ReplicaSet take the name of the ReplicaSet as a prefix.

					Now that we have created our first ReplicaSet, let's look at it in more detail to understand what actually happened during its creation. To do that, we can describe the ReplicaSet we just created by using the following command in the terminal:kubectl describe rs nginx-replicaset
You should see output similar to the following:
[image: Figure 7.1: Describing nginx-replicaset

]
Figure 7.1: Describing nginx-replicaset

					Next, we will inspect the Pods created by this ReplicaSet and verify that they have been created with the correct configuration. Run the following command to get a list of the Pods that are running:kubectl get pods
You should see a response as follows:
NAME READY STATUS RESTARTS AGE
nginx-replicaset-b8fwt 1/1 Running 0 38m
nginx-replicaset-k4h9r 1/1 Running 0 38m

					Run the following command to describe one of the Pods by copying its name:kubectl describe pod <pod_name>
You should see output similar to the following:
[image: Figure 7.2: Listing Pods

]

			

			Figure 7.2: Listing Pods

			In the highlighted sections of the preceding output, we can clearly see that the pod has the environment=production label and is controlled by ReplicaSet/nginx-replicaset.

			So, we have created a simple ReplicaSet in this exercise. In the following subtopics, we will go through the highlighted sections of the preceding output to understand the ReplicaSet that's running.

			Labels on the ReplicaSet

			Consider the following line from the output shown in Figure 7.1:

			Labels: app=nginx

			It shows that, as desired, the ReplicaSet was created with a label key called app with a value of nginx.

			Selectors for the ReplicaSet

			Now, consider the following line from the output shown in Figure 7.1:

			Selector: environment=production

			This shows that the ReplicaSet is configured with an environment=production Pod selector. This means that this ReplicaSet will try to acquire Pods that have this label.

			Replicas

			Consider the following line from the output shown in Figure 7.1:

			Replicas: 2 current / 2 desired

			We can see that the ReplicaSet has the desired count of 2 for the Pods, and it also shows that there are currently two replicas present.

			Pods Status

			While the Replicas field only shows the number of Pods currently present, Pods Status shows the actual status of those Pods:

			Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed

			We can see that there are currently two Pods running under this ReplicaSet.

			Pods Template

			Now, let's consider the Pod Template section of the output shown in Figure 7.1. We can see that the Pod template is the same as was described in the configuration.

			Events

			In the last section of the output shown in Figure 7.1, we can see that there are two events, which denotes that two pods were created to get to the desired count of two Pods for the ReplicaSet.

			In the last exercise, we created a ReplicaSet to maintain a number of running replicas. Now, let's consider a scenario where some nodes or Pods fail for some reason. We will see how the ReplicaSet will behave in this situation.

			Exercise 7.02: Deleting Pods Managed by a ReplicaSet

			In this exercise, we will delete one of the Pods managed by a ReplicaSet to see how it responds. This way, we will be simulating a single or multiple Pods failing during the runtime of a ReplicaSet:

			Note

			In this exercise, we will assume that you have successfully completed the previous exercise as we will be reusing the ReplicaSet created in that exercise.

			
					Verify that the Pods created by the ReplicaSet are still running:kubectl get pods
You should see something similar to the following response:
NAME READY STATUS RESTARTS AGE
nginx-replicaset-9tgb9 1/1 Running 0 103s
nginx-replicaset-zdjb5 1/1 Running 0 103s

					Delete the first Pod to replicate Pod failure during runtime by using the following command:kubectl delete pod <pod_name>
You should see a response similar to the following:
pod "nginx-replicaset-9tgb9" deleted

					Describe the ReplicaSet and check the events:kubectl describe rs nginx-replicaset
You should see output similar to the following:
[image: Figure 7.3: Describing the ReplicaSet

]
Figure 7.3: Describing the ReplicaSet
As highlighted in the preceding output, we can see that after a Pod is deleted, the ReplicaSet creates a new Pod using the Pod configuration in the Template section of the ReplicaSet configuration. Even if we delete all the Pods managed by the ReplicaSet, they will be recreated. So, to delete all the Pods permanently and to avoid the recreation of the Pods, we need to delete the ReplicaSet itself.

					Run the following command to delete the ReplicaSet: kubectl delete rs nginx-replicaset
You should see the following response:
replicaset.apps "nginx-replicaset" deleted
As shown in the preceding output, the nginx-replicaset ReplicaSet was deleted.

					Run the following command to verify that the Pods managed by the ReplicaSet were also deleted:kubectl get pods
You should get the following response:
No resources found in default namespace
As you can see from this output, we can verify that the Pods were deleted.

			

			Consider a scenario where you have already deployed a single Pod for testing. Now, it is ready to go live. You apply the required label changes from development to production, and now you want to control this using a ReplicaSet. We will see how to do this in the following exercise.

			Exercise 7.03: Creating a ReplicaSet Given That a Matching Pod Already Exists

			In this exercise, we will create a Pod that matches the Pod template in the ReplicaSet and then create the ReplicaSet. Our aim is to prove that the newly created ReplicaSet will acquire the existing Pod and start managing it as if it created that Pod itself.

			In order to successfully complete this exercise, perform the following steps:

			
					Create a file called pod-matching-replicaset.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-matching-replicaset
 labels:
 environment: production
spec:
 containers:
 - name: first-container
 image: nginx

					Run the following command to create the Pod using the preceding configuration:kubectl create -f pod-matching-replicaset.yaml
You should see the following response:
pod/pod-matching-replicaset created

					Create a file called replicaset-nginx.yaml with the following content:apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx-replicaset
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 environment: production
 template:
 metadata:
 labels:
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx

					Run the following command to create the ReplicaSet using the preceding configuration:kubectl create -f replicaset-nginx.yaml
You should see a response similar to the following:
replicaset.apps/nginx-replicaset created
This output indicates that the Pod has been created.

					Run the following command to check the status of the ReplicaSet:kubectl get rs nginx-replicaset
You should get the following response:
NAME DESIRED CURRENT READY AGE
nginx-replicaset 2 2 2 2
We can see that there are currently two Pods managed by the ReplicaSet, as desired.

					Next, let's check what Pods are running by using the following command:kubectl get pods
You should see output similar to the following:
NAME READY STATUS RESTARTS AGE
nginx-replicaset-4dr7s 1/1 Running 0 28s
pod-matching-replicaset 1/1 Running 0 81s
In this output, we can see that the manually created Pod named pod-matching-replicaset is still running and that there was only one new Pod created by the nginx-replicaset ReplicaSet.

					Next, we will use the kubectl describe command to check whether the Pod named pod-matching-replicaset is being managed by the ReplicaSet:kubectl describe pod pod-matching-replicaset
You should see output similar to the following:
[image: Figure 7.4: Describing the Pod

]
Figure 7.4: Describing the Pod
In the highlighted section of the truncated output, we can see that even though this Pod was created manually before the ReplicaSet event existed, this Pod is now managed by the ReplicaSet itself.

					Next, we will describe the ReplicaSet to see how many Pod creations were triggered by it:kubectl describe rs nginx-replicaset
You should see output similar to the following:
[image: Figure 7.5: Describing the ReplicaSet

]
Figure 7.5: Describing the ReplicaSet

					Run the following command to delete the ReplicaSet for cleanup:kubectl delete rs nginx-replicaset
You should see the following response:
replicaset.apps "nginx-replicaset" deleted
So, we can see that a ReplicaSet is capable of acquiring existing Pods as long as they match the label selector criteria. In cases where there are more matching Pods than the desired count, the ReplicaSet will terminate some of the Pods in order to maintain the total count of running Pods.

			

			Another common operation is horizontally scaling a ReplicaSet that you previously created. Let's say that you create a ReplicaSet with a certain number of replicas and later you need to have more or fewer replicas to manage increased or decreased demand. Let's see how you can scale the number of replicas in the next exercise.

			Exercise 7.04: Scaling a ReplicaSet after It Is Created

			In this exercise, we will create a ReplicaSet with two replicas and then modify it to increase the number of replicas. Then, we will reduce the number of replicas.

			In order to successfully complete this exercise, perform the following steps:

			
					Create a file called replicaset-nginx.yaml with the following content:apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx-replicaset
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 environment: production
 template:
 metadata:
 labels:
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx

					Run the following command to create the ReplicaSet using the kubectl apply command, as described in the preceding code:kubectl apply -f replicaset-nginx.yaml
You should get the following response:
replicaset.apps/nginx-replicaset created

					Run the following command to check all the existing Pods:kubectl get pods
You should get a response similar to the following:
NAME READY STATUS RESTARTS AGE
nginx-replicaset-99tj7 1/1 Running 0 23s
nginx-replicaset-s4stt 1/1 Running 0 23s
We can see that there are two Pods created by the replica set.

					Run the following command to scale up the number of replicas for the ReplicaSet to 4:kubectl scale --replicas=4 rs nginx-replicaset
You should see the following response:
replicaset.apps/nginx-replicaset scaled

					Run the following command to check all the Pods that are running:kubectl get pods
You should see output similar to the following:
NAME READY STATUS RESTARTS AGE
nginx-replicaset-99tj7 1/1 Running 0 75s
nginx-replicaset-klh6k 1/1 Running 0 21s
nginx-replicaset-lrqsk 1/1 Running 0 21s
nginx-replicaset-s4stt 1/1 Running 0 75s
We can see that now there are a total of four Pods. The ReplicaSet created two new Pods after we applied the new configuration.

					Next, let's run the following command to scale down the number of replicas to 1:kubectl scale --replicas=1 rs nginx-replicaset
You should see the following response:
replicaset.apps/nginx-replicaset scaled

					Run the following command to check all the Pods that are running:kubectl get pods
You should see a response similar to the following:
nginx-replicaset-s4stt 1/1 Running 0 11m
We can see that this time, the ReplicaSet deleted all the Pods exceeding the count from the desired count of 1 and kept only one replica running.

					Run the following command to delete the ReplicaSet for cleanup:kubectl delete rs nginx-replicaset
You should see the following response:
replicaset.apps "nginx-replicaset" deleted

			

			In this exercise, we have managed to scale the number of replicas up and down. This could be particularly useful if the traffic to your application grows or decreases for any reason.

			Deployment

			A Deployment is a Kubernetes object that acts as a wrapper around a ReplicaSet and makes it easier to use. In general, in order to manage replicated services, it's recommended that you use Deployments that, in turn, manage the ReplicaSet and the Pods created by the ReplicaSet.

			The major motivation for using a Deployment is that it maintains a history of revisions. Every time a change is made to the ReplicaSet or the underlying Pods, a new revision of the ReplicaSet is recorded by the Deployment. This way, using a Deployment makes it easy to roll back to a previous state or version. Keep in mind that every rollback will also create a new revision for the Deployment. The following diagram provides an overview of the hierarchy of the different objects managing your containerized application:

			
				
					[image: Figure 7.6: Hierarchy of Deployment, ReplicaSet, Pods, and containers

]
				

			

			Figure 7.6: Hierarchy of Deployment, ReplicaSet, Pods, and containers

			Deployment Configuration

			The configuration of a Deployment is actually very similar to that of a ReplicaSet. Here's an example of a Deployment configuration:

			apiVersion: apps/v1

			kind: Deployment

			metadata:

			 name: nginx-deployment

			 labels:

			 app: nginx

			spec:

			 replicas: 3

			 strategy:

			 type: RollingUpdate

			 rollingUpdate:

			 maxUnavailable: 1

			 maxSurge: 1

			 selector:

			 matchLabels:

			 app: nginx

			 environment: production

			 template:

			 metadata:

			 labels:

			 app: nginx

			 environment: production

			 spec:

			 containers:

			 - name: nginx-container

			 image: nginx

			The value for the kind field is Deployment. The rest of the configuration remains the same as that for ReplicaSets. Deployments also have the replicas, selector, and Pod template fields used in the same way as ReplicaSets.

			Strategy

			In the strategy field under spec, we can specify which strategy the Deployment should use when it replaces old pods with new ones. This can either be RollingUpdate or Recreate. The default value is RollingUpdate.

			RollingUpdate

			This is a strategy used to update a Deployment without having any downtime. With the RollingUpdate strategy, the controller updates the Pods one by one. Hence, at any given time, there will always be some Pods running. This strategy is particularly helpful when you want to update the Pod template without incurring any downtime for your application. However, be aware that having a rolling update means that there may be two different versions of Pods (old and new) running at the same time.

			If applications serve static information, this is usually fine because there's usually no harm in serving traffic using two different versions of an application, so long as the information that is served is the same. So, RollingUpdate is usually a good strategy for these applications. In general, we can use RollingUpdate for applications for which the data stored by a new version can be read and handled by the old version of the application.

			Here's an example configuration for setting the strategy to RollingUpdate:

			strategy:

			 type: RollingUpdate

			 rollingUpdate:

			 maxUnavailable: 1

			 maxSurge: 1

			maxUnavailable is the maximum number of Pods that can be unavailable during the update. This field can be specified as either an integer representing the maximum number of unavailable Pods or a string representing the percentage of total replicas that can be unavailable. For the preceding example configuration, Kubernetes will ensure that no more than one replica becomes unavailable while applying an update. The default value for maxUnavailable is 25%.

			maxSurge is the maximum number of Pods that can be scheduled/created above the desired number of Pods (as specified in the replicas field). This field can also be specified as either an integer or a percentage string, as with maxUnavailable. The default value for maxSurge is also 25%.

			Hence, in the preceding example, we are telling the Kubernetes controller to update the Pods one at a time, in such a way that no more than one Pod is ever unavailable and that no more than four Pods are ever scheduled.

			The two parameters—maxUnavailable and maxSurge—can be tuned for availability and the speed of scaling up or down the Deployment. For example, maxUnavailable: 0 and maxSurge: "30%" ensure a rapid scale-up while maintaining the desired capacity at all times. maxUnavailable: "15%" and maxSurge: 0 ensure that the deployment can be performed without using any extra capacity at the cost of having, at worst, 15% fewer Pods running.

			Recreate

			In this strategy, all the existing pods are killed before creating the new Pods with an updated configuration. This means there will be some downtime during the update. This, however, ensures that all the Pods running in the Deployment will be on the same version (old or new). This strategy is particularly useful when working with application Pods that need to have a shared state and so we can't have two different versions of Pods running at the same time. This strategy can be specified as follows:

			strategy:

			 type: Recreate

			A good use case for using the Recreate update strategy is if we need to run some data migration or data processing before the new code can be used. In this case, we will need to use the Recreate strategy because we can't afford to have any new code running along with the old one without running the migration or processing first for all the Pods.

			Now that we have studied the different fields in the configuration of a Deployment, let's implement them in the following exercise.

			Exercise 7.05: Creating a Simple Deployment with Nginx Containers

			In this exercise, we will create our first Deployment Pod using the configuration described in the previous section.

			To successfully complete this exercise, perform the following steps:

			
					Create a file called nginx-deployment.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 environment: production
 template:
 metadata:
 labels:
 app: nginx
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx
In this configuration, we can see that the Deployment will have three replicas of Pods running with the app: nginx and environment: production labels.

					Run the following command to create the Deployment defined in the previous step:kubectl apply -f nginx-deployment.yaml
You should see the following response:
deployment.apps/nginx-deployment created

					Run the following command to check the status of the Deployment:kubectl get deployment nginx-deployment
You should see a response similar to the following:
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 3/3 3 3 26m

					Run the following command to check all the Pods that are running:kubectl get pods
You should see a response similar to the following:
[image: Figure 7.7: A list of Pods created by the Deployment

]
Figure 7.7: A list of Pods created by the Deployment
We can see that the Deployment has created three Pods, as desired.
Let's try to understand the names given to the Pods automatically. nginx-deployment creates a ReplicaSet named nginx-deployment-588765684f. The ReplicaSet then creates three replicas of Pods, each of which has a name that is prefixed with the name of the ReplicaSet followed by a unique identifier.

					Now that we have created our first Deployment, let's look at it in more detail to understand what actually happened during its creation. To do that, we can describe the Deployment we just created using the following command in the terminal:kubectl describe rs nginx-deployment
You should see output similar to this:
[image: Figure 7.8: Describing nginx-deployment

]

			

			Figure 7.8: Describing nginx-deployment

			This output shows various details about the Deployment we just created. In the following subtopics, we will go through the highlighted sections of the preceding output to understand the Deployment that's running.

			Labels and Annotations on the Deployment

			Similar to ReplicaSets, we can see the following line highlighted in the output shown in Figure 7.8:

			Labels: app=nginx

			This indicates that the Deployment was created with an app=nginx label. Now, let's consider the next field in the output:

			Annotations: deployment.kubernetes.io/revision: 1

			 kubectl.kubernetes.io/last-applied-configuration:

			{"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":{},"labels":{"app":"nginx"},"name":"nginx-deployment","namespace":"d...

			There are two annotations added to the Deployment automatically.

			The Revision annotation

			The Kubernetes controller adds an annotation with the deployment.kubernetes.io/revision key, which contains information about how many revisions have been there for a particular Deployment.

			The last-applied-configuration annotation

			Another annotation added by the controller has the kubectl.kubernetes.io/last-applied-configuration key, which contains the last configuration (in JSON format) that was applied to the Deployment. This annotation is particularly helpful in rolling back a Deployment to a previous revision if a new revision doesn't work well.

			Selectors for the Deployment

			Now, consider the following line from the output shown in Figure 7.8:

			Selector: app=nginx,environment=production

			This shows which Pod selectors the Deployment is configured with. So, this Deployment will try to acquire the Pods that have both of these labels.

			Replicas

			Consider the following line from the output shown in Figure 7.8:

			Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable

			We can see that the Deployment has the desired count of 3 for the Pods, and it also shows that there are currently 3 replicas present.

			Rolling Back a Deployment

			In a real-life scenario, you may make a mistake when making a change in the Deployment configuration. You can easily undo a change and roll back to a previous stable revision of the Deployment.

			We can use the kubectl rollout command to check the revision history and rollback. But to make this work, we also need to use the --record flag when we use any apply or set commands to modify the Deployment. This flag records the rollout history. Then, you can view the rollout history using the following command:

			kubectl rollout history deployment <deployment_name>

			Then, we can undo any updates by using the following command:

			kubectl rollout undo deployment <deployment_name>

			Let's take a closer look at how this works in the following exercise:

			Exercise 7.06: Rolling Back a Deployment

			In this exercise, we will update the Deployment twice. We will make an intentional mistake in the second update and try to roll back to a previous revision:

			
					Create a file called app-deployment.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: app-deployment
 labels:
 environment: production
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 environment: production
 template:
 metadata:
 labels:
 app: nginx
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx

					Run the following command to create the Deployment:kubectl apply -f app-deployment.yaml
You should see the following response:
deployment.apps/app-deployment created

					Run the following command to check the rollout history of the newly created Deployment:kubectl rollout history deployment app-deployment
You should see the following response:
deployment.apps/app-deployment
REVISION CHANGE-CAUSE
1 <none>
This output shows that the Deployment has no rollout history as of now.

					For the first update, let's change the name of the container to nginx instead of nginx-container. Update the content of the app-deployment.yaml file with the following:apiVersion: apps/v1
kind: Deployment
metadata:
 name: app-deployment
 labels:
 environment: production
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 environment: production
 template:
 metadata:
 labels:
 app: nginx
 environment: production
 spec:
 containers:
 - name: nginx
 image: nginx
As you can see, the only thing that has changed in this template is the container name.

					Apply the changed configuration using the kubectl apply command with the --record flag. The --record flag ensures that the update to the Deployment is recorded in the rollout history of the Deployment:kubectl apply -f app-deployment.yaml --record
You should see the following response:
deployment.apps/app-deployment configured
Note that the rollout history maintained by the --record flag is different from the past configs stored in the annotations, which we saw in the Labels and Annotations on the Deployment subsection.

					Wait for a few seconds to allow the Deployment to recreate the Pods with the updated Pod configuration, and then run the following command to check the rollout history of the Deployment:kubectl rollout history deployment app-deployment
You should see the following response:
[image: Figure 7.9: Checking the deployment history

]
Figure 7.9: Checking the deployment history
In the output, we can see that the second revision of the Deployment was created. It also keeps track of what command was used to update the Deployment.

					Next, let's update the Deployment and assume that we made a mistake while doing so. In this example, we will update the container image to ngnx (note the intentional spelling error) instead of nginx using the set image command:kubectl set image deployment app-deployment nginx=ngnx --record
You should see the following response:
deployment.apps/app-deployment image updated

					Wait for a few seconds for Kubernetes to recreate the new containers, and then check the status of the Deployment rollout using the kubectl rollout status command:kubectl rollout status deployment app-deployment
You should see the following response:
Waiting for deployment "app-deployment" rollout to finish: 1 out of 3 new replicas have been updated...
In this output, we can see that none of the new replicas are ready yet. Press Ctrl + C to exit and proceed.

					Run the following command to check the state of the Pods:kubectl get pods
You should see the following output:
[image: Figure 7.10: Checking the status of Pods

]
Figure 7.10: Checking the status of Pods
We can see in the output that the newly created Pod has failed with an ImagePullBackOff error, which means that the Pods aren't able to pull the image. This is expected because we have a typo in the name of the image.

					Next, check the revision history of the Deployment again by using the following command:kubectl rollout history deployment app-deployment
You should see the following response:
[image: Figure 7.11: Checking the rollout history of the Deployment

]
Figure 7.11: Checking the rollout history of the Deployment
We can see that a third revision of the Deployment was created using the set image command containing the typo. Now that we have pretended to have made a mistake in updating the Deployment, we will see how to undo this and roll back to the last stable revision of the Deployment.

					Run the following command to roll back to the previous revision:kubectl rollout undo deployment app-deployment
You should see the following response:
deployment.apps/app-deployment rolled back
As we can see in this output, the Deployment has not been rolled back to the previous revision. To practice, we may want to roll back to a revision different from the previous revision. We can use the --to-revision flag to specify the revision number to which we want to roll back. For example, in the preceding case, we could have used the following command and the result would have been exactly the same:
kubectl rollout undo deployment app-deployment --to-revision=2

					Run the following command to check the rollout history of the Deployment again:kubectl rollout history deployment app-deployment
You should see the following output:
[image: Figure 7.12: The rollout history for the Deployment after rollback

]

			

			Figure 7.12: The rollout history for the Deployment after rollback

			We can see in this output that a new revision was created, which applied the revision that was previously revision 2. We can see that revision 2 is no longer present in the list of revisions. This is because rollouts are always done in a rolling-forward manner. This means that any time we update a revision, a new revision of a higher number is created. Similarly, in the case of a rollback to revision 2, revision 2 became revision 4.

			In this exercise, we explored a lot of different possible operations relating to updating a Deployment, rolling it forward with some changes, tracking the history of a Deployment, undoing some changes, and rolling back to a previous revision.

			StatefulSets

			StatefulSets are used to manage stateful replicas. Similar to a Deployment, a StatefulSet creates and manages the specified number of Pod replicas from an identical Pod template. However, where StatefulSets differ from Deployments is that they maintain a unique identity for each of their Pods. So, even if all the Pods are of identical specs, they are not interchangeable. Each of the Pods has a sticky identity that can be used by the application code to manage the state of the application on a particular Pod. For a StatefulSet with n replicas, each Pod is assigned a unique integer ordinal between 0 and n – 1. The names of the Pods reflect the integer identity assigned to them. When a StatefulSet is created, all the Pods are created in the order of their integer ordinal.

			Each of the Pods managed by a StatefulSet will persist their sticky identity (integer ordinal) even if the Pod restarts. For example, if a particular Pod crashes or is deleted, a new Pod will be created and assigned the same sticky identity as that of the old Pod.

			StatefulSet Configuration

			The configuration of a StatefulSet is also very similar to that of a ReplicaSet. Here's an example of StatefulSet configuration:

			apiVersion: apps/v1

			kind: StatefulSet

			metadata:

			 name: example-statefulset

			spec:

			 replicas: 3

			 selector:

			 matchLabels:

			 environment: production

			 template:

			 metadata:

			 labels:

			 environment: production

			 spec:

			 containers:

			 - name: name-container

			 image: image_name

			As we can see in the preceding configuration, apiVersion for a StatefulSet is apps/v1 and kind is StatefulSet. The rest of the fields are used in the same way as for ReplicaSets.

			Note

			You will learn how to implement StatefulSets on a multi-node cluster in Chapter 14, Running Stateful Components in Kubernetes.

			Use Cases for StatefulSets

			
					StatefulSets are useful if you need persistent storage. Using a StatefulSet, you can partition the data and store it in different Pods. In this case, it would also be possible for a Pod to go down and a new Pod come up with the same identity and have the same partition of data previously stored by the old Pod.

					A StatefulSet can also be used if you require ordered updates or scaling. For example, if you want to create or update your Pods in the order of the identities assigned to them, using a StatefulSet is a good idea.

			

			DaemonSets

			DaemonSets are used to manage the creation of a particular Pod on all or a selected set of nodes in a cluster. If we configure a DaemonSet to create Pods on all nodes, then if new nodes are added to the cluster, new pods will be created to run on these new nodes. Similarly, if some nodes are removed from the cluster, the Pods running on these nodes will be destroyed.

			Use Cases for DaemonSets

			
					Logging: One of the most common use cases for a DaemonSet is to manage running a log collection Pod on all nodes. These Pods can be used to collect logs from all the nodes and then process them in a log processing pipeline.

					Local data caching: A DaemonSet can also be used to manage caching Pods on all the nodes. These Pods can be used by other application Pods to store the cached data temporarily.

					Monitoring: Another use case for a DaemonSet is to manage running monitoring Pods on all the nodes. This can be used to collect system- or application-level metrics for Pods running on a particular node.

			

			DaemonSet Configuration

			The configuration of a DaemonSet is also very similar to that of a ReplicaSet or a Deployment. Here's an example of DaemonSet configuration:

			apiVersion: apps/v1

			kind: DaemonSet

			metadata:

			 name: daemonset-example

			 labels:

			 app: daemonset-example

			spec:

			 selector:

			 matchLabels:

			 app: daemonset-example

			 template:

			 metadata:

			 labels:

			 app: daemonset-example

			 spec:

			 containers:

			 - name: busybox-container

			 image: busybox

			 args:

			 - /bin/sh

			 - -c

			 - sleep 10000

			As we can see in the preceding configuration, apiVersion for a DaemonSet is set to apps/v1 and kind is set to DaemonSet. The rest of the fields are used in the same way as for ReplicaSets.

			To limit the scope of this book, we will not cover the details for implementing DaemonSets.

			Up until now in this chapter, you have learned about ReplicaSets, which help us manage several replicas of Pods running an application, and how a Deployment acts as a wrapper on a ReplicaSet to add some features to control rolling out updates and maintaining the update history, with the option of rolling back if needed. Then, we learned about StatefulSets, which are handy if we need to treat each replica as a unique entity. We also learned how DaemonSets allow us to schedule a Pod on each of our nodes.

			All of these controllers have one common characteristic—they are useful for applications or workloads that are to be run continually. However, some workloads have a graceful conclusion, and there is no need to keep the Pods running after the task is done. For this, Kubernetes has a controller called a Job. Let's take a look at this in the following section.

			Jobs

			A Job is a supervisor in Kubernetes that can be used to manage Pods that are supposed to run a determined task and then terminate gracefully. A Job creates the specified number of Pods and ensures that they successfully complete their workloads or tasks. When a Job is created, it creates and tracks the Pods that were specified in its configuration. When a specified number of Pods complete successfully, the Job is considered complete. If a Pod fails because of underlying node failures, the Job will create a new Pod to replace it. This also means that the application or code running on the Pod should be capable of gracefully handling a case where a new Pod comes up during the runtime of the process.

			The Pods created by a Job aren't deleted following completion of the job. The Pods run to completion and stay in the cluster with a Completed status.

			A Job can be used in several different ways:

			
					The simplest use case is to create a Job that runs only one Pod to completion. The Job will only create additional new Pods if the running pod fails. For example, a Job can be used for one-off or recurring data analysis work or for the training of a machine learning model.

					Jobs can also be used for parallel processing. We can specify more than one successful Pod completion to ensure that the Job will complete only when a certain number of Pods have terminated successfully.

			

			Job Configuration

			The configuration of a Job follows a similar pattern to that of a ReplicaSet or a Deployment. Here's an example of Job configuration:

			apiVersion: batch/v1

			kind: Job

			metadata:

			 name: one-time-job

			spec:

			 template:

			 spec:

			 containers:

			 - name: busybox-container

			 image: busybox

			 args:

			 - /bin/sh

			 - -c

			 - date

			 restartPolicy: OnFailure

			The apiVersion field for a Job object is set to batch/v1. The batch API group contains objects relating to batch processing jobs. The kind field is set to Job.

			A Use Case for Jobs in Machine Learning

			Jobs are perfect for batch processes—processes that run for a certain amount of time before exiting. This makes Jobs ideal for many types of production machine learning tasks, such as feature engineering, cross-validation, model training, and batch inference. For instance, you can create a Kubernetes Job that trains a machine learning model and persists the model and training metadata to external storage. Then, you can create another Job to perform batch inference. This Job would create a Pod that fetches the pre-trained model from storage, loads both the model and data into memory, performs inference, and stores the predictions.

			Exercise 7.07: Creating a Simple Job That Finishes in Finite Time

			In this exercise, we will create our first Job, which will run a container that simply waits for 10 seconds and then finishes.

			To successfully complete this exercise, perform the following steps:

			
					Create a file called one-time-job.yaml with the following content:apiVersion: batch/v1
kind: Job
metadata:
 name: one-time-job
spec:
 template:
 spec:
 containers:
 - name: busybox-container
 image: busybox
 args:
 - /bin/sh
 - -c
 - date; sleep 20; echo "Bye"
 restartPolicy: OnFailure

					Run the following command to create the Deployment using the kubectl apply command:kubectl apply -f one-time-job.yaml
You should see the following response:
job.batch/one-time-job created

					Run the following command to check the status of the Job:kubectl get jobs
You should see a response similar to this:
NAME COMPLETIONS DURATION AGE
one-time-job 0/1 3s 3s
We can see that the Job requires one completion and is not yet completed.

					Run the following command to check the Pod running the Job:kubectl get pods
Note that you should run this before the Job is complete to see the response shown here:
NAME READY STATUS RESTARTS AGE
one-time-job-bzz8l 1/1 Running 0 7s
We can see that the Job has created a Pod named one-time-job-bzz8l to run the task specified in the Job template.

					Next, run the following command to check the logs for the Pod created by the Job:kubectl logs -f <pod_name>
You should see logs similar to the following:
Sun Nov 10 15:20:19 UTC 2019
Bye
We can see that the Pod printed the date, waited for 20 seconds, and then printed Bye in the terminal.

					Let's check the status of the Job again by using the following command:kubectl get job one-time-job
You should see a response similar to this:
NAME COMPLETIONS DURATION AGE
one-time-job 1/1 24s 14m
We can see that the Job has now been completed.

					Run the following command to verify that the Pod has run to completion:kubectl get pods
You should see a response similar to this:
NAME READY STATUS RESTARTS AGE
one-time-job-whw79 0/1 Completed 0 32m
We can see that the Pod has a Completed status.

					Run the following command to delete the job (as well as the Pod it created) for cleanup:kubectl delete job one-time-job
You should see the following response:
job.batch "one-time-job" deleted

			

			In this exercise, we created a one-time Job and verified that the Pod created by the Job runs to completion. Implementing Jobs for parallel tasks is a bit more complicated, and we will leave that out of this workshop for brevity.

			Next, let's wrap this chapter up with an activity where we will create a Deployment and bring together several ideas learned in this chapter.

			Activity 7.01: Creating a Deployment Running an Application

			Consider a scenario where the product/application team you're working with is now ready to put their application in production and they need your help to deploy it in a replicated and reliable manner. For the scope of this exercise, consider the following requirements for the application:

			
					The default number of replicas should be 6.

					For simplicity, you can use the nginx image for the container running in the Pod.

					Make sure all the Pods have the following two labels with corresponding values:chapter=controllers
activity=1

					The update strategy for the Deployment should be RollingUpdate. At worst, no more than half of the Pods can be down, and similarly, at no point should there be more than 150% of the desired count of Pods.

			

			You should be able to perform the following tasks once the Deployment has been created:

			
					Scale up the number of replicas to 10.

					Scale down the number of replicas to 5.Note
Ideally, you would want to create this Deployment to be in a different namespace to keep it separate from the rest of the stuff that you created during the previous exercises. So, feel free to create a namespace and create the Deployment in that namespace.

			

			The following are the high-level steps to perform this activity:

			
					Create a namespace for this activity.

					Write the Deployment configuration. Ensure that it meets all the requirements that are specified.

					Create the Deployment using the configuration from the previous step.

					Verify that six Pods were created by the Deployment.

					Perform both of the tasks mentioned previously and verify the number of Pods after performing each step.

			

			You should be able to get the list of Pods to check whether you can scale up the number of Pods, as shown in the following image:

			
				
					[image: Figure 7.13: Checking whether the number of Pods is scaled up

]
				

			

			Figure 7.13: Checking whether the number of Pods is scaled up

			Similarly, you should also be able to scale down and check the number of Pods, as shown here:

			
				
					[image: Figure 7.14: Checking whether the number of Pods is scaled down

]
				

			

			Figure 7.14: Checking whether the number of Pods is scaled down

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			Kubernetes treats Pods as ephemeral entities, and ideally you would not deploy any application or a microservice in an individual Pod. Kubernetes offers various controllers to leverage various benefits, including automatic replication, health monitoring, and automatic scaling.

			In this chapter, we covered different kinds of controllers and understood when to use each of them. We created ReplicaSets and observed how they manage Pods. We learned when to use DaemonSets and StatefulSets. We also created a Deployment and learned how we can scale up and down the number of replicas and roll back to an earlier version of the Deployment. Finally, we learned how to create Jobs for one-time tasks. All of these controllers come into play when you want to deploy a production-ready application or workload, as you will see in the upcoming chapters.

			In the next chapter, we will see how we can discover and access the Pods or replicas managed by a Deployment or a ReplicaSet.

		

	
		
			
			

		

		
			8. Service Discovery

		

		
			Overview

			In this chapter, we will take a look at how to route traffic between the various kinds of objects that we have created in previous chapters and make them discoverable from both within and outside our cluster. This chapter also introduces the concept of Kubernetes Services and explains how to use them to expose the application deployed using controllers such as Deployments. By the end of this chapter, you will be able to make your application accessible to the external world. You will also know about the different types of Services and be able to use them to make different sets of pods interact with each other.

			Introduction

			In the past few chapters, we learned about Pods and Deployments, which help us run containerized applications. Now that we are equipped to deploy our applications, in this chapter, we will take a look at some API objects that help us with the networking setup to ensure that our users can reach our application and that the different components of our application, as well as different applications, can work together.

			As we have seen in the previous chapters, each Kubernetes Pod gets its IP address. However, setting up networking and connecting everything is not as simple as coding in Pod IP addresses. We can't rely on a single Pod to run our applications reliably. Due to this, we use a Deployment to ensure that, at any given moment, we will have a fixed number of specific kinds of Pods running in the cluster. However, this means that during the runtime of our application, we can tolerate the failure of a certain number of Pods as new pods are automatically created to replace them. Hence, the IP addresses of these Pods don't stay the same. For example, if we have a set of Pods running the frontend application that need to talk to another set of Pods running the backend application inside our cluster, we need to find a way to make the Pods discoverable.

			To solve this problem, we use Kubernetes Services. Services allow us to make a logical set of Pods (for example, all pods managed by a Deployment) discoverable and accessible for other Pods running inside the same cluster or to the external world.

			Service

			A Service defines policies by which a logical set of Pods can be accessed. Kubernetes Services enable communication between various components of our application, as well as between different applications. Services help us connect the application with other applications or users. For example, let's say we have a set of Pods running the frontend of an application, a set of Pods running the backend, and another set of Pods connecting the data source. The frontend is the one that users need to interact with directly. The frontend then needs to connect to the backend, which, in turn, needs to talk to the external data source.

			Consider you are making a survey app that also allows users to make visualizations based on their survey results. Using a bit of simplification, we can imagine three Deployments – one that runs the forms' frontend to collect the data, another that validates and stores the data, and a third one that runs the data visualization application. The following diagram should help you visualize how Services would come into the picture for routing traffic and exposing different components:

			
				
					[image: Figure 8.1: Using Services to route traffic into and within the cluster

]
				

			

			Figure 8.1: Using Services to route traffic into and within the cluster

			Hence, the abstraction of Services helps in keeping the different parts of the application decoupled and enables communication between them. In legacy (non-Kubernetes) environments, you may expect different components to be linked together by the IP addresses of different VMs or bare-metal machines running different resources. When working with Kubernetes, the predominant way of linking different resources together is using labels and label selectors, which allows a Deployment to easily replace failed Pods or scale the number of Deployments as needed. Thus, you can think of a Service as a translation layer between the IP addresses and label selector-based mechanism of linking different resources. Hence, you just need to point toward a Service, and it will take care of routing the traffic to the appropriate application, regardless of how many replica Pods are associated with the application or which nodes these Pods are running on.

			Service Configuration

			Similar to the configuration of Pods, ReplicaSets, and Deployments, the configuration for a Service also contains four high-level fields; that is, apiVersion, kind, metadata, and spec.

			Here is an example manifest for a Service:

			apiVersion: v1

			kind: Service

			metadata:

			 name: sample-service

			spec:

			 ports:

			 - port: 80

			 targetPort: 80

			 selector:

			 key: value

			For a Service, apiVersion is v1 and kind will always be Service. In the metadata field, we will specify the name of the Service. In addition to the name, we can also add labels and annotations in the metadata field.

			The content of the spec field depends on the type of Service we want to create. In the next section, we will go through the different types of Services and understand various parts of the spec field regarding the configuration.

			Types of Services

			There are four different types of Services:

			
					NodePort: This type of Service makes internal Pod(s) accessible on a port on the node on which the Pod(s) are running.

					ClusterIP: This type of Service exposes the Service on a certain IP inside the cluster. This is the default type of Service.

					LoadBalancer: This type of Service exposes the application externally using the load balancer provided by the cloud provider.

					ExternalName: This type of Service points to a DNS rather than a set of Pods. The other types of Services use label selectors to select the Pods to be exposed. This is a special type of Service that doesn't use any selectors by default.

			

			We will take a closer look at all these Services in the following sections.

			NodePort Service

			A NodePort Service exposes the application on the same port on all the nodes in the cluster. The Pods may be running across all or some of the nodes in the cluster.

			In a simplified case where there's only one node in the cluster, the Service exposes all the selected Pods on the port configured in the Service. However, in a more practical case, where the Pods may be running on multiple nodes, the Service spans across all the nodes and exposes the Pods on the specific port on all the nodes. This way, the application can be accessed from outside the Kubernetes cluster using the following IP/port combination: <NodeIP>:<NodePort>.

			A config file for a sample Service would look like this:

			apiVersion: v1

			kind: Service

			metadata:

			 name: nginx-service

			spec:

			 type: NodePort

			 ports:

			 - targetPort: 80

			 port: 80

			 nodePort: 32023

			 selector:

			 app: nginx

			 environment: production

			As we can see, there are three ports involved in the definition of a NodePort Service. Let's take a look at these:

			
					targetPort: This field represents the port where the application running on the Pods is exposed. This is the port that the Service forwards the request to. By default, targetPort is set to the same value as the port field.

					port: This field represents the port of the Service itself.

					nodePort: This field represents the port on the node that we can use to access the Service itself.

			

			Besides the ports, there's also another field called selector in the Service spec section. This section is used to specify the labels that a Pod needs to have in order to be selected by a Service. Once this Service is created, it will identify all the Pods that have the app: nginx and environment: production labels and add endpoints for all such Pods. We will look at endpoints in more detail in the following exercise.

			Exercise 8.01: Creating a Simple NodePort Service with Nginx Containers

			In this exercise, we will create a simple NodePort Service with Nginx containers. Nginx containers, by default, expose port 80 on the Pod with an HTML page saying Welcome to nginx!. We will make sure that we can access that page from a browser on our local machine.

			To successfully complete this exercise, perform the following steps:

			
					Create a file called nginx-deployment.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 strategy:
 type: Recreate
 selector:
 matchLabels:
 app: nginx
 environment: production
 template:
 metadata:
 labels:
 app: nginx
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx

					Run the following command to create the Deployment using the kubectl apply command:kubectl apply -f nginx-deployment.yaml
You should get the following output:
deployment.apps/nginx-deployment created
As we can see, nginx-deployment has been created.

					Run the following command to verify that the Deployment has created three replicas:kubectl get pods
You should see a response similar to the following:
[image: Figure 8.2: Getting all Pods

]
Figure 8.2: Getting all Pods

					Create a file called nginx-service-nodeport.yaml with the following content:apiVersion: v1
kind: Service
metadata:
 name: nginx-service-nodeport
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 nodePort: 32023
 selector:
 app: nginx
 environment: production

					Run the following command to create the Service:kubectl create -f nginx-service-nodeport.yaml
You should see the following output:
service/nginx-service-nodeport created
Alternatively, we can use the kubectl expose command to expose a Deployment or a Pod using a Kubernetes Service. The following command will also create a NodePort Service named nginx-service-nodeport, with port and targetPort set to 80. The only difference is that this command doesn't allow us to customize the nodePort field. nodePort is automatically allocated when we create the Service using the kubectl expose command:
kubectl expose deployment nginx-deployment --name=nginx-service-nodeport --port=80 --target-port=80 --type=NodePort
If we use this command to create the Service, we will be able to figure out what nodePort was automatically assigned to the Service in the following step.

					Run the following command to verify that the Service was created:kubectl get service
This should give a response similar to the following:
[image: Figure 8.3: Getting the NodePort Service

]
Figure 8.3: Getting the NodePort Service
You can ignore the additional Service named kubernetes, which already existed before we created our Service. This Service is used to expose the Kubernetes API of the cluster internally.

					Run the following command to verify that the Service was created with the correct configuration:kubectl describe service nginx-service-nodeport
This should give us the following output:
[image: Figure 8.4: Describing the NodePort Service

]
Figure 8.4: Describing the NodePort Service
In the highlighted sections of the output, we can confirm that the Service was created with the correct Port, TargetPort, and NodePort fields.
There's also another field called Endpoints. We can see that the value of this field is a list of IP addresses; that is, 172.17.0.3:80, 172.17.0.4:80, and 172.17.0.5:80. Each of these IP addresses points to the IP addresses allocated to the three Pods created by nginx-deployment, along with the target ports exposed by all of those Pods. We can use the custom-columns output format alongside the kubectl get pods command to get the IP addresses for all three pods. We can create a custom column output using the status.podIP field, which contains the IP address of a running Pod.

					Run the following command to see the IP addresses of all three Pods:kubectl get pods -o custom-columns=IP:status.podIP
You should see the following output:
IP
172.17.0.4
172.17.0.3
172.17.0.5
Hence, we can see that the Endpoints field of the Service actually points to the IP addresses of our three Pods.
As we know in the case of a NodePort Service, we can access the Pod's application using the IP address of the node and the port exposed by the Service on the node. To do this, we need to find out the IP address of the node in the Kubernetes cluster.

					Run the following command to get the IP address of the Kubernetes cluster running locally:minikube ip
You should see the following response:
192.168.99.100

					Run the following command to send a request to the IP address we obtained from the previous step at port 32023 using curl:curl 192.168.99.100:32023
You should get a response from Nginx like so:
[image: Figure 8.5: Sending a curl request to check the NodePort Service

]
Figure 8.5: Sending a curl request to check the NodePort Service

					Finally, open your browser and enter 192.168.99.100:32023 to make sure we can get to the following page:[image: Figure 8.6: Accessing the application in a browser

]
Figure 8.6: Accessing the application in a browser
Note
Ideally, you would want to create the objects for each exercise and activity in different namespaces to keep them separate from the rest of your objects. So, feel free to create a namespace and create the Deployment in that namespace. Alternatively, you can ensure that you clean up any objects shown in the following commands so that there is no interference.

					Delete both the Deployment and the Service to ensure you're working on the clean ground for the rest of the exercises in this chapter:kubectl delete deployment nginx-deployment
You should see the following response:
deployment.apps "nginx-deployment" deleted
Now, delete the Service using the following command:
kubectl delete service nginx-service-nodeport
You should see this response:
service "nginx-service-nodeport" deleted

			

			In this exercise, we have created a Deployment with three replicas of the Nginx container (this can be replaced with any real application running in the container) and exposed the application using the NodePort Service.

			ClusterIP Service

			As we mentioned earlier, a ClusterIP Service exposes the application running on the Pods on an IP address that's accessible from inside the cluster only. This makes the ClusterIP Service a good type of Service to use for communication between different types of Pods inside the same cluster.

			For example, let's consider our earlier example of a simple survey application. Let's say we have a survey application that serves the frontend to show the forms to the users where they can fill in the surveys. It's running on a set of Pods managed by the survey-frontend Deployment. We also have another application that is responsible for validating and storing the data filled by the users. It's running on a set of Pods managed by the survey-backend Deployment. This backend application needs to be accessed internally by the survey frontend application. We can use a ClusterIP Service to expose the backend application so that the frontend Pods can easily access the backend application using a single IP address for that ClusterIP Service.

			Service Configuration

			Here's an example of what the configuration for a ClusterIP Service looks like:

			apiVersion: v1

			kind: Service

			metadata:

			 name: nginx-service

			spec:

			 type: ClusterIP

			 ports:

			 - targetPort: 80

			 port: 80

			 selector:

			 app: nginx

			 environment: production

			The type of Service is set to ClusterIP. Only two ports are needed for this type of the Service: targetPort and port. These represent the port where the application is exposed on the Pod and the port where the Service is created on a given cluster IP, respectively.

			Similar to the NodePort Service, the ClusterIP Service's configuration also needs a selector section, which is used to decide which Pods to select by the Service. In this example, this Service will select all the Pods that have both app: nginx and environment: production labels. We will create a simple ClusterIP Service in the following exercise based on a similar example.

			Exercise 8.02: Creating a Simple ClusterIP Service with Nginx Containers

			In this exercise, we will create a simple ClusterIP Service with Nginx containers. Nginx containers, by default, expose port 80 on the Pod with an HTML page saying Welcome to nginx!. We will make sure that we can access that page from inside the Kubernetes cluster using the curl command. Let's get started:

			
					Create a file called nginx-deployment.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 strategy:
 type: Recreate
 selector:
 matchLabels:
 app: nginx
 environment: production
 template:
 metadata:
 labels:
 app: nginx
 environment: production
 spec:
 containers:
 - name: nginx-container
 image: nginx

					Run the following command to create the Deployment using the kubectl apply command:kubectl create -f nginx-deployment.yaml
You should see the following response:
deployment.apps/nginx-deployment created

					Run the following command to verify that the Deployment has created three replicas:kubectl get pods
You should see output similar to the following:
[image: Figure 8.7: Getting all the Pods

]
Figure 8.7: Getting all the Pods

					Create a file called nginx-service-clusterip.yaml with the following content:apiVersion: v1
kind: Service
metadata:
 name: nginx-service-clusterip
spec:
 type: ClusterIP
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: nginx
 environment: production

					Run the following command to create the Service:kubectl create -f nginx-service-clusterip.yaml
You should see the following response:
service/nginx-service-clusterip created

					Run the following command to verify that the Service was created:kubectl get service
You should see the following response:
[image: Figure 8.8: Getting the ClusterIP Service

]
Figure 8.8: Getting the ClusterIP Service

					Run the following command to verify that the Service has been created with the correct configuration:kubectl describe service nginx-service-clusterip
You should see the following response:
[image: Figure 8.9: Describing the ClusterIP Service

]
Figure 8.9: Describing the ClusterIP Service
We can see that the Service has been created with the correct Port and TargetPort fields. In the Endpoints field, we can see the IP addresses of the Pods, along with the target ports on those Pods.

					Run the following command to see the IP addresses of all three Pods:kubectl get pods -o custom-columns=IP:status.podIP
You should see the following response:
IP
172.17.0.5
172.17.0.3
172.17.0.4
Hence, we can see that the Endpoints field of the Service actually points to the IP addresses of our three Pods.

					Run the following command to get the cluster IP of the Service:kubectl get service nginx-service-clusterip
This results in the following output:
[image: Figure 8.10: Getting the cluster IP from the Service

]
Figure 8.10: Getting the cluster IP from the Service
As we can see, the Service has a cluster IP of 10.99.11.74.
We know that, in the case of a ClusterIP Service, we can access the application running on its endpoints from inside the cluster. So, we need to go inside the cluster to be able to check whether this really works.

					Run the following command to access the minikube node via SSH:minikube ssh
You will see the following response:
[image: Figure 8.11: SSHing into the minikube node

]
Figure 8.11: SSHing into the minikube node

					Now that we are inside the cluster, we can try to access the cluster IP address of the Service and see whether we can access the Pods running Nginx:curl 10.99.11.74
You should see the following response from Nginx:
[image: Figure 8.12: Sending a curl request to the Service from inside the cluster

]
Figure 8.12: Sending a curl request to the Service from inside the cluster
Here, we can see that curl returns the HTML code for the default Nginx landing page. Thus, we can successfully access our Nginx Pods. Next, we will delete the Pods and Services.

					Run the following command to exit the SSH session inside minikube:exit

					Delete the Deployment and the Service to ensure you're working on the clean ground for the following exercises in this chapter:kubectl delete deployment nginx-deployment
You should see the following response:
deployment.apps "nginx-deployment" deleted
Delete the Service using the following command:
kubectl delete service nginx-service-clusterip
You should see the following response:
service "nginx-service-clusterip" deleted

			

			In this exercise, we were able to expose the application running on multiple Pods on a single IP address. This can be accessed by all the other Pods running inside the same cluster.

			Choosing a Custom IP Address for the Service

			In the previous exercise, we saw that the Service was created with a random available IP address inside the Kubernetes cluster. We can also specify an IP address if we want. This may be particularly useful if we already have a DNS entry for a particular address and we want to reuse that for our Service.

			We can do this by setting the spec.clusterIP field with a value of the IP address we want the Service to use. The IP address specified in this field should be a valid IPv4 or IPv6 address. If an invalid IP address is used to create the Service, the API server will return an error.

			Exercise 8.03: Creating a ClusterIP Service with a Custom IP

			In this exercise, we will create a ClusterIP Service with a custom IP address. We will try a random IP address. As in the previous exercise, we will make sure that we can access the default Nginx page from inside the Kubernetes cluster by using the curl command to the set IP address. Let's get started:

			
					Create a file called nginx-deployment.yaml with the same content that we used in the previous exercises in this chapter.

					Run the following command to create the Deployment:kubectl create -f nginx-deployment.yaml
You should see the following response:
deployment.apps/nginx-deployment created

					Create a file named nginx-service-custom-clusterip.yaml with the following content:apiVersion: v1
kind: Service
metadata:
 name: nginx-service-custom-clusterip
spec:
 type: ClusterIP
 ports:
 - port: 80
 targetPort: 80
 clusterIP: 10.90.10.70
 selector:
 app: nginx
 environment: production
This uses a random ClusterIP value at the moment.

					Run the following command to create a Service with the preceding configuration:kubectl create -f nginx-service-custom-clusterip.yaml
You should see the following response:
[image: Figure 8.13: Service creation failure due to incorrect IP address

]
Figure 8.13: Service creation failure due to incorrect IP address
As we can see, the command gives us an error because the IP address we used (10.90.10.70) isn't in the valid IP range. As highlighted in the preceding output, the valid IP range is 10.96.0.0/12.
We can actually find this valid range of IP addresses before creating the Service using the kubectl cluster-info dump command. It provides a lot of information that can be used for cluster debugging and diagnosis. We can filter for the service-cluster-ip-range string in the output of the command to find out the valid ranges of IP addresses we can use in a cluster. The following command will output the valid IP range:
kubectl cluster-info dump | grep -m 1 service-cluster-ip-range
You should see the following output:
"--service-cluster-ip-range=10.96.0.0/12",
We can then use the appropriate IP address for clusterIP for our Service.

					Modify the nginx-service-custom-clusterip.yaml file by changing the value of clusterIP to 10.96.0.5 since that's one of the valid values:apiVersion: v1
kind: Service
metadata:
 name: nginx-service-custom-clusterip
spec:
 type: ClusterIP
 ports:
 - port: 80
 targetPort: 80
 clusterIP: 10.96.0.5
 selector:
 app: nginx
 environment: production

					Run the following command to create the Service again:kubectl create -f nginx-service-custom-clusterip.yaml
You should see the following output:
service/nginx-service-custom-clusterip created
We can see that the Service has been created successfully.

					Run the following command to ensure that the Service was created with the custom ClusterIP we specified in the configuration:kubectl get service nginx-service-custom-clusterip
You should see the following output:
[image: Figure 8.14: Getting the ClusterIP from the Service

]
Figure 8.14: Getting the ClusterIP from the Service
Here, we can confirm that the Service was indeed created with the IP address mentioned in the configuration; that is, 10.96.0.5.

					Next, let's confirm that we can access the Service using the custom IP address from inside the cluster:minikube ssh
You should see the following response:
[image: Figure 8.15: SSHing into the minikube node

]
Figure 8.15: SSHing into the minikube node

					Now, run the following command to send a request to 10.96.0.5:80 using curl:curl 10.96.0.5
We intentionally skipped the port number (80) in the curl request because, by default, curl assumes the port number to be 80. If the Service were using a different port number, we would have to specify that in the curl request explicitly. You should see the following output:
[image: Figure 8.16: Sending a curl request to a Service from the minikube node

]

			

			Figure 8.16: Sending a curl request to a Service from the minikube node

			Thus, we can see that we are able to access our Service from inside the cluster and that that service can be accessed at the IP address that we defined for clusterIP.

			LoadBalancer Service

			A LoadBalancer Service exposes the application externally using the load balancer provided by the cloud provider. This type of Service has no default local implementation and can only be deployed using a cloud provider. The cloud providers provision a load balancer when a Service of the LoadBalancer type is created.

			Thus, a LoadBalancer Service is basically a superset of the NodePort Service. The LoadBalancer Service uses the implementation offered by the cloud provider and assigns an external IP address to the Service.

			The configuration of a LoadBalancer Service depends on the cloud provider. Each cloud provider requires you to add a particular set of metadata in the form of annotations. Here's a simplified example of the configuration for a LoadBalancer Service:

			apiVersion: v1

			kind: Service

			metadata:

			 name: loadbalancer-service

			spec:

			 type: LoadBalancer

			 clusterIP: 10.90.10.0

			 ports:

			 - targetPort: 8080

			 port: 80

			 selector:

			 app: nginx

			 environment: production

			ExternalName Service

			The ExternalName Service maps a Service to a DNS name. In the case of the ExternalName Service, there's no proxying or forwarding. Redirecting the request happens at the DNS level instead. When a request comes for the Service, a CNAME record is returned with the value of the DNS name that was set in the Service configuration.

			The configuration of the ExternalName Service doesn't contain any selectors. It looks as follows:

			apiVersion: v1

			kind: Service

			metadata:

			 name: externalname-service

			spec:

			 type: ExternalName

			 externalName: my.example.domain.com

			The preceding Service template maps externalname-service to a DNS name; for example, my.example.domain.com.

			Let's say you're migrating your production applications to a new Kubernetes cluster. A good approach is to start with stateless parts and move them to a Kubernetes cluster first. During the migration process, you will need to make sure those stateless parts in the Kubernetes cluster can still access the other production Services, such as database storage or other backend Services/APIs. In such a case, we can simply create an ExternalName Service so that our Pods from the new cluster can still access resources from the old cluster, which are outside the bounds of the new cluster. Hence, ExternalName provides communication between Kubernetes applications and external Services running outside the Kubernetes cluster.

			Ingress

			Ingress is an object that defines rules that are used to manage external access to the Services in a Kubernetes cluster. Typically, Ingress acts like a middleman between the internet and the Services running inside a cluster:

			
				
					[image: Figure 8.17: Ingress

]
				

			

			Figure 8.17: Ingress

			You will learn much more about Ingress and the major motivations for using it in Chapter 12, Your Application and HA. Due to this, we will not cover the implementation of Ingress here.

			Now that we have learned about the different types of Services in Kubernetes, we will implement all of them to get an idea of how they would work together in a real-life scenario.

			Activity 8.01: Creating a Service to Expose the Application Running on a Pod

			Consider a scenario where the product team you're working with has created a survey application that has two independent and decoupled components – a frontend and a backend. The frontend component of the survey application renders the survey forms and needs to be exposed to external users. It also needs to communicate with the backend component, which is responsible for validating and storing the survey's responses.

			For the scope of this activity, consider the following tasks:

			
					To avoid overcomplicating this activity, you can deploy the Apache server (https://hub.docker.com/_/httpd) as the frontend, and we can treat its default placeholder home page as the component that should be visible to the survey applicants. Expose the frontend application so that it's accessible on the host node at port 31000.

					For the backend application, deploy an Nginx server. We will treat the default home page of Nginx as the page that you should be able to see from the backend. Expose the backend application so that it's accessible for the frontend application Pods in the same cluster.Both Apache and Nginx are exposed at port 80 on the Pods by default.
Note
We are using Apache and Nginx here to keep the activity simple. In a real-world scenario, these two would be replaced with the frontend survey site and the backend data analysis component of your survey application, along with a database component for storing all the survey data.

					To make sure frontend applications are aware of the backend application Service, add an environment variable to the frontend application Pods that contain the IP and the port address of the backend Service. This will ensure that the frontend applications know where to send a request to backend applications.To add environment variables to a Pod, we can add a field named env to the spec section of a Pod configuration that contains a list of name and value pairs for all the environment variables we want to add. Here's an example of how to add an environment variable called APPLICATION_TYPE with a value of Frontend:
apiVersion: v1
kind: Pod
metadata:
 name: environment-variables-example
 labels:
 application: frontend
spec:
 containers:
 - name: apache-httpd
 image: httpd
 env:
 - name: APPLICATION_TYPE
 value: "Frontend"
Note
We used something called a ConfigMap to add an environment variable here. We will learn more about them in Chapter 10, ConfigMaps and Secrets.

					Let's assume that, based on load testing the application, you have estimated that you'll initially need five replicas of the frontend application and four replicas of the backend application.

			

			The following are the high-level steps you will need to perform in order to complete this activity:

			
					Create a namespace for this activity.

					Write an appropriate Deployment configuration for the backend application and create the Deployment.

					Write an appropriate Service configuration for the backend application with the appropriate Service type and create the Service.

					Ensure that the backend application is accessible, as expected.

					Write an appropriate Deployment configuration for the frontend application. Make sure it has the environment variables set for the IP address and the port address for the backend application Service.

					Create a deployment for the frontend application.

					Write an appropriate Service configuration for the frontend application with the appropriate service type and create the Service.

					Ensure that the frontend application is accessible as expected on port 31000 on the host node.

			

			Expected Output:

			At the end of the exercise, you should be able to access the frontend application in the browser using the host IP address at port 31000. You should see the following output in your browser:

			
				
					[image: Figure 8.18: Expected output of Activity 8.01

]
				

			

			Figure 8.18: Expected output of Activity 8.01

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			In this chapter, we covered the different ways in which we can expose our application running on Pods. We have seen how we can use a ClusterIP Service to expose an application inside the cluster. We have also seen how we can use a NodePort Service to expose an application outside the cluster. We have also covered the LoadBalancer and ExternalName Services in brief.

			Now that we have created a Deployment and learned how to make it accessible from the external world, in the next chapter, we will focus on storage aspects. There, we will cover reading and storing data on disk, in and across Pods.

		

	
		
			
			

		

		
			9. Storing and Reading Data on Disk

		

		
			Overview

			This chapter introduces the concept of using Volumes to store or read data from the containers running inside pods. By the end of this chapter, you will be able to create Volumes to temporarily store data in a pod independent of a container's life cycle, as well as share the data among different containers inside the same pod. You will also learn how to use PersistentVolumes (PVs) to store data on your cluster independent of the pod life cycle. We will also cover how to create PersistentVolumeClaims (PVCs) to dynamically provision volumes and use them inside a pod.

			Introduction

			In previous chapters, we created Deployments to create multiple replicas of our application and exposed our application using Services. However, we have not yet properly explored how Kubernetes facilitates applications to store and read data, which is the subject of this chapter.

			In practice, most applications interact with data in some way. It's possible that we may have an application that needs to read data from a file. Similarly, our application may need to write some data locally in order for other parts of the application, or different applications, to read it. For example, if we have a container running our main application that produces some logs locally, we would want to have a sidecar container (which is a second container running inside the pod along with the main application container) that can run inside the same pod to read and process the local logs produced by the main application. However, to enable this, we need to find a way to share the storage among different containers in the same pod.

			Let's say we are training a machine learning model in a pod. During the intermediate stages of the model training, we would need to store some data locally on a disk. Similarly, the end result – the trained model – will need to be stored on a disk, such that it can be retrieved later even once the pod terminates. For this use case, we need some way of allocating some storage to the pod such that the data written in that storage exists even beyond the life cycle of the pod.

			Similarly, we may have some data that needs to be written or read by multiple replicas of the same application. This data should also persist when some of such pod replicas crash and/or restart. For example, if we have an e-commerce website, we may want to store the user data, as well as inventory records, in a database. This data will need to be persisted across pod restarts as well as Deployment updates or rollbacks.

			To serve these purposes, Kubernetes provides an abstraction called Volume. A PersistentVolume (PV) is the most common type of Volume that you will encounter. In this chapter, we will cover this, as well as many other types of Volumes. We will learn how to use them and provision them on-demand.

			Volumes

			Let's say we have a pod that stores some data locally on a disk. Now, if the container that's storing the data crashes and is restarted, the data will be lost. The new container will start with an empty disk space allocated. Thus, we cannot rely on containers themselves even for the temporary storage of data.

			We may also have a case where one container in a pod stores some data that needs to be accessed by other containers in the same pod as well.

			The Kubernetes Volume abstraction solves both of these problems. Here's a diagram showing Volumes and their interaction with physical storage and the application:

			
				
					[image: Figure 9.1: Volume as a storage abstraction for applications

]
				

			

			Figure 9.1: Volume as a storage abstraction for applications

			As you can see from this diagram, a Volume is exposed to the applications as an abstraction, which eventually stores the data on any type of physical storage that you may be using.

			The lifetime of a Kubernetes Volume is the same as that of the pod that uses it. In other words, even if the containers within a pod restart, the same Volume will be used by the new container as well. Hence, the data isn't lost across container restarts. However, once a pod terminates or is restarted, the Volume ceases to exist, and the data is lost. To solve this problem, we can use PVs, which we will cover later in this chapter.

			How to Use Volumes

			A Volume is defined in the pod spec. Here's an example of a pod configuration with Volumes:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-with-emptydir-volume

			spec:

			 restartPolicy: Never

			 containers:

			 - image: ubuntu

			 name: ubuntu-container

			 volumeMounts:

			 - mountPath: /data

			 name: data-volume

			 volumes:

			 - name: data-volume

			 emptyDir: {}

			As we can see in the preceding configuration, to define a Volume, a pod configuration needs to set two fields:

			
					The .spec.volumes field defines what Volumes this pod is planning to use.

					The .spec.containers.volumeMounts defines where to mount those Volumes in individual containers. This will be defined separately for all the containers.

			

			Defining Volumes

			In the preceding example, the .spec.volumes field has two fields that define the configuration of a Volume:

			
					name: This is the name of the Volume by which it will be referred to in the containers' volumeMounts fields when it will be mounted. It has to be a valid DNS name. The name of the Volume must be unique within a single pod.

					emptyDir: This varies based on the type of the Volume being used (which, in the case of the preceding example, is emptyDir). This defines the actual configuration of the Volume. We will go through the types of Volumes in the next section with some examples.

			

			Mounting Volumes

			Each container needs to specify volumeMounts separately to mount the volume. In the preceding example, you can see that the .spec.containers[*].volumeMounts configuration has the following fields:

			
					name: This is the name of the Volume that needs to be mounted for this container.

					mountPath: This is the path inside the container where the Volume should be mounted. Each container can mount the same Volume on different paths.

			

			Other than these, there are two other notable fields that we can set:

			
					subPath: This is an optional field that contains the path from the Volume that needs to be mounted on the container. By default, the volume is mounted from its root directory. This field can be used to mount only a sub-directory in the volume and not the entire volume. For example, if you're using the same Volume for multiple users, it's useful to mount a sub-path on the containers, rather than the root directory of the Volume.

					readonly: This is an optional flag that determines whether the mounted volume will be read-only or not. By default, the volumes are mounted with read-write access.

			

			Types of Volumes

			As mentioned earlier, Kubernetes supports several types of Volumes and the availability of most of them depends on the cloud provider that you use. AWS, Azure, and Google Cloud all have different types of Volumes supported.

			Let's take a look at some common types of Volumes in detail.

			emptyDir

			An emptyDir Volume refers to an empty directory that's created when a pod is assigned to a node. It only exists as long as the pod does. All the containers running inside the pod have the ability to write and read files from this directory. The same emptyDir Volume can be mounted on different paths for different containers.

			Here's an example of pod configuration using the emptyDir Volume:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-with-emptydir-volume

			spec:

			 restartPolicy: Never

			 containers:

			 - image: ubuntu

			 name: ubuntu-container

			 volumeMounts:

			 - mountPath: /data

			 name: data-volume

			 volumes:

			 - name: data-volume

			 emptyDir: {}

			In this example, {} indicates that the emptyDir Volume will be defined in the default manner. By default, the emptyDir Volumes are stored on the disk or SSD, depending on the environment. We can change it to use RAM instead by setting the .emptyDir.medium field to Memory.

			Thus, we can modify the volumes section of the preceding pod configuration to use the emptyDir Volume backed by memory, as follows:

			 volumes:

			 - name: data-volume

			 emptyDir:

			 medium: Memory

			This informs Kubernetes to use a RAM-based filesystem (tmpfs) to store the Volume. Even though tmpfs is very fast compared to data on a disk, there are a couple of downsides to using in-memory Volume. First, the tmpfs storage is cleared on the system reboot of the node on which the pod is running. Second, the data stored in a memory-based Volume counts against the memory limits of the container. Hence, we need to be careful while using memory-based Volumes.

			We can also specify the size limit of the storage to be used in the emptyDir Volume by setting the .volumes.emptyDir.sizeLimit field. This size limit applies to both disk-based and memory-based emptyDir Volumes. In the case of memory-based Volumes, the maximum usage allowed will be either the sizeLimit field value or the sum of memory limits on all containers in the pod – whichever is lower.

			Use Cases

			Some of the use cases for emptyDir Volumes are as follows:

			
					Temporary scratch space for computations requiring a lot of space, such as on-disk merge sort

					Storage required for storing checkpoints for a long computation, such as training machine learning models where the progress needs to be saved to recover from crashes

			

			hostPath

			A hostPath Volume is used to mount a file or a directory from the host node's filesystem to a pod.

			Here's an example of pod configuration using the hostPath Volume:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-with-hostpath-volume

			spec:

			 restartPolicy: Never

			 containers:

			 - image: ubuntu

			 name: ubuntu-container

			 volumeMounts:

			 - mountPath: /data

			 name: data-volume

			 volumes:

			 - name: data-volume

			 hostPath:

			 path: /tmp

			 type: Directory

			In this example, the /home/user/data directory from the host node will be mounted on the /data path on the container. Let's look at the two fields under hostPath:

			
					path: This is the path of the directory or the file that will be mounted on the containers mounting this Volume. It can also be a symlink (symbolic link) to a directory or a file, the address of a UNIX socket, or a character or block device, depending on the type field.

					type: This is an optional field that allows us to specify the type of the Volume. If this field is specified, certain checks will be performed before mounting the hostPath Volume.

			

			The type field supports the following values:

			
					"" (an empty string): This is the default value implying that no checks will be performed before mounting the hostPath Volume. If the path specified doesn't exist on the node, the pod will still be created without verifying the existence of the path. Hence, the pod will keep crashing indefinitely because of this error.

					DirectoryOrCreate: This implies that the directory path specified may or may not already exist on the host node. If it doesn't exist, an empty directory is created.

					Directory: This implies that a directory must exist on the host node at the path specified. If the directory doesn't exist at the path specified, there will be a FailedMount error while creating the pod, indicating that the hostPath type check has failed.

					FileOrCreate: This implies that the file path specified may or may not already exist on the host node. If it doesn't exist, an empty file is created.

					File: This implies that a file must exist on the host node at the path specified.

					Socket: This implies that a UNIX socket must exist at the path specified.

					CharDevice: This implies that a character device must exist at the path specified.

					BlockDevice: This implies that a block device must exist at the path specified.

			

			Use Cases

			In most cases, your application won't need a hostPath Volume. However, there are some niche use cases where the hostPath Volume may be particularly useful. Some of these use cases for the hostPath Volume are as follows:

			
					Allowing pods to be created only if a particular host path exists on the host node before running the pod. For example, a pod may require some Secrets or credentials to be present in a file on the host before it can run.

					Running a container that needs access to Docker internals. We can do that by setting hostPath to /var/lib/docker.Note
In addition to the two types of Volumes covered here, Kubernetes supports many more, some of which are specific to certain cloud platforms. You can find more information about them at https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes.

			

			In the previous sections, we learned about Volumes and how to use their different types. In the following exercises, we will put these concepts into action and use Volumes with pods.

			Exercise 9.01: Creating a Pod with an emptyDir Volume

			In this exercise, we will create a basic pod with an emptyDir Volume. We will also simulate data being written manually, and then make sure that the data stored in the Volume is kept across container restarts:

			
					Create a file called pod-with-emptydir-volume.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-emptydir-volume
spec:
 containers:
 - image: nginx
 name: nginx-container
 volumeMounts:
 - mountPath: /mounted-data
 name: data-volume
 volumes:
 - name: data-volume
 emptyDir: {}
In this pod configuration, we have used an emptyDir Volume mounted at the /mounted-data directory.

					Run the following command to create the pod using the preceding configuration:kubectl create -f pod-with-emptydir-volume.yaml
You should see the following response:
pod/pod-with-emptydir-volume created

					Run the following command to confirm that the pod was created and is ready:kubectl get pod pod-with-emptydir-volume
You should see the following response:
NAME READY STATUS RESTARTS AGE
pod-with-emptydir-volume 1/1 Running 0 20s

					Run the following command to describe the pod so that we can verify that the correct Volume was mounted on this pod:kubectl describe pod pod-with-emptydir-volume
This will give a long output. Look for the following section in the terminal output:
[image: Figure 9.2: Describing the pod with a mounted emptyDir volume

]
Figure 9.2: Describing the pod with a mounted emptyDir volume
As highlighted in the preceding image, the emptyDir Volume named data-volume was created and it was mounted on nginx-container at the /mounted-data path. We can see that the Volume has been mounted in rw mode, which stands for read-write.
Now that we have verified that the pod was created with the correct Volume configured, we will manually write some data to this path. In practice, this writing will be done by your application code.

					Now, we will use the kubectl exec command to run the Bash shell inside the pod:kubectl exec pod-with-emptydir-volume -it /bin/bash
You should see the following on your terminal screen:
root@pod-with-emptydir-volume:/#
This will now allow you to run commands via an SSH connection on the Bash shell running in the nginx-container. Note that we are running as a root user.
Note
If you had a sidecar container running in the pod (or any number of multiple containers in a pod), then you can control where the kubectl exec command will execute by adding the -c parameter to specify the container, as you will see in the next exercise.

					Run the following command to check the content of the root directory of the pod:ls
You should see an output similar to this one:
bin dev home lib64 mnt opt root sbin sys usr
boot etc lib media mounted-data proc run srv tmp var
Notice that there's a directory called mounted-data.

					Run the following commands to go to the mounted-data directory and check its content:cd mounted-data
ls
You should see a blank output, as follows:
root@pod-with-emptydir-volume:/mounted-data#
This output indicates that the mounted-data directory is empty as expected because we don't have any code running inside the pod that would write to this path.

					Run the following command to create a simple text file inside the mounted-data directory:echo "Manually stored data" > manual-data.txt

					Now, run the ls command again to check the content of the directory:ls
You should see the following output:
manual-data.txt
Thus, we have created a new file with some content in the mounted volume directory. Now, our aim will be to verify that this data will still exist if the container is restarted.

					In order to restart the container, we will kill the nginx process, which will trigger a restart. Run the following commands to install the procps package so that we can use the ps command to find out the process ID (PID) of the process that we want to kill. First, update the package lists:sudo apt-get update
You should see an output similar to the following:
[image: Figure 9.3: An apt-get update

]
Figure 9.3: An apt-get update
Our package lists are up to date and we are now ready to install procps.

					Use the following command to install procps:sudo apt-get install procps
Enter Y when prompted to confirm the installation, and then the installation will proceed with an output similar to the following:
[image: Figure 9.4: Using apt-get to install procps

]
Figure 9.4: Using apt-get to install procps

					Now, run the following command to check the list of processes running on the container:ps aux
You should see the following output:
[image: Figure 9.5: A list of the running processes

]
Figure 9.5: A list of the running processes
In the output, we can see that among several other processes, the nginx master process is running with a PID of 1.

					Run the following command to kill the nginx master process:kill 1
You should see the following response:
[image: Figure 9.6: Killing the container

]
Figure 9.6: Killing the container
The output shows that the terminal exited the Bash session on the pod. This is because the container was killed. The 137 exit code indicates that the session was killed by manual intervention.

					Run the following command to get the status of the pod:kubectl describe pod pod-with-emptydir-volume
Observe the following section in the output that you get:
[image: Figure 9.7: Describing the pod

]
Figure 9.7: Describing the pod
You will see that there's now a Restart Count field for nginx-container that has a value of 1. That means that the container was restarted after we killed it. Please note that restarting a container doesn't trigger a restart of a pod. Hence, we should expect the data stored in the Volume to still exist. Let's verify that in the next step.

					Let's run Bash inside the pod again and go to the /mounted-data directory:kubectl exec pod-with-emptydir-volume -it /bin/bash
cd mounted-data
You will see the following output:
root@pod-with-emptydir-volume:/# cd mounted data/

					Run the following command to check the contents of /mounted-data directory: ls
You will see the following output:
manual-data.txt
This output indicates that the file we created before killing the container still exists in the Volume.

					Run the following command to verify the contents of the file we created in the Volume:cat manual-data.txt
You will see the following output:
Manually stored data
This output indicates that the data we stored in the Volume stays intact even when the container gets restarted.

					Run the following command to delete the pod:kubectl delete pod pod-with-emptydir-volume
You will see the following output confirming that the pod has been deleted:
pod "pod-with-emptydir-volume" deleted

			

			In this exercise, we created a pod with the emptyDir Volume, checked that the pod was created with an empty directory mounted at the correct path inside the container, and verified that we can write the data inside that directory and that the data stays intact across the container restarts as long as the pod is still running.

			Now, let's move to a scenario that lets us observe some more uses for Volumes. Let's consider a scenario where we have an application pod that runs a total of three containers. We can assume that two of the three containers are serving traffic and they dump the logs into a shared file. The third container acts as a sidecar monitoring container that reads the logs from the file and dumps them into an external log storage system where the logs can be preserved for further analysis and alerting. Let's consider this scenario in the next exercise and understand how we can utilize an emptyDir Volume shared between the three containers of a pod.

			Exercise 9.02: Creating a Pod with an emptyDir Volume Shared by Three Containers

			In this exercise, we will show some more uses of the emptyDir Volume and share it among three containers in the same pod. Each container will mount the same volume at a different local path:

			
					Create a file called shared-emptydir-volume.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: shared-emptydir-volume
spec:
 containers:
 - image: ubuntu
 name: container-1
 command: ['/bin/bash', '-ec', 'sleep 3600']
 volumeMounts:
 - mountPath: /mounted-data-1
 name: data-volume
 - image: ubuntu
 name: container-2
 command: ['/bin/bash', '-ec', 'sleep 3600']
 volumeMounts:
 - mountPath: /mounted-data-2
 name: data-volume
 - image: ubuntu
 name: container-3
 command: ['/bin/bash', '-ec', 'sleep 3600']
 volumeMounts:
 - mountPath: /mounted-data-3
 name: data-volume
 volumes:
 - name: data-volume
 emptyDir: {}
In this configuration, we have defined an emptyDir Volume named data-volume, which is being mounted on three containers at different paths.
Note that each of the containers has been configured to run a command on startup that makes them sleep for 1 hour. This is intended to keep the ubuntu container running so that we can perform the following operations on the containers. By default, an ubuntu container is configured to run whatever command is specified and exit upon completion.

					Run the following command to create the pod with the preceding configuration:kubectl create -f shared-emptydir-volume.yaml
You will see the following output:
pod/shared-emptydir-volume created

					Run the following command to check the status of the pod:kubectl get pod shared-emptydir-volume
You will see the following output:
NAME READY STATUS RESTARTS AGE
shared-emptydir-volume 3/3 Running 0 13s
This output indicates that all three containers inside this pod are running.

					Next, we will run the following command to run Bash in the first container:kubectl exec shared-emptydir-volume -c container-1 -it -- /bin/bash
Here, the -c flag is used to specify the container that we want to run Bash in. You will see the following in the terminal:
root@shared-emptydir-volume:/#

					Run the following command to check the content of the root directory on the container:ls
You will see the following output:
[image: Figure 9.8: Listing the content of the root directory inside the container

]
Figure 9.8: Listing the content of the root directory inside the container
We can see that the mounted-data-1 directory has been created on the container. Also, you can see the list of directories you would see in a typical Ubuntu root directory, in addition to the mounted-data-1 directory that we created.

					Now, we will go to the mounted-data-1 directory and create a simple text file with some text in it:cd mounted-data-1
echo 'Data written on container-1' > data-1.txt

					Run the following command to verify that the file has been stored:ls
You will see the following output:
data-1.txt

					Run the following command to exit container-1 and go back to your host terminal:exit

					Now, let's run Bash inside the second container, which is named container-2:kubectl exec shared-emptydir-volume -c container-2 -it -- /bin/bash
You will see the following in your terminal:
root@shared-emptydir-volume:/#

					Run the following command to locate the mounted directory in the root directory on the container:ls
You will see the following output:
[image: Figure 9.9: Listing the content of the root directory inside the container

]
Figure 9.9: Listing the content of the root directory inside the container
Note the directory called mounted-data-2, which is the mount point for our Volume inside container-2.

					Run the following command to check the content of the mounted-data-2 directory:cd mounted-data-2
ls
You will see the following output:
data-1.txt
This output indicates that there's already a file called data-1.txt, which we created in container-1 earlier.

					Let's verify that it's the same file that we created in earlier steps. Run the following command to check the content of this file:cat data-1.txt
You will see the following output:
Data written on container-1
This output verifies that this is the same file that we created in earlier steps of this exercise.

					Run the following command to write a new file called data-2.txt into this directory:echo 'Data written on container-2' > data-2.txt

					Now, let's confirm that the file has been created:ls
You should see the following output:
data-1.txt data-2.txt
As you can see in this screenshot, the new file has been created and there are now two files – data-1.txt and data-2.txt – in the mounted directory.

					Run the following command to exit the Bash session on this container:exit

					Now, let's run Bash inside container-3:kubectl exec shared-emptydir-volume -c container-3 -it -- /bin/bash
You will see the following in your terminal:
root@shared-empty-dir-volume:/#

					Go to the /mounted-data-3 directory and check its content:cd mounted-data-3
ls
You will see the following output:
data-1.txt data-2.txt
This output shows that this container can see the two files – data-1.txt and data-2.txt – that we created in earlier steps from container-1 and container-2, respectively.

					Run the following command to verify the content of the first file, data-1.txt:cat data-1.txt
You should see the following output:
Data written on container-1

					Run the following commands to verify the content of the second file, data-2.txt:cat data-2.txt
You should see the following output:
Data written on container-2
The output of the last two commands proves that the data written by any container on the mounted volume is accessible by other containers for reading. Next, we will verify that other containers have write access to the data written by a particular container.

					Run the following command to overwrite the content of the data-2.txt file:echo 'Data updated on container 3' > data-2.txt

					Next, let's exit container-3:exit

					Run the following command to run Bash inside container-1 again:kubectl exec shared-emptydir-volume -c container-1 -it -- /bin/bash
You should see the following in your terminal:
root@shared-emptydir-volume:/#

					Run the following command to check the content of the data-2.txt file:cat mounted-data-1/data-2.txt
You should see the following output:
Data updated on container 3
This output indicates that the data overwritten by container-3 becomes available for other containers to read as well.

					Run the following command to come out of the SSH session inside container-3:exit

					Run the following command to delete the pod:kubectl delete pod shared-emptydir-volume
You should see the following output, indicating that the pod has been deleted:
pod "shared-emptydir-volume" deleted

			

			In this exercise, we learned how to use Volumes and verified that the same Volume can be mounted at different paths in different containers. We also saw that the containers using the same Volume can read or write (or overwrite) content of the Volume.

			Persistent Volumes

			The Volumes we have seen so far have the limitation that their life cycle depends on the life cycle of pods. Volumes such as emptyDir or hostPath get deleted when the pod using them is deleted or gets restarted. For example, if we use Volumes to store user data and inventory records for our e-commerce website, the data will be deleted when the application pod restarts. Hence, Volumes are not suited to store data that you want to persist.

			To solve this problem, Kubernetes supports persistent storage in the form of a Persistent Volume (PV). A PV is a Kubernetes object that represents a block of storage in the cluster. It can either be provisioned beforehand by the cluster administrators or be dynamically provisioned. A PV can be considered a cluster resource just like a node and, hence, it is not scoped to a single namespace. These Volumes work similarly to the Volumes we have seen in previous sections. The life cycle of a PV doesn't depend on the life cycle of any pod that uses the PV. From the pod's perspective, however, there's no difference between using a normal Volume and a PV.

			In order to use a PV, a PersistentVolumeClaim (PVC) needs to be created. A PVC is a request for storage by a user or a pod. A PVC can request a specific size of storage and specific access modes. A PVC is effectively an abstract way of accessing the various storage resources by users. PVCs are scoped by namespaces, so pods can only access the PVCs created within the same namespace.

			Note

			At any time, a PV can be bound to one PVC only.

			Here's a diagram showing how an application interacts with a PV and PVC:

			
				
					[image: Figure 9.10: How PV and PVC work together to provide storage to your application pod

]
				

			

			Figure 9.10: How PV and PVC work together to provide storage to your application pod

			As you can see in this diagram, Kubernetes uses a combination of PV and PVC to make storage available to your applications. A PVC is basically a request to provide a PV that meets certain criteria.

			This is a notable variation from what we saw in the previous exercises, where we created Volumes directly in the pod definitions. This separation of the request (PVC) and the actual storage abstraction (PV) allows an application developer to not worry about the specifics and the statuses of all the different PVs present on the cluster; they can simply create a PVC with the application requirements and then use it in the pod. This kind of loose binding also allows the entire system to be resilient and remain stable in the case of pod restarts.

			Similar to Volumes, Kubernetes supports several types of PVs. Some of them may be specific to your cloud platform. You can find a list of the different supported types at this link: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

			PersistentVolume Configuration

			Here's an example of PV configuration:

			apiVersion: v1

			kind: PersistentVolume

			metadata:

			 name: example-persistent-volume

			spec:

			 storageClassName: standard

			 capacity:

			 storage: 10Gi

			 volumeMode: Filesystem

			 accessModes:

			 - ReadWriteMany

			 persistentVolumeReclaimPolicy: Retain

			 nfs:

			 server: 172.10.1.1

			 path: /tmp/pv

			As usual, the PV object also has the three fields that we have already seen: apiVersion, kind, and metadata. Since this is an nfs type of PV, we have the nfs section in the configuration. Let's go through some important fields in the PV spec section one by one.

			storageClassName

			Each PV belongs to a certain storage class. We define the name of the storage class that the PV is associated with using the storageClassName field. A StorageClass is a Kubernetes object that provides a way for administrators to describe the different types or profiles of storages they support. In the preceding example, standard is just an example of a storage class.

			Different storage classes allow you to allocate different types of storage based on performance and capacity to different applications based on the specific needs of the application. Each cluster administrator can configure their own storage classes. Each storage class can have its own provisioners, backup policies, or reclamation policies determined by administrators. A provisioner is a system that determines how to provision a PV of a particular type. Kubernetes supports a set of internal provisioners as well as external ones that can be implemented by users. The details about how to use or create a provisioner are, however, beyond the scope of this book.

			A PV belonging to a certain storage class can only be bound to a PVC requesting that particular class. Note that this is an optional field. Any PV without the storage class field will only be available to PVCs that do not request a specific storage class.

			capacity

			This field denotes the storage capacity of the PV. We can set this field in a similar way as we would define constraints used by memory and CPU limit fields in a pod spec. In the preceding example spec, we have set the capacity to 10 GiB.

			volumeMode

			The volumeMode field denotes how we want the storage to be used. It can have two possible values: Filesystem (default) and Block. We can set the volumeMode field to Block in order to use the raw block device as storage, or Filesystem to use a traditional filesystem on the persistent volume.

			accessModes

			The access mode for a PV represents the capabilities allowed for a mounted Volume. A Volume can be mounted using only one of the supported access modes at a time. There are three possible access modes:

			
					ReadWriteOnce (RWO): Mounted as read-write by a single node only

					ReadOnlyMany (ROX): Mounted as read-only by many nodes

					ReadWriteMany (RWX): Mounted as read-write by many nodes

			

			Note that not all the types of volumes support all the access modes. Please check the reference for the allowed access modes for the specific type of volume you are using.

			persistentVolumeReclaimPolicy

			Once a user is done with a volume, they can delete their PVC, and that allows the PV resource to be reclaimed. The reclaim policy field denotes the policy that will be used to allow a PV to be claimed after its release. A PV being released implies that the PV is no longer associated with the PVC since that PVC is deleted. Then, the PV is available for any other PVCs to use, or in other words, reclaim. Whether a PV can be reused or not depends on the reclaim policy. There can be three possible values for this field:

			
					Retain: This reclaim policy indicates that the data stored in the PV is kept in storage even after the PV has been released. The administrator will need to delete the data in storage manually. In this policy, the PV is marked as Released instead of Available. Thus, a Released PV may not necessarily be empty.

					Recycle: Using this reclaim policy means that once the PV is released, the data on the volume is deleted using a basic rm -rf command. This marks the PV as Available and hence ready to be claimed again. Using dynamic provisioning is a better alternative to using this reclaim policy. We will discuss the dynamic provisioning in the next section.

					Delete: Using this reclaim policy means that once the PV is released, both the PV as well as the data stored in the underlying storage will be deleted.Note
Various cloud environments have different default values for reclaim policies. So, make sure you check the default value of the reclaim policy for the cloud environment you're using to avoid the accidental deletion of data in PVs.

			

			PV Status

			At any moment of its life cycle, a PV can have one of the following statuses:

			
					Available: This indicates that the PV is available to be claimed.

					Bound: This indicates that the PV has been bound to a PVC.

					Released: This indicates that the PVC bound to this resource has been deleted; however, it's yet to be reclaimed by some other PVC.

					Failed: This indicates that there was a failure during reclamation.

			

			Now that we have taken a look at the various aspects of the PV, let's take a look at the PVC.

			PersistentVolumeClaim Configuration

			Here's an example of PVC configuration:

			apiVersion: v1

			kind: PersistentVolumeClaim

			metadata:

			 name: example-persistent-volume-claim

			spec:

			 storageClassName: standard

			 resources:

			 requests:

			 storage: 500Mi

			 volumeMode: Filesystem

			 accessModes:

			 - ReadWriteMany

			 selector:

			 matchLabels:

			 environment: "prod"

			Again, as usual, the PVC object also has three fields that we have already seen: apiVersion, kind, and metadata. Let's go through some important fields in the PVC spec section one by one.

			storageClassName

			A PVC can request a particular class of storage by specifying the storageClassName field. Only the PVs of the specified storage class can be bound to such a PVC.

			If the storageClassName field is set to an empty string (""), these PVCs will only be bound to PVs that have no storage class set.

			On the other hand, if the storageClassName field in the PVC is not set, then it depends on whether DefaultStorageClass has been enabled by the administrator. If a default storage class is set for the cluster, the PVCs with no storageClassName field set will be bound to PVs with that default storage class. Otherwise, PVCs with no storageClassName field set will only be bound to PVs that have no storage class set.

			resources

			Just as we learned that pods can make specific resource requests, PVCs can also request resources in a similar manner by specifying the requests and limits fields, which are optional. Only the PVs satisfying the resource requests can be bound to a PVC.

			volumeMode

			PVCs follow the same convention as PVs to indicate the use of storage as a filesystem or a raw block device. A PVC can only be bound to a PV that has the same Volume mode as the one specified in the PVC configuration.

			accessMode

			A PVC should specify the access mode that it needs, and a PV is assigned as per the availability based on that access mode.

			selectors

			Similar to pod selectors in Services, PVCs can use the matchLabels and/or matchExpressions fields to specify the criteria of volumes that can satisfy a particular claim. Only the PVs whose labels satisfy the conditions specified in the selectors field are considered for a claim. When both of these fields are used together as selectors, the conditions specified by the two fields are combined using an AND operation.

			How to Use Persistent Volumes

			In order to use a PV, we have the following three steps: provisioning the volume, binding it to a claim (PVC), and using the claim as a volume on a pod. Let's go through these steps in detail.

			Step 1 – Provisioning the Volume

			A Volume can be provisioned in two ways – statically and dynamically:

			
					Static: In static provisioning, the cluster administrator has to provision several PVs beforehand, and only then are they available to PVCs as available resources.

					Dynamic: If you are using dynamic provisioning, the administrator doesn't need to provision all the PVs beforehand. In this kind of provisioning, the cluster will dynamically provision the PV for the PVC based on the storage class requested. Thus, as the applications or microservices demand more storage, Kubernetes can automatically take care of it and expand the cloud infrastructure as needed.We will go through dynamic provisioning in more detail in a later section.

			

			Step 2 – Binding the Volume to a Claim

			In this step, a PVC is to be created with the requested storage limits, a certain access mode, and a specific storage class. Whenever a new PVC is created, the Kubernetes controller will search for a PV matching its criteria. If a PV matching all of the PVC criteria is found, it will bind the claim to the PV. Each PV can be bound to only one PVC at a time.

			Step 3 – Using the Claim

			Once the PV has been provisioned and bound to a PVC, the PV can be used by the pod as a Volume. Next, when a pod uses a PVC as a Volume, Kubernetes will take the PV bound to that PVC and mount that PV for the pod.

			Here's an example of pod configuration using a PVC as a Volume:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-pvc-as-volume

			spec:

			 containers:

			 - image: nginx

			 name: nginx-application

			 volumeMounts:

			 - mountPath: /data/application

			 name: example-storage

			 volumes:

			 - name: example-storage

			 persistentVolumeClaim:

			 claimName: example-claim

			In this example, we assume that we have a PVC named example-claim that has already been bound to PersistentVolume. The pod configuration specifies persistentVolumeClaim as the type of the Volume and specifies the name of the claim to be used. Kubernetes will then find the actual PV bound to this claim and mount it on /data/application inside the container.

			Note

			The pod and the PVC have to be in the same namespace for this to work. This is because Kubernetes will look for the claim inside the pod's namespace only, and if the PVC isn't found, the pod will not be scheduled. In this case, the pod will be stuck in a Pending state until deleted.

			Now, let's put these concepts into action by creating a pod that uses PV in the following exercise.

			Exercise 9.03: Creating a Pod That Uses PersistentVolume for Storage

			In this exercise, we will first provision the PV pretending that the cluster administrator does it in advance. Next, assuming the role of a developer, we will create a PVC that is bound to the PV. After that, we will create a pod that will use this claim as a Volume mounted on one of the containers:

			
					First of all, we will access the host node via SSH. In the case of Minikube, we can do so by using the following command:minikube ssh
You should see an output similar to this one:
[image: Figure 9.11: SSH to the minikube node

]
Figure 9.11: SSH to the minikube node

					Run the following command to create a directory named data inside the /mnt directory:sudo mkdir /mnt/data

					Run the following command to create a file called data.txt inside the /mnt/data directory:sudo bash -ec 'echo "Data written on host node" > /mnt/data/data.txt'
This command should create a file, data.txt, with the Data written on host node content. We will use the content of this file to verify at a later stage that we can successfully mount this directory on a container using a PV and a PVC.

					Run the following command to exit the host node:exit
That will bring us back to the local machine terminal where we can run kubectl commands.

					Create a file called pv-hostpath.yaml with the following content:apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-hostpath
spec:
 storageClassName: local-pv
 capacity:
 storage: 500Mi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: /mnt/data
In this PV configuration, we have used the local-pv storage class. The Volume will be hosted at the /mnt/data path on the host node. The size of the volume will be 500Mi and the access mode will be ReadWriteOnce.

					Run the following command to create the PV using the preceding configuration:kubectl create -f pv-hostpath.yaml
You should see the following output:
persistentvolume/pv-hostpath created

					Run the following command to check the status of the PV we just created:kubectl get pv pv-hostpath
As you can see in this command, pv is an accepted shortened name for PersistentVolume. You should see the following output:
[image: Figure 9.12: Checking the status of the PV

]
Figure 9.12: Checking the status of the PV
In the preceding output, we can see that the Volume was created with the required configuration and that its status is Available.

					Create a file called pvc-local.yaml with the following content:apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-local
spec:
 storageClassName: local-pv
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi
In this configuration, we have a claim that requests a Volume with the local-pv storage class, the ReadWriteOnce access mode and a storage size of 100Mi.

					Run the following command to create this PVC:kubectl create -f pvc-local.yaml
You should see the following output:
persistentvolumeclaim/pvc-local created
Once we create this PVC, Kubernetes will search for a matching PV to satisfy this claim.

					Run the following command to check the status of this PVC:kubectl get pvc pvc-local
You should see the following output:
[image: Figure 9.13: Checking the status of the claim

]
Figure 9.13: Checking the status of the claim
As we can see in this output, the PVC has been created with the required configuration and has been immediately bound to the existing PV named pv-hostpath that we created in earlier steps of this exercise.

					Next, we can create a pod that will use this PVC as a Volume. Create a file called pod-local-pvc.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: pod-local-pvc
spec:
 restartPolicy: Never
 containers:
 - image: ubuntu
 name: ubuntu-container
 command: ['/bin/bash', '-ec', 'cat /data/application/data.txt']
 volumeMounts:
 - mountPath: /data/application
 name: local-volume
 volumes:
 - name: local-volume
 persistentVolumeClaim:
 claimName: pvc-local
The pod will use a PVC named pvc-local as a Volume and mount it at the /data/application path in the container. Also, we have a container that will run the cat /data/application/data.txt command on startup. This is just a simplified example where we will showcase that the data we wrote in the PV directory on the host node initially is now available to this pod.

					Run the following command to create this pod:kubectl create -f pod-local-pvc.yaml
You should see the following output:
pod/pod-local-pvc created
This output indicates that the pod was created successfully.

					Run the following command to check the status of the pod we just created:kubectl get pod pod-local-pvc
You should see the following output:
NAME READY STATUS RESTARTS AGE
pod-local-pvc 0/1 Completed 1 7s
In this output, we can see that the pod has run to completion since we didn't add any sleep commands this time.

					Run the following command to check the logs. We expect to see the output of the cat /data/application/data.txt command in the logs:kubectl logs pod-local-pvc
You should see the following output:
Data written on host node
This output clearly indicates that this pod has access to the file that we created at /mnt/data/data.txt. This file is a part of the directory mounted at /data/application in the container.

					Now, let's clean up the resources created in this exercise. Use the following command to delete the pod:kubectl delete pod pod-local-pvc
You should see the following output, indicating that the pod has been deleted:
pod "pod-local-pvc" deleted

					Use this command to delete the PVC:kubectl delete pvc pvc-local
You should see the following output, indicating that the PVC has been deleted:
persistentvolumeclaim "pvc-local" deleted
Note that if we try to delete the PV before the PVC is deleted, the PV will be stuck in the Terminating phase and will wait for it to be released by the PVC. Hence, we need to first delete the PVC bound to the PV before the PV can be deleted.

					Now that our PVC has been deleted, we can safely delete the PV by running the following command:kubectl delete pv pv-hostpath
You should see the following output, indicating that the PV has been deleted:
persistentvolume "pv-hostpath" deleted

			

			In this exercise, we learned how to provision PVs, create claims to use these volumes, and then use those PVCs as volumes inside pods.

			Dynamic Provisioning

			In previous sections of this chapter, we saw that the cluster administrator needs to provision PVs for us before we can use them as storage for our application. To solve this problem, Kubernetes supports dynamic volume provisioning as well. Dynamic volume provisioning enables the creation of storage volumes on-demand. This eliminates the need for administrators to create volumes before creating any PVCs. The volume is provisioned only when there's a claim requesting it.

			In order to enable dynamic provisioning, the administrator needs to create one or more storage classes that users can use in their claims to make use of dynamic provisioning. These StorageClass objects need to specify what provisioner will be used along with its parameters. The provisioner depends on the environment. Every cloud provider supports different provisioners, so make sure you check with your cloud provider if you happen to create this kind of storage class in your cluster.

			Here's an example of the configuration for creating a new StorageClass on the AWS platform:

			apiVersion: storage.k8s.io/v1

			kind: StorageClass

			metadata:

			 name: example-storage-class

			provisioner: kubernetes.io/aws-ebs

			parameters:

			 type: io1

			 iopsPerGB: "10"

			 fsType: ext4

			In this configuration, the kubernetes.io/aws-ebs provisioner is used – EBS stands for Elastic Block Store and is only available on AWS. This provisioner takes various parameters, including type, which we can use to specify what kind of disk we want to use for this storage class. Please check the AWS docs to find out more about the various parameters we can use and their possible values. The provisioner and the parameters required will change based on what cloud provider you use.

			Once a storage class is created by the cluster administrator, users can create a PVC, requesting storage with that storage class name set in the storageClassName field. Kubernetes will then automatically provision the storage volume, create a PV object with that storage class satisfying the claim, and bind it to the claim:

			Here's an example of the configuration for a PVC using the storage class we defined previously:

			apiVersion: v1

			kind: PersistentVolumeClaim

			metadata:

			 name: example-pvc

			spec:

			 storageClassName: example-storage-class

			 accessModes:

			 - ReadWriteOnce

			 resources:

			 requests:

			 storage: 1Gi

			As we can see, the configuration of the PVC stays the same, except that now, we have to use a storage class that has already been created by the cluster administrator for us.

			Once the claim has been bound to an automatically created Volume, we can create pods using that PVC as a Volume, as we saw in the previous section. Once the claim is deleted, the Volume is automatically deleted.

			Activity 9.01: Creating a Pod That Uses a Dynamically Provisioned PersistentVolume

			Consider that you are a cluster administrator, at first, and are required to create a custom storage class that will enable the developers using your cluster to provision PVs dynamically. To create a storage class on a minikube cluster, you can use the k8s.io/minikube-hostpath provisioner without any extra parameters, similar to what we showed in the StorageClass example in the Dynamic Provisioning section.

			Next, acting as a developer or a cluster user, claim a PV with a storage request of 100Mi and mount it on the containers inside the pod created using the following specifications:

			
					The pod should have two containers.

					Both the containers should mount the same PV locally.

					The first container should write some data into the PV and the second container should read and print out the data written by the first container.

			

			For simplicity, consider writing a simple string to a file in the PV from the first container. For the second container, add a bit of wait time so that the second container does not start reading data until it is fully written. Then, the latter container should read and print out the content of the file written by the first container.

			Note

			Ideally, you would want to create this deployment to be in a different namespace to keep it separate from the rest of the stuff that you created during these exercises. So, feel free to create a namespace and create all the objects in this activity in that namespace.

			The high-level steps to perform this activity are as follows:

			
					Create a namespace for this activity.

					Write the appropriate configuration for the storage class using the given information, and create the StorageClass object.

					Write the appropriate configuration for the PVC using the storage class created in the previous step. Create the PVC using this configuration.

					Verify that the claim was bound to an automatically created PV of the same storage class that we created in step 2.

					Write the appropriate configuration for the pod using the given information and the PVC from the previous step as a Volume. Create the pod using this configuration.

					Verify that one of the containers can read the content of the file written to PV by another container.

			

			You should be able to check the logs of the second container and verify that the data written by the first container in the PV can be read by the second container, as shown in the following output:

			Data written by container-1

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			As we mentioned in the introduction, most applications need to store or retrieve data for a lot of different reasons. In this chapter, we saw that Kubernetes provides various ways of provisioning storage for not just storing the state of an application, but also for the long-term storage of data.

			We have covered ways to use storage for our application running inside pods. We saw how we can use the different types of Volumes to share temporary data among containers running in the same pod. We also learned how to persist data across pod restarts. We learned how to manually provision PVs to create PVCs to bind to those Volumes, as well as how to create pods that can use these claims as Volumes mounted on their containers. Next, we learned how to request storage dynamically using only the PVCs with pre-created storage classes. We also learned about the life cycle of these volumes with respect to that of the pods.

			In the next chapter, we will extend these concepts further and learn how to store application configurations and secrets.

		

		
			
			

		

	
		
			
			

		

		
			10. ConfigMaps and Secrets

		

		
			Overview

			In this chapter, we will learn how to decouple application configuration data from the application itself and the advantages of taking this approach. By the end of this chapter, you will be able to define Kubernetes ConfigMap and Secret objects, run a simple Pod that uses data from ConfigMaps and Secrets, describe the advantages of decoupling configuration data from applications, and use ConfigMaps and Secrets to decouple application configuration data from the application container.

			Introduction

			In Chapter 5, Pods, we learned that Pods are the minimal unit of deployment in Kubernetes. Pods can have multiple containers, and each container can have a container image associated with it. This container image generally packages the target application that you plan to run. Once the developers are satisfied that the code is running as expected, the next step is to promote the code to testing, integration, and production environments.

			Easy, right? One problem, however, is that as we move our packaged container from one environment to another, although the application remains the same, it needs environment-specific data, for example, the database URL to connect to. To overcome this problem, we can write our applications in such a way that the environment-specific data is provided to the application by the environment it is being deployed into.

			In this chapter, we will discover what Kubernetes provides to associate environment-specific data with our application containers without changing our container image. There are multiple ways to provide environment-specific configuration data to our application:

			
					Provide command-line arguments to the Pods.

					Provide environment variables to the Pods.

					Mount configuration files in the containers.

			

			First, we need to define our configuration data using an object called ConfigMap. Once the data is defined and loaded into Kubernetes, the second step is to provide the defined data to your application.

			However, what if you have sensitive data, such as database passwords, that you want to provide to your application container? Well, Kubernetes Secret provides a way to define sensitive data to an application.

			ConfigMap and Secret objects both serve a similar purpose. Both provide a way to define data that can be injected into your applications so that the same container can be used across different environments. There is little difference between them, which we will learn in detail later on in this chapter. As a quick rule, Secrets are designed to hold confidential data (such as passwords, private keys, and more), while ConfigMaps are more suited for general configuration data such as a database location. ConfigMaps and Secrets reside in the specific namespace in which they are created. They can only be referenced by Pods residing in the same namespace.

			Kubernetes uses an internal key-value store called etcd as its database to store all the objects defined in Kubernetes. As ConfigMaps and Secrets are Kubernetes objects, they get stored in the internal key-value store.

			Let's dig a bit deeper into ConfigMaps first.

			What Is a ConfigMap?

			A ConfigMap allows us to define application-related data. A ConfigMap decouples the application data from the application so that the same application can be ported across different environments. It also provides a way to inject customized data into running services from the same container image.

			ConfigMaps can be created through a literal value or from a file or all the files in a directory. Note that the primary data we stored in ConfigMaps is for non-sensitive configuration, for example, config files or environment variables.

			Once a ConfigMap is defined, it will be loaded to the application via an environment variable or a set of files. The application can then see the files as local files and can read from them. It is important to note that (from 1.9.6 version onward of Kubernetes), files loaded from ConfigMaps are read-only. ConfigMaps can also hold configuration data for system applications such as operators and controllers.

			In the following exercises, you will see different ways of defining ConfigMaps and different ways to make the ConfigMap data available to the running Pods.

			Let's see what Kubernetes offers us in terms of ConfigMap creation. Kubernetes help commands provide a good starting point:

			kubectl create configmap --help

			You should see the following response:

			
				
					[image: Figure 10.1: Kubernetes built-in help for creating ConfigMap

]
				

			

			Figure 10.1: Kubernetes built-in help for creating ConfigMap

			As you can see from the preceding output, ConfigMaps can be created for a single value, a list of values, or from an entire file or directory. We will learn exactly how to do each of these in the exercises in this chapter. Note that the command to create a ConfigMap has the following format:

			kubectl create configmap <map-name> <data-source>

			Here, <map-name> is the name you want to assign to the ConfigMap and <data-source> is the directory, file, or literal value to draw the data from.

			The data source corresponds to a key-value pair in the ConfigMap, where:

			
					Key is the filename or the key you provided on the command line

					Value is the file content or the literal value you provided on the command line

			

			Before we start with the exercises, let's make sure that you have Kubernetes running and that you can issue commands to it. We will use minikube to easily run a single-node cluster on your local computer.

			Start up minikube using the following command:

			minikube start

			You should see the following response as minikube starts up:

			
				
					[image: Figure 10.2: Starting up minikube

]
				

			

			Figure 10.2: Starting up minikube

			For all of the exercises in this chapter, we recommend creating a new namespace. Recall from Chapter 5, Pods, that namespaces are Kubernetes' way to group components of the solution together. Namespaces can be used to apply policies, quotas, and could also be used to separate resources if the same Kubernetes resources are being used by different teams.

			In the following exercise, we will create a ConfigMap from literal values using the kubectl CLI commands. The idea is that we have some configuration data (for example, the master database name) that we can inject into, for example, a MySQL Pod, and it will create the database as per the given environment variable. This set of commands can also be used in the automated code pipelines that are responsible for application deployments across multiple environments.

			Exercise 10.01: Creating a ConfigMap from Literal Values and Mounting It on a Pod Using Environment Variables

			In this exercise, we will create a ConfigMap in the Kubernetes cluster. This exercise shows how to create ConfigMaps using a key-value pattern. Please follow these steps to complete the exercise:

			
					First, let's begin by creating a namespace for all of the exercises in this chapter.kubectl create namespace configmap-test
You should see a response like this:
namespace/configmap-test created
Note
We will use the configmap-test namespace for all the exercises in this chapter unless mentioned otherwise.

					First, let's create a ConfigMap that contains a single name-value pair. Use the command shown here:kubectl create configmap singlevalue-map --from-literal=partner-url=https://www.auppost.com.au --namespace configmap-test
You should see the following output in the terminal:
configmap/singlevalue-map created

					Once we create the ConfigMap, let's confirm that it is created by issuing a command to get all the ConfigMaps in the namespace:kubectl get configmaps --namespace configmap-test
As singlevalue-map is the only ConfigMap in the configmap-test namespace, you should see an output that looks something like this:
NAME DATA AGE
singlevalue-map 1 111s

					Let's see what the Kubernetes ConfigMap object looks like. Enter the Kubernetes get command as follows:kubectl get configmap singlevalue-map -o yaml --namespace configmap-test
The full object should be described something like this:
[image: Figure 10.3: Describing singlevalue-map

]
Figure 10.3: Describing singlevalue-map
As you can see in the third line of the preceding output, the ConfigMap is created and the literal value we entered is available as a key-value pair in the data section of the ConfigMap.

					Now, we will create a YAML file named configmap-as-env.yaml to create a Pod into which we will inject fields from our ConfigMap as an environment variable. Using your favorite text editor, create a YAML file with the following content:apiVersion: v1
kind: Pod
metadata:
 name: configmap-env-pod
spec:
 containers:
 - name: configmap-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "env"]
 envFrom:
 - configMapRef:
 name: singlevalue-map
You can see that the envFrom section in the preceding file is loading the data from the ConfigMap.

					Let's create a Pod from the preceding specification. This Pod is using the busybox container image, which runs the command specified in the command section of the YAML file mentioned in the previous step:kubectl create -f configmap-as-env.yaml --namespace configmap-test
You should see an output like this:
pod/configmap-env-pod created

					Let's check the logs for this Pod using the following command:kubectl logs -f configmap-env-pod --namespace configmap-test
You should see the logs as shown here:
[image: Figure 10.4: Getting logs for configmap-env-pod

]

			

			Figure 10.4: Getting logs for configmap-env-pod

			The ["/bin/sh", "-c", "env"] command will display all the environment variables loaded into the Pod. In the ConfigMap, we have defined the property name as partner-url, which is part of the output.

			In this exercise, the name of the environment variable, partner-url, is the same as the key in our key-value pair. We can also make the name of the environment variable different from the key. For example, if we want to have partner-server-location as the name of our environment variable, we can replace the content of the YAML file in the exercise with the following:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: configmap-multi-env-pod

			spec:

			 containers:

			 - name: configmap-container

			 image: k8s.gcr.io/busybox

			 command: ["/bin/sh", "-c", "echo $(partner-server-location)"]

			 env:

			 - name: partner-server-location

			 valueFrom:

			 configMapKeyRef:

			 name: singlevalue-map

			 key: partner-url

			Pay special attention to the env section in the preceding YAML file. The first name field after env defines the name of the environment variable, and the key field under configMapKeyRef defines the name of the key in the ConfigMap.

			Defining a ConfigMap from a File and Loading It onto a Pod

			In this section, we will create a ConfigMap from a file and then load the file onto the application Pod. As mentioned previously, this newly mounted file will be accessible as a local file to the application running inside the Pod.

			This is common when applications store their configuration data externally, allowing easier upgrades, as well as patches of the container image across different environments. We can have such a file in our source control repository, and we load the correct file in the correct container using a ConfigMap.

			Let's understand this through an example. Imagine that you have written a web application that connects to a database to store information. When you deploy the application in a development environment, you will want to connect to the development database. Once you are satisfied that the application is working correctly, you will want to deploy the application to a testing environment. Since the application is packaged in a container, you would not want to change the container to deploy the application to the testing environment. But to run the application in the testing environment, you need to connect to a different database. An easy solution to this is that you configure your application to read the database server URL from a file, and that file can be mounted through a ConfigMap. This way, the file is not packaged as part of the container, but injected from outside via Kubernetes; thus, you do not need to modify your containerized application. Another use case would be that external software vendors can provide a container image, and any specific configuration settings can be mounted on the image as per a specific client's requirements.

			Exercise 10.02: Creating a ConfigMap from a File

			In this exercise, we will create a ConfigMap from a file, which can be mounted onto any Pods later on:

			
					First, create a file named application.properties containing the following configuration details. You may use your preferred text editor:partner-url=https://www.fedex.com
partner-key=1234

					Now, create a ConfigMap from the file using the following command:kubectl create configmap full-file-map --from-file=./application.properties --namespace configmap-test
You should see the following output indicating that the ConfigMap has been created:
configmap/full-file-map created

					Get the list of all ConfigMaps to confirm that our ConfigMap has been created:kubectl get configmaps --namespace configmap-test
You should see a list of all ConfigMaps, as shown here:
NAME DATA AGE
full-file-map 1 109m
singlevalue-map 1 127m
You can see that the names of the ConfigMaps are displayed alongside the number of keys they have.
You might be wondering, why does this output show only one key, even though we have added two keys? Let's understand this in the next step.

					Let's see how the ConfigMap is being stored by using the following command:kubectl get configmap full-file-map -o yaml --namespace configmap-test
You should see the following output:
[image: Figure 10.5: Getting details of full-file-map

]
Figure 10.5: Getting details of full-file-map
Note that the name of the file, application.properties, becomes the key under the data section, and the entire file payload is the value of the key.

					Now that we have defined our ConfigMap, the next step is to mount it onto a container. Create a YAML file named mount-configmap-as-volume.yaml to be used as our Pod configuration using the following content:apiVersion: v1
kind: Pod
metadata:
 name: configmap-test-pod
spec:
 containers:
 - name: configmap-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "ls /etc/appconfig/"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/appconfig
 volumes:
 - name: config-volume
 configMap:
 # Provide the name of the ConfigMap containing the files you want
 # to add to the container
 name: full-file-map
 restartPolicy: Never
First, let's focus on the volumes section in the preceding file. In this section, we are instructing Kubernetes to define a volume from our ConfigMap named full-file-map.
Secondly, in the volumeMounts section, we are defining that Kubernetes should mount the volume in the /etc/appconfig directory.
Note that the command field in the container allows us to configure what command we want the container to execute when it starts. In this example, we are running the ls command, which is a Linux command to list the contents of a directory. This is similar to the Windows dir command. This will print the contents of directory /etc/appconfig, where we have mounted the ConfigMap.
Note
The name field under the volume and volumeMounts sections has to be the same so that Kubernetes can identify which volume is associated with which volumeMounts.

					Now, use the following command to start a Pod using the YAML file we just created:kubectl create -f mount-configmap-as-volume.yaml --namespace configmap-test
You should get a response saying that the Pod has been created:
pod/configmap-test-pod created

					The YAML file we used specifies the name of the Pod as configmap-test-pod and configures it to just display the content of the folder. To verify this, just issue the following command to get the output logs of the Pod:kubectl logs -f configmap-test-pod --namespace configmap-test
This should print application.properties, which is the file we placed in the folder:
application.properties
As you can see, we get the contents of /etc/appconfig, which is the output of the ls command in the Pod.

			

			You have just successfully defined a ConfigMap and mounted it as a file in a Pod that printed the name of the file.

			Exercise 10.03: Creating a ConfigMap from a Folder

			In this exercise, we will load all the files in a folder as a ConfigMap. Each filename becomes a key for the ConfigMap, and when you mount it, all the files will be mounted at the volumeMounts location (as defined in the YAML file for the container):

			
					Create two files in a new folder. Name one of them fileone.txt, with its contents as file one, and name the other filetwo.txt, with its contents as file two. The folder name can be anything for this exercise. You can confirm that the files have been created using the ls command:ls
You will see the following list of files:
fileone.txt filetwo.txt

					Use the following command to create ConfigMap from a folder. Note that instead of specifying the filename, we just mentioned the name of the folder:kubectl create configmap map-from-folder --from-file=./ -n configmap-test
You should see the following response:
configmap/map-from-folder created

					Now, let's describe the ConfigMap to see what it contains:kubectl describe configmap map-from-folder -n configmap-test
You should see the following output:
[image: Figure 10.6: Describing the map-from-folder ConfigMap

]

			

			Figure 10.6: Describing the map-from-folder ConfigMap

			Notice that there are two keys in the ConfigMap – one for each file, that is, fileone.txt and filetwo.txt. The values of the keys are the contents of the files. Thus, we can see that a ConfigMap can be created from all the files in a folder.

			What Is a Secret?

			A ConfigMap provides a way to decouple application configuration data from the application itself. However, the problem with a ConfigMap is that it stores the data in plain text as a Kubernetes object. What if we want to store some sensitive data such as a database password? Kubernetes Secret provides a way to store sensitive data that can then be made available to the applications that require it.

			Secret versus ConfigMap

			You can think of a Secret as the same as a ConfigMap with the following differences:

			
					Unlike a ConfigMap, a Secret is intended to store a small amount (1 MB for a Secret) of sensitive data. A Secret is base64-encoded, so we cannot treat it as secure. It can also store binary data such as a public or private key.

					Kubernetes ensures that Secrets are passed only to the nodes that are running the Pods that need the respective Secrets.Note
Another way to store sensitive data is a vault solution, such as HashiCorp Vault. We have left such implementation out of the scope of the workshop.

			

			But wait; if the Kubernetes Secrets are not secure enough due to their base64 encoding, then what is the solution for storing extremely sensitive data? One way is to encrypt it and then store it in Secrets. The data can be decrypted while it is being loaded to the Pod, though we are leaving this implementation out of the scope of this workshop.

			Once we define our Secrets, we need to expose them to the applications Pods. The way we expose Secrets to the running application is the same as for ConfigMaps, that is, by mounting them as an environment variable or as a file.

			As for ConfigMaps, let's use the built-in help command for secret to see what types of Secrets are offered by Kubernetes:

			kubectl create secret --help

			The help command should show the following:

			
				
					[image: Figure 10.7: Output of the built-in help command for Secret

]
				

			

			Figure 10.7: Output of the built-in help command for Secret

			As you can see in the preceding output, the Available Commands section lists three types of Secrets:

			
					generic: A generic Secret holds any custom-defined key-value pair.

					tls: A TLS Secret is a special kind of Secret for holding a public-private key pair for communication using the TLS protocol.

					docker-registry: This is a special kind of Secret that stores the username, password, and email address to access a Docker registry.

			

			We will take a deeper dive into the implementation and uses of these Secrets in the following exercises.

			Exercise 10.04: Defining a Secret from Literal Values and Loading the Values onto the Pod as an Environment Variable

			In this exercise, we will define a Secret from a literal value and load it as an environment variable in the running Pod on Kubernetes. This literal value maybe something like a password to your internal database. Since we are creating this Secret from a literal value, it would be categorized as a generic Secret. Follow these steps to perform the exercise:

			
					First, create a Secret that will hold a simple password by using the following command:kubectl create secret generic test-secret --from-literal=password=secretvalue --namespace configmap-test
You should get a response as follows:
secret/test-secret created

					Once we define our Secret, we can use the Kubernetes describe command to obtain more details about it:kubectl describe secret test-secret --namespace configmap-test
[image: Figure 10.8: Describing test-secret

]
Figure 10.8: Describing test-secret
You can see that it stored our value against the password key:

					Now that our Secret is created, we will mount it as an environment variable in a Pod. To create a Pod, make a YAML file named mount-secret-as-env.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: secret-env-pod
spec:
 containers:
 - name: secret-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "env"]
 envFrom:
 - secretRef:
 name: test-secret
Pay attention to the envFrom section, which mentions the Secret to load. In the command section for the container, we specify the env command, which will make the container display all the environment variables loaded into the Pod.

					Now, let's use the YAML configuration to create a Pod and see it in action:kubectl create -f mount-secret-as-env.yaml --namespace=configmap-test
You should see a response as follows:
pod/secret-env-pod created

					Now, let's get the logs for the Pod to see all the environment variables displayed by our container:kubectl logs -f secret-env-pod --namespace=configmap-test
You should see the logs similar to the following screenshot:
[image: Figure 10.9: Getting logs from secret-env-pod

]

			

			Figure 10.9: Getting logs from secret-env-pod

			As you can see in the highlighted line of the preceding output, the password key is displayed with its value as secretvalue, which was what we had specified.

			The following exercise demonstrates how to use a public-private key combination and mount the private key file into a Pod. The public key can then be made available to any other service connecting to this Pod, but that is not demonstrated in this exercise. Using a separate file as a Secret enables us to use any kind of file instead of simple key-value strings. This opens up the possibility of using binary files like private key stores.

			Exercise 10.05: Defining a Secret from a File and Loading the Values onto the Pod as a File

			In this exercise, we will create a private key, store it in a new Secret, and then load it onto a Pod as a file:

			
					First, let's create a private key. We will use a tool used to create SSH keys. Enter the following command in the terminal:ssh-keygen -f ~/test_rsa -t rsa -b 4096 -C "test@example.com"
If prompted, do not provide any password for the key.
Note
If you require more information about the SSH protocol and its uses, please refer to https://www.ssh.com/ssh/protocol/.
After this is executed successfully, you will see two files named test_rsa and test_rsa.pub. You should see an output similar to the one shown here:
[image: Figure 10.10: Creating SSH keys

]
Figure 10.10: Creating SSH keys
Your output may not be exactly the same as shown here because the keys are randomized.
Note
Most Linux distros include the ssh-keygen tool. However, if you don't have or cannot use ssh-keygen, you can use any other file instead of the private key to proceed with this exercise.

					Now, let's load the newly created private key as a Secret. This time, we will use the from-file argument of the create secret command:kubectl create secret generic test-key-secret --from-file=private-key=/Users/faisalmassod/test_rsa --namespace=configmap-test
You should get a response like this:
secret/test-key-secret created

					Once the Secret is created, we can get its details using the describe command:kubectl describe secret test-key-secret --namespace=configmap-test
The Secret should be described as follows:
[image: Figure 10.11: Describing test-key-secret

]
Figure 10.11: Describing test-key-secret

					Now that our Secret is created, let's mount it onto a Pod. The process is similar to mounting a ConfigMap. First, create a YAML file named mount-secret-as-volume.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: secret-test-pod
spec:
 containers:
 - name: secret-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "ls /etc/appconfig/; cat /etc/appconfig/private-key"]
 volumeMounts:
 - name: secret-volume
 mountPath: /etc/appconfig
 volumes:
 - name: secret-volume
 secret:
 # Provide the name of the Secret containing the files you want
 # to add to the container
 secretName: test-key-secret
In the preceding Pod specification, note that volumes are mounted the same way as we mounted the earlier ConfigMap. In the volumes section, we are instructing Kubernetes to define a volume from our Secret. In the volumeMounts section, we are defining the specific path on which Kubernetes should mount the volume. The "/bin/sh", "-c", "ls /etc/appconfig/; cat /etc/appconfig/private-key" command will print out the contents of the file loaded onto it as a Secret.
Note
The name field in the volume and volumeMounts sections has to be the same so that Kubernetes can identify which volume is associated with which volumeMounts. For this example, we have used secret-volume as the name in both places.

					Now, let's create a Pod using the YAML file as the Pod definition using the following command:kubectl create -f mount-secret-as-volume.yaml --namespace=configmap-test
If the Pod is successfully created, you should see the following output:
pod/secret-test-pod created

					To check whether our Pod has the Secret loaded, we can get its logs and examine them. Use the following command:kubectl logs -f secret-test-pod --namespace=configmap-test
The logs should show the contents of the private key, as follows:
[image: Figure 10.12: Getting logs of secret-test-pod

]
Figure 10.12: Getting logs of secret-test-pod
As you can see from the log, the container is displaying the contents of the Secret mounted onto the Pod.
Note
Since the SSH key is randomized, your output may not look exactly the same as the one shown here.

					The SSH key is randomized, so each time you will get a different output. You can try this exercise multiple times and see for yourself. Make sure to either delete the Pod or change the name every time. You can delete the Pod using the following command:kubectl delete pod secret-test-pod --namespace=configmap-test
You will see the following output if the Pod is successfully deleted:
pod "secret-test-pod" deleted

			

			In this exercise, we created a key pair using another tool and loaded the private key onto our Pod by mounting it as a binary file. However, public-private key pairs are used for encryption in the TLS protocol, which is a cryptographic standard for securing web traffic.

			Note

			To learn more about TLS, please refer to https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/.

			Kubernetes provides its own way of creating a key pair and storing keys for TLS. Let's see how to create a TLS Secret in the following exercise.

			Exercise 10.06: Creating a TLS Secret

			In this exercise, we will see how to create a Secret that can store a cryptographic key for TLS:

			
					Use the following command to create a pair of private-public keys:openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/CN=kube.example.com"
This command creates the private key in the file named tls.key, and the public certificate in the file named tls.crt.
Note
For more details on how the openssl tool is used here, you can refer to https://www.openssl.org/docs/manmaster/man1/req.html.
If the key is successfully generated, you should see an output like this:
[image: Figure 10.13: Creating SSL keys

]
Figure 10.13: Creating SSL keys

					Once it is successful, we can create a Secret to hold the files using the following command:kubectl create secret tls test-tls --key="tls.key" --cert="tls.crt" --namespace=configmap-test
Once the Secret is successfully created, you will see the following output:
secret/test-tls created

					Verify that our Secret is created by listing down all Secrets in the configmap-test namespace using the following command:kubectl get secrets --namespace configmap-test
Our Secret must be listed in the following output:
[image: Figure 10.14: Listing down all secrets in configmap-test

]
Figure 10.14: Listing down all secrets in configmap-test

					If we issue the describe command for the newly created Secret, you can see that it stores the two parts, the public and the private key, as two different keys of the Secret:kubectl describe secrets test-tls --namespace configmap-test
You should see the following response:
[image: Figure 10.15: Describing test-tls

]

			

			Figure 10.15: Describing test-tls

			Thus, we have created a set of public-private keys for TLS using a special set of commands provided by Kubernetes. This Secret can be mounted in a similar way as demonstrated in Exercise 10.05, Defining a Secret from a File and Loading the Values onto the Pod as a File.

			Another common task is to fetch Docker images from an external Docker registry. Many organizations use enterprise container registries (for example, Nexus) for their applications, which can then be fetched and deployed as needed. Kubernetes also provides a special type of Secret to store authentication information for accessing these Docker registries. Let's see how to implement it in the following exercise.

			Exercise 10.07: Creating a docker-registry Secret

			In this exercise, we will create a docker-registry Secret that can be used for authentication while fetching a Docker image from a registry:

			
					We can create the Secret directly using the following command:kubectl create secret docker-registry test-docker-registry-secret --docker-username=test --docker-password=testpassword --docker-email=example@a.com --namespace configmap-test
As you can see in the command arguments, we need to specify the username, password, and email address for the Docker account. Once the Secret is created, you should see the following response:
secret/test-docker-registry-secret created

					Verify that it is created by using this command:kubectl get secrets test-docker-registry-secret --namespace configmap-test
You should see test-docker-registry-secret as displayed in the following output:
[image: Figure 10.16: Checking test-docker-registry-secret

]
Figure 10.16: Checking test-docker-registry-secret

					Let's use the describe command and get more details about our Secret: kubectl describe secrets test-docker-registry-secret --namespace configmap-test
The command should return the following details:
[image: Figure 10.17: Describing test-docker-registry-secret

]

			

			Figure 10.17: Describing test-docker-registry-secret

			As you can see under the Data section of the preceding output, a single key with the name .dockerconfigjson has been created.

			Note

			This exercise is just an easy way to load a .dockerconfigjson file. You can create and load the file manually using other methods and achieve the same objective as we have in this exercise.

			Activity 10.01: Using a ConfigMap and Secret to Promote an Application through Different Stages

			Let's assume that we have an application and we want to promote it to different environments. Your task is to promote the application from testing to production environments, and each environment has different configuration data.

			In this activity, we will use the ConfigMap and Secret to easily reconfigure the application for different stages in its life cycle. It should also give you an idea of how the separation of ConfigMap data and Secret data from the application can help in the easier transition of an application through various stages of development and deployment.

			These guidelines should help you to complete the activity:

			
					Define a namespace called my-app-test.

					Define a ConfigMap named my-app-data in the my-app-test namespace with the following key values:external-system-location=https://testvendor.example.com
external-system-basic-auth-username=user123

					Define a Secret named my-app-secret in the my-app-test namespace with the following key values:external-system-basic-auth-password=password123

					Define a Pod specification and deploy the ConfigMap in the /etc/app-data folder with the filename application-data.properties.

					Define a Pod specification and deploy the Secret in the /etc/secure-data folder with the filename application-secure.properties.

					Run the Pod so that it displays all the contents from the ConfigMap and the Secret. You should see something like this:[image: Figure 10.18: Key values for the test environment

]
Figure 10.18: Key values for the test environment

					Define another namespace called my-app-production.

					Define a ConfigMap named my-app-data in my-app-production with the following key values:external-system-location=https://vendor.example.com
external-system-basic-auth-username=activityapplicationuser

					Define a Secret named my-app-secret in my-app-production with the following key values:external-system-basic-auth-password=A#4b*(1=B88%tFr3

					Use the same Pod specification as defined in step 5 and run the Pod in the my-app-production namespace.

					Check whether the application running in my-app-production displays the correct data. You should see output like this:[image: Figure 10.19: Key values for the production environment

]

			

			Figure 10.19: Key values for the production environment

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD. The GitHub repository also includes a Bash script for this activity, which will execute all these solution steps automatically. However, please take a look at the detailed steps provided in the solution to get a complete understanding of how to perform the activity.

			Summary

			In this chapter, we have seen the different ways that Kubernetes provides to associate environment-specific data with our applications running as containers.

			Kubernetes provides ways to store sensitive data as Secrets and normal application data as ConfigMaps. We have also seen how to create ConfigMaps and Secrets and associate them with our containers via CLI. Running everything via the command line will facilitate the automation of these steps and improve the overall agility of your application.

			Associating data with containers enables us to use the same container across different environments in our IT systems (for example, in test and production). Using the same container across different environments provides a way for secure and trusted code promotion techniques for IT processes. Each team can use a container as a unit of deployment and sign the container so that other parties can trust the container. This also provides a trusted way of distributing code not only across the same IT organizations but also across multiple organizations. For example, a software vendor can just provide you with a container as packaged software. ConfigMaps and Secrets can then be used to provide specific configurations for using the packaged software in your organization.

			The next set of chapters is all about deploying Kubernetes and running it in high availability mode. These chapters will provide you with fundamental and practical knowledge regarding how to run stable clusters for Kubernetes.

		

	
		
			
			

		

		
			11. Build Your Own HA Cluster

		

		
			Overview

			In this chapter, we will learn how Kubernetes enables us to deploy infrastructure with remarkable resilience and how to set up a high-availability Kubernetes cluster in the AWS cloud. This chapter will help you understand what enables Kubernetes to be used for highly available deployments and, in turn, enable you to make the right choices while architecting a production environment for your use case. By the end of the chapter, you will be able to set up a suitable cluster infrastructure on AWS to support your highly available (HA) Kubernetes cluster. You will also be able to deploy an application in a production environment.

			Introduction

			In the previous chapters, you learned about application containerization, how Kubernetes works, and some of the "proper nouns" or "objects" in Kubernetes that allow you to create a declarative-style application architecture that Kubernetes will execute on your behalf.

			Software and hardware instability are a reality in all environments. As applications need higher and higher availability, shortcomings in the infrastructure become more obvious. Kubernetes was purpose-built to help solve this challenge for containerized applications. But what about Kubernetes itself? As cluster operators, do we shift from watching our individual servers like hawks to watching our single Kubernetes control infrastructure?

			As it turns out, this aspect was one of the design considerations for Kubernetes. One of the design goals of Kubernetes is to be able to withstand instability in its own infrastructure. This means that when set up properly, the Kubernetes control plane could withstand quite a few disasters, including:

			
					Network splits/partitions

					Control plane (master) server failure

					Data corruption in etcd

					Many other less severe events that impact availability events

			

			Not only can Kubernetes help your application tolerate failure, but you can rest easy at night knowing that Kubernetes can also tolerate failures in its own control infrastructure. In this chapter, we are going to build a cluster of our very own and make sure that it is highly available. High availability implies that the system is very reliable and almost always available. This does not mean that everything in it always works perfectly; it just means that whenever the user or client wants something, the architecture stipulates that the API server should be available to do the job. This means that we have to design a system for our applications to automatically respond to and take corrective measures in response to any faults.

			In this chapter, we will look at how Kubernetes integrates such measures to tolerate faults in its own control architecture. Then, you will have the chance to extend this concept a bit further by designing your application to take advantage of this horizontally scalable, fault-tolerant architecture. But first, let's look at how the different cogs in the machine turn together to enable it to be highly available.

			How the Components of Kubernetes Work Together to Achieve High Availability

			You have learned in Chapter 2, An Overview of Kubernetes, how the pieces of Kubernetes work together to provide a runtime for your application containers. But we need to investigate deeper how these components work together to achieve high availability. To do that, we'll start with the memory bank of Kubernetes, otherwise known as etcd.

			etcd

			As you have learned in earlier chapters, etcd is the place where all Kubernetes configuration is stored. This makes it arguably the single most important component of the cluster since changes in etcd affect the state of everything. More specifically, any change to a key-value pair in etcd will cause the other components of Kubernetes to react to this change, which could mean disruptions to your application. In order to achieve high availability for Kubernetes, it is wise to have more than one etcd node.

			But many more challenges arise when you add multiple nodes to an eventually consistent datastore like etcd. Do you have to write to every node to persist a change of state? How does replication work? Do we read from just one node or as many as are available? How does it handle networking failures and partitions? Who is the master of the cluster and how does leader election work? The short answer is that, by design, etcd makes these challenges either non-existent or easy to deal with. etcd uses a consensus algorithm called Raft to achieve replication and fault tolerance in relation to many of the aforementioned issues. Thus, if we're building a Kubernetes HA cluster, we need to make sure that we set up multiple nodes (preferably an odd number to make leader election tie-breaking easier) of an etcd cluster properly, and we can rely on that from there.

			Note

			Leader election in etcd is a process where multiple instances of the database software collectively vote on which host will be an authority for dealing with any issues that arise in achieving database consensus. For more details, refer to this link: https://raft.github.io/

			Networking and DNS

			Many of the applications that run on Kubernetes require some form of network to be useful. Therefore, networking is an important consideration when designing a topology for your clusters. For example, your network should be able to support all of the protocols that your application uses, including the ones for Kubernetes. Kubernetes itself uses TCP for all of its communication between masters, nodes, and etcd, and it uses UDP for internal domain name resolution, which is otherwise known as service discovery. Your network should also be provisioned to have at least as many IP addresses as the number of nodes that you plan to have in the cluster. For example, if you planned to have more than 256 machines (nodes) in your cluster, you probably shouldn't use an IP CIDR address space of /24 or higher since that only has 255 or fewer available IP addresses.

			Later in this workshop, we will talk about the security decisions you will need to make as a cluster operator. However, in this section, we will not discuss them because they do not directly relate to Kubernetes' ability to achieve high availability. We will deal with the security of Kubernetes in Chapter 13, Runtime and Network Security in Kubernetes.

			One final thing to take into consideration about the network where your master and worker nodes will run is that every master node should be able to communicate with every worker node. The reason this is important is that each master node communicates with the Kubelet process running on the worker node in order to determine the state of the full cluster.

			Nodes' and Master Servers' Locations and Resources

			Because of the design of etcd's Raft algorithm, which allows distributed consensus to happen in the key-value store of Kubernetes, we are able to run multiple master nodes, each of which is capable of controlling the entire cluster without the fear of them behaving independently from each other (in other words, going rogue). As a reminder of why master nodes being out of sync is a problem in Kubernetes, consider that the runtime of your application is being controlled by commands that Kubernetes issues on your behalf. If those commands conflict with each other because of state sync problems between master nodes, then your application runtime will suffer as a result. By introducing multiple master nodes, we again provide resistance to faults and network partitions that could potentially sacrifice the availability of the cluster.

			Kubernetes is actually able to run in a "headless" mode. This means whatever instructions the Kubelets (worker nodes) have last received from the master nodes will continue to be carried out until communication with the master nodes can be re-established. In theory, this means an application that was deployed on Kubernetes could run indefinitely, even if the entire control plane (all master nodes) went down and nothing else changed on the worker nodes where the Pods running the application were scheduled. Obviously, this is a worst-case scenario for the availability of a cluster, but it is reassuring to know that, even in the worst case, applications don't necessarily have to suffer downtime.

			When you are planning the design and capacity for a high-availability deployment of Kubernetes, it is important to know a few things about the design of your network, which we discussed previously. For example, if you are running a cluster in a popular cloud provider, they likely have a concept of "availability zones". A similar concept for data center environments would be physically isolated data centers. If possible, there should be at least one master node and multiple worker nodes per availability zone. This is important because, in the event of an availability zone (data center) outage, your cluster is still able to operate within the remaining availability zones. This is illustrated in the following diagrams:

			
				
					[image: Figure 11.1: The cluster before the outage of an availability zone

]
				

			

			Figure 11.1: The cluster before the outage of an availability zone

			Let's assume that there is a total outage of Availability Zone – C, or at least we are no longer able to communicate with any servers that are running inside it. Here is how the cluster now behaves:

			
				
					[image: Figure 11.2: The cluster following the outage of an availability zone

]
				

			

			Figure 11.2: The cluster following the outage of an availability zone

			As you can see in the diagram, Kubernetes can still execute. Additionally, if the loss of the nodes running in Availability Zone - C causes an application to no longer be in its desired state, which is dictated by the application's Kubernetes manifest, the remaining master nodes will work to schedule the interrupted workload on the remaining worker nodes.

			Note

			Depending on the number of worker nodes in your Kubernetes cluster, you may have to plan for additional resource constraints because of the amount of CPU power needed to run a master connected to several worker nodes. You can use the chart at this link to determine the resource requirements of the master nodes you should deploy for controlling your cluster: https://kubernetes.io/docs/setup/best-practices/cluster-large/

			Container Network Interface and Cluster DNS

			The next decision you need to make with respect to your cluster is how the containers themselves communicate across each of the nodes. Kubernetes itself has a container network interface called kubenet, which is what we will use in this chapter.

			For smaller deployments and simple operations, kubenet more than exceeds the needs of those clusters from a Container Network Interface (CNI) perspective. However, it does not work for every workload and network topology. So, Kubernetes provides support for several different CNIs. When considering container network interfaces from a high-availability perspective, you will want the most performant and stable option possible. It is beyond the scope of this introduction to Kubernetes to discuss each of the CNI offerings at length.

			Note

			If you plan to use a managed Kubernetes service provider or plan to have a more complex network topology such as multiple subnets inside a single VPC, kubenet will not work for you. In this case, you will have to pick one of the more advanced options. More information on selecting the right CNI for your environment can be found here: https://chrislovecnm.com/kubernetes/cni/choosing-a-cni-provider/

			Container Runtime Interfaces

			One of the final decisions you will have to make is how your containers will run on your worker nodes. The Kubernetes default for this is the Docker container runtime interface, and Kubernetes was initially built to work with Docker. Since then, however, open standards have been developed and other container runtime interfaces are now compatible with the Kubernetes API. Generally, cluster operators tend to stick with Docker because it is extremely well established. Even if you want to explore alternatives, keep in mind when designing a topology capable of maintaining high availability for your workloads and Kubernetes that you'll probably want to go with more established and stable options like Docker.

			Note

			You can find some of the other container runtime interfaces that are compatible with Kubernetes on this page: https://kubernetes.io/docs/setup/production-environment/container-runtimes/

			Container Storage Interfaces

			Recent versions of Kubernetes have introduced improved ways of interacting with the persistence tools that are available in data centers and cloud providers such as storage arrays and blob storage. The most important improvement has been the introduction and standardization of the container storage interface for managing StorageClass, PersistentVolume, and PersistentVolumeClaim in Kubernetes. The consideration for highly available clusters you will need to make with regard to storage is more specific per application. For example, if your application makes use of Amazon EBS volumes, which must reside within an availability zone, then you will have to ensure appropriate redundancy is available in your worker nodes so that the Pod that depends on that volume can be rescheduled in the event of an outage. More information on CSI drivers and implementations can be found here: https://kubernetes-csi.github.io/docs/

			Building a High-Availability Focused Kubernetes Cluster

			Hopefully, by reading the previous section, you're starting to realize that Kubernetes is less magical than it may seem when you first approached the topic. It is an extremely powerful tool on its own, but Kubernetes really shines when we take full advantage of its capability of running in a highly available configuration. So now we're going to see how to implement it and actually build a cluster using a cluster life cycle management tool. But before we do that, we need to know the different ways that we can deploy and manage a Kubernetes cluster.

			Self-Managed versus Vendor-Managed Kubernetes Solutions

			Amazon Web Services, Google Cloud Platform, Microsoft Azure, and practically every other major cloud services provider has a managed Kubernetes offering. So, when you are deciding how you are going to build and run your cluster, you should consider some of the different managed providers and their strategic offerings to see whether or not they align with your business needs and goals. For example, if you use Amazon Web Services, then Amazon EKS might be a viable solution for you.

			There are trade-offs with choosing a managed service provider over an open-source and self-managed solution. For example, a lot of the hard work of cluster assembly is done for you, but you forfeit a great deal of control in the process. So, you need to decide how much value you place on being able to control the Kubernetes master plane and whether or not you would like to be able to pick your container networking interface or container runtime interface. For the purposes of this tutorial, we are going to use an open-source solution because it can be deployed anywhere, and it also helps us understand how Kubernetes works and how it is supposed to be configured.

			Note

			Please ensure that you have an AWS account and are able to access it using the AWS CLI: https://aws.amazon.com/cli.

			If you are unable to access it, then please follow the instructions at the preceding link.

			Assuming for now that we want more control over our cluster and are comfortable with managing it by ourselves, let's look at some open-source tools that can be used for setting up a cluster.

			kops

			We will use one of the more popular open-source installation tools to do this called kops, which stands for Kubernetes Operations. It is a complete cluster life cycle management tool and has a very easy API to understand. As a part of the cluster creation/updating process, kops can generate Terraform configuration files so you can run the infrastructure upgrade process as part of your own pipeline. It also has good tooling to support the upgrade path between versions of Kubernetes.

			Note

			Terraform is an infrastructure life cycle management tool that we will briefly learn about in the next chapter.

			Some of the drawbacks of kops are that it tends to be about two versions of Kubernetes behind, it has not always been able to respond to vulnerability announcements as fast as other tools, and it is currently limited to creating clusters in AWS, GCP, and OpenStack.

			The reason we have decided to use kops for our cluster life cycle management in this chapter is four-fold:

			
					We wanted to select a tool that would abstract away some of the more confusing bits of the Kubernetes setup as we ease you into cluster administration.

					It supports more cloud platforms than just AWS, so you don't have to be locked into Amazon if you choose not to be.

					It supports a broad array of customizations to the Kubernetes infrastructure, such as choosing CNI providers, deciding on a VPC network topology, and node instance group customizations.

					It has first-class support for zero-downtime cluster version upgrades and handles the process automatically.

			

			Other Commonly Used Tools

			Besides kops, there are several other tools that can be used to set up a Kubernetes cluster. You can find the full list at this link: https://kubernetes.io/docs/setup/#production-environment.

			We will mention a couple of them here so you get an idea of what's available:

			
					kubeadm: This is generated from the Kubernetes source code and is the tool that will allow the greatest level of control over each component of Kubernetes. It can be deployed in any environment.Using kubeadm requires an expert level knowledge of Kubernetes to be useful. It gives cluster administrators little room for error, and it is complicated to upgrade a cluster using kubeadm.

					Kubespray: This uses Ansible/Vagrant-style configuration management, which is familiar to many IT professionals. It is better for environments where the infrastructure is more static rather than dynamic (such as the cloud). Kubespray is very composable and configurable from a tooling perspective. It also allows the deployment of a cluster on bare-metal servers. The key to watch out for here is coordinating software upgrades of cluster components and hardware and operating systems. Since you are providing much of the functionality a cloud provider does, you have to make sure your upgrade processes won't break the applications running on top of the cluster.Because Kubespray uses Ansible for provisioning, you are restricted by the underlying limitations of Ansible for provisioning large clusters and keeping them in spec. Currently, Kubespray is limited to the following environments: AWS, GCP, Azure, OpenStack, vSphere, Packet, Oracle Cloud Infrastructure, or your own bare-metal installations.

			

			Authentication and Identity in Kubernetes

			Kubernetes uses two concepts for authentication: ServiceAccounts are meant to identify processes running inside Pods, and User Accounts are meant to identify human users. We will take a look at ServiceAccounts in a later topic in this chapter, but first, let's understand User Accounts.

			From the very beginning, Kubernetes has tried to remain incredibly agnostic to any form of authentication and identity for user accounts, because most companies have a very specific way of authenticating users. Some use Microsoft Active Directory and Kerberos, some may use Unix passwords and UGW permission sets, and some may use a cloud provider or software as a service-based IAM solution. In addition, there are a number of different authentication strategies that may be used by an organization.

			Because of this, Kubernetes does not have built-in identity management or a required single way of authenticating those identities. Instead, it has a concept of authentication "strategies." A strategy is essentially a way for Kubernetes to delegate the verification of identity to another system or method.

			In this chapter, we will be using x509 certificate-based authentication. X509 certificate authentication essentially makes use of the Kubernetes Certificate Authority and common names/organization names. Since Kubernetes RBAC rules use usernames and group names to map authenticated identities to permission sets, x509 common names become the usernames of Kubernetes, and organization names become the group names in Kubernetes. kops automatically provisions x509-based authentication certificates for you so there is little to worry about; but when it comes to adding your own users, you will want to be aware of this.

			Note

			Kubernetes RBAC stands for Role-Based Access Control, which allows us to allow or deny certain access to our users based on their roles. This will be covered in more depth in Chapter 13, Runtime and Network Security in Kubernetes.

			An interesting feature of kops is that you can use it in a similar way to manage cluster resources as you would use kubectl to manage cluster resources. kops handles a node similar to how Kubernetes would handle a Pod. Just as Kubernetes has a resource called "Deployment" to manage a bunch of Pods, kops has a resource called InstanceGroup (which can also be referred to by its short form, ig) to manage a bunch of nodes. In the case of AWS, a kops InstanceGroup effectively creates an AWS EC2 Autoscaling group.

			Extending this comparison, kops get instancegroups or kops get ig is analogous to kubectl get deployments, and kops edit works similarly to kubectl edit. We will make use of this feature in the activity later in the chapter, but first, let's get our basic HA cluster infrastructure up and running in the following exercise.

			Note

			In this chapter, the commands have been run using the Zsh shell. However, they are completely compatible with Bash.

			Exercise 11.01: Setting up Our Kubernetes Cluster

			Note

			This exercise will exceed the free tier of AWS that is normally given to new account holders for the first 12 months. Pricing information on EC2 can be found here: https://aws.amazon.com/ec2/pricing/

			Also, you should remember to delete your instances at the end of the chapter to stop being billed for your consumed AWS resources.

			In this exercise, we will prepare our infrastructure for running a Kubernetes cluster on AWS. There's nothing particularly special about the choice of AWS; Kubernetes is platform-agnostic, though it already has code that allows it to integrate with native AWS services (EBS, EC2, and IAM) on behalf of cluster operators. This is also true for Azure, GCP, IBM Cloud, and many other cloud platforms.

			We will set up a cluster with the following specifications:

			
					Three master nodes

					Three etcd nodes (to keep things simple, we will run these on the master nodes)

					Two worker nodes

					At least two availability zones

			

			Once we have our cluster set up, we will deploy an application on it in the next exercise. Now follow these steps to complete this exercise:

			
					Ensure that you have installed kops as per the instructions in the Preface. Verify that kops is properly installed and configured using the following command:kops version
You should see the following response:
Version 1.15.0 (git-9992b4055)
Now before we move on to the following steps, we need to do some setup in AWS. Most of the following settings are configurable, but we will be making a few decisions for you for the sake of convenience.

					First, we will set up an AWS IAM user that kops will use to provision your infrastructure. Run the following commands one after the other in your terminal:aws iam create-group --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonEC2FullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonRoute53FullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/IAMFullAccess --group-name kops
aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonVPCFullAccess --group-name kops
aws iam create-user --user-name kops
aws iam add-user-to-group --user-name kops --group-name kops
aws iam create-access-key --user-name kops
You should see output similar to this:
[image: Figure 11.3: Setting up an IAM user for kops

]
Figure 11.3: Setting up an IAM user for kops
Note the highlighted AccessKeyID and SecretAccessKey fields you will receive for your output. This is sensitive information, and the keys in the preceding screenshot will, of course, be invalidated by the author. We will need the highlighted information for our next step.

					Next, we need to export the created credentials for kops as environment variables for our terminal session. Use the highlighted information from the screenshot in the previous step:export AWS_ACCESS_KEY_ID=<AccessKeyId>
export AWS_SECRET_ACCESS_KEY=<SecretAccessKey>

					Next, we need to create an S3 bucket for kops to store its state. To create a random bucket name, run the following command:export BUCKET_NAME="kops-$(LC_ALL=C tr -dc 'a-z0-9' </dev/urandom | head -c 13 ; echo)" && echo $BUCKET_NAME
The second command outputs the name of the S3 bucket created, and you should see a response similar to the following:
kops-aptjv0e9o2wet

					Run the following command to create the required bucket using the AWS CLI:aws s3 mb s3://$BUCKET_NAME --region us-west-2
Here, we are using the us-west-2 region. You can use a region closer to you if you want. You should see the following response for a successful bucket creation:
make_bucket: kops-aptjv0e9o2wet
Now that we have our S3 bucket, we can begin to set our cluster up. There are numerous options we can choose, but right now we're going to work with the defaults.

					Export the name of your cluster and the S3 bucket that kops will use to store its state:export NAME=myfirstcluster.k8s.local
export KOPS_STATE_STORE=s3://$BUCKET_NAME

					Generate all the config and store it in the S3 bucket from earlier to create a Kubernetes cluster using the following command:kops create cluster --zones us-west-2a,us-west-2b,us-west-2c --master-count=3 --kubernetes-version=1.15.0 --name $NAME
By passing the --zones argument, we are specifying the availability zones we want our cluster to span, and by specifying the master-count=3 parameter, we are effectively saying we want to use a highly available Kubernetes cluster. By default, kops will create two worker nodes.
Note that this did not actually create the cluster, but it created a pre-flight set of checks so we can create a cluster in just a moment. It is informing us that in order to access our AWS instances, we need to provide a public key – the default search location is ~/.ssh/id_rsa.pub.

					Now, we need to create an SSH key to be added to all of the master and worker nodes so we can log in to them with SSH. Use the following command:kops create secret --name myfirstcluster.k8s.local sshpublickey admin -i ~/.ssh/id_rsa.pub
The type of secret (sshpublickey) is a special keyword reserved to kops for this operation. More information can be found at this link: https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_secret_sshpublickey.md.
Note
The key being specified here at ~/.ssh/id_rsa.pub will be the key that kops is going to distribute to all master and worker nodes and can be used for SSH from your local computer to the running server for diagnostic or maintenance purposes.
You can use the following command to use the key to log in with an admin account:
ssh -i ~/.ssh/id_rsa admin@<public_ip_of_instance>
While this is not required for this exercise, you will find this useful for a later chapter.

					To view our configuration, let's run the following command:kops edit cluster $NAME
This will open your text editor with the definition of our cluster, as shown here:
[image: Figure 11.4: Examining the definition of our cluster

]
Figure 11.4: Examining the definition of our cluster
We have truncated this screenshot for brevity. At this point, you can make any edits, though, for this exercise, we will proceed without making any changes. We will keep the description of this spec out of the scope of this workshop for brevity. If you want more details about the various elements in the clusterSpec of kops, you can find more details here: https://github.com/kubernetes/kops/blob/master/docs/cluster_spec.md.

					Now, take the configuration we generated and stored in S3 and actually run commands to reconcile the AWS infrastructure with what we said we wanted it to be in our config files:kops update cluster $NAME --yes
Note
All commands in kops are dry-run (nothing will actually happen except some validation steps) by default unless you specify the --yes flag. This is a protectionary measure, so you don't accidentally do something harmful to your cluster in production.
This will take a long time, but after it's done, we'll have a working Kubernetes HA cluster. You should see the following response:
[image: Figure 11.5: Updating the cluster to match the generated definition

]
Figure 11.5: Updating the cluster to match the generated definition

					To validate that our cluster is running, let's run the following command. This may take up to 5-10 minutes to fully work:kops validate cluster
You should see the following response:
[image: Figure 11.6: Validating our cluster

]

			

			Figure 11.6: Validating our cluster

			From this screenshot, we can see we have three Kubernetes master nodes running in separate availability zones, and two worker nodes spread across two of the three availability zones (making this a highly available cluster). Also, all of the nodes as well as the cluster appear to be healthy.

			Note

			Remember your cluster resources are still running. If you plan to proceed to the next exercise after a significant amount of time, you may want to delete this cluster to stop the billing for the AWS resources. To delete this cluster, you can use the following command:

			kops delete cluster --name ${NAME} --yes

			Kubernetes Service Accounts

			As we learned earlier, a Kubernetes ServiceAccount object serves as an identification marker for a process inside a Pod. While Kubernetes does not manage and authenticate the identity of human users, it does manage and authenticate ServiceAccount objects. And then, similar to users, you can allow role-based access to Kubernetes resources for ServiceAccount.

			ServiceAccount acts as a way of authenticating to the cluster using JSON Web Token (JWT) style, header-based authentication. Every ServiceAccount is paired with a token stored in a secret that is created by the Kubernetes API and then mounted into the Pod associated with that ServiceAccount. Whenever any process in the Pod needs to make an API request, it passes the token along with it to the API server, and Kubernetes maps that request to the ServiceAccount. Based on that identity, Kubernetes can then determine the level of access to the resources/objects (authorization) that a process should be granted. Typically, service accounts are given to Pods inside the cluster as they are intended only to be used internally. A ServiceAccount is a Kubernetes namespace-scoped object.

			An example spec for a ServiceAccount would look as follows:

			apiVersion: v1

			kind: ServiceAccount

			metadata:

			 name: admin-user

			 namespace: kube-system

			We will use this example in the next exercise. You would attach this ServiceAccount to an object by including this field in the definition of an object such as a Kubernetes deployment:

			serviceAccountName: admin-user

			If you create a Kubernetes object without specifying a service account, it will be created with the default service account. A default service account is created by Kubernetes for each namespace.

			In the following exercise, we will deploy the Kubernetes Dashboard on our cluster. Kubernetes Dashboard is arguably one of the most helpful tools to have running in any Kubernetes cluster. It is useful for debugging issues with configuring workloads in Kubernetes.

			Note

			You can find more information about it here: https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/.

			Exercise 11.02: Deploying an Application on Our HA Cluster

			In this exercise, we will use the same cluster that we deployed in the previous exercise and deploy Kubernetes Dashboard. If you have deleted your cluster resources, then please rerun the previous exercise. kops will automatically add the required information to connect to the cluster in your local Kube config file (found at ~/.kube/config) and set that cluster as the default context.

			Since the Kubernetes Dashboard is an application that helps us in administration tasks, the default ServiceAccount does not have sufficient privileges. We will be creating a new ServiceAccount with generous privileges in this exercise:

			
					To begin with, we will apply the Kubernetes Dashboard manifest sourced directly from the official Kubernetes repository. This manifest defines all the objects that we will need for our application. Run the following command:kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta1/aio/deploy/recommended.yaml
You should see the following response:
[image: Figure 11.7: Applying the manifest for Kubernetes Dashboard

]
Figure 11.7: Applying the manifest for Kubernetes Dashboard

					Next, we need to configure a ServiceAccount to access the dashboard. To do this, create a file called sa.yaml with the following content:apiVersion: v1
kind: ServiceAccount
metadata:
 name: admin-user
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: admin-user
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: admin-user
 namespace: kube-system
Note
We are giving this user very liberal permissions, so please treat the access token with care. ClusterRole and ClusterRoleBinding objects are a part of RBAC policies, which are covered in Chapter 13, Runtime and Network Security in Kubernetes.

					Next, run the following command:kubectl apply -f sa.yaml
You should see this response:
serviceaccount/admin-user created
clusterrolebinding.rbac.authorization.k8s.io/admin-user created

					Now, let's confirm the ServiceAccount details by running the following command:kubectl describe serviceaccount -n kube-system admin-user
You should see the following response:
[image: Figure 11.8: Examining our ServiceAccount

]
Figure 11.8: Examining our ServiceAccount
When you create a ServiceAccount in Kubernetes, it will also create a Secret in the same namespace with the contents of the JWT needed to make API calls against the API server. As we can see from the previous screenshot, the Secret in this case is named admin-user-token-vx84g.

					Let's examine the secret object:kubectl get secret -n kube-system -o yaml admin-user-token-vx84g
You should see the following output:
[image: Figure 11.9: Examining the token in our ServiceAccount

]
Figure 11.9: Examining the token in our ServiceAccount
This is a truncated screenshot of the output. As we can see, we have a token here in this secret. Note that this is Base64 encoded, which we will decode in the next step.

					Now we need the content of the token for the account Kubernetes just created for us, so let's use this command:kubectl -n kube-system get secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}') -o jsonpath='{.data.token}' | base64 --decode
Let's break this command down. The command gets the secret called admin-user because we created a ServiceAccount with that name. When a ServiceAccount is created in Kubernetes, it places a secret named the same with the token we use to authenticate to the cluster. The rest of the command is syntactic sugar to decode the result in a useful form for copying and pasting into the dashboard. You should get an output as shown in the following screenshot:
[image: Figure 11.10: Getting the content of the token associated

with the admin-user ServiceAccount

]
Figure 11.10: Getting the content of the token associated with the admin-user ServiceAccount
Copy the output you receive, while being careful not to copy the $ or % signs (seen in Bash or Zsh, respectively) seen at the very end of the output.

					By default, Kubernetes Dashboard is not exposed to the public internet outside our cluster. So, in order to access it with our browser, we need a way to allow our browser to communicate with Pods inside the Kubernetes container network. One useful way is to use the proxy built into kubectl:kubectl proxy
You should see this response:
Starting to serve on 127.0.0.1:8001

					Open your browser and navigate to the following URL:http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/
You should see the following prompt:
[image: Figure 11.11: Entering the token to sign in to Kubernetes Dashboard

]

			

			Figure 11.11: Entering the token to sign in to Kubernetes Dashboard

			Paste your token copied from step 4, and then click on the SIGN IN button.

			After logging in successfully, you should see the dashboard as shown in the following screenshot:

			
				
					[image: Figure 11.12: Kubernetes Dashboard landing page

]
				

			

			Figure 11.12: Kubernetes Dashboard landing page

			In this exercise, we have deployed Kubernetes Dashboard to the cluster to allow you to administer your application from a convenient GUI. During the course of deploying this application, we have seen how we can create ServiceAccounts for our cluster.

			Throughout this chapter, you've learned how to create the cloud infrastructure using kops to make a highly available Kubernetes cluster. Then, we deployed the Kubernetes Dashboard and learned about ServiceAccounts in the process. Now that you have seen the steps required to make a cluster and get an application running on it, we will make another cluster and see its resilience in action in the following activity.

			Activity 11.01: Testing the Resilience of a Highly Available Cluster

			In this activity, we will test out the resiliency of a Kubernetes cluster we create ourselves. Here are some guidelines for proceeding with this activity:

			
					Deploy Kubernetes Dashboard. But this time, set the replica count of the deployment running the application to something higher than 1.The Kubernetes Dashboard application is run on Pods managed by a deployment named kubernetes-dashboard, which runs in a namespace called kubernetes-dashboard. This is the deployment that you need to manipulate.

					Now, start shutting down various nodes from the AWS console to remove nodes, delete Pods, and do what you can to make the underlying system unstable.

					After each attempt you make to take down the cluster, refresh the Kubernetes console if the console is still accessible. So long as you get any response from the application, this means that the cluster and our application (in this case, Kubernetes Dashboard) is still online. As long as the application is online, you should be able to access the Kubernetes Dashboard as shown in the following screenshot:[image: Figure 11.13: Kubernetes Dashboard prompt for entering a token

]
Figure 11.13: Kubernetes Dashboard prompt for entering a token
This screenshot shows just the prompt where you need to enter your token, but it is a good enough indicator that our application is online. If your request times out, this means that our cluster is no longer functional.

					Join another node to this cluster.To achieve this, you need to find and edit the InstanceGroup resource that is managing the nodes. The spec contains maxSize and minSize fields, which you can manipulate to control the number of nodes. When you update your cluster to match the modified specification, you should be able to see three nodes, as shown in the following screenshot:
[image: Figure 11.14: Number of master and worker nodes in the cluster

]

			

			Figure 11.14: Number of master and worker nodes in the cluster

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD. Make sure you have deleted your clusters once you have completed the activity. More details on how to delete your clusters are presented in the following section (Deleting Our Cluster).

			Deleting Our Cluster

			Once we're done with all the exercises and activities in this chapter, you should delete the cluster by running the following command:

			kops delete cluster --name ${NAME} --yes

			You should see this response:

			
				
					[image: Figure 11.15: Deleting our cluster

]
				

			

			Figure 11.15: Deleting our cluster

			At this point, you should no longer be receiving charges from AWS for the Kubernetes infrastructure you have spun up in this chapter.

			Summary

			Highly available infrastructure is one of the key components to achieving high availability for applications. Kubernetes is an extremely well-designed tool and has many built-in resiliency features that make it able to withstand major networking and compute events. It works to keep those events from impacting your application. During our exploration of high-availability systems, we investigated some components of Kubernetes and how they work together to achieve high availability. Then, we constructed a cluster of our own on AWS that was designed to be highly available using the kops cluster life cycle management tool.

			In the next chapter, we're going to take a look at how we make our applications more resilient by leveraging Kubernetes primitives to ensure high availability.

		

	
		
			
			

		

		
			12. Your Application and HA

		

		
			Overview

			In this chapter, we will explore Kubernetes cluster life cycle management through the use of Terraform and Amazon Elastic Kubernetes Service (EKS). We will also deploy an application and learn some principles to make applications better suited to the Kubernetes environment.

			This chapter will walk you through using Terraform to create a fully functioning, highly available Kubernetes environment. You will deploy an application to the cluster and modify its functionality to make it suitable for a highly available environment. We will also learn how to get traffic from the internet to an application running in a cluster by using a Kubernetes ingress resource.

			Introduction

			In the previous chapter, we set up our first multi-node Kubernetes cluster in a cloud environment. In this section, we're going to talk about how we operationalize a Kubernetes cluster for our application—that is, we will use the cluster to run a containerized application other than the dashboard.

			Since Kubernetes has as many uses as can be imagined by a cluster operator, no two use cases for Kubernetes are alike. So, we're going to make some assumptions about the type of application that we're operationalizing our cluster for. We're going to optimize a workflow for deploying a stateless web application with a stateful backend that has high-availability requirements in a cloud-based environment. In doing so, we're hopefully going to cover a large percentage of what people generally use Kubernetes clusters for.

			Kubernetes can be used for just about anything. Even if what we cover does not exactly match your use case for Kubernetes, it's worth studying since this point is important. What we're going to be doing in this chapter is merely running through an example workflow for running a web application on Kubernetes in the cloud. Once you have studied the principles that we will use for running the example workflow in this chapter, you can look up many other resources on the internet that can help you discover other ways of optimizing your workflow with Kubernetes if this doesn't fit your use case.

			But before we move on to ensure the high availability of the application that we will be running on the cluster, let's take a step back and consider the high-availability requirements for your cloud infrastructure. In order to maintain high availability at an application level, it is also imperative that we manage our infrastructure with the same goal in mind. This brings us to a discussion about infrastructure life cycle management.

			An Overview of Infrastructure Life Cycle Management

			In simple words, infrastructure life cycle management refers to how we manage our servers through each phase of its useful life. This involves provisioning, maintaining, and decommissioning physical hardware or cloud resources. Since we are leveraging cloud infrastructure, we should leverage infrastructure life cycle management tools to provision and de-provision resources programmatically. To understand why this is important, let's consider the following example.

			Imagine for a moment that you work as a system administrator, DevOps engineer, site reliability engineer, or any other role that requires you to deal with server infrastructure for a company that is in the digital news industry. What that means is that the primary output of the people who are working for this company is the information that they publish on their website. Now, imagine that the entirety of the website runs on one server in your company's server room. The application running on the server is a PHP blog site with a MySQL backend. One day, an article goes viral and suddenly you are handling an exponentially higher amount of traffic than you were handling the day before. What do you do? The website keeps crashing (if it loads at all) and your company is losing money while you try to figure out a solution.

			Your solution is to start separating concerns and isolating single points of failure. The first thing you do is buy a lot more hardware and start configuring it to hopefully scale the website horizontally. After doing this, you're running five servers, with one running HAProxy, which is load-balancing connections to your PHP application running on three servers and a database server. OK, now you think that you have it under control. However, not all of the server hardware is the same—they run different distributions of Linux, the resource requirements are different for each machine, and patching, upgrading, and maintaining each server individually becomes difficult. Well, as luck would have it, another article goes viral and suddenly you're experiencing five times more requests than the current hardware can handle. What do you do now? Keep scaling it out horizontally? You're only one person, though, so you're bound to make a mistake in configuring the next set of servers. Due to that mistake, you've crashed the website in new and exciting ways that no one in management is happy about. Are you feeling as stressed reading this as I was writing it?

			It's because of misconfigurations that engineers began to leverage tools and configuration written in source code to define their topologies. That way, if a mutation in the infrastructure state is required, it can be tracked, controlled, and rolled out in a way that makes the code responsible for resolving differences between your declared infrastructure state and what it observes in reality.

			Infrastructure is only as good as the life cycle management tools that surround it and the application that runs atop it. What this means is that if your cluster is well-built but there is no tool that exists to successfully update your application on that cluster, then it won't serve you well. In this chapter, we're going to take a look at an application-level view of how we can leverage a continuous integration build pipeline to be able to roll out new updates to our application in a zero-downtime, cloud-native manner.

			In this chapter, we will provide a test application for you to manage. We will also be using an infrastructure life cycle management tool called Terraform in order to manage the Deployment of Kubernetes cloud infrastructure more efficiently. This chapter should help you develop an effective skill set that will allow you to begin creating your own application delivery pipeline in your own environment in Kubernetes very quickly.

			Terraform

			In the last chapter, we used kops to create a Kubernetes cluster from scratch. However, this process can be viewed as tedious and difficult to replicate, which creates a high probability of misconfiguration, resulting in unexpected events at application runtime. Luckily, there is a very powerful community-supported tool that solves this issue very well for Kubernetes clusters running on Amazon Web Services (AWS), as well as several other cloud platforms, such as Azure, Google Cloud Platform (GCP), and many more.

			Terraform is a general-purpose infrastructure life cycle management tool; that is, Terraform can manage the state of your infrastructure as defined through code. The goal of Terraform, when it was initially created, was to create both a language (HashiCorp Configuration Language (HCL)) and runtime that can create infrastructure in a repeatable manner and control changes to that infrastructure in the same way that we control changes to application source code—through pull requests, reviews, and version control. Terraform has since grown considerably, and it is now a general-purpose configuration management tool. In this chapter, we will be using its original functionality of infrastructure life cycle management in its most classical sense.

			Terraform files are written in a language called HCL. HCL looks a lot like YAML and JSON, but with a few differences. For example, HCL supports the interpolation of references to other resources in its files and is capable of determining the order in which resources need to be created so as to ensure that resources that depend on the creation of other resources won't be created in the wrong order. Terraform files have the .tf file extension.

			You can think of a Terraform file as specifying the desired state of your entire infrastructure in a similar way as, for example, a Kubernetes YAML file would specify the desired state of a Deployment. This allows the declarative management of your entire infrastructure. So, we arrive at the idea of managing Infrastructure as Code (IaC).

			Terraform works in two stages—plan and apply. This is to ensure that you have the chance to review infrastructure changes before making them. Terraform assumes that it alone is responsible for all state changes to your infrastructure. So, if you are using Terraform to manage your infrastructure, it would be inadvisable to make infrastructure changes by any other means (for example, by adding a resource via the AWS console). This is because if you make a change and don't make sure that it is updated in the Terraform file, then the next time the Terraform file is applied, it will remove your one-time change. It isn't a bug, it's a feature, for real this time. The reason for this is that when you track infrastructure as code, every change can be tracked, reviewed, and managed with automated tooling, such as a CI/CD pipeline. So, if the state of your system drifts away from what is written down, then Terraform will be responsible for reconciling your observed infrastructure to what you have written down.

			In this chapter, we will introduce you to Terraform as it is very commonly used in the industry as a convenient way to manage infrastructure as code. However, we will not dive deep into creating every single AWS resource with Terraform to keep our discussion focused on Kubernetes. We will just carry out a quick demo to ensure that you understand some basic principles.

			Note

			You can learn more about using Terraform for AWS in this book: https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition

			Exercise 12.01: Creating an S3 Bucket with Terraform

			In this exercise, we will implement some common commands that you will use when working with Terraform and introduce you to a Terraform file that will be the definition of our infrastructure as code

			Note

			Terraform will create resources on our behalf in AWS, which will cost you money.

			
					First, let's make a directory where we're going to make our Terraform changes, and then we will navigate to that directory:mkdir -p ~/Desktop/eks_terraform_demo
cd Desktop/eks_terraform_demo/

					Now, we're going to make our first Terraform file. Terraform files have a .tf file extension. Create a file named main.tf (there is no significance to the word main, unlike some other languages) with the following content:resource "aws_s3_bucket" "my_bucket" {
 bucket = "<<NAME>>-test-bucket"
 acl = "private"
}
This block has a definition called aws_s3_bucket, which means that it will create an Amazon S3 bucket with the name specified in the bucket field. The acl="private" line indicates that we are not allowing public access to this bucket. Be sure to replace <<NAME>> with a unique name of your own.

					To get started with Terraform, we need to initialize it. So, let's do that with the following command:terraform init
You should see the following response:
[image: Figure 12.1: Initializing Terraform

]
Figure 12.1: Initializing Terraform

					Run the following command to have Terraform determine a plan to create resources defined by the main.tf file that we created earlier:terraform plan
You will be prompted to enter an AWS region. Use the one that's closest to you. In the following screenshot, we are using us-west-2:
[image: Figure 12.2: Calculating the required changes to the cluster resources

for creating an S3 bucket

]
Figure 12.2: Calculating the required changes to the cluster resources for creating an S3 bucket
So, we can see that Terraform has accessed our AWS account using the access keys that we set up in Exercise 11.01, Setting Up Our Kubernetes Cluster of the previous chapter and calculated what it will need to do in order to make our AWS environment look like what we have defined in our Terraform file. As we can see in the screenshot, it's planning to add an S3 bucket for us, which is what we want.
Note
Terraform will try to apply all the files with a .tf extension in your current working directory.
In the previous screenshot, we can see that the terraform command is indicating that we haven't specified an -out parameter, so it won't guarantee that the exact calculated plan will be applied. This is because something in your AWS infrastructure could have changed from the time of planning to the time of applying. Let's say that you calculate a plan today. Then, later, you add or remove a few resources. So, the required modifications to achieve the given state would be different. So, unless you specify the -out parameter, Terraform will recalculate its plan before applying it.

					Run the following command to apply the configuration and create the resources specified in our Terraform file:terraform apply
Terraform will give us one more chance to review the plan and decide what we want to do before making the changes to the AWS resources for us:
[image: Figure 12.3: Calculation of the changes and confirmation prompt for creating an S3 bucket

]
Figure 12.3: Calculation of the changes and confirmation prompt for creating an S3 bucket
As mentioned earlier, Terraform calculated the required changes even when we used the apply command. Confirm the actions displayed by Terraform, and then enter yes to proceed with the plan displayed. Now, Terraform has made an S3 bucket for us:
[image: Figure 12.4: Creating an S3 bucket after confirmation

]
Figure 12.4: Creating an S3 bucket after confirmation

					Now, we're going to destroy all the resources that we created to clean up before we move on to the next exercise. To destroy them, run the following command:terraform destroy
Again, to confirm this action, you must explicitly allow Terraform to destroy your resources by entering yes when prompted, as in the following screenshot:
[image: Figure 12.5: Destroying resources created using Terraform

]

			

			Figure 12.5: Destroying resources created using Terraform

			In this exercise, we demonstrated how to create a single resource (an S3 bucket) using Terraform, and also how to destroy a bucket. This should have familiarized you with the simple tooling of Terraform, and we will now expand on these concepts further.

			Now, let's make a Kubernetes cluster with Terraform. Last time, we built and managed our own cluster control plane. Since almost every cloud provider provides this service to their customers, we will be leveraging Amazon Elastic Kubernetes Service (EKS), a managed service for Kubernetes provided by AWS.

			When we use a managed Kubernetes service, the following is taken care of by the cloud service vendor:

			
					Managing and securing etcd

					Managing and securing user authentication

					Managing the control plane components, such as the controller manager(s), the scheduler, and the API server

					Provisioning the CNI running between Pods in your network

			

			The control plane is exposed to your nodes through elastic network interfaces bound to your VPC. You still need to manage the worker nodes and they run as EC2 instances in your account. So, using a managed service allows you to focus on the work that you want to get done using Kubernetes, but the drawback is not having very granular control of the control plane.

			Note

			Since AWS handles user authentication for the cluster, we will have to use AWS IAM credentials to access our Kubernetes clusters. We can leverage the AWS IAM Authenticator binary on our machines to do that. More on this in the upcoming sections.

			Exercise 12.02: Creating a Cluster with EKS Using Terraform

			For this exercise, we will use the main.tf file that we have already provided to create a production-ready, highly available Kubernetes cluster.

			Note

			This Terraform file is adapted from the examples available at https://github.com/terraform-aws-modules/terraform-aws-eks/tree/master/examples.

			This will enable Terraform to create the following:

			
					A VPC with IP address space 10.0.0.0/16. It will have three public subnets with /24s (255) worth of IP addresses each.

					Route tables and an internet gateway for the VPC to work properly.

					Security groups for the control plane to communicate with the nodes, as well as to receive traffic from the outside world on the allowed and required ports.

					IAM roles for both the EKS control plane (to perform tasks such as creating ELB (Elastic Load Balancer) for services on your behalf) and the nodes (to handle EC2 API-related concerns).

					The EKS control plane and a setup of all the necessary connections to your VPC and nodes.

					An ASG (Autoscaling Group) for nodes to join the cluster (it will provision two m4.large instances).

					Generate both a kubeconfig file and a ConfigMap, which are necessary for the nodes to join the cluster and for you to communicate with the cluster.

			

			This is a relatively secure and stable way for you to create a Kubernetes cluster that is capable of reliably handling production workloads. Let's begin with the exercise:

			
					Use the following command to fetch the main.tf file that we have provided:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter12/Exercise12.02/main.tf
This will replace the existing main.tf file, if you still have it from the previous exercise. Note that you should not have any other Terraform files in the directory.

					Now, we need Terraform to apply the state defined in the main.tf file to your cloud infrastructure. To do that, use the following command:terraform apply
Note
You should not use the AWS IAM user we generated for kops in the previous chapter to execute these commands, but rather a user with Administrative access to your AWS account so there is no chance of accidental permissions issues.
This may take around 10 minutes to complete. You should see a very long output similar to the following:
[image: Figure 12.6: Creating resources for our EKS cluster

]
Figure 12.6: Creating resources for our EKS cluster
Once this is done, there will be two terminal outputs—a ConfigMap for nodes and a kubeconfig file for accessing the cluster, as demonstrated in the following screenshot:
[image: Figure 12.7: Getting the information required to access our cluster

]
Figure 12.7: Getting the information required to access our cluster
Copy the ConfigMap to a file and name it configmap.yaml, and then copy the kubeconfig file and write it to the ~/.kube/config file on your computer.

					Now, we need to apply the changes to allow our worker nodes to communicate with the control plane. This is a YAML-formatted file for joining the worker nodes to your EKS cluster; we already saved this as configmap.yaml. Run the following command:kubectl apply -f configmap.yaml
Note
To run this command, you need the aws-iam-authenticator binary installed on your computer. To do that, follow the instructions here: https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html.
This applies the ConfigMap that allows the Kubernetes cluster to communicate with the nodes. You should see the following response:
configmap/aws-auth created

					Now, let's verify that everything is running OK. Run the following command in the terminal:kubectl get node
You should see the following output:
[image: Figure 12.8: Checking whether our nodes are accessible

]

			

			Figure 12.8: Checking whether our nodes are accessible

			At this stage, we have a running Kubernetes cluster using EKS as the control plane and two worker nodes.

			Note

			Remember that your cluster resources will stay online until you delete them. If you plan to come back to the following exercises later, you may want to delete your cluster to minimize your bill. To do that, run terraform destroy. To get your cluster back online, run this exercise again.

			Now that we have our cluster set up, in the next section, let's take a look at an efficient and flexible way to bring traffic to any application to be run on our cluster.

			Kubernetes Ingress

			In the early days of the Kubernetes project, the Service object was used to get traffic from outside the cluster to the running Pods. You had only two options to get that traffic from outside in—using either a NodePort service or a LoadBalancer service. The latter option was preferred in public cloud provider environments because the cluster would automatically manage setting up security groups/firewall rules and to point the LoadBalancer to the correct ports on your worker nodes. However, there is one slight problem with that approach, especially for those who are just getting started with Kubernetes or those who have tight cloud budgets. The problem is that one LoadBalancer can only point toward a single Kubernetes service object.

			Now, imagine that you have 100 microservices running in Kubernetes, all of which need to be exposed publicly. In AWS, the average cost of an ELB (a load balancer provided by AWS) is roughly $20 per month. So, in this scenario, you're paying $2,000 per month just to have the option of getting traffic into your cluster, and we still have not factored in the additional costs for networking.

			Let's also understand another limitation of the one-to-one relationship between Kubernetes Service objects and AWS load balancers. Let's say that for your project, you need to have a path-based mapping to internal Kubernetes services from the same load-balancing endpoint. Let's suppose that you have a web service running at api.example.io and you want api.example.io/users to go to one microservice and api.examples.io/weather to go to another completely separate microservice. Before the arrival of Ingress, you would need to set up your own Kubernetes Service and do the internal path resolution to your app.

			This is now no longer a problem due to the advent of the Kubernetes Ingress resource. The Kubernetes Ingress resource is meant to operate in conjunction with an Ingress controller (which is an application running in your cluster watching the Kubernetes API server for changes to the Ingress resource). Together, these two components allow you to define multiple Kubernetes services, which do not have to be exposed externally themselves to be routed through a single load-balancing endpoint. Let's examine the following diagram to understand this a bit better:

			
				
					[image: Figure 12.9: Using Ingress to route traffic to our services

]
				

			

			Figure 12.9: Using Ingress to route traffic to our services

			In this example, all requests are being routed to api.example.io from the internet. One request is going to api.example.io/a, another is going to api.example.io/b, and the last to api.example.io/c. The requests are going to a single load balancer and a Kubernetes Service, which is controlled through a Kubernetes Ingress resource. This Ingress resource forwards the traffic from the single Ingress endpoint to the services it was configured to forward traffic to. In the following sections, we will set up the ingress-nginx Ingress controller, which is a commonly used open-source tool used in the Kubernetes community for ingress. Then, we will configure the Ingress to allow traffic into our cluster to access our highly available application.

			Highly Available Applications Running on Top of Kubernetes

			Now that you've had a chance to spin up an EKS cluster and learn about Ingress, let's introduce you to our application. We have provided an example application that has a flaw that prevents it from being cloud-native and really being able to be horizontally scaled in Kubernetes. We will deploy this application in the following exercise and observe its behavior. Then, in the next section, we will deploy a modified version of this application and observe how it is more suited to achieve our stated objective of being highly available.

			Exercise 12.03: Deploying a Multi-Replica Non-HA Application in Kubernetes

			In this exercise, we will deploy a version of the application that's not horizontally scalable. We will try to scale it and observe the problem that prevents it from being scaled horizontally:

			Note

			We have provided the source code for this application in the GitHub repository for reference. However, since our focus is on Kubernetes, we will use commands to fetch it directly from the repository in this exercise.

			
					Use the following command to get the manifest for all of the objects required to run the application:curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter12/Exercise12.03/without_redis.yaml > without_redis.yaml
This should download the manifest to your current directory:
[image: Figure 12.10: Downloading the application manifest

]
Figure 12.10: Downloading the application manifest
If you take a look at the manifest, it has a Deployment running a single replica of a Pod and a Service of the ClusterIP type to route traffic to it.

					Then, create a Kubernetes Deployment and Service object so that we can run our application:kubectl apply -f without_redis.yaml
You should see the following response:
[image: Figure 12.11: Creating the resources for our application

]
Figure 12.11: Creating the resources for our application

					Now, we need to add a Kubernetes Ingress resource to be able to access this website. To get started with Kubernetes Ingress, we need to run the following commands: kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/service-l4.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/patch-configmap-l4.yaml
These three commands will deploy the Nginx Ingress controller implementation for EKS. You should see the following response:
[image: Figure 12.12: Implementing the Ingress controllers

]
Figure 12.12: Implementing the Ingress controllers
Note
This command is to be run for the AWS cloud provider only. If you are running your cluster on another platform, you will need to find the appropriate link from https://kubernetes.github.io/ingress-nginx/deploy/#aws.

					Then, we need to create an Ingress for ourselves. In the same folder we are in, let's create a file named ingress.yaml with the following content:apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: counter.com
 http:
 paths:
 - path: /
 backend:
 serviceName: kubernetes-test-ha-application- without-redis
 servicePort: 80

					Now, run the Ingress using the following command:kubectl apply -f ingress.yaml
You should see the following response:
ingress.networking.k8s.io/ingress created

					Now, we will configure the Ingress controller such that when a request arrives at the load balancer that has a Host: header of counter.com, it should be forwarded to the kubernetes-test-ha-application-without-redis service on port 80.First, let's find the URL that we need to access:
kubectl describe svc -n ingress-nginx ingress-nginx
You should see an output similar to the following:
[image: Figure 12.13: Checking the URL to access the Ingress load balancer endpoint

]
Figure 12.13: Checking the URL to access the Ingress load balancer endpoint
From the preceding screenshot, note that the Ingress load balancer endpoint that Kubernetes created for us in AWS is as follows:
a0c805e36932449eab6c966b16b6cf1-13eb0d593e468ded.elb.us-east-1.amazonaws.com
Your value will likely be different from the preceding one and you should use the one that you get for your setup.

					Now, let's access the endpoint using curl:curl -H 'Host: counter.com' a0c805e36932449eab6c966b16b6cf1-13eb0d593e468ded.elb.us-east-1.amazonaws.com/get-number
You should get a response similar to the following:
{number: 1}%
If you run it multiple times, you'll see that the number increases by 1 each time:
[image: Figure 12.14: Repeatedly accessing our application

]
Figure 12.14: Repeatedly accessing our application

					Now, let's discover the problem with the application. In order to make the application highly available, we need to have multiple replicas of it running simultaneously so that we can allow at least one replica to be unavailable. This, in turn, enables the app to tolerate failure. To scale the app, we're going to run the following command:kubectl scale deployment --replicas=3 kubernetes-test-ha-application-without-redis-deployment
You should see the following response:
[image: Figure 12.15: Scaling the application Deployment

]
Figure 12.15: Scaling the application Deployment

					Now, try accessing the application again multiple times, as we did in step 7:curl -H 'Host: counter.com' a3960d10c980e40f99887ea068f41b7b-1447612395.us-east-1.elb.amazonaws.com/get-number
You should see a response similar to the following:
[image: Figure 12.16: Repeatedly accessing the scaled application to observe the behavior

]

			

			Figure 12.16: Repeatedly accessing the scaled application to observe the behavior

			Note

			This output may not be exactly the same for you, but if you see the number increasing with the first few attempts, keep accessing the application again. You will be able to observe the problem behavior after a few attempts.

			This output highlights the problem with our application—the number isn't always increasing. Why is that? That is because the load balancer may pass the request to any one of the replicas, and the replica that receives the request returns a response based on its local state.

			Working with Stateful Applications

			The previous exercise demonstrates the challenge of working with stateful applications in a distributed context. As a brief overview, a stateless app is an application program that does not save client data generated in one session for use in the next session with that client. This means that in general, a stateless application depends entirely on the input to derive its output. Imagine a server displaying a static web page that does not need to change for any reason. In the real world, stateless applications typically need to be combined with stateful applications in order to create a useful experience for clients or consumers of the application. There are, of course, exceptions to this.

			A stateful application is one whose output depends on multiple factors, such as user input, input from other applications, and past saved events. These factors are called the "state" of the application, which determines its behavior. One of the most important parts of creating distributed applications with multiple replicas is that any state that is used to generate output needs to be shared among all the replicas. If the different replicas of your application are working with different states, then your application is going to exhibit random behavior based on which replica your request is routed to. This effectively defeats the purpose of horizontally scaling an application using replicas.

			In the use case from the previous exercise, for each replica to respond with the correct number, we need to move the storage of that number outside each replica. To do this, we need to modify the application. Let's think for a second about how this can be done. Could we communicate the numbers between the replicas using another request? Could we assign each replica to only respond with multiples of the number it is assigned? (If we had three replicas, one would only respond with 1, 4, 7…, while another would respond with 2, 5, 8…, and the last one would respond with 3, 6, 9….) Or, might we share the number in an external state store, such as a database? Regardless of what we choose, the path forward will involve updating our running application in Kubernetes. So, we will need to talk briefly about a strategy to do this.

			The CI/CD Pipeline

			With the help of containerization technology and a container image tag revision policy, we can push an incremental update to our application in a fairly easy manner. Just as with source code and infrastructure as code, we can keep the scripts and Kubernetes manifests that execute steps of our build and deploy a pipeline versioned in a tool such as git. This allows us to have tremendous visibility into, and flexibility to control, how software updates happen in our cluster using approaches such as CI and CD.

			For the uninitiated, CI/CD stands for Continuous Integration and Continuous Deployment/Delivery. The CI aspect uses tooling, such as Jenkins or Concourse CI, to integrate new changes to our source code in a repeatable process for testing and assembling our code into a final artifact for deployment. The goal of CI is manifold, but here are a few benefits:

			
					Defects in the software are found earlier in the process (if testing is adequate).

					Repeatable steps create reproducible results when we are deploying to an environment.

					Visibility exists to communicate the status of a feature with stakeholders.

					It encourages frequent software updates to give developers confidence that their new code is not breaking existing functionality.

			

			The other part, CD, is the incorporation of automated mechanisms to constantly deliver small updates to end-users, such as updating Deployment objects in Kubernetes and tracking rollout statuses. The CI/CD pipeline is the prevalent DevOps model today.

			Ideally, a CI/CD pipeline should be able to reliably and predictably take code from a developer's machine and bring it all the way to a production environment with as few manual interventions as possible. A CI pipeline should ideally have components for compilation (where necessary), testing, and final application assembly (in the case of a Kubernetes cluster, this is a container).

			A CD pipeline should have some way of automating its interactions with an infrastructure to take the application revision and deploy it, along with any dependent configurations and one-off deployment tasks, in such a way that the desired version of the software becomes the running version of the software via some kind of strategy (such as using a Deployment object in Kubernetes). It should also include telemetry tooling to observe the immediate impact of the Deployment on the surrounding environment.

			The problem that we observed in the previous section with our application is that each replica is working off of its local state to return a number via HTTP. To solve this problem, we propose that we should use an external state store (database) to manage the information (the number) shared between each replica of our application. We have several options of state stores to choose from. We chose Redis simply because it's easy to get started with and it's simple to understand. Redis is a high-performance key-value database, much like etcd. In our example refactor, we will be sharing the state between the replicas by setting a key with the num name and the value is the increasing integer value that we want to return. During each request, this value will be incremented and stored back into the database so that each replica can work off the most up-to-date information.

			Every company and individual has a different process that they use to manage new versions of code being deployed. Therefore, we are going to use simple commands to perform our steps, which can be automated via Bash with the tool of your choice.

			Exercise 12.04: Deploying an Application with State Management

			In this exercise, we will deploy a modified version of the application that we deployed in the previous exercise. As a reminder, this application counts how many times it has been accessed and returns that value in JSON format to the requestor. However, at the end of the previous exercise, we observed in Figure 12.16 that when we scale this application horizontally with multiple replicas, we get numbers that are not always increasing.

			Note

			We have provided the source code for this application in the GitHub repository for your reference. However, since our focus is on Kubernetes, we will use commands to directly fetch it from the repository in this exercise.

			In this modified version of the application, we have refactored our code to add the capability of storing this increasing count in a Redis database. This allows us to have multiple replicas of our application, but always have the count increase each time we make a request to the endpoint:

			Note

			In our implementation of Redis, we are not using a transaction to set the count after getting it. So, there is a very small chance that we are getting and acting on old information when we update the value set in the database, which may lead to unexpected results.

			
					Use the following command to get the manifest of all the objects required for this application:curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter12/Exercise12.04/with_redis.yaml > with_redis.yaml
You should see a response similar to the following:
[image: Figure 12.17: Downloading the manifest for the modified application

]
Figure 12.17: Downloading the manifest for the modified application
If you open this manifest, you will see that we have a Deployment for our app running three replicas: a ClusterIP Service to expose it, a Deployment for Redis running one replica, and another ClusterIP Service to expose Redis. We are also modifying the Ingress object created earlier to point to the new Service.

					Now, it is time to deploy it on Kubernetes. We can run the following command:kubectl apply -f with_redis.yaml
You should see a response similar to the following:
[image: Figure 12.18: Creating the resources required for our cluster

]
Figure 12.18: Creating the resources required for our cluster

					 Now, let's see what this application gives us by using the following command:curl -H 'Host: counter.com' a3960d10c980e40f99887ea068f41b7b-1447612395.us-east-1.elb.amazonaws.com/get-number
Run this command repeatedly. You should be able to see an increasing number, as shown:
[image: Figure 12.19: Predictable output with consistently increasing numbers

]

			

			Figure 12.19: Predictable output with consistently increasing numbers

			As you can see in the preceding output, the program now outputs numbers in sequence because all of the replicas of our Deployment now share a single datastore responsible for managing the application state (Redis).

			There are a lot of other paradigms that need to be shifted if you want to create a truly highly available, fault-tolerant software system, and it is beyond the scope of this book to explore them in detail. However, for more information, you can check out Packt's book on distributed systems at this link: https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes.

			Note

			Again, remember that your cluster resources are still running at this point. Don't forget to tear down your cluster using terraform destroy if you expect to continue with the activity later.

			Now that we have built our application with the ability to persist and share its state among different replicas, we will expand it further in the following activity.

			Activity 12.01: Expanding the State Management of Our Application

			Right now, our application can leverage a shared Redis database running inside our Kubernetes cluster to manage the variable counter that we return to the user when it is fetched.

			But let's suppose for a moment that we don't trust Kubernetes to reliably manage the Redis container (since it's a volatile in-memory datastore) and instead we want to use AWS ElastiCache to do so. Your goal in this activity is to use the tools we have learned in this chapter to modify our application to work with AWS ElastiCache.

			You can use the following guidelines to complete this activity:

			
					Use Terraform to provision ElastiCache.You can find the required parameter values for provisioning ElastiCache at this link: https://www.terraform.io/docs/providers/aws/r/elasticache_cluster.html#redis-instance.

					Change the application to connect to Redis. You will need to use an environment variable in your Kubernetes Deployment for that. You can find the required information in the redis_address field when you run the terraform apply command.

					Add the ElastiCache endpoint to the appropriate Kubernetes manifest environment variable.

					Roll out the new version of code onto the Kubernetes cluster using any tool you want.

			

			By the end, you should be able to observe the application responding similarly to what we saw in the previous exercise, but this time, it will use ElastiCache for its state management:

			
				
					[image: Figure 12.20: Expected output of the Activity 12.01

]
				

			

			Figure 12.20: Expected output of the Activity 12.01

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD. Remember that your cluster resources will stay online until you delete them. To delete the cluster, you need to run terraform destroy.

			Summary

			In an earlier chapter of this book, we explored how Kubernetes works favorably with a declarative approach to application management; that is, you define your desired state and let Kubernetes take care of the rest. Throughout this chapter, we took a look at some tools that help us manage our cloud infrastructure in a similar way. We introduced Terraform as a tool that can help us manage the state of our infrastructure and introduced the idea of treating your infrastructure as code.

			We then created a mostly secure, production-ready Kubernetes cluster using Terraform in Amazon EKS. We took a look at the Ingress object and learned about the major motivations for using it, as well as the various advantages that it provides. Then, we deployed two versions of an application on a highly available Kubernetes cluster and explored some concepts that allow us to improve at horizontally scaling stateful applications. This gave us a glimpse of the challenges that come with running stateful applications, and we will explore some more ways of dealing with them in Chapter 14, Running Stateful Components in Kubernetes.

			In the next chapter, we're going to take a look at continuing our production readiness by further securing our cluster.

		

		
			
			

		

	
		
			
			

		

		
			13. Runtime and Network Security in Kubernetes

		

		
			Overview

			In this chapter, we will look at various resources that we can use to secure workloads running in our cluster. We will also understand a rough threat model and apply it to architect a secure cluster so that we can defend our cluster and application against various types of threats. By the end of this chapter, you will be able to create Role and ClusterRole, as well as RoleBinding and ClusterRoleBinding to control the access of any process or user to the Kubernetes API server and objects. Then, you will learn how to create a NetworkPolicy to restrict communication between your application and the database. You will also learn how to create a PodSecurityPolicy to ensure that the running components of your application are conforming to the defined limits.

			Introduction

			In the last couple of chapters, we had our DevOps hat on and learned how to set up a cluster, as well as how to roll out new application versions safely and without downtime in Kubernetes.

			Now, it's time to switch gears a bit, take our DevOps hat off, and put on our security analyst hat. First, we will look at where someone might attack our Kubernetes cluster and how an unauthorized user could potentially wreak havoc in our cluster. After that, we're going to introduce a few of the security primitives of Kubernetes and how we can combat the most common forms of attack. Finally, we'll further modify our application and demonstrate how some of these security primitives work.

			But before we get to any of it, let's begin by taking a brief look at the various areas of concern for security in a modern web application, as well as a basic paradigm for implementing effective security for our cluster. We'll start by examining what we call the "4Cs of Cloud Native Security."

			Threat Modeling

			It is far beyond the scope of this chapter to adequately teach many of the necessary disciplines of security so that you have a rigorous understanding of how modern workload security should be implemented and orchestrated. However, we will briefly gain an idea of how we should be thinking about it. Threat modeling is a discipline where we examine the various areas where our applications could be subject to an attack or unauthorized usage.

			For example, consider an HTTP web server. It will typically have ports 80 and 443 exposed for serving web traffic, but it also acts as an entry point for any potential attackers. It may have a web management console exposed at a certain port. It may have certain other management ports open and API access to allow other software to manage it for automation purposes. The application runtime may need to regularly handle sensitive data. The entire end-to-end pipeline meant to create and deliver the application could expose various points that are vulnerable to compromise. The encryption algorithms that an application relies on may be compromised or made obsolete due to the increased sophistication of brute-force attacks. All these represent the various areas where our application could be subject to an attack.

			An easy way to organize some of the attack vectors of our application is to remember the acronym STRIDE. It stands for the following types of attacks:

			
					Spoofing: A user or an application disguising themselves as someone else.

					Tampering: Changing any data without seeking consent from or providing information to the concerned stakeholders.

					Repudiation: Being able to deny your involvement in your actions and/or the lack of ability to trace any actions to a particular user.

					Information disclosure: Exfiltrating privileged or sensitive information you were not intended to have.

					Denial of service: Flooding a server with bogus requests to saturate its resources and deny it the ability to serve its intended purpose.

					Elevation of privilege: Getting access to a restricted resource or privilege by exploiting bugs.

			

			Many of the attacks that hackers carry out are designed to do one or more of the preceding, usually to jeopardize the confidentiality, integrity, and availability of our data. With this in mind, we can use a mental model of how we can think about where threats to our system might exist in various parts of a modern cloud native application stack. This mental model is called "The 4Cs of Cloud Native Security," and we'll be using it to organize our exploration of the security primitives of Kubernetes. Ideally, by leveraging all these primitives, this should give you a good level of confidence in your application's resistance to STRIDE-like attacks, specifically within the context of Kubernetes.

			The 4Cs of Cloud Native Security

			Security can and should be organized into layers. This is considered a "defense in depth" approach to security and it is widely regarded by the technology community as the best way to prevent the compromise of any single component from exposing the whole system. When it comes to cloud native applications, we think of security in four layers: securing your code, containers, cluster, and cloud. The following diagram shows how they are organized. This helps us visualize that if a compromise happens at a lower level, it will most assuredly compromise a higher level that depends on it:

			
				
					[image: Figure 13.1: The 4Cs of Cloud Native Security

]
				

			

			Figure 13.1: The 4Cs of Cloud Native Security

			Since this book is focused on Kubernetes, we'll zoom into cluster security and then begin to implement some of the suggestions in our example application.

			Note

			For suggestions on the other C's, take a look at this link: https://kubernetes.io/docs/concepts/security/overview/.

			Cluster Security

			One way to think about Kubernetes is as a gigantic self-orchestrating pool of compute, networking, and storage. As such, in many respects, Kubernetes is exactly like a cloud platform. It is important to understand this equivalence because this mental abstraction allows us to reason differently as a cluster operator versus a cluster developer. A cluster operator would want to ensure that all the components of the cluster were secure and hardened against any workload. A cluster developer would concern themselves with ensuring that the workload they are defining for Kubernetes is running securely inside the cluster.

			Here is where your work becomes a bit easy – most cloud provider offerings from Kubernetes will ensure the security of the Kubernetes control plane for you. If, for whatever reason, you're not able to leverage a cloud provider offering, you'll want to read more in the documentation about securing your cluster at this link: https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/.

			Even when you are using a cloud provider's offering, just because they are securing your control plane does not mean that your Kubernetes cluster is secure. The reason you cannot rely on your cloud provider's security is that your application, its container, or a poor policy implementation could leave your infrastructure very exposed to attacks. So, now, we need to talk about securing workloads within our cluster.

			Note

			There is active work being done in the Kubernetes community to improve security concepts and implementations. The relevant Kubernetes documentation should be revisited often to determine whether improvements have been made.

			To fortify our internal cluster security, we need to take a look at the following three concepts:

			
					Kubernetes RBAC: This is the main policy engine of Kubernetes. It defines a system of roles and permissions, as well as how permissions are granted to those roles.

					NetworkPolicies: These are (depending on your Container Network Interface plugin) policies that act as a "firewall" between Pods. Think of them as a Kubernetes-aware network access control list.

					PodSecurityPolicies: These are defined at a particular scope (namespace, whole cluster) and serve as a definition of how a Pod is allowed to run in Kubernetes.

			

			We will not be covering encrypting Kubernetes Secrets at rest in etcd as most cloud providers either handle that for you or the implementation is specific to that cloud provider (such as AWS KMS).

			Kubernetes RBAC

			Before we dive into RBAC, recall from Chapter 4, How to Communicate with Kubernetes (API Server), how Kubernetes authorizes requests to the API. We learned that there are three stages – Authentication, Authorization, and AdmissionControl. We will learn more about Admission Controllers in Chapter 16, Kubernetes Admission Controllers.

			Kubernetes supports multiple different methods of authenticating with the cluster, and you'll want to reference your cloud provider's documentation to get more details on their specific implementation.

			Authorization logic is handled through something called RBAC. It stands for role-based access control and it's the foundation of how we constrain certain users and groups to the minimum necessary permissions to perform their job. This is based on a concept in software security called "the principle of least privilege." For example, if you are a software engineer for a credit card processing company, Payment Card Industry Data Security Standard (PCI DSS) compliance requires that you shouldn't have access to production clusters and customer data. Therefore, if you did have access to a cluster in production, you should have a role that has no privileges.

			RBAC is implemented by cluster administrators through four different API objects: Roles, RoleBindings, ClusterRoles, and ClusterRoleBindings. Let's look at how they work together by examining a diagram:

			
				
					[image: Figure 13.2: Different objects interacting to implement RBAC

]
				

			

			Figure 13.2: Different objects interacting to implement RBAC

			In this diagram, we can see that Kubernetes User/Group and ServiceAccount objects obtain their permissions by being bound to a Role or ClusterRole. Let's understand these objects individually.

			Role

			Here is a sample spec for a Role:

			apiVersion: rbac.authorization.k8s.io/v1

			kind: Role

			metadata:

			 namespace: default

			 name: test-role

			rules:

			 - verbs:

			 - "list"

			 apiGroups:

			 - ""

			 resources:

			 - "pods"

			The various fields define the permissions that a Role should have:

			
					namespace: Roles are scoped to a Kubernetes namespace, which is defined in this field. This makes a Role different from a ClusterRole, whose permissions apply for any namespace in the cluster.

					verbs: These describe which Kubernetes actions we are allowing. Some examples of commonly used verbs include get, list, watch, create, update, and delete. There are more, but these are usually good enough for most use cases. For a refresher on this, please refer to The Kubernetes API section of Chapter 4, How to Communicate with Kubernetes (API Server).

					apiGroups: These describe which Kubernetes API groups the Role will have access to. These are specified as <group>/<version> (such as apps/v1). If you use CustomResourceDefinitions, these API groups can be referenced here as well.Note
A full list of API groups that ship with Kubernetes can be found here (as of version 1.18): https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/.

					resources: These describe which API objects we are talking about and are defined by the value in the Kind field of the object definition; for example, deployment, secret, configmap, pod, node, and others.

			

			RoleBinding

			As shown in the preceding diagram, a RoleBinding binds or associates a Role to ServiceAccounts, users, or groups of users. Here's a sample spec for a RoleBinding:

			apiVersion: rbac.authorization.k8s.io/v1

			kind: RoleBinding

			metadata:

			 name: test-role-binding

			 namespace: default

			roleRef:

			 name: test-role

			 kind: ClusterRole

			 apiGroup: rbac.authorization.k8s.io

			subjects:

			 - kind: ServiceAccount

			 name: test-sa

			 namespace: default

			This spec defines the subjects that should be able to use a Role to perform an action that requires authorization in Kubernetes:

			
					subjects: This refers to an authenticated ServiceAccount, user, or group that should be able to use this Role.

					roleRef: This refers to the Role they can assume.

			

			ClusterRole

			A ClusterRole is identical to a Role in every way except one. Instead of granting permissions only inside one Kubernetes namespace, it grants this set of permissions cluster-wide.

			ClusterRoleBinding

			This is identical to a RoleBinding except that it must be bound to a ClusterRole and not a Role. You cannot bind a ClusterRoleBinding to a Role, nor a RoleBinding to a ClusterRole.

			Some Important Notes about RBAC Policies

			
					RBAC policy documents are allow-only. This means that, by default, a subject has no access, and only via RoleBinding or ClusterRoleBinding will it have the specific access set forth in the corresponding Role or ClusterRole.

					Bindings are immutable. This means that once you have bound a subject to a Role or ClusterRole, it cannot be changed. This is to prevent privilege escalation. As such, an entity can be granted permission to modify objects (which is good enough for many use cases) while preventing it from elevating its own privileges. If you need to modify a binding, simply delete and recreate it.

					A ClusterRole or Role that can create other ClusterRoles and Roles will only be able to grant, at most, the same permissions it has. Otherwise, it would be a clear privilege escalation path.

			

			ServiceAccount

			In the previous chapters, when we learned about authentication in terms of Minikube and Kops, we saw that Kubernetes generated certificates that we used. In the case of EKS, AWS IAM roles and the AWS IAM Authenticator were used.

			As it turns out, Kubernetes has a special object type for allowing resources within the cluster to authenticate with the API server.

			We can use the ServiceAccount resource to allow Pods to receive a Kubernetes-generated token that it will pass to the API server for authentication. All official Kubernetes client libraries support this type of authentication, so it is the preferred method for programmatic Kubernetes cluster access from within the cluster.

			When you are running as a cluster admin, you can use kubectl to authenticate using a particular ServiceAccount using the --as parameter. For the example ServiceAccount shown previously, this would look something like this:

			kubectl --as=system:serviceaccount:default:test-sa get pods

			We'll learn how these objects work together so that we can control access in the following exercise.

			Exercise 13.01: Creating a Kubernetes RBAC ClusterRole

			In this exercise, we will create a ClusterRole and ClusterRoleBinding. Then, we will become the user and inherit their permissions, as defined by the ClusterRole, and demonstrate how Kubernetes prevents access to certain APIs based on rules. Let's get started:

			
					To begin with, we will recreate the EKS cluster from the Terraform file we used in Exercise 12.02, Creating a Cluster with EKS Using Terraform. If you already have the main.tf file, you can work with it. Otherwise, you can run the following command to get it:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter12/Exercise12.02/main.tf
Now, use the following two commands, one after the other, to get your cluster resources up and running:
terraform init
terraform apply
Note
After performing any of these exercises, if you plan to continue working through the following exercises after a significant amount of time, it might be a good idea to deallocate your cluster resources to stop AWS billing. You can do that using the terraform destroy command. Then, you can run this step to get everything back online again when you are ready to perform an exercise or activity.
If any exercise or activity relies on objects that were created in the previous exercises, you will need to recreate those objects as well.

					Now, we're going to create three YAML files for our RBAC resources. The first is a ServiceAccount that lets us have identity and authentication tokens granted to us by the cluster. Create a file called sa.yaml with the following content:apiVersion: v1
kind: ServiceAccount
metadata:
 name: test-sa
 namespace: default

					Next, we are going to create a ClusterRole object and assign it some permissions. Create a file called cr.yaml with the following content:apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 namespace: default
 name: test-sa-cluster-role
rules:
 - verbs:
 - "list"
 apiGroups:
 - ""
 resources:
 - "pods"
We are defining a ClusterRole with the ability to list all the Pods in any namespace, but nothing else.

					Next, we are going to create a ClusterRoleBinding object that will bind the created ServiceAccount and ClusterRole. Create a file called crb.yaml with the following content:apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: test-sa-cluster-role-binding
 namespace: default
roleRef:
 name: test-sa-cluster-role
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
subjects:
 - kind: ServiceAccount
 name: test-sa
 namespace: default
In these files, we are defining three objects: a ServiceAccount, a ClusterRole, and a ClusterRoleBinding.

					Run the following command to create this RBAC policy, as well as our ServiceAccount:kubectl apply -f sa.yaml -f cr.yaml -f crb.yaml
You should see the following response:
[image: Figure 13.3: Creating a ServiceAccount, a ClusterRole, and a ClusterRoleBinding

]
Figure 13.3: Creating a ServiceAccount, a ClusterRole, and a ClusterRoleBinding

					In the following steps, we will demonstrate that using our service account's ClusterRole will prevent us from describing Pods. But before that, let's get a list of the Pods and prove that everything still works. Do this by running the following command:kubectl get pods --all-namespaces
You should see the following response:
[image: Figure 13.4: Getting the list of Pods

]
Figure 13.4: Getting the list of Pods

					Now, let's describe the first Pod. The name of the first Pod here is aws-node-fzr6m. The describe command, in this case, would be as follows:kubectl describe pod -n kube-system aws-node-fzr6m
Please use the Pod name that you have for your cluster. You should see a response similar to the following:
[image: Figure 13.5: Describing the aws-node-fzr6m Pod

]
Figure 13.5: Describing the aws-node-fzr6m Pod
The preceding screenshot shows the truncated version of the output of the describe command.

					Now, we will run the same commands we used previously, but this time pretending to be the user using the ServiceAccount that is currently bound to the ClusterRole and ClusterRoleBinding that we created. We'll do this by using the --as parameter with kubectl. Thus, the command will look like this:kubectl --as=system:serviceaccount:default:test-sa get pods --all-namespaces
Note that we can assume the ClusterRole because we are an admin in the cluster that we created. You should see the following response:
[image: Figure 13.6: Getting the list of Pods while assuming the test-sa ServiceAccount

]
Figure 13.6: Getting the list of Pods while assuming the test-sa ServiceAccount
Sure enough, that still works. As you may recall from step 3, we mentioned the list as an allowed verb, which is what's used for fetching the list of all resources of a certain kind.

					Now, let's see what happens if a user with the ClusterRole we created attempts to describe a Pod:kubectl --as=system:serviceaccount:default:test-sa describe pod -n kube-system aws-node-fzr6m
You should see the following response:
[image: Figure 13.7: Forbidden error

]

			

			Figure 13.7: Forbidden error

			The kubectl describe command uses the get verb. Recall from step 3 that it was not on the allowed list of verbs for our ClusterRole.

			If this were a user (or a hacker) trying to use any command not allowed for them, we would have successfully stopped it. There are many practical RBAC examples available on the Kubernetes documentation website. It is beyond the scope of this chapter to talk about all the design patterns for RBAC in Kubernetes. All we can say is this: wherever possible, you should be practicing the "principle of least privilege" to limit unnecessary access to the Kubernetes API server. That is, everyone should get the minimum level of access required to do their job; not everyone needs to be a cluster admin.

			While we cannot make specific recommendations about security at your company, we can say that there are a few good "rules of thumb," which can be stated as follows:

			
					Whenever possible, try to make cluster contributors/users inside of a Role instead of a ClusterRole. Since a Role is constrained to a namespace, this will prevent that user from gaining unauthorized access to another namespace.

					Only cluster admins should have access to ClusterRoles, which should be limited and temporary in scope. For example, if you do on-call rotations where engineers are responsible for the availability of your services, then they should only have an admin ClusterRole for the time they are on call.

			

			NetworkPolicies

			NetworkPolicy objects in Kubernetes are essentially Network Access Control Lists but at the Pod and namespace level. They work by using label selection (such as Services) or by indicating a CIDR IP address range to allow on a particular port/protocol.

			This is immensely helpful for ensuring security, especially when you have multiple microservices running on a cluster. Now, imagine you have a cluster that hosts many applications for your company. It hosts a marketing website that runs an open-source library, a database server with sensitive data, and an application server that controls access to that data. If the marketing website doesn't need to access the database, then there should be no reason for it to be allowed access to the database. By using a NetworkPolicy, we can prevent an exploit or a bug in the marketing website from allowing an attacker to expand that attack so that they can access your business data by preventing the marketing website Pod from even being able to talk to the database. Let's take a look at a sample NetworkPolicy document and decipher it:

			apiVersion: networking.k8s.io/v1

			kind: NetworkPolicy

			metadata:

			 name: sample-network-policy

			 namespace: my-namespace

			spec:

			 podSelector:

			 matchLabels:

			 role: db

			 policyTypes:

			 - Ingress

			 - Egress

			 ingress:

			 - from:

			 - ipBlock:

			 cidr: 192.18.0.0/16

			 except:

			 - 192.18.1.0/24

			 - namespaceSelector:

			 matchLabels:

			 project: sample-project

			 - podSelector:

			 matchLabels:

			 role: frontend

			 ports:

			 - protocol: TCP

			 port: 3257

			 egress:

			 - to:

			 - ipBlock:

			 cidr: 10.0.0.0/24

			 ports:

			 - protocol: TCP

			 port: 5832

			Let's examine some of the fields of this NetworkPolicy:

			
					It contains the standard apiVersion, kind, and metadata fields that we described earlier in this chapter.

					podSelector: The labels it should look for in the namespace to apply the policy.

					policyTypes: Can be either ingress, egress, or both. This means that the network policy applies to either traffic coming into the Pods being selected, leaving the Pods being selected, or both.

					Ingress: This takes a from block that defines where traffic can originate from in the policy. This can be a namespace, a Pod selector, or an IP address block and port combination.

					Egress: This takes a to block and defines where traffic is allowed to go to in the network policy. This can be a namespace, a Pod selector, or an IP address block and port combination.

			

			Your CNI may not have a mature implementation of NetworkPolicies, so be sure to consult your cloud provider's documentation for more information. In the case of the cluster we set up using EKS, it is using the Amazon CNI. We can use Calico, an open-source project, to augment the existing EKS CNI and make up for deficiencies with respect to enforcing NetworkPolicy declarations. It is worth mentioning that Calico can be used as a CNI as well, but we will only be using the supplementary functionality for NetworkPolicy enforcement in the following exercise.

			Exercise 13.02: Creating a NetworkPolicy

			In this exercise, we will implement Calico to augment the out-of-the-box enforcement of NetworkPolicy declarations available with Amazon CNI in EKS. Let's get started:

			
					Run the following command to install the Amazon CNI with Calico:kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/release-1.5/config/v1.5/calico.yaml
You should see a response similar to the following:
[image: Figure 13.8: Installing Amazon CNI with Calico

]
Figure 13.8: Installing Amazon CNI with Calico

					To verify that you have deployed the DaemonSet corresponding to Calico successfully, use the following command:kubectl get daemonset calico-node --namespace kube-system
You should see the calico-node DaemonSet, as shown here:
[image: Figure 13.9: Checking the calico-node DaemonSet

]
Figure 13.9: Checking the calico-node DaemonSet

					Now, let's create our NetworkPolicy object. First, create a file named net_pol_all_deny.yaml with the following content:apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress
This policy is a very simple NetworkPolicy. It says that no traffic to and from Pods is allowed in or out of the cluster. This is the secure base on which we're going to continue expanding our application.

					Let's apply our policy using the following command:kubectl apply -f net_pol_all_deny.yaml
You should see the following response:
networkpolicy.networking.k8s.io/default-deny created
Now, there is no traffic flowing through our cluster. We can prove this by deploying our application since it needs the network to communicate with itself.

					As a test application, we will use the same application we used in Exercise 12.04, Deploying an Application Version Update. If you already have the YAML file for that, you can use it. Otherwise, run the following command to get the file in your working directory:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter12/Exercise12.04/with_redis.yaml
Then, use the following command to deploy the application:
kubectl apply -f with_redis.yaml
You should see the following response:
[image: Figure 13.10: Deploying our application

]
Figure 13.10: Deploying our application

					Now, let's check the status of our deployment using the following command:kubectl describe deployment kubernetes-test-ha-application-with-redis-deployment
You should see the following response:
[image: Figure 13.11: Checking the status of our application

]
Figure 13.11: Checking the status of our application
This is a truncated screenshot. As you can see, we have an issue that we are unable to communicate with Redis. Fixing this will be a part of Activity 13.01, Going Beyond Primitives.

					We are going to test network access now, so in a separate Terminal window, let's start our proxy:kubectl proxy
You should see this response:
Starting to serve on 127.0.0.1:8001
Another way to verify that the NetworkPolicy is preventing traffic is to use our curl command:
curl localhost:8001/api/v1/namespaces/default/services/kubernetes-test-ha-application-with-redis:/proxy/get-number
You should see a response similar to this:
Error: 'dial tcp 10.0.0.193:8080: i/o timeout'
Trying to reach: 'http:10.0.0.193:8080/get-number'%

			

			As we can see, we are able to prevent unauthorized communication between Pods in our Kubernetes cluster. By leveraging NetworkPolicies, we can prevent attackers from doing further damage if they are able to compromise some of the components of our cluster, containers, or source code.

			PodSecurityPolicy

			So far, we have learned about and tested Kubernetes RBAC to prevent unauthorized API server access, and also applied a NetworkPolicy to prevent unnecessary network communication. The next most important area of security outside the network is the application runtime. Attackers need access to the network to get in and out, but they also need a vulnerable runtime to do anything more serious. This is where Kubernetes PodSecurityPolicy objects help prevent that from happening.

			PodSecurityPolicy objects overlap with a specific type of AdmissionController and allow a cluster operator to dynamically define the minimum runtime requirements of a Pod that's been admitted for scheduling on the cluster.

			To understand exactly how PodSecurityPolicies can be useful, let's consider the following scenario. You are a Kubernetes cluster admin at a large financial institution. Your company uses ticket-based change management software in an ITIL-compliant fashion (ITIL is a standardized change management framework for IT services) to ensure that changes that are made to the environment are stable. This prevents developers from doing anything disastrous in production. To keep up with the change of pace in the market that your customers are demanding, you need a programmatic way to enable developers to do more change management autonomously. But you also need to do so in a way that is secure and compliant with certain standards. PodSecurityPolicies help us do this because they allow administrators to create policy definitions in software that are enforced when a Pod is being admitted to a cluster. This means that developers can move more rapidly, and cluster admins can still certify that their environment is fully compliant with the set standards.

			Further extending this scenario, you might want to prevent users from running their container as the root user so that attackers can't exploit any vulnerabilities in Docker. By applying a PodSecurityPolicy, you can prevent your users from accidentally deploying unsecured containers.

			Now that we have seen how they can be useful, let's consider a sample PodSecurityPolicy and examine it:

			apiVersion: policy/v1beta1

			kind: PodSecurityPolicy

			metadata:

			 name: psp-example

			 namespace: default

			spec:

			 privileged: true

			 seLinux:

			 rule: RunAsAny

			 supplementalGroups:

			 rule: MustRunAs

			 ranges:

			 - min: 1

			 max: 2500

			 runAsUser:

			 rule: MustRunAsNonRoot

			 fsGroup:

			 rule: MustRunAs

			 ranges:

			 - min: 655

			 max: 655

			 volumes:

			 - '*'

			Let's examine a few noteworthy fields here:

			
					metadata.namespace: This is going to create the PodSecurityPolicy in the default namespace and will apply to Pods in the same namespace.

					privileged: This controls whether containers are allowed to run in a privileged execution context on the node, which effectively grants the container root-level access to the host. You can find more information about privileged containers here: https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities.

					seLinux: This defines any SELinux settings. Some Kubernetes clusters run in SELinux environments, which implement something called "mandatory access control" outside of the cluster. This allows those controls to be projected into the cluster. By stating RunAsAny, we are allowing any SELinux user.

					supplementalGroups: This is a mandatory field of the policy. It essentially tells us that we are allowing any Linux user group ID (GID). In this sample spec, we are saying that users from any Linux user group with IDs 1 to 2500 are allowed.

					runAsUser: This allows us to specify specific Linux users who are permitted to run any process in the Pod. By stating MustRunAsNonRoot, we are saying that any process in the Pod must not run with root privileges.

					fsGroup: This is the Linux group ID the container process must be running as to interact with certain volumes on the cluster. Thus, even if a volume exists on a Pod, we can restrict certain processes in that Pod from accessing it. In this sample spec, we are saying that only Linux users in the devops group with a GID of 655 can access the volume. This is applied regardless of the location of the Pod in the cluster or where the volume is.

					volumes: This allows us to permit the different types of volume that can be mounted to that Pod, such as a configmap or a persistentVolumeClaim. In this sample spec, we have specified * (an asterisk), which implies that all kinds of volumes are allowed to be used by the processes in this Pod.

			

			Now that we have understood what the different fields in the spec mean, we'll create a PodSecurityPolicy in the following exercise.

			Exercise 13.03: Creating and Testing a PodSecurityPolicy

			In this exercise, we're going to be creating a PodSecurityPolicy and applying it to our cluster to demonstrate the types of functionalities Pods must now comply with in our cluster after we apply it. Let's get started:

			
					Create a file named pod_security_policy_example.yaml with the following content:apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: psp-example
 namespace: default
spec:
 privileged: false
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: MustRunAs
 ranges:
 - min: 1
 max: 2500
 runAsUser:
 rule: MustRunAsNonRoot
 fsGroup:
 rule: MustRunAs
 ranges:
 - min: 655
 max: 655
 volumes:
 - '*'

					To apply this to the cluster, run the following command: kubectl apply -f pod_security_policy_example.yaml
You should see the following response:
podsecuritypolicy.policy/psp-example created
To check that our policy is enforced, let's try to create a Pod that doesn't comply with this policy. Now we have a policy called MustRunAsNonRoot, so we should try to run a container as root and see what happens.

					To create a Docker container that would violate this PodSecurityPolicy, first, create a file named Dockerfile with the following content:FROM debian:latest
USER 0
CMD echo $(whoami)
The second line of this Dockerfile switches to the root user (indicated by the UID of 0), and then the echo command should tell us what user is running in this container when it starts.

					Build the Docker image by running the following command:docker build -t root .
You should see the following response:
[image: Figure 13.12: Building our Docker image

]
Figure 13.12: Building our Docker image

					Let's run our Docker container:docker run root:latest
You should see the following response:
root
As we can see, this container is going to run as root.

					Now, we need to create a Pod from this container. Create a file named pod.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: rooter
spec:
 containers:
 - name: rooter
 image: packtworkshops/the-kubernetes-workshop:root-tester
You can push your own image to your Docker Hub repository and replace this link, or you can use the container that we have already provided for convenience. As a general rule of thumb, you should always be careful when downloading something that is supposed to run with root access.

					By default, a PodSecurityPolicy does nothing until the use permission is installed on a user, group, or ServiceAccount that will be creating the Pod. To mimic this, we will quickly create a ServiceAccount: kubectl create serviceaccount fake-user
You should see the following response:
serviceaccount/fake-user created

					Now, let's create a Role that will be subject to this PodSecurityPolicy:kubectl create role psp:unprivileged --verb=use --resource=podsecuritypolicy --resource-name=psp-example
Note that this is another quick way to create a Role. Here, psp:unprivileged corresponds to the name of the role, while the flags correspond to the fields that we studied earlier. We are using the --resource-name flag to apply the Role to our specific PodSecurityPolicy. You should get the following response:
role.rbac.authorization.k8s.io/psp:unprivileged created

					Let's bind this role to our ServiceAccount using a RoleBinding:kubectl create rolebinding fake-user:psp:unprivileged --role=psp:unprivileged --serviceaccount=psp-example:fake-user
Here, we are using a command similar to the one we used in the previous step. You should see the following response:
rolebinding.rbac.authorization.k8s.io/fake-user: psp:unprivileged created

					Now, let's masquerade as this user and try to create this Pod:kubectl --as=system:serviceaccount:psp-example:fake-user apply -f pod.yaml
You should see the following response:
[image: Figure 13.13: Trying to create a Pod while assuming the fake-user ServiceAccount

]

			

			Figure 13.13: Trying to create a Pod while assuming the fake-user ServiceAccount

			At the beginning of this chapter, we explored the 4Cs of cluster security, and then throughout this chapter, we have seen different ways in which Kubernetes allows us to harden our cluster against various areas of attack. We learned that RBAC policies allow us to control access to our API and objects, NetworkPolicy allows us to harden the networking topology, and PodSecurityPolicy helps us protect against compromised runtimes.

			Now, let's bring these concepts together in the following activity.

			Activity 13.01: Securing Our App

			As it stands, our application from the previous chapter is already quite secure for the use case. What we need to do, though, is prevent users from deploying Pods that are privileged (so that they can't escalate their permissions) and make sure that our app can communicate with both the outside world and its datastore. A correct solution to this application would be to have the following functionality:

			
					The application should work seamlessly, as we demonstrated in the previous chapter, but now, it should prevent any unnecessary network traffic. Unnecessary here refers to the fact that the only Pod communicating with the Redis server should be the app, and that the app should only be communicating with other IP ranges.

					In Exercise 13.02, Creating a NetworkPolicy, we saw that our application did not work due to the highly restrictive NetworkPolicy. However, in this case, you should see the application running with an output similar to the following:[image: Figure 13.14: Expected output for Activity 13.01

]

			

			Figure 13.14: Expected output for Activity 13.01

			Here are some steps that can help you complete this activity:

			
					Ensure that you have a cluster infrastructure and all the objects from Exercise 13.01, Creating a Kubernetes RBAC ClusterRole.

					Create a file named pod_security_policy.yaml (and then apply it). Keep in mind the functionality as described in the first bullet point above when creating this file. You might want to re-visit the section PodSecurityPolicy where we describe each of the fields used in such a file in detail.

					Create a file named network_policy.yaml. Keep in mind the requirement as listed in the second bullet point above when creating this file. You might want to re-visit the section NetworkPolicies where we describe each of the fields used in such a file in detail. Make sure to apply this policy once you have created it.

					If you have the application from Exercise 14.02, Creating a NetworkPolicy still deployed in your cluster, you can move on to the next step. Otherwise, rerun steps 5 and 6 from that exercise.

					Now, test the application.Note
The solution to this activity can be found at the following address: https://packt.live/304PEoD.
Also, consider deleting the NetworkPolicy and PodSecurityPolicy after you are done with this chapter to avoid any interference with later chapters.

			

			Summary

			In our journey of building a production-ready Kubernetes environment, security is a critical aspect. With that in mind, in this chapter, we examined how threat modeling allows us to think in an adversarial way about our application infrastructure and how it informs us of how we can defend it from attack. Then, we looked at the 4Cs of Cloud Native Security to understand where our attack surfaces are, followed by how Kubernetes can help us run workloads securely in the cluster.

			Kubernetes has several security features that we can leverage to secure our cluster. We learned about three security measures that are important to leverage: RBAC, NetworkPolicies, and PodSecurityPolicies. We also learned about their various applications when it comes to securing access to your cluster, securing your container network, and securing your container runtimes.

			In the next chapter, we're going to examine how to manage storage objects in Kubernetes and deal with apps that are stateful.

		

		
			
			

		

	
		
			
			

		

		
			14. Running Stateful Components in Kubernetes

		

		
			Overview

			In this chapter, we will expand our skills to go beyond stateless applications and learn how to deal with stateful applications. We will learn about the various forms of state preservation mechanisms available to Kubernetes cluster operators and derive a mental model for where certain options can be invoked to run applications well. We will also introduce Helm, a useful tool for deploying complex applications with various Kubernetes objects.

			By the end of this chapter, you will be able to use StatefulSets and PersistentVolumes in conjunction to run apps that require disk-based state to be retained in between pod interruptions. You will also be able to deploy applications using Helm charts.

			Introduction

			From everything that you have learned up until this point, you know that pods and the containers that run in them are considered ephemeral. This means that they are not to be depended upon for stability as Kubernetes will intervene and move them around the cluster in order to comply with the desired state specified by the various manifests in the cluster. But there's a problem in this – what do we do with the parts of our applications that depend on the state being persisted from one interaction to the next? Without certain guarantees such as predictable naming for the pods and dependable storage operations, which we will learn about later in the chapter, such stateful components may fail if Kubernetes restarts the relevant pods or moves them around. However, before diving into the details of the aforementioned topics, let's talk briefly about stateful apps and why it's challenging to run them in a containerized environment.

			Stateful Apps

			We briefly introduced the concept of statefulness in Chapter 12, Your Application and HA. Stateful components of applications are a necessity to just about all information technology systems in the world. They're necessary to keep account details, records of transactions, information on HTTP requests, and a whole host of other purposes. The challenging part of running these applications in a production environment almost always has to do with either the network or the persistence mechanism. Whether it's spinning metal disks, flash storage, block storage, or some other yet-to-be-invented tool, persistence is notoriously difficult to deal with in all forms. Part of why this is difficult is because all of these forms have a non-zero probability of failure, which can become very significant once you need to have hundreds or even thousands of storage devices in a production environment. These days, many cloud providers will give assistance to customers and offer managed services to account for this difficulty. In the case of AWS, we have tools such as S3, EBS, RDS, DynamoDB, Elasticache, and many others that help developers and operators run stateful applications smoothly without much heavy lifting (provided you are OK with vendor lock-in.)

			Another trade-off that some companies face with running stateful applications and the persistence mechanisms they depend on is between either training and maintaining a large body of staff capable of keeping these systems of record online, healthy, and up to date, or attempting to develop a set of tools and programmatically enforced processes for common operational scenarios. These two approaches differ in the amount of human maintenance effort needed as the organization scales.

			For example, a human-centric approach to operations will allow things to move swiftly at first, but all operational costs scale linearly with the application scale, and eventually, the bureaucracy causes diminishing productivity returns with each new hire. Software-centric approaches are a higher upfront investment, but costs scale logarithmically with application scale and have a higher probability of cascading failures in the event of an unexpected bug.

			Some examples of these operational scenarios are provisioning and configuration, normal operations, scaling input/output, backups, and abnormal operations. Examples of abnormal operations include network failures, hard drive failures, corruption of data on disk, security breaches, and application-specific irregularities. Examples of application-specific irregularities could be handling MySQL-specific collation concerns, handling S3 eventually consistent read failures, etcd Raft protocol resolution errors, and so on.

			Many companies find it easier to pay for vendor support, use cloud-managed product offerings, or re-train their staff rather than developing programmatic state management processes and software.

			One of the benefits of a Kubernetes-enabled development life cycle is on the workload definition side. The more effort a company puts into rigorously defining the smallest logical unit of compute (a pod template or PersistentVolume definition), the better they will be prepared for Kubernetes to intervene in irregular operations and appropriately orchestrate the entire application. This is largely because Kubernetes orchestration is a classical dynamic constraint satisfaction problem (CSP). The more information in the form of constraints the CSP solver has to work with at its disposal, the more predictable workload orchestration will become because the number of feasible steady-state solutions is reduced. So, using the end goal of predictable workload orchestration, is it then possible to run state-bearing components of our application in Kubernetes? The answer is an unequivocal yes. It is common to be hesitant to run stateful workloads in Kubernetes. We've said from the beginning of this book that pods are ephemeral and should not be depended on for stability because, in the event of a node failure, they will be moved and restarted. So, before you decide that it's too risky to run a database in Kubernetes, consider this – the world's largest search engine company runs databases in a very similar tool to Kubernetes. This tells us that it's not only possible but in reality, it's preferable to work on defining workloads well enough that they can be run by an orchestrator because it can likely handle application failures much faster than a human.

			So, how do we accomplish this? The answer to that question is the use of a combination of two Kubernetes objects that you have learned about earlier – PersistentVolumes and StatefulSets. These are introduced in Chapters 7 and 9, so we won't belabor their usage here except to say that we're going to be bringing together all of the introductory topics into an example relevant to our application.

			The key to effective stateful workload orchestration is modularization and abstraction. These are fundamental software concepts that are taught to engineers so they can design well-architected software systems, and the same holds for well-architected infrastructure systems. Let's consider the following diagram as an example of modularization when it comes to running a database in Kubernetes:

			
				
					[image: Figure 14.1: Modular stateful components in Kubernetes

]
				

			

			Figure 14.1: Modular stateful components in Kubernetes

			As you can see in the preceding diagram, and as you have learned up until now in this book, Kubernetes is made up of modular components. Thus, by leveraging the StatefulSet resource, we can compose the usage of PersistentVolumes, PersistentVolumeClaims, StorageClasses, pods, and some special rules around their life cycles that make much stronger guarantees about the condition that the persistence layers of our app are in.

			Understanding StatefulSets

			In Figure 14.1, we can see that a StatefulSet is invoked to be able to manage pod life cycles. A StatefulSet (in older versions of Kubernetes, this was called a PetSet) operates very similarly to a Deployment in that we provide a pod template of what we want to run and how many instances of it we want to run. What differs between a StatefulSet and a Deployment is the following:

			
					A clear naming scheme that can be depended upon by pods in DNS queries:This means that in the preceding diagram when we name a StatefulSet mysql, the first pod in that StatefulSet will always be mysql-0. This is unlike a traditional deployment where pod IDs are assigned randomly. It also means that if you had a pod named mysql-2 and it crashed, it would be resurrected on the cluster using exactly the same name.

					A clearly ordered way in which updates must proceed:Depending on the update strategy in this StatefulSet, each pod will be taken down in a very specific order. So, if you have a well-known upgrade path (such as in the case of minor software revisions in MySQL), you should be able to leverage one of the Kubernetes-provided software update strategies.

					Dependable storage operations:Since storage is the most critical part of a stateful solution, having deterministic actions taken by a StatefulSet is imperative. By default, any PersistentVolume provisioned for a StatefulSet will be retained, even if that StatefulSet has been deleted. While this behavior is meant to prevent accidental deletion of data, it can lead to significant charges from your cloud provider during testing, so you should monitor this closely.

					A serviceName field that must be defined in the StatefulSet:This serviceName field must refer to something called a "headless" service that points to this group of pods. This exists to allow the pods to be individually addressable using the common Kubernetes DNS syntax. So for example, if my StatefulSet is running in the default namespace and has the name zachstatefulset, then the first pod will have the DNS entry zachstatefulset-0.default.svc.cluster.local. The same DNS entry will be used by any replacement pod if this one fails.
More on headless services can be found at this link: https://kubernetes.io/docs/concepts/services-networking/service/#headless-services.

			

			Deployments versus StatefulSets

			Now that you've been introduced to StatefulSets at a slightly more granular level, on what basis should you choose between a StatefulSet and a Deployment that uses a PersistentVolumeClaim? The answer to that depends on what you're looking to orchestrate.

			In theory, you could achieve similar behavior using both types of Kubernetes object. Both create pods, both have update strategies, and both can use PVCs to create and manage PersistentVolume objects. The reason StatefulSets were designed was to give the guarantees laid out in the preceding bullet points. Typically, you would want these guarantees when orchestrating databases, file servers, and other forms of sensitive persistence-dependent applications.

			As we understand how StatefulSets are useful to predictably run the stateful components of our applications, let's look at a specific example that's relevant to us. As you'll recall from previous chapters, we have a little counter app that we are refactoring to leverage as many cloud-native principles as possible as we go along. In this chapter, we will be replacing the state persistence mechanism and testing out a new engine.

			Further Refactoring Our Application

			We'd like to now take our application a little further into cloud-native principles. Let's consider that the product manager for our counter app said that we're getting insane amounts of load (and you can confirm this through your observability toolset), and some people are not always getting a strictly increasing number; sometimes, they are getting duplicates of the same number. So, you confer with your colleagues and come to the conclusion that in order to guarantee the increasing number, you will need guarantees around how data is accessed and persisted in your app.

			Specifically, you need a guarantee that operations against this datastore are atomically unique, consistent between operations, isolated from other operations, and durable against failure. That is, you are looking for an ACID-compliant database.

			Note

			More on what ACID compliance is can be found at this link: https://database.guide/what-is-acid-in-databases/.

			The team wants to be able to use a database, but they'd rather not pay for that database to be run by AWS. They would also rather not be locked into AWS if they find better deals on GCP or Azure later.

			So, after a brief look at Google for some options, your team settles on using MySQL. MySQL is one of the more popular open-source RDBMS solutions, and as such has a lot of documentation, support, and community suggestions for implementation as a database solution in Kubernetes.

			Now the work begins on changing your code to support incrementing the counter using a transaction supported by MySQL. So, to do this, we need to change a few things:

			
					Change our application code to use SQL instead of Redis to access the data and increment the counter.

					Modify our Kubernetes cluster to run MySQL instead of Redis.

					Ensure the durability of the storage underneath the database in case of catastrophic failure.

			

			You may be asking yourself why a cluster operator or administrator would need to be able to understand and refactor code. The advent of Kubernetes accelerated a trend in the software industry of leveraging DevOps tooling, practices, and culture to begin to deliver value to customers more rapidly and more predictably. This means beginning to scale our operations using software and not people. We need robust automation to take the place of human-centric processes to be able to make guarantees around functionalities and delivery speed. Thus, an infrastructure designer or administrator having systems-level software engineering experience to allow them to assist in refactoring a codebase to leverage more cloud-native practices is a huge benefit for them in their careers, and it may soon become a job requirement for all DevOps engineers. So, let's take a look at how to refactor our application for StatefulSets using MySQL for the transactions.

			Note

			If you are not yet comfortable programming or you are not familiar with the syntax of the language the authors chose (Golang in this example), you don't have to worry – all of the solutions have been worked out and are ready to be used.

			First, let's examine our code for Exercise 12.04, Deploying an Application with State Management:

			main.go

			28 if r.Method == "GET" {

			29 val, err := client.Get("num").Result()

			30 if err == redis.Nil {

			31 fmt.Println("num does not exist")

			32 err := client.Set("num", "0", 0).Err()

			33 if err != nil {

			34 panic(err)

			35 }

			36 } else if err != nil {

			37 w.WriteHeader(500)

			38 panic(err)

			39 } else {

			40 fmt.Println("num", val)

			41 num, err := strconv.Atoi(val)

			42 if err != nil {

			43 w.WriteHeader(500)

			44 fmt.Println(err)

			45 } else {

			46 num++

			47 err := client.Set("num", strconv.Itoa(num), 0).Err()

			48 if err != nil {

			49 panic(err)

			50 }

			51 fmt.Fprintf(w, "{number: %d}", num)

			52 }

			53 }

			The complete code for this step can be found at https://packt.live/3jSWTHB.

			Highlighted in the preceding code are the two instances where we are accessing our persistence layer. As you can see, not only are we not using a transaction, but we are manipulating the value in the code and therefore cannot guarantee the constraint that this is a strictly incrementing counter. To do this, we must change our strategy.

			Note

			You can find the required information for using a MySQL container at this link: https://hub.docker.com/_/mysql?tab=description.

			We have provided the refactored application that uses SQL. Let's take a look at the code of the refactored application:

			main.go

			38 fmt.Println("Starting HTTP server")

			39 http.HandleFunc("/get-number", func(w http.ResponseWriter, r *http.Request) {

			40 if r.Method == "GET" {

			41 tx, err := db.Begin()

			42 if err != nil {

			43 panic(err)

			44 }

			45 _, err = tx.Exec(t1)

			46 if err != nil {

			47 tx.Rollback()

			48 fmt.Println(err)

			49 }

			50 err = tx.Commit()

			51 if err != nil {

			52 fmt.Println(err)

			53 }

			54 row := db.QueryRow(t2, 1)

			55 switch err := row.Scan(&num); err {

			56 case sql.ErrNoRows:

			57 fmt.Println("No rows were returned!")

			58 case nil:

			59 fmt.Fprintf(w, "{number: %d}\n", num)

			60 default:

			61 panic(err)

			62 }

			63 } else {

			64 w.WriteHeader(400)

			65 fmt.Fprint(w, "{\"error\": \"Only GET HTTP method is supported.\"}")

			66 }

			67 }

			The complete code for this step can be found at https://packt.live/35ck7nX.

			As you can see, it's roughly the same as the Redis code, except now our value is being set in a transaction. Unlike Redis, MySQL is not a volatile in-memory datastore, so operations against the database must be persisted to disk to succeed, and ideally, they are persisted to a disk that won't disappear when the pod is interrupted. Let's set up the other required components of our application in the following exercise.

			Exercise 14.01: Deploying a Counter App with a MySQL Backend

			In this exercise, we will reconfigure our counter app to work with a MySQL backend instead of Redis:

			
					To begin with, we will recreate your EKS cluster from the Terraform file in Exercise 12.02, Creating a Cluster with EKS Using Terraform. If you already have the main.tf file, you can work with it. Otherwise, you can run the following command to get it:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter12/Exercise12.02/main.tf
Now, use the following two commands one after the other to get your cluster resources up and running:
terraform init
terraform apply
Note
After performing any of the exercises, if you plan to continue to the following exercises after a significant amount of time, it might be a good idea to deallocate your cluster resources to stop AWS from billing you. You can do that using the terraform destroy command. Then, you can run this step to get everything back online again when you are ready to perform an exercise or an activity.
If any exercise or activity relies on objects created in the previous exercises, you will need to recreate those objects as well.

					Run the following command to get the manifest file, with_mysql.yaml, which defines all the required objects:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter14/Exercise14.01/with_mysql.yaml
Open the file for inspection so we can examine this StatefulSet:
with_mysql.yaml
44 apiVersion: apps/v1
45 kind: StatefulSet
46 metadata:
47 name: mysql
48 spec:
49 selector:
50 matchLabels:
51 app: mysql
52 serviceName: mysql
53 replicas: 1
54 template:
55 metadata:
56 labels:
57 app: mysql
58 spec:
The complete code for this step can be found at https://packt.live/2R2WN3x.
Note
Here, a PersistentVolumeClaim is automatically binding a 10 GiB volume from Amazon EBS on startup to each pod. Kubernetes will automatically provision the EBS volume using the IAM role that we defined in our Terraform file.
When the pod gets interrupted for any reason, Kubernetes will automatically re-bind the appropriate PersistentVolume to the pod when it restarts, even if it is on a different worker node, so long as it is in the same availability zone.

					Let's apply this to our cluster by running the following command:kubectl apply -f with_mysql.yaml
You should see this response:
[image: Figure 14.2: Deploying the refactored application that uses a MySQL backend

]
Figure 14.2: Deploying the refactored application that uses a MySQL backend

					Now run kubectl proxy in this window and let's open up another terminal window:kubectl proxy
You should see this response:
Starting to serve on 127.0.0.1:8001

					In the other window, run the following command to access our application:curl localhost:8001/api/v1/namespaces/default/services/kubernetes-test-ha-application-with-mysql:/proxy/get-number
You should see this response:
{number: 1}
You should see the app running as expected, as we have seen in the previous chapters. And just like that, we have a working StatefulSet with our application using MySQL that is persisting data.

			

			As we've said, one of the things that will cause cluster operators to not pursue StatefulSets as a way of being able to manage their data infrastructure is a mistaken belief that the information in PersistentVolumes is as ephemeral as the pods they are bound to. This is not true. The PersistentVolumeClaims created by a StatefulSet will not be deleted if a pod or even the StatefulSet is deleted. This is to protect the data contained in these volumes at all costs. Thus, for cleanup, we need to delete the PersistentVolume separately. Cluster operators also have other tools at their disposal to prevent this from happening, such as changing the reclamation policy of the PersistentVolumes (or the StorageClass it was created from) that you are creating.

			Exercise 14.02: Testing the Resilience of StatefulSet Data in PersistentVolumes

			In this exercise, we will continue from where we left off in the last exercise and test the resilience of the data that is in our application by deleting a resource and seeing how Kubernetes responds:

			
					Now for the fun part, let's try to test the resilience of our persistence mechanism by deleting the MySQL pod:kubectl delete pod mysql-0
You should see this response:
pod "mysql-0" deleted

					The app may crash at this point, but if you keep trying the preceding curl command again after a few seconds, it should automatically continue counting from the number it had before we deleted the pod. We can verify this by trying to access the application again:curl localhost:8001/api/v1/namespaces/default/services/kubernetes-test-ha-application-with-mysql:/proxy/get-number
You should see a response similar to the following:
{number: 2}
As you can see, we not only get a valid response from the application, but we also get the next number in the sequence (2), meaning that no data was lost when we lost our MySQL pod and Kubernetes recovered it.
After you've created this StatefulSet, cleaning it up is not as simple as running kubectl delete -f with_mysql.yaml. This is because Kubernetes will not automatically destroy a PersistentVolume created by a StatefulSet.
Note
This also means that even if we try to delete all of our AWS resources using terraform destroy, we will still be paying for orphaned EBS volumes in AWS indefinitely (and we don't want that in this example).

					So, to clean up, we need to find out what PersistentVolumes are bound to this StatefulSet. Let's list the PersistentVolumes in the default namespace of our cluster:kubectl get pv
You should see a response similar to the following:
[image: Figure 14.3: Getting the list of PersistentVolumes

]
Figure 14.3: Getting the list of PersistentVolumes

					It looks like we have a PersistentVolume named data-mysql-0, which is the one we want to delete. First, we need to remove the objects that created this. Thus, let's first delete our application and all of its components:kubectl delete -f with_mysql.yaml
You should see this response:
[image: Figure 14.4: Deleting the PersistentVolume associated with MySQL

]
Figure 14.4: Deleting the PersistentVolume associated with MySQL

					Let's check on the PersistentVolume that we were trying to remove:kubectl get pv
You should see a response similar to this:
[image: Figure 14.5: Getting the list of PersistentVolumes

]
Figure 14.5: Getting the list of PersistentVolumes
From this image, it appears that our volume is still there.

					We need to remove both the PersistentVolume and the PersistentVolumeClaim that created it. To do this, let's run the following command:kubectl delete pvc data-mysql-0
You should see this response:
persistentvolumeclaim "data-mysql-0" deleted
Once we delete the PersistentVolumeClaim, the PersistentVolume becomes unbound and is subject to its reclaim policy, which we can see in the screenshot of the previous step. In this case, the policy is to delete the underlying storage volume.

					To verify that the PV is deleted, let's run the following: kubectl get pv
You should see the following response:
No resources found in default namespace.
As is apparent in this screenshot, our PersistentVolume has now been deleted.
Note
If the reclaim policy for your case is anything other than Delete, you will need to manually delete the PersistentVolume as well.

					Now that we have cleaned up our PersistentVolumes and PersistentVolumeClaims, we can continue to clean up as we would normally by running the following command:terraform destroy
You should see a response that ends as in this screenshot:
[image: Figure 14.6: Cleaning up resources created by Terraform

]

			

			Figure 14.6: Cleaning up resources created by Terraform

			In this exercise, we have seen how Kubernetes tries to preserve PersistentVolumes even when we delete the StatefulSet. We have also seen how to proceed when we actually want to remove a PersistentVolume.

			Now that we have seen how to set up a StatefulSet and run a MySQL database attached to it, we will extend the principle of high availability further in the following activity. Before we do this, though, we need to address the problem of Kubernetes manifest sprawl, because it seems to take more and more YAML manifests to achieve our objective of building highly available stateful applications. In the following section, we will learn about a tool that will help us better organize and manage the manifests for our applications.

			Helm

			In this section, we are going to be taking a look at a tool that is very helpful in the Kubernetes ecosystem called Helm. Helm was created by Microsoft after it quickly became apparent that for any sizeable deployment of Kubernetes (for example, those involving 20 or more separate components, observability tools, services, and other objects), there are a lot of YAML manifests to keep track of. Couple that with the fact that many companies run multiple environments other than production, which you need to be able to keep in sync with each other, and you start to have an unwieldy problem on your hands.

			Helm allows you to write Kubernetes manifest templates, to which you supply arguments that override any defaults, and then Helm creates the appropriate Kubernetes manifests for you. Thus, you can use Helm as a sort of package manager, where your entire application can be deployed using a Helm chart, and you can tweak a few small parameters before installing. Another way to use Helm is as a templating engine. It allows an experienced Kubernetes operator to write a good template only one time and then it can be used by people not familiar with the Kubernetes manifest syntax to successfully create Kubernetes resources. A Helm chart can be created with any number of fields set by arguments, and a base template can be adapted to deploy vastly different implementations of a piece of software or a microservice to suit different needs.

			Helm packages are called "charts" and they have a specific folder structure. You can either use a shared Helm chart repository from Git, an Artifactory server, or a local filesystem. In the upcoming exercise, we're going to look at a Helm chart and install it on our clusters.

			This is a good point to be introduced to Helm in your journey of learning Kubernetes because if you've been following along, you've written quite a bit of YAML and applied it to your cluster. Also, a lot of what we've written is a repeat of things that we've seen before. So, leveraging Helm's templating functionality will be helpful for packaging up similar components and delivering them using Kubernetes. You don't have to leverage the templating components of Helm to use it, but it helps so that you can reuse the chart for multiple different permutations of the resulting Kubernetes object.

			Note

			We will be using Helm 3, which has significant differences from its predecessor, Helm 2, and was only recently released. If you are familiar with Helm 2 and want to know about the differences, you can refer to the documentation at this link: https://v3.helm.sh/docs/faq/#changes-since-helm-2.

			Detailed coverage of Helm is beyond the scope of this book, but the fundamentals covered here serve as a great starting point, and also put into perspective how different tools and technologies can work together to remove several hurdles of complex application orchestration in Kubernetes.

			Let's see how we can create a chart (which is the Helm term for a package) and apply it to a cluster. Then, we will understand how Helm generates Kubernetes manifest files from a Helm chart.

			Let's make a new Helm chart by running the following command:

			helm create chart-dev

			You should see the following response:

			Creating chart-dev

			When you create a new chart, Helm will generate a chart for NGINX as a placeholder application by default. This will create a new folder and skeleton chart for us to examine.

			Note

			For the following section, make sure that you have tree installed as per the instructions in the Preface.

			Let's use the Linux tree command and take a look at what Helm has made for us:

			tree .

			You should see a response similar to the following:

			
				
					[image: Figure 14.7: Directory structure of a Helm chart

]
				

			

			Figure 14.7: Directory structure of a Helm chart

			Pay attention to the templates folder and the values.yaml file. Helm works by using the values found in the values.yaml file and fills those values into the corresponding placeholders in the files inside the templates folder. Let's examine a part of the values.yaml file:

			values.yaml

			1 # Default values for chart-dev.

			2 # This is a YAML-formatted file.

			3 # Declare variables to be passed into your templates.

			4

			5 replicaCount: 1

			6

			7 image:

			8 repository: nginx

			9 pullPolicy: IfNotPresent

			10 # Overrides the image tag whose default is the chart appVersion.

			11 tag: ""

			12

			13 imagePullSecrets: []

			14 nameOverride: ""

			15 fullnameOverride: ""

			The complete code for this step can be found at https://packt.live/33ej2cO.

			As we can see here, this is not a Kubernetes manifest, but it looks like it has many of the same fields. In the preceding snippet, we have highlighted the entire image block. This has three fields (repository, pullPolicy, and tag), each with their corresponding values.

			Another notable file is Chart.yaml. The following line from this file is relevant to our discussion:

			appVersion: 1.16.0

			Note

			You can find the complete file at this link: https://packt.live/2FboR2a.

			The comment in the file is pretty descriptive of what this means: "This is the version number of the application being deployed. This version number should be incremented each time you make changes to the application. Versions are not expected to follow Semantic Versioning. They should reflect the version the application is using."

			So, how does Helm assemble these into the traditional Kubernetes manifest format that we expect? To understand that, let's inspect the corresponding section of the deployment.yaml file in the templates folder:

			deployment.yaml

			30 containers:

			31 - name: {{ .Chart.Name }}

			32 securityContext:

			33 {{- toYaml .Values.securityContext | nindent 12 }}

			34 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default .Chart.AppVersion }}"

			35 imagePullPolicy: {{ .Values.image.pullPolicy }}

			The complete code for this step can be found at https://packt.live/3k0OGRL.

			This file looks a lot more like a Kubernetes manifest with a bunch of variables added into it. Comparing the template placeholders from deployment.yaml to the observations from values.yaml and Chart.yaml, we can infer the following:

			
					{{ .Values.image.repository }} will be interpreted as nginx.

					{{ .Values.image.tag | default .Chart.AppVersion }} will be interpreted as 1.16.0.

			

			Thus, we get the resultant field for our deployment spec as image: nginx:1.16.0.

			This is our first glimpse into the Helm templating language. For those familiar with templating engines such as Jinja, Go templating, or Twig, this syntax should look familiar. As mentioned earlier, we will not dive into too many details about Helm, but you can find more on the Helm documentation at this link: https://helm.sh/docs/chart_template_guide/.

			Now, let's install the sample chart chart-dev that we have generated. This chart will deploy an example NGINX app to our Kubernetes cluster. To install a Helm chart, the command would look as follows:

			helm install [NAME] [CHART] [flags]

			We can use --generate-name to get a random name. Also, since we are already in the chart-dev directory, we can directly use values.yaml from the root of the current working directory:

			helm install --generate-name -f values.yaml .

			You should see the following response:

			
				
					[image: Figure 14.8: Installing a Helm chart

]
				

			

			Figure 14.8: Installing a Helm chart

			Notice that in the output, you are given instructions on what to do next. These are customizable instructions from the templates/NOTES.txt file. When you make your own Helm chart, you can use these to guide whoever is using the chart. Now, let's run these commands.

			Note

			The exact values in this output are customized to your particular environment, so you should copy the commands from your terminal output. This applies to the following command.

			The first command sets the pod name into an environment variable named POD_NAME:

			export POD_NAME=$(kubectl get pods --namespace default -l "app.kubernetes.io/name=chart-dev,app.kubernetes.io/instance=chart-1589678730" -o jsonpath="{.items[0].metadata.name}")

			We'll skip the echo command; it just tells you how to access your application. The reason this echo command exists is to show what the next commands are going to be in the terminal output.

			Now before we access our application, we need to do some port forwarding. The next command maps port 8080 on your host to port 80 on the pod:

			kubectl --namespace default port-forward $POD_NAME 8080:80

			You should see this response:

			Forwarding from 127.0.0.1:8080 ->80

			Forwarding from [::1]:8080 -> 80

			Now let's try to access NGINX. In a browser, go to localhost:8080. You should be able to see the default NGINX landing page:

			
				
					[image: Figure 14.9: Accessing our default NGINX test application

]
				

			

			Figure 14.9: Accessing our default NGINX test application

			You can clean this up by deleting our resources. First, let's get the generated name of this release by getting a list of all the releases installed by Helm in your cluster:

			helm ls

			You should see a response similar to this:

			
				
					[image: Figure 14.10: Getting a list of all applications installed by Helm

]
				

			

			Figure 14.10: Getting a list of all applications installed by Helm

			Now, we can remove the release as follows:

			helm uninstall chart-1589678730

			Use the name from the previous output. You should see this response:

			release "chart-1589678730" uninstalled

			And just like that, we've written our first chart. So, let's proceed to the following exercise, where we will learn exactly how Helm can make our job easier.

			Exercise 14.03: Chart-ifying Our Redis-Based Counter Application

			We created a generic Helm chart in the previous section, but what if we want to make our own chart for our software? In this exercise, we will create a Helm chart that will deploy our HA Redis-based solution from Chapter 12, Your Application and HA, using Helm.

			
					If you are inside the chart-dev directory, navigate to the parent directory:cd ..

					Let's start by making a fresh Helm chart:helm create redis-based-counter && cd redis-based-counter
You should see this response:
Creating redis-based-counter

					Now let's remove the unnecessary files from our chart:rm templates/NOTES.txt; \
rm templates/*.yaml; \
rm -r templates/tests/; \
cd templates

					Now, we need to navigate into the templates folder of our chart and copy in the files from our repo for the Redis-based counter application:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter14/Exercise14.03/templates/redis-deployment.yaml; \
curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter14/Exercise14.03/templates/deployment.yaml;\
curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter14/Exercise14.03/templates/redis-service.yaml; \
curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter14/Exercise14.03/templates/service.yaml
You may recall from previous chapters that we had multiple Kubernetes manifests sharing one file, separated by the --- YAML file separator string. Now that we have a tool for managing Kubernetes manifests, it's better to keep them in separate files so that we can manage them independently. The job of bundling will now be handled by Helm.

					There should be four files in the templates folder. Let's confirm that as follows:tree .
You should see the following response:
[image: Figure 14.11: Expected file structure for our application

]
Figure 14.11: Expected file structure for our application

					ow we need to modify the values.yaml file. Delete all contents from that file and copy only the following into it:deployment:
 replicas: 3
redis:
 version: 3

					Now, to wire them together, we need to edit both deployment.yaml and redis-deployment.yaml. The one we will edit first is deployment.yaml. We should replace replicas: 3 with the template, as shown in the highlighted line in the following manifest:apiVersion: apps/v1
kind: Deployment
metadata:
 name: kubernetes-test-ha-application-with-redis-deployment
 labels:
 app: kubernetes-test-ha-application-with-redis
spec:
 replicas: {{ .Values.deployment.replicas }}
 selector:
 matchLabels:
 app: kubernetes-test-ha-application-with-redis
 template:
 metadata:
 labels:
 app: kubernetes-test-ha-application-with-redis
 spec:
 containers:
 - name: kubernetes-test-ha-application-with-redis
 image: packtworkshops/the-kubernetes-workshop:demo-app- with-redis
 imagePullPolicy: Always
 ports:
 - containerPort: 8080
 env:
 - name: REDIS_SVC_ADDR
 value: "redis.default:6379"

					Next, edit the redis-deployment.yaml file and add a similar block of templating language, as shown in the highlighted line in the following manifest:apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: redis
 labels:
 app: redis
spec:
 selector:
 matchLabels:
 app: redis
 replicas: 1
 template:
 metadata:
 labels:
 app: redis
 spec:
 containers:
 - name: master
 image: redis:{{ .Values.redis.version }}
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 6379

					Now let's install our application using Helm:helm install --generate-name -f values.yaml .
You should see a response similar to this:
[image: Figure 14.12: Installing our Helm chart with an auto-generated name

]
Figure 14.12: Installing our Helm chart with an auto-generated name

					To check whether our application is online, we can get the list of deployments:kubectl get deployment
You should see the following output:
[image: Figure 14.13: Getting the list of deployments

]

			

			Figure 14.13: Getting the list of deployments

			As you can see, Helm has deployed our application deployment, as well as the Redis backend for it. With these skills in the bag, you are soon to be a captain of Helm.

			In the following activity, we will bring together the two things we learned in this chapter – refactoring our application for stateful components and then deploying it as a Helm chart.

			Activity 14.01: Chart-ifying Our StatefulSet Deployment

			Now that you have experience with MySQL, StatefulSets, and Helm for resource management, your activity is to take what you learned in Exercises 14.01, 14.02, and 14.03 and combine them together.

			For this activity, we will refactor our Redis-based application to use MySQL as the backend datastore using StatefulSets, and then deploy it using Helm.

			Follow these high-level guidelines to complete the activity:

			
					Set up the required cluster infrastructure as shown in step 1 of Exercise 14.01, Deploying a Counter App with a MySQL Backend.

					Introduce a new Helm chart called counter-mysql.

					Create a template for our counter application that uses MySQL as its backend.

					Create a template for our MySQL StatefulSet.

					Wire everything together with Kubernetes Service objects wherever appropriate.

					Configure the template such that the values.yaml file is able to change the version of MySQL.

					Test the application. You should see a similar output to that which we've seen in previous exercises with our counter application:[image: Figure 14.14: Expected output of Activity 14.01

]

			

			Figure 14.14: Expected output of Activity 14.01

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Also, don't forget to clean up your cloud resources using the terraform destroy command to stop AWS from billing you after you are done with the activity.

			Summary

			Over the course of this chapter, we have applied our skills to be able to leverage StatefulSets in our example application. We have looked at how to think about running stateful portions of our software programmatically and how to refactor applications to leverage that change in state persistence. Finally, we learned how to create and run Kubernetes StatefulSets that will allow us to run stateful components in our cluster and make guarantees about how that workload will be run.

			Being equipped with the skills needed to manage stateful components on our Kubernetes cluster is a major step in being able to operate effectively in many real-world applications that you are likely to come across.

			In the next chapter, we're going to talk more about data-driven application orchestration with the use of Metrics Server, HorizontalPodAutoscalers, and ClusterAutoscaler. We will learn how these objects help us respond to varying levels of demand on our application running on a Kubernetes cluster.

		

		
			
			

		

	
		
			
			

		

		
			15. Monitoring and Autoscaling in Kubernetes

		

		
			Overview

			This chapter will introduce you to how Kubernetes enables you to monitor your cluster and workloads, and then use the data collected to automatically drive certain decisions. You will learn about the Kubernetes Metric Server, which aggregates all cluster runtime information, allowing you to use this information to drive application runtime scaling decisions. We will walk you through setting up monitoring using the Kubernetes Metrics server and Prometheus and then use Grafana to visualize those metrics. By the end of this chapter, you will also have learned how to automatically scale up your application to completely utilize the resources on the provisioned infrastructure, as well as automatically scale your cluster infrastructure as needed.

			Introduction

			Let's take a moment to reflect on our progress through this series of chapters beginning from Chapter 11, Build Your Own HA Cluster. We started by setting up a Kubernetes cluster using kops to configure AWS infrastructure in a highly available manner. Then, we used Terraform and some scripting to improve the stability of our cluster and deploy our simple counter app. After this, we began hardening the security and increasing the availability of our app using Kubernetes/cloud-native principles. Finally, we learned how to run a stateful database responsible for using transactions to ensure that we always get a series of increasing numbers from our application.

			In this chapter, we are going to explore how to leverage the data that already exists in Kubernetes about our applications to drive and automate decision-making processes around scaling them so that they are always the right size for our load. Because it takes time to observe application metrics, schedule and start containers, and bootstrap nodes from scratch, this scaling is not instantaneous but will eventually (usually within minutes) balance the number of pods and nodes needed to perform the work of the load on the cluster. To achieve this, we need a way of getting this data, understanding/interpreting this data, and feeding back instructions to Kubernetes with this data. Luckily, there are already tools in Kubernetes that will help us do this. These are the Kubernetes Metric Server, HorizontalPodAutoscalers (HPAs), and the ClusterAutoscaler.

			Kubernetes Monitoring

			Kubernetes has built-in support for providing useful monitoring information about infrastructure components as well as various Kubernetes objects. The Kubernetes Metrics server is a component (which does not come built-in) that gathers and exposes the metrics data at an API endpoint on the API server. Kubernetes uses this data to manage the scaling of Pods, but this data can also be scraped by a third-party tool such as Prometheus for use by cluster operators. Prometheus has a few very basic data visualization functions and primarily serves as a metric-gathering and storage tool, so you can use a more powerful and useful data visualization tool such as Grafana. Grafana allows cluster admins to create useful dashboards to monitor their clusters. You can learn more about how monitoring in Kubernetes is architected at this link: https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md.

			Here's how this will look for us in a diagram:

			
				
					[image: Figure 15.1: An overview of the monitoring pipeline that

we will implement in this chapter

]
				

			

			Figure 15.1: An overview of the monitoring pipeline that we will implement in this chapter

			This diagram represents how the monitoring pipeline is going to be implemented through various Kubernetes objects. In summary, the monitoring pipeline will work as follows:

			
					The various components of Kubernetes are already instrumented to provide various metrics. The Kubernetes Metrics server will fetch these metrics from the components.

					The Kubernetes Metrics server will then expose these metrics on an API endpoint.

					Prometheus will access this API endpoint, scrape these metrics, and add it to its special database.

					Grafana will query the Prometheus database to gather these metrics and present it in a neat dashboard with graphs and other visual representations.

			

			Now, let's look at each of the previously mentioned components to understand them better.

			Kubernetes Metrics API/Metrics Server

			The Kubernetes Metrics server (formerly known as Heapster) gathers and exposes metric data on the running state of all Kubernetes components and objects in Kubernetes. Nodes, control plane components, running pods, and really any Kubernetes objects are all observable via the Metrics server. Some examples of the metrics that it collects are the number of pods that are desired in a Deployment/ReplicaSet, the number of pods posting a Ready status in that Deployment, and the CPU and memory utilization of each container.

			We will mostly be using the default exposed metrics while gathering the information relevant to the Kubernetes objects that we are orchestrating our application.

			Prometheus

			Prometheus is a metric collector, a time-series database, and an alert manager for just about anything. It makes use of a scraping function to pull metrics from running processes that expose those metrics in Prometheus format at a defined interval. Those metrics are then stored in their own time-series database and you can run queries on this data to get a snapshot of the state of your running applications.

			It also comes with an alert manager function, which allows you to set up triggers to alert your on-call admins. As an example, you can configure the alert manager to automatically trigger an alert if the CPU utilization on one of your nodes is above 90% for 15 minutes. The alert manager can interface with several third-party services to send the alert via various means, such as email, chat messages, or SMS phone alerts.

			Note

			If you want to learn more about Prometheus, you can refer to this book: https://www.packtpub.com/virtualization-and-cloud/hands-infrastructure-monitoring-prometheus.

			Grafana

			Grafana is an open-source tool that can be used to visualize data and create useful dashboards. Grafana will query the Prometheus database for metrics and graph them on dashboard charts that are easier for humans to understand and spot trends or discrepancies. These tools are indispensable when running a production cluster as they help us spot issues in the infrastructure quickly and resolve issues.

			Monitoring Your Applications

			While application monitoring is beyond the scope of this book, we will provide some rough guidelines so that you can explore more on this topic. We would recommend that you expose your application's metrics in Prometheus format and use Prometheus to scrape them; there are many libraries for most languages that can help with this.

			Another way is to use Prometheus exporters that are available for various applications. Exporters gather the metrics from an application and expose them to an API endpoint so that Prometheus can scrape it. You can find several open-source exporters for common applications at this link: https://prometheus.io/docs/instrumenting/exporters/.

			For your custom applications and frameworks, you can create your own exporters using the libraries provided by Prometheus. You can find the relevant guidelines at this link: https://prometheus.io/docs/instrumenting/writing_exporters/.

			Once you have exposed and scraped the metrics from your applications, you can present them in a Grafana dashboard, similar to the one we will create for monitoring Kubernetes components.

			Exercise 15.01: Setting up the Metrics Server and Observing Kubernetes Objects

			In this exercise, we are going to be setting up monitoring for Kubernetes objects in our cluster and running a few queries and creating visualizations to see what's going on. We're going to be installing Prometheus, Grafana, and the Kubernetes Metrics server:

			
					To begin with, we will recreate your EKS cluster from the Terraform file in Exercise 12.02, Creating a Cluster with EKS Using Terraform. If you already have the main.tf file, you can work with it. Otherwise, you can run the following command to get it:curl -O https://github.com/PacktWorkshops/Kubernetes-Workshop/blob/master/Chapter12/Exercise12.02/main.tf
Now, use the following two commands one after the other to get your cluster resources up and running:
terraform init
terraform apply
Note
You will need jq for the following command. jq is a simple tool to manipulate JSON data. If you don't already have it installed, you can do so by using this command: sudo apt install jq.

					To set up the Kubernetes Metrics server in our cluster, we need to run the following in sequence:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter15/Exercise15.01/metrics_server.yaml
kubectl apply -f metrics_server.yaml
You should see a response similar to the following:
[image: Figure 15.2: Deploying all the objects required for the Metrics server

]
Figure 15.2: Deploying all the objects required for the Metrics server

					To test this, let's run the following command:kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"
Note
If you are getting a ServiceUnavailable error, please check whether your firewall rules are allowing the API server to communicate with the node running the Metrics server.
We have been frequently using the kubectl get commands by naming the object. We have seen in Chapter 4, How to Communicate with Kubernetes (API Server), that Kubectl interprets the request, points the request to the appropriate endpoint, and formats the results in a readable format. But here, since we have created a custom endpoint at our API server, we have to point toward it using the --raw flag. You should see a response similar to the following:
[image: Figure 15.3: Response from the Kubernetes Metrics server

]
Figure 15.3: Response from the Kubernetes Metrics server
As we can see here, the response contains JSON blobs that define a metric namespace, metric values, and metric metadata, such as a node name and availability zones. However, these metrics are not very readable. We will make use of Prometheus to aggregate them and then use Grafana to present the aggregated metrics in a concise dashboard.

					Now, we have metric data being aggregated. Let's start scraping and visualizing with Prometheus and Grafana. For this, we will install Prometheus and Grafana using Helm. Run the following command: helm install --generate-name stable/prometheus
Note
If you are installing and running helm for the first time, you will need to run the following command to get stable repos:
help repo add stable https://kubernetes-charts.storage.googleapis.com/
You should see an output similar to the following:
[image: Figure 15.4: Installing the Helm chart for Prometheus

]
Figure 15.4: Installing the Helm chart for Prometheus

					Now, let's install Grafana in a similar fashion:helm install --generate-name stable/grafana
You should see the following response:
[image: Figure 15.5: Installing the Helm chart for Grafana

]
Figure 15.5: Installing the Helm chart for Grafana
In this screenshot, notice the NOTES: section, which lists two steps. Follow these steps to get your Grafana admin password and your endpoint to access Grafana.

					Here, we are running the first command that Grafana showed in the output of the previous step:kubectl get secret --namespace default grafana-1576397218 -o jsonpath="{.data.admin-password}" | base64 --decode ; echo
Please use the version of the commands that you got; the command will be customized for your instance. This command gets your password, which is stored in a Secret, decodes it, and echoes it in your terminal output so that you can copy it for use in further steps. You should see a response similar to the following:
brM8aEVPCJtRtu0XgHVLWcBwJ76wBixUqkCmwUK)

					Now, let's run the next two commands that Grafana asked us to run, as seen in Figure 15.5:export POD_NAME=$(kubectl get pods --namespace default -l "app.kubernetes.io/name=grafana,app.kubernetes.io/instance=grafana-1576397218" -o jsonpath="{.items[0].metadata.name}")
kubectl --namespace default port-forward $POD_NAME 3000
Again, use the command that you obtain for your instance as this will be customized. These commands find the Pod that Grafana is running on and then map a port from our local machine to it so that we can easily access it. You should see the following response:
Forwarding from 127.0.0.1:3000 -> 3000
Forwarding from [::1]:3000 -> 3000
Note
At this step, if you are facing any issues with getting the proper Pod name, you can simply run kubectl get pods to find the name of the Pod running Grafana and use that name instead of the shell ($POD_NAME) variable. So, your command will look similar to this:
kubectl --namespace default port-forward grafana-1591658222-7cd4d8b7df-b2hlm 3000.

					Now, open your browser and visit http://localhost:3000 to access Grafana. You should see the following landing page:[image: Figure 15.6: The log-in page for the Grafana dashboard

]
Figure 15.6: The log-in page for the Grafana dashboard
The default username is admin and the password is the value echoed in the output of step 6. Use that to log in.

					After a successful login, you should see this page:[image: Figure 15.7: The Grafana Home dashboard

]
Figure 15.7: The Grafana Home dashboard

					Now, let's create a dashboard for Kubernetes metrics. To do so, we need to set up Prometheus as a data source for Grafana. On the left sidebar, click on Configuration and then on Data Sources:[image: Figure 15.8: Selecting Data Sources from the Configuration menu

]
Figure 15.8: Selecting Data Sources from the Configuration menu

					You will see this page:[image: Figure 15.9: The Add data source option

]
Figure 15.9: The Add data source option
Now, click on the Add data source button.

					You should see this page with several database options. Prometheus should be on top. Click on that:[image: Figure 15.10: Choosing Prometheus as our data source for the Grafana dashboard

]
Figure 15.10: Choosing Prometheus as our data source for the Grafana dashboard
Now, before we move on to the next screen, here, we need to get the URL that Grafana will use to access the Prometheus database from inside the cluster. We will do that in the next step.

					Open a new terminal window and run the following command: kubectl get svc --all-namespaces
You should see a response similar to the following:
[image: Figure 15.11: Getting the list of all services

]
Figure 15.11: Getting the list of all services
Copy the name of the service that starts with prometheus and ends in server.

					After step 12, you will have arrived at the screen shown in the following screenshot:[image: Figure 15.12: Entering the address of our Prometheus service in Grafana

]
Figure 15.12: Entering the address of our Prometheus service in Grafana
In the URL field of the HTTP section, enter the following value:
http://<YOUR_PROMETHEUS_SERVICE_NAME>.default
Note that you should see Data source is working, as shown in the preceding screenshot. Then, click on the Save and Test button at the bottom. The reason we have added .default to our URL is that we deployed this Helm chart to the default Kubernetes namespace. If you deployed it to another namespace, you should replace default with the name of your namespace.

					Now, let's set up the dashboard. Back on the Grafana home page (http://localhost:3000), click on the + symbol on the left sidebar, and then click on Import, as shown here:[image: Figure 15.13: Navigating to import Dashboard option

]
Figure 15.13: Navigating to import Dashboard option

					On the next page, you should see the Grafana.com Dashboard field, as shown here:[image: Figure 15.14: Entering the source to import the dashboard from

]
Figure 15.14: Entering the source to import the dashboard from
Paste the following link into the Grafana.com Dashboard field:
https://grafana.com/api/dashboards/6417/revisions/1/download
This is an officially supported Kubernetes dashboard. Once you click anywhere outside the file, you should automatically advance to the next screen.

					The previous step should lead you to this screen:[image: Figure 15.15: Setting Prometheus as the data source for the imported dashboard

]
Figure 15.15: Setting Prometheus as the data source for the imported dashboard
Where you see the prometheus, click on the drop-down list next to it, select Prometheus, and hit Import.

					 The result should look like this:[image: Figure 15.16: The Grafana dashboard to monitor our cluster

]

			

			Figure 15.16: The Grafana dashboard to monitor our cluster

			As you can see, we have a concise dashboard for monitoring workloads in Kubernetes. In this exercise, we deployed our Metric Server to collect and expose Kubernetes object metrics, then we deployed Prometheus to store those metrics and Grafana to help us visualize the collected metrics in Prometheus, which will inform us as to what's going on in our cluster at any point in time. Now, it's time to use that information to scale things.

			Autoscaling in Kubernetes

			Kubernetes allows you to automatically scale your workloads to adapt to changing demands on your applications. The information gathered from the Kubernetes Metrics server is the data that is used for driving the scaling decisions. In this book, we will be covering two types of scaling action—one that impacts the number of running pods in a Deployment and another that impacts the number of running nodes in a cluster. Both are examples of horizontal scaling. Let's briefly gain an intuition for what both the horizontal scaling of pods and the horizontal scaling of nodes would entail:

			
					Pods: Assuming that you filled out the resources: section of podTemplate when creating a Deployment in Kubernetes, each container within that pod will have the requests and limits fields, as designated by the corresponding cpu and memory fields. When the resources needed to process a workload exceed that which you have allocated, then by adding additional replicas of a pod to the Deployment, you are horizontally scaling to add capacity to your Deployment. By letting a software process decide the number of replicas of a Pod in a Deployment for you based on load, you are autoscaling your deployment to keep the number of replicas consistent with the metric you have defined to express your application's load. One such metric for application load could be the percentage of the allocated CPU that is currently being consumed.

					Nodes: Every node has a certain amount of CPU (typically expressed by the number of cores) and memory (typically expressed in gigabytes) that it has available for consumption by Pods. When the total capacity of all worker nodes is exhausted by all running pods (meaning that the CPU and memory requests/limits for all the Pods are equal to or greater than that of the whole cluster), then we have saturated the resources of our cluster. In order to allow more Pods to be run on the cluster, or to allow more autoscaling to take place in the cluster, we need to add capacity in the form of additional worker nodes. When we allow a software process to make this decision for us, we are considered to be autoscaling the total capacity of our cluster. In Kubernetes, this is handled by the ClusterAutoscaler.Note
When you increase the number of pod replicas of an application, it is known as horizontal scaling and is handled by the HorizontalPodAutoscaler. If, instead, you were to increase the resource limits for your replicas, that would be called vertical scaling. Kubernetes also offers VerticalPodAutoscaler, but we are leaving it out for brevity, and due to the fact that it is not yet generally available and safe for use in production.

			

			Using both HPAs and ClusterAutoscalers in conjunction with each other can be an effective way for companies to ensure that they always have the right amount of application resources deployed for their load and that they aren't paying too much for it at the same time. Let's examine both of them in the following subsections.

			HorizontalPodAutoscaler

			HPAs are responsible for making sure that the number of replicas of your application in a Deployment match whatever the current demand as measured by a metric. This is useful because we can use real-time metric data, which is already gathered by Kubernetes, to always ensure that our application is meeting the demands we have set forth in our thresholds. This may be a new concept to some application owners who are not used to running applications using data, but once you begin to leverage tools that can right-size your deployments, you will never want to go back.

			Kubernetes has an API resource in the autoscaling/v1 and autoscaling/v2beta2 groups to provide a definition of autoscaling triggers that can run against another Kubernetes resource, which is most often a Kubernetes Deployment object. In the case of autoscaling/v1, the only supported metric is the current CPU consumption, and in the case of autoscaling/v2beta2, there is support for any custom metrics.

			HPA queries the Kubernetes Metric Server to look at the metrics for the particular deployment. Then, the autoscaling resource will determine whether or not the currently observed metric is beyond the threshold for a scaling target. If it is, then it will change the number of Pods desired by the deployment to be higher or lower depending on the load.

			As an example, consider a shopping cart microservice hosted by an e-commerce company. The shopping cart service experiences a heavy load during the coupon code-entry process because it must traverse all items in the cart and search for active coupons on them before validating a coupon code. On a random Tuesday morning, there are many shoppers online using the service and they all want to use coupons. Normally, the service would become overwhelmed and requests would start to fail. However, if you were able to use an HPA, Kubernetes would use the spare computing power of your cluster to ensure that there are enough Pods of this shopping cart service to be able to handle the load.

			Note that simply autoscaling a Deployment is not a "one-size-fits-all" solution to performance problems in an application. There are many places in modern applications where slowdowns can occur, so careful consideration should be made about your application architecture to see where you can identify other bottlenecks not solved by simple autoscaling. One such example would be slow query performance on a database. However, for this chapter, we will be focusing on application problems that can be solved by autoscaling in Kubernetes.

			Let's look at the structure of an HPA to understand a bit better:

			with_autoscaler.yaml

			115 apiVersion: autoscaling/v1

			116 kind: HorizontalPodAutoscaler

			117 metadata:

			118 name: shopping-cart-hpa

			119 spec:

			120 scaleTargetRef:

			121 apiVersion: apps/v1

			122 kind: Deployment

			123 name: shopping-cart-deployment

			124 minReplicas: 20

			125 maxReplicas: 50

			126 targetCPUUtilizationPercentage: 50

			You can find the full code at this link: https://packt.live/3bE9v28.

			In this spec, observe the following fields:

			
					scaleTargetRef: This is the reference to the object that is being scaled. In this case, it is a pointer to the Deployment of a shopping-cart microservice.

					minReplicas: The minimum replicas in the Deployment, regardless of scaling triggers.

					maxReplicas: The maximum number of replicas in the Deployment, regardless of scaling triggers.

					targetCPUUtilizationPercentage: The goal percentage of average CPU utilization across all Pods in this deployment. Kubernetes will re-evaluate this metric constantly and increase and decrease the number of pods so that the actual average CPU utilization matches this target.

			

			To simulate stress on our application, we will use wrk, because it is simple to configure and has a Docker container already made for us. wrk is an HTTP load-testing tool. It is simple to use and only has a few options; however, it will be able to generate large amounts of load by making requests over and over using multiple simultaneous HTTP connections against a specified endpoint.

			Note

			You can find out more about wrk at this link: https://github.com/wg/wrk.

			For the following exercise, we will use a modified version of the application we've been running to help drive scaling behavior. In this revision of our application, we have modified it such that the application will perform a Fibonacci sequence calculation in a naïve way out to the 10,000,000th entry so that it will be slightly more computationally expensive and exceed our CPU autoscaling trigger. If you examine the source code, you can see that we have added this function:

			main.go

			74 func FibonacciLoop(n int) int {

			75 f := make([]int, n+1, n+2)

			76 if n < 2 {

			77 f = f[0:2]

			78 }

			79 f[0] = 0

			80 f[1] = 1

			81 for i := 2; i <= n; i++ {

			82 f[i] = f[i-1] + f[i-2]

			83 }

			84 return f[n]

			85 }

			You can find the full code at this link: https://packt.live/3h5wCEd.

			Other than this, we will be using an Ingress, which we learned about in Chapter 12, Your Application and HA, and the same SQL database that we built in the previous chapter.

			Now, with all of that said, let's dig into the implementation of these autoscalers in the following exercise.

			Exercise 15.02: Scaling Workloads in Kubernetes

			In this exercise, we're going to be putting together a few different pieces from before. Since our application has several moving parts at this point, we need to lay out some steps that we're going to take so that you understand where we're headed:

			
					We need to have our EKS cluster set up as we have in Exercise 12.02, Creating a Cluster with EKS Using Terraform.

					We need to have the required components for the Kubernetes Metrics server set up.Note
Considering these two points, you need to complete the previous exercise successfully to be able to perform this exercise.

					We need to install our counter application using a modification so that it will be a computationally intensive exercise to get the next number in a sequence.

					We need to install the HPA and set a metric target for the CPU percentage.

					We need to install the ClusterAutoscaler and give it the permissions to change the Autoscaling Group (ASG) size in AWS.

					We need to stress test our application by generating enough load to be able to scale the application out and cause the HPA to trigger a cluster-scaling action.

			

			We will use a Kubernetes Ingress resource to load test using traffic external to our cluster so that we can create an even more realistic simulation.

			After doing this, you'll be a Kubernetes captain, so let's dive in:

			
					Now, let's deploy the ingress-nginx setup by running the following commands one after the other:kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/service-l4.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/patch-configmap-l4.yaml
You should see the following responses:
[image: Figure 15.17: Deploying the nginx Ingress controller

]
Figure 15.17: Deploying the nginx Ingress controller

					Now, let's fetch the manifest for our application with HA MySQL, Ingress, and an HPA:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter15/Exercise15.02/with_autoscaler.yaml
Before we apply it, let's look at our autoscaling trigger:
with_autoscaler.yaml
115 apiVersion: autoscaling/v1
116 kind: HorizontalPodAutoscaler
117 metadata:
118 name: counter-hpa
119 spec:
120 scaleTargetRef:
121 apiVersion: apps/v1
122 kind: Deployment
123 name: kubernetes-test-ha-application-with-autoscaler- deployment
124 minReplicas: 2
125 maxReplicas: 1000
126 targetCPUUtilizationPercentage: 10
The full code can be found at this link: https://packt.live/3bE9v28.
Here, we are starting with two replicas of this deployment and allowing ourselves to grow up to 1000 replicas while trying to keep the CPU at a constant 10% utilization. Recall from our Terraform template that we are using m4.large EC2 instances to run these Pods.

					Let's deploy this application by running the following command:kubectl apply -f with_autoscaler.yaml
You should see the following response:
[image: Figure 15.18: Deploying our application

]
Figure 15.18: Deploying our application

					With that, we are ready to load test. Before we begin, let's check on the number of Pods in our deployment:kubectl describe hpa counter-hpa
This may take up to 5 minutes to show a percentage, after which you should see something like this:
[image: Figure 15.19: Getting details about our HPA

]
Figure 15.19: Getting details about our HPA
The Deployment pods: field shows 2 current / 2 desired, meaning our HPA has changed the desired replica count from 3 to 2 because we have a CPU utilization of 0%, which is below the target of 10%.
Now, we need to get some load going. We're going to run a load test from our computer to the cluster using wrk as a Docker container. But first, we need to get the Ingress endpoint to access our cluster.

					Run the following command to first get your Ingress endpoint:kubectl get svc ingress-nginx -n ingress-nginx -o jsonpath='{.status.loadBalancer.ingress[0].hostname}'
You should see the following response:
[image: Figure 15.20: Checking our Ingress endpoint

]
Figure 15.20: Checking our Ingress endpoint

					In another terminal session, run a wrk load test using the following command:docker run --rm skandyla/wrk -t10 -c1000 -d600 -H ‚Host: counter.com' http://YOUR_HOSTNAME/get-number
Let's quickly understand these parameters:
-t10: The number of threads to use for this test, which is 10 in this case.
-c1000: The total number of connections to hold open. In this case, each thread is handling 1,000 connections each.
-d600: The number of seconds to run this test (which in this case is 600 seconds or 10 minutes).
You should get output like the following:
[image: Figure 15.21: Running a load test to our Ingress endpoint

]
Figure 15.21: Running a load test to our Ingress endpoint

					In another session, let's keep an eye on the pods for our application: kubectl get pods --watch
You should be able to see a response similar to this:
[image: Figure 15.22: Watching pods backing our application

]
Figure 15.22: Watching pods backing our application
In this terminal window, you should see the number of Pods increasing. Note that we can also check the same in our Grafana dashboard.
Here, it is increased by 1; but soon, these pods will exceed all the available space.

					In yet another terminal session, you can again set up port forwarding to Grafana to observe the dashboard:kubectl --namespace default port-forward $POD_NAME 3000
You should see the following response:
Forwarding from 127.0.0.1:3000 -> 3000
Forwarding from [::1]:3000 -> 3000

					Now, access the dashboard on your browser at localhost:3000:[image: Figure 15.23: Observing our cluster in the Grafana dashboard

]

			

			Figure 15.23: Observing our cluster in the Grafana dashboard

			You should be able to see the number of Pods increasing here as well. Thus, we have successfully deployed an HPA that is automatically scaling up the number of Pods as the load on our application increases.

			ClusterAutoscaler

			If the HPA ensures that there are always the right number of Pods running in a Deployment, then what happens when we run out of capacity on the cluster for all of those Pods? We need more of them, but we also don't want to be paying for that additional cluster capacity when we don't need it. This is where the ClusterAutoscaler comes in.

			The ClusterAutoscaler will work inside your cluster to ensure that the number of nodes running in the ASG (in the case of AWS) always has enough capacity to run the currently deployed application components of your cluster. So, if 10 pods in a Deployment can fit on 2 nodes, then when you need an 11th Pod, the ClusterAutoscaler will ask AWS to add a 3rd node to your Kubernetes cluster to get that Pod scheduled. When that Pod is no longer needed, that Node goes away, too. Let's look at a brief architecture diagram to understand how the ClusterAutoscaler works:

			
				
					[image: Figure 15.24: Cluster with nodes at full capacity

]
				

			

			Figure 15.24: Cluster with nodes at full capacity

			Note that in this example, we have an EKS cluster running two worker nodes and all available cluster resources are taken up. So, here's what the ClusterAutoscaler does.

			When a request for a Pod that won't fit arrives at the control plane, it remains in a Pending state. When the ClusterAutoscaler observes this, it will communicate with the AWS EC2 API and request for the ASG, which has our worker nodes deployed in them, to scale up by another node. This requires the ClusterAutoscaler to be able to communicate with the API for the cloud provider it is running in in order to change worker node count. In the case of AWS, this also means that we will either have to generate IAM credentials for the ClusterAutoscaler or allow it to use the IAM role of the machine to access the AWS APIs.

			A successful scaling action should look like the following:

			
				
					[image: Figure 15.25: Additional node provisioned to run the additional pods

]
				

			

			Figure 15.25: Additional node provisioned to run the additional pods

			We will implement the ClusterAutoscaler in the following exercise, and then load test it in the activity after that.

			Exercise 15.03: Configuring the ClusterAutoscaler

			So, now that we've seen our Kubernetes Deployment scale, it's time to see it scale to the point where it needs to add more node capacity to the cluster. We will be continuing where the last lesson left off and run the exact same application and load test but let it run a little longer:

			
					To create a ClusterAutoscaler, first, we need to create an AWS IAM account and give it the permissions to manage our ASGs. Create a file called permissions.json with the following contents:{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:SetDesiredCapacity",
 "autoscaling:TerminateInstanceInAutoScalingGroup",
 "autoscaling:DescribeLaunchConfigurations",
 "ec2:DescribeLaunchTemplateVersions",
 "autoscaling:DescribeTags"
],
 "Resource": "*"
 }
]
}

					Now, let's run the following command to create an AWS IAM policy:aws iam create-policy --policy-name k8s-autoscaling-policy --policy-document file://permissions.json
You should see the following response:
[image: Figure 15.26: Creating an AWS IAM policy

]
Figure 15.26: Creating an AWS IAM policy
Note down the value of the Arn: field from the output that you get.

					Now, we need to create an IAM user and then attach a policy to it. First, let's create the user:aws iam create-user --user-name k8s-autoscaler
You should see this response:
[image: Figure 15.27: Creating an IAM user to use our policy

]
Figure 15.27: Creating an IAM user to use our policy

					Now, let's attach the IAM policy to the user:aws iam attach-user-policy --policy-arn <ARN_VALUE> --user-name k8s-autoscaler
Use the ARN value that you obtained in step 2.

					Now, we need the secret access key for this IAM user. Run the following command:aws iam create-access-key --user-name k8s-autoscaler
You should get this response:
[image: Figure 15.28: Fetching the secret access key for the created IAM user

]
Figure 15.28: Fetching the secret access key for the created IAM user
In the output of this command, note AccessKeyId and SecretAccessKey.

					Now, get the manifest file for ClusterAutoscaler that we have provided:curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter15/Exercise15.03/cluster_autoscaler.yaml

					We need to create a Kubernetes Secret to expose these credentials to the ClusterAutoscaler. Open the cluster_autoscaler.yaml file. In the first entry, you should see the following:cluster_autoscaler.yaml
1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: aws-secret
5 namespace: kube-system
6 type: Opaque
7 data:
8 aws_access_key_id: YOUR_AWS_ACCESS_KEY_ID
9 aws_secret_access_key: YOUR_AWS_SECRET_ACCESS_KEY
You can find the full code at this link: https://packt.live/2DCDfzZ.
You need to replace YOUR_AWS_ACCESS_KEY_ID and YOUR_AWS_SECRET_ACCESS_KEY with the Base64-encoded versions of the values returned by AWS in step 5.

					To encode in Base64 format, run the following command:echo -n <YOUR_VALUE> | base64
Run this twice, using AccessKeyID and SecretAccessKey in place of <YOUR_VALUE> to get the corresponding Base64-encoded version that you need to enter into the secret fields. Here's what it should look like when complete:
aws_access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
aws_secret_access_key: d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=

					Now, in the same cluster_autoscaler.yaml file, go to line 188. You will need to replace the value of YOUR_AWS_REGION with the value of the region you deployed your EKS cluster into, such as us-east-1:cluster_autoscaler.yaml
176 env:
177 - name: AWS_ACCESS_KEY_ID
178 valueFrom:
179 secretKeyRef:
180 name: aws-secret
181 key: aws_access_key_id
182 - name: AWS_SECRET_ACCESS_KEY
183 valueFrom:
184 secretKeyRef:
185 name: aws-secret
186 key: aws_secret_access_key
187 - name: AWS_REGION
188 value: <YOUR_AWS_REGION>
You can find the entire code at this link: https://packt.live/2F8erkb.

					Now, apply this file by running the following:kubectl apply -f cluster_autoscaler.yaml
You should see a response similar to the following:
[image: Figure 15.29: Deploying our ClusterAutoscaler

]
Figure 15.29: Deploying our ClusterAutoscaler

					Note that we need to now modify our ASG in AWS to allow for a scale-up; otherwise, the ClusterAutoscaler will not attempt to add any nodes. To do this, we have provided a modified main.tf file that has only one line changed: max_size = 5 (line 299). This will allow the cluster to add up a maximum of five EC2 nodes to itself. Navigate to the same location where you downloaded the previous Terraform file, and then run the following command:
curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-Workshop/master/Chapter15/Exercise15.03/main.tf
You should see this response:
[image: Figure 15.30: Downloading the modified Terraform file

]
Figure 15.30: Downloading the modified Terraform file

					Now, apply the modifications to the Terraform file:terraform apply
Verify that the changes are only applied to the ASG max capacity, and then type yes when prompted:
[image: Figure 15.31: Applying our Terraform modifications

]

			

			Figure 15.31: Applying our Terraform modifications

			Note

			We will test this ClusterAutoscaler in the following activity. Hence, do not delete your cluster and API resources for now.

			At this point, we have deployed our ClusterAutoscaler and configured it to access the AWS API. Thus, we should be able to scale the number of nodes as required.

			Let's proceed to the following activity, where we will load test our cluster. You should plan to do this activity as soon as possible in order to keep costs down.

			Activity 15.01: Autoscaling Our Cluster Using ClusterAutoscaler

			In this activity, we are going to run another load test and this time, we are going to run it for longer and observe the changes to the infrastructure as the cluster expands to meet demands. This activity should repeat the previous steps (as shown in Exercise 15.02, Scaling Workloads in Kubernetes) to run the load test but this time, it should be done with the ClusterAutoscaler installed so that when your cluster runs out of capacity for the Pods, it will scale the number of nodes to fit the new Pods. The goal of this is to see a load test increase the node count.

			Follow these guidelines to complete your activity:

			
					We will use the Grafana dashboard to observe the cluster metrics, paying close attention to the number of running Pods and the number of nodes.

					Our HPA should be set up so that when our application receives more load, we can scale the number of Pods to meet the demand.

					Ensure that your ClusterAutoscaler has been successfully set up.Note
To fulfill the three aforementioned requirements, you will need to have successfully completed all the exercises in this chapter. We will be using the resources created in those exercises.

					Run a load test, as shown in step 2 of Exercise 15.02. You may choose a longer or more intense test if you wish.

			

			By the end of this activity, you should be able to observe an increase in the number of nodes by describing the AWS ASG like so:

			
				
					[image: Figure 15.32: Increase in the number of nodes observed

by describing the AWS scaling group

]
				

			

			Figure 15.32: Increase in the number of nodes observed by describing the AWS scaling group

			You should also be able to observe the same in your Grafana dashboard:

			
				
					[image: Figure 15.33: Increase in the number of nodes observed in the Grafana dashboard

]
				

			

			Figure 15.33: Increase in the number of nodes observed in the Grafana dashboard

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD. Make sure you delete the EKS cluster by running the command terraform destroy.

			Deleting Your Cluster Resources

			This is the last chapter where we will use our EKS cluster. Hence, we recommend that you delete your cluster resources using the following command:

			terraform destroy

			This should stop the billing for the EKS cluster that we created using Terraform.

			Summary

			Let's reflect a bit on how far we've come from Chapter 11, Build Your Own HA Cluster, when we started to talk about running Kubernetes in a highly available manner. We covered how to set up a production cluster that was secure in the cloud and created using infrastructure as code tools such as Terraform, as well as secured the workloads that it runs. We also looked at necessary modifications to our applications in order to scale them well—both for the stateful and stateless versions of the application.

			Then, in this chapter, we looked at how we can extend the management of our application runtimes using data specifically when introducing Prometheus, Grafana, and the Kubernetes Metrics server. We then used that information to leverage the HPA and the ClusterAutoscaler so that we can rest assured that our cluster is always appropriately sized and ready to respond to spikes in demand automatically without having to pay for hardware that is overprovisioned.

			In the following series of chapters, we will explore some advanced concepts in Kubernetes, starting with admission controllers in the next chapter.

		

		
			
			

		

		
			
			

		

	
		
			
			

		

		
			16. Kubernetes Admission Controllers

		

		
			Overview

			In this chapter, we will learn about Kubernetes admission controllers and use them to modify or validate incoming API requests. This chapter describes the utility of Kubernetes admission controllers and how they offer to extend the capabilities of your Kubernetes cluster. You will learn about several built-in admission controllers and the difference between mutating and validating controllers. By the end of this chapter, you will be able to create your own custom admission controllers and apply this knowledge to build a controller for your required scenario.

			Introduction

			In Chapter 4, How to Communicate with Kubernetes (API Server), we learned how Kubernetes exposes its Application Programming Interface (API) to interact with the Kubernetes platform. You also studied how to use kubectl to create and manage various Kubernetes objects. The kubectl tool is simply a client to the Kubernetes API server. Kubernetes master nodes host the API server through which anyone can communicate with the cluster. The API server provides a way to communicate with Kubernetes for not only external actors but also all internal components, such as the kubelet running on a worker node.

			The API server is the central access point to our cluster. If we want to make sure that our organization's default set of best practices and policies are enforced, there is no better place to check for and apply them than at the API server. Kubernetes provides this exact capability via admission controllers.

			Let's take a moment to understand why admission controllers are useful. Consider, for example, that we have a policy of a standard set of labels in all the objects to assist in the reporting of groups of objects per business unit. This might be important for getting specific data, such as how many Pods are being executed by the integration team. If we are managing and monitoring objects based on their labels, then any objects without the required labels can hamper our management and monitoring practices. Therefore, we would want to implement a policy that will prevent an object from being created if these labels are not defined in the object specification. This requirement can be easily implemented using admission controllers.

			Note

			Open Policy Agent is a good example of how webhooks can be used to build an extensible platform to apply standards on the Kubernetes objects. You can find more details about it at this link: https://www.openpolicyagent.org/docs/latest/kubernetes-admission-control.

			Admission controllers are a set of components that intercept all calls to the Kubernetes API server and provide a way to make sure that any requests are meeting the desired criteria. It is important to note that the controllers are invoked after the API call is authenticated and authorized and before the objects are actioned and stored in etcd. This provides a perfect opportunity to implement control and governance, apply standards, and accept or reject the API requests to keep the cluster in the desired shape. Let's take a look at how admission controllers work in the Kubernetes cluster.

			How Admission Controllers Work

			Kubernetes provides a set of more than 25 admission controllers. A set of admission controllers is enabled by default and the cluster administrator can pass flags to the API server to control enabling/disabling the additional controllers (configuring the API server in a production-grade cluster is outside the scope of this book). These can be broadly divided into two types:

			
					Mutating admission controllers allow you to modify the request before it gets applied to the Kubernetes platform. LimitRanger is one such example, which applies the defaultRequests to the Pod if it is undefined by the Pod itself.

					Validating admission controllers validate the request and cannot change the request object. If this controller rejects the request, it will not be actioned by the Kubernetes platform. An example of this would be the NamespaceExists controller, which rejects the request if the namespace referenced in the request is not available.

			

			Essentially, admission controllers are executed in two phases. In the first phase, mutating admission controllers are executed, and, in the second phase, validating admission controllers are executed.

			Note

			Depending on the situation, it might be a good idea to avoid using mutating controllers because they change the state of the request, and the caller may not be aware of the changes. Instead, you can use a validating controller to reject an invalid request and let the caller fix the request.

			A high-level overview of admission controllers is illustrated in the following figure:

			
				
					[image: Figure 16.1: Stages of an API request for creating an object

]
				

			

			Figure 16.1: Stages of an API request for creating an object

			When the Kubernetes API server receives an API call (which can be made via kubectl or the kubelet running on other nodes), it passes the call through the following phases:

			
					Perform authentication and authorization of the call to make sure that the caller is authenticated and RBAC policies are applied.

					Run the payload through all of the existing mutating controllers. Mutating controllers are those that can change the object sent by the client.

					Check whether the object abides by the defined schema and whether all of the fields are valid.

					Run the payload through all of the existing validating controllers. These controllers validate the final objects.

					Store the objects in the etcd datastore.

			

			You can see from Figure 16.1 that some admission controllers have something called webhooks attached to them. This might not be true for all admission controllers. We will learn more about webhooks in the later sections of this chapter.

			Note that some of the controllers provide functionality both as mutating and validating controllers. In fact, a few Kubernetes functions are implemented as admission controllers. For example, when a Kubernetes namespace enters the terminating state, the NamespaceLifecycle admission controller prevents new objects from being created in the terminating namespace.

			Note

			We will only cover a few admission controllers in this chapter for brevity. Please refer to this link for a complete list of the controllers that are available: https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do.

			Let's confirm that our Minikube setup is configured to run admission controllers. Run the following command to start Minikube with all of the required plugins enabled:

			minikube stop

			minikube start --extra-config=apiserver.enable-admission-plugins="LimitRanger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,MutatingAdmissionWebhook,ValidatingAdmissionWebhook"

			You should see a response like the following screenshot:

			
				
					[image: Figure 16.2: Starting up Minikube with all of the required plugins

to run admission controllers

]
				

			

			Figure 16.2: Starting up Minikube with all of the required plugins to run admission controllers

			Now that we have had an overview of the built-in admission controllers, let's take a look at how we can make an admission controller using our own custom logic.

			Creating Controllers with Custom Logic

			As mentioned earlier, Kubernetes provides a list of controllers with predefined functionality. These controllers are baked into the Kubernetes server binary. However, what happens if you need to have your own policy or standard to check against, and none of the admission controllers fit your requirements?

			To address such a requirement, Kubernetes provides something called admission webhooks. There are two types of admission webhooks, which we will study in the following sections.

			The Mutating Admission Webhook

			The mutating admission webhook is a type of mutating admission controller that doesn't have any logic of its own. Instead, it allows you to define a URL that will be called by the Kubernetes API server. This URL is the address to our webhook. Functionally, a webhook is an HTTPS server that accepts requests, processes them, and then responds back.

			If multiple URLs are defined, they are processed in a chain, that is, the output of the first webhook becomes the input for the second webhook.

			The Kubernetes API server sends a payload (the AdmissionReview object) to the webhook URL with the request being processed. You can modify the request as per your requirement (for example, by adding a custom annotation) and send back a modified request. The Kubernetes API server will use the modified object in the next stages of creating the resource.

			The execution flow will be as follows:

			
					The Kubernetes API receives a request for creating an object. For example, let's say you want to create a Pod that is defined as follows:apiVersion: v1
kind: Pod
metadata:
 name: configmap-env-pod
spec:
 containers:
 - name: configmap-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "sleep 5"]

					Kubernetes calls a webhook, defined as MutatingAdmissionWebHook, and passes the object definition to it. In this case, it's the Pod specification.

					The webhook (which is the custom code written by you) receives the object and modifies it as per the custom rules. Let's say, for example, it adds the custom annotation, podModified="true". After modification, the object will look like this:apiVersion: v1
kind: Pod
metadata:
 name: configmap-env-pod
 annotations:
 podModified: "true"
spec:
 containers:
 - name: configmap-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "sleep 5"]

					The webhook returns the modified object.

					Kubernetes will treat the modified object as if it was the original request and move on.

			

			The flow mentioned earlier can be visualized as follows. Note that the flow is simplified so that you can understand the major stages:

			
				
					[image: Figure 16.3: Process flow for the mutating admission webhook

]
				

			

			Figure 16.3: Process flow for the mutating admission webhook

			The Validating Admission Webhook

			The second type of webhook is the validating admission webhook. This hook, similar to a mutating admission webhook, doesn't have any logic of its own. Following the same pattern, it allows us to define a URL, which ultimately provides the logic that decides to accept or reject this call.

			The main difference is that a validating webhook cannot modify the request and can only allow or reject a request. If this webhook rejects the request, Kubernetes will send an error back to the caller; otherwise, it will proceed to execute the request further.

			How a Webhook Works

			Webhooks are deployed as Pods in the Kubernetes cluster, and the Kubernetes API server calls them over SSL using the AdmissionReview object. This object defines the AdmissionRequest and AdmissionResponse objects. The webhook reads the request payload from the AdmissionRequest object and provides the success flag and optional changes in the AdmissionResponse object.

			The following is a top-level definition of the AdmissionReview object. Note that AdmissionRequest and AdmissionResponse are both part of the AdmissionReview object. The following is an excerpt from the definition of the AdmissionReview object in the Kubernetes source code:

			// AdmissionReview describes an admission review request/response.

			type AdmissionReview struct {

			 metav1.TypeMeta `json:",inline"`

			 // Request describes the attributes for the admission request.

			 // +optional

			 Request *AdmissionRequest `json:"request,omitempty" protobuf:"bytes,1,opt,name=request"`

			 // Response describes the attributes for the admission response.

			 // +optional

			 Response *AdmissionResponse `json:"response,omitempty" protobuf:"bytes,2,opt,name=response"`

			}

			Note

			This snippet is an extract from the Kubernetes source code. You can view more details of the AdmissionReview objects at this link: https://github.com/kubernetes/api/blob/release-1.16/admission/v1beta1/types.go.

			The same AdmissionReview object is used for both mutating and validating admission webhooks. A mutating webhook calculates the changes required to meet the custom requirements that you have coded in the webhook. These changes (defined as a patch) are passed in the patch field, along with a patchType field in the AdmissionResponse object. The API server then applies that patch to the original object and the resultant object is persisted in the API server. To validate the webhook, these two fields are kept empty.

			A validating admission webhook would simply set a flag to accept or reject a request, while a mutating admission webhook would set a flag whether or not the request was successfully modified as per the request.

			First, let's take a closer look at how we can manually patch an object, which will help you to build a webhook that can patch an object.

			You can manually patch an object using the kubectl patch command. As an example, let's say that you want to add a field to the .metadata.annotation section in an object. To do that, the command would look like this:

			kubectl patch configmap simple-configmap -n webhooks -p '{"metadata": {"annotations": {"new":"annotation"} } }'

			Note the double space before and after the field that we want to add (shown in the preceding command as {"new":"annotation"}). Let's implement this in an exercise where we will also learn how this command can be used with a JSON payload.

			Exercise 16.01: Modifying a ConfigMap Object through a Patch

			In this exercise, we will patch a ConfigMap using kubectl. We will add an annotation to the ConfigMap object. This annotation can later be used to group objects, similar to the use case that we mentioned in the Introduction section. Therefore, if multiple teams are using a cluster, we would want to track which teams are using which resources. Let's begin the exercise:

			
					Create a namespace with the name webhooks:kubectl create ns webhooks
You should see the following response:
namespace/webhooks created

					Next, create a ConfigMap using the following command:kubectl create configmap simple-configmap --from-literal=url=google.com -n webhooks
You will see the following response:
configmap/simple-configmap created

					Check the contents of the ConfigMap using the following command:kubectl get configmap simple-configmap -o yaml -n webhooks
You should see the following response:
[image: Figure 16.4: Getting the contents of the ConfigMap in YAML format

]
Figure 16.4: Getting the contents of the ConfigMap in YAML format

					Now, let's patch the ConfigMap with an annotation. The annotation we want to add is teamname with the value of kubeteam:kubectl patch configmap simple-configmap -n webhooks -p '{"metadata": {"annotations": {"teamname":"kubeteam"} } }'
You will get the following response:
configmap/simple-configmap patched
In Chapter 6, Labels and Annotations, we learned that annotations are stored as key-value pairs. Therefore, a key can have only a value, and if a value already exists for the key (in this case, teamname), then the value will be overwritten by the new value. Therefore, ensure your webhook logic excludes the objects that already have the desired configuration.

					Now, let's apply another patch using detailed patch instructions using JSON format to provide the required field:kubectl patch configmap simple-configmap -n webhooks --type='json' -p='[{"op": "add", "path": "/metadata/annotations/custompatched", "value": "true"}]'
Note that there are three components of the patch: op (for operations such as add), path (for the location of the fields to patch), and value (which is the new value). You should see the following response:
configmap/simple-configmap patched
This is another way to apply the patch. You can see the preceding command, which is instructing Kubernetes to add a new annotation with the key as custompatched and the value as true.

					Now, let's see whether the patch has been applied. Use the following command:kubectl get configmap simple-configmap -n webhooks -o yaml
You should see the following output:
[image: Figure 16.5: Checking the modified annotations on our ConfigMap

]

			

			Figure 16.5: Checking the modified annotations on our ConfigMap

			As you can see from the annotations field under metadata, both annotations have been applied to our ConfigMap. The platform team now knows who owns this ConfigMap object.

			Guidelines for Building a Mutating Admission WebHook

			We now know all the parts of a working mutating admission webhook. Remember that the webhook is just a simple HTTPS server, and you can write it in your language of choice. Webhooks are deployed in the cluster as Pods. The Kubernetes API server will call these Pods over SSL on port 443 to mutate or validate the objects.

			The pseudocode for building a webhook Pod will look like this:

			
					A simple HTTPS server (the webhook) is set up in a Pod to accept POST calls. Note that the call must be over SSL.

					Kubernetes will send the AdmissionReview object to the webhook through an HTTPS POST call.

					The webhook code will process the AdmissionRequest object to get the details of the object in the request.

					The webhook code will optionally patch the object and set the response flag to indicate success or failure.

					The webhook code will populate the AdmissionResponse section in the AdmissionReview object with the updated request.

					The webhook will respond to the POST call (received in step 2) with the AdmissionReview object.

					The Kubernetes API server will assess the response and, based on the flag, accept or reject the client request.

			

			In the code for the webhook, we will specify the path and required modifications using JSON. Keep in mind from the previous exercise that, while patching, our patch object definition will contain the following:

			
					op specifies operations such as add and replace.

					path specifies the location of the field we are trying to modify. Refer to the output of the command in Figure 16.5 and note that different fields are located in different places. For example, the name is inside the metadata field, so the path for this will be /metadata/name.

					value specifies the value of the field.

			

			A simple mutating webhook written in Go should look like the following:

			mutatingcontroller.go

			20 func MutateCustomAnnotation(admissionRequest *v1beta1.AdmissionRequest) (*v1beta1.AdmissionResponse, error){

			21

			22 // Parse the Pod object.

			23 raw := admissionRequest.Object.Raw

			24 pod := corev1.Pod{}

			25 if _, _, err := deserializer.Decode(raw, nil, &pod); err != nil{

			26 return nil, errors.New("unable to parse pod")

			27 }

			28

			29 //create annotation to add

			30 annotations := map[string]string{"podModified" : "true"}

			31

			32 //prepare the patch to be applied to the object

			33 var patch []patchOperation

			34 patch = append(patch, patchOperation{

			35 Op: "add",

			36 Path: "/metadata/annotations",

			37 Value: annotations,

			38 })

			39

			40 //convert patch into bytes

			41 patchBytes, err := json.Marshal(patch)

			42 if err != nil {

			43 return nil, errors.New("unable to parse the patch")

			44 }

			45

			46 //create the response with patch bytes

			47 var admissionResponse *v1beta1.AdmissionResponse

			48 admissionResponse = &v1beta1.AdmissionResponse {

			49 Allowed: true,

			50 Patch: patchBytes,

			51 PatchType: func() *v1beta1.PatchType {

			52 pt := v1beta1.PatchTypeJSONPatch

			53 return &pt

			54 }(),

			55 }

			56

			57 //return the response

			58 return admissionResponse, nil

			59

			60 }

			The complete code for this example can be found at https://packt.live/2GFRCot.

			As you can see in the preceding code, the three main parts are the AdmissionRequest object, the patch, and the AdmissionResponse object with the patched information.

			So far, in this chapter, we have learned what the admission webhook is and how it interacts with the Kubernetes API server. We have also demonstrated that one way to change the requested objects is by using a patch. Now, let's apply what we have learned until now and deploy a webhook in our Kubernetes cluster.

			Remember that all communications between the API server and the webhook are over SSL. SSL is a protocol that is used for secure communication over a network. To do this, we need to create public and private keys, as you will see in the following exercise.

			Note that we have not yet built the code that goes into the webhook. First, let's demonstrate how to deploy the Pods (using Deployment) for a webhook using a pre-built container, and then we will go on to build the code that goes into the Pod to get the webhook up and running.

			Exercise 16.02: Deploying a Webhook

			In this exercise, we'll deploy a simple pre-built webhook server to Kubernetes. Remember that a webhook is just an HTTPS server, and that is exactly what we are going to create. When Kubernetes has to call the webhook endpoint over SSL, we will need to create a certificate for our call. Once we create our certificates for SSL communication, we will use the Kubernetes Deployment object to deploy our webhook:

			
					Create a Certificate Authority (CA) for a self-signed certificate. This CA will be later used to create trust between the Kubernetes and our webhook server for the HTTPS call:openssl req -nodes -new -x509 -keyout controller_ca.key -out controller_ca.crt -subj "/CN=Mutating Admission Controller Webhook CA"
This should give you the following response:
[image: Figure 16.6: Generating a self-signed certificate

]
Figure 16.6: Generating a self-signed certificate
Note
You can learn more about self-signed certificates at this link: https://aboutssl.org/what-is-self-sign-certificate/.

					Create the private key for the SSL call:openssl genrsa -out tls.key 2048
You should see the following response:
[image: Figure 16.7: Creating the private key for the SSL call

]
Figure 16.7: Creating the private key for the SSL call

					Now sign the server certificate with the CA: openssl req -new -key tls.key -subj "/CN=webhook-server.webhooks.svc" \
 | openssl x509 -req -CA controller_ca.crt -CAkey controller_ca.key -CAcreateserial -out tls.crt
Note that the name of the service in this command is the service that is going to expose our webhook within the cluster so that the API server can access it. We will revisit this name in step 7. You should see the following response:
Signature ok
subject=/CN=webhook-server.webhooks.svc
Getting CA Private Key

					Now we have created a certificate that our server can use. Next, we will just create a Kubernetes Secret to load the private key and certificate to our webhook server:kubectl -n webhooks create secret tls webhook-server-tls \
 --cert "tls.crt" \
 --key "tls.key"
You should see the following response:
secret/webhook-server-tls created

					Our webhook will run as a Pod, which we will create using a Deployment. To do that, first, create a file named mutating-server.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: webhook-server
 labels:
 app: webhook-server
spec:
 replicas: 1
 selector:
 matchLabels:
 app: webhook-server
 template:
 metadata:
 labels:
 app: webhook-server
 spec:
 containers:
 - name: server
 image: packtworkshops/the-kubernetes- workshop:mutating-webhook
 imagePullPolicy: Always
 ports:
 - containerPort: 8443
 name: webhook-api
 volumeMounts:
 - name: webhook-tls-certs
 mountPath: /etc/secrets/tls
 readOnly: true
 volumes:
 - name: webhook-tls-certs
 secret:
 secretName: webhook-server-tls
Note that we are linking to the premade image for the server that we have provided.

					Create a Deployment using the YAML file that we created in the previous step:kubectl create -f mutating-server.yaml -n webhooks
You should see the following response:
deployment.apps/webhook-server created

					Once the server is created, we need to create a Kubernetes Service. Note that the Service is accessible through webhook-server.webhooks.svc. This string, which we used in step 3 while creating the certificate, is based on the fields defined in the following specification, in the format of <SERVICENAME>.<NAMESPACENAME>.svc.Create a file, named mutating-serversvc.yaml, to define a Service with the following specification:
apiVersion: v1
kind: Service
metadata:
 labels:
 app: webhook-server
 name: webhook-server
 namespace: webhooks
spec:
 ports:
 - port: 443
 protocol: TCP
 targetPort: 8443
 selector:
 app: webhook-server
 sessionAffinity: None
 type: ClusterIP

					Using the definition from the previous step, create the Service using the following command:kubectl create -f mutating-serversvc.yaml -n webhooks
You should see the following response:
service/webhook-server created

			

			In this exercise, we have deployed a pre-built webhook and configured certificates such that our webhook is ready to accept calls from the Kubernetes API server.

			Configuring the Webhook to Work with Kubernetes

			At this stage, we have created and deployed the webhook using a Deployment. Now, we need to register the webhook with Kubernetes so that Kubernetes knows about it. The way to do this is by creating a MutatingWebHookConfiguration object.

			Note

			You can find more details about MutatingConfigurationWebhook at https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/.

			The following snippet shows an example of what the configuration object for MutatingWebhookConfiguration would look like:

			apiVersion: admissionregistration.k8s.io/v1beta1

			kind: MutatingWebhookConfiguration

			metadata:

			 name: pod-annotation-webhook

			webhooks:

			- name: webhook-server.webhooks.svc

			 clientConfig:

			 service:

			 name: webhook-server

			 namespace: webhooks

			 path: "/mutate"

			 caBundle: "LS0…" #The caBundle is truncated for brevity

			 rules:

			 - operations: ["CREATE"]

			 apiGroups: [""]

			 apiVersions: ["v1"]

			 resources: ["pods"]

			Here are a few notable definitions from the preceding object:

			
					The clientConfig.service section defines the location of the mutating webhook (which we deployed in Exercise 16.02, Deploying a Webhook).

					The caBundle section contains the certificate through which SSL trust will be established. This is the certificate, encoded in Base64 format. We will explain how to encode it in the next section.

					The rules section defines what operations need to be intercepted. Here, we are instructing Kubernetes to intercept any calls to create a new Pod.

			

			How to Encode a Certificate in Base64 Format

			As pointed out earlier, when the Kubernetes API server calls the webhook, the call is encrypted over SSL, and we need to provide the SSL trust certificate in the webhook definition. This can be seen in the caBundle field in the definition of MutatingWebhookConfiguration shown in the previous section. The data in this field is Base64-encoded, as you learned in Chapter 10, ConfigMaps and Secrets. The following commands can be used to encode a certificate in Base64 format.

			First, convert the generated file into Base64 format using the following command:

			openssl base64 -in controller_ca.crt -out controller_ca-base64.crt

			Since we need to convert the generated CA bundle into the Base64 format and put it in the YAML file (as mentioned earlier), we need to remove the newline (\n) characters. The following commands could be used to do this:

			cat controller_ca-base64.crt | tr -d '\n' > onelinecert.pem

			Both of these commands do not show any response in the terminal upon successful execution. At this stage, you will have the CA bundle inside the onelinecert.pem file, which you can copy to create your YAML definitions.

			Activity 16.01: Creating a Mutating Webhook That Adds an Annotation to a Pod

			In this activity, we are using the knowledge we have acquired in this and earlier chapters to create a mutating webhook that adds a custom annotation to a Pod. There can be many use cases for such a webhook. For example, you might want to record whether the container image is coming from the previously approved repository or not, for future reporting. Extending this further, you can also schedule Pods from different repositories on different nodes.

			The high-level steps for completing this activity are as follows:

			
					Create a new namespace named webhooks. If it exists already, delete the existing namespace and then create it again.

					Generate the self-signed CA certificate.

					Generate a private/public key pair for SSL and sign it with the CA certificate.

					Create a secret that holds the private/public key pair generated in the previous step.

					Write the webhook code to add a custom annotation in the Pod.

					Package the webhook server code as a Docker container.

					Push the Docker container to a public repository of your choice.Note
If you have any difficulty building your own webhook, you can use the code available at this link as a reference: https://packt.live/2R1vJlk.
If you want to avoid building and packaging a webhook, we have provided a pre-built container so that you can use it directly in your Deployment. You can use this image from Docker Hub: packtworkshops/the-kubernetes-workshop:webhook.
Using this image allows you to skip steps 5 to 7.

					Create a Deployment that deploys the webhook server.

					Expose the webhooks Deployment as a Kubernetes Service.

					Create a Base64-encoded version of the CA certificate.

					Create a MutatingWebHookConfiguration object so that Kubernetes can intercept the API call and call our webhook.

			

			At this stage, our webhook has been created. Now, to test whether our webhook is working, create a simple Pod with no annotations.

			Once the Pod is created, make sure that the annotation is added to the Pod by describing it. Here is a truncated version of the expected output. Note that the annotation here is supposed to be added by our webhook:

			
				
					[image: Figure 16.8: Expected output of Activity 16.01

]
				

			

			Figure 16.8: Expected output of Activity 16.01

			Note

			The solution to this activity can be found on page 799.

			Validating a Webhook

			We have learned that the mutating webhook essentially allows the modification of Kubernetes objects. The other kind of webhook is called a validating webhook. As the name suggests, this webhook does not allow any change in the Kubernetes objects; instead, it works as a gatekeeper to our cluster. It allows us to write code that can validate any Kubernetes object being requested and allow or reject the request based on the conditions that we specify.

			Let's understand how this can be helpful using an example. Let's assume that our Kubernetes cluster is used by many teams, and we want to know which Pods are associated with which teams. One solution is to ask all the teams to add a label on their Pod (for example, a label with the key as teamName and the name of the team as the value). As you can guess, it is not a standard Kubernetes feature to enforce a set of labels. In this case, we would need to create our own logic to disallow Pods that do not have these labels.

			One way to achieve this is to write a validating webhook that looks for this label in any requests for Pods and reject the creation of the requested Pods if this label does not exist. You are going to do exactly this in Activity 16.02, Creating a Validating Webhook that Checks for a Label in a Pod later in the chapter. For now, let's take a look at what the code for a validating webhook will look like.

			Coding a Simple Validating WebHook

			Let's take a look at an excerpt from the code for a simple validating webhook:

			func ValidateTeamAnnotation(admissionRequest *v1beta1.AdmissionRequest) (*v1beta1.AdmissionResponse, error){

			 // Get the AdmissionReview Object

			 raw := admissionRequest.Object.Raw

			 pod := corev1.Pod{}

			

			 // Parse the Pod object.

			 if _, _, err := deserializer.Decode(raw, nil, &pod); err != nil {

			 return nil, errors.New("unable to parse pod")

			 }

			 //Get all the Labels of the Pod

			 podLabels := pod.ObjectMeta.GetLabels()

			

			 //Logic to check if label exists

			 //check if the teamName label is available, if not generate an error.

			 if podLabels == nil || podLabels[teamNameLabel] == "" {

			 return nil, errors.New("teamName label not found")

			 }

			

			 //Populate the Allowed flag

			 //if the teamName label exists, return the response with

			 //Allowed flag set to true.

			 var admissionResponse *v1beta1.AdmissionResponse

			 admissionResponse = &v1beta1.AdmissionResponse {

			 Allowed: true,

			 }

			 //Return the response with Allowed set to true

			 return admissionResponse, nil

			}

			const (

			 //This is the name of the label that is expected to be part of the pods to allow them to be created.

			 teamNameLabel = `teamName`

)

			The three main parts that you can observe in this snippet are the AdmissionRequest object, the logic to check whether the label exists, and creating the AdmissionResponse object with the Allowed flag.

			Now that we understand all the different components required for a validating webhook, let's build one in the following activity.

			Activity 16.02: Creating a Validating Webhook That Checks for a Label in a Pod

			In this activity, we will use the knowledge that we have acquired in this and earlier chapters to write a validating webhook that verifies whether a label is present in the requested Pod.

			The required steps are as follows:

			
					Create a new namespace named webhooks. If it exists already, delete the existing namespace and then create it again.

					Generate the self-signed CA certificate.

					Generate a private/public key pair for SSL and sign it with the CA certificate.

					Create a secret that holds the private/public key pair generated in the previous step.Note
Even if you have the certificates and secrets from the previous activity, we recommend that you discard them and start afresh to avoid any conflicts.

					Write the webhook code to check whether a label with the key teamName is present. If it is not present, reject the request.

					Package the webhook code as a Docker container.

					Push the Docker container to a public repository of your choice (quay.io allows you to create a free public repository).Note
If you have any difficulty in building your own webhook, you can use the code available at this link as a reference: https://packt.live/2FbL7Jv.
If you want to avoid building and packaging a webhook, we have provided a pre-built container so that you can use it directly in your Deployment. You can use this image from Docker Hub: packtworkshops/the-kubernetes-workshop:webhook.
Using this image allows you to skip steps 5 to 7.

					Create a Deployment that deploys the webhook server.

					Expose the webhooks Deployment as a Kubernetes service.

					Create a Base64-encoded version of the CA certificate.

					Create ValidtingWebhookConfiguration so that Kubernetes can intercept the API call and call our webhook.

					Create a simple Pod with no labels and verify that it is being rejected.

					Create a simple Pod with the desired labels and verify that it is being created.

					Once the Pod is created, make sure that the label is part of the Pod specifications.

			

			You can test your validating webhook by trying to create a Pod without the teamName label. It should get rejected with the following message:

			
				
					[image: Figure 16.9: Expected output of the Activity 16.02

]
				

			

			Figure 16.9: Expected output of the Activity 16.02

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Controlling the Effect of a Webhook on Selected Namespaces

			When you define any webhook (mutating or validating), you can control which namespaces will be affected by the webhook by defining the namespaceSelector parameter. Note that this is only applicable to objects that are namespace-scoped. For cluster-scoped objects, such as persistent volumes, this parameter will make no difference, and the webhook will be applied.

			Note

			Not all admission controllers (mutating or validating) can be restricted to a namespace.

			Just like many Kubernetes objects, namespaces can also have labels. We will use this property of namespaces to apply a webhook on specific namespaces, as you will see in the following exercise.

			Exercise 16.03: Creating a Validating Webhook with the Namespace Selector Defined

			In this exercise, we will define a validating webhook that enforces a custom rule to be applied to Pods created in a webhooks namespace. The rule is that the Pod must define a label called teamName. Since the rule is applicable to Pods created in the webhooks-demo namespace, all other namespaces can create Pods without the label defined.

			Note

			Before running this exercise, make sure that you have completed Activity 16.02, Creating a Validating Webhook that Checks for a Label in a Pod as we are reusing the objects created there. You can refer to the solution in the Appendix if you are facing any issues with the activity.

			
					Verify that the validating webhook we created in Activity 16.02, Creating a Validating Webhook that Checks for a Label in a Pod, still exists:kubectl get ValidatingWebHookConfiguration -n webhooks
You will see the following response:
NAME CREATED AT
pod-label-verify-webhook 201908-23T13:59:30Z

					Now, delete the preexisting validating webhook defined in Activity 16.02, Creating a Validating Webhook that Checks for a Label in a Pod:kubectl delete ValidatingWebHookConfiguration pod-label-verify-webhook -n webhooks
Note
The ValidatingWebHookConfiguration is a cluster scoped object, and specifying the -n flag is optional for this command.
You will get the following response:
[image: Figure 16.10: Deleting the existing validating webhook

]
Figure 16.10: Deleting the existing validating webhook

					Delete the webhooks namespace:kubectl delete ns webhooks
You will get the following response:
namespace "webhooks" deleted

					Create the webhooks namespace:kubectl create ns webhooks
You will get the following response:
namespace/webhooks created
Now we should have a clean slate to continue with this exercise.

					Create a new CA bundle and a private/public key pair to be used in this webhook. Generate a self-signed certificate using this command:openssl req -nodes -new -x509 -keyout controller_ca.key -out controller_ca.crt -subj "/CN=Mutating Admission Controller Webhook CA"
You will get an output similar to the following:
[image: Figure 16.11: Generating a self-signed certificate

]
Figure 16.11: Generating a self-signed certificate
Note
Even if you have created the CA and keys in the previous activity, you will need to recreate them for this exercise to work properly.

					Generate a private/public key pair and sign it with the CA certificate using the following two commands, one after the other:openssl genrsa -out tls.key 2048
openssl req -new -key tls.key -subj "/CN=webhook-server.webhooks.svc" \
 | openssl x509 -req -CA controller_ca.crt -Cakey controller_ca.key -Cacreateserial -out tls.crt
You will get an output that is similar to the following response:
[image: Figure 16.12: Signing a private/public key pair with our certificate

]
Figure 16.12: Signing a private/public key pair with our certificate

					Create a secret that holds the private/public key pair:kubectl -n webhooks create secret tls webhook-server-tls \
--cert "tls.crt" \
--key "tls.key"
You should get the following response:
secret/webhook-server-tls created

					Next, we need to deploy the webhook in the webhooks namespace. Create a file named validating-server.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: webhook-server
 labels:
 app: webhook-server
spec:
 replicas: 1
 selector:
 matchLabels:
 app: webhook-server
 template:
 metadata:
 labels:
 app: webhook-server
 spec:
 containers:
 - name: server
 image: packtworkshops/the-kubernetes-workshop:webhook
 imagePullPolicy: Always
 ports:
 - containerPort: 8443
 name: webhook-api
 volumeMounts:
 - name: webhook-tls-certs
 mountPath: /etc/secrets/tls
 readOnly: true
 volumes:
 - name: webhook-tls-certs
 secret:
 secretName: webhook-server-tls
Note
You can use the same webhook image created in Activity 16.02, Creating a Validating Webhook That Checks for a Label in a Pod. In this reference YAML, we are using the image that we have provided in our repository.

					Deploy the webhook server by using the definition from the previous step:kubectl create -f validating-server.yaml -n webhooks
You should see the following response:
deployment.apps/webhook-server created

					You might need to wait a bit and check whether the webhook Pods have been created. Keep checking the status of the Pods:kubectl get pods -n webhooks -w
You should see the following response:
[image: Figure 16.13: Checking whether our webhook is online

]
Figure 16.13: Checking whether our webhook is online
Note that the -w flag continuously watches the Pods. You can end the watch when all of the Pods are ready.

					Now, we have to expose the deployed webhook server via the Kubernetes service. Create a file named validating-serversvc.yaml with the following content:apiVersion: v1
kind: Service
metadata:
 labels:
 app: webhook-server
 name: webhook-server
 namespace: webhooks
spec:
 ports:
 - port: 443
 protocol: TCP
 targetPort: 8443
 selector:
 app: webhook-server
 sessionAffinity: None
 type: ClusterIP
Note that the webhook service has to be running on port 443, as this is the standard for TLS communication.

					Use the definition from the previous step to create the service using the following command:kubectl create -f validating-serversvc.yaml -n webhooks
You will see the following output:
service/webhook-server created

					Create a Base64-encoded version of the CA certificate. Use the following commands, one after the other:openssl x509 -inform PEM -in controller_ca.crt > controller_ca.crt.pem
openssl base64 -in controller_ca.crt.pem -out controller_ca-base64.crt.pem
The first command is to convert the certificate into a PEM format. And the second one is to convert the PEM certificate into Base64. These commands show no response. You can inspect the file using the following command:
cat controller_ca-base64.crt.pem
The file contents should be something like this:
[image: Figure 16.14: Contents of the Base64-encoded CA certificate

]
Figure 16.14: Contents of the Base64-encoded CA certificate
Please note that the TLS certificates you generate will not look exactly like what is shown here.

					Use the following two commands to clean up the blank lines from our CA certificate and add the contents to a new file:cat controller_ca-base64.crt.pem | tr -d '\n' > onelinecert.pem
cat onelinecert.pem
The first command shows no response, and the second one prints out the contents of onlinecert.pem. You should see the following response:
[image: Figure 16.15: Base64-encoded CA certificate with the line breaks removed

]
Figure 16.15: Base64-encoded CA certificate with the line breaks removed
Now we have the Base64-encoded certificate with no blank lines. For the next step, we will copy the value that you get in this output, being careful not to copy the $ (which would be %, in the case of Zsh) at the end of the value. Paste this value in place of CA_BASE64_PEM (a placeholder for caBundle) in validation-config-namespace-scoped.yaml, which will be created in the next step.

					Create a file, named validation-config-namespace-scoped.yaml, using the following ValidatingWebHookConfiguration specification to configure the Kubernetes API server to call our webhook:apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration
metadata:
 name: pod-label-verify-webhook
webhooks:
 - name: webhook-server.webhooks.svc
 namespaceSelector:
 matchExpressions:
 - key: applyValidation
 operator: In
 values: ["true","yes", "1"]

 clientConfig:
 service:
 name: webhook-server
 namespace: webhooks
 path: "/validate"
 caBundle: "CA_BASE64_PEM" #Retain the quotes when you copy the caBundle here. Please read the note below on how to add specific values here.
 rules:
 - operations: ["CREATE"]
 apiGroups: [""]
 apiVersions: ["v1"]
 resources: ["pods"]
 scope: "Namespaced"
Note
The CA_BASE64_PEM placeholder will be replaced with the contents of onelinecert.pem from the previous step. Be careful not to copy any line breaks.

					Create the webhook, as defined in the previous step. Make sure that you replace the caBundle field with the certificates created in the earlier steps:kubectl create -f validation-config-namespace-scoped.yaml
You should see the following response:
[image: Figure 16.16: Creating the ValidatingWebhookConfiguration

]
Figure 16.16: Creating the ValidatingWebhookConfiguration

					Create a new namespace, called webhooks-demo, as follows:kubectl create namespace webhooks-demo
You should see the following response:
namespace/webhooks-demo created

					Apply the applyValidation=true label to the webhooks namespace, as shown here:kubectl label namespace webhooks applyValidation=true
You should see the following response:
namespace/webhooks labeled
This label will match the selector defined in step 14 and make sure our validation criteria (enforced by the webhook) applies to this namespace. Note that we don't label the webhooks-demo namespace, so the validation will not apply to this namespace.

					Now define a Pod without the teamName label. Create a file named target-validating-pod.yaml with the following content:apiVersion: v1
kind: Pod
metadata:
 name: validating-pod-example
spec:
 containers:
 - name: validating-pod-example-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ; done"]

					Based on the definition from the previous step, create the Pod in the webhooks namespace:kubectl create -f target-validating-pod.yaml -n webhooks
The creation of the Pod should get rejected as follows:
[image: Figure 16.17: Pod rejected due to the absence of the required label

]
Figure 16.17: Pod rejected due to the absence of the required label
Keep in mind that our webhook just checks the teamName label in the Pod. The Pod creation is rejected as per our namespace selector in the definition from step 14.

					Now, try creating the same Pod in the webhooks-demo namespace to see whether things go differently:kubectl create -f target-validating-pod.yaml -n webhooks-demo
You should get this response:
pod/validating-pod-example created
We were able to successfully create the Pod in the webhooks-demo namespace, but we were not able to do so in the webhooks namespace.

					Let's describe the Pod to get more details:kubectl describe pod validating-pod-example -n webhooks-demo
You should see a response similar to this:
[image: Figure 16.18: Checking the specification of our Pod

]

			

			Figure 16.18: Checking the specification of our Pod

			As you can see, this Pod does not have any labels, and yet we were able to create it. This is because our validating webhook is not watching the webhooks-demo namespace.

			In this exercise, you have learned how a webhook can be configured to make changes at the namespace level. This could be useful to test functionality and provide different functionality to different teams that might own different namespaces.

			Summary

			In this chapter, we learned that admission controllers provide a way to enforce the mutation and validation of objects during create, update, and delete operations. It is an easy way to extend the Kubernetes platform to adhere to the standards of your organization. They can be used to apply the best practices and policies onto the Kubernetes cluster.

			Next, we learned what mutating and validating webhooks are, how to configure them, and how to deploy them on the Kubernetes platform. Webhooks provide a simple way to extend Kubernetes and help you to adapt to the requirements of a particular enterprise.

			In the previous series of chapters, starting from Chapter 11, Build Your Own HA Cluster, to Chapter 15, Monitoring and Autoscaling in Kubernetes, you learned how to set up your highly-available cluster on AWS and run stateless, as well as stateful, applications. In the next few chapters, you will learn many advanced skills that will help you go beyond just running applications, and enable you to leverage many of the powerful administration features offered by Kubernetes and maintain the health of your cluster.

			Specifically, in the next chapter, you will learn about the Kubernetes scheduler. This is a component that decides the nodes on which a Pod will be scheduled. You will also learn how to configure the scheduler to adhere to your needs and how you can control Pod placement on a node.

		

		
			
			

		

		
			
			

		

	
		
			
			

		

		
			17. Advanced Scheduling in Kubernetes

		

		
			Overview

			This chapter focuses on scheduling, which is the process by which Kubernetes selects a node for running a Pod. In this chapter, we will take a closer look at this process and the Kubernetes Scheduler, which is the default Kubernetes component responsible for this process.

			By the end of this chapter, you will be able to use different ways to control the behavior of the Kubernetes Scheduler to suit the requirements of an application. The chapter will equip you to be able to choose appropriate Pod scheduling methods to control which nodes you want to run your Pods on based on your business needs. You will learn about the different ways to control the scheduling of Pods on the Kubernetes cluster.

			Introduction

			We have seen that we package our applications as containers and deploy them as a Pod in Kubernetes, which is the minimal unit of Deployment. With the help of the advanced scheduling capabilities provided by Kubernetes, we can optimize the deployment of these Pods with respect to our hardware infrastructure to meet our needs and get the most out of the available resources.

			Kubernetes clusters generally have more than a few nodes (or machines or hosts) where the Pod can be executed. Consider that you are managing a few of the machines and you have been assigned to execute an application on these machines. What would you do to decide which machine is the best fit for the given application? Until now in this workshop, whenever you wanted to run a Pod on a Kubernetes cluster, have you mentioned which node(s) the Pod should run on?

			That's right – we don't need to; Kubernetes comes with a smart component that finds the best node to run your Pod. This component is the Kubernetes Scheduler. In this chapter, we will look a bit more deeply into how the Kubernetes Scheduler works, and how to adapt it to better control our cluster to suit different needs.

			The Kubernetes Scheduler

			As mentioned in the introduction, a typical cluster has several nodes. When you create a Pod, Kubernetes has to choose a node and assign the Pod to it. This process is known as Pod scheduling.

			The Kubernetes component that is responsible for deciding which node a Pod should be assigned to for execution is called a scheduler. Kubernetes comes with a default scheduler that suffices for most use cases. For example, the default Kubernetes Scheduler spreads the load evenly in the cluster.

			Now, consider a scenario in which two different Pods are expected to communicate with each other very often. As a system architect, you may want them to be on the same node to reduce latency and free up some internal networking bandwidth. The Scheduler does not know the relationship between different types of Pods, but Kubernetes provides ways to inform the Scheduler about this relationship and influence the scheduling behavior so that these two different Pods can be hosted on the same node. But first, let's take a closer look at the Pod scheduling process.

			The Pod Scheduling Process

			The scheduler works in a three-step process: filtering, scoring, and assigning. Let's take a look at what happens during the execution of each of these steps. An overview of the process is described in the following diagram:

			
				
					[image: Figure 17.1: An overview of how the Kubernetes Scheduler selects a suitable node

]
				

			

			Figure 17.1: An overview of how the Kubernetes Scheduler selects a suitable node

			Filtering

			Filtering is a process in which the Kubernetes Scheduler runs a series of checks or filters to see which nodes are not suitable to run the target Pod. An example of a filter is to see if the node has enough CPU and memory to host the Pod, or if the storage volume requested by the Pod can be mounted on the host. If the cluster has no node that's suitable to meet the requirements of the Pod, then the Pod is deemed un-schedulable and is not executed on the cluster.

			Scoring

			Once the Kubernetes Scheduler has a list of feasible nodes, the second step is to score the nodes and find the best node(s) to host the target Pod. The node is passed through several priority functions and assigned a priority score. Each function assigns a score between 0 and 10, where 0 is the lowest and 10 is the highest.

			To understand priority functions, let's take SelectorSpreadPriority as an example. This priority function uses label selectors to find the Pods that are associated together. Let's say, for example, that a bunch of Pods is created by the same Deployment. As the name SpreadPriority suggests, this function tries to spread the Pods across different nodes so that in case of a node failure, we will still have replicas running on other nodes. Under this priority function, the Kubernetes Scheduler selects the nodes that have the fewest Pods running using the same label selectors as the requested Pod. These nodes will be assigned the highest score and vice versa.

			Another example of a priority function is LeastRequestedPriority. This tries to spread the workload on the nodes that have the most resources available. The scheduler gets the nodes that have the lowest amount of memory and CPU allocated to existing Pods. These nodes are assigned the highest scores. In other words, this priority function will assign a higher score for a larger amount of free resources.

			Note

			There are far too many priority functions to cover within the limited scope of this chapter. The full list of priority functions can be found at the following link: https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/#scoring.

			Assigning

			Lastly, the Scheduler informs the API server about the node that has been selected based on the highest score. If there are multiple nodes with the same score, the Scheduler picks a random node and effectively applies a tiebreaker.

			The default Kubernetes Scheduler runs as a Pod in the kube-system namespace. You can see it running by listing all the Pods in the kube-system namespace:

			kubectl get pods -n kube-system

			You should see the following list of Pods:

			
				
					[image: Figure 17.2: Listing Pods in the kube-system namespace

]
				

			

			Figure 17.2: Listing Pods in the kube-system namespace

			In our Minikube environment, the Kubernetes Scheduler Pod is named kube-scheduler-minikube, as you can see in this screenshot.

			Timeline of Pod Scheduling

			Let's dig into the timeline of the Pod scheduling process. When you request a Pod to be created, different Kubernetes components get invoked to assign the Pod to the right node. There are three steps involved, from requesting a Pod to assigning a node. The following diagram gives an overview of this process, and we will elaborate and break down the process into more detailed steps after the diagram:

			
				
					[image: Figure 17.3: Timeline of the Pod scheduling process

]
				

			

			Figure 17.3: Timeline of the Pod scheduling process

			Step 1: When a request is raised for creating and running a Pod, for instance, through a kubectl command or by a Kubernetes Deployment, the API server responds to this request. It updates the Kubernetes internal database (etcd) with a Pod pending entry to be executed. Note that at this stage, there is no guarantee that Pod will be scheduled.

			Step 2: The Kubernetes Scheduler constantly watches the Kubernetes data store through the API server. As soon as a Pod creation request is available (or a Pod is in the pending state), the Scheduler tries to schedule it. It is important to note that the Scheduler is not responsible for running the Pod. It simply calculates the best node for hosting the Pod and informs the Kubernetes API server, which then stores this information in etcd. In this step, the Pod is assigned to the optimal node, and the association is stored in etcd.

			Step 3: The Kubernetes agent (kubelet) constantly watches the Kubernetes data store through the API server. As soon as a new Pod is assigned to a node, it tries to execute the Pod on the node. When the Pod is successfully up and running, it is marked as running in etcd through the API server, and now the process is complete.

			Now that we have an idea of the scheduling process, let's see how we can tweak it to suit our needs in the following topic.

			Managing the Kubernetes Scheduler

			Kubernetes provides many parameters and objects through which we can manage the behavior of the Kubernetes Scheduler. We will look into the following ways of managing the scheduling process:

			
					Node affinity and anti-affinity

					Pod affinity and anti-affinity

					Pod priority and preemption

					Taints and tolerations

			

			Node Affinity and Anti-Affinity

			Using node affinity rules, a Kubernetes cluster administrator can control the placement of Pods on specific sets of nodes. Node affinity or anti-affinity allows you to constrain which nodes a Pod can run on based on the labels of the nodes.

			Imagine that you are an administrator of the shared Kubernetes cluster in a bank. Multiple teams are running their applications on the same cluster. Your organization's security group has identified nodes that can run data-sensitive applications and would like you to make sure that no other applications run on those nodes. Node affinity or anti-affinity rules provide a solution to this requirement to only associate specific Pods to a set of nodes.

			Node affinity rules are defined through two components. First, you assign a label to a set of nodes. The second part is to configure the Pods to associate them only with the nodes with certain labels. Another way to think about this is that the Pod defines where it should be placed, and the Scheduler matches the labels in this definition with the node labels.

			There are two types of node affinity/anti-affinity rules:

			
					Required rules are hard rules. If these rules are not met, the Pod cannot be scheduled on a node. It is defined as the requiredDuringSchedulingIgnoredDuringExecution section in the Pod specification. Please see Exercise 17.01, Running a Pod with Node Affinity as an example of this.

					Preferred rules are soft rules. The Scheduler tries to enforce preferred rules whenever possible, but it goes ahead to ignore them when the rules cannot be enforced, that is, the Pod would be rendered unschedulable if these rules were followed as rigidly. Preferred rules are defined as the preferredDuringSchedulingIgnoredDuringExecution section in the Pod specification.

			

			Preferred rules have weights associated with each criterion. The Scheduler will create a score based on these weights to schedule a Pod at the right node. The value of the weight field ranges from 1 to 100. The Scheduler calculates the priority score for all the suitable nodes to find the optimal one. Note that the score can be impacted by other priority functions, such as LeastRequestedPriority.

			If you define a weight that is too low (compared to the other weights), then the overall score will be most affected by other priority functions, and our preferred rule may have little effect on the scheduling process. If you have multiple rules defined, then you can alter the weights of the rules that are the most important to you.

			Affinity rules are defined in the Pod specification. Based on the labels of our desired/undesired nodes, we would provide the first part of the selection criteria in the Pod spec. It consists of the set of labels and, optionally, their values.

			The other part of the criteria is to provide the way we want to match the labels. We define these matching criteria as the operator in the affinity definition. This operator can have the following values:

			
					The In operator instructs the Scheduler to schedule the Pods on the nodes that match the label and one of the specified values.

					The NotIn operator instructs the Scheduler to not schedule the Pods on the nodes that do not match the label and any of the specified values. This is a negative operator and denotes the anti-affinity configuration.

					The Exists operator instructs the Scheduler to schedule the Pods on the nodes that match the label. The value of the label does not matter in this case. Thus, this operator is satisfied even if the specified label exists and the value of the label does not match.

					The DoesNotExist operator instructs the Scheduler to not schedule the Pods on the nodes that do not match the label. The value of the label does not matter in this case. This is a negative operator and denotes the anti-affinity configuration.

			

			Note that affinity and anti-affinity rules are defined based on the labels on the nodes. If the labels on a node are changed, it is possible that a node affinity rule may no longer be applied. In this case, the Pods that are running will continue to run on the node. If a Pod is restarted, or if it dies and a new Pod is created, Kubernetes considers this a new Pod. In this case, if the node labels have been modified, the Scheduler may not put the Pod on the same node. This is something that you would want to be mindful of when you modify node labels. Let's implement these rules for a Pod in the following exercise.

			Exercise 17.01: Running a Pod with Node Affinity

			In this exercise, we will configure a Pod to be scheduled on the node available in our Minikube environment. We will also see, if the labels do not match, the Pod will be in the Pending state. Think of this state in which the scheduler is unable to find the right node to assign to the Pod:

			
					Create a new namespace called schedulerdemo using the following command:kubectl create ns schedulerdemo
You should see the following response:
namespace/schedulerdemo created

					Now we need to create a Pod with node affinity defined. Create a file named pod-with-node-affinity.yaml with the following specification:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-node-affinity
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: data-center
 operator: In
 values:
 - sydney
 containers:
 - name: pod-with-node-affinity-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ; done"]
Note that in the Pod specification, we have added the new affinity section. This rule is configured as requiredDuringSchedulingIgnoredDuringExecution. This means if the node with a matching label does not exist, this Pod will not get scheduled. Also note that as per the In operator, the expressions mentioned here are to be matched with the node labels. In this example, a matching node would have the label data-center=sydney.

					Try to create this Pod and see if it gets scheduled and executed:kubectl create -f pod-with-node-affinity.yaml -n schedulerdemo
You should see the following response:
pod/pod-with-node-affinity created
Note that the response you see here does not necessarily imply that the Pod has successfully been executed on a node. Let's check that in the following step.

					Check the status of the Pod using this command:kubectl get pods -n schedulerdemo
You will see the following response:
NAME READY STATUS RESTARTS AGE
pod-with-node-affinity 0/1 Pending 0 10s
From this output, you can see that the Pod is in the Pending state and it is not being executed.

					Check the events to see why the Pod is not being executed:kubectl get events -n schedulerdemo
You will see the following response:
[image: Figure 17.4: Getting the list of events

]
Figure 17.4: Getting the list of events
You can see that Kubernetes is saying that there is no node to match the selector for this Pod.

					Let's delete the Pod before proceeding further:kubectl delete pod pod-with-node-affinity -n schedulerdemo
You should see the following response:
pod "pod-with-node-affinity" deleted

					Now, let's see what nodes are available in our cluster:kubectl get nodes
You will see the following response:
NAME STATUS ROLES AGE VERSION
minikube Ready master 105d v1.14.3
Since we are using Minikube, there is only one node available called minikube.

					Check the label for the minikube node. Use the describe command as shown here:kubectl describe node minikube
You should see the following response:
[image: Figure 17.5: Describing the minikube node

]
Figure 17.5: Describing the minikube node
As you can see, the label that we want, data-center=sydney, does not exist.

					Now, let's apply the desired label to our node using this command:kubectl label node minikube data-center=sydney
You will see the following response indicating that the node was labeled:
node/minikube labeled

					Verify whether the label is applied to the node using the describe command:kubectl describe node minikube
You should see the following response:
[image: Figure 17.6: Checking the label on the minikube node

]
Figure 17.6: Checking the label on the minikube node
As you can see in this image, our label has now been applied.

					Now try to run the Pod again and see if it can be executed:kubectl create -f pod-with-node-affinity.yaml -n schedulerdemo
You should see the following response:
pod/pod-with-node-affinity created

					Now, let's check whether the Pod is successfully running:kubectl get pods -n schedulerdemo
You should see the following response:
NAME READY STATUS RESTARTS AGE
pod-with-node-affinity 1/1 Running 0 5m22s
Thus, our Pod is successfully running.

					Let's check out how Pod scheduling is displayed in events:kubectl get events -n schedulerdemo
You will get the following response:
[image: Figure 17.7: Checking out scheduling events

]
Figure 17.7: Checking out scheduling events
As you can see in the preceding output, the Pod has been successfully scheduled.

					Now, let's do some housekeeping to avoid conflicts with further exercises and activities. Delete the Pod using this command:kubectl delete pod pod-with-node-affinity -n schedulerdemo
You should see the following response:
pod "pod-with-node-affinity" deleted

					Remove the label from the node using the following command:kubectl label node minikube data-center-
Note that the syntax for deleting the label from the Pod has an additional hyphen (–) after the label name. You should see the following response:
node/minikube labeled

			

			In this exercise, we have seen how node affinity works by labeling a node and then scheduling a Pod on the labeled node. We have also seen how Kubernetes events can be used to see the status of Pod scheduling.

			The data-center=sydney label that we used in this exercise also hints at an interesting use case. We can use node affinity and anti-affinity rules to target not just a specific Pod, but also specific server racks or data centers. We would simply assign specific labels to all nodes in a specific server rack, data center, availability zone, and so on. Then, we can simply pick and choose the desired targets for our Pods.

			Pod Affinity and Anti-Affinity

			Pod affinity and Pod anti-affinity allow your Pods to check what other Pods are running on a given node before they are scheduled on that node. Note that other Pods in this context do not mean a new copy of the same Pod, but Pods related to different workloads.

			Pod affinity allows you to control on which node your Pod is eligible to be scheduled based on the labels of the other Pods that are already running on that node. The idea is to cater to the need to place two different types of containers relative to each other at the same place or to keep them apart.

			Consider that your application has two components: a frontend part (for example, a GUI) and a backend (for example, an API). Let's assume that you want to run them on the same host because the communications between frontend and backend Pods would be faster if they are hosted on the same node. By default, on a multi-node cluster (not Minikube), the Scheduler will schedule such Pods on different nodes. Pod affinity provides a way to control the scheduling of Pods relative to each other so that we can ensure the optimal performance of our application.

			There are two components that are required to define Pod affinity. The first component defines how the scheduler will relate the target Pod (in our previous example, the frontend Pod) to the already running Pods (the backend Pod). This is done through labels on the Pod. In the Pod affinity rules, we mention which labels of the other Pods should be used to relate to the new Pod. Label selectors have similar operators, as described in the Node Affinity and Anti-Affinity section, for matching the labels of the Pods.

			The second component describes where you want to run the target Pods. Just as we have seen in the previous exercise, we can use Pod affinity rules to schedule a Pod on the same node as the other Pod (in our example, we are assuming that the backend Pod is the other Pod that is already running), any node on the same rack as the other Pod, any node on the same data center as the other Pod, and so on. This component defines the set of nodes where the Pods can be allocated. To achieve this, we label our group of nodes and define this label as topologyKey in the Pod specification. For example, if we use the hostname as the value for topologyKey, the Pods will be placed on the same node.

			If we label our nodes with the rack name on which they are hosted and define the rack name as topologyKey, then the candidate Pods will be scheduled for one of the nodes with the same rack name label.

			Similar to the node affinity rules defined in the previous section, there are hard and soft Pod affinity rules as well. Hard rules are defined with requiredDuringSchedulingIgnoredDuringExecution while soft rules are defined with preferredDuringSchedulingIgnoredDuringExecution. It is possible to have multiple combinations of hard and soft rules in the Pod affinity configuration.

			Exercise 17.02: Running Pods with Pod Affinity

			In this exercise, we will see how Pod affinity can help the Scheduler to see the relationships between different Pods and assign them to suitable nodes. We will place Pods using the preferred option. In a later part of this exercise, we will configure the Pod anti-affinity using the required option and see that that Pod will not be scheduled until all the criteria are met. We will use the same example of frontend and backend Pods that we mentioned earlier:

			
					We need to create and run the backend Pod first. Create a file named pod-with-pod-affinity-first.yaml with the following contents:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-pod-affinity
 labels:
 application-name: banking-app
spec:
 containers:
 - name: pod-with-node-pod-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo 'this is backend pod'; sleep 5 ; done"]
This Pod is a simple Pod with just a loop printing a message. Notice that we have assigned a label to the Pod so that it can be related to the frontend pod.

					Let's create the Pod defined in the previous step:kubectl create -f pod-with-pod-affinity-first.yaml -n schedulerdemo
You should see the following response:
pod/pod-with-pod-affinity created

					Now, let's see if the Pod has been successfully created:kubectl get pods -n schedulerdemo
You should see a response like this:
NAME READY STATUS RESTARTS AGE
pod-with-pod-affinity 1/1 Running 0 22s

					Now, let's check the labels on the minikube node: kubectl describe node minikube
You should see the following response:
[image: Figure 17.8: Describing the minikube node

]
Figure 17.8: Describing the minikube node
Since we want to run both the Pods on the same host, we can use the kubernetes.io/hostname label of the node.

					Now, let's define the second Pod. Create a file named pod-with-pod-affinity-second.yaml with the following contents:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-pod-affinity-fe
 labels:
 application-name: banking-app
spec:
 affinity:
 podAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: application-name
 operator: In
 values:
 - banking-app
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-with-node-pod-container-fe
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo 'this is frontend pod'; sleep 5 ; done"]
Consider this Pod as the frontend application. Notice that we have defined a preferredDuringSchedulingIgnoredDuringExecution rule in the podAffinity section. We have also defined the labels and the topologyKey for the Pods and the nodes.

					Let's create the Pod defined in the previous step:kubectl create -f pod-with-pod-affinity-second.yaml -n schedulerdemo
You should see the following response:
pod/pod-with-pod-affinity-fe created

					Verify the status of the Pods using the get command:kubectl get pods -n schedulerdemo
You should see the following response:
NAME READY STATUS RESTARTS AGE
pod-with-pod-affinity 1/1 Running 0 7m33s
pod-with-pod-affinity-fe 1/1 Running 0 21s
As you can see, the pod-with-pod-affinity-fe Pod is running. This is not much different than the normal Pod placement. This is because we have only one node in the Minikube environment and we have defined the Pod affinity using preferredDuringSchedulingIgnoredDuringExecution, which is the soft variation of the matching criteria.
The next steps of this exercise will talk about anti-affinity using requiredDuringSchedulingIgnoredDuringExecution or the hard variation of the matching criteria, and you will see that the Pod does not reach the Running state.

					First, let's delete the pod-with-pod-affinity-fe Pod:kubectl delete pod pod-with-pod-affinity-fe -n schedulerdemo
You should see the following response:
pod "pod-with-pod-affinity-fe" deleted

					Confirm that the Pod has been deleted by listing all the Pods:kubectl get pods -n schedulerdemo
You should see the following response:
NAME READY STATUS RESTARTS AGE
pod-with-pod-affinity 1/1 Running 0 10m

					Now create another Pod definition with the following contents and save it as pod-with-pod-anti-affinity-second.yaml:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-pod-anti-affinity-fe
 labels:
 application-name: backing-app
spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application-name
 operator: In
 values:
 - banking-app
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-with-node-pod-anti-container-fe
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo 'this is frontend pod'; sleep 5 ; done"]
As you can see, the configuration is for podAntiAffinity and it uses the requiredDuringSchedulingIgnoredDuringExecution option, which is the hard variation of Pod affinity rules. Here, the Scheduler will not schedule any Pod if the condition is not met. We are using the In operator so that our Pod will not run on the same host as any Pod with the parameters defined in the labelSelector component of the configuration.

					Try creating the Pod with the preceding specification:kubectl create -f pod-with-pod-anti-affinity-second.yaml -n schedulerdemo
You should see the following response:
pod/pod-with-pod-anti-affinity-fe created

					Now, check the status of this Pod:kubectl get pods -n schedulerdemo
You should see the following response:
NAME READY STATUS RESTARTS AGE
pod-with-pod-affinity 1/1 Running 0 14m
pod-with-pod-anti-affinity-fe 1/1 Pending 0 3s
From this output, you can see the Pod is in the Pending state.

					You can verify that the Pod is not being scheduled because of Pod anti-affinity by checking events:kubectl get events -n schedulerdemo
You should see the following response:
[image: Figure 17.9: Checking out the event for failed scheduling

]

			

			Figure 17.9: Checking out the event for failed scheduling

			In this exercise, we have seen how Pod affinity can help place two different Pods on the same node. We have also seen how Pod anti-affinity options can help us schedule the Pods on different sets of hosts.

			Pod Priority

			Kubernetes allows you to associate a priority with a Pod. If there are resource constraints, if a new Pod with high priority is requested to be scheduled, the Kubernetes scheduler may evict the Pods with lower priority in order to make room for the new high-priority Pod.

			Consider an example where you are a cluster administrator and you run both critical and non-critical workloads in the cluster. An example is a Kubernetes cluster for a bank. In this case, you would have a payment service as well as the bank's website. You may decide that processing payments are of higher importance than running the website. By configuring Pod priority, you can prevent lower-priority workloads from impacting critical workloads in your cluster, especially in cases where the cluster starts to reach its resource capacity. This technique of evicting lower-priority Pods to schedule more critical Pods could be faster than adding additional nodes and would help you better manage traffic spikes on the cluster.

			The way we associate a priority with a Pod is to define an object known as PriorityClass. This object holds the priority, which is defined as a number between 1 and 1 billion. The higher the number, the higher the priority. Once we have defined our priority classes, we assign a priority to a Pod by associating a PriorityClass with the Pod. By default, if there is no priority class associated with the Pod, the Pod either gets assigned the default priority class if it is available, or it gets assigned the priority value of 0.

			You can get the list of priority classes similarly to any other objects:

			kubectl get priorityclasses

			You should see a response like this:

			NAME VALUE GLOBAL-DEFAULT AGE

			system-cluster-critical 2000000000 false 9d

			system-node-critical 2000001000 false 9d

			Note that in Minikube, there are two priority classes predefined in the environment. Let's learn more about the system-cluster-critical class. Issue the following command to get the details about it:

			kubectl get pc system-cluster-critical -o yaml

			You should see the following response:

			
				
					[image: Figure 17.10: Describing the system-cluster-critical PriorityClass

]
				

			

			Figure 17.10: Describing the system-cluster-critical PriorityClass

			The output here mentions that this class is reserved for the Pods that are absolutely critical for the cluster. etcd is one such Pod. Let's see if this priority class is associated with it.

			Issue the following command to get details about the etcd Pod running in Minikube:

			kubectl get pod etcd-minikube -n kube-system -o yaml

			You should see the following response:

			
				
					[image: Figure 17.11: Getting information about the etcd-minikube Pod

]
				

			

			Figure 17.11: Getting information about the etcd-minikube Pod

			You can see from this output that the Pod has been associated with the system-cluster-critical priority.

			In the following exercise, we will add a default priority class and a higher-priority class to better understand the behavior of the Kubernetes scheduler.

			It is important to understand that Pod priority works in coordination with other rules, such as Pod affinity. If the Scheduler determines that a high-priority Pod cannot be scheduled even if lower-priority Pods are evicted, it will not evict lower-priority Pods.

			Similarly, if high-priority and low-priority Pods are waiting to be scheduled and the scheduler determines that high-priority Pods cannot be scheduled due to affinity or anti-affinity rules, the scheduler will schedule the suitable low-priority Pods.

			Exercise 17.03: Pod Priority and Preemption

			In this exercise, we shall define two priority classes: default (low priority) and high priority. We will then create 10 Pods with default priority and allocate some CPU and memory to each Pod. After this, we will check how much capacity is being used from our local cluster. We will then create 10 more Pods with high priority and allocate resources to them. We will see that the Pods with the default priority will be terminated and the higher-priority Pods will be scheduled on the cluster. We will then reduce the number of high-priority Pods from 10 to 5 and then see that some of the low-priority Pods are being scheduled again. This is because reducing the number of high-priority Pods should free up some resources:

			
					First, let's create the definition for the default priority class. Create a file named priority-class-default.yaml with the following contents:apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: default-priority
value: 1
globalDefault: true
description: "Default Priority class."
Note that we have marked this priority class as default by setting the value of globalDefault as true. Also, the priority number, 1, is very low.

					Create this priority class using the following command:kubectl create -f priority-class-default.yaml
You should see the following response:
priorityclass.scheduling.k8s.io/default-priority
Note that we have not mentioned the namespace as this object is not a namespace-level object. A priority class is a cluster scope object in Kubernetes.

					Let's check whether our priority class has been created:kubectl get priorityclasses
You should see the following list:
NAME VALUE GLOBAL-DEFAULT AGE
default-priority 1 true 5m46s
system-cluster-critical 2000000000 false 105d
system-node-critical 2000001000 false 105d
In this output, you can see the priority class that we just created under the name default-priority, and it is the global default as you can see in the GLOBAL-DEFAULT column. Now create another priority class with higher priority.

					Create a file named priority-class-highest.yaml with the following contents:apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: highest-priority
value: 100000
globalDefault: false
description: "This priority class should be used for pods with the highest of priority."
Note the very high value of the value field in this object.

					Use the definition from the previous step to create a Pod priority class using the following command:kubectl create -f priority-class-highest.yaml
You should see the following response:
priorityclass.scheduling.k8s.io/highest-priority created

					Now let's create a definition for a Deployment with 10 Pods and a default priority. Create a file named pod-with-default-priority.yaml using the following contents to define our Deployment:apiVersion: apps/v1
kind: Deployment
metadata:
 name: pod-default-priority-deployment
spec:
 replicas: 10
 selector:
 matchLabels:
 app: priority-test

 template:
 metadata:
 labels:
 app: priority-test
 spec:
 containers:
 - name: pod-default-priority-deployment-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo 'this is backend pod'; sleep 5 ; done"]
 priorityClassName: default-priority

					Let's create the Deployment that we defined in the previous step:kubectl create -f pod-with-default-priority.yaml -n schedulerdemo
You should see this response:
deployment.apps/pod-default-priority-deployment created

					Now, increase the memory and CPU allocated to each of them to 128 MiB and 1/10 of the CPU by using the following commands:kubectl set resources deployment/pod-default-priority-deployment --limits=cpu=100m,memory=128Mi -n schedulerdemo
You should see the following response:
deployment.extensions/pod-default-priority-deployment resource requirements updated
Note
You may need to adjust this resource allocation as per the resources available on your computer. You can start with 1/10 CPU and verify the resources as mentioned in step 10.

					Verify that the Pods are running using the following command:kubectl get pods -n schedulerdemo
You should see the following list of Pods:
[image: Figure 17.12: Getting the list of Pods

]
Figure 17.12: Getting the list of Pods

					Check the resource usage in our cluster. Note that we have only one node, and thus we can easily see the values by issuing the describe command:kubectl describe node minikube
The following screenshot is truncated for a better presentation. Find the Allocated resources section in your output:
[image: Figure 17.13: Checking the resource utilization on the minikube node

]
Figure 17.13: Checking the resource utilization on the minikube node
Note that CPU usage is at 77% and memory at 64% for the minikube host. Please note that the resource utilization is dependent on the hardware of your computer and the resources allocated to Minikube. If your CPU is too powerful or if you have a huge amount of memory (or even if you have a slower CPU and less memory), you may see resource utilization values vastly different from what we see here. Please adjust the CPU and memory resources as mentioned in step 8 so that we get similar resource utilization as we see here. This will enable you to see a similar result to the one we have demonstrated in the following steps of this exercise.

					Now let's schedule Pods with high priority. Create 10 Pods using the Kubernetes Deployment object. For this, create a file named pod-with-high-priority.yaml with the following contents:apiVersion: apps/v1
kind: Deployment
metadata:
 name: pod-highest-priority-deployment
spec:
 replicas: 10
 selector:
 matchLabels:
 app: priority-test

 template:
 metadata:
 labels:
 app: priority-test
 spec:
 containers:
 - name: pod-highest-priority-deployment-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo 'this is backend pod'; sleep 5 ; done"]
 priorityClassName: highest-priority
Note that priorityClassName has been set to the highest-priority class in the preceding specification.

					Now create the Deployment that we created in the previous step:kubectl create -f pod-with-high-priority.yaml -n schedulerdemo
You should get the following output:
deployment.apps/pod-with-highest-priority-deployment created

					Allocate a similar amount of CPU and memory to these Pods as you did for the Pods with default priority:kubectl set resources deployment/pod-highest-priority-deployment --limits=cpu=100m,memory=128Mi -n schedulerdemo
You should see the following response:
deployment.apps/pod-highest-priority-deployment resource requirements updated

					After a minute or so, run the following command to see which Pods are running:kubectl get pods -n schedulerdemo
You should see a response similar to this:
[image: Figure 17.14: Getting the list of Pods

]
Figure 17.14: Getting the list of Pods
You can see that most of our high-priority Pods are in the Running state and the Pods with low-priority Pods are moved to the Pending state. This tells us the Kubernetes Scheduler has actually terminated the lower-priority Pods, and it is now waiting for the resources to be available to schedule them again.

					Try changing the number of high-priority Pods from 10 to 5 and see if additional low-priority Pods can be scheduled. Change the number of replicas using this command:kubectl scale deployment/pod-highest-priority-deployment --replicas=5 -n schedulerdemo
You should see the following response:
deployment.extensions/pod-highest-priority-deployment scaled

					Verify that high-priority Pods are reduced from 10 to 5 using the following command: kubectl get pods -n schedulerdemo
[image: Figure 17.15: Getting the list of Pods

]

			

			Figure 17.15: Getting the list of Pods

			As you can see in this screenshot, some more low-priority Pods changed from the Pending state to the Running state. Thus, we can see that the Scheduler is working to make optimal use of the available resources based on the priority of workloads.

			In this exercise, we have used the Pod priority rules and seen how the Kubernetes Scheduler may choose to terminate the Pods with a lower priority if there are requests for a Pod with a higher priority to be fulfilled.

			Taints and Tolerations

			Previously, we have seen how Pods can be configured to control which node they run on. Now we will see how nodes can control which Pods can run on them using taints and tolerations.

			A taint prevents the scheduling of a pod unless that Pod has a matching toleration for the Pod. Think of taint as an attribute of a node and a toleration is an attribute of a Pod. The Pod will get scheduled on the node only if the Pod's toleration matches the node's taint. The taints on a node tell the scheduler to check which Pods tolerate the taint and run only those Pods that match their toleration with the node's taint.

			A taint definition contains the key, value, and effect. The key and value will match the Pod toleration definition in the Pod specification, while the effect instructs the scheduler what should be done once the node's taint matches the Pod's toleration.

			The following diagram provides an overview of how the process of controlling scheduling based on taints and tolerations works. Notice that a Pod with toleration can also be scheduled on a node with no taint.

			
				
					[image: Figure 17.16: Overview of how taints and tolerations are used to influence scheduling

]
				

			

			Figure 17.16: Overview of how taints and tolerations are used to influence scheduling

			When we define a taint, we also need to specify the behavior of the taint. This can be specified by the following values:

			
					NoSchedule provides the ability to reject the scheduling of new Pods on the node. Existing Pods that were scheduled before the taint was defined will continue to run on the node.

					NoExecute taint provides the ability to resist new Pods that do not have a toleration that matches the taint. It further checks whether all the existing Pods running on the node match this taint, and removes the ones that don't.

					PreferNoSchedule instructs the scheduler to avoid scheduling Pods that do not tolerate the taint on the node. This is a soft rule, where the scheduler will try to find the right node but it will still schedule the Pods on the node if it cannot find any other node that is appropriate as per the defined taint and toleration rules.

			

			In order to apply a taint to a node, we can use the kubectl taint command as follows:

			kubectl taint nodes <NODE_NAME> <TAINT>:<TAINT_TYPE>

			There can be many reasons why you would want certain Pods (applications) not to be run on specific nodes. An example use case could be the requirement of specialized hardware, such as a GPU for machine learning applications. Another case could be when a license restriction for software on the Pod dictates that it needs to run on specific nodes. For example, out of 10 worker nodes in your cluster, only 2 nodes are allowed to run particular software. Using the taints and tolerations combination, you can help the scheduler to schedule Pods on the right node.

			Exercise 17.04: Taints and Tolerations

			In this exercise, we will see how taints and tolerations can allow us to schedule Pods on the nodes we desire. We will define a taint and try to schedule a Pod on the node. We then showcase the NoExecute functionality in which a Pod can be removed from a node if that taint on the node changes:

			
					Get the list of nodes using the following command:kubectl get nodes
You should see the following list of nodes:
NAME STATUS ROLES AGE VERSION
minikube Ready master 44h v1.14.3
Recall that in our Minikube environment, we have only one node.

					Create a taint for the minikube node using the following command:kubectl taint nodes minikube app=banking:NoSchedule
You should see the following response:
node/minikube tainted

					Verify that the node has been tainted correctly. You can use the describe command to see what taints are applied to the node:kubectl describe node minikube
You should see the following response:
[image: Figure 17.17: Checking the taints on the minikube node

]
Figure 17.17: Checking the taints on the minikube node

					Now we need to create a Pod with toleration defined as per the taint. Create a file named pod-toleration-noschedule.yaml with the following contents:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-node-toleration-noschedule
spec:
 tolerations:
 - key: "app"
 operator: "Equal"
 value: "banking"
 effect: "NoSchedule"
 containers:
 - name: pod-with-node-toleration-noschedule-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ; done"]
Notice that the toleration value is the same as the taint defined in step 1, that is, app=banking. The effect attribute controls the type of toleration behavior. Here, we have defined effect as NoSchedule.

					Let's create the Pod as per the preceding specification:kubectl create -f pod-toleration-noschedule.yaml -n schedulerdemo
This should give the following response:
pod/pod-with-node-toleration-noschedule created

					Verify that the Pod is running using the following command:kubectl get pods -n schedulerdemo
You should see the following response:
[image: Figure 17.18: Getting the list of Pods

]
Figure 17.18: Getting the list of Pods

					Now let's define a different Pod with a toleration that does not match the taint on the node. Create a file named pod-toleration-noschedule2.yaml with the following contents:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-node-toleration-noschedule2
spec:
 tolerations:
 - key: "app"
 operator: "Equal"
 value: "hr"
 effect: "NoSchedule"
 containers:
 - name: pod-with-node-toleration-noschedule-container2
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ; done"]
Notice that here we have the toleration set to app=hr. We need a Pod with the same taint to match this toleration. Since we have tainted our node with app=banking, this Pod should not be scheduled by the scheduler. Let's try this in the following steps.

					Create the Pod using the definition from the previous step:kubectl create -f pod-toleration-noschedule2.yaml -n schedulerdemo
This should give the following response:
pod/pod-with-node-toleration-noschedule2 created

					Check the status of the Pod using the following command: kubectl get pods -n schedulerdemo
You should see this response:
[image: Figure 17.19: Getting the list of Pods

]
Figure 17.19: Getting the list of Pods
You can see that Pod is in the Pending state and not in the Running state.

					In the remaining part of this exercise, we shall see how the NoExecute effect instructs the scheduler to even remove Pods after they have been scheduled to the node. Before that, we need to do some cleanup. Delete both Pods using the following command:kubectl delete pod pod-with-node-toleration-noschedule pod-with-node-toleration-noschedule2 -n schedulerdemo
You should see the following response:
pod "pod-with-node-toleration-noschedule" deleted
pod "pod-with-node-toleration-noschedule2" deleted

					Let's remove the taint from the node using the following command:kubectl taint nodes minikube app:NoSchedule-
Note the hyphen (-) at the end of the command, which tells Kubernetes to remove this label. You should see the following response:
node/minikube untainted
Our node is in the state where there is no taint defined. Now, we want to run a Pod first with the toleration as app=banking and allocate the Pod. Once the Pod is in the Running state, we will remove the taint from the node and see whether the Pod has been removed.

					Now, taint the node again with the NoExecute type as follows:kubectl taint nodes minikube app=banking:NoExecute
You should see the following response:
node/minikube tainted

					Now, we need to define a Pod with matching toleration. Create a file called pod-toleration-noexecute.yaml with the following contents:apiVersion: v1
kind: Pod
metadata:
 name: pod-with-node-toleration-noexecute
spec:
 tolerations:
 - key: "app"
 operator: "Equal"
 value: "banking"
 effect: "NoExecute"
 containers:
 - name: pod-with-node-toleration-noexecute-container
 image: k8s.gcr.io/busybox
 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ; done"]
Note that the tolerations section defines the label as app=banking and the effect as NoExecute.

					Create the Pod that we defined in the previous step using the following command:kubectl create -f pod-toleration-noexecute.yaml -n schedulerdemo
You should see the following response:
pod/pod-with-node-toleration-noexecute created

					Verify that the Pod is in the Running state using the following command:kubectl get pods -n schedulerdemo
You should see the following response:
[image: Figure 17.20: Getting the list of Pods

]
Figure 17.20: Getting the list of Pods

					Now remove the taint from the node using this command:kubectl taint nodes minikube app:NoExecute-
Note the hyphen (-) at the end of this command, which tells Kubernetes to remove the taint. You will see the following response:
node/minikube untainted
As mentioned earlier, Pods with tolerations can be attached to nodes with no taints. After you remove the taint, the Pod will still be executed. Note that we have not deleted the Pod and it is still running.

					Now, if we add a new taint with NoExecute to the node, the Pod should be removed from it. To see this in action, add a new taint that is different than the Pod toleration:kubectl taint nodes minikube app=hr:NoExecute
As you can see, we have added the app=hr taint to the Pod. You should see the following response:
node/minikube tainted

					Now, let's check the status of the Pod: kubectl get pods -n schedulerdemo
You will see the following response:
[image: Figure 17.21: Checking the status of our Pod

]

			

			Figure 17.21: Checking the status of our Pod

			The Pod will either be removed or go into the Terminating (marked for removal) state. After a few seconds, Kubernetes will remove the Pod.

			In this exercise, you have seen how we can configure taints on nodes so that they accept only specific Pods. You have also configured the taint to affect the running Pods.

			Using a Custom Kubernetes Scheduler

			Building your own fully featured scheduler is out of the scope of this workshop. However, it is important to understand that the Kubernetes platform allows you to write your own scheduler if your use case requires it, although it is not recommended to use a custom scheduler unless you have a very specialized use case.

			A custom scheduler runs as a normal Pod. You can specify in the definition of the Pod running your application to use the custom scheduler. You can add a schedulerName field in the Pod specification with the name of the custom scheduler as shown in this sample definition:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: pod-with-custom-scheduler

			spec:

			 containers:

			 - name: mutating-pod-example-container

			 image: k8s.gcr.io/busybox

			 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ; done"]

			 schedulerName: "custom-scheduler"

			For this configuration to work, it is assumed that a custom scheduler called custom-scheduler is available in the cluster.

			Activity 17.01: Configuring a Kubernetes Scheduler to Schedule Pods

			Consider you are the administrator of a Kubernetes cluster and you have the following scenario:

			
					There is an API Pod that provides the current currency conversion rate.

					There is a GUI Pod that displays the conversion rate on a website.

					There is a Pod that provides services for stock exchanges to get the real-time currency conversion rate.

			

			You have been tasked to make sure that the API and GUI Pods run on the same node. You have also been asked to give higher priority to the real-time currency converter Pod if the traffic spikes. In this activity, you will control the behavior of the Kubernetes Scheduler to complete the activity.

			Each of the Pods in this activity should have 0.1 CPU and 100 MiB of memory allocated to it. Note that we have named the Pods API, GUI, and real-time to make things easier. The Pods in this activity are expected to be just printing expressions on the console. You can use the k8s.gcr.io/busybox image for all of them.

			Note

			Before starting this activity, make sure that the nodes are not tainted from the previous exercises. To see how to remove a taint, please see step 15 of Exercise 17.01, Running a Pod with Node Affinity in this chapter.

			Here are some guidelines for the activity:

			
					Create a namespace called scheduleractivity.

					Create the Pod priority for the API Pods.

					Deploy and make sure that the API and GUI Pods are using Pod affinity to be on the same node. The GUI Pod should define the affinity to be on the same node as the API pod.

					Scale the replicas of the API and GUI Pod to two each.

					Create a Pod priority for the real-time currency converter Pod. Make sure that the API Pod priority, defined earlier, is less than the real-time Pod but greater than 0.

					Deploy and run the real-time currency converter Pod with one replica.

					Make sure that all Pods are in the Running state.

					Now, increase the number of replicas for the real-time currency converter Pod from 1 to 10.

					See whether the real-time currency converter Pods are being started and whether the GUI Pods are being evicted. If not, keep on increasing the real-time Pods by a factor of 5.

					Depending on your resources and the number of Pods, the scheduler may start evicting API Pods.

					Reduce the number of replicas of the real-time Pod from 10 to 1 and see that the API and GUI Pods are scheduled back on the cluster.

			

			Once you have completed the activity, two Pods each of the API and GUI Pods are expected to be in the Running state, along with one real-time Pod as shown in the following screenshot:

			
				
					[image: Figure 17.22: Expected output of Activity 17.01

]
				

			

			Figure 17.22: Expected output of Activity 17.01

			Note that your output will vary as per your system resources, and hence, you may not see exactly what you see in this screenshot.

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			The Kubernetes Scheduler is a powerful software that abstracts the work of selecting the appropriate node for a Pod on a cluster. The Scheduler watches for unscheduled Pods and attempts to find suitable nodes for them. Once it finds a suitable node for a Pod, it updates etcd (via the API server) that the Pod has been bound to the node.

			The scheduler has matured with every release of Kubernetes. The default behavior of the scheduler is sufficient for a variety of workloads, although you have also seen many ways to customize the way that the Scheduler associates resources with Pods. You have seen how node affinity can help you schedule Pods on your desired nodes. Pod affinity can help you schedule a Pod relative to another Pod, and it is a good tool for applications where multiple modules are targeted to be placed next to each other. Taints and tolerations can also help you assign specific workloads to specific nodes. You have also seen that Pod priority can help you schedule the workloads as per the total resources available in the cluster.

			In the next chapter, we will upgrade a Kubernetes cluster with no downtime. If you have configured custom scheduling in your cluster using any of the techniques shown in this chapter, you may need to plan your upgrade accordingly. Since the upgrade will take down one worker node at a time, it may be possible that some of your Pods may become non-schedulable because of your configuration, and that may not be an acceptable solution.

		

		
			
			

		

	
		
			
			

		

		
			18. Upgrading Your Cluster without Downtime

		

		
			Overview

			In this chapter, we will discuss how to upgrade your cluster without downtime. We will first understand the need to keep your Kubernetes cluster up to date. Then, we will understand basic application deployment strategies that can help zero-downtime upgrades of the Kubernetes cluster. We will then put these strategies into action by performing an upgrade on a Kubernetes cluster with no downtime for your application.

			Introduction

			We learned how to set up a multi-node Kubernetes platform on AWS using kops in Chapter 11, Build Your Own HA Cluster. In this chapter, you will learn about upgrading the Kubernetes platform to a new version. We will walk you through hands-on examples of the steps that are required to upgrade the Kubernetes platform. These exercises will also equip you with the skills required to maintain a Kubernetes cluster.

			Different organizations set up and maintain their Kubernetes clusters in different ways. You saw in Chapter 12, Your Application and HA, that there are numerous ways to set up a cluster. We will present a simple technique to upgrade your cluster and, depending on the cluster you are dealing with, the exact techniques and steps that you will need to take for upgrading may be different, although the basic principles and precautions that we will mention here will be applicable regardless of how you go about upgrading your cluster.

			The Need to Upgrade Your Kubernetes Cluster

			Building up your business application and putting it out in the world is only half the game. Making your application usable by customers in a secure, scalable, and consistent way is the other half and the one that you have to keep working on. To be able to execute this other half well, you need a rock-solid platform.

			In today's highly competitive environment, delivery of the latest features to customers in a timely manner is important to give your business an edge. This platform has to not only be dependable but also provide new and updated features to keep up with the demands of running modern applications. Kubernetes is a fast-moving platform and is well suited for such a dynamic environment. The pace of development and advancement of Kubernetes is evidenced by the number of commits in the official Kubernetes GitHub repository. Let's take a look at the following screenshot:

			
				
					[image: Figure 18.1: Daily commits to the Kubernetes project during the period August 25–31, 2019

]
				

			

			Figure 18.1: Daily commits to the Kubernetes project during the period August 25–31, 2019

			The orange bar graph represents the commits per week and, as you can see, they are averaging over 100 per week. The green line graph underneath shows the commits for the week of August 25 through August 31. That's more than 50 commits just on a Tuesday.

			By now, it's clear that Kubernetes is advancing at a fast pace, but you may still be unsure about whether you need to update the version of Kubernetes on your cluster. The following are some of the reasons why it is important to keep the platform up to date:

			
					New features: The Kubernetes community is continuously adding new features to satisfy the needs of modern applications. Your software team may come up with a new software component that may be dependent on a newer Kubernetes feature. Thus, sticking to an older version of Kubernetes will hold back the development of your software.

					Security patches: There are many moving parts in the Kubernetes platform. It has not only the Kubernetes binaries that need to be patched but also lots of Linux features, such as iptables and cgroups. If there are vulnerabilities in any of the components used by Kubernetes, you may need to patch the underlying component, such as the OS itself. Having a consistent way to upgrade is extremely important in keeping the Kubernetes ecosystem as secure as possible.For example, there was a vulnerability in versions 1.0–1.12 of the Kubernetes API server that resulted in the API server possibly consuming lots of resources due to an invalid YAML or JSON payload. You can find more details about this vulnerability at this link: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11253

					Better handling of existing features: The Kubernetes team not only adds new features but also keeps on improving existing features for stability and performance. These improvements may be useful for your existing applications or your automation scripts. So, keeping your platform updated is a good idea from this perspective, too.

			

			Kubernetes Components – Refresher

			By now, you are already aware of the basic components of the Kubernetes platform. Just as a refresher, let's revisit the major components:

			
					The API server is responsible for exposing RESTful Kubernetes APIs and is stateless. All users on your cluster, Kubernetes master components, kubectl clients, worker nodes, and maybe even your application all need to interact with the API server.

					A key-value store (the etcd server) stores the objects and provides a persistent backend to the API server.

					The scheduler and controller manager act to attain the state of the cluster and objects stored in etcd.

					kubelet is a program that runs on every worker node and behaves like an agent to perform the work as directed by Kubernetes master components.

			

			When we update the platform, as you will see in the later sections, we are going to utilize these components and upgrade them as separate modules.

			A Word of Caution

			Kubernetes versions are marked as A.B.C and follow the semantic versioning concepts. A is the major version, B is the minor version, and C is the patch release. As per the Kubernetes documentation, "in highly available (HA) clusters, the newest and oldest kube-apiserver instances must be within one minor version.'

			The following is the safest approach when planning your upgrade:

			
					Always upgrade to the latest patched release of your current minor version first. For example, if you are on 1.14.X, first upgrade to the latest available version for the 1.14.X release train. This will make sure that the platform has all the available fixes applied for the version of your cluster. The latest patch may have bug fixes, which might provide you with a smoother path toward the next minor version, which, in our example, would be 1.15.X.

					Upgrade to the next minor version. Avoid jumping over multiple minor versions, even if this is possible, as generally, API compatibility is within one minor release. During the upgrade, the Kubernetes platform will be running two different versions of an API because we upgrade one node at a time. For example, it is better to go from 1.14 to 1.15, and not to 1.16.

			

			Another important thing to consider is to see whether the newer version needs some updated libraries from the underlying Linux OS. Although, in general, patch releases don't require any underlying component upgrades, keeping the underlying OS up to date should also be on top of your list to provide a safe and consistent environment for the Kubernetes platform.

			The Upgrade Process

			In this section, you will see the steps required to upgrade the Kubernetes platform. Note that upgrading the underlying OS is not covered here. To meet the requirement of zero-downtime upgrades, you must have an HA Kubernetes cluster with a minimum of three masters and etcd servers, which enables frictionless upgrades. The process will take one node out of the three and upgrade it. The upgraded component then will rejoin the cluster, and then we take the second node and apply the upgrade process to it. Since, at any given time, at least two of the servers are kept available, the cluster will remain available during the upgrade.

			Some Considerations for kops

			We have guided you through the creation of an HA Kubernetes cluster in Chapter 11, Build Your Own HA Cluster. Hence, in this chapter, we will walk you through upgrading the same cluster.

			As mentioned in that chapter, there are various ways of deploying and managing a Kubernetes cluster. We have opted for kops, which has built-in tools for upgrading Kubernetes components. We will be leveraging them in this chapter.

			The versioning of kops is set to be analogous to the minor version of Kubernetes it implements. For example, kops version 1.14.x implements Kubernetes version 1.14.x. For more details on this, please refer to this link: https://kops.sigs.k8s.io/welcome/releases/.

			Note

			In the HA cluster we created in Chapter 11, Build Your Own HA Cluster, we deployed three master nodes, which host all the Kubernetes master plane components, including the etcd.

			An overview of the Upgrade Process

			The entire upgrade process can be diagrammatically summarized as follows:

			
				
					[image: Figure 18.2: The recommended upgrade process

]
				

			

			Figure 18.2: The recommended upgrade process

			Let's take a quick look at each step before we move on to the implementation:

			
					Read the release notesThese will indicate any special considerations that might be necessary during an upgrade. The release notes for each version are available on GitHub at this link: https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG.

					Back up the etcd datastoreAs you have learned earlier, etcd stores the entire state of the cluster. A backup of etcd would allow you to restore the state of your datastore, if needed.

					Back up the nodes as an optional failsafeThis may come in handy if the upgrade process does not go as planned and you want to revert to a previous state. Cloud vendors (such as AWS, GCP, Azure, and others) enable you to take a snapshot of the hosts. If you are running in a private data center and using hypervisors for your machines, your hypervisor provider (for example, VMware) may provide tools to take snapshots of the nodes. Taking snapshots is beyond the scope of this book, but nonetheless, it is a useful step before you start upgrading your Kubernetes platform.

					Upgrade the etcd if requiredThe more recent versions of the tools used to deploy and manage a Kubernetes cluster (such as kops in our case) usually take care of this automatically. Even so, this is an important consideration, especially if you are not using any tools such as kops.
Check and verify whether the new version of Kubernetes needs a different version of the etcd store. This is not always necessary, but may be required depending on your version. For example, Kubernetes version 1.13 needs etcd v3, while prior versions work with etcd v2.
You will know whether you need to upgrade etcd from reading the release notes (step 1). For example, when the earlier version of etcd was phased out in version 1.13, it was explicitly mentioned in the release notes: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.13.md#urgent-upgrade-notes.

					Upgrade the master componentsLog in to the bastion host and upgrade the version of kops based on the desired version of Kubernetes. This compatibility matrix should be a useful guide: https://kops.sigs.k8s.io/welcome/releases/#compatibility-matrix.
Run the upgrade on the first master node, verify that it is updated correctly, and then repeat the same steps for all other master nodes.

					Upgrade the worker node groupsAs you have seen in Chapter 11, Build Your Own HA Cluster, kops allows you to manage the nodes using instance groups, which is tied to the autoscaling group, in the case of AWS. Run the upgrade on the first instance group of worker nodes. To verify that the nodes were successfully upgraded, you need to check that the nodes are upgraded to the desired version of Kubernetes and whether pods are scheduled on the upgraded nodes. Repeat the same steps for all other instance groups of worker nodes.

					Verify that the upgrade process succeededCheck whether all the nodes are upgraded and all your applications are running as intended.

			

			The Importance of Automation

			As you have seen from this overview, there are several steps required to upgrade the cluster. Given the number of releases and patches, you may need to do this often. Since the process is well documented, it is highly recommended that you consider using an automation tool, such as Ansible or Puppet, to automate this whole process. All the preceding steps can be fully automated, and you have a repeatable way to upgrade your cluster. Automation, however, will not be covered in this chapter as this is beyond the scope of this book.

			Backing up the etcd Datastore

			etcd stores the state of the entire cluster. So, taking a snapshot of etcd allows us to restore the entire cluster to the state when the snapshot was taken. This may come in handy if you want to revert the cluster to a previous state.

			Note

			Before you begin with any exercises, make sure that the cluster is set up and available as per the instructions in Chapter 11, Build Your Own HA Cluster, and that you can access the nodes from your computer via SSH. It is also recommended that you take snapshots of the nodes before starting the upgrade process. This is especially beneficial because in this chapter, you will upgrade the cluster two times – once during the exercises and once during the activity.

			Now, before we move on to the first exercise, we need to understand a bit more about etcd. The way that it works is that it runs as a pod on your cluster in the kube-system namespace (as you have seen in Chapter 2, An Overview of Kubernetes) and exposes an API, which is used to write data to it. Whenever the Kubernetes API server wants to persist any data to etcd, it will use etcd's API to access it.

			For backing up etcd, we will also need to access its API and use a built-in function to save a snapshot. For that, we will use a command-line client called etcdctl, which is already present in the etcd pod. Detailed coverage of this tool and the etcd API is not necessary for our purposes and so we are not including it in this book. You can learn more about it at this link: https://github.com/etcd-io/etcd/tree/master/etcdctl.

			Now, let's see how we can use etcdctl to back up etcd in the following exercise.

			Exercise 18.01: Taking a Snapshot of the etcd Datastore

			In this exercise, we will see how to take a snapshot of the etcd store. As mentioned in the previous section, a manual upgrade of etcd may not be required, depending on your upgrade path. However, backing up etcd is essential. For this, and all the following exercises and activities, use the same machine (your laptop or desktop) that you used to perform Exercise 11.01, Setting Up Our Kubernetes Cluster:

			
					We have used kops to install the cluster. Kops uses two different etcd clusters – one for events generated by Kubernetes components, and the second one for everything else. You can see these pods by issuing the following command: kubectl get pods -n kube-system | grep etcd-manager
This should get the details of the etcd pods. You should see an output similar to the following:
[image: Figure 18.3: Getting the list of etcd-manager pods

]
Figure 18.3: Getting the list of etcd-manager pods

					By default, kops' etcd-manager function creates backups every 15 minutes. The location of the backups is the same S3 storage used by the kops tool. In Exercise 11.01, you configured the S3 bucket to store kops' state. Let's query the bucket to see whether a backup is available there:aws s3api list-objects --bucket $BUCKET_NAME | grep backups/etcd/main
You should see a response similar to this:
[image: Figure 18.4: Getting a list of available backups

]
Figure 18.4: Getting a list of available backups
You can see that the backups are taken automatically every 15 minutes and timestamps of the backups are marked. We will use the Key of the latest backup, highlighted in the preceding screenshot, in the next step.

					The next step is to get the backup from the S3 bucket. We can use AWS CLI commands to get the backup that we need:aws s3api get-object --bucket $BUCKET_NAME --key "myfirstcluster.k8s.local/backups/etcd/main/2020-06-14T02:06:33Z-000001/etcd.backup.gz' etcd-backup-$(date +%Y-%m-%d_%H:%M:%S_%Z).db
Note that this command contains the name of the bucket, the Key of the file from the previous step, and the filename that we want to use while saving the file. Use the Key that you get for your instance in the output of the previous step. You should see a response similar to this:
[image: Figure 18.5: Saving the etcd backup from our S3 bucket

]
Figure 18.5: Saving the etcd backup from our S3 bucket
Note that we have used the date command to generate the filename. This is a very common technique used by system administrators to make sure that any files are not overwritten.
Note
If you want to recover your etcd instance using this backup, you can find the recovery instructions at this link: https://kops.sigs.k8s.io/operations/etcd_backup_restore_encryption/.

					Verify that the backup file is created:ls -lrt
You should see the following response:
[image: Figure 18.6: Confirming the saved etcd backup

]

			

			Figure 18.6: Confirming the saved etcd backup

			You should be able to see the snapshot that we created in the response.

			In this exercise, you have seen how to generate a backup of the etcd datastore. This backup is the state of Kubernetes and could be useful not only if your upgrade is hit by any issues, but also to restore the cluster for any other reason, such as Disaster Recovery (DR) scenarios.

			Draining a Node and Making It Non-Schedulable

			Before we start to upgrade any nodes (master or worker), we need to make sure that no pods (including the pods for the master components) are running on this node. This is an important step to prepare any node to be upgraded. Furthermore, the node needs to be marked as unschedulable. An unschedulable node is a flag for the scheduler to not schedule any pods in this node.

			We can use the drain command to mark the node as un-schedulable and to evict all the pods. The drain command will not delete any DaemonSet pods unless we tell the flag to do so. One of the reasons for this behavior is that DaemonSet pods cannot be scheduled on any other nodes.

			Note that the drain command waits for the graceful termination of the pods and it is highly recommended to wait for all the pods to terminate gracefully in production environments. Let's see this in action in the following exercise.

			Exercise 18.02: Draining All the Pods from the Nodes

			In this exercise, we will remove all the pods running on a node. Once all the pods are removed, we will change the node back to schedulable so that it can accept new workloads. This is when the node has been upgraded and ready to take new pods:

			
					Get a list of all the nodes: kubectl get nodes
You should see a response similar to this:
[image: Figure 18.7: Getting a list of nodes

]
Figure 18.7: Getting a list of nodes
In this example, we have two worker nodes and three master nodes.

					Create a new namespace called upgrade-demo:kubectl create ns upgrade-demo
You should see the following response:
namespace/upgrade-demo created

					Run a bunch of pods to simulate a workload. Create a file named multiple-pods.yaml with the following content:apiVersion: apps/v1
kind: Deployment
metadata:
 name: sleep
spec:
 replicas: 4
 selector:
 matchLabels:
 app.kubernetes.io/name: sleep
 template:
 metadata:
 labels:
 app.kubernetes.io/name: sleep
 spec:
 containers:
 - name: sleep
 image: k8s.gcr.io/busybox
 command: ["/bin/sh', "-c', "while :; do echo 'this is backend pod'; sleep 5 ; done']
 imagePullPolicy: IfNotPresent
The deployment will create four replicas of the pods.

					Now, use the config to create the deployment:kubectl create -f multiple-pod.yaml -n upgrade-demo
You should see this response:
deployment.apps/sleep created

					Verify that they are running on the worker pods:kubectl get pods -n upgrade-demo -o wide
Your output should look like this:
[image: Figure 18.8: Verifying whether the pods are running on the worker nodes

]
Figure 18.8: Verifying whether the pods are running on the worker nodes
Note that the pods are distributed among both worker nodes by the default scheduler behavior.

					Use the drain command to evict all the pods from any of the nodes. This command will also mark the node as unschedulable:kubectl drain kube-group-1-mdlr --ignore-daemonsets
Use the name of your node that you obtain from the output of the previous step. Note that we have passed a flag to ignore the daemon sets. You should see the following response:
[image: Figure 18.9: Draining a node

]
Figure 18.9: Draining a node
If we don't set the --ignore-daemonsets flag and there are some DaemonSet pods on the node, drain will not proceed without this flag. We recommend using this flag because your cluster may be running some essential pods as a DaemonSet –for example, a Fluentd pod that collects logs from all other pods on the node and sends them to the central logging server. You may want this log collection pod to be available until the very last minute.

					Verify that all the pods are drained from this node. To do that, get a list of the pods:kubectl get pods -n upgrade-demo -o wide
You should see the following response:
[image: Figure 18.10: Checking whether the pods have been moved away from the drained node

]
Figure 18.10: Checking whether the pods have been moved away from the drained node
In the preceding screenshot, you can see that all the pods are running on the other node. We only had two worker nodes in our cluster, and so all the pods were scheduled on the lone schedulable node. If we had several available worker nodes, the pods would have been distributed among them by the scheduler.

					Let's describe our drained node and make a few important observations:kubectl describe node kube-group-1-mdlr
Use the name of the node that you drained in step 6. This will give a pretty long output, but there are two sections worth observing:
[image: Figure 18.11: Checking taints and the unschedulable status of our drained node

]
Figure 18.11: Checking taints and the unschedulable status of our drained node
The preceding screenshot shows that our node is marked as unschedulable. Next, find the section like the following in your output:
[image: Figure 18.12: Examining the non-terminated pods on the drained node

]
Figure 18.12: Examining the non-terminated pods on the drained node
This shows that the only non-terminated pods running on our system have names starting with kube-proxy and weave-net. The first pod implements kube-proxy, which is the component that manages pod and service network rules on nodes. The second pod is weave-net, which implements virtual networking for our cluster (note that your networking provider depends on the type of network you have selected). Since we added a flag to exclude DaemonSets in step 6, these pods, which are managed by a DaemonSet, are still running.

					Once you drain the pod in step 6, you will be able to upgrade the node. Even though upgrading is not part of this exercise, we just want to make the node schedulable again. For that, use the following command:kubectl uncordon kube-group-1-mdlr
You should see a response similar to this:
node/kube-group-1-mdlr uncordoned

					Verify that the node is schedulable again. Check the Taints section in the following output:kubectl describe node kube-group-1-mdlr
You should see a response similar to the following:
[image: Figure 18.13: Checking the taints and unschedulable statuses of our uncordoned node

]

			

			Figure 18.13: Checking the taints and unschedulable statuses of our uncordoned node

			The preceding screenshot shows that the node is now schedulable, and the taint that we observed in step 8 has been removed.

			In this exercise, you have seen how to remove all the pods from the node and mark the node as unschedulable. This will make sure that no new pod will be scheduled in this node and we can work on upgrading this node. We also learned how to make the node schedulable again so that we can continue using it after completing the upgrade.

			Upgrading Kubernetes Master Components

			When you are running Kubernetes in any capacity that is important for your organization, you will be running the platform in an HA configuration. To achieve that, the typical configuration is at least three replicas of master components, running on three different nodes. This allows you to upgrade single nodes from one minor version to the next, one by one, while still maintaining API compatibility when an upgraded node rejoins the cluster because Kubernetes provides compatibility across one minor version. This means the master components can be on different versions when you are upgrading each node at a time. The following table provides a logical flow of the versions. Let's assume you are upgrading from version 1.14 to 1.15:

			
				
					[image: Figure 18.14: Upgrade plan for three master nodes

]
				

			

			Figure 18.14: Upgrade plan for three master nodes

			In the following exercise, we will proceed with upgrading the Kubernetes master components.

			Exercise 18.03: Upgrading Kubernetes Master Components

			In this exercise, you will upgrade all the master components on the Kubernetes master nodes. This exercise assumes that you are still logged in to the bastion host of your cluster.

			In this exercise, we are demonstrating the process on a smaller number of nodes for the sake of simplicity, but the process of upgrading a large number of nodes would be the same. However, for a seamless upgrade, three master nodes are a minimum, and your applications should be HA and running on at least two worker nodes:

			
					Run the kops validator to validate the existing cluster:kops validate cluster
You should see a response similar to the following:
[image: Figure 18.15: Validating our kops cluster

]
Figure 18.15: Validating our kops cluster
This is a truncated version of the output. It shows the major infrastructure components of your cluster.

					List all the nodes in your cluster:kubectl get nodes
You should see a response similar to this:
[image: Figure 18.16: Getting a list of the nodes

]
Figure 18.16: Getting a list of the nodes
Notice that we have three master nodes and all of them are on version 1.15.7.
Note
In this exercise, we are showcasing the upgrade from Kubernetes version 1.15.7 to 1.15.10. You can apply the same steps to upgrade to the version of Kubernetes supported by kops at the time when you perform this exercise. Just remember our earlier advice of upgrading to the latest patch version first (which is what we are doing here).

					Use the kops upgrade cluster command to see what update is available:kops upgrade cluster ${NAME}
Note that this command will not directly run the update, but it will give you the latest update version possible. The NAME environment variable holds the name of your cluster. You should see an output similar to the following:
[image: Figure 18.17: Checking the available cluster version

]
Figure 18.17: Checking the available cluster version
You can see from the preceding screenshot that the OLD version is 1.15.7, which is our current version, and an update is available to the NEW version of 1.15.10, which is our target version.

					Once you verify the changes from the command in step 4, run the same command with a --yes flag. This will mark the desired state of the cluster in the kops state store:kops upgrade cluster --yes
You should see an output similar to the following:
[image: Figure 18.18: Upgrading the kops cluster configuration

]
Figure 18.18: Upgrading the kops cluster configuration
This output indicates that the desired version of the Kubernetes cluster is recorded in the updated kops configuration. In the next step, we will ask kops to update the cloud or cluster resources to match the new specifications – that is, Kubernetes version 1.15.10.

					Now, let's run the following command so that kops updates the cluster to match the updated kops configuration:kops update cluster ${NAME} --yes
This will give a long output that will end in a similar way to the following screenshot:
[image: Figure 18.19: Updating our cluster infrastructure as per

the requirements of our cluster upgrade

]
Figure 18.19: Updating our cluster infrastructure as per the requirements of our cluster upgrade
This has updated the cluster infrastructure to match the updated kops configuration. Next, we need to perform an upgrade of the Kubernetes master components running on this infrastructure.

					If you are running several instances of your master/worker nodes on different instance groups, then you can control which instance group is receiving the updates. For that, let's get the name of our instance group first. Use the following command to get the names:kops get instancegroups
You should see a response as follows:
[image: Figure 18.20: Getting a list of the instance groups

]
Figure 18.20: Getting a list of the instance groups

					In this step, kops will update the Kubernetes cluster to match the kops specifications. Let's upgrade the first master node to the new version using a rolling update:kops rolling-update cluster ${NAME} --instance-group master-australia-southeast1-a --yes
Note that this command will only apply changes if you specify the --yes flag. This command may take time based on your node configuration. Be patient and watch the logs to see whether there are any errors. After some time, you should see a successful message similar to the one in the following screenshot:
[image: Figure 18.21: Applying a rolling update to our first instance group

]
Figure 18.21: Applying a rolling update to our first instance group

					Verify that the node is upgraded to the target version, which is 1.15.10, in our case:kubectl get nodes
This should give a response similar to the following:
[image: Figure 18.22: Checking whether the master components on the node have been upgraded

]
Figure 18.22: Checking whether the master components on the node have been upgraded
You can see that the first master node is on the 1.15.10 version.

					Verify that the pods are running on the newly upgraded node:kubectl describe node master-australia-southeast1-a-q2pw
Use the name of the node that you upgraded in the previous steps. This will give a long output. Look for the Non-terminated Pod section, as shown in the following screenshot:
[image: Figure 18.23: Checking whether our upgraded node is running pods

]
Figure 18.23: Checking whether our upgraded node is running pods
Note
Repeat steps 7 to 9 for all additional master nodes, using the appropriate names of the corresponding instance groups while updating and verifying.

					Verify that kops has successfully updated the master nodes:kops rolling-update cluster ${NAME}
You should see the following output:
[image: Figure 18.24: Checking whether all the master nodes have been upgraded

]
Figure 18.24: Checking whether all the master nodes have been upgraded
As mentioned earlier, this is a dry run, and the output shows which nodes require an update. Since all of them show STATUS as Ready, we know that they have been updated. By contrast, you can see that nodes (the worker nodes) return NeedsUpdate, since we have not updated them yet.

					Verify that all the master nodes have been upgraded to the desired version:kubectl get nodes
You should see a response similar to the following:
[image: Figure 18.25: Checking the version of Kubernetes on all the master nodes

]

			

			Figure 18.25: Checking the version of Kubernetes on all the master nodes

			As you can see, all the master nodes are running version 1.15.10, which is the desired version.

			In this exercise, you have seen how to upgrade the master nodes of the Kubernetes cluster without any downtime for users. One node update at a time will make sure that enough master servers are available (a minimum of three are required for this to work) and the users and the cluster are not getting impacted during the update.

			Note

			When you apply a rolling update to an instance group, kops will roll out the update through the nodes within the instance group by taking only one node offline at a time. On top of that, in this exercise, we applied a rolling update to only one instance group at a time. Eventually, what you should achieve is a situation where only one node from your cluster is taken offline at a time. Remember this if you choose to automate this process.

			Upgrading Kubernetes Worker Nodes

			Although Kubernetes supports compatibility between master (API server) and worker nodes (kubelet) within one minor version, it is highly recommended that you upgrade the master and worker nodes in one go. Using kops, upgrading worker nodes is similar to upgrading master nodes. Due to the backward compatibility within one minor version, the worker nodes may still work if they are not version-matched by the master nodes, but it is strongly discouraged to run different versions of Kubernetes on worker and master nodes since this may create problems for the cluster.

			However, the following considerations are of extreme importance if you want to keep your application online during the upgrade:

			
					Make sure that your applications are configured to be highly available. This means that you should have at least two pods, each on different nodes, for each of your applications. If this is not the case, your applications may experience downtime once you evict the pods from the nodes.

					If you are running stateful components, make sure that the state of these components is backed up, or that your applications are designed to be able to withstand partial unavailability of the stateful components.For example, let's say that you are running a database with a single master node and multiple read replicas. Once the node that is running the master replica of your database evicts the database pod, if your applications are not correctly configured to handle this scenario, they will suffer a downtime. This has nothing to do with the upgrade of the Kubernetes cluster, but it is important to understand how your applications behave during an upgrade and to ensure that they are properly configured to be fault-tolerant.

			

			Now that we have understood the requirements to ensure the uptime of your application, let's see how we can upgrade the worker nodes in the following exercise.

			Exercise 18.04: Upgrading the Worker Nodes

			In this exercise, we will upgrade all the worker nodes of the Kubernetes cluster. Worker nodes are the host of your applications:

			
					Get the list of instance groups for your worker nodes:kops get instancegroups
You should see a response similar to the following:
[image: Figure 18.26: Getting a list of the instance groups

]
Figure 18.26: Getting a list of the instance groups
From this image, we can see that the name of the instance group for our worker nodes is nodes.

					Verify that the nodes are ready:kubectl get nodes
You should see a response similar to this:
[image: Figure 18.27: Checking node status

]
Figure 18.27: Checking node status
If we had multiple instance groups, we would be upgrading each instance group one by one. However, our task here is simple since we have just one – that is, nodes.

					Run the kops rolling update for the nodes instance group without the --yes flag. This will provide you with a summary of what will be updated with the kops rolling-update command:kops rolling-update cluster ${NAME} --node-interval 3m --instance-group nodes --post-drain-delay 3m --logtostderr --v 9
Note that we have changed the verbosity value in the preceding command to get more detailed logs.
Let's break down this command:
– The node-interval flag sets the minimum delay between different node restarts.
– The instance-group flag states which instance group the rolling update should be applied to.
– The post-drain-delay flag sets the delay after draining the node before it can be restarted. Remember from earlier in this chapter that the drain operation will wait for the graceful termination of pods. This delay will be applied after that.
The node-interval and post-drain-delay flags provide an option to control the rate of change in the cluster. The value of these options partially depends on the type of application you are running. For example, if you are running a log agent DaemonSet on the nodes, you may want to give enough time for the pod to flush the content to a central logging server.
Note
We did not use these delays when we performed a rolling update in the previous case since in that case, the instance groups each had just one node in them. Here, we have three nodes in this instance group.
– The logtosterr flag outputs all the logs to the stderr stream so that we can see them in our terminal output.
– The v flag sets the verbosity of the logs that we will see.
This command will show the following output:
[image: Figure 18.28: Performing a dry run of the rolling update

]
Figure 18.28: Performing a dry run of the rolling update

					Now, run the upgrade. Use the same command as the previous step with the addition of the --yes flag. This tells kops to perform the upgrade:kops rolling-update cluster ${NAME} --node-interval 3m --instance-group nodes --post-drain-delay 3m --logtostderr --v 9 --yes
Kops will drain a node, wait for the post drain delay time, and then upgrade and restart the node. This will be repeated for each node, one by one. You will see a long log in the terminal, and this process may take up to half an hour to complete. In your terminal, you should start seeing the logs, as follows:
[image: Figure 18.29: Starting the rolling update process

]
Figure 18.29: Starting the rolling update process
After a while, you will see that the cluster upgrade is finished with a success message, as shown:
[image: Figure 18.30: Rolling update completion message

]
Figure 18.30: Rolling update completion message
Keen readers will notice, in Figure 18.29, that in the author's logs, the cluster upgrade started at around 3:05 and finished, as can be seen in Figure 18.29, at around 3:25. The total time is around 20 minutes for three nodes. We had set a delay of 3 minutes for each node after stopping it and 3 minutes for each node after draining all the pods. So, the waiting time for each node adds up to 6 minutes. With three nodes in the instance group, the total wait time is 6 × 3 = 18 minutes.

					Verify that the worker nodes are updated to the target version – that is, 1.15.10:kubectl get nodes
You should see the following response:
[image: Figure 18.31: Checking the version of Kubernetes on worker nodes

]
Figure 18.31: Checking the version of Kubernetes on worker nodes

					Verify that the pods are in a running state:kubectl get pods -n upgrade-demo
You should see all pods with STATUS set to Running, as in this screenshot:
[image: Figure 18.32: Checking the status of our pods

]

			

			Figure 18.32: Checking the status of our pods

			In this exercise, you have seen how easy it is to upgrade the worker nodes through kops. However, we do not recommend upgrading all worker nodes in one go for production clusters and strongly recommend creating instance groups for worker nodes. The following are some strategies that can be used for production-grade clusters:

			
					Don't keep all of your worker nodes in a single instance group. Create multiple instance groups for different sets of worker nodes. By default, kops creates only one instance group, but you can change this behavior to create many instance groups for worker nodes. We recommend having different worker instance groups for infrastructure components (such as monitoring and logging), ingress, critical applications, non-critical applications, and static applications. This will help you apply the upgrade to less critical parts of your cluster first. This strategy would help limit any issues in the upgrade process, keeping them to a minimum while isolating the affected nodes from the rest of the cluster.

					If you are running the cluster in the cloud, you can provision new nodes on demand. Thus, it may be a good idea to create a sister instance group for upgrades. This new instance group should be running the upgraded version of Kubernetes. Now, cordon and drain all the pods from the old instance group. The Kubernetes scheduler will see that the new nodes are available and will automatically move all your pods to the new nodes. Once this is complete, you can just delete the old instance group and your upgrade is complete.This strategy needs a bit of planning, especially if you are running stateful applications on the cluster. This strategy also assumes that you are able to provision new nodes on demand, since creating a sister instance group may require temporary additional hardware, which may be a challenge for an on-premises data center.

			

			Notice that these are advanced strategies and are beyond the scope of this book. However, you can find more information about it at https://kops.sigs.k8s.io/tutorial/working-with-instancegroups/.

			Now that you have seen all the steps required to upgrade your cluster, you can bring it all together in the following activity.

			Activity 18.01: Upgrading the Kubernetes Platform from Version 1.15.7 to 1.15.10

			In this activity, you will upgrade the Kubernetes platform from version 1.15.7 to version 1.15.10. Here, we will bring together everything that we have learned in this chapter. These guidelines should help you to complete the activity:

			Note

			In this activity, we are showcasing the upgrade from Kubernetes version 1.15.7 to 1.15.10. You can apply the same steps to upgrade to the version of Kubernetes supported by kops at the time when you perform this activity.

			
					Using Exercise 11.01, Setting Up Our Kubernetes Cluster, set up a fresh cluster running Kubernetes version 1.15.7. If you are using the cloud to spin up machines, you can take a snapshot of the machines (your cloud vendor may charge you for this) before the upgrade to quickly rerun the upgrade again.

					Upgrade kops to the version you want to upgrade on the master or bastion node. For this activity, we need to have version 1.15.

					Upgrade one of the master nodes to Kubernetes version 1.15.10.

					Verify that the master node is back in service and in the Ready state.

					Similarly, upgrade all the other master nodes.

					Verify that all the master nodes are upgraded to the desired version, as in the following screenshot:[image: Figure 18.33: Upgraded version of Kubernetes on master nodes

]
Figure 18.33: Upgraded version of Kubernetes on master nodes

					Now, upgrade the worker nodes.

					Verify that the pods are running successfully on the newly upgraded nodes. Finally, you should be able to verify that your pods are running on the new node, as follows:[image: Figure 18.34: Pods running on upgraded worker nodes

]

			

			Figure 18.34: Pods running on upgraded worker nodes

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Summary

			In this chapter, you have learned that keeping your Kubernetes platform up to date is very important when it comes to providing a secure and reliable foundation for running your applications. In this fast-moving digital world, many businesses rely on critical applications and keeping them available, even though upgrading the underlying platform is important.

			You have seen that a no-downtime upgrade of the platform is possible if you have set up the cluster in a high availability configuration to start with. However, the platform does not guarantee the availability of your applications unless you have designed and deployed your application in a fault-tolerant manner. One factor is to make sure that you have multiple instances of your application running and that the application is designed to handle the termination of these instances gracefully.

			With that taken into account, we have seen the important considerations for upgrading your cluster in a way that the platform itself does not cause downtime for your application. We looked at the upgrade process for the master nodes as well as worker nodes separately. The key takeaway from this chapter is the principles underlined at various instances that you can apply for different kinds of Kubernetes clusters managed by different tools.

			As mentioned at the beginning of the chapter, keeping your platform up to date is important to keep up with the latest developments in DevOps and enable your application development team to continue delivering new features to your end customers. With the skills acquired from this chapter, you should be able to handle the upgrade of your platform without causing disruption to your customers.

			In the next chapter, we will discuss how to extend your Kubernetes platform with custom resources. Custom resources allow you to offer a Kubernetes native API experience for your own projects.

		

	
		
			
			

		

		
			19. Custom Resource Definitions in Kubernetes

		

		
			Overview

			In this chapter, we will show how you can use Custom Resource Definitions (CRDs) to extend Kubernetes and add new functionality to your Kubernetes cluster. You will also learn how to define, configure, and implement a complete CRD. We will also describe various example scenarios where CRDs can be very helpful. By the end of this chapter, you will be able to define and configure a CRD and a Custom Resource (CR). You will also learn how to deploy a basic custom controller to implement the required functionality of the CR in your cluster.

			Introduction

			In previous chapters, we learned about different Kubernetes objects, such as Pods, Deployments, and ConfigMaps. These objects are defined and managed by the Kubernetes API (that is, for these objects, the API server manages their creation and destruction, among other operations). However, you may want to extend the functions provided by Kubernetes to provide a feature that is not shipped with standard Kubernetes, and that cannot be enabled by the built-in objects provided by Kubernetes.

			To build these functionalities on top of Kubernetes, we use Custom Resources (CRs). Custom Resource Definitions (CRDs) allow us to add a capability through which users can add custom objects to the Kubernetes server and use those CRs like any other native Kubernetes object. A CRD helps us to introduce our custom objects to the Kubernetes system. Once our CRD is created, it can be used like any other object in the Kubernetes server. Not only that, but we can also use the Kubernetes API, Role-Based Access Control (RBAC) policies, and other Kubernetes features for the CRs we have introduced.

			When you define a CRD, it is stored in the Kubernetes configuration database (etcd). Think of CRDs as the definition of the structure of your custom object. Once a CRD is defined, Kubernetes creates objects that abide by the definition of the CRD. We call these objects CRs. If we were to compare this to the analogy of programming languages, CRD is the class and the CR is the instance of the class. In short, a CRD defines the schema of a custom object and a CR defines the desired state of an object that you would like to achieve.

			CRs are implemented via a custom controller. We will take a closer look at custom controllers in the first topic of this chapter.

			What Is a Custom Controller?

			CRDs and CRs help you define the desired state for your CRs. There is a need for a component that makes sure that the state of the Kubernetes system matches the desired state as defined by the CR. As you have seen in earlier chapters, the Kubernetes components that do this are called controllers. Kubernetes comes up with many of these controllers whose job is to make sure that the desired state (for example, the number of replicas of Pods defined in a Deployment) is equal to the value defined in the Deployment object. In summary, a controller is a component that watches the state of resources through the Kubernetes API server and attempts to match the current state with the desired state.

			The built-in controllers that are included in a standard setup of Kubernetes are meant to work with built-in objects such as Deployments. For our CRDs and their CRs, we need to write our own custom controllers.

			The Relationship between a CRD, a CR, and a Controller

			The CRD provides a way to define a CR, and custom controllers provide the logic to act on the CR objects. The following diagram summarizes the CRD, CR, and controller:

			
				
					[image: Figure 19.1: How CRD, CR, and controllers are tied together

]
				

			

			Figure 19.1: How CRD, CR, and controllers are tied together

			As illustrated in the preceding diagram, we have a CRD, a custom controller, and the CR object that defines the desired state as per the CRD. There are three things to note here:

			
					The CRD is the schema that defines how the object will look. Every resource has a defined schema that tells the Kubernetes engine what to expect in a definition. Core objects such as PodSpec have schemas that are baked into the Kubernetes project. Note
You can find the source code for PodSpec at this link: https://github.com/kubernetes/kubernetes/blob/master/pkg/apis/core/types.go#L2627

					The CR object, which is created based on the schema (the CRD), defines the desired state of the resource.

					The custom controller is the application that provides the functionality to bring the current state to the desired state.

			

			Remember, the CRD is a way through which Kubernetes allows us to define the schema or definition for our CRs declaratively. Once our CRD (the schema) is registered with the Kubernetes server, a CR (the object) is defined as per our CRD.

			Standard Kubernetes API Resources

			Let's list all the resources and APIs that are available in the Kubernetes cluster. Recall that everything we have used is defined as an API resource, and an API is a gateway through which we communicate with the Kubernetes server to work with that resource.

			Get a list of all the current Kubernetes resources by using the following command:

			kubectl api-resources

			You should see the following response:

			
				
					[image: Figure 19.2: Standard Kubernetes API resources

]
				

			

			Figure 19.2: Standard Kubernetes API resources

			In the preceding screenshot, you can see that the resources defined in Kubernetes have an APIGroup property, which defines what internal API is responsible for managing this resource. The Kind column lists the name of the resources. As we have seen earlier in this topic, for standard Kubernetes objects such as Pods, the schema or definition of a Pod object is built into Kubernetes. When you define a Pod specification to run a Pod, this could be said to be analogous to a CR.

			For every resource, there is some code that can take action against the resource. This is defined as a group of APIs (APIGroup). Note that multiple API groups can exist; for example, a stable version and an experimental version. Issue the following command to see what API versions are available in your Kubernetes cluster:

			kubectl api-versions

			You should see the following response:

			
				
					[image: Figure 19.3: Various API groups and their versions

]
				

			

			Figure 19.3: Various API groups and their versions

			In the preceding screenshot, note that the apps API group has multiple versions available. Each of these versions may have a different set of features that is not available in other groups.

			Why We Need Custom Resources?

			As stated earlier, CRs provide a way through which we can extend the Kubernetes platform to provide functionalities that are specific to certain use cases. Here are a few use cases where you will encounter the use of CRs.

			Example Use Case 1

			Consider a use case in which you want to automate the provisioning of a business application or a database onto the Kubernetes cluster automatically. Abstracting away the technical details, such as configuring and deploying the application, allows teams to manage them without having an in-depth knowledge of Kubernetes. For example, you can create a CR to abstract the creation of a database. Thus, users can create a database Pod by just defining the name and size of the database in a CRD, and the controller will provision the rest.

			Example Use Case 2

			Consider a scenario where you have self-serving teams. Your Kubernetes platform is used by multiple teams and you would like the teams to provision namespaces and other resources by themselves. In this case, you want teams to define the total CPU and memory they need for the workloads, as well as default limits for a Pod. You can create a CRD and teams can create a CR with the namespace name and other parameters. Your custom controllers would create the resources they need and associate the correct RBAC policies for each team. You can also add additional functionality, such as a team being restricted to three environments. The controller can also generate audit events and record all the activities.

			Example Use Case 3

			Let's say you are an administrator of a development Kubernetes cluster where developers come and test their application. The problem you are facing is that the developers left the Pods running and have moved on to new projects. This may create a resource issue for your cluster.

			In this chapter, we will build a CRD and a custom controller around this scenario. A solution that we can implement is to delete the Pod after a certain amount of time has passed following their creation. Let's call this time podLiveForThisMinutes. A further requirement is to have a configurable way of defining podLiveForThisMinutes for each namespace, as different teams may have different priorities and requirements.

			We can define a time limit per namespace and that would provide the flexibility to apply controls on different namespaces. To implement the requirements defined in this example use case, we will define a CRD that allows two fields – a namespace name and the amount of time to allow the Pods to run (podLiveForThisMinutes). In the rest of this chapter, we will build a CRD and a controller that will allow us to achieve the functionality mentioned here.

			Note

			There are other (better) ways to implement the preceding scenario. In the real world, a Kubernetes Deployment object would recreate the Pod if the Pod had been created using the Deployment resource. We have chosen this scenario to keep the example simple and easy to implement.

			How Our Custom Resources Are Defined

			To come up with a solution for Example Use Case 3 in the previous section, we have decided that our CRD will define two fields, as mentioned in the preceding example. To accomplish this, our CR object will look as follows.

			apiVersion: "controllers.kube.book.au/v1"

			kind: PodLifecycleConfig

			metadata:

			 name: demo-pod-lifecycle

			spec:

			 namespaceName: crddemo

			 podLiveForThisMinutes: 1

			The preceding specification defines our target object. As you can see, it looks just like normal Kubernetes objects, but the specifications (the spec section) are defined as per our requirements. Let's dig a bit deeper into the details.

			apiVersion

			This is the field required by Kubernetes to group objects. Note that we put the version (v1) as part of the group key. This grouping technique helps us keep multiple versions of our object. Consider whether you want to add a new property without affecting existing users. You can just create a new group with v2, and an object definition with both versions — v1 and v2 — can exist at the same time. Because they are separated, it allows different versions of different groups to evolve at a different rate.

			This approach also helps if we want to test new features. Say we want to add a new field to the same object. Then, we could just change the API version and add the new field. Thus, we can keep the stable version separate from the new, experimental version.

			kind

			This field mentions a specific type of object in a group defined by apiVersion. Think of kind as the name of the CR object, such as Pod.

			Note

			Do not confuse this with the name of the object that you create using this specification, which is defined in the metadata section.

			Through this, we can have multiple objects under one API group. Imagine you are about to create an awesome functionality that would require multiple different types of objects to be created. You can have multiple objects using the Kind field under the same API group.

			spec

			This field defines the information needed to define the specification of the object. The specification contains information that defines the desired state of our resource. All the fields that describe the characteristics of our resource go inside the spec section. For our use case, the spec section contains the two fields that we need for our CR – podLiveForThisMinutes and namespaceName.

			namespaceName and podLiveForThisMinutes

			These are the custom fields that we want to define. namespaceName will contain the name of the target namespace, and podLiveForThisMinutes will contain the time (in minutes) that we want the Pod to be active for.

			The Definition of a CRD

			In the previous section, we showed the different components of a CR. However, before we define our CR, we need to define a schema, which governs how the CR would be defined. In the following exercise, you will define the schema or the CRD for the resource mentioned in the How Our Custom Resources Are Defined section.

			Consider this example CRD, which we will use in the following exercise. Let's understand the important bits of the CRD by observing the following definition:

			pod-normaliser-crd.yaml

			1 apiVersion: apiextensions.k8s.io/v1beta1

			2 kind: CustomResourceDefinition

			3 metadata:

			4 name: podlifecycleconfigs.controllers.kube.book.au

			5 spec:

			6 group: controllers.kube.book.au

			7 version: v1

			8 scope: Namespaced

			9 names:

			10 kind: PodLifecycleConfig

			11 plural: podlifecycleconfigs

			12 singular: podlifecycleconfig

			13 #1.15 preserveUnknownFields: false

			14 validation:

			15 openAPIV3Schema:

			16 type: object

			17 properties:

			18 spec:

			19 type: object

			20 properties:

			21 namespaceName:

			22 type: string

			23 podLiveForThisMinutes:

			24 type: integer

			Now, let's look at various components of this CRD:

			
					apiVersion and kind: These are the API and the resource for the CRD itself and are provided by Kubernetes for the CRD definition.

					group and version: Think of an API group as a set of objects that are logically related to one another. These two fields define the API group and the version of our CR, which will then be translated into the apiVersion field of our CR, defined earlier in the previous section.

					kind: This field defines the kind of our CR, defined earlier in the How Our Custom Resources Are Defined section.

					metadata/name: The name must match the spec fields, and the format is a combination of two fields – that is, <plural>.<group>.

					scope: This field defines whether the CR will be namespace-scoped or cluster-scoped. By default, the CR is cluster-scoped. We have defined it as namespace-scoped here.

					plurals: These are plural names to be used in the Kubernetes API server URL.

					openAPIV3Schema: This is the schema that is defined based on the OpenAPI v3 standards. It refers to the actual fields/schema of our CR. A schema is something that defines what fields are available in our CR, the names of the fields, and the data types for them. It basically defines the structure of the spec field in our CR. We have used the namespaceName and podLiveForMinutes fields in our CR. You can see this in step 2 of the following exercise.

			

			It is interesting to know that the component of the API server that serves the CRs is called apiextensions-apiserver. When kubectl requests reach the API server, it first checks whether the resource is a standard Kubernetes resource, such as a Pod or a Deployment. If the resource is not a standard resource, then apiextensions-apiserver is invoked.

			Exercise 19.01: Defining a CRD

			In this exercise, we will define a CRD, and in the next exercise, we will create a CR for the defined CRD. The definition of the CRD is stored in the Kubernetes etcd server. Remember that the CRD and CR are just definitions, and until you deploy a controller that is associated with your CRs, there is no functionality attached to the CRD/CR. By defining a CRD, you are registering a new type of object with the Kubernetes cluster. After you define the CRD, it will be accessible via the normal Kubernetes API and you can access it via Kubectl:

			
					Create a new namespace called crddemo:kubectl create ns crddemo
This should give the following response:
namespace/crddemo created

					Now, we need to define a CRD. Create a file named pod-normaliser-crd.yaml using the following content:apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: podlifecycleconfigs.controllers.kube.book.au
spec:
 group: controllers.kube.book.au
 version: v1
 scope: Namespaced
 names:
 kind: PodLifecycleConfig
 plural: podlifecycleconfigs
 singular: podlifecycleconfig
 #1.15 preserveUnknownFields: false
 validation:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 namespaceName:
 type: string
 podLiveForThisMinutes:
 type: integer

					Using the definition from the previous step, create the CRD using the following command:kubectl create -f pod-normaliser-crd.yaml -n crddemo
You should see the following response:
[image: Figure 19.4: Creating our CRD

]
Figure 19.4: Creating our CRD

					Verify that the CR is registered with Kubernetes using the following command:kubectl api-resources | grep podlifecycleconfig
You should see the following list of resources:
[image: Figure 19.5: Verifying whether the CR has been registered with Kubernetes

]
Figure 19.5: Verifying whether the CR has been registered with Kubernetes

					Verify that the API is available in the Kubernetes API server by using the following command:kubectl api-versions | grep controller
You should see the following response:
controllers.kube.book.au/v1

			

			In this exercise, we have defined a CRD, and now, Kubernetes will be able to know what our CR should look like.

			Now, in the following exercise, let's create a resource object as per the CRD we defined. This exercise will be an extension of the previous exercise. However, we have separated them because CRD objects can exist on their own; you don't have to have a CR paired with a CRD. It may be the case that a CRD is provided by some third-party software vendor, and you are only required to create the CR. For example, a database controller provided by a vendor may already have a CRD and the controller. To use the functionality, you just need to define the CR.

			Let's proceed to make a CR out of our CRD in the following exercise.

			Exercise 19.02: Defining a CR Using a CRD

			In this exercise, we will create a CR as per the CRD defined in the previous exercise. The CR will be stored in the etcd datastore as a normal Kubernetes object, and it is served by the Kubernetes API server – that is, when you try to access it via Kubectl, it will be handled by the Kubernetes API server:

			Note

			You will only be able to perform this exercise after successfully completing the previous exercise in this chapter.

			
					First, make sure that there is no CR for the podlifecycleconfigs type. Use the following command to check:kubectl get podlifecycleconfigs -n crddemo
If there is no CR, you should see the following response:
No resources found.
If there is a resource defined, you can delete it using the following command:
kubectl delete podlifecycleconfig <RESOURCE_NAME> -n crddemo

					Now, we have to create a CR. Create a file named pod-normaliser.yaml using the following content:apiVersion: "controllers.kube.book.au/v1"
kind: PodLifecycleConfig
metadata:
 name: demo-pod-lifecycle
 # namespace: "crddemo"
spec:
 namespaceName: crddemo
 podLiveForThisMinutes: 1

					Issue the following command to create the resource from the file created in the previous step:kubectl create -f pod-normaliser.yaml -n crddemo
You should see the following response:
[image: Figure 19.6: Creating our CR

]
Figure 19.6: Creating our CR

					Verify that it is registered by Kubernetes by using the following command:kubectl get podlifecycleconfigs -n crddemo
You should see the following response:
NAME AGE
demo-pod-lifecycle 48s

			

			Note that we are using normal kubectl commands now. This is a pretty awesome way to extend the Kubernetes platform.

			We have defined our own CRD and have created a CR against it. The next step is to add the required functionality for our CR.

			Writing the Custom Controller

			Now that we have a CR in our cluster, we will proceed to write some code that acts upon it to achieve the purpose of the scenario we set out in the Why We Need Custom Resources section.

			Note

			We will not teach the actual programming for writing the Go code for our controller since that is beyond the scope of this book. However, we will provide you with the programming logic required for Example Use Case 3.

			Let's imagine that our custom controller code is running as a Pod. What would it need to do to respond to a CR?

			
					First, the controller has to be aware that a new CR has been defined/removed in the cluster to get the desired state.

					Second, the code needs a way to interact with the Kubernetes API server to request the current state and then ask for the desired state. In our case, our controller has to be aware of all the pods in a namespace and the time when the Pods have been created. The code can then ask Kubernetes to delete the Pods if the allowed time is up for them, as per the CRD. Please refer to the Example Use Case 3 section to refresh your memory on what our controller would be doing.

			

			The logic for our code can be visualized using the following diagram:

			
				
					[image: Figure 19.7: Flowchart describing the logic for a custom controller

]
				

			

			Figure 19.7: Flowchart describing the logic for a custom controller

			If we were to describe the logic as simple pseudocode, it would be as follows:

			
					Fetch all the new CRs that have been created for our custom CRD from the Kubernetes API server.

					Register callbacks in case CRs are added or deleted. The callbacks would be triggered each time a new CR is added or deleted in our Kubernetes cluster.

					If the CR is added to the cluster, the callback will create a sub-routine that continuously fetches the list of Pods in the namespace defined by the CR. If the Pod has been running for more than the time specified, it will be terminated. Otherwise, it will sleep for a few seconds.

					If the CR is deleted, the callback will stop the sub-routine.

			

			The Components of the Custom Controller

			As mentioned earlier, explaining in detail how custom controllers are built is beyond the scope of this book, and we have provided a fully working custom controller to suit the needs of Example Use Case 3. Our focus is to make sure that you can build and execute the controller to understand its behavior and that you are comfortable with all the components involved.

			Custom controllers are components that provide functionality against a CR. To provide this, a custom controller would need to understand what a CR is meant for and its different parameters, or the structural schema. To make our controller aware of the schema, we provide the details about our schema to the controller through a code file.

			Here is an excerpt of the code for the controller that we have provided:

			types.go

			12 type PodLifecycleConfig struct {

			13

			14 // TypeMeta is the metadata for the resource, like kind and apiversion

			15 meta_v1.TypeMeta `json:",inline"`

			16

			17 // ObjectMeta contains the metadata for the particular object like labels

			18 meta_v1.ObjectMeta `json:"metadata,omitempty"`

			19

			20 Spec PodLifecycleConfigSpec `json:"spec"`

			21 }

			22

			23 type PodLifecycleConfigSpec struct{

			24 NamespaceName string `json:"namespaceName"`

			25 PodLiveForMinutes int `json:"podLiveForThisMinutes"`

			26 }

			...

			32 type PodLifecycleConfigList struct {

			33 meta_v1.TypeMeta `json:",inline"`

			34 meta_v1.ListMeta `json:"metadata"`

			35

			36 Items []PodLifecycleConfig `json:"items"`

			37 }

			You can find the complete code at this link: https://packt.live/3jXky9G.

			As you can see, we have defined the PodLifecycleConfig structure as per our example of the CR provided in the How Our Custom Resources Are Defined section. It is repeated here for easier reference:

			apiVersion: "controllers.kube.book.au/v1"

			kind: PodLifecycleConfig

			metadata:

			 name: demo-pod-lifecycle

			 # namespace: "crddemo"

			spec:

			 namespaceName: crddemo

			 podLiveForThisMinutes: 1

			Note that in types.go, we have defined objects that can hold the full definition of this example spec. Also, notice in types.go that namespaceName is defined as string and podLiveForThisMinuets is defined as int. This is because we are using strings and integers for these fields, as you can see in the CR.

			The next important function of the controller is to listen to events from the Kubernetes system that are related to the CR. We are using the Kubernetes Go client library to connect to the Kubernetes API server. This library makes it easier to connect to the Kubernetes API server (for example, for authentication) and have predefined request and response types to communicate with the Kubernetes API server.

			Note

			You can find more details about the Kubernetes Go client library at this link: https://github.com/kubernetes/client-go.

			However, you are free to use any other library or any other programming language to communicate with the API server over HTTPS.

			You can see how we have implemented it by checking the code at this link: https://packt.live/3ieFtVm. First, we need to connect to the Kubernetes cluster. This code is running inside a Pod in the cluster, and it will need to connect to the Kubernetes API server. We need to give sufficient rights to our Pod to connect to the master server, which will be covered in the activity later in this chapter. We will use RBAC policies to achieve this. Please refer to Chapter 13, Runtime and Network Security in Kubernetes, to get a refresher on how Kubernetes implements RBAC functionality.

			Once we are connected, we use the SharedInformerFactory object to listen to Kubernetes events for the controller. Think of the event as a way for us to be notified by Kubernetes when a new CR is created or deleted. SharedInformerFactory is a way provided by the Kubernetes Go client library to listen to events generated by the Kubernetes API server. A detailed explanation of SharedInformerFactory is beyond the scope of this book.

			The following snippet is an excerpt from our Go code to create SharedInformerFactory:

			main.go

			40 // create the kubernetes client configuration

			41 config, err := clientcmd.BuildConfigFromFlags("", "")

			42 if err != nil {

			43 log.Fatal(err)

			44 }

			45

			46 // create the kubernetes client

			47 podlifecyelconfgiclient, err := clientset.NewForConfig(config)

			48

			49

			50 // create the shared informer factory and use the client to connect to kubernetes

			51 podlifecycleconfigfactory := informers.NewSharedInformerFactoryWithOptions (podlifecyelconfgiclient, Second*30,

			52 informers.WithNamespace(os.Getenv(NAMESPACE_TO_WATCH)))

			You can find the complete code at this link: https://packt.live/3lXe3FM.

			Once we have connected to the Kubernetes API server, we need to register to be notified whether our CR has been created or deleted. The following code performs this action:

			main.go

			62 // fetch the informer for the PodLifecycleConfig

			63 podlifecycleconfiginformer := podlifecycleconfigfactory.Controllers().V1(). PodLifecycleConfigs().Informer()

			64

			65 // register with the informer for the events

			66 podlifecycleconfiginformer.AddEventHandler(

			...

			69 //define what to do in case if a new custom resource is created

			70 AddFunc: func(obj interface{}) {

			...

			83 // start the subroutine to check and kill the pods for this namespace

			84 go checkAndRemovePodsPeriodically(signal, podclientset, x)

			85 },

			86

			87 //define what to do in case if a custom resource is removed

			88 DeleteFunc: func(obj interface{}) {

			You can find the complete code at this link: https://packt.live/2ZjtQoy.

			Note that the preceding code is an extract from the full code, and the snippet here is modified slightly for better presentation in this book. This code is registering callbacks to the Kubernetes server. Notice that we have registered for AddFunc and DeleteFunc. These will be called once the CR has been created or deleted, and we can write custom logic against that. You can see that for AddFunc, a Go subroutine is being called. For every new CR, we have a separate subroutine to keep on watching for the Pods created in the namespace. Also, note that AddFunc will print out A Custom Resource has been Added to the logs. You may also have noticed that in DeleteFunc, we have closed the signal channel, which will flag the Go subroutine to stop itself.

			Activity 19.01: CRD and Custom Controller in Action

			In this activity, we will build and deploy custom controllers, CRs, and CRDs. Note that the coding required for building the custom controller is beyond the scope of this book and a ready-made code is provided in the code repository to facilitate the Deployment of a working controller.

			We will create a new CRD that can take two fields – a podLiveForThisMinutes field, which defines the time (in minutes) for a Pod to be allowed to run before it is killed, and the namespaceName field, which defines which namespace these rules will be applied to.

			We will create a new CR as per the CRD. Also, we will create a new Kubernetes role that allows this new CRD to be queried from the Kubernetes API server. We will then show you how to associate the newly created role with the ServiceAccount named default, which is the default ServiceAccount that a Pod will use when we run it in the namespace named default.

			Generally, we build a custom controller that provides logic against the CRD we created. We will just use the code packaged as a container and deploy it as a Pod. The controller will be deployed as a normal Pod.

			At the end of the activity, to test our controller, you will create a simple Pod and verify whether our custom controller can delete the Pod.

			Activity Guidelines:

			
					Delete the existing crddemo namespace and create a new one with the same name.

					Get the code and the Dockerfile for creating the controller using the following command:git clone https://github.com/PacktWorkshops/Kubernetes-Workshop.git
cd Chapter19/Activity19.01/controller

					Create a CRD with the following fields.The metadata should contain the following:
name: podlifecycleconfigs.controllers.kube.book.au
The OpenAPIV3Schema section should contain the following properties settings:
openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 namespaceName:
 type: string
 podLiveForThisMinutes:
 type: integer

					Create a CR that allows Pods to live for 1 minute in the crddemo namespace.

					Create a Role that allows the following permissions for the specified API resources: rules:
- apiGroups: ["controllers.kube.book.au"]
 resources: ["podlifecycleconfigs"]
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list", "delete"]

					Using a RoleBinding object, associate this new Role with the default ServiceAccount in the crddemo namespace.

					Build and deploy the controller Pod using the Dockerfile provided in step 2.

					Create a Pod that runs for a long time using the k8s.gcr.io/busybox image in the crddemo namespace.Watch the Pod created in the previous step and observe whether it is being terminated by our controller. The expected result is that the Pod should be created, and then it should be automatically terminated after about a minute, as in the following screenshot:
[image: Figure 19.8: The expected output of Activity 19.01

]

			

			Figure 19.8: The expected output of Activity 19.01

			Note

			The solution to this activity can be found at the following address: https://packt.live/304PEoD.

			Adding Data to Our Custom Resource

			In the previous activity, you created a CRD and CR. We mentioned earlier that once we define our CR, we can query them using standard kubectl commands. For example, if you would like to see how many CRs of the PodLifecycleConfig type have been defined, you can use the following command:

			kubectl get PodLifecycleConfig -n crddemo

			You will see the following response

			NAME AGE

			demo-pod-lifecycle 8h

			Note that it only shows the name and age of the object. However, if you issue a command for a native Kubernetes object, you will see a lot more columns. Let's try that for Deployments:

			kubectl get deployment -n crddemo

			You should see a response similar to this:

			NAME READY UP-TO-DATE AVAILABLE AGE

			crd-server 1/1 1 1 166m

			Notice the additional columns that Kubernetes has added, which provide way more information about the objects.

			What if we want to add more columns so that the output of the preceding command shows more details for our CRs? You are in luck, as Kubernetes provides a way to add additional information columns for the CRs. This is useful for displaying the critical values of each type of custom object. This can be done using additional data defined in the CRD. Let's see how we can do that in the following exercise.

			Exercise 19.03: Adding Custom Information to the CR List Command

			In this exercise, you will learn how to add custom information to the CR list obtained by means of the kubectl get command:

			Note

			You will only be able to perform this exercise after successfully completing Activity 19.01, CRD and Custom Controller in Action.

			
					Let's define another CRD with additional columns. Create a file named pod-normaliser-crd-adv.yaml with the following content:apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: podlifecycleconfigsadv.controllers.kube.book.au
spec:
 group: controllers.kube.book.au
 version: v1
 scope: Namespaced
 names:
 kind: PodLifecycleConfigAdv
 plural: podlifecycleconfigsadv
 singular: podlifecycleconfigadv
 #1.15 preserveUnknownFields: false
 validation:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 namespaceName:
 type: string
 podLiveForThisMinutes:
 type: integer
 additionalPrinterColumns:
 - name: NamespaceName
 type: string
 description: The name of the namespace this CRD is applied to.
 JSONPath: .spec.namespaceName
 - name: PodLiveForMinutes
 type: integer
 description: Allowed number of minutes for the Pod to survive
 JSONPath: .spec.podLiveForThisMinutes
 - name: Age
 type: date
 JSONPath: .metadata.creationTimestamp
Notice how we have a new section named additionalPrinterColumns. As the name suggests, this defines additional information for your resource. The two important fields of the additionalPrinterColumns sections are as follows:
– name: This defines the name of the column to be printed.
– JSONPath: This defines the location of the field. Through this path, the information is fetched from the resources and is displayed in the corresponding column.

					Now, let's create this new CRD using the following command:kubectl create -f pod-normaliser-crd-adv.yaml -n crddemo
You will see the following output:
[image: Figure 19.9: Creating our modified CRD

]
Figure 19.9: Creating our modified CRD

					Once we have created the CRD, let's create the object for the CRD. Create a file named pod-normaliser-adv.yaml with the following content:apiVersion: "controllers.kube.book.au/v1"
kind: PodLifecycleConfigAdv
metadata:
 name: demo-pod-lifecycle-adv
 # namespace: "crddemo"
spec:
 namespaceName: crddemo
 podLiveForThisMinutes: 20
Now, the fields in the spec section should be visible in the list obtained by the kubectl get command, similar to native Kubernetes objects.

					Let's create the CR defined in the previous step using the following command:kubectl create -f pod-normaliser-adv.yaml -n crddemo
This should give the following response:
[image: Figure 19.10: Creating our CR

]
Figure 19.10: Creating our CR

					Now, let's issue the kubectl get command to see whether additional fields are displayed:kubectl get PodLifecycleConfigAdv -n crddemo
You should see the following information displayed for our object:
NAME NAMESPACENAME PODLIVEFORMINUTES AGE
demo-pod-lifecycle-adv crddemo 20 27m
You can see that the additional fields are displayed and we now have more information about our CRs.

			

			In this exercise, you have seen that we can associate additional data for our CR while querying it via the Kubernetes API server. We can define the field names and the path for the data for the fields. This resource-specific information becomes important when you have many resources of the same type, and it is also useful for the operations team to better understand the resources defined.

			Summary

			In this chapter, you learned about custom controllers. As per the Kubernetes glossary, a controller implements a control loop to watch the state of the cluster through the API server and makes changes in an attempt to move the current state toward the desired state.

			Controllers can not only watch and manage user-defined CRs, but they can also act on resources such as Deployments or services, which are typically part of the Kubernetes controller manager. Controllers provide a way to write your own code to suit your business needs.

			CRDs are the central mechanism used in the Kubernetes system to extend its capability. CRDs provide a native way to implement custom logic for the Kubernetes API server that satisfies your business requirements.

			You have learned about how CRDs and controllers help provide an extension mechanism for the Kubernetes platform. You have also seen the process through which you can configure and deploy custom controllers on the Kubernetes platform.

			As we come to the end of our journey, let's reflect on what we have achieved. We started with the basic concepts of Kubernetes, how it is architected, and how to interact with it. We were introduced to Kubectl, the command-line tool to interact with Kubernetes, and then later, we saw how the Kubernetes API server works and how to communicate with it using curl commands.

			The first two chapters established the fundamentals of containerization and Kubernetes. Thereafter, we learned the basics of kubectl – the Kubernetes command center. In Chapter 04, How to Communicate with Kubernetes (API Server), we looked at how kubectl and other HTTP clients communicate with the Kubernetes API server. We consolidated our learning by creating a Deployment at the end of the chapter.

			From Chapter 5, Pods, through to Chapter 10, ConfigMaps and Secrets, we dug into concepts that are critical to understanding the platform and to start designing applications to run on Kubernetes. Concepts such as Pods, Deployments, Services, and PersistentVolumes enable us to use the platform to write fault-tolerant applications.

			In the next series of chapters, stretching from Chapter 11, Build Your Own HA Cluster, to Chapter 15, Monitoring and Autoscaling in Kubernetes, we learned about installing and running Kubernetes on a cloud platform. This covered the installation of the Kubernetes platform in high availability (HA) configuration and how to manage network security in the platform. In this part of the book, you also looked at stateful components and how applications can use these features of the platform. Lastly, this section talked about monitoring your cluster and setting up autoscaling.

			Finally, in this last part, starting from Chapter 16, Kubernetes Admission Controllers, we began learning about advanced concepts such as how you can apply custom policies using admission controllers. You have also been introduced to the Kubernetes scheduler, a component that decides where your application will be running in the cluster. You learned how to change the default behavior of the scheduler. You have also seen how CRDs provide a way to extend Kubernetes, which can be useful not only to build custom enhancements but also as a way for third-party providers to add functionality to Kubernetes.

			This book serves as a good launchpad to get started with Kubernetes. You are now equipped to design and build systems on top of Kubernetes that can bring cloud-native experience to your organization. Although this is the end of this book, it is only the beginning of your journey as a Kubernetes professional.

		

		
			
			

		

	OEBPS/image/B14870_04_15.jpg
11123 15:04:42.086493 5477 loader.go:375] Config loaded from file: /Users/mohammed/.kube/config

11123 15: .096144 5477 round_trippers.go:420] GET https://192.168.99.110:8443/api/v1/namespaces/kube-system/pods?1imit=500
11123 15: .096166 5477 round_trippers.go:427] Request Headers:

11123 15:04:42.096175 5477 round_trippers.go:431] Accept: application/json;as=Table;v=vlbetal;g=meta.k8s.io, application/j
son

11123 15:04:42.096181 5477 round_trippers.go:431] User-Agent: kubectl/v1.16.3 (darwin/amd64) kubernetes/b3cbbae

N

N

11123 15: 2.107066 5477 round_trippers.go:446] Response Status: 200 OK in 1@ milliseconds
11123 15: 2.107092 5477 round_trippers.go:449] Response Headers:

11123 15: 2.107115 5477 round_trippers.go:452] Cache-Control: no-cache, private
11123 15: 2.107128 5477 round_trippers.go:452] Content-Type: application/json

11123 15: 2.107145 5477 round_trippers.go:452] Date: Sat, 23 Nov 2019 13:04:42 GMT

11123 15:04:42.107397 5477 request.go:968] Response Body: {"kind":"Table","apiVersion":"meta.k8s.io/vlbetal","metadata":{"self

Link":"/api/v1l/namespaces/kube-system/pods", "resourceVersion":"1051"}, "columnDefinitions": [{"name": "Name", "type":"string","format
":"name","description":"Name must be unique within a namespace. Is required when creating resources, although some resources may
allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotenc
e and configuration definition. Cannot be updated. More info: http://kubernetes.io/docs/user-guide/identifiers#names","priority":
0},{"name":"Ready","type":"string","format":"","description":"The aggregate readiness state of this pod for accepting traffic.","
priority":0},{"name":"Status","type":"string","format "description":"The aggregate status of the containers in this pod.","pr
iority":0},{"name": Y nteger","forma ,"description":"The number of times the containers in this pod have bee

Restarts", "type" H
n restarted.","priority":0},{"name":"Age","type":"str [truncated 9336 chars]

NAME READY STATUS RESTARTS AGE

coredns-5644d7b6d9-292kd 1/1 Running @ 8m25s
coredns-5644d7b6d9-21g9r 1/1 Running @ 8m25s
etcd-minikube 171 Running @ 7m21s
kube-addon-manager-minikube 171 Running @ 8m33s
kube-apiserver-minikube 171 Running @ 5m5s
kube-controller-manager-minikube 1/1 Running @ 5mSs
kube-proxy-cpbjg 1/1 Running @ 8m26s
kube-scheduler-minikube 171 Running @ 7mi2s
storage-provisioner 1/1 Running @ 8m24s

OEBPS/image/B14870_16_01.jpg
Validation of
Object
Schema

Authentication
and
Authorization

Validation
Admission
Controllers

Storages of the
State Change in
eted

Mutating
Admission
Controllers

HTTP handler
for API

Kubernetes
API Server

OEBPS/image/B14870_04_07.jpg
&
L 4
&

Deleting "minikube" in virtualbox ...
The "minikube" cluster has been deleted.
Successfully deleted profile "minikube"

AbuTalebMBP:~ mohammed$ minikube start

>RE+O

ey

minikube v1.5.2 on Darwin 10.14.6
Automatically selected the 'virtualbox' driver

Creating virtualbox WM (CPUs=2, Memory=2000MB, Disk=20000MB) ...

Preparing Kubernetes v1.16.2 on Docker '18.09.9' ...
Pulling images ...

Launching Kubernetes ...

Waiting for: apiserver

Done! kubectl is now configured to use "minikube"

OEBPS/image/B14870_04_31.jpg
admissionregistration.k8s.io/vl
admissionregistration.k8s.io/vlbetal
apiextensions.k8s.io/vl
apiextensions.k8s.io/vlbetal
apiregistration.k8s.io/vl
apiregistration.k8s.io/vlbetal
apps/vl
authentication.k8s.io/vl
authentication.k8s.io/vlbetal
authorization.k8s.io/v1l
authorization.k8s.io/vlbetal
autoscaling/vl
autoscaling/v2betal
autoscaling/v2beta2

batch/vl

batch/vlbetal
certificates.k8s.io/vlbetal
coordination.k8s.io/vl
coordination.k8s.io/vlbetal
events.k8s.io/vlbetal
extensions/vlbetal
networking.k8s.io/v1l
networking.k8s.io/vlbetal
node.k8s.io/vlbetal
policy/vlbetal
rbac.authorization.k8s.io/v1
rbac.authorization.k8s.io/vlbetal
scheduling.k8s.io/v1l
scheduling.k8s.io/vlbetal
storage.k8s.io/v1l
storage.k8s.io/vlbetal

vl

OEBPS/image/B14870_04_23.jpg
NAME

bindings

configmaps

endpoints

events

limitranges
persistentvolumeclaims
pods

podtemplates
replicationcontrollers
resourcequotas

secrets
serviceaccounts
services
controllerrevisions
daemonsets

deployments
replicasets
statefulsets
localsubjectaccessreviews
horizontalpodautoscalers
cronjobs

jobs

leases

events

ingresses

ingresses
networkpolicies
poddisruptionbudgets
rolebindings

roles

SHORTNAMES

cm
ep

ev
limits
pvc

po

rc
quota

sa
svc

ds
deploy
rs

sts

hpa
j

ev
ing
ing
netpol
pdb

APIGROUP

apps
apps

apps

apps

apps

authorization.k8s.io
autoscaling

batch

batch

coordination.k8s.io
events.k8s.io

extensions
networking.k8s.io
networking.k8s.io

policy
rbac.authorization.k8s.io
rbac.authorization.k8s.io

NAMESPACED
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true

KIND

Binding

ConfigMap

Endpoints

Event

LimitRange
PersistentVolumeClaim
Pod

PodTemplate
ReplicationController
ResourceQuota

Secret

ServiceAccount
Service
ControllerRevision
DaemonSet

Deployment

ReplicaSet
StatefulSet
LocalSubjectAccessRevie
HorizontalPodAutoscaler
CronJob

Job

Lease

Event

Ingress

Ingress

NetworkPolicy
PodDisruptionBudget
RoleBinding

Role

OEBPS/image/B14870_12_01.jpg
Initializing the backend...
Initializing provider plugins...

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested below.

* provider.aws: version = "~> 2.46"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so_if necessary.

OEBPS/image/B14870_07_05.jpg
Name: nginx-replicaset

Namespace: default

Selector: environment=production
Labels: app=nginx

Annotations: <none>

Replicas: 2 current / 2 desired

Pods Status: 2 Running / @ Waiting / @ Succeeded / @ Failed
Pod Template:
Labels: environment=production

Containers:
nginx-container:
Image: nginx
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>
Events:
Type Reason Age From Message

Normal SuccessfulCreate 13m replicaset-controller Created pod:

nx-replicaset-4dr7s

ngi

OEBPS/image/B14870_13_03.jpg
serviceaccount/test-sa created
clusterrole.rbac.authorization.k8s.io/test-sa-cluster-role created
clusterrolebinding.rbac.authorization.k8s.io/test-sa-cluster-role-binding create
d

OEBPS/image/B14870_01_25.jpg
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

8bf56cadc3dc hweicdl/k8s-for-beginners:v0.0.1 "/k8s-for-beginners" 27 seconds ago
Up 26 seconds gifted_cori

OEBPS/image/B14870_01_17.jpg
The push refers to repository [docker.io/hweicdl/k8s-for-beginners]

5b751225b338: Pushed

77cae8ab23bf: Pushed

v0.0.1: digest: sha256:5dbf6d7cc759c163fc239e033a44f3cc88eebaa58e8ed4fe26cd7d0574b911d6 size
739

OEBPS/image/B14870_01_09.jpg
CONTAINER ID

43c01e2055cf

@) 2 seconds ago
286bc@c92b3a
0) 6 minutes ago

39bf70d02dcc
nutes
96c374000f6f
ours

IMAGE COMMAND

PORTS NAMES

hello-world "/hello"
nervous_dhawan

hello-world "/hello"
trusting_hawking

nginx "nginx -g 'daemon of."

0.0.0.0:8080->80/tcp optimistic_jackson

nginx "nginx -g 'daemon of.."

80/tcp silly_hopper

CREATED

3 seconds ago
6 minutes ago
7 minutes ago

16 hours ago

STATUS

Up 7 mi

Up 16 h

OEBPS/image/B14870_07_13.jpg
NAME

activity-deployment-54b9c6ff99-45shk
activity-deployment-54b9c6ff99-57kls
activity-deployment-54b9c6ff99-cl2hc
activity-deployment-54b9c6ff99-dswsb
activity-deployment-54b9c6ff99-g6t7v
activity-deployment-54b9c6ff99-h2vb2
activity-deployment-54b9c6ff99-njnzc
activity-deployment-54b9c6ff99-v12md
activity-deployment-54b9c6ff99-z2fxg
activity-deployment-54b9c6ff99-zp5zj

READY
171
171
171
171
171
171
171
171
171
171

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

[SESESES SRS SESESES)

AGE
4m39s
18s
4m39s
18s
4m39s
4m39s
4m39s
18s
4m39s
18s

OEBPS/image/B14870_03_13.jpg
Containers:

nginx:
Container ID: docker://d2093551244d220d7c6acbf823abbcd@e142f8b37579af38ddb8acf2e4897036
Image: ngin ol
Image ID: docker-pullable://nginx@sha256:2f68b99bcod6d25d0c56876b924ec20418544ff28e1fb89a4c27679a40da811b
Port: <none>
Host Port: <none>
State: Running
Started: Sun, 16 Feb 2020 12:07:31 +0000
Ready: True
Restart Count: ©
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-46457 (ro)

OEBPS/image/B14870_05_09.jpg
Name : multi-container-pod

Namespace: default

Priority:)

PriorityClassName: <none>

Node: minikube/10.0.2.15

Start Time: Thu, 04 Jul 2019 18:58:17 +0200
Labels: <none>

Annotations: <none>

Status: Running

»: 172.17.0.9

Containers:

first-container:
Container ID: docker://79cf12f74a2d46a270adbcf453582706baf68d1b8d17a2e154c4201cced5c327

Tnage: nginx
Image ID: docker-pullable://nginx@sha256: 96fb261b66270b900eaSa2c17a26abbfabe9S506e73c3a3c65869a6dbe83223:
Port: <none>
Host Port: <none>
State: Running
Started: Thu, 04 Jul 2019 18:58:21 +0200
Ready: True
Restart Count: @
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-7rmnp (ro)

second-container:
Container ID: docker://4ffa27ee3bb68ced739e05556267bcf3ab684dc@4cdea736a2413406b7276a5

Tnage: ubuntu
Tnage 10: docker-pullable://ubuntu8sha256:9b1702dcfe32c873a770a32¢ fd306dd7 fc1c4fd134adfb783db68def c8894b3:
Port: <none>
Host Port: <none>
Command:
/bin/bash
-ec
while :; do echo '.'; sleep S; done
State: Running
Started: Thu, 04 Jul 2019 18:58:23 +0200
Ready: True
Restart Count: @
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-7rmnp (ro)
Conditions:
Type Status
Tnitialized True
Ready True
ContainersReady ~ True
PodScheduled True
Volunmes:
default-token-7rmnp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node. kubernetes. io/not-ready:NoExecute for 300s

node. kubernetes.io/unreachable:NoExecute for 300s

OEBPS/image/B14870_10_13.jpg
Generating a 2048 bit RSA private key

OEBPS/image/B14870_16_16.jpg
Validatingwebhoukconﬁgurotion.admiéslonregistmtion.kb& i1o/pod-label-verify-webhook created

OEBPS/image/B14870_17_18.jpg
NAME READY STATUS RESTARTS AGE
pod-with-node-toleration-noschedule 1/1 Running @ A VAS

OEBPS/image/B14870_02_19.jpg
NAME READY STATUS RESTARTS AGE
k8s-for-beginners-66644bb776-dzf9j 1/1 Running @ 20m

k8s-for-beginners-66644bb776-pwsjn] 1/1 Running @

OEBPS/image/B14870_06_11.jpg
NAME 7 READY STATUS RESTARTS AGE LABELS
backend-production 1/1 Running @ 7m39s |environment=production,role=backend |

OEBPS/image/B14870_08_07.jpg
NAME

nginx-deployment-588765684f-cg6n4
nginx-deployment-588765684f-fcsj4
nginx-deployment-588765684f-mSbdk

READY
171
171
171

STATUS

Running
Running
Running

RESTARTS
0
(]
0

AGE
43s
43s
43s

OEBPS/image/B14870_13_11.jpg
LELEH kubernetes-test-ha-application-with-redis-deployment

Namespace: default

CreationTimestamp: Thu, 05 Dec 2019 20:10:18 -0800

Labels: app=kubernetes-test-ha-application-with-redis
Annotations: deployment.kubernetes.io/revision: 1

kubectl.kubernetes.io/last-applied-configuration:

{"apiVersion":"apps/v1", "kind Deployment

notations":{},"labels":{"app":"kubernetes-test-ha-application-with-redis"}, "nam.
Selector: i

Replicas: dated 3 total @ available 3 unavailab!
StrategyType: RollingUpdate
MinReadySeconds:]

RollingUpdateStrategy: 25% max unavailable, 25% max surge

OEBPS/image/B14870_17_11.jpg
dnsPolicy: ClusterFirst
enableServicelinks: true

hostNetwork: true

nodeName: minikube

priority: 2000000000

priorityClassName: system-cluster-critical
restartPolicy: Always

schedulerName: default-scheduler
securityContext: {}
terminationGracePeriodSeconds: 30

OEBPS/image/B14870_06_19.jpg
Name :
Namespace:
Priority:
Node:

Labels:

pod-with-annotatio
default

]
minikube/10.0.2.15

Start Time: Fri, 18 Oct 2019 0

<none>

ns

0:41:17 +0200

nnotations: JIRA-issue: https:

your-jira-link.com/issue/ABC-1234
commit-SHA: d6s9shb82365yg4ygd782889us28377gf6
owner: https://internal-link.to.website/username

89

timestamp: 1234567
Status: Running
Ip: 172:0750:11;
IPs:
IPy 172.17.9.11

Image:
Image
cOccl762e

Containers:
application-container:
Container ID:

nginx
ID:

Port: <none>
Host Port: <none>
State: Running
Started:
Ready: True
Restart Count: @
Environment: <none>
Mounts:

docker://05663bac94c31f21d5e43bd385dbc028576a000914284c7dd83ed92ffcaa9652

docker-pullable://nginx@sha256:77ebc94e@cec30b20f9056bacl066b09fbdc049401b71850922¢c63f

Fri, 18 Oct 2019 00:41:28 +0200

/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)

Volumes:

Type:

QoS Class:

Events:
Type
Normal

inikube

Normal

Normal

Normal

Normal

Conditions:

default-

Type Status
Initialized True
Ready True

ContainersReady True
PodScheduled True

token-wéxvp:

Secret (a volume populated by a Secret)

SecretName: default-token-w
Optional: false

BestEffort

Node-Selectors: <none>
Tolerations:

Reason Age

Scheduled <unknown>

Pulling 56s
Pulled 45s
Created 45s
Started 45s

6xvp

From

default-scheduler

kubelet, minikube
kubelet, minikube
kubelet, minikube
kubelet, minikube

node. kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s

Message

Successfully assigned default/pod-with-annotations to m

Pulling image "nginx"

Successfully pulled image "nginx"
Created container application-container
Started container application-container

OEBPS/image/B14870_18_28.jpg
10315 03:04:31.740608 5159 gce_cloud.go:273] Scanning zones: [australia-southeastl-b australia-southeas
tl-c australia-southeastl-a]

NAME STATUS NEEDUPDATE READY MIN MAX NODES
nodes NeedsUpdate d: 0 1 1 1
nodes NeedsUpdate 1 0 1 1 1
nodes NeedsUpdate 1 0 1 1 1

OEBPS/image/B14870_04_54.jpg
Get:1 http://security.ubuntu.com/ubuntu bionic-security InRelease
88.7 kB]

Get:2 http://archive.ubuntu.com/ubuntu bionic InRelease [242 kB]
Get:3 http://security.ubuntu.com/ubuntu bionic-security/restricted
amd64 Packages [23.7 kB]

Get:4 http://archive.ubuntu.com/ubuntu bionic-updates InRelease [8
.7 kB]

Get:5 http://archive.ubuntu.com/ubuntu bionic-backports InRelease

OEBPS/image/B14870_01_02.jpg
R

Docker

Container Container

Container

App

App

App

V.
[

Host OS

\

Bare-Metal Machine

OEBPS/image/B14870_02_11.jpg
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
k8s-for-beginners NodePort 10.109.16.179 <none> 80:32571/TCP 17s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 31h

OEBPS/image/B14870_19_06.jpg
$kubectl create -f pod-normaliser.yaml —n crddemo
podlifecycleconfig.controllers.kube.book.au/demo-pod-lifecycle created

s

OEBPS/image/B14870_05_10.jpg

OEBPS/image/B14870_09_01.jpg
Kubernetes Cluster

Application Pod

Volume

Local / Cloud Storage

OEBPS/image/B14870_11_07.jpg
namespace/kubernetes-dashboard created
serviceaccount/kubernetes-dashboard created
service/kubernetes—dashboard created
secret/kubernetes-dashboard-certs created
secret/kubernetes-dashboard-csrf created
secret/kubernetes-dashboard-key-holder created
configmap/kubernetes—dashboard-settings created
role.rbac.authorization.k8s.io/kubernetes-dashboard created
clusterrole.rbac.authorization.k8s.io/kubernetes—-dashboard created
rolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
clusterrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
deployment.apps/kubernetes-dashboard created
service/dashboard-metrics—scraper created
deployment.apps/kubernetes-metrics-scraper created

OEBPS/image/B14870_15_23.jpg
88 Kubernetes Cluster (Prometheus) -

node *v namespace v
« Cluster Health

Cluster Pod Usage

_160.0%

Cluster Pod Capacity

n0 na20 30

— alocatable — capacty = requested
~ Deployments
Deployment Replicas - Up To Date

Metric + Value

Time
—]

- Node

— allocata

Cluster CPU Usage Cluster Memory Usage
=291.7% _3.957%
Cluster CPU Capacity Cluster Mem Capacity
s

—— o N —

08—
n10 n20 30 10 n20 130
= capaciy = requested — allocatable. = capacity = requested
Deployment Replicas Deployment Replicas - Updated

104 104

2)

108
058

o8
058

108

O Olsmmess Q

Cluster Disk Usage

N/A

Cluster Disk Capacity

n0 n2 30

Deployment Replicas - Unavallable

75

OEBPS/image/B14870_0_07.jpg
& Computer Management
Fle Acion View Help

e amEE=xPERED

& Computer Management (Local [Volume [tayout [Type [File System [Status [Capacity | Free Space [% ['Actions
~ 1} System Tools =@ Simple Bosic NTFS Healthy (Boot, Page Fil, Crash Dump, Primary Parttion) 167.05GB 1155268 69 | oo
> () Task Scheduler = (Disk 1 partition 1) Simple Basic Heslthy (Recovery Partition) 520MB 529MB 10
> (@ Event Viewer = (Disk 1 partition2) Simple Basic Healthy (EFISystem Partition) 100M8 100ME 10| MoreActions
> il Shared Folders = NewVolume (D) Simple Bosic NTFS Healthy (Primary Partition) 071068 8818268 97
> & Locel Users and Groups|
> @ performance
& Device Manager
v €2 Storage

= Disk Management

5 B Senvices and Applications

= Disk 0

Basic

93151 GB

Online Healthy (Primary Partition) Unallocated

= Disk 1

Basic)

16767 GB. 529MB 100 MB 167.05 GB NTFS

Online Healthy (Recovery Partitc || Healthy (EFI Syste || Healthy (Boot, Page Fie, Crash Dump, Primary Partt

B Unallocated Bl Primary partition

OEBPS/image/B14870_01_10.jpg
REPOSITORY TAG IMAGE ID CREATED SIZE
nginx latest 540a289bab6c 3 weeks ago 126MB
hello-world latest fce289e99%eb9 10 months ago 1.84kB

OEBPS/image/B14870_05_01.jpg
Namespace:: default

Priority: 0

PriorityClassName: <none>

INode: minikube/10.0.2.15]

Start Time: Thu, 04 Jul 2019 15:12:30 +0200
Labels: <none>

Annotations: <none>

Status: Running

1P: 172.17.0.5

Containers:

my-first-container:
Container 1D:

docker://d050324b76bcfb6ab1753cb044a12c03abd7df2274ae36dcabe@dc1689dc3c3d

Inage: nginx
Tmage 1D: docker-pullable://nginxsha256: 96fb261b66270b900eaSa2c17a26abbfabe95506e73¢3a3¢65869a6dbes3223a
Port: <none>
Host Port: <none>
State: Running
Started: Thu, 04 Jul 2019 15:12:37 +0200
Ready: True
Restart Count: @
Environment: <none>
Mounts :
/var/run/secrets/kubernetes. io/serviceaccount from default-token-7rmnp (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:

default-token-7rmp:

Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false

QoS Class: BestEffort

Node-Selectors: <none>

Tolerations:

Events:
Type
Normal
Normal
Normal
Normal
Normal

node. kubernetes.io/not-ready:NoExecute for 300s

node. kubernetes.io/unreachable:NoExecute for 300s

Reason

Scheduled
Pulling
Pulled
Created
Started

Age From Message

23m default-scheduler Successfully assigned default/first-pod to minikube
23n kubelet, minikube Pulling image “nginx"

23n kubelet, minikube Successfully pulled image “nginx"

23m kubelet, minikube Created container my-first-container

23n kubelet, minikube Started container my-first-container

OEBPS/image/B14870_15_07.jpg
€ > C O localhost:3000/7orgid=1

@ 88 Home -

@

InstallSrafana.

Q#®»O N

Starred dashboards

Recently viewed dashboards

0@

Home Dashboard

Installed Apps
None nstaled. Browse Grafana.com
Installed Panels
None installed. Browse Grafans.com
Installed Datasources

None installed. Browse Grafans.com

*

OEBPS/image/B14870_02_03.jpg
Adding user “k8suser'
Adding new group “k8suser' (1000) ...
Adding new user “k8suser' (1000) with group “k8suser'
Creating home directory "/home/k8suser’
Copying files from “/etc/skel’
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for k8suser
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] Y

OEBPS/image/B14870_09_10.jpg
Kubernetes Cluster

Application Pod

Persistent Volume Claim (PVC)

Persistent

Volume (PV)

Local / Cloud Storage

OEBPS/image/B14870_18_05.jpg
"AcceptRanges": "bytes",

"LastModified": "Sun, 14 Jun 2020 02:06:34 GMT",
"ContentLength": 688,

"ETag": "\"366b9€91913c43799ab2d1e99e044339\"",
"ContentType": "binary/octet-stream",
"ServerSideEncryption": "AES256",

"Metadata": {}

OEBPS/image/B14870_12_08.jpg
NAME STATUS ROLES AGE VERSION
ip-10-0-0-205.us-west-2.compute.internal Ready <none> 34s v1.14.8-eks-b
8860f

ip-10-0-2-229.us-west-2.compute.internal Ready <none> 33s v1.14.8-eks-b
8860f

OEBPS/image/B14870_18_13.jpg
[masood_faisal@kube-group-1-54cx ~]$ kubectl describe node kube-group-l-mdlr

Name : kube-group-1-mdlr
Roles: worker
Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=1linux
kubernetes.io/arch=amd64
kubernetes.io/hostname=kube-group-1-mdlr
kubernetes.io/os=linux
kubernetes.io/role=worker
Annotations: kubeadm. alpha.kubernetes.io/cri-socket: /var/run/dockershim.
node.alpha.kubernetes.io/ttl: 0
volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Mon, 11 Nov 2019 06:08:31 +0000
aints: <none>
nschedulable: false

OEBPS/image/B14870_01_01.jpg
ﬁ ~ 4 x
VM VM VM

App] App App T App App I App
Guest OS Guest OS] Guest OS
Hypervisor
Host OS

Bare-Metal Machine

OEBPS/image/B14870_12_17.jpg
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1549 100 1549 [} [} 3723) ===t =—H——d—— === LUZR

OEBPS/image/B14870_14_13.jpg
NAME READY UP-TO-DATE AVAI

LABLE AGE

kubernetes-test-ha-application-with-redis-deployment 3/3 3 3
49s

redis 1/1 il i,

49s

OEBPS/image/B14870_16_08.jpg
(ELCH mutating-pod-example

Namespac webhooks

Priority:)

PriorityClassName: <none>

Node: minikube/192.168.247.150

Start Time: Thu, 22 Aug 2019 19:49:45 +1000
Labels: <none>

|Annotations: podModified: true|

Status: Running

OEBPS/image/B14870_15_30.jpg
00 B eks_terraform_demo — -zsh — 80x24
~/Desktop/eks_terraform_demo — -zsh

zarnold@zachs—-mbp eks_terraform_demo % curl -0 https://raw.githubusercontent.com
/PacktWorkshops/Kubernetes-Workshop/master/Chapterl5/Exercise15.03/main.tf

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 8203 100 8203 o 0 18771 () ==f=—fmm =g —og=—a— Ol

zarnold@zachs-mbp eks_terraform_demo % I

OEBPS/image/B14870_04_39.jpg
apiversion: vi

kind:

metadata:
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system

spec:

containers:
- command:

Pod

kube-apiserver
--advertise-address=10.210.254.205
-allow-privileged=true
--authorization-mode=Node, RBAC
--client-ca-file=/var/lib/minikube/certs/ca.crt
-enable-admission-plugins=NamespaceLifecycle, LimitRa
-enable-bootstrap-token-auth=true
--etcd-cafile=/var/lib/minikube/certs/etcd/ca.crt
--etcd-certfile=/var/lib/minikube/certs/apiserver-etc
--etcd-keyfile=/var/lib/minikube/certs/apiserver-etcd
-etcd-servers

nsecure-por
-kubelet-client-certificate=/var/lib/minikube/certs/
-kubelet-client-key=/var/lib/minikube/certs/apiserve:
-kubelet-preferred-address-types=InternalIP,External
-proxy-client-cert-file=/var/lib/minikube/certs/fron
-proxy-client-key-file=/var/lib/minikube/certs/front
--requestheader-allowed-names=front-proxy-client
-requestheader-client-ca-file=/var/1ib/minikube/cert
--requestheader-extra-headers-prefix-X-Remote-Extra-
--requestheader-group-headers=X-Remote-Group
-requestheader-username-headers=X-Remote-User
~-runtime-config=batch/v2alphal
--secure-port=8443

OEBPS/image/B14870_16_17.jpg
Error from server: error when creating "target-validating-pod.yaml": admission webhook "web
hook-server.webhooks.svc" denied the request: teamName label not found

OEBPS/image/B14870_09_08.jpg
bin dev home 1ib32 1ibx32 mnt opt root sbin sys usr
boot etc 1lib 1ib64 media mounted-data-1 proc run srv tmp var

OEBPS/image/B14870_04_47.jpg
"kind": "Deployment",
"apiVersion": “apps/v1l",
"metadat;

: "nginx-example",

"namespace": "example",

"selflLink": “/apis/apps/vl/namespaces/example/deployments
/nginx-example",

"uid": "1b45af44-60fc-4391-bo4c-4c61f6877d88",

"resourceVersion": "3448599",
"generation": 1,
"creationTimestamp": "2020-05-02T18:17:42Z",

: "nginx-example"

"selector": {
"matchLabels": {
"run": "nginx-example"

"name": "nginx-example",
"image": "nginx:latest",
"resources": {

1,
"terminationMessagePath": “/dev/termination-log",
"terminationMessagePolicy": "File",

OEBPS/image/B14870_03_05.jpg
NAME READY STATUS
pod/aci-helloworld-8875447cd-1hc6j 1/1 Running
pod/melonvote-front-56687f5fdd-5rksw 1/1 Running
pod/redis-back-559c848b4c-s94x9 a7/l Running
NAME TYPE CLUSTER-IP
service/kubernetes ClusterIP 10.0.0.1
service/melonvote-front LoadBalancer 10.0.243.12
service/redis-back ClusterIP 10.0.133.234
NAME READY UP-TO-DATE
deployment.apps/aci-helloworld al/fal 1
deployment.apps/melonvote-front 1/1 1
deployment.apps/redis-back 1/1 1

NAME DESTRED
replicaset.apps/aci-helloworld-8875447cd 1
replicaset.apps/melonvote-front-56687f5fdd 1
replicaset.apps/melonvote-front-85c8b7cf8d @
replicaset.apps/redis-back-559c848b4c il

NAME
CAS AGE

RESTARTS AGE

28d
7d6h
7dé6h
EXTERNAL-IP PORT(S) AGE
<none> 443/TCP 34d
40.68.95.73 80:32651/TCP 7d6h
<none> 6379/TCP 7déh
AVAILABLE AGE
il 34d
1 7déh
1 7déh
CURRENT ~ READY AGE
1 1 34d
1 1 7déh
0 0 7déh
1 1 7déh
REFERENCE TARGETS MINPODS MAXPODS
Deployment/melonkedaaf <unknown>/5 (avg) 1 100

horizontalpodautoscaler.autoscaling/keda-hpa-melonkedaaf

34d

REPLI

OEBPS/image/B14870_17_03.jpg
SAVE POD AS REQUESTED STATE
SAVE POD STATE TO RUNNING

SAVE PODS STATE AS ASSIGNED TO THE NODE

WATCH FOR NEW pons ASSIGNED TO THE NODE
ASSIGN PODS TO THE NODE

o |
“m WATCH FOR UNASSIGNED PODS MARK THE POD AS BOUNDED TO THE NODE.

Time

OEBPS/image/B14870_06_03.jpg
Name: pod-without-initial-labels

Namespace: default
Priority: [
Node: minikube/10.0.2.15
Start Time: Mon, 14 Oct 2019 22:32:42 +0200
Annotations: <none>
Status: Running
IP: 1721705
IPs:
IP: 172.17.0.5
Containers:

first-container:
Container ID: docker://5f85bacb30f858c80654039e498886d684€635627ae58a199c90669f8a54a29¢

Image: nginx
Image ID: docker-pullable://nginx@sha256:aededdf2a861747f43a01cf1018cf9efe2bdd@2afd57d2bl1fcc7fcad|
cl6cedl
Port: <none>
Host Port: <none>
State: Running
Started: Mon, 14 Oct 2019 22:32:46 +0200
Ready: True
Restart Count: @
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-wéxvp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-w6xvp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node. kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message

Normal Scheduled <unknown> default-scheduler Successfully assigned default/pod-without-initial-labels
to minikube

Normal Pulling 48s kubelet, minikube Pulling image "nginx"
Normal Pulled 46s kubelet, minikube Successfully pulled image "nginx"
Normal Created 45s kubelet, minikube Created container first-container

Normal Started 45s kubelet, minikube Started container first-container

OEBPS/image/B14870_10_05.jpg
apiVersion: vi
data:
application.properties: |
partner-url=https://www.fedex.com
partner—-key=1234
kind: ConfigMap
metadata:
creationTimestamp: "2019-07-29T11:56:14Z"
name: full-file-map
namespace: configmap-test
resourceVersion: "1220"
selfLink: /api/vl/namespaces/configmap-test/configmaps/full-file-map
uid: e47d88da-4082-4101-9dbf-37b40063aael

OEBPS/image/B14870_02_27.jpg
Events:

Type Reason Age From Message

Warning FailedScheduling <unknown> default-scheduler /1 nodes are available: 1 node
(s) had taints that the pod didn't tolerate.

OEBPS/image/B14870_14_05.jpg
NAME CAPACITY ACCESS MODES RECLAIM POL

IcY STATUS CLAIM STORAGECLASS REASON AGE

pvc-5e4418e0-a4f3-40ad-9f2a-57376baldld1l 1061 RWO Delete
Bound default/data-mysql-@ gp2 5m24s

OEBPS/image/B14870_02_20.jpg
Master Node

Notified with pods having

o updating pod's —/

spec. nodeName

: 2) Notified with : ! . spec. nodeName set

: controller new Deployment } ! to this node’s name cubel

: manager : : ubelet

H Create pods : H

E E E Delegate
H | H container
: @ Check running pods API server H H creation
H - Deployment : :

: Persist AP| objects [: : container

H : ! runtime

5 Notified with E E

H unassigned pods| '

H scheduler + . kube-proxy

% Assign nodes by! : H

OEBPS/image/B14870_08_15.jpg
~—_-\

T N N N = DO TN LN

e
)]

J
C

C
)

)
o

|
b}

_ _O O
Q) OO/ 0 _

IO T INN QD 11D 7/
CIEDHEI DD CIN A5 N

OEBPS/image/B14870_15_15.jpg
?. Import

Import dashboard from file or Grafana.com

Importing Dashboard from Grafana.com

Published by sekka1l
Updated on 2018-06-06 16:51:56
Options
Name Kubernetes Cluster (Prometheus) v
Folder General ~
Unique identifier (uid) © value set
prometheus [i] | Prometheus

OEBPS/image/B14870_11_15.jpg
zarnold@Zachs-MacBook-Pro ~ % kops delete cluster ——name ${NAME} —-yes
NAME

TYPE
autoscaling-config

master-us-west-2a.masters.myfirstcluster.k8s.local-20200125141503

t-2a.masters.myfirstcluster.k8s.local-20200125141503

autoscaling-config

nodes.myfirstcluster.k8s.local-20200125141502

cluster.k8s.local-20200125141502

autoscaling-group

master-us-west-2a.masters.myfirstcluster.k8s.local

t-2a.masters.myfirstcluster.k8s.local

autoscaling-group
cluster.k8s.local
dhcp-options
cedf4lb7c
iam-instance-profile
stcluster.k8s.local
iam-instance-profile
cluster.k8s.local
iam-role
stcluster.k8s.local
iam-role
cluster.k8s.local
instance

47d457

instance

3fe7dc

instance

fbéb4s
internet-gateway
ac@4de8l

keypair

nodes.myfirstcluster.k8s.local
myfirstcluster.k8s.local
masters.myfirstcluster.k8s.local
nodes.myfirstcluster.k8s.local
masters.myfirstcluster.k8s.local
nodes.myfirstcluster.k8s.local
master-us-west-2a.masters.myfirstcluster.k8s.local
nodes.myfirstcluster.k8s.local
nodes.myfirstcluster.k8s.local
myfirstcluster.k8s.local

kubernetes.myfirstcluster.k8s.local-b9:cc:eb:0b:89:46:94:ea:d9:6a:0c:47:89:35:b8:34

firstcluster.k8s.local-b9:cc:eb:@b:89:46:94:ea:d9:6a:0c:47:89:35:b8:34

load-balancer
uster-k8s-lo-hqulii
route-table
6aedec8l1
security-group
22ece7a
security-group
11364e7
security-group
28d8913

subnet
ebb852d607b
subnet
3ad6c2a2736
subnet
652626e27ce
volume
a30d4a57
volume
fa7be875

vpc

730552fa

api.myfirstcluster.k8s.local
myfirstcluster.k8s.local
api-elb.myfirstcluster.k8s.local
masters.myfirstcluster.k8s.local
nodes.myfirstcluster.k8s.local
us-west-2a.myfirstcluster.k8s.local
us-west-2b.myfirstcluster.k8s.local
us-west-2c.myfirstcluster.k8s.local
a.etcd-events.myfirstcluster.k8s.local
a.etcd-main.myfirstcluster.k8s.local

myfirstcluster.k8s.local

D
master-us-wes

nodes.myfirst
master-us-wes
nodes.myfirst
dopt-@4c4f21f
masters.myfir
nodes.myfirst
masters.myfir
nodes.myfirst
1-0ab79446268
1-03c7899843c
i-076dae19068
igw-05db8a701
kubernetes.my
api-myfirstcl
rtb-0e8f84277
sg—-0d3dec708d
sg-0989ebcbf9
sg-0ffbedibdé
subnet-@f2did
subnet-0251d1
subnet-0d4914
vol-0446119f9
vol-@alecbebd

vpc-053038985

OEBPS/image/B14870_Low_Res.png
T e Y e R U T R

b
|

>

ZACHARY ARNOLD | SAHIL DUA \ ¥
WEI HUANG | FAISAL MASO0D £
MELONY QIN | MOHAMMED ABU TALEB

LEARN HOW TO BUILD AND RUN HIGHLY
SCALABLE WORKLOADS ON KUBERNETES

OEBPS/image/B14870_18_19.jpg
W0315 01:05:17.698551 3859 autoscalinggroup.go:106] enabling storage-rw for etcd backups
W0315 01:05:17.698649 3859 autoscalinggroup.go:106] enabling storage-rw for etcd backups
I0315 01:05:28.135766 3859 executor.go:103) Tasks: 0 done / 76 total; 43 can run

I0315 01:05:29.245349 3859 executor.go:103) Tasks: 43 done / 76 total; 27 canrun

I0315 01:05:29.563841 3859 instancetemplate.go:226] We should be using NVME for GCE
I0315 01:05:29.566522 3859 instancetemplate.go:226] We should be using NVME for GCE
T0315 01:05:29.570846 3859 instancetemplate.go:226] We should be using NVME for GCE
10315 01:05:29.573952 3859 instancetemplate.go:226] We should be using NVME for GCE
I0315 01:05:29.578939 3859 instancetemplate.go:226] We should be using NVME for GCE
I0315 01:05:29.579948 3859 instancetemplate.go:226] We should be using NVME for GCE
I0315 01:05:29.675463 3859 instancetemplate.go:226] We should be using NVME for GCE
I0315 01:05:29.677909 3859 instancetemplate.go:226] We should be using NVME for GCE
I0315 01:05:34.867830 3859 executor.go:103) Tasks: 70 done / 76 total; 6 can run

I0315 01:05:49.036234 3859 executor.go:103] Tasks: 76 done / 76 total; 0 can run

I0315 01:05:49.396688 3859 update_cluster.go:294] Exporting kubecfg for cluster

kops has set your kubectl context to myfirstcluster.k8s.local

Cluster changes have been applied to the cloud.

Changes may require instances to restart: kops rolling-update cluster

OEBPS/image/B14870_01_24.jpg
CONTAINER ID IMAGE COMMAND

STATUS PORTS NAMES
61d0fa62bc49 nicolaka/netshoot "/bin/bash -1"

Up 38 minutes naughty_visvesvaraya
33003ddffdf4 hweicdl/k8s-for-beginners:v@.0.1 "/k8s-for-beginners"

ago Up About an hour heuristic_pike

CREATED
38 minutes ago

About an hour

OEBPS/image/B14870_08_06.jpg
Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

OEBPS/image/B14870_12_02.jpg
provider.aws.region
The region where AWS operations will take place. Examples
are us—east-1, us-west-2, etc.

Enter a value: us-west-2
Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:
aws_s3_bucket.my_bucket will be created

+ resource "aws_s3_bucket" "my_bucket" {
+ acceleration_status (known after apply)

+ acl = "private"
+ arn = (known after apply)
+ bucket = "zparnold-test-bucket"
+ bucket_domain_name = (known after apply)
+ bucket_regional_domain_name = (known after apply)
+ force_destroy = false
+ hosted_zone_id = (known after apply)
+ id = (known after apply)
+ region = (known after apply)
+ request_payer = (known after apply)
+ website_domain = (known after apply)
+ website_endpoint = (known after apply)
+ versioning {

+ enabled = (known after apply)

+ mfa_delete = (known after apply)

E

Plan: 1 to add, @ to change, @ to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

OEBPS/image/B14870_16_10.jpg
validatingwebhookconfiguration.admissionregistration.k8s.io "pod-label-verify-webhook" deleted

OEBPS/image/B14870_13_10.jpg
deployment.apps/kubernetes-test-ha-application-with-redis-deployment created
service/kubernetes-test-ha-application-with-redis created
deployment.apps/redis created

service/redis created

OEBPS/image/B14870_04_14.jpg
NAME

coredns-5644d7b6d9-292kd
coredns-5644d7b6d9-21g9r
etcd-minikube
kube-addon-manager-minikube
kube-apiserver-minikube
kube-controller-manager-minikube
kube-proxy-cpbjg
kube-scheduler-minikube
storage-provisioner

READY
1
1
1
1
1
1
1
1
1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

[SESISRSRSISRSNSES]

AGE
6m20s
6m20s
5ml6s
6m28s
3m
3m
6m21s
5m7s
6m19s

OEBPS/image/B14870_07_14.jpg
NAME

activity-deployment-54b9c6ff99-45shk
activity-deployment-54b9c6ff99-cl2hc
activity-deployment-54b9c6ff99-g6t7v
activity-deployment-54b9c6ff99-h2vb2
activity-deployment-54b9c6ff99-njnzc

READY
171
171
1/1
1./4.
171

STATUS

Running
Running
Running
Running
Running

RESTARTS

[SISISIS S

AGE

9ml4s
9ml4s
9ml4s
9ml4s
9ml4s

OEBPS/image/B14870_15_29.jpg
00 fi zarnold — -zsh — 80x24

zarnold@zachs-mbp ~ % kubectl apply -f cluster_autoscaler.yaml
secret/aws—-secret created

serviceaccount/cluster-autoscaler created
clusterrole.rbac.authorization.k8s.io/cluster-autoscaler created
role.rbac.authorization.k8s.io/cluster-autoscaler created
clusterrolebinding.rbac.authorization.k8s.io/cluster-autoscaler created
rolebinding.rbac.authorization.k8s.io/cluster-autoscaler created
deployment.apps/cluster-autoscaler created

zarnold@zachs-mbp ~ % [

OEBPS/image/B14870_01_08.jpg
CONTAINER ID

286bc0@c92b3a

(@) 5 minutes ago
39bf70d02dcc
nutes
96c374000f6f
ours

IMAGE COMMAND

PORTS NAMES
trusting_hawking

nginx "nginx -g 'daemon of.."

0.0.0.0:8080->80/tcp optimistic_jackson

nginx "nginx -g 'daemon of.."

80/tcp silly_hopper

CREATED
5 minutes ago
6 minutes ago

16 hours ago

STATUS

Up 6 mi

Up 16 h

OEBPS/image/B14870_04_08.jpg
--enable-admission-plugins=Namespacelifecycle,LimitRanger,ServiceAccount,D
efaultStorageClass,DefaultTolerationSeconds,NodeRestriction,MutatingAdmissionWeb
hook, ValidatingAdmissionWebhook,ResourceQuota

OEBPS/image/B14870_04_30.jpg
11123 15:25:14.635404 7930 loader.go:375] Config loaded from file: /Users/mohammed/.kube/config

11123 15:25:14.653550 7930 round_trippers.go:443] GET https://192.168.99.110:8443/version?timeout=32s 20
@ 0K in 14 milliseconds

Client Version: v1.16.3

Server Version: v1.16.2

OEBPS/image/B14870_17_17.jpg
Name : minikube
Roles: master
Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
kubernetes.io/arch=amd64
kubernetes.io/hostname=minikube
kubernetes. i0/os=linux
node-role. kubernetes. io/master=
Annotations: kubeadn. alpha. kubernetes. io/cri-socket: /var/run/dockershim.sock
node. alpha. kubernetes. io/ttl: @
volumes. kubernetes. io/control Ler-managed-attach-detach: true
CreationTimestamp: Tue, 01 Oct 2019 17:46:46 +1000
[Taints: app=banking:NoSchedule |

OEBPS/image/B14870_02_26.jpg
NAME
NOMINATED NODE

k8s-for-beginners-66644bb776-kvwfr

<none>

READINESS GATES

<none>

READY

/1

STATUS

Pending

RESTARTS

[

AGE

104s

IP

<none>

NODE

<none>

OEBPS/image/B14870_13_04.jpg
NAMESPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

NAME

aws-node-fzrém
aws-node-z4r2r
coredns-5b9879fcff-4989r
coredns-5b9879fcff-nb425
kube-proxy-rnwsw
kube-proxy-x1fbj

READY
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running

RESTARTS

coooO®

AGE
37m
37m
45m
45m
37m
37m

OEBPS/image/B14870_10_04.jpg
KUBERNETES_PORT=tcp://10.96.0.1:443
KUBERNETES_SERVICE_PORT=443
HOSTNAME=configmap—-env-pod

SHLVL=1

HOME=/root
partner-url=https://www.auppost.com.au
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_SERVICE_PORT_HTTPS=443

TEYS

KUBERNETES_SERVICE_HOST=10.96.0.1

OEBPS/image/B14870_18_20.jpg
Using cluster from kubectl context: myfirstcluster.k8s.local

NAME ROLE MACHINETYPE MIN MAX ZONES

master-australia-southeastl-a Master nl-standard-1 1 1 australia-southeastl
;:ster—australia—southeastl—b Master nl-standard-1 1 1 australia-southeastl
;:ster—australia—southeastl—c Master nl-standard-1 1 1 australia-southeastl
;gdes Node nl-standard-2 3 3 australia-southeastl

-a,australia-southeastl-b,australia-southeastl-c

OEBPS/image/B14870_07_04.jpg
Name: pod-matching-replicaset
Namespace: default

Priority: [
Node: minikube/10.0.2.15
Start Time: Sat, 09 Nov 2019 23:23:29 +0100
Labels: environment=production
Annotations: <none>
Status: Running
IP: 172.17.0.4
IPs:
IP: 172.17.0.4
[Controlled By: ReplicaSet/nginx-replicaset
Containers:

first-container:
Container ID: docker://7b8d0f4660b8b9bf8b54a4886b6db31388e61142075a0e8bcb@74d78d7¢c47810
Image: nginx

OEBPS/image/B14870_17_12.jpg
NAME
TS AGE
pod-default-priority-deployment-57c965b8cd-42z944
3m9s
pod-default-priority-deployment-57c965b8cd-6k4gf
3mds
pod-default-priority-deployment-57c965b8cd-c7tg4
3m34s
pod-default-priority-deployment-57c965b8cd-gk8kv
3m34s
pod-default-priority-deployment-57c965b8cd-gwmok
3m34s
pod-default-priority-deployment-57c965b8cd-hsn9r
3m34s
pod-default-priority-deployment-57c965b8cd-j5jxm
3m34s
pod-default-priority-deployment-57c965b8cd-q2cnw
3mlls
pod-default-priority-deployment-57c965b8cd-qcinv
3més
pod-default-priority-deployment-57c965b8cd-zjhjd
3m3s

READY

1/1

1/1

1/1

1/1

1/1

1/1

171

171

171

1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

Running

RESTAR

OEBPS/image/B14870_16_09.jpg
Error from server: error when creating "target-validating—pod.yaml":
admission webhook "webhook-server.webhooks.svc" denied the request:
labels not found

OEBPS/image/B14870_18_29.jpg
10315 03:04:56.809786
I0315 03:04:56.814808
10315 03:04:57.142717
I0315 03:04:57.143909

5169 factory.go:68] state store gs://faisal-kube

5169 gsfs.go:231] Reading file "gs://faisal-kube/myfirstcluster.k8s.local/config"
5169 loader.go:359] Config loaded from file: /home/masood_ faisal/.kube/config
5169 round_trippers.go:419] curl -k -v -XGET -H "Accept: application/json, */*"

-H "User-Agent: kops/v0.0.0 (linux/amd64) kubernetes/$Format" -H "Authorization: Basic YWRtaW46QU95ckM2QWh

OEBPS/image/B14870_06_18.jpg
NAME READY STATUS RESTARTS AGE LABELS
frontend-staging 1/1 Running 0@ 7m42s Ienvir‘onment:staging,role=frontend|

OEBPS/image/B14870_06_12.jpg
NAME READY STATUS RESTARTS AGE LABELS
frontend-staging 1/1 Running @ 7m42s |envir'onment=staging,r'01e=fr'ontend|

OEBPS/image/B14870_10_14.jpg
NAME
default-token-hvnbs
test-key-secret
test-secret
test-tls

TYPE
kubernetes.io/service-account-token
Opaque

Opaque

kubernetes.io/tls

AGE
27m
5m2s
7m34s
17s

OEBPS/image/B14870_04_24.jpg
NAME
componentstatuses
namespaces

nodes
persistentvolumes

mutatingwebhookconfigurations

onfiguration

validatingwebhookconfigurations

kConfiguration
customresourcedefinitions
finition

apiservices

tokenreviews
selfsubjectaccessreviews
sReview
selfsubjectrulesreviews
Review
subjectaccessreviews

iew
certificatesigningrequests
ngRequest

runtimeclasses
podsecuritypolicies

y
clusterrolebindings
ng

clusterroles
priorityclasses
csidrivers

csinodes
storageclasses
volumeattachments

SHORTNAMES
cs
ns
no
pv

crd,crds

csr

psp

pc

sC

APIGROUP

admissionregistration.k8s.io

admissionregistration.k8s.io

apiextensions.k8s.io

apiregistration.k8s.io
authentication.k8s.io
authorization.k8s.io

authorization.k8s.io
authorization.k8s.io
certificates.k8s.io

node.k8s.1io
policy

rbac.authorization.k8s.io

rbac.authorization.k8s.io
scheduling.k8s.io
storage.k8s.io
storage.k8s.io
storage.k8s.io
storage.k8s.io

NAMESPACED
false
false
false
false
false

false
false
false
false
false
false
false

false

false
false

false

false
false
false
false
false
false

KIND
ComponentStatus
Namespace

Node
PersistentVolume
MutatingWebhookC

ValidatingWebhoo
CustomResourceDe
APIService
TokenReview
SelfSubjectAcces
SelfSubjectRules
SubjectAccessRev

CertificateSigni

RuntimeClass
PodSecurityPolic

ClusterRoleBindi

ClusterRole
PriorityClass
CSIDriver
CSINode
StorageClass
VolumeAttachment

OEBPS/image/B14870_16_15.jpg
scat controller_ca-baseé4.crt.pem | tr -d '\n' > onelinecert.txt

bcat onelinecert.txt
.SOtLS1CRUITiBDRVIUSUZIQOFURSOtLSOtCk1ISUMOakNDQWNVQONRRHNPMFphQOswMDVUQU5CZ2txaGtpRz13MEIBUXNGQURBek1URXd
Ad11EV1FRRERDaE4KZFhSaGRHbHVaeUJCWkcxcGMzTnBiMjRNUTISAWRISNZiR3hsY21CWFpXSm9iMjlySUVOQk1CNFhEVEULTURNeQpNak
wTWpBeUOxb1hEVEU1TURreULUQTBNakF5TTFvd@16RXhNQzhHQTFVRUF3d29UWFYwWVhScGJItY2dRV1IOCmFYTnphVz11SUVOdmJuUnliM
1hzW1hJZ1YyVm1hRz12YX1CRFFUQONBU@O13RFFZSktvWklodmNOQVFFQkJRQUQKZ2dFUEFEQONBUWIDZ2dFQkFLbnVhT1pIcm12TDNIZ30x
)HhrVVdnczY@ei9DVFRVOTRIOGhLTkdNdHdVvMGt6SwpxWXR4NNQ5MTIXNWcOQOdsbE@zMOpEamljd21XRUIWAKNDNWFYbEtDc1d6ST1HS1Z
“VEFESW80RFpDSXhvaHBNC1R5TkhPZUxTbDJ1S11Yc2V2cEowRNRBS1RIZOZKRm52UULYYUNYUkJyYVANV3IpUWZnZGsvaThyQzJveWswbl
-KRE1Qb31jVEFBcm1SZOFvZnBTek9nZnVqc3ZJeEViaDYvMnNRaHY5M251icFFRTWNHKZNKWHVpW] Zwe TFTRDATYQp1SThXRUFoMDQOMXpaW
SRDOEI50H1nd1dCWWdoQUN3dUIzdHFKeEdjbzdDZO11INKVWQXZVTFNVS1A3a0VQS3VTCnRtbHYvUM16Vm5PNWXx5NKkI1Y1Bj0GRKYk1WKZRO
’VNObngxNmcOMENBdOVBQVRBTkJIna3Foa21HOXcwQkFRcOYKQUFPQOFRRUFpVC96QOF1dVR60FhsS1duczIwWGIwSmIGCcE4vZDZKN3hUVGP
5S0k3SU9TrRW9zaUZaSDg3ZDB3NgpYd3IBTnZiR2NId1hOZHRRTkY3S3ArZ1k1RzFSeFV3V3BEUNpjdV1rOEVWWNnJICMDNhM2JDVX14ejZmRk
Jxan1lUCmcvMmdKSFhVd@e5Yy92Lzh0Z2NNa2ZtdF1LeGErREV6anQ3V20xbDFUY1VFM3NCK1ZFalVYYWFtZ3pyZEJFRHQKQmMhVejhVZE1sU
JVONVNEVWtHN1JzTkV1MWI1dm1OcH1YVGdObOtBZWVQWKUSRK5NMES1SmIVbVVacWsyejhTNgpDUVRjOUtSUOpiR203bGUrV1ptYnByNzJIG
2G9GbmZhbXdHUDJIVODIX0TQ2TWVROXFiRGVWSXNFSURLTX1UeEdOClcxZWdreFVodVdSdTVGbmZkd2ZYT1Z1aEhiMD1wdz@9Ci0tLS@tRUS
EIENFUlRJRleQVRFLSOtLSBK$I

OEBPS/image/B14870_09_02.jpg
Containers:
nginx-container:
Container ID: docker://9def64ele@59e6fcfd865650cd0029fdb59570f25048d9ad2387da5cff67e277

Image: nginx

Image ID: docker-pullable://nginx@sha256:8aa7f6a9585d908a63e5e418dc5d14ae7467d2e36ela
b4f0d8f9d059a3d071ce

Port: <none>

Host Port: <none>

State: Running

Started: Mon, 20 Jan 2020 16:29:58 +0100

Ready: True

Restart Count: 0

Environment: <none>

Mounts:

/mounted-data from data-volume (rw)
/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)
Conditions:

Type Status

Initialized True

Ready True

ContainersReady True

PodScheduled True

Volumes:

data-volume:
Type: EmptyDir (a temporary directory that shares a pod's lifetime)
Medium:
SizeLimit: <unset>

OEBPS/image/B14870_11_06.jpg
Using cluster from kubectl context: myfirstcluster.k8s.local

Validating cluster myfirstcluster.k8s.local

INSTANCE GROUPS
NAME
master-us-west-2a
master-us-west-2b
master-us-west-2c
nodes

NODE STATUS
NAME

ip-172-20-105-193.us-west-2.compute.internal
ip-172-20-113-65.us—-west—2.compute.internal
ip-172-20-62-164.us—west—2.compute.internal
ip-172-20-68-181.us-west-2.compute.internal
ip-172-20-78-59.us-west-2.compute.internal

Your cluster myfirstcluster.k8s.local is ready

ROLE
Master
Master
Master
Node

MACHINETYPE

m3.
m3.
m3.
t2.

medium
medium
medium
medium

MIN

NP R R

ROLE
node
master
master
node
master

MAX

NR R R

READY
True
True
True
True
True

SUBNETS

us-west-2a

us-west-2b

us-west-2c
us-west-2a,us-west-2b,us-west-2c

OEBPS/image/B14870_18_14.jpg
Timeline Kubernetes | Kubernetes | Kubernetes
version on |versionon |versionon
node 1 node 2 node 3

Before starting | 1.14 1.14 1.14

the upgrade

After upgrading | 1.15 1.14 1.14

the first node

After upgrading | 1.15 1.15 1.14

the second

node

After upgrading | 1.15 1.15 1.15

the third node

OEBPS/image/B14870_15_14.jpg
‘ &€ > C O localhost:3000/dashboard/import

e

Q#»®»OR

88 |mport

Import dashboard from file or Grafana.com

Grafana.com Dashboard

ttps:/ p 1

Or paste JSON

% ®» O W /

OEBPS/image/B14870_19_05.jpg
podlifecycleconfigs controllers.kube.book.au true PodlLifecycleConfig

OEBPS/image/B14870_02_10.jpg
- _O O
O o Oty -
NI/ N, < C) COF "N /TN

G 2 T N N D I Y I i | G4
() OO N/ /N D

OEBPS/image/B14870_04_29.jpg
NAME SHORTNAMES
clusterrolebindings

clusterroles

rolebindings

roles

APIGROUP

rbac.authorization.k8s.io
rbac.authorization.k8s.io
rbac.authorization.k8s.io
rbac.authorization.k8s.io

NAMESPACED
false
false

true

true

KIND
ClusterRoleBinding
ClusterRole
RoleBinding

Role

OEBPS/image/B14870_01_03.jpg
Virtual Machines

Containers

Heavy on resource requirements

Light on resource requirements

Startup time in minutes

Startup time in milliseconds

Image is hard to make, reuse, and update

Image is easy to make, reuse, and update

Each VM runs its own OS

Containers share the host OS kernel

Extra resource overhead due to the
translation by the hypervisor

Almost-native performance

Hardware-level virtualization

OS-level virtualization

Fully isolated

Process-level isolated

OEBPS/image/B14870_15_31.jpg
(- N J 0 eks_terraform_demo — terraform « terraform apply — 80x24

"subnet-054e3ef257162b98d",
"subnet-07c7f338e17cd3e06",
1

wait_for_capacity_timeout = "1@m"
tag {
key = "Name"
propagate_at_launch = true
value = "terraform-eks-demo"
ik
tag {
key = "kubernetes.io/cluster/terraform-eks—demo"
propagate_at_launch = true
value = "owned"
}

}
Plan: @ to add, 1 to change, @ to destroy.
Do you want to perform these actions?

Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value

OEBPS/image/B14870_12_07.jpg
configmap.yaml

~/.kube/config

OEBPS/image/B14870_08_01.jpg
External traffic
(survey participants)

Data Analysts

|

Service

A
(7] (]

Service

/N
(7] ()

Service

i)
(7] ()

Frontend for survey
application

Backend for
Validation and
Storing Data

Data Visualization
Application

OEBPS/image/B14870_0_06.jpg
& Computer Management - o X

[Layout [Type [Fite System [tatus [Capacity | Free Space [%
S Simple Basic NI Heathy (Bt Pog il Crsh Dump, PimryPrior) 1670563 1135268 & |

> (O Task Scheduler = (Disk 1 partition 1) Simple Basic Hezlthy (Recovery Partition) 520MB 529MB 10
> (@ Event Viewer = (Disk 1 partition2) Simple Basic Healthy (EF1System Partition) 100ME T00ME 10| MoreActions >
>) Shared Folders = NewVolume (D) Simple Basic NTFS Healthy (Primary Partition) 9315168 062368 97
> & Local Users and Groups|
> ® Performance

A Device Manager

v & storage Shrink D; x
7 Disk Management

> [Services and Applications Total ize before shrink n MB: [pse67
Size of avalable shnk space n ME: fpazsaz

Enterthe amoun of spce o sk i ME: 5000 g

3 Total ize after shrink in MB: [pzsee7 53

@ Youcarmat sk s
e e g vt e sl o Gt oo s

= Disk0
r operstion whe hss complted

93151 68

Ooine See "Shrink a basic volume in Disk Management help for more infomation

=01] =

Basic

1676768 529 ME TOONE T67.05 GENTFS

Online Heslthy (Recovery Pattic || Heakhy (EF Syste | Heathy (Boot, Page File, Crash Dump, Pimary Pari

OEBPS/image/B14870_18_21.jpg
I0315 01:13:38.099246 3885 instancegroups.go:275] Cluster did not pass validation,
will try again in "30s" until duration "15m0s" expires: machine "https://www.googleapi
s.com/compute/beta/projects/kube-test-258704/zones/australia-southeastl-a/instances/ma
ster-australia-southeastl-a-g2pw" has not yet joined cluster.

I0315 01:14:04.521005 3885 gce_cloud.go:273] Scanning zones: [australia-southeastl-
b australia-southeastl-c australia-southeastl-a]
I0315 01:14:08.347291 3885 instancegroups.go:278] Cluster validated.

I0315 01:14:08.347343 3885 rollingupdate.go:184] Rolling update completed for clust
er "myfirstcluster.k8s.local"!

OEBPS/image/B14870_02_04.jpg
(- B

MR G EER

minikube v1.5.2 on Ubuntu 18.04

Automatically selected the 'virtualbox' driver (alternates: [none])
Downloading WM boot image ...

> minikube-v1.5.1.is0.sha256: 65 B / 65 B [-------------- 1 100.00% ? p/s 0s
> minikube-v1.5.1.is0: 143.76 MiB / 143.76 MiB [-] 100.00% 59.85 MiB p/s 3s
Creating virtualbox VM (CPUs=2, Memory=2000MB, Disk=20000MB) ...

Preparing Kubernetes v1.16.2 on Docker '18.09.9' ...

Downloading kubeadm v1.16.2

Downloading kubelet v1.16.2

Pulling images ...

Launching Kubernetes ...

Waiting for: apiserver

Done! kubectl is now configured to use "minikube"

OEBPS/image/B14870_18_04.jpg
firstcluster.
yfirstcluster.

k8s

k8s.

.local/backups/etcd/main/2020-06-14T02:
local/backups/etcd/main/2020-06-14T02:

:337-000001/_etcd_backup.meta",
33,

00001/etcd.backup.gz",

yfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.
yfirstcluster.
yfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.
"myfirstcluster.

k8s.

k8s

k8s.

k8s

k8s.

k8s

k8s.
k8s.
k8s.
k8s.

k8s

k8s.
k8s.
k8s.

local/backups/etcd/main/2020-06-14T02:
.local/backups/etcd/main/2020-06-14T02:
local/backups/etcd/main/2020-06-14T02:
.local/backups/etcd/main/2020-06-14T02:
local/backups/etcd/main/2020-06-14T02:
.local/backups/etcd/main/2020-06-14T02:
local/backups/etcd/main/2020-86-14T03:
local/backups/etcd/main/2020-06-14T03:
local/backups/etcd/main/2020-06-14T03:
local/backups/etcd/main/2020-06-14T03:
.local/backups/etcd/main/2020-06-14T03:
local/backups/etcd/main/2020-86-14T03:
local/backups/etcd/main/2020-06-14T03:
local/backups/etcd/main/2020-06-14T03:

:37Z-000002/_etcd_backup.meta",
:372-000002/etcd.backup.gz",
1407-000003/_etcd_backup.meta",
1407-000003/etcd.backup.gz”,
:417-000001/_etcd_backup.meta",
:417-000001/etcd.backup.gz",
:1447-000004/_etcd_backup.meta",
:1447-000004/etcd.backup.gz",
:1457-000005/_etcd_backup.meta",
1457-000005/etcd.backup.gz",
:1477-000001/_etcd_backup.meta",
:477-000001/etcd.backup.gz",
:487-000002/_etcd_backup.meta",
:1487-000002/etcd.backup.gz",

OEBPS/image/B14870_15_08.jpg
& > C @ localhost:3000/?0rgld=1

828 Home -

Configuration tall-Grafana

€ Data Sources

& Users
& Teams
& Plugins
== Preferences

4, APIKeys

OEBPS/image/B14870_01_18.jpg
Explore Repositories hweicdl ~ /)y

Repositories hweicdl / k8s-for-beginners Using 0 of 1 private repositories. Get more
General Tags Builds Timeline Collaborators ~ Webhooks Settings
O Action - Q Filter Tags Sortby Latest v
IMAGE
v0.0.1 docker pull hweicdl/kss-for-beginnersv0 [[]

Last updated 2 months ago by hweicdl

DIGEST OS/ARCH COMPRESSED SIZE ©
5dbf6d7cc759 linux/amdé4 4.87 MB

OEBPS/image/B14870_06_17.jpg
NAME READY STATUS RESTARTS AGE LABELS
backend-production 1/1 Running @ 7m39s |environment=production,role=backend |

OEBPS/image/B14870_13_09.jpg
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE

calico-node 2 2 e 2 e beta.kubernet

es.io/os=linux 24s

OEBPS/image/B14870_02_21.jpg
O - Ol -
NI/ N, < () O)
e CY NN I QI I_) o ___/
20 (D (Nl e/ N

O ®)
| 1_
| /'__\

OEBPS/image/B14870_14_12.jpg
NAME: chart-1589680252

LAST DEPLOYED: Sat May 16 21:50:53 2020
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

OEBPS/image/B14870_08_16.jpg
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
ik
</style>
</head>
<body>

<h1>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

OEBPS/image/B14870_03_12.jpg
Containers:

nginx:
Container ID: docker://ac74053bobeff086fc1232a6212787c6845630536a65bee4bs7e11653f7256af
Image: nginx:1.7.8
Image ID: docker-pullable://nginx@sha256:2c390758c6a4660d93467ce5e70e8d08d6e401f748bffba7885cel60ca7e481d
Port: <none>
Host Port: <none>
State: Running
Started: Sun, 16 Feb 2020 12:01:36 +0000
Ready: True
Restart Count: ©
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-46457 (ro)

OEBPS/image/B14870_12_18.jpg
deployment.apps/kubernetes-test-ha—-application-with-redis-deployment created
service/kubernetes—test—ha-application-with-redis created
deployment.apps/redis created

service/redis created

ingress.networking.k8s.io/ingress configured

OEBPS/image/B14870_11_01.jpg
5
¥
19
<
.
%)
>

Availability Zone - C

Availability Zone - B

Availability Zone - A

mastor
Master
w
[l
node
Worker Nodes

Master
w”
[
node
Worker Nodes

Master
Worker Nodes

OEBPS/image/B14870_03_06.jpg
LAST SEEN E REASON KIND MESSAGE
14s Warning FailedGetScale HorizontalPodAutoscaler deployments/scale.apps "melonkedaaf" not found

OEBPS/image/B14870_04_46.jpg
apiVersion: af
kind: Deployment
met

eationTimestamp: null

mple

Xamp.

1T
ngin

ntaine:

image: nginx

OEBPS/image/B14870_09_07.jpg
Ready: True

| Restart Count: 1

Environment: <none>

Mounts:
/mounted-data from data-volume (rw)
/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)

OEBPS/image/B14870_06_02.jpg
NAME READY STATUS RESTARTS AGE
pod-without-initial-labels 1/1 Running @ 8s

OEBPS/image/B14870_17_02.jpg
NAME

coredns-fb8b8dccf-6kfag
coredns-fb8b8dccf-gfvmf
etcd-minikube
kube-addon-manager-minikube
kube-apiserver-minikube
kube-controller-manager-minikube
kube-prox X

storage-provisioner

READY
174
171
171
171
174
171
1/1
171
171

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

[SESESRSE SRR

AGE
3mSs
3mSs
113s
112s
2mlls
2m3s
3mSs
110s
3mds

OEBPS/image/B14870_05_11.jpg
Field Name Default | Minimum | Description
initialDelaySeconds - - Number of seconds that the controller will
wait before launching the probes.
timeoutSeconds 1 1 Number of seconds after which a probe
(health check) will time out.
periodSeconds 10 1 Number of seconds after which the probe
will be repeated periodically.
successThreshold 1 1 Minimum consecutive number of times
a probe should succeed before it is
considered successful.
failureThreshold 3 1 Maximum consecutive number of times

a probe will be allowed to fail before the
probe is considered to have failed. Once

a pod fails a probe failureThreshold
number of times, the controller will give
up on it and take action depending on
whether it is a liveness or readiness probe.

OEBPS/image/B14870_10_19.jpg
external-system-location=https://vendor.example.com
external-system-basic—-auth-username=activityapplicationuser
external-system—-basic—auth—-password=A#4b*(1=B88%tFr3

OEBPS/image/B14870_14_06.jpg
1

aws_eks_cluster.demo: Still destroying... [id=terraform-eks-demo, 18m3@s elapsed
1

aws_eks_cluster.demo: Destruction complete after 1em32s
aws_iam_role_policy_attachment.demo-cluster-AmazonEKSServicePolicy: Destroying..
. [id=terraform-eks-demo-cluster-20200427130747970200000005]
aws_iam_role_policy_attachment.demo-cluster-AmazonEKSClusterPolicy: Destroying..
. [id=terraform-eks-demo-cluster-20200427130747777200000002]

aws_subnet.demo[1]: Destroying... [id=subnet-8877375d249fc@1c8]
aws_subnet.demo[2]: Destroying... [id=subnet-86b36bf55e5c14385]
aws_subnet.demo[@]: Destroying... [id=subnet-00330d655d1f4f5c5]
aws_security_group.demo-cluster: Destroying... [id=sg-0212de4e131167ffal
aws_iam_role_policy_attachment.demo-cluster-AmazonEKSClusterPolicy: Destruction
complete after Os
aws_iam_role_policy_attachment.demo-cluster-AmazonEKSServicePolicy: Destruction
complete after Os

aws_iam_role.demo-cluster: Destroying... [id=terraform-eks-demo-cluster]
aws_subnet.demo[2]: Destruction complete after 1s

aws_subnet.demo[@]: Destruction complete after 1s

aws_subnet.demo[1]: Destruction complete after 1s

aws_iam_role.demo-cluster: Destruction complete after 1s
aws_security_group.demo-cluster: Destruction complete after 1s

aws_vpc.demo: Destroying... [id=vpc-01db9a06a98763bc2]

aws_vpc.demo: Destruction complete after 1s

Destroy complete! Resources: 26 destroyed.

OEBPS/image/B14870_05_15.jpg
Name : readiness-probe

Namespace: default

Priority: 0

PriorityClassName: <none>

Node: minikube/10.0.2.15

Start Time: Fri, 05 Jul 2019 00:40:14 +0200
Labels: <none>

Annotations: <none>

Status: Running

1P: 172.17.0.8

Containers:
ubuntu-container:
Container ID: docker://58d6c9d12f16e81269ce4679cade54f750a4b997d6407976162085c82293cFef

Inage: ubuntu
Inage I0: docker-pullable://ubuntu@sha256:9b1702dcfe32c873a770a32cfd306dd7 fc1cafd134adfb783db68de fc8894b3c
Port: <none>
Host Port: <none>
Command:
/bin/bash
-ec
sleep 30; touch /tmp/ready; sleep 600
State: Running
Started: Fri, 05 Jul 2019 00:40:17 +0200
Ready: False
Restart Count: 0
Readiness: exec [cat /tmp/ready] delay=10s timeout=ls period=Ss #success=1 #failure=3
Environment: <none>
Mounts:
/var/run/secrets/kubernetes. io/serviceaccount from default-token-7rmnp (ro)
Conditions:
Type Status
Initialized True
Ready False
ContainersReady ~ False
PodScheduled True
Volumes :
default-token-7rmnp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false
Qos Class: BestEffort
Node-Selectors: <none>
Tolerations: node .kubernetes . io/not-ready:NoExecute for 300s
node . kubernetes. io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message

Normal ~ Scheduled 19s default-scheduler Successfully assigned default/readiness-probe to minikube

Normal ~ Pulling 18s kubelet, minikube Pulling image "ubuntu"

Normal ~ Pulled 16s kubelet, minikube Successfully pulled image "ubuntu"

Normal ~ Created ~ 16s kubelet, minikube Created container ubuntu-container

Normal Started 16s kubelet, minikube Started container ubuntu-container

Warning Unhealthy 2s kubelet, minikube Readiness probe failed: cat: /tmp/ready: No such file or directory

OEBPS/image/B14870_15_28.jpg
(N N] i kubernetes-test-ha-application — -zsh — 97x26

D ...a-application — -zsh

'zarnold@z: ~/go/src.:lglt_hub.com/zparnold/kubernetes-test- n % aws iam create-access—key —-user—name k8s-auto!
el ha-application — -zsh

i

"AccessKey": {

"UserName": "k8s-autoscaler"
|"AccessKeyId" : "AKIAEYQUHQAPZMHRMUEO"I
"Status": "Active",

|"SecretAccessKey": "rhkgEGdOTSEZEALJQéFcevsSIKLA/JuAByNiGsz"|
"CreateDate": "2020-04-27T00:57:46+00:00"
}

}
zarnold@zachs—mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_17_01.jpg
No nodes available
after filter

No nodes available
after scoring

Filtering

Get all available
nodes

fe—modes

Scoring

Assign

Kubermetes Scheduler - An overview of how it

selects the node

OEBPS/image/B14870_19_01.jpg
Custom Controller

Kubernetes
Master API
Server

OEBPS/image/B14870_05_07.jpg
NAME READY STATUS RESTARTS AGE
huge-resource-requirements-pod 0/1 Pending @ 55s

OEBPS/image/B14870_10_11.jpg
Name:
Namespace:
Labels:
Annotations:

Opaque

test-key-secret
configmap-test
<none>

<none>

3381 bytes

OEBPS/image/B14870_13_01.jpg
& Container

Computers
Networks

OEBPS/image/B14870_01_23.jpg
Unable to find image 'nicolaka/netshoot:latest' locally
latest: Pulling from nicolaka/netshoot
e7c96db7181b: Pull complete
e8ad7601444c: Pull complete
1c3e3a777e7@: Pull complete
916dd651caf3: Pull complete
4375fed2538e: Pull complete
8631605717d! Pull complete
dd4fb@7f87c6: Pull complete
Digest: sha256:8b020dc72d8ef07663e44c449f1294fc47c81al@ef5303dc8c2d9635e8ca22bl
Status: Downloaded newer image for nicolaka/netshoot:latest
dp dpP dpP
88 88 88
88d888b. .d8888b. d8888P .d8888b. 88d888b. .d8888b. .d8888b. d8388P
88' 88 880000d8 88 Y8ooooo. 88' 88 88' 88 88' 88 88
88 88 88. ... 88 88 88 88 88. .88 88. .88 88
dp dP "88888P" dp "88888P" dP dP "83888P" "88888P" dpP

Welcome to Netshoot! (github.com/nicolaka/netshoot)

root @ /
1 & -

OEBPS/image/B14870_18_18.jpg
I0315 01:04:22.847381 3842 upgrade _cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "master-australia-sou
theastl-a"; not updating image

I0315 01:04:22.847411 3842 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "master-australia-sou
theastl-b"; not updating image

I0315 01:04:22.847422 3842 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "master-australia-sou
theastl-c"; not updating image

I0315 01:04:22.847440 3842 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "nodes"; not updating

image
ITEM PROPERTY OLD NEW
Cluster KubernetesVersion 1.15.7 1.15.10

Updates applied to configuration.
You can now apply these changes, using “kops update cluster myfirstcluster.k8s.lo
cal”

OEBPS/image/B14870_02_25.jpg
NAME READY STATUS RESTARTS AGE
k8s-for-beginners-66644bb776-kwwfr 0/1 Pending @ 51s

OEBPS/image/B14870_08_05.jpg
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<h1>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

OEBPS/image/B14870_04_48.jpg
:31 kube-apiserver --advertise-address=192.168.0.105 --allow-
rivileged=true --authorization-mode=Node,RBAC --client-ca-fi
le=/var/lib/minikube/certs/ca.crt --enable-admission-plugins=
amespacelLifecycle,LimitRanger,ServiceAccount,DefaultStorageC
lass,DefaultTolerationSeconds,NodeRestriction,MutatingAdmissi
nWebhook,ValidatingAdmissionWebhook,ResourceQuota --enable-b
otstrap-token-auth=true --etcd-cafile=/var/lib/minikube/cert
s/etcd/ca.crt --etcd-certfile=/var/lib/minikube/certs/apiserv
r-etcd-client.crt --etcd-keyfile=/var/lib/minikube/certs/api
server-etcd-client.key --etcd-servers=https://127.0.0.1:2379
--insecure-port=0 --kubelet-client-certificate=/var/lib/minik
be/certs/apiserver-kubelet-client.crt --kubelet-client-key=/
ar/lib/minikube/certs/apiserver-kubelet-client.key --kubelet
-preferred-address-types=InternalIP,ExternalIP,Hostname --pro
y-client-cert-file=/var/lib/minikube/certs/front-proxy-clien
.crt --proxy-client-key-file=/var/lib/minikube/certs/front-p
roxy-client.key --requestheader-allowed-names=front-proxy-cli
nt --requestheader-client-ca-file=/var/lib/minikube/certs/fr
nt-proxy-ca.crt --requestheader-extra-headers-prefix=X-Remot
-Extra- --requestheader-group-headers=X-Remote-Group --reque
stheader-username-headers=X-Remote-User --secure-port=8443 --
service-account-key-file=/var/lib/minikube/certs/sa.pub --ser
ice-cluster-ip-range=10.96.0.0/12 --tls-cert-file=/var/lib/m
inikube/certs/apiserver.crt --tls-private-key-file=/var/lib/m
inikube/certs/apiserver.key

OEBPS/image/B14870_02_09.jpg
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED N

ODE READINESS GATES

k8s-for-beginners 1/1 Running @ 57s 172.17.0.4 minikube <none>
<none>

OEBPS/image/B14870_02_17.jpg
NAME

k8s-for-beginners-66644bb776-739mw
k8s-for-beginners-66644bb776-cdlgh
k8s-for-beginners-66644bb776-dzf9j
k8s-for-beginners-66644bb776-fg8s5
k8s-for-beginners-66644bb776-jhb5x

READY
aval
171
171
171
1/1

STATUS

Running
Running
Running
Running
Running

RESTARTS

ISESESESES

AGE
16m
69s
16m
16m
69s

OEBPS/image/B14870_04_56.jpg
{

"kind": "Status",

“apiversion™: "v1",

"metadata”: {

}

“status Failure”,

“message”: "pods is forbidden: User \"system:anonymous

\" cannot list resource \"pods\" in APT group \"\" in th
e namespace \"default\"",
“reason”: "forbidden”,

“details™: {
"kind "pods”

b

"code™: 403

Jroot@my-bash: /#

OEBPS/image/B14870_04_13.jpg
Overvieu

WORKLOADS APIS
Container v1 core
CronJob vibetat batch
DaemonSet v apps.

Create

Patch

Replace

Delete

Delete Collection
Read Operations
Status Operations
Misc Operations

Job v1 batch
Pod v1 core

ReplicaSet v1 apps
ReplicationController v1 core

StatefulSet v1 apps

SERVICE APIS
Endpoints v1 core

EndpointSlice vialpha1 discovery k8s.io

Create

kubecti request example | curl request example | kubectl response example | curl response example

create a Deployment

HTTP Request

POST /apis/apps/vi/nanespaces/{nanespace}/deployments

Path Parameters
Parameter Description

namespace object name and auth scope, such as for teams and projects

Query Parameters

Parameter Description
pretty If 'true’, then the output is pretty printed.
dryRun When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun ¢

are: - Al: all dry run stages will be processed

fieldManager fieldManager is a name associated with the actor or entity that is making these changes. The value mus
https://golang.org/pkg/unicode/#lsPrint

OEBPS/image/B14870_06_13.jpg
NAME READY STATUS RESTARTS AGE LABELS
frontend-production 1/1 Running @ 7m39s |env1ronment=product1on,role=frontend|

OEBPS/image/B14870_04_05.jpg
abutaleb@abuTalebPC:~$ kubectl auth can-i get pods --all-namespaces
no

abutaleb@abuTalebpC:~$ kubectl auth can-i get pods -n default
yes

OEBPS/image/B14870_07_03.jpg
Name: nginx-replicaset

Namespace: default
Selector: environment=production
Labels: app=nginx

Annotations: <none>

Replicas: 2 current / 2 desired

Pods Status: 2 Running / @ Waiting / @ Succeeded / @ Failed

Pod Template:
Labels: environment=production
Containers:
nginx-container:

Image: nginx
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>
Events:
Type Reason Age
Normal SuccessfulCreate 2m51s
t-9tgb9
Normal SuccessfulCreate 2m51s
t-zdjb5

From

replicaset-controller

replicaset-controller

Message

Created pod:

Created pod:

nginx-replicase

nginx-replicase

Normal SuccessfulCreate 22s
t-46spq

replicaset-controller

Created pod:

nginx-replicase

OEBPS/image/B14870_09_03.jpg
Get:2 http://deb.debian.org/debian buster InRelease [122 kB]

Get:3 http://deb.debian.org/debian buster-updates InRelease [49.3 kB]

Get:1 http://security-cdn.debian.org/debian-security buster/updates InRelease [65.4 kB]

Get:4 http://deb.debian.org/debian buster/main amd64 Packages [7908 kB]

Get:5 http://security-cdn.debian.org/debian-security buster/updates/main amd64 Packages [171 kB]
Get:6 http://deb.debian.org/debian buster-updates/main amd64 Packages [5792 B]

Fetched 8321 kB in 4s (2319 kB/s)

Reading package lists... Done

OEBPS/image/B14870_04_25.jpg
apiVersion: vl
kind: Pod
metadata:
creationTimestamp: "2019-11-23713:18:58Z"
generateName: mynginx-8668b9977f-
labels:
pod-template-hash: 8668b9977f
run: mynginx
name: mynginx-8668b9977f-9nbkd
namespace: default

OEBPS/image/B14870_14_03.jpg
NAME CAPACITY ACCESS MODES RECLAIM POL

[CY STATUS CLAIM STORAGECLASS REASON AGE

ovc-5e4418e0-a4f3-40ad-9f2a-57376bald1dl 1061 RWO Delete
Bound default/data-mysql-@ gp2 2m46s

OEBPS/image/B14870_18_03.jpg
$kubectl get pods -n kube-system | grep etcd-manager
etcd-manager-events—ip-172-20-115-0.us-west-2.compute.internal
etcd-manager—events—ip-172-20-46-185.us-west-2.compute.internal
etcd-manager—events—ip-172-20-80-162.us-west-2.compute.internal
etcd-manager-main-ip-172-20-115-0.us-west-2.compute.internal
etcd-manager-main-ip-172-20-46-185.us-west-2.compute.internal
eEcd—manager—main-ip—172—20-80—162.us-west—2.compute.internal

1/1
1/1
/1
il
aljjal
aljjal

Running
Running
Running
Running
Running
Running

o000 ®

97m
97m
97m
97m
96m
97m

OEBPS/image/B14870_15_05.jpg
00 i terraform — -zsh — 121x62
[zarnold@zachs-mbp terraform % helm install --generate-name stable/grafana
NAME: grafana-1576397218

LAST DEPLOYED: Sun Dec 15 00:07:01 2019

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTES:

1. Get your 'admin' user password by running:

kubectl get secret --namespace default grafana-1576397218 -o jsonpath="{.data.admin-password}" | base64 --decode ; ech
o

2. The Grafana server can be accessed via port 80 on the following DNS name from within your cluster:
grafana-1576397218.default.svc.cluster.local
Get the Grafana URL to visit by running these commands in the same shell:
export POD_NAME=$(kubectl get pods —-namespace default -1 "app=grafana,release=grafana-1576397218" -o jsonpath="{.it
ems[@].metadata.name}")

kubectl --namespace default port-forward $POD_NAME 3000

3. Login with the password from step 1 and the username: admin

WARNING: Persistence is disabled!!! You will lose your data when
HHHHEH the Grafana pod is terminated. HHHHE

zarnold@zachs-mbp terraform % [|

OEBPS/image/B14870_03_03.jpg
NAME STATUS ROLES AGE VERSION
aks-nodepool1-29936823-0 Ready agent 34d v1.13.12
virtual-node-aci-1linux Ready agent 8d vl.14.3-vk-azure-aci-v1.1.0.1

OEBPS/image/B14870_01_15.jpg
The push refers to repository [docker.io/library/k8s-for-beginners]
5b751225b338: Preparing

77cae8ab23bf: Preparing
denied: requested access to the resource is denied

OEBPS/image/B14870_04_41.jpg
“kind": “"DeploymentList",

"apivVersion": "apps/v1",
"metadata’
“selfLink": “/apis/apps/v1/namespaces/default/deploym
ents",
"resourceVersion": "131356"
s
"items": [
{
“"metadata”: {
"name": "mynginx",
"namespace": "default",
“selfLink": “/apis/apps/v1/namespaces/default/dep
loyments/mynginx",

"uid": "98935fea-80a6-4d77-8340-65e2a445de57",

OEBPS/image/B14870_04_10.jpg
@® minikube v1.5.2 on Darwin 10.15.1
® Tip: Use 'minikube start -p <name>' to create a new cluster, or 'minikube de
lete' to delete this one.
%® Using the running virtualbox "minikube" WM ...
X Waiting for the host to be provisioned ...
@ Preparing Kubernetes v1.16.2 on Docker '18.09.9' ...

= apiserver.enable-admission-plugins=LimitRanger,NamespaceExists,Namespaceli
fecycle,ResourceQuota, ServiceAccount,DefaultStorageClass ,MutatingAdmissionWebhoo
k
B Relaunching Kubernetes using kubeadm ...
X Waiting for: apiserver
2 Done! kubectl is now configured to use "minikube"

OEBPS/image/B14870_10_07.jpg
Create a secret using specified subcommand.

Available Commands:
docker-registry Create a secret for use with a Docker registry

generic Create a secret from a local file, directory or literal value
tls Create a TLS secret
Usage:

kubectl create secret [flags] [options]

Use "kubectl <command> --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all commands)

OEBPS/image/B14870_12_15.jpg
deployment.extensions/kubernetes-test-ha-application-without-redis-deployment scaled

OEBPS/toc.xhtml

		
		Contents

			
						The Kubernetes Workshop

						Preface
					
								About the Book
							
										Audience

										About the Chapters

										Conventions

										Setting Up Your Environment
									
												Hardware Requirements

												Operating System Requirements

												Virtualization

									

								

										Installation and Setup
									
												Updating Your Package Lists

												Installing Git

												jq

												Tree

												The AWS CLI

												Minikube and kubectl

												VirtualBox

												Docker

												Go

												kops

									

								

										Dual-Booting Ubuntu for Windows Users
									
												Resizing Partitions

												Creating a Bootable USB Drive to Install Ubuntu

												Installing Ubuntu

									

								

										Other Requirements

										Accessing the Code Files

							

						

					

				

						1. Introduction to Kubernetes and Containers
					
								Introduction

								The Evolution of Software Development

								Virtual Machines versus Containers

								Docker Basics
							
										What's behind docker run?

										Dockerfiles and Docker Images

										Exercise 1.01: Creating a Docker Image and Uploading It to Docker Hub

										Exercise 1.02: Running Your First Application in Docker

							

						

								The Essence of Linux Container Technology
							
										Namespace

										Exercise 1.03: Joining a Container to the Network Namespace of Another Container

										Cgroups

										Containerization: The Mindset Change
									
												Several Applications in One Container

												One Application in One Container

												A Comparison of These Approaches

									

								

							

						

								The Need for Container Orchestration
							
										Container Interactions

										Network and Storage

										Resource Management and Scheduling

										Failover and Recovery

										Scalability

										Service Exposure

										Delivery Pipeline

										Orchestrator: Putting All the Things Together

							

						

								Welcome to the Kubernetes World
							
										Activity 1.01: Creating a Simple Page Count Application

							

						

								Summary

					

				

						2. An Overview of Kubernetes
					
								Introduction

								Setting up Kubernetes
							
										An Overview of Minikube

										Exercise 2.01: Getting Started with Minikube and Kubernetes Clusters

							

						

								Kubernetes Components Overview
							
										etcd

										API Server

										Scheduler

										Controller Manager

										Where Is the kubelet?

										kube-proxy

							

						

								Kubernetes Architecture
							
										Container Network Interface

							

						

								Migrating Containerized Application to Kubernetes
							
										Pod Specification

										Applying a YAML Manifest

										Exercise 2.02: Running a Pod in Kubernetes

										Service Specification

										Exercise 2.03: Accessing a Pod via a Service

										Services and Pods

							

						

								Delivering Kubernetes-Native Applications
							
										Exercise 2.04: Scaling a Kubernetes Application

							

						

								Pod Life Cycle and Kubernetes Components
							
										Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle

										Activity 2.01: Running the Pageview App in Kubernetes

										A Glimpse into the Advantages of Kubernetes for Multi-Node Clusters

							

						

								Summary

					

				

						3. kubectl – Kubernetes Command Center
					
								Introduction

								How kubectl Communicates with Kubernetes

								Setting up Environments with Autocompletion and Shortcuts
							
										Exercise 3.01: Setting up Autocompletion

										Setting up the kubeconfig Configuration File

							

						

								Common kubectl Commands
							
										Frequently Used kubectl Commands to Create, Manage, and Delete Kubernetes Objects

										Walkthrough of Some Simple kubectl Commands
									
												Some Useful Flags for the get Command

									

								

							

						

								Populating Deployments in Kubernetes
							
										Exercise 3.02: Creating a Deployment

										Exercise 3.03: Updating a Deployment

										Exercise 3.04: Deleting a Deployment

										Activity 3.01: Editing a Live Deployment for a Real-Life Application

							

						

								Summary

					

				

						4. How to Communicate with Kubernetes (API Server)
					
								Introduction

								The Kubernetes API Server

								Kubernetes HTTP Request Flow
							
										Authentication

										Authorization

										Admission Control

										Exercise 4.01: Starting Minikube with a Custom Set of Modules

										Validation

							

						

								The Kubernetes API
							
										Tracing kubectl HTTP Requests

										API Resource Type

							

						

								Scope of API Resources
							
										Namespace-Scoped Resources

										Cluster-Scoped Resources

							

						

								API Groups
							
										Core Group

										Named Group

										System-Wide

							

						

								API Versions
							
										Exercise 4.02: Getting Information about API Resources

										How to Enable/Disable API Resources, Groups, or Versions

										Exercise 4.03: Enabling and Disabling API Groups and Versions on a Minikube Cluster

							

						

								Interacting with Clusters Using the Kubernetes API
							
										Accessing the Kubernetes API Server Using kubectl as a Proxy

										Creating Objects Using curl

										Exercise 4.04: Creating and Verifying a Deployment Using kubectl proxy and curl

							

						

								Direct Access to the Kubernetes API Using Authentication Credentials
							
										Method 1: Using Client Certificate Authentication

										Method 2: Using a ServiceAccount Bearer Token

										Activity 4.01: Creating a Deployment Using a ServiceAccount Identity

							

						

								Summary

					

				

						5. Pods
					
								Introduction

								Pod Configuration
							
										Exercise 5.01: Creating a Pod with a Single Container

										Name

										Namespace

										Exercise 5.02: Creating a Pod in a Different Namespace by Specifying the Namespace in the CLI

										Exercise 5.03: Creating a Pod in a Different Namespace by Specifying the Namespace in the Pod Configuration YAML file

										Exercise 5.04: Changing the Namespace for All Subsequent kubectl Commands

										Node

										Status

										Containers

										Exercise 5.05: Using CLI Commands to Create a Pod Running a Container

										Exercise 5.06: Creating a Pod Running a Container That Exposes a Port

										Exercise 5.07: Creating a Pod Running a Container with Resource Requirements

										Exercise 5.08: Creating a Pod with Resource Requests That Can't Be Met by Any of the Nodes

										Exercise 5.09: Creating a Pod with Multiple Containers Running inside It

							

						

								Life Cycle of a Pod
							
										Phases of a Pod

							

						

								Probes/Health Checks
							
										Types of Probes
									
												Liveness Probe

												Readiness Probe

									

								

										Configuration of Probes

										Implementation of Probes
									
												Command Probe

												HTTP Request Probe

												TCP Socket Probe

												Restart Policy

									

								

										Exercise 5.10: Creating a Pod Running a Container with a Liveness Probe and No Restart Policy

										Exercise 5.11: Creating a Pod Running a Container with a Liveness Probe and a Restart Policy

										Exercise 5.12: Creating a Pod Running a Container with a Readiness Probe

										Best Practices While Using Probes

										Activity 5.01: Deploying an Application in a Pod

							

						

								Summary

					

				

						6. Labels and Annotations
					
								Introduction

								Labels
							
										Constraints for Labels
									
												Label Keys

												Label Values

									

								

										Why Do We Need Labels?
									
												Organizing Pods by Organization/Team/Project

												Running Selective Pods on Specific Nodes

									

								

										Exercise 6.01: Creating a Pod with Labels

										Exercise 6.02: Adding Labels to a Running Pod

										Exercise 6.03: Modifying And/Or Deleting Existing Labels for a Running Pod

										Selecting Kubernetes Objects Using Label Selectors
									
												Equality-Based Selectors

									

								

										Exercise 6.04: Selecting Pods Using Equality-Based Label Selectors
									
												Set-Based Selectors

									

								

										Exercise 6.05: Selecting Pods Using Set-Based Label Selectors

										Exercise 6.06: Selecting Pods Using a Mix of Label Selectors

							

						

								Annotations
							
										Constraints for Annotations
									
												Annotation Keys

												Annotation Values

									

								

										Use Case for Annotations

										Exercise 6.07: Adding Annotations to Help with Application Debugging

										Working with Annotations

										Activity 6.01: Creating Pods with Labels/Annotations and Grouping Them as per Given Criteria

							

						

								Summary

					

				

						7. Kubernetes Controllers
					
								Introduction

								ReplicaSets
							
										ReplicaSet Configuration
									
												Replicas

												Pod Template

												Pod Selector

									

								

										Exercise 7.01: Creating a Simple ReplicaSet with nginx Containers
									
												Labels on the ReplicaSet

												Selectors for the ReplicaSet

												Replicas

												Pods Status

												Pods Template

												Events

									

								

										Exercise 7.02: Deleting Pods Managed by a ReplicaSet

										Exercise 7.03: Creating a ReplicaSet Given That a Matching Pod Already Exists

										Exercise 7.04: Scaling a ReplicaSet after It Is Created

							

						

								Deployment
							
										Deployment Configuration
									
												Strategy

									

								

										Exercise 7.05: Creating a Simple Deployment with Nginx Containers
									
												Labels and Annotations on the Deployment

												Selectors for the Deployment

												Replicas

									

								

										Rolling Back a Deployment

										Exercise 7.06: Rolling Back a Deployment

							

						

								StatefulSets
							
										StatefulSet Configuration
									
												Use Cases for StatefulSets

									

								

							

						

								DaemonSets
							
										Use Cases for DaemonSets

										DaemonSet Configuration

							

						

								Jobs
							
										Job Configuration
									
												A Use Case for Jobs in Machine Learning

									

								

										Exercise 7.07: Creating a Simple Job That Finishes in Finite Time

										Activity 7.01: Creating a Deployment Running an Application

							

						

								Summary

					

				

						8. Service Discovery
					
								Introduction

								Service
							
										Service Configuration

										Types of Services

										NodePort Service

										Exercise 8.01: Creating a Simple NodePort Service with Nginx Containers

										ClusterIP Service
									
												Service Configuration

									

								

										Exercise 8.02: Creating a Simple ClusterIP Service with Nginx Containers
									
												Choosing a Custom IP Address for the Service

									

								

										Exercise 8.03: Creating a ClusterIP Service with a Custom IP

										LoadBalancer Service

										ExternalName Service

							

						

								Ingress
							
										Activity 8.01: Creating a Service to Expose the Application Running on a Pod

							

						

								Summary

					

				

						9. Storing and Reading Data on Disk
					
								Introduction

								Volumes
							
										How to Use Volumes

										Defining Volumes

										Mounting Volumes

										Types of Volumes
									
												emptyDir

												hostPath

									

								

										Exercise 9.01: Creating a Pod with an emptyDir Volume

										Exercise 9.02: Creating a Pod with an emptyDir Volume Shared by Three Containers

							

						

								Persistent Volumes
							
										PersistentVolume Configuration
									
												storageClassName

												capacity

												volumeMode

												accessModes

												persistentVolumeReclaimPolicy

									

								

										PV Status

										PersistentVolumeClaim Configuration
									
												storageClassName

												resources

												volumeMode

												accessMode

												selectors

									

								

										How to Use Persistent Volumes
									
												Step 1 – Provisioning the Volume

												Step 2 – Binding the Volume to a Claim

												Step 3 – Using the Claim

									

								

										Exercise 9.03: Creating a Pod That Uses PersistentVolume for Storage

							

						

								Dynamic Provisioning
							
										Activity 9.01: Creating a Pod That Uses a Dynamically Provisioned PersistentVolume

							

						

								Summary

					

				

						10. ConfigMaps and Secrets
					
								Introduction

								What Is a ConfigMap?
							
										Exercise 10.01: Creating a ConfigMap from Literal Values and Mounting It on a Pod Using Environment Variables

										Defining a ConfigMap from a File and Loading It onto a Pod

										Exercise 10.02: Creating a ConfigMap from a File

										Exercise 10.03: Creating a ConfigMap from a Folder

							

						

								What Is a Secret?
							
										Secret versus ConfigMap

										Exercise 10.04: Defining a Secret from Literal Values and Loading the Values onto the Pod as an Environment Variable

										Exercise 10.05: Defining a Secret from a File and Loading the Values onto the Pod as a File

										Exercise 10.06: Creating a TLS Secret

										Exercise 10.07: Creating a docker-registry Secret

										Activity 10.01: Using a ConfigMap and Secret to Promote an Application through Different Stages

							

						

								Summary

					

				

						11. Build Your Own HA Cluster
					
								Introduction

								How the Components of Kubernetes Work Together to Achieve High Availability
							
										etcd

										Networking and DNS

										Nodes' and Master Servers' Locations and Resources

										Container Network Interface and Cluster DNS

										Container Runtime Interfaces

										Container Storage Interfaces

							

						

								Building a High-Availability Focused Kubernetes Cluster
							
										Self-Managed versus Vendor-Managed Kubernetes Solutions

										kops

										Other Commonly Used Tools

										Authentication and Identity in Kubernetes

										Exercise 11.01: Setting up Our Kubernetes Cluster

										Kubernetes Service Accounts

										Exercise 11.02: Deploying an Application on Our HA Cluster

										Activity 11.01: Testing the Resilience of a Highly Available Cluster

										Deleting Our Cluster

							

						

								Summary

					

				

						12. Your Application and HA
					
								Introduction

								An Overview of Infrastructure Life Cycle Management

								Terraform
							
										Exercise 12.01: Creating an S3 Bucket with Terraform

										Exercise 12.02: Creating a Cluster with EKS Using Terraform

							

						

								Kubernetes Ingress

								Highly Available Applications Running on Top of Kubernetes
							
										Exercise 12.03: Deploying a Multi-Replica Non-HA Application in Kubernetes

							

						

								Working with Stateful Applications
							
										The CI/CD Pipeline

										Exercise 12.04: Deploying an Application with State Management

										Activity 12.01: Expanding the State Management of Our Application

							

						

								Summary

					

				

						13. Runtime and Network Security in Kubernetes
					
								Introduction

								Threat Modeling
							
										The 4Cs of Cloud Native Security

							

						

								Cluster Security

								Kubernetes RBAC
							
										Role

										RoleBinding

										ClusterRole

										ClusterRoleBinding

										Some Important Notes about RBAC Policies

										ServiceAccount

										Exercise 13.01: Creating a Kubernetes RBAC ClusterRole

							

						

								NetworkPolicies
							
										Exercise 13.02: Creating a NetworkPolicy

							

						

								PodSecurityPolicy
							
										Exercise 13.03: Creating and Testing a PodSecurityPolicy

										Activity 13.01: Securing Our App

							

						

								Summary

					

				

						14. Running Stateful Components in Kubernetes
					
								Introduction

								Stateful Apps

								Understanding StatefulSets
							
										Deployments versus StatefulSets

							

						

								Further Refactoring Our Application
							
										Exercise 14.01: Deploying a Counter App with a MySQL Backend

										Exercise 14.02: Testing the Resilience of StatefulSet Data in PersistentVolumes

							

						

								Helm
							
										Exercise 14.03: Chart-ifying Our Redis-Based Counter Application

										Activity 14.01: Chart-ifying Our StatefulSet Deployment

							

						

								Summary

					

				

						15. Monitoring and Autoscaling in Kubernetes
					
								Introduction

								Kubernetes Monitoring
							
										Kubernetes Metrics API/Metrics Server

										Prometheus

										Grafana

										Monitoring Your Applications

										Exercise 15.01: Setting up the Metrics Server and Observing Kubernetes Objects

							

						

								Autoscaling in Kubernetes
							
										HorizontalPodAutoscaler

										Exercise 15.02: Scaling Workloads in Kubernetes

										ClusterAutoscaler

										Exercise 15.03: Configuring the ClusterAutoscaler

										Activity 15.01: Autoscaling Our Cluster Using ClusterAutoscaler

										Deleting Your Cluster Resources

							

						

								Summary

					

				

						16. Kubernetes Admission Controllers
					
								Introduction

								How Admission Controllers Work

								Creating Controllers with Custom Logic
							
										The Mutating Admission Webhook

										The Validating Admission Webhook

							

						

								How a Webhook Works
							
										Exercise 16.01: Modifying a ConfigMap Object through a Patch

										Guidelines for Building a Mutating Admission WebHook

										Exercise 16.02: Deploying a Webhook

										Configuring the Webhook to Work with Kubernetes

										How to Encode a Certificate in Base64 Format

										Activity 16.01: Creating a Mutating Webhook That Adds an Annotation to a Pod

							

						

								Validating a Webhook
							
										Coding a Simple Validating WebHook

										Activity 16.02: Creating a Validating Webhook That Checks for a Label in a Pod

										Controlling the Effect of a Webhook on Selected Namespaces

										Exercise 16.03: Creating a Validating Webhook with the Namespace Selector Defined

							

						

								Summary

					

				

						17. Advanced Scheduling in Kubernetes
					
								Introduction

								The Kubernetes Scheduler

								The Pod Scheduling Process
							
										Filtering

										Scoring

										Assigning

										Timeline of Pod Scheduling

							

						

								Managing the Kubernetes Scheduler
							
										Node Affinity and Anti-Affinity

										Exercise 17.01: Running a Pod with Node Affinity

							

						

								Pod Affinity and Anti-Affinity
							
										Exercise 17.02: Running Pods with Pod Affinity

							

						

								Pod Priority
							
										Exercise 17.03: Pod Priority and Preemption

							

						

								Taints and Tolerations
							
										Exercise 17.04: Taints and Tolerations

							

						

								Using a Custom Kubernetes Scheduler
							
										Activity 17.01: Configuring a Kubernetes Scheduler to Schedule Pods

							

						

								Summary

					

				

						18. Upgrading Your Cluster without Downtime
					
								Introduction

								The Need to Upgrade Your Kubernetes Cluster

								Kubernetes Components – Refresher
							
										A Word of Caution

							

						

								The Upgrade Process
							
										Some Considerations for kops

										An overview of the Upgrade Process

										The Importance of Automation

										Backing up the etcd Datastore

										Exercise 18.01: Taking a Snapshot of the etcd Datastore

										Draining a Node and Making It Non-Schedulable

										Exercise 18.02: Draining All the Pods from the Nodes

							

						

								Upgrading Kubernetes Master Components
							
										Exercise 18.03: Upgrading Kubernetes Master Components

							

						

								Upgrading Kubernetes Worker Nodes
							
										Exercise 18.04: Upgrading the Worker Nodes

										Activity 18.01: Upgrading the Kubernetes Platform from Version 1.15.7 to 1.15.10

							

						

								Summary

					

				

						19. Custom Resource Definitions in Kubernetes
					
								Introduction

								What Is a Custom Controller?
							
										The Relationship between a CRD, a CR, and a Controller

							

						

								Standard Kubernetes API Resources

								Why We Need Custom Resources?
							
										Example Use Case 1

										Example Use Case 2

										Example Use Case 3

							

						

								How Our Custom Resources Are Defined
							
										apiVersion

										kind

										spec

										namespaceName and podLiveForThisMinutes

										The Definition of a CRD

										Exercise 19.01: Defining a CRD

										Exercise 19.02: Defining a CR Using a CRD

										Writing the Custom Controller
									
												The Components of the Custom Controller

									

								

										Activity 19.01: CRD and Custom Controller in Action

										Adding Data to Our Custom Resource

										Exercise 19.03: Adding Custom Information to the CR List Command

							

						

								Summary

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/B14870_06_01.jpg
:___Mon, 14 Oct 2019 22:16:58 +0200

Name: pod-with-labels

Namespace: default

Priority: 0

Node: minikube/10.0.2.15

Start Time

Labels: app=nginx
foo=bar

Annotations: <none>

Status: Running

Ip: 172.17.0.4

IPs:

IPs A72.07:0:4
Containers:
first-container:

Container ID: docker://c10a60006740d0c570ad5112d44fd45be5cf4fe7de7e6970a6fc509ba776bada
Image: nginx
Image ID: docker-pullable://nginx@sha256:aededdf2a861747f43a01cf1018cf9efe2bdd@2afd57d2b11fc
c7fcadcl6ccdl
Port: <none>
Host Port: <none>
State: Running
Started: Mon, 14 Oct 2019 22:17:17 +0200
Ready: True
Restart Count: @
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)
Conditions:
Type N
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:

default-token-wéxvp:
Secret (a volume populated by a Secret)

node. kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s

default-scheduler

kubelet, minikube
kubelet, minikube
kubelet, minikube

Type:
SecretName: default-token-w6xvp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations:
Events:
Type Reason Age From
Normal Scheduled <unknown>
nikube
Normal Pulling 5ml4s
Normal Pulled 4m56s
Normal Created 4m56s
Normal Started 4m56s

kubelet, minikube

Message

Successfully assigned default/pod-with-labels to mi

Pulling image "nginx"

Successfully pulled image "nginx"
Created container first-container
Started container first-container

OEBPS/image/B14870_08_10.jpg
NAME
nginx-service-clusterip

TYPE
ClusterIP

CLUSTER-IP
10.99.11.74

EXTERNAL-IP
<none>

PORT(S)
80/TCP

AGE
6d6h

OEBPS/image/B14870_16_14.jpg
LSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLSOtCk1ISUM@akNDQWNVQONRRHNPMFph
QOsWMDVUQU5CZ2txaGtpRz13MEJIBUXNGQURBek1URXdMd11EV1FRRERDaE4KZFhS
aGRHbHVaeUJCWkcxcGMzTnBiMjRNUTISdWRISNZiR3hsY21CWFpXSm9iMjlySUVO
Qk1CNFhEVEU1TURneQpNakEwTWpBeUBxb1hEVEU1TURreULUQTBNakF5TTFvde16
RXhNQzhHQTFVRUF3d29UWFYwWVhScGJtY2dRV1JOCmFYTnphVz11SUVOdmJuUnli
MnhzW1hJZ1YyVm1hRz12YX1CRFFUQONBU@13RFFZSktvWk1lodmNOQVFFQkJIRQUQK
Z2dFUEFEQONBUW9DZ2dFQkFLbNnVhT1pIcm12TDNIZ30xbHhrVVdnczY@ei9DVFRV
0TR3jOGhLTkdNdHdVMGt6SwpxWXR4NNQSMTIXNWcOQOdsbE@zMOpEam1jd21XRUIW
dkNDNWFYbEtDc1d6ST1HS1ZtVEFESW8ORFpDSXhvaHBNC1R5TkhPZUxTbDJ1S11Y
c2V2cEowRnRBS1RJIZOZKRm52UUL1YYUNYUkJyYVdNV3JIpUWZnZGsvaThyQzJveWsw
b1EKRE1Qb31jVEFBcm1SZOFvZnBTek9nZnVac3ZJeEViaDYvMnNRaHY5M25icFFR
TWNHKZNKWHVpW3 Zwe TFTRDArYQp1SThXRUFoMDQOMXpaWGRDOEI50H1nd1dCWwWdo
QUN3dUIzdHFKeEdjbzdDZ@11NkVWQXZVTFNVS1A3a0VQS3VTCnRtbHYvVUM16Vm5P
NWx5NkI1Y1BjOGRKYk1WKzROZVNObngxNmcOMENBdOVBQVRBTkIna3Foa21HOXcw
QkFRCOYKQUFPQOFRRUFpVC96QOF1dVR60FhsS1duczIWWGIwSmIGCE4VZDZKN3hU
VGp5S0k3SU9rRW9zaUZaSDg3ZDB3NgpYd3IBTnZiR2NId1hOZHRRTKY3S3ArZ1k1
RzFSeFV3V3BEUNnpjdV1rOEVWWNJICMDNhM2JDVX14ejZmRkUxanlUCmcvMmdKSFhV
de05Yy92Lzh0Z2NNa2ZtdF1LeGErREV6anQ3V20xbDFUY1VFM3NCK1ZFalVYYWFt
Z3pyZEJFRHQKQMhVejhVZE1sUUVONVNEVWtHN1JIzTkV1MWI1dm1@cH1YVGdObOtB
ZWVQWKU5RK5NME51SmJVbVVacWsyejhTNgpDUVRjOUtSU@piR203bGUrViptYnBy
NzJGcG9GbmZhbXdHUDIVODIXOTQ2TWVROXFiRGVWSXNFSURLITX1UeEdOClexZWdr
eFVodVdSdTVGbmZkd2ZYT1Z1aEhiMD1wdz@9Ci@tLSOtRUSEIENFUIRIRK1DQVRF
LSOtLSOK

OEBPS/image/B14870_18_22.jpg
NAME
master-australia-southeastl-a-q2pw
master-australia-southeastl-b-4j11
master-australia-southeastl-c-0ndl
nodes-6htd

nodes-71x0

nodes-wjth

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES
master
master
master
node
node
node

AGE
2m54s
18m
18m
18m
18m
18m

VERSION
v1.15.10
v1l.15.7
v1.15.7
vl.15.7
v1l.15.7
v1l.15.7

OEBPS/image/B14870_04_53.jpg
Filesystem size used Avail use% mounted on

overlay 176 2.6G 156 13% /

tmpts 6aM 0 6aM 0% /dev

tmpfs 976M @ 97eM X /sys/fs/cgroup
/dev/sda1 176 2.6 156 13% /etc/hosts

shm 64M 0 __6am % /dev/shm

970M 1% /i ./ kube
tmpfs 970M © 970M 0% /proc/acp:
tmpfs 970M © 97eM ©% /proc/scsi
tmpfs 970M 0 976M 0% /sys/firmware

OEBPS/image/B14870_02_01.jpg
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent LeFt Speed

100 610 2 610]] 997 : - 9%
100 46.3M 100 46.3M [0 5135k - 5730k

OEBPS/image/B14870_15_13.jpg
& > C ® localhost:3000/datasources/edit

-+ Create
[T] 8% Dashboard
as

5 Folder

#8 Import

QB PO

OEBPS/image/B14870_17_08.jpg
Name: minikube

Roles: master

Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=l1inux
kubernetes.io/arch=amd64
kubernetes.io/hostname=minikube
kubernetes.io/os=l1inux
node-role.kubernetes.io/master=

OEBPS/image/B14870_19_04.jpg
[$kubectl create —-f pod-normaliser-crd.yaml —n crddemo
customresourcedefinition.apiextensions.k8s.io/podlifecycleconfigs.controllers.kube.book.au created

OEBPS/image/B14870_15_04.jpg
000 i terraform — -zsh — 121x62
[zarnold@zachs-mbp terraform % helm install --generate-name stable/prometheus
NAME: prometheus-1576397083

LAST DEPLOYED: Sun Dec 15 00:04:46 2019

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

The Prometheus server can be accessed via port 80 on the following DNS name from within your cluster:
prometheus-1576397083-server.default.svc.cluster.local

Get the Prometheus server URL by running these commands in the same shell:

export POD_NAME=$(kubectl get pods --namespace default -1 "app=prometheus,component=server" -o jsonpath="{.items[@].met
adata.name}")

kubectl ——namespace default port—forward $POD_NAME 9090

The Prometheus alertmanager can be accessed via port 80 on the following DNS name from within your cluster:
prometheus-1576397083-alertmanager.default.svc.cluster.local

Get the Alertmanager URL by running these commands in the same shell:

export POD_NAME=$(kubectl get pods --namespace default -1 "app=prometheus,component=alertmanager" -o jsonpath="{.items[
0].metadata.name}")

kubectl --namespace default port-forward $POD_NAME 9093

#HtHHE WARNING: Pod Security Policy has been moved to a global property. #####

#HBHEH use .Values.podSecurityPolicy.enabled with pod-based HHHHE
H#HHHE annotations #itHH#
H#itHHH (e.g. .Values.nodeExporter.podSecurityPolicy.annotations) #####

The Prometheus PushGateway can be accessed via port 9091 on the following DNS name from within your cluster:
prometheus-1576397083-pushgateway.default.svc.cluster.local

Get the PushGateway URL by running these commands in the same shell:

export POD_NAME=$(kubectl get pods --namespace default -1 "app=prometheus,component=pushgateway" -o jsonpath="{.items[@
].metadata.name}")

kubectl --namespace default port-forward $POD_NAME 9091

For more information on running Prometheus, visit:
https://prometheus.io/
zarnold@zachs-mbp terraform % [i

OEBPS/image/B14870_18_30.jpg
10315 03:25:03.482733 5169 rollingupdate.go:184] Rolling update completed for cluster "myfirstcluster.k8s.local"!

OEBPS/image/B14870_08_17.jpg
External Traffic

Kubernetes Cluster

Service

Service

Il

[Fndl[Pod]

OEBPS/image/B14870_11_13.jpg
Kubernetes Dashboa

@ Kubeconfig

Please select the kubeconfig file that you have created to configure access to the cluster. To find out more about
how to configure and use kubeconfig file, please refer to the Configure Access to Multiple Clusters section.

o Token

Every Service Account has a Secret with valid Bearer Token that can be used to log in to Dashboard. To find out
more about how to configure and use Bearer Tokens, please refer to the Authentication section.

Choose kubeconfig file

OEBPS/image/B14870_17_20.jpg
NAME READY STATUS RESTARTS AGE
pod-with-node-toleration-noexecute 1/1 Running @ 32s

OEBPS/image/B14870_0_05.jpg
& Computer Management
Fie Action View Help
e amEE=xPERED
& Comput (Loca] [Volume [Layout [Type [File System [Status [Capacity | Free Space [% [Actions
= () Simple Basic NTFS Healthy (Boot, Page Fil, Crash Dump, Primary Parttion) 167.05GB 1155268 69 | puo -
= (Disk 1 partiion 1) Simple Basic Heslthy (Recovery Patition) siomg simp 1o [ekManegement
= (Disk1 pariton2) Simple Basic Heslthy (EF System Partition) 00ME 100Mg 10| MoreAcions ,
= NewVolume (D:) Simple Basic NTFS Healthy (Primary Partition) 9315168 90623GB 97
< >
—Disko
Basic
9315168
Oniine Open
Explore
Fro Mark Parition a= Active
Basic Change Drive Letter and Pths...
1676768 s29M8 100MB R
Online Healthy (Recovery Partitic || Healthy (EFI Syste || Healthy (Boot, Page File, Crash Dump, Primary Partit
Extend Volume.

‘Add Miror.
Delete Volume...

Properties
Help

OEBPS/image/B14870_17_16.jpg
Node with taint Node with NO taint
app=babking:Noschedule

OEBPS/image/B14870_11_09.jpg
namespace: a3ViZS1zeXNOZwe=

token: ZX1KaGJHY21PaUpTVXpJIMU5pSXNIbXRWWKNINk1pSjkuZX1KcGMzTW1PaUpyZFdKbGNtNWx
kR1Z6TDNObGNUWNBZM1ZoWTJOdmRXNTBJaXdpYTNWaVpYSnVaWFJsY3k1cGI50XpaWEoyYVdObF1XTmp
iM1Z1ZEM5dV1XMWxjMOJIoWTIVaU9pSnIkVOpsTFhONWMzUmxiU@1zSW1OMV1tVnlibVYwW1hNdWFXOHZ
jM1Z5ZG1salpXRmpZMjkxYm5RdmMyVmpjbVYwTGO1aGIXVW1PaUpoWkcxcGIpMTFjM1Z5TFhSAmEyVnV
MWF0@TORSbk1lpd21hM1ZpW1lhKdVpYUmxjeTVwYnk5elpYSjIhV@5sWVdOamIzVnVkQz16W1hKMmFXTmx
MVOZqWTI5MWIuUXVibUZOWININK1tRmtiV2x1TFhWelpYSWIMQOpYZFdKbGNtNWxkR1Z6TG1sdkwzTmx
jblpwWTJIWaFkyTnZkVzUwTDNObGNUWNBZM1VOWVdOamIzVnVkQzUxYVdRaU9pSm1PVFEXTKRNMKk5TMH1
OROprTFRSak5ETXRZakpsT1Mxa@5tUTVNV1IpTIRNMk1UVWIMQOp6ZFdJIaU9pSnplWE4wW1cwNmMyVnl
kbWxqwWldGalkyOTFiblE2YTNWaVpTMXplWE4wW1cwN11XUnRhVZROZFhObGNpS]kuQOhvNmRHY@V6MM8
5d1BONXdreFVKSThiZT1MQUJIRX2JOMCO2RnU4dkNpaXRDX19VZ2RDZjdQdEXDWNd5M1IHTLhkNFFKWWL
tUGPTSXZjQ3pKblhwVWVtc1lg2cEYOWINSU2VPc2xaUkYyMWQy cXdPVTdmSGtmX@IMbmxzbVhVcFFuN1B
pdFMWZFpGRXFWVE11UUhENGN6eE5GaUYWZ2ZTZTRPWEYzZVKNVMTcxd31pNW16QWVLcO1GNzBkSHkwdFJ
kNS1wTj1NejNCcn1lDMFJISalFLNnVaeTFZbGczZkpQNjUzZ1F2e1110GdpbE9VeFZreGdLTDFMSEpxNzk
1Y3kxc1BPcHpNNFdua2NyNm50d21vSnR5eV1zcVVhVzdmNzZLVU5yVDg5dC1FVU9VNjBuSGlzcGxYW1l
JOXVPVUNaWjVNR19UdEcxLTIEb2ZaVWNkZGhEdkxn
kind: Secret
metadata:

annotations:

kubernetes.io/service-account.name: admin-user
kubernetes.io/service-account.uid: b9454365-24bd-4c43-b2e9-d6d91db93615

creationTimestamp: "2020-05-03T00:11:22Z"

name: admin-user—token-vx84g

namespace: kube-system

resourceVersion: "174327"

selflLink: /api/vl/namespaces/kube-system/secrets/admin-user-token-vx84g

uid: d8b89a20-e3a9-4147-a9f1-c14d5f397dd3
type: kubernetes.io/service-account-—token

OEBPS/image/B14870_09_12.jpg
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pv-hostpath 500Mi RWO Retain Available local-pv 113s

OEBPS/image/B14870_05_12.jpg
Name : liveness-probe

Namespace: default
Priority:)

PriorityClassName: <none>

Node: minikube/10.0.2.15

Start Time: Thu, 04 Jul 2019 19:18:02 +0200
Labels: <none>

Annotations: <none>

Status: Running

1P 172.17.0.8

Containers:

ubuntu-container:
Container ID: docker://48c9d901474a25835f00fbSa9e2e2ed38823F12ba24691b7b3383b0d3921016a

Inmage: ubuntu
Inage ID: docker-pullable://ubuntuesha256:9b1702dcfe32c873a770a32c fd306dd7 fc1c4fd134adfb783db68def c8894b3c
Port: <none>
Host Port: <none>
Command:

/bin/bash
-ec
touch /tmp/ready; sleep 30; rm /tmp/ready; sleep 600
State: Running
Started: Thu, 04 Jul 2019 19:18:05 +0200
[True
Restart Count: ©
Liveness: exec [cat /tmp/ready] delay=Ss timeout=1s period=Ss #success=1 #failure=3
Environment: <none>
Mounts :
/var/run/secrets/kubernetes.io/serviceaccount from default-token-7rmnp (ro)

Conditions:

Type Status

Initialized True

Ready True

ContainersReady — True

PodScheduled True

Volumes :

defaul t-token-7rmnp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false

QoS Class: BestEffort

Node-Selectors: <none>

Tolerations: node. kubernetes . io/not-ready:NoExecute for 300s

node. kubernetes . io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message

Normal ~ Scheduled 35s default-scheduler Successfully assigned default/liveness-probe to minikube

Normal ~Pulling 34s kubelet, minikube Pulling image "ubuntu"

Normal ~Pulled 325 kubelet, minikube Successfully pulled image "ubuntu”

Normal ~Created 32s kubelet, minikube Created container ubuntu-container

Normal _ Started 32s _kubelet, minikube Started container ubuntu-container

Warning Unhealthy Os kubelet, minikube Liveness probe failed: cat: /tmp/ready: No such file or directory

OEBPS/image/B14870_06_16.jpg
NAME ' READY ~ STATUS RESTARTS AGE LABELS
frontend-production 1/1 Running @ 7m39s | environment=production,role=frontend|

OEBPS/image/B14870_14_11.jpg
Chart.yaml

charts

templates
_helpers.tpl
deployment.yaml
redis-deployment.yaml
redis-service.yaml
service.yaml

values.yaml

2 directories, 7 files

OEBPS/image/B14870_03_11.jpg
NAME

READINESS GATES
aci-helloworld-8875447cd-1hc67j
<none>
melonvote-front-56687f5fdd-5rksw
<none>
redis-back-559c848b4c-s94x9
<none>

READY
1/1
1/1

1/1

STATUS
Running
Running

Running

RESTARTS

]

2]

AGE

28d

7déh

7d6h

IpP

10.241.0.5

10.240.0.6

10.240.0.28

NODE

virtual-node-aci-linux
aks-nodepooll-29936823-0

aks-nodepool1-29936823-0

NOMINATED NODE

<none>

<none>

<none>

OEBPS/image/B14870_15_32.jpg
[N X] B eks_terraform_demo — -zsh — 97x26
-zsh ... -zsh ... aws.com/get-number ...raform_demo — -zsh | +

zarnold@zachs—-mbp eks_terraform_demo % aws autoscaling describe-auto-scaling-groups -—auto-scalin
g-group-name terraform-eks-demo --region us—east-1 | jq '.AutoScalingGroups[@].Instances | length

2
zarnold@zachs-mbp eks_terraform_demo % I

OEBPS/image/B14870_04_28.jpg
NAME SHORTNAMES ~ APIGROUP ~ NAMESPACED KIND

controllerrevisions apps true ControllerRevision
daemonsets ds apps true DaemonSet
deployments deploy apps true Deployment
replicasets rs apps true ReplicaSet

statefulsets sts apps true StatefulSet

OEBPS/image/B14870_08_02.jpg
NAME READY STATUS RESTARTS AGE
nginx-deployment-588765684f-4dzvv 1/1 Running @ 113s
nginx-deployment-588765684f-n81tl 1/1 Running @ 113s
nginx-deployment-588765684f-gxcqgh 1/1 Running @ 113s

OEBPS/image/B14870_16_06.jpg
Generating a 2048 bit RSA private key

OEBPS/image/B14870_04_40.jpg
"king
“apiVersion”:

“groups™: [

ame”: “apiregistration.ks

rsions™: [

upVersion™: “apiregistration.k8s.io/vl",

stration.k8s. io

betal”,

"preferredversion”

groupVersion®

"name": “extensions”,

ersions®

OEBPS/image/B14870_04_32.jpg
NAME SHORTNAMES ~ APTGROUP NAMESPACED ~ KIND
ingresses ing networking.k8s.io true Ingress
networkpolicies netpol networking.k8s.io true NetworkPolicy

OEBPS/image/B14870_14_10.jpg
NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION
chart-1589678730 default a, 2020-05-16 21:25:31.6979
29 -0400 EDT deployed chart-dev-0.1.0 1.16.0

OEBPS/image/B14870_01_16.jpg
REPOSITORY
weicdl/k8s-for-beginners

k8s-for-beginners

alpine

MB
hello-world
kB

TAG
v0.0.1

v0.0.1

latest

3.10

latest

IMAGE_ID

59261c473efe

59261c473efe

540a289bab6c
965ea09f f2eb

fce289e99eb9

CREATED
15 minutes ago

15 minutes ago
3 weeks ago
3 weeks ago

10 months ago

SIZE
11.4

11.4

126M

OEBPS/image/B14870_05_14.jpg
Name : liveness-probe-never-restart

Namespace : default
Priorit 0

PriorityClassName: <none>

Node: minikube/10.0.2.15

Start Time: Thu, 04 Jul 2019 19:26:59 +0200
Labels: <none>

Annotations: <none>

Status: Running

°: 172.17.0.8

Containers:

ubuntu-container:
Container 10: docker://8613aal1bc7fa87e03256¢7a929ab8c6f35c165696372b0d7d25619ab2d7e14b

Inage: ubuntu
Inage 10: docker-pullable: //ubuntusha256:9b1702dc fe32c873a770a32c fd306dd7 fc1cfd134adfb783db68de fc8894b3c
Port: <none>
Host Port: <none>
Conmand:
/bin/bash
-ec
touch /tmp/ready; sleep 30; rm /tmp/ready; sleep 600
State: Running
Started: Thu, 04 Jul 2019 19:27:02 +0200
Ready: True
Restart Count: @
Liveness: exec [cat /tmp/ready] delay=5s timeoutsls period=Ss #success=1 #failures3
Environment: <none>
Mounts:
/var/run/secrets/kubernetes. io/serviceaccount from default-token-7rmnp (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady ~ True
PodScheduled True
Volumes:
default-token-7rmnp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false
Qs Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 3005
node. kubernetes. io/unreachable:NoExecute for 3005
Events:
Type Reason From Message
Normal ~ Scheduled 475 default-scheduler Successfully assigned default/liveness-probe-never-restart to minikube
Normal ~ Pulling 465 kubelet, minikube Pulling image "ubuntu”
Normal =~ Pulled 44s kubelet, minikube Successfully pulled image “ubuntu”
Normal ~Created 44s kubelet, minikube Created container ubuntu-container
Normal _Started 44s kubelet, minikube Started container ubuntu-container

Warning Unhealthy 2s (x3 over 12s) kubelet, minikube Liveness probe failed: cat: /tmp/ready: No such file or directory
Normal Killing 2s kubelet, minikube Stopping container ubuntu-container

OEBPS/image/B14870_06_14.jpg
NAME READY STATUS RESTARTS AGE LABELS

backend-production 1/1 Running @ 7m39s |environment=production,role=backend

OEBPS/image/B14870_10_12.jpg
private-key

b3B1lbnNzaClrZXktdjEAAAAABGS5vbmUAAAAEbM9UZQAAAAAAAAABAAACFWAAAAdzc2gtcn
NhAAAAAWEAAQAAAQEAUYK4s7tLoRtEZdIr106FWA8gW7N9IMCFfPsVh7M8s7J2iYA/HhS8
WQS+RzhliTlaYfTdbjwaVJIZhhgEVN6PCgAWZGCRCiw+UBKWe@uGm4whDIDhdnXF3y20/BS
bhb+iIBL1Kj7Z4+1wdQRT28AsytY9iNZPA22ApWxeAsHi/qffIUp+hhITJ9ije@IUQeQLC
8qwvEHXx89CP1+rVSPO2DrCd1RmbbGRsd2uPeWfE9aKKkxFwoR7XXK24vmkTyL+2elUODdH
i3pJIXMpolhFcYhFr/4vml4m6gRyRWwhnMieYzHX70xmGTu/taéTjQLIxtSzDvIj+/dEKIt
iPGkLhSoon3rnGa20x1tTBci/m86JIhGpob3/6HO3Uuh0Zv8+XNO7eMj7ev8Mat/7s0SS62
K4+22hZovk9i9zuMfDmJAqJqoR1IM155V3EPYM/ouHNBOTjxkODZ1bApLxz1KicpeKIBMUF
DAmxBKHYjFgam@2Mxci9EIvCNymfjFQFNPkUSFj+mFCwTt1RLD/+hP4WeSiHIJRHIyibUfa
sD2cN8mN3CEL1TV/ONez431QKaWPJFa6tM1lngcrcgDA3jYYI8HZYNUIJCYEc7rBkNAe4NZm
GCKfTONRQAUhApxMoQmc9gtkFhLNO/AbrKMfZfR3gCm1AKN/zo9uCpxxL/VCI9MUam43S9c
CAAAdITMfpVUzH6VUAAAAHC3NOLXJzYQAAAQEAUYK4s7tLoRtEZdIr106FWA8qW7N9rMCF
fPsVh7M8s7J2iYA/HhS8WQS+Rzh1iTlaYfTdbjwaVJIZhhgEVN6PCqAWZGCRCiw+UBKWeO@u
Gm4whDIDhdnXF3y20/BSbhb+iIBL1Kj7Z4+1wdQRT28AsytY9iNZPA22ApWxeAsHi/qffI
Up+hhITJ91je@IUQeQLC8gwVEHX89CP1+rVSPO2DrCd1RmbbGRsd2uPeWfE9aKKkxFwoR7

OEBPS/image/B14870_05_08.jpg
Name : huge-resource-requirements-pod

Namespace: default
Priority:]
PriorityClassName: <none>
Node: <none>
Labels: <none>
Annotations: <none>
Status: Pending
IP:
Containers:
container-with-huge-resource-requirements:
Image: nginx
Port: <none>
Host Port: <none>
Limits:
cpu: 1k
memory: 128G
Requests:
cpu: 500
memory : 64G
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-7rmnp (ro)
Conditions:

Type Status
PodScheduled False
Volumes:
default-token-7rmnp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: node. kubernetes.io/not-ready:NoExecute for 300s
node. kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message

Warning FailedScheduling 67s (x4 over 2ml18s) default-scheduler @/1 nodes are available:
Insufficient cpu, 1 Insufficient memory.

=3

OEBPS/image/B14870_06_08.jpg
Name: pod-with-some-labels

Namespace: default
Priority: 0
Node: minikube/10.0.2.15
Start Time: Mon, 14 Oct 2019 23:25:57 +0200
Labels: app=nginx-application |
Annotations: <none>
Status: Running
Ip: 172.17.0.6
IPs:
IP: 172.17.0.6
Containers:

first-container:
Container ID: docker://3f7a0b43019698205fbd7e549093358e978ef890ad0d4edefb@7c9bf7c85681bf

Image: nginx

Image ID: docker-pullable://nginx@sha256:aeded@f2a861747f43a01cf1018cf9efe2bdd@2afd57d2bl1fcc7f
cadcl6cedl

Port: <none>

Host Port: <none>

State: Running

Started: Mon, 14 Oct 2019 23:26:00 +0200

Ready: True

Restart Count: 0

Environment: <none>

Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)
Conditions:

Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-wéxvp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-w6xvp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message

Normal Scheduled <unknown> default-scheduler Successfully assigned default/pod-with-some-labels to
minikube

Normal Pulling 9ml6s kubelet, minikube Pulling image "nginx"
Normal Pulled 9m13s kubelet, minikube Successfully pulled image "nginx"
Normal Created 9m13s kubelet, minikube Created container first-container

Normal Started 9m13s kubelet, minikube Started container first-container

OEBPS/image/B14870_18_17.jpg
I0315 01:03:16.106957 3832 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "master-australia-sou
theastl-a"; not updating image

10315 01:03:16.107009 3832 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "master-australia-sou

theastl-b"; not updating image

I0315 01:03:16.107026 3832 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "master-australia-sou

theastl-c"; not updating image

I0315 01:03:16.107047 3832 upgrade_cluster.go:216] Custom image (cos-cloud/cos
-stable-65-10323-99-0) has been provided for Instance Group "nodes"; not updating
image

ITEM PROPERTY OLD NEW

Cluster KubernetesVersion 1.15.7 1.15.10

Must specify --yes to perform upgrade

OEBPS/image/B14870_01_22.jpg
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

33003ddffdf4 hweicdl/k8s-for-beginners:v@.0.1 "/k8s-for-beginners” 18 seconds ago

Up 17 seconds heuristic_pike

OEBPS/image/B14870_08_04.jpg
Name: nginx-service-nodeport
Namespace: default

Labels: <none>

Annotations: <none>

Selector: app=nginx,environment=production
Type: NodePort

IP: 10.97.8.85

[Port: <unset> 80/TCP|

TargetPort: 80/TCP|

INodePort: <unset> 32023/TCP|

[Endpoints: 172.17.0.3:80,172.17.0.4:80,172.17.0.5:80|

Session Affinity:
External Traffic Policy:

Events:

None
Cluster
<none>

OEBPS/image/B14870_09_04.jpg
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libgpm2 libncurses6 libprocps7 psmisc
Suggested packages:
gpm
The following NEW packages will be installed:
libgpm2 libncurses6 libprocps? procps psmisc
@ upgraded, 5 newly installed, @ to remove and @ not upgraded.
Need to get 584 kB of archives.
After this operation, 1931 kB of additional disk space will be used.
Do you want to continue? [Y/n]
Get:1 http://deb.debian.org/debian buster/main amd64 libncurses6 amd64 6.1+20181013-2+debl@u2 [10
2 kB]

OEBPS/image/B14870_02_18.jpg
NAME READY STATUS RESTARTS AGE
k8s-for-beginners-66644bb776-7j9mw 1/1 Running @ 18m
k8s-for-beginners-66644bb776-dzf9j 1/1 Running @ 18m

OEBPS/image/B14870_12_09.jpg
'

: Kubernetes Cluster '

' '

'

| |

| = |

'

| |

'

Internet to a ! Coriicads |

api.example.io 1 :
'

b ' '

Al :

requests | :

Ic- T '

\/ i :

' '

Kubernetes il N !

Ingress Load ! Ingress ServiceB |

Balancer ' '

' '

'

| |

'

i o |

' '

'

| |

: Service C :

OEBPS/image/B14870_02_30.jpg
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor
visitor

OEBPS/image/B14870_15_12.jpg
w o m O &

3= Settings 88 Dashboards

Name © Prometheus Default @)
HTTP

URL © http:/prometheus-1576397083-server.d...

Whitelisted Cookies €

Auth
Basic auth With Credentials e (D
TLS Client Auth 7 With CA Cert e (D
Skip TLS Verify)

Forward OAuth Identity @

Scrape interval o

Query timeout ® 60s

HTTP Method (i} v
Misc

Custom query parameters @ Example

OEBPS/image/B14870_04_12.jpg
HTTP Verbs Usage Example URL path

POST Creates new resources, such |/api/vl/namespaces/
as a new pod {namespace}/pods

PUT Replaces or updates an /apis/apps/v1/
existing resource; for namespaces/{namespace}/
example, replaces the status | deployments/{name}/
of the specified Deployment | status

GET Retrieves the details of /api/v1/namespaces/
a resource; for example, {namespace}/services/
reading a specified Service | {name}

PATCH Partially updates existing /api/vl/namespaces/
resources; for example, {namespace}/pods/{name}
updating the image for a
pod

DELETE Deletes resources, such as | /api/vl/namespaces/

deleting a pod

{namespace}/pods/{name}

OEBPS/image/B14870_04_55.jpg
curl: (6@) SSL certificate problem: unable to get local
issuer certificate
More details here: https://curl.haxx.se/docs/sslcerts.ht

ml

curl failed to verify the legitimacy of the server and t
herefore could not

establish a secure connection to it. To learn more about
this situation and

how to fix it, please visit the web page mentioned above

OEBPS/image/B14870_18_02.jpg
Repeat until all the master
nodes are updated

Repeat until all the worker
nodes are updated

Read Release
Notes of the target
version

—

Backup ETCD

—>

(Optionally)
Take snapshots of
Nodes

|

Upgrade etcd if
needed by the
Kubernetes cluster

Upgrade Master
nodes, one each

Verify after each
master upgrade
that cluster is
health

—>

Upgrade ¢ groupd
of worker nodes at
atime

]

Verify that the
applications are
running on the
updated group of
nodes

OEBPS/image/B14870_19_10.jpg
$kubectl create -f pod-normaliser-adv.yaml -n crddemo
podlifecycleconfigadv.controllers.kube.book.au/demo-pod-lifecycle-adv created
+

OEBPS/image/B14870_04_49.jpg
apiVersion: vl
clusters:
- cluster:
certificate-authority: /Users/mohammed/.minikube/ca.crt
server: https://192.168.99.110:8443
name: minikube
contexts:
- context:
cluster: minikube
user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
user:
client-certificate: /Users/mohammed/.minikube/client.crt
client-key: /Users/mohammed/.minikube/client.key

OEBPS/image/B14870_04_06.jpg
abutaleb@abuTalebPC:~$ kubectl auth can-i delete pods
yes
abutaleb@AbuTalebPC:~$ kubectl auth can-i get pods

yes
abutaleb@abuTalebPC:~$ kubectl auth can-i get pods --all-namespaces
yes

OEBPS/image/B14870_07_02.jpg
Name: nginx-replicaset-b8fwt

Namespace: default
Priority: 0
Node: minikube/10.0.2.15
Start Time: Sat, @9 Nov 2019 15:18:24 +0100
Labels: environment=production |
Annotations: <none>
Status: Running
IP: 172.17.0.4
IPs:
IP3 172.17.0.4
Controlled By: ReplicuSet/nginx—replicaset|
Containers:

nginx-container:
Container ID: docker://6c7ea@fd9afe4c48023b6afedfcc7ffeb394ab3bee6836aefea5849874d978d4

Image: nginx
Image ID: docker-pullable://nginx@sha256:922c815aa4df050d4df476e92daed4231f466acc8ee90e@e?7495
1b0fd7195a4
Port: <none>
Host Port: <none>
State: Running
Started: Sat, @9 Nov 2019 15:18:28 +0100

Ready: True

OEBPS/image/B14870_02_24.jpg
error: unable to recognize "k8s-for-beginners-deploy2.yaml": Get https://192.168.99.100:84
43/api?timeout=32s: dial tcp 192.168.99.100:8443: connect: connection refused

OEBPS/image/B14870_15_06.jpg
€ 5 C O localhost3000/ogin o Y m LIV N Beo O:

Grafana - e

OEBPS/image/B14870_02_02.jpg
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 44.5M 100 44.5M [} 0 7232k QO 0:00:00 0:00:00 - 8551k

OEBPS/image/B14870_03_10.jpg
NAME
aci-helloworld-8875447cd-1hc6j
melonvote-front-56687f5fdd-5rksw
redis-back-559c848b4c-s94x9

READY
iyl
1/1
1/1

STATUS

Running
Running
Running

RESTARTS
0
]
o

AGE
28d
7d6h
7d6h

LABELS

app=aci-helloworld, pod-template-hash=8875447cd
app=melonvote-front, pod-template-hash=56687f5fdd
app=redis-back,pod-template-hash=559c848b4c

OEBPS/image/B14870_07_01.jpg
Name: nginx-replicaset
Namespace: default

Selector: environment=production
Labels: app=nginx |

Annotations: <none>

Replicas:

2 current / 2 desired|

[Pods Status:

2 Running / @ Waiting / @ Succeeded / @ Failed

Pod Template:

Labels: environment=production
Containers:
nginx-container:
Image: nginx
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>
Events:
Type Reason Age From Message
Normal SuccessfulCreate 7ml7s replicaset-controller Created pod: nginx-replicas
et-b8fwt
Normal SuccessfulCreate 7ml7s replicaset-controller Created pod: nginx-replicas
et-k4hor

OEBPS/image/B14870_12_16.jpg
zarnold@zachs—-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
3960d10c980e40T99887ea068f41b7b-1447612395.us—east—1.elb.amazonaws.com/get-numbe

©

{number: 1}Z

zarnold@zachs-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
3960d10c980e40T99887ea068f41b7b-1447612395.us—east—1.elb.amazonaws.com/get-numbe

T3

{number: 1}Z

zarnold@zachs—-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
3960d10c980e40T99887ea068f41b7b-1447612395.us—east—1.elb.amazonaws.com/get-numbe

©

{number: 2}%

zarnold@zachs-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
3960d10c980e40T99887ea068f41b7b-1447612395.us—east—1.elb.amazonaws.com/get-numbe

T3

{number: 2}%

zarnold@zachs—-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
3960d10c980e40T99887ea068f41b7b-1447612395.us—east—1.elb.amazonaws.com/get-numbe

©

{number: 1}Z

zarnold@zachs—-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
3960d10c980e40T99887ea068T41b7b-1447612395.us-east-1.elb.amazonaws.com/get-numbe
T3

{number: 2}%

OEBPS/image/B14870_16_07.jpg
[$openss]l genrsa —out tls.key 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)

sl

OEBPS/image/B14870_11_08.jpg
Name: admin-user

Namespace: kube-system
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:

{"apiVersion":"v1", "kind
nnotations":{}, "name admin-user", "namespace"
Image pull secrets: <none>
Mountable secrets: admin-user-token-vx84g
Tokens: admin-user-token-vx84g
<none>

"ServiceAccount","metadata":{"a
"kube-system"}}

OEBPS/image/B14870_08_18.jpg
It works!

OEBPS/image/B14870_16_13.jpg
NAME READY STATUS RESTARTS AGE
webhook-server-68b8d6b987-fbv95 /1 ContainerCreating] 12s
webhook-server-68b8d6b987-fbv9s 1/1 Running] 15s

~csh

OEBPS/image/B14870_03_04.jpg
Kubernetes master is running at https://192.168.99.100:8443
KubeDNS is running at https://192.168.99.100:8443/api/v1l/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump’.

OEBPS/image/B14870_17_21.jpg
NAME READY STATUS RESTARTS AGE
pod-with-node-toleration-noexecute 0/1 Terminating 0 2m41s

OEBPS/image/B14870_14_04.jpg
deployment.apps "kubernetes-test-ha-application-with-mysql-deployment" deleted
service "kubernetes—test—ha-application-with-mysql" deleted

statefulset.apps "mysql" deleted

service "mysql" deleted

secret "mysql-secret-config" deleted

OEBPS/image/B14870_06_09.jpg
Name: pod-with-some-labels
Namespace: default
Priority: [
Node: minikube/10.0.2.15
Start Time: Mon, 14 Oct 2019 23:25:57 +0200
Annotations: <none>
Status: Running
IP: 172.17.0.6
IPs:
IP:s 97217506
Containers:

first-container:
Container ID:

docker://3f7a0b43019698205fbd7e549093358e978ef890ad04edefbd7c9bf7c85681bf

Image: nginx
Image ID: docker-pullable://nginx@sha256:aeded@f2a861747f43a01cf1018cf9efe2bdd@2afd57d2bl1fcc?
cadcl6cedl
Port: <none>
Host Port: <none>
State: Running
Started: Mon, 14 Oct 2019 23:26:00 +0200
Ready: True
Restart Count: @
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)
Conditions:
Type N
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-wéxvp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-wéxvp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message
Normal Scheduled <unknown> default-scheduler Successfully assigned default/pod-with-some-labels to
minikube
Normal Pulling 9m55s kubelet, minikube Pulling image "nginx"
Normal Pulled 9m52s kubelet, minikube Successfully pulled image "nginx"
Normal Created 9m52s kubelet, minikube Created container first-container
Normal Started 9m52s kubelet, minikube Started container first-container

OEBPS/image/B14870_08_03.jpg
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 54d
[nginx—service—nodeport NodePort 10.97.8.85 <none> 80:32023/TCP 3m21s

OEBPS/image/B14870_17_09.jpg
<unknown> Warning FailedScheduling pod/pod-with-pod-anti-affinity-fe @/1 nodes are a
vailable: 1 node(s) didn't match pod affinity/anti-affinity, 1 node(s) didn't match pod anti
-affinity rules.

OEBPS/image/B14870_15_33.jpg
88 Kubernetes Cluster (Prometheus) -
~ Node

Number Of Nodes.

+ Pods

Nodes Out of Disk

N/A

OEBPS/image/B14870_19_03.jpg
[$kubectl api-versions
admissionregistration.k8s.io/vibetal
apiextensions.k8s.io/vibetal
apiregistration.k8s.io/v1
apiregistration.k8s.io/vlbetal
apps/vi

apps/vilbetal

apps/vilbeta2
authentication.k8s.io/v1
authentication.k8s.io/vlbetal
authorization.k8s.io/v1l
authorization.k8s.io/vlbetal
autoscaling/v1l
autoscaling/v2betal
autoscaling/v2beta2

batch/vl

batch/vlbetal
certificates.k8s.io/vibetal
coordination.k8s.io/v1
coordination.k8s.io/vibetal
events.k8s.io/vlbetal
extensions/vlbetal
networking.k8s.io/v1
networking.k8s.io/vibetal
node.k8s.io/vlbetal
policy/vlbetal
rbac.authorization.k8s.io/vl
rbac.authorization.k8s.io/vlbetal
scheduling.k8s.io/v1l
scheduling.k8s.io/vlbetal
storage.k8s.io/v1
storage.k8s.io/vibetal

vi

OEBPS/image/B14870_04_27.jpg
on: apps/vl

metadata:
annotations:
deployment.kubernetes.io/revision: "1"
creationTimestamp: "2019-11-23713:18:58Z"
generation: 1
labels:
run: mynginx
name: mynginx
namespace: default
resourceVersion: "2127"
selflink: /apis/apps/v1/namespaces/default/deployments/mynginx
uid: ebaec8b8-cadc-48e8-bf62-3b98ala85a29
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 10

OEBPS/image/B14870_10_06.jpg
Name: map-from-folder
Namespace: configmap-test
Labels: <none>
Annotations: <none>

fileone.txt:

file one

filetwo.txt:

file two

Events: <none>

OEBPS/image/B14870_11_14.jpg
Using cluster from kubectl context: myfirstcluster.k8s.local

NAME
master-us-west-2a
master-us-west-2b
master-us-west-2c
nodes

STATUS
Ready
Ready
Ready
Ready

No rolling-update required.

NEEDUPDATE
]

(]
]
]

READY
1

1
1
3

MIN
1

1
1
3

MAX

WP RR

NODES

WP PR

OEBPS/image/B14870_15_27.jpg
00 @ kubernetes-test-ha-application — -zsh — 97x26
...a-application — -zsh

zarnold@zachs-mbp kubernetes-test-ha-application % aws iam create-user --user—name k8s-autoscaler

{
"User": {
EPathitisaRl 77
"UserName "k8s-autoscaler",
"UserId": "AIDAS5YQUHQAP745GNZXAE",
"Arn": "arn:aws:iam::946008981535:user/k8s-autoscaler",
"CreateDate": "2020-04-27T00:51:10+00:00"
}
}

zarnold@zachs-mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_0_04.jpg
The type of the file system is NTFS.
Volume label is New Volume.

Stage 1: Examining basic file system structure ...

768 file

records processed.

File verification completed.
© large file records processed.
© bad file records processed.

Stage 2: Examining file name linkage ...
279 reparse records processed.
864 index entries processed.

Index verification completed.
© unindexed files scanned.
© unindexed files recovered to lost and found.
279 reparse records processed.

Stage 3: Examining security descriptors ...
Security descriptor verification completed.
48 data files processed.

Windous has scanned the file system and found no problems.

No further

action is required.

976759807
26404304
260

°

96531
65536
950258712

4096
244189951
237564678

KB total disk space.
K8 in 464 files.

K8 in 50 indexes.

K8 in bad sectors.

KB in use by the system.

K8 occupied by the log file.
K8 available on disk.

bytes in each allocation unit.
total allocation units on disk.
allocation units available on disk.

OEBPS/image/B14870_04_33.jpg
KIND: Tng;
VERSION: extensions/vibetal

DESCRIPTION:
Tngress is a collection of rules that allow inbound connections to reach
the endpoints defined by a backend. An Ingress can be configured to give
services externally-reachable urls, load balance traffic, terminate ssL,
offer name based virtual hosting etc. DEPRECATED - This group version of
Tngress is deprecated by networking.k8s.io/vibetal Ingress. See the release
notes for more information.

FIELDS:
apiversion <string>
ApIversion defines the versioned schema of this representation of an
object. Servers should convert recognized schemas to the latest internal
value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions

OEBPS/image/B14870_18_23.jpg
ProviderID:

ralia-southeastl-a-g2pw

gce://kube-test-258704/australia-southeastl-a/master-aust

Non-terminated Pods:

Namespace

CPU Requests

CPU Limits

(6 in total)
Name
Memory Requests Memory Limits AGE

kube-system

etcd-manager-events-master-australia-southeastl-a-g2pw

100m (10%) 0 (0%) 100Mi (2%) 0 (0%) 3ml7s

kube-system etcd-manager-main-master-australia-southeastl-a-q2pw
200m (20%) 0 (0%) 100Mi (2%) 0 (0%) 3ml8s

kube-system kube-apiserver-master-australia-southeastl-a-gq2pw
150m (15%) 0 (0%) 0 (0%) 0 (0%) 3m8s

kube-system kube-controller-manager-master—australia-southeastl-a-g2p

W 100m (10%) 0 (0%) 0 (0%) 0 (0%) 3m32s

kube-system kube-proxy-master-australia-southeastl-a-g2pw
100m (10%) 0 (0%) 0 (0%) 0 (0%) 2m55s

kube-system kube-scheduler-master-australia-southeastl-a-q2pw
100m (10%) 0 (0%) 0 (0%) 0 (0%) 3m24s

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)

Resource

Requests Limits

OEBPS/image/B14870_09_11.jpg
O Ol

(¢

~\L'IlI, <

N/

I NN
(@ NE)

(@N
DR

OEBPS/image/B14870_17_15.jpg
NAME

pod-default-priority-deployment-57c965b8cd-2qlvp
pod-default-priority-deployment-57c965b8cd-6f6f2
pod-default-priority-deployment-57c965b8cd-bssnv
pod-default-priority-deployment-57c965b8cd-bx85k
pod-default-priority-deployment-57c965b8cd-dbsds
pod-default-priority-deployment-57c965b8cd-hz7q;j
pod-default-priority-deployment-57c965b8cd-ng22k
pod-default-priority-deployment-57c965b8cd-qcinv
pod-default-priority-deployment-57c965b8cd-tzqsq
pod-default-priority-deployment-57c965b8cd-zjhjd
pod-highest-priority-deployment-6df898d4cs-gcdtr
pod-highest-priority-deployment-6df898d4c-gmh2;j
pod-highest-priority-deployment-6df898d4cd-jmnib
pod-highest-priority-deployment-6df898d4cd-12nsz
Sod-highsst-priority-denlovesirt-6df898dd - wabric

STATUS
Running
Pending
Running
Pending
Running
Pending
Running
Running
Running
Running
Running
Running
Running
Running
Rusning

RESTARTS

SoooSoSSSSSSe S S

AGE

8m23s
8m18s
8m23s
7m37s
8m23s
8m24s
8m20s
13m

7m35s
13m

8m24s
8m24s
8m24s
8m18s
8m24s

OEBPS/image/B14870_06_15.jpg
NAME READY STATUS RESTARTS AGE LABELS
frontend-staging 1/1 Running @ 7m42s Ienvironment:staging,role:Fr‘ontend'

OEBPS/image/B14870_13_02.jpg
Group

User

ServiceAccount

ClusterRoleBinding

8

c.role

ClusterRole

OEBPS/image/B14870_04_58.jpg
{

“kind “PodList",
"apiversion”: "v1",
“metadata”

"selfLink": "/api/vi/namespaces/default/pods”,
“resourceversion”: "56216"

"metadata”: {
“name”: "curlexample-6fddaf7cdf-94zhz",
“generateName”: "curlexample-efddafzcdf-",
“namespace”: "default”,
“selfLink": “/api/v1/namespaces/default/pods/cur

lexample-6fddafzcdf-9a2hz”,
“uid": "3af8basd-c83e-4336-be76-ffefobcbdcds”,
"resourceversion”: "55857",
“creationTimestamp”: “2019-11-27T23:04:267"
"labels™: {
“pod-template-hash": "6fddaf7cdf",

OEBPS/image/B14870_18_01.jpg
L kubernetes / kubernetes @ Watch~ = 3.k Hstar 598k YFork 21k

<>Code (D lIssues 2,273 1 Pull requests 1,099 © Actions Il Projects 9 @) Security il Insights
Pulse
Contributors

200
o

Commits N
1111 1202 12/23 0113 02/03 02/24 0317 04/07 04/28 0519 06/09 06/30 07/21 0811 09/01 09/22 1013 11/03

Code frequency
Dependency graph
Network

Forks

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

OEBPS/image/B14870_02_07.jpg
e kubelet.service - kubelet: The Kubernetes Node Agent
Loaded: loaded (/usr/lib/systemd/system/kubelet.service; disabled; vendor preset: enabl
ed)
Drop-In: /etc/systemd/system/kubelet.service.d
L-10-kubeadm. conf
Active: active (running) since Wed 2019-11-27 01:04:43 UTC; 1 day 4h ago
Docs: http://kubernetes.io/docs/
Main PID: 3298 (kubelet)
Tasks: 19 (limit: 2161)
Memory: 39.3M
CGroup: /system.slice/kubelet.service
L3298 /var/lib/minikube/binaries/v1.16.2/kubelet --authorization-mode=Webhook..

OEBPS/image/B14870_06_07.jpg
Name: pod-with-some-labels

Namespace: default
Priority: [
Node: minikube/10.0.2.15
Start Time: Mon, 14 Oct 2019 23:25:57 +0200
Labels: app=nginx
Annotations: <none>
Status: Running
IP: 17217906
IPs:
Pz 1722.17.9.6
Containers:

first-container:
Container ID:
Image:
Image ID:

cl6ccdl
Port:
Host Port:
State:
Started:

Ready:
Restart Count:
Environment:
Mounts:

docker://3f7a0b43019698205fbd7e549093358e978ef890ad04edefbd7c9bf7c85681bf

nginx

docker-pullable://nginx@sha256:aeded0f2a861747f43a01cf1018cf9efe2bdd@2afd57d2bl1fcc7fcad

<none>
<none>
Running

Mon, 14 Oct 2019 23:26:00 +0200

True
[
<none>

/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)

Conditions:
Type
Initialized
Ready
ContainersReady
PodScheduled
Volumes:

Status
True
True
True
True

default-token-wéxvp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-wéxvp

Optional: fal
QoS Class: Bes

se
tEffort

Node-Selectors: <none>
Tolerations: node. kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s

Events:
Type Reason
Normal Scheduled
ikube
Normal Pulling
Normal Pulled
Normal Created
Normal Started

Age

<unknown>

5m55s
5m52s
5m52s
5m52s

From

default-scheduler

kubelet, minikube
kubelet, minikube
kubelet, minikube
kubelet, minikube

Message

Successfully assigned default/pod-with-some-labels to min|

Pulling image "nginx"

Successfully pulled image "nginx"
Created container first-container
Started container first-container

OEBPS/image/B14870_14_01.jpg
MySQL Pod
PersistentVolume

Kubernetes Cluster

PersistentVolumeClaim

StorageClass

mysql StatefulSet

OEBPS/image/B14870_02_23.jpg
$ docker stop $(docker ps | grep kube-scheduler | grep -v pause | awk '{print $1}')
11d8a27e3eed

$ docker stop $(docker ps | grep kube-controller-manager | grep -v pause | awk '{print $1}
R

35facb@13c8f

$ docker stop $(docker ps | grep kube-apiserver | grep -v pause | awk '{print $1}')
9e1cf0@98b67¢c

OEBPS/image/B14870_11_03.jpg
aws iam attach-group-policy --policy-arn arn:aws:ial
-—-group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonRoute53FullAc
cess —-group-name kops

aws iam attach-group-policy —-policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess
-—group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/IAMFullAccess —--gro
up-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/AmazonVPCFullAccess
—--group-name kops

:aws:policy/AmazonEC2FullAccess

aws iam create-user —-user-name kops
aws iam add-user-to-group --user—name kops —--group-name kops

[aws iam create-access—key —-user-name kops

{
{
wpath": "
"GroupName "kops",
"GroupId AGPA5YQUHQAPQUSWCU2CR" ,
"Arn": "arn:aws:iam::946008981535:group/kops",
"CreateDate": "2020-01-25T12:52:43Z"
}
}
i
"UserName kops",
"UserI "AIDASYQUHQAPSUUYXUSU3",
"Arn": "arn:aws:iam::946008981535:user/kops",
"CreateDate 2020-01-25T12:52:51Z"
}
}
{
"AccessKey": {
"UserName": "kops",
"AccessKeyId": "AKIAGYQURQAPSGNUTNNE,

"Status": "Active",
"SecretAccessKey": ["7kqI9Z9RNLOr9k1QDt1VXtKd3ZWSJIEiGeugJOOpB"),
"CreateDate": "2020-01-25T12:52:54Z"

OEBPS/image/B14870_09_13.jpg
NAME
pvc-local

NS
Bound

VOLUME
pv-hostpath

CAPACITY
500Mi

ACCESS MODES
RWO

STORAGECLASS
local-pv

AGE
103s

OEBPS/image/B14870_05_05.jpg
127.0.0.1 - - [04/]ul/2019:15:37:48 +0000] "GET / HTTP/1.1" 200 612 "-" "Mozilla/5.0 (Macintosh; Inte
1 Mac 0S X 10_14_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36" "-"

OEBPS/image/B14870_09_05.jpg
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

Iroot 1 0.0 0.2 10632 5020 ? Ss 15:45 0:00 nginx: master process nginx -g d|
nginx 6 0.0 0.1 11088 2560 ? S 15:45 0:00 nginx: worker process

root 7 0.0 0.1 3988 3216 pts/0 Ss 15:46 0:00 /bin/bash

root 338 0.0 0.1 7640 2684 pts/0 R+ 15:55 0:00 ps aux

OEBPS/image/B14870_15_26.jpg
00 8 kubernetes-test-ha-application — -zsh — 97x26
...a-application — -zsh " i

[zarnold@zachs—-mbp kubernetes-test-ha-application % aws iam create-policy --policy-name k8s-autosc
aling-policy —-policy-document file://permissions.json

{
"policy": {
"PolicyName": "k8s—autoscaling-policy",
"PolicyId": "ANPA5YQUHQAP6KQLQJL2B",
"arn:aws:iam::946008981535:policy/k8s-autoscaling-policy"),
VA
"DefaultVersionId": "vi1",
"AttachmentCount": @,
"PermissionsBoundaryUsageCount": @,
"IsAttachable": true,
"CreateDate": "2020-04-27T00:45:46+00:00",
"UpdateDate": "2020-04-27T00:45:46+00:00"
}
I

zarnold@zachs—mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_05_13.jpg
Name: liveness-probe

Namespace: default
Priorit;)

PriorityClassName: <none>

Node: minikube/10.0.2.15

Start Time: Thu, 04 Jul 2019 19:18:02 +0200
Labels: <none>

Annotations: <none>

Status: Running

»: 172.17.0.8

Containers:
ubuntu-container:
Container ID: docker://48c9d901474a25835F00fbSade2e2ed38823F12ba24691b7b3383b0d392016a

Inage: ubuntu
Inage I0: docker-pullable://ubuntusha256:9b1702dcfe32c873a770a32¢Fd306dd7c1c4fd134adfb783db68de f8894b3C
Port: <none>
Host Port: <none>
Command:

/bin/bash
-ec
touch /tmp/ready; sleep 30; rm /tmp/ready; sleep 600
state: Running
Started: Thu, 04 Jul 2019 19:18:05 +0200
Ready: True
Restart Count: 0
Liveness exec [cat /tmp/ready] delay=Ss timeout=1s periodsSs #success=1 #failure
Environment: <none>
Mounts:
/var/run/secrets/kubernetes. io/serviceaccount from default-token-7rmnp (ro)

Conditions:

Type Status

Initialized True

Ready True

ContainersReady True

PodScheduled True

Volumes :

default-token-7rmnp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false

QoS Class: BestEffort

Node-Selectors: <none>

Tolerations: node.kubernetes.io/not-ready:NoExecute for 3005

node. kubernetes . io/unreachable:NoExecute for 3005
Events:
Type Reason Age From Message
Normal ~ Scheduled 50s default-scheduler Successfully assigned default/liveness-probe to minikube
Normal Pulling 495 kubelet, minikube Pulling image “"ubuntu”
Normal ~ Pulled 475 kubelet, minikube Successfully pulled image "ubuntu”
Normal ~Created 475 kubelet, minikube Created container ubuntu-container
Normal _ Started 47s kubelet, minikube Started container ubuntu-container

Warning Unhealthy 55 (x3 over 15s) kubelet, minikube Liveness probe failed: cat: /tmp/ready: No such file or directory
Normal Killing Ss kubelet, minikube Container ubuntu-container failed liveness probe, will be restarte

OEBPS/image/B14870_03_09.jpg
NAME

keda

osiris-osiris-edge-activator
osiris-osiris-edge-endpoints-controller
osiris-osiris-edge-endpoints-hijacker
osiris-osiris-edge-proxy-injector
osiris-osiris-edge-zeroscaler

READY
izl
al/Zil
al/Zil
al/Zil
i/l
al/Zil

UP-TO-DATE

Y

AVAILABLE

Y

AGE
34d
34d
34d
34d
34d
34d

OEBPS/image/B14870_07_09.jpg
deployment.apps/app-deployment
REVISION CHANGE-CAUSE
1 <none>

2 kubectl apply --filename=app-deployment.yaml --record=true

OEBPS/image/B14870_12_13.jpg
Selector: app.kubernetes.io/component=controller,app.kubernetes.
io/instance=ingress-nginx, app.kubernetes.io/name=ingress—nginx

Type: [ICET :ENET 154

IP: 172.20.159.113
LoadBalancer Ingress: a0c805e36932449eabb6c966b16bbc6T1-13eb0d593e468ded.elb
us—east-1.amazonaws.com

PoOTT: nttp 80/ 1CP
TargetPort: http/TCP
NodePort: http 30653/TCP
Endpoints: 10.0.0.135:80
Port: https 443/TCP
TargetPort: https/TCP
NodePort: https 32416/TCP
Endpoints: 10.0.0.135:443
Session Affinity: None

External Traffic Policy: Local
HealthCheck NodePort: 31186

OEBPS/image/B14870_18_16.jpg
NAME
master-australia-southeastl-a-g2pw
master-australia-southeastl-b-4jl1
master-australia-southeastl-c-0ndl
nodes-6htd

nodes-71x0

nodes-wjth

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES
master
master
master
node
node
node

AGE
93s
102s
103s
63s
60s
60s

VERSION
v1l.15.7
v1l.15.7
v1.15.7
v1l.15.7
v1.15.7
v1l.15.7

OEBPS/image/B14870_01_21.jpg
PID

28
33

USER
root
root
root

TIME COMMAND

0:00 /k8s-for-beginners
0:00 sh

0:00 ps

OEBPS/image/B14870_15_18.jpg
00 W kubernetes-test-ha-application — -zsh — 100x33

'zarnold@zachs—mbp kubernetes—test—ha-application % kubectl apply -f kubernetes/with_autoscaler.yaml
secret/test-mariadb created

configmap/test-mariadb-master created

configmap/test-mariadb-slave created

configmap/test-mariadb-tests created

service/test-mariadb created

service/test-mariadb-slave created

statefulset.apps/test-mariadb-master created

statefulset.apps/test-mariadb-slave created

pod/test-mariadb-test-6bot3 created
deployment.apps/kubernetes—test—ha-application-with-autoscaler-deployment created
service/kubernetes—test-ha-application-with-autoscaler created
secret/mysql-secret-config created

secret/mysql-reader-secret-config created

ingress.networking.k8s.io/ingress created
horizontalpodautoscaler.autoscaling/counter-hpa created

zarnold@zachs—mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_10_01.jpg
Create a configmap based on a file, directory, or specified literal value.
A single configmap may package one or more key/value pairs.

When creating a configmap based on a file, the key will default to the basename of the file, and the value will default
to the file content. If the basename is an invalid key, you may specify an alternate key.

When creating a configmap based on a directory, each file whose basename is a valid key in the directory will be
packaged into the configmap. Any directory entries except regular files are ignored (e.g. subdirectories, symlinks,
devices, pipes, etc).

Aliases:
configmap, cm

Examples:
Create a new configmap named my-config based on folder bar
kubectl create configmap my-config --from-file=path/to/bar

Create a new configmap named my-config with specified keys instead of file basenames on disk
kubectl create configmap my-config --from-file=keyl=/path/to/bar/filel.txt --from-file=key2=/path/to/bar/file2.txt

Create a new configmap named my-config with keyl=configl and key2=config2
kubectl create configmap my-config —-from-literal=keyl=configl --from-literal=key2=config2

Create a new configmap named my-config from the key=value pairs in the file
kubectl create configmap my-config —-from-file=path/to/bar

Create a new configmap named my-config from an env file
kubectl create configmap my-config —-from-env-file=path/to/bar.env

OEBPS/image/B14870_15_11.jpg
NAMESPACE
default
default
default
default
default
default
default
default
default
ingress-nginx
kube-system
kube-systen

NAME
Grfana-1576397218

et
kubernetes-test-ha-application-with-redis
Dronatneus-1876397085 e or manaer
Pronstheus-1576397085-kube-statecmetrics
Pronstheus-1576397085-node-exporter
Pronetheus-1576397083-poshgstonsy

Feals

ingress-nginx

e

zernoldezachs-ubp terraforn % [

TYPE
ClusterIp
ClusterIp
ClusterIP
ClusterIp
ClusterIP
ClusterIP
ClusterIP
ClusterIP
ClusterIP
LoadBalancer
ClusterIP.
ClusterIP

CLUSTER-IP
172.20.110.18
172.20.0.1
172.20.173.13
172.20.11.35
None

None
172.20.84.75
172.20.179.12
172.20.85.223
172.20.197.38
172.20.0.10
172.20.16.234

EXTERNAL-IP
<none>

<none>

<none>

<none>

<none>

<none>

<none>

<none>

<none>
6726be6410511
<none>

<none>

OEBPS/image/B14870_18_32.jpg
NAME

sleep-8689c746f4-8cjws
sleep-8689c746f4-brdjh
sleep-8689c746f4-fb7cv
sleep-8689c746£4-15fkh

READY
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running

RESTARTS
0

0
0
0

AGE

7h35m
7h28m
7h35m
7h28m

OEBPS/image/B14870_04_19.jpg
5477 round_trippers.go:446] Response Status: 200 OK in 10 milliseconds

OEBPS/image/B14870_11_11.jpg
Kubernetes Dashboard

Authentication method:

QO Kubeconfig
@ Token

Token*

OEBPS/image/B14870_08_11.jpg
- - O
Q —— Oy o e
NI/ N, < €O O N /N
[G T T O N 0 T L T T T
S (OO N/ (/"N)

OEBPS/image/B14870_04_11.jpg
--enable-admission-plugins=LimitRanger ,NamespaceExists,Namespacelifecycle,
ResourceQuota, ServiceAccount,DefaultStorageClass,MutatingAdmissionWebhook

OEBPS/image/B14870_03_02.jpg
apiVersion: vi
clusters:
- cluster:
certificate-authority: /home/testcloudadmin/.minikube/ca.crt
server: https://192.168.99.100:8443
name: minikube
contexts:
- context:
cluster: minikube
user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
user:
client-certificate: /home/testcloudadmin/.minikube/client.crt
client-key: /home/testcloudadmin/.minikube/client.key

OEBPS/image/B14870_17_14.jpg
NAME

pod-default-priority-deployment-57c965b8cd-2qlvp
pod-default-priority-deployment-57c965b8cd-6f6f2
pod-default-priority-deployment-57c965b8cd-bssnv
pod-default-priority-deployment-57c965b8cd-bx85k
pod-default-priority-deployment-57c965b8cd-dbsd8
pod-default-priority-deployment-57c965b8cd-hz7qj
pod-default-priority-deployment-57c965b8cd-ng22k
pod-default-priority-deployment-57c965b8cd-qcjnv
pod-default-priority-deployment-57c965b8cd-tzqsq
pod-default-priority-deployment-57c965b8cd-zjhjd
pod-highest-priority-deployment-6df898d4c4-2jk8p
pod-highest-priority-deployment-6df898d4c4-cjc8r
pod-highest-priority-deployment-6df898d4c4-gc4tr
pod-highest-priority-deployment-6df898d4c4-gmh2j
pod-highest-priority-deployment-6df898d4c4-hdpr4
pod-highest-priority-deployment-6df898d4c4-jmnjb
pod-highest-priority-deployment-6df898d4c4-12nsz
pod-highest-priority-deployment-6df898d4c4-mhq2x
pod-highest-priority-deployment-6df898d4c4-qmjsw
pod-highest-priority-deployment-6df898d4c4-wmors

READY
0/1
0/1
0/1
0/1
0/1
0/1
0/1
1/1
0/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
171
1/1
1/1

STATUS

Pending
Pending
Pending
Pending
Pending
Pending
Pending
Running
Pending
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

R R R O R RS R R R - R RN

AGE
2m30s
2m25s
2m30s
104s
2m30s
2m31s
2m27s
7m51s
102s
7m48s
2m31s
102s
2m31s
2m31s
104s
2m31s
2m25s
2m27s
105s
2m31s

OEBPS/image/B14870_17_22.jpg
NAME

api-pod-c644d44b8-f5xq2
api-pod-c644d44b8-wztgb
gui-pod-6c494b5888-54vxp
gui-pod-6c494b5888-1zcbh
realtime-pod-59d4c8b768-dgnvr

READY
1/1
1/1
171
171
1/1

STATUS

Running
Running
Running
Running
Running

RESTARTS

[SESESESES]

AGE
2ml6s
2m16s
5m22s
5m22s
12m

OEBPS/image/B14870_10_16.jpg
NAME TYPE DATA AGE
test-docker-registry-secret kubernetes.io/dockerconfigjson 1 30s

OEBPS/image/B14870_04_43.jpg
apiversic

kind: Namespa
metadata

creationTd w: 1

OEBPS/image/B14870_16_04.jpg
apiVersion: vi
data:
url: google.com
kind: ConfigMap
metadata:
creationTimestamp: "2019-08-14T00:29:44Z"
name: simple-configmap
namespace: webhooks
resourceVersion: "708072"
selflLink: /api/vl/namespaces/webhooks/configmaps/simple—configmap
uid: 9cel4ece-be2a-11e9-adfa-000c2917147b

OEBPS/image/B14870_04_26.jpg
NAME

bindings
componentstatuses
configmaps

endpoints

events

limitranges

namespaces

nodes
persistentvolumeclaims
persistentvolumes

pods

podtemplates
replicationcontrollers
resourcequotas

secrets
serviceaccounts
services

SHORTNAMES ~ APIGROUP
cs

cm

ep

ev
limits
ns

no

pvc

pv

po

rc
quota

sa
svc

NAMESPACED
true
false
true
true
true
true
false
false
true
false
true
true
true
true
true
true
true

KIND

Binding
ComponentStatus
ConfigMap

Endpoints

Event

LimitRange

Namespace

Node
PersistentVolumeClaim
PersistentVolume

Pod

PodTemplate
ReplicationController
ResourceQuota

Secret

ServiceAccount
Service

OEBPS/image/B14870_16_12.jpg
Generatlng RSA private key, 2048 bit long modulus

e is 65537 (x10001)

$openssl req -new —key tls.key —subj "/CN=webhook-server.webhooks.svc" \

> | openssl x509 -req —CA controller_ca.crt -CAkey controller_ca.key -CAcreateserial —out tls.crt
Signature ok

subject=/CN=webhook-server .webhooks. svc

Getting CA Private Key

OEBPS/image/B14870_04_04.jpg
abutaleb@AbuTalebPC:~$ kubectl config use-context Readonlyuser
Switched to context "ReadoOnlyuUser”.

abutaleb@AbuTalebPC:~$

abutaleb@AbuTalebPC:~$

abutaleb@abuTalebPC:~$ kubectl get pods -n default

NAME READY ~ STATUS RESTARTS AGE
mynginx-8668b9977f-mgcgs 1/1 Running @ 11m
abutaleb@AbuTalebPC:~$

abutaleb@AbuTalebPC:~$

Bbutaleb@AbuTalebPC:~$ kubectl delete pod mynginx-8668b9977f-mgcqs

Error from server (Forbidden): pods "mynginx-8668b9977f-mgcg6e” is forbidden
User "system: serviceaccount:default:readonlysa” cannot delete resource “pod
“ in API group "* in the namespace "default"

abutaleb@AbuTalebPC:~$

abutaleb@AbuTalebPC:~$

Abutaleb@AbuTalebPC:~$ kubectl get pods --all-namespaces

Error from server (Forbidden): pods is forbidden: User "system:serviceaccoun
t:default:readonlysa” cannot list resource "pods" in APT group "* at the clu
ter scope

abutaleb@AbuTalebPC:~$

OEBPS/image/B14870_04_34.jpg
KIND: Ingress
VERSION: networking.k8s.io/vibetal

DESCRIPTION:
Ingress is a collection of rules that allow inbound connections to reach

the endpoints defined hy a hackend. An Tngress can he configured to give
services externally-reachable urls, load halance traffic, terminate SSi,

offer name based virtual hosting etc.

OEBPS/image/B14870_12_12.jpg
[zarnold@zachs—-mbp ~ % kubectl apply -f https://raw.githubusercontent.com/kuberne]
tes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
namespace/ingress-nginx created

configmap/nginx-configuration created

configmap/tcp-services created

configmap/udp-services created

serviceaccount/nginx-ingress-serviceaccount created
clusterrole.rbac.authorization.k8s.io/nginx-ingress-clusterrole created
role.rbac.authorization.k8s.io/nginx-ingress-role created
rolebinding.rbac.authorization.k8s.io/nginx-ingress-role-nisa-binding created
clusterrolebinding.rbac.authorization.k8s.io/nginx-ingress-clusterrole-nisa-bind
ing created

deployment.apps/nginx-ingress—controller created

limitrange/ingress—nginx created

[zarnold@zachs—-mbp ~ % kubectl apply -f https://raw.githubusercontent.com/kuberne]
tes/ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/service-14.yaml
service/ingress-nginx created

[zarnold@zachs—-mbp ~ % kubectl apply -f https://raw.githubusercontent.com/kubern]
etes/ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/patch-configmap-1l4.ya
ml

configmap/nginx-configuration configured

OEBPS/image/B14870_04_51.jpg
NAMESPACE

NAME

default default
‘example default
kube-node-lease default
kube-public default

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

attachdetach-controller
bootstrap-signer
certificate-controller
clusterrole-aggregation-controller
(1L

cronjob-controller
daemon-set-controller

kube-system default

kube-system

deployment-controller

SECRETS

e e el

AGE
1eh
Sh

1eh
1eh
1eh
1eh
16h
1eh
1eh
1eh
1eh
1eh
1eh

OEBPS/image/B14870_01_06.jpg
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
3
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

OEBPS/image/B14870_19_02.jpg
$kubectl api-resources
[NAME

bindings
componentstatuses
configmaps

endpoints

events

limitranges

namespaces

nodes
persistentvolumeclaims
persistentvolumes

pods

podtemplates
replicationcontrollers
resourcequotas

secrets

serviceaccounts

services
mutatingwebhookconfigurations
validatingwebhookconfigurations
customresourcedefinitions
apiservices
controllerrevisions
daemonsets

deployments

replicasets

statefulsets
tokenreviews
localsubjectaccessreviews
selfsubjectaccessreviews
selfsubjectrulesreviews
subjectaccessreviews
horizontalpodautoscalers
cronjobs

jobs
certificatesigningrequests
leases

events

daemonsets

deployments

ingresses
networkpolicies
podsecuritypolicies
replicasets

ingresses
networkpolicies
runtimeclasses
poddisruptionbudgets
podsecuritypolicies
clusterrolebindings
clusterroles
rolebindings

roles

priorityclasses
csidrivers

csinodes

storageclasses
volumeattachments

SHORTNAMES

cs

cm

ep

ev
limits
ns

no

pvc

pv

po

rc
quota

sa
svc

crd,crds

ds
deploy
rs

sts

hpa
cj

Ccsr

ev

ds
deploy
ing
netpol
psp

rs

ing
netpol

pdb
psp

pc

sc

APIGROUP

admissionregistration.k8s.io
admissionregistration.k8s.io
apiextensions.k8s.io
apiregistration.k8s.io
apps

apps

apps

apps

apps
authentication.k8s.io
authorization.k8s.io
authorization.k8s.io
authorization.k8s.io
authorization.k8s.io
autoscaling

batch

batch

certificates.k8s.io
coordination.k8s.io
events.k8s.io

extensions

extensions

extensions

extensions

extensions

extensions
networking.k8s.io
networking.k8s.io
node.k8s.io

policy

policy
rbac.authorization.k8s.io
rbac.authorization.k8s.io
rbac.authorization.k8s.io
rbac.authorization.k8s.io
scheduling.k8s.io
storage.k8s.1io
storage.k8s.io
storage.k8s.io
storage.k8s.io

NAMESPACED
true
false
true
true
true
true
false
false
true
false
true
true
true
true
true
true
true
false
false
false
false
true
true
true
true
true
false
true
false
false
false
true
true
true
false
true
true
true
true
true
true
false
true
true
true
false
true
false
false
false
true
true
false
false
false
false
false

KIND

Binding

ComponentStatus
ConfigMap

Endpoints

Event

LimitRange

Namespace

Node
PersistentVolumeClaim
PersistentVolume

Pod

PodTemplate
ReplicationController
ResourceQuota

Secret

ServiceAccount

Service
MutatingWebhookConfiguration
ValidatingWebhookConfiguration
CustomResourceDefinition
APIService
ControllerRevision
DaemonSet

Deployment

ReplicaSet

StatefulSet

TokenReview
LocalSubjectAccessReview
SelfSubjectAccessReview
SelfSubjectRulesReview
SubjectAccessReview
HorizontalPodAutoscaler
CronJob

Job
CertificateSigningRequest
Lease

Event

DaemonSet

Deployment

Ingress

NetworkPolicy
PodSecurityPolicy
ReplicaSet

Ingress

NetworkPolicy
RuntimeClass
PodDisruptionBudget
PodSecurityPolicy
ClusterRoleBinding
ClusterRole

RoleBinding

Role

PriorityClass

CSIDriver

CSINode

StorageClass
VolumeAttachment

OEBPS/image/B14870_13_14.jpg
zarnold@Pzachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887]
eaP68f41b7b-1447612395.us—-east-1.elb.amazonaws.com/get—number

zarnold@zachs—-mbp kubernetes % curl —-H 'Host: counter.com' a3960d10c980e40f99887!
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 1}Z]
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 2}Z]
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 3}Z]
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
€a068f41b7b-1447612395.us—east-1.elb.amazonaws.com/get-number

{number: 4}%]
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us—-east-1.elb.amazonaws.com/get—number

{number: 5}%

OEBPS/image/B14870_18_24.jpg
I0315 01:41:31.625893 4386 gce_cloud.go:273] Scanning zones: [australia-southeastl-b australia-southeas
tl-c australia-southeastl-a]

NAME STATUS NEEDUPDATE READY MIN MAX NODES
master-australia-southeastl-a Ready] 1 1 1 b g
master-australia-southeastl-b Ready 0 1 1 1 g
master-australia-southeastl-c Ready 0 1. 1 1 1
nodes NeedsUpdate 1 0 1 1 1
nodes NeedsUpdate 1 0 1 1 1
nodes NeedsUpdate 1 0 1 1 1

OEBPS/image/B14870_15_02.jpg
zarnold@zachs-mbp kubernetes-test-ha-application % DOWNLOAD_URL=$(curl -Ls "https://api.github.com/repos/kubernetes-sigs/metrics-server/releases/latest"” | jq -r .tarball_ url)
DOWNLOAD_VERSION=$(grep -0 '[*/v]x$' <<< SDOWNLOAD_URL

curl -Ls $DOWNLOAD_URL -0 metrics-server-SDOWNLOAD_VERSION. tar.gz

mkdir metrics-server-$DOWNLOAD_VERSION

tar —xzf metrics-server-$DOWNLOAD_VERSION. tar.gz —-directory metrics-server-SDOWNLOAD_VERSION —-strip-components 1
kubectl apply —f metrics-server-SDOWNLOAD_VERSION/deploy/1.8+/
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
rolebinding.rbac.authorization.k8s.io/metrics uth-reader created

OO s Em (0 AR, (T [£ e

serviceaccount/metrics-server created

deploynent.apps/metrics-server created

service/metrics-server created

clusterrole.rbac.authorization.k8s.io/system:metrics-server created

clusterrolebinding. rbac.authorization.k8s.io/system:metrics-server created

zarnoldezachs-mbp kubernetes-test-ha-application % |

OEBPS/image/B14870_05_06.jpg
Name::

Namespace:

Priority:

PriorityClassName

Node:

Start Time:

Label.

Annotations:

Status:

°:

Containers:
container-with-

Container 1D:

resource-requirements-pod
default
[
: <none>
minikube/10.0.2.15
Thu, 04 Jul 2019 18:45:58 +0200
<none>
<none>
Running
172.17.0.8

resource-requirements:
docker://92c3f8344059e29fe6b8dbS19b18bf09086508e0504ce6664cedSe976Fe9175e

Inage: nginx
Inage 10: docker-pulLable: //nginx@sha256:96b261b66270b900easa2c17a26abbFabe95506e73c3a3c65869a6dbe83223a
Port: <none>
Host Port: <none>
State: Running

Started: Thu, 04 Jul 2019 18:46:01 +0200
Ready: True
Restart Count: 0
Limits:
cpu: i
memory: 128M
Requests:
cpu: 500m
memory: 64M
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-7rmnp (ro)
Conditions:
Type Status
Tnitialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-7rmnp.
Type: Secret (a volume populated by a Secret)
SecretName: default-token-7rmnp
Optional: false

QoS Class: Burstable

Node-Selectors: ~<none>

Tolerations: node. kubernetes . io/not-ready:NoExecute for 3005

node. kubernetes . iv/unreachuble:NoExecute for 300s

Events:

Type Reason
Normal Schedul
Normal Pulling
Normal Pulled
Normal Created
Normal Started

Age From Message
ed Sm34s default-scheduler Successfully assigned default/resource-requirements-pod to minikube
5m33s kubelet, minikube Pulling image "nginx"
Sm3ls kubelet, minikube Successfully pulled image "nginx"
S5m3ls kubelet, minikube Created container container-with-resource-requirements
Sm3ls kubelet, minikube Started container container-with-resource-requirements

OEBPS/image/B14870_0_03.jpg
& Computer Manzgement

EXPEEE

Volume

[Layout [Type [File System [status

[Capacity | Free Space [%

=@

= (Disk 1 partition 1) Simple Basic
= (Disk 1 partition 2) Simple Basic.
= NewVolume (D) Simple Basic NTFS

Simple Basic NTFS

‘Heslthy (Boot, Page File, Crash Dump, Primary Partition) 16705 GB
Heslthy (Recovery Partition)
Heslthy (EFISystem Partit
Heslthy (Primery Partition)

)

1155268 69
S9MB S9MB 10
100MB 10MB 10
9315168 9062368 97

General

<~ New Volume (D) Properties

Secuty PreviusVewons Quota Customize
Tools

Hardware.

X

Sharng

I Used space:

'

931,51 6B

1 Free soace:

27141316608 bytes.
9.73,06.07.22688 bytes

25268
906GB.

Capacty:

il

10.00.20.20.39.296 bytes.

O

Dive D:

93168

[Compress this ciive to save disk space.

E3

OEBPS/image/B14870_09_06.jpg
root@od-with-emptydir-volume:/mounted-data# command terminated with exit code 137

OEBPS/image/B14870_11_02.jpg
@
[
node
Worker Nodes

Availability Zone - C

Availability Zone - B

Master
w
[
node
Worker Nodes

Availability Zone - A

US-EAST-1

Master
w
Pl
node
Worker Nodes

OEBPS/image/B14870_0_02.jpg
& Computer Management

File Action View Help

e a@mEEsxPD LR

Volume [Layout [Type [Fite System [tatus [Capacity | Free Space [%
=@ Simple Basic NTFS Healthy (Boot, Page File, Crash Dump, Primary Partition) 167.05GB 11552 GB 69
= (Disk partiion 1) Simple Basic Healthy (Recovery Pariion) s20M8 S9ME 10
= (Disk1 pariton2) Simple Basic Heslthy (EFISystem Partton) 00ME 100ME 10
= NewVolume (D:) Simple Basic NTFS Healthy (Primary Partition) 93151GB 90623GB 97

= Disk 0
Basic New Volume (D)

9315168 93151 GBNTFS

Online

= Disk 1

Basic ©

167.67GB. s29MB 100MB. 167.05 GB NTFS

Online Heslthy (Recovery Paritc || Healthy (EFI Syste || Healthy (Boot, Page File, Crash Dump, Primary Partit

% > || M Unallocated Il Primary partition

OEBPS/image/B14870_06_06.jpg
NAME READY STATUS RESTARTS AGE
pod-with-some-labels 1/1 Running @ 9s

OEBPS/image/B14870_15_10.jpg
@, Add data source

= Choose a data source type

by name or type

Time series databases

Prometheus
Open source time series database & alerting

canrens]

OEBPS/image/B14870_02_16.jpg
k8suser@ubuntu:~$ kubectl logs k8s-for-beginners-66644bb776-7j9mw | wc -1
El
k8suser@ubuntu:~$ kubectl logs k8s-for-beginners-66644bb776-dzf9j | wc -1
10
k8suser@ubuntu:~$ kubectl logs k8s-for-beginners-66644bb776-fg8s5 | wc -1
11

OEBPS/image/B14870_10_10.jpg
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/faisalmasood/test_rsa.
Your public key has been saved in /Users/faisalmasood/test_rsa.pub.
The key fingerprint is:
SHA256 : AXDE/3UZ40VjT168TJZgURTU7QVsZ3bR54k+8K70gYw test@example.com
The key's randomart image is:
+———[RSA 4096]————+
| St *BOB |
* *+& |
0 0=Xx|
.0.=40|

xS

|
|
|
| |
| |
| E® oo o |
+————[SHA256]————- +

OEBPS/image/B14870_03_16.jpg
Azure Voting App

Cats

Dogs

Reset

Cats - 0 | Dogs - 0

OEBPS/image/B14870_04_57.jpg
“Failure”,

"message”: "pods is forbidden: user \E»ystem:servi(ea(munt:default:default\"lcanmt

list resource \"pods\" in API group \"\" in the namespace \"default\"",

"reason”: "Forbidden”,

"details": {
"kind": “"pods"™

code™: 403

OEBPS/image/B14870_02_08.jpg
Master Node

Worker Node

controller Kkubelet
manager : :
- API server ! container
: : runtime

scheduler kube-proxy

OEBPS/image/B14870_11_12.jpg
kubernetes

Workloads > Pods

Nodes
Persistent Volumes
Roles

Storage Classes

Namespace

kube-system

Overview

Workloads
Cron Jobs
Daemon Sets
Deployments
Jobs
Pods
Replica Sets
Replication Controllers
Stateful Sets

Discovery and Load Balancing

Q Ssearch

=+ CREATE

(2]

CPU usage Memory usage
0.135, 644 Mi
0.120 & 572 il
8 0.090 £ aomi
H £
= 0.060 2 286 Mi
o E
© 0.030 2 143Mi
0 0
11:10 11:13 11:16 11:10 11:13 11:20 11:24
Time
Pods
Name % Node Status & Restarts Age * CPU (cores) Memory (bytes)
@ kubemetes-dashboard-7b9c7b minikube Running 0 27 minutes Ao I 19746 Mi H
@ heapster-ghger minikube Running 0 27 minutes 0 I 18.004 Mi H
@ influxdb-grafana-77c7p minikube Running 0 27 minutes A Ao I +3.926 Mi H
@ kube-scheduler-minikube minikube Running 0 20 hours I 0.0 I 11 930 Mi H
@ ctcdminikube minikube Running 0 20 hours oo I 55445 Mi H

OEBPS/image/B14870_07_08.jpg
Name: nginx-deployment

Namespace: default

CreationTimestamp: Sun, 10 Nov 2019 01:06:20 +0100
Labels: app=nginx |

Annotations: deployment.kubernetes.io/revision: 1

kubectl.kubernetes.io/last-applied-configuration:
{"apiVersion":"apps/v1l","kind": "Deployment", "metadata":{"a
nnotations":{},"labels": {"app":"nginx"}, "name": "nginx-deployment", "namespace":"d

[Selector: app=nginx, environment=production |

Replicas: 3 desired | 3 updated | 3 total | 3 available | @ unavailabl
e

StrategyType: RollingUpdate

MinReadySeconds: [

RollingUpdateStrategy: 25% max unavailable, 25% max surge

Pod Template:

Labels: app=nginx
environment=production

Containers:
nginx-container:
Image: nginx
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>
Conditions:
Type Status Reason
Available True MinimumReplicasAvailable

Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-588765684f (3/3 replicas created)
Events:
Type Reason Age From Message
Normal ScalingReplicaSet 38s deployment-controller Scaled up replica set ngin
x-deployment-588765684f to 3

OEBPS/image/B14870_02_22.jpg
4e4d85467928

3f450986aa45

ce9fadaaaelc

Error response from daemon: You cannot remove a running container 75439759292blccabd
64321d50961eab65fe2dc@a7a8a65631d583aadbee4627. Stop the container before attempting
removal or force remove

Error response from daemon: You cannot remove a running container e6a70641b4@9ffa75c
a2ecd978acd5c000c760d7d2b84718584c89518cd32bdd. Stop the container before attempting
removal or force remove

OEBPS/image/B14870_08_12.jpg
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
&
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

OEBPS/image/B14870_05_04.jpg
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

OEBPS/image/B14870_15_25.jpg
Kubernetes v;@

EKS Control Plane

Room For More Pods

Server Contents

XC,

ClusterAutoscaler Other Deployment

®6

Other Deployment Other Deployment

®6

Other Deployment Other Deployment

Ed

Server Contents

®

Other Deployment Other Deployment,

®

Other Deployment Other Deployment,

@

Other Deployment Other Deployment,

E

Qe

Other Deployment

OEBPS/image/B14870_10_09.jpg
KUBERNETES_PORT=tcp://10.96.0.1:443

KUBERNETES_SERVICE_PORT=443

HOSTNAME=secret-env-pod

SHLVL=1

HOME=/root

KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp

lpassword=secretva1ue]

KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_SERVICE_PORT_HTTPS=443

PwD=/

KUBERNETES SERVICE HOST=10.96.0.1

OEBPS/image/B14870_04_18.jpg
5477 round_trippers.go:427] Request Headers:
5477 round_trippers.go:431] Accept: application/json;as=Table;v=vlbetal;g=meta.k8s.io, application/json
5477 round_trippers.go:431] User-Agent: kubectl/v1.16.3 (darwin/amd64) kubernetes/b3cbbae

OEBPS/image/B14870_18_09.jpg
node/kube-group-1-mdlr already cordoned

WARNING: ignoring DaemonSet-managed Pods: kube-system/kube-proxy-4h9m2, kube-system/weave-net-wrrdq
evicting pod "sleep-868969c989-vtndb"

evicting pod "sleep-868969c989-vm2bm"

OEBPS/image/B14870_04_42.jpg
i
"kind": “"Deployment",
"apiversion": "apps/v1",
"metadat
name": “"mynginx",
"namespace”: "default”,
"selfLink": "/apis/apps/vl/namespaces/default/deploym
ents/mynginx",
"uid": "90935fea-80a6-4d77-8340-65e2a445d057",
"resourceVersion": "129928",
"generation": 2,

OEBPS/image/B14870_01_14.jpg
Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docke
r ID, head over to https://hub.docker.com to create one.

Username: hweicdl

Password:

WARNING! Your password will be stored unencrypted in /root/.docker/config.json.

Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

OEBPS/image/B14870_12_14.jpg
[zarnold@zachs—-mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
0c805e36932449eab6c966b16b6c6T1-13eb0d593e468ded. elb.us—east—1.amazonaws.com/get
—number

[{number: 1}Z

zarnold@zachs—mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
0c805e36932449eab6c966b16b6c6T1-13eb0d593e468ded. elb.us—east—1.amazonaws.com/get
—number

[{number: 2}Z

zarnold@zachs—mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
0c805e36932449eab6c966b16b6c6T1-13eb0d593e468ded.elb.us—east—1.amazonaws.com/get
—number

[{number: 3}Z

zarnold@zachs—mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
0c805e36932449eab6c966b16b6c6T1-13eb0d593e468ded. elb.us—east—1.amazonaws.com/get
—number

[{number: 4}Z

zarnold@zachs—mbp kubernetes-test-ha-application % curl -H 'Host: counter.com' a
0c805e36932449eab6c966b16b6c6T1-13eb0d593e468ded.elb.us—east—1.amazonaws.com/get
—number

{number: 5}%

OEBPS/image/B14870_12_20.jpg
[zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887]
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

[zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887]
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

[{number: 1}Z 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
€a068f41b7b-1447612395.us—east-1.elb.amazonaws.com/get-number

[{number: 2}Z 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

[{number: 3}F 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
€a068f41b7b-1447612395.us—east-1.elb.amazonaws.com/get-number

[{number: 4}Z 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 5}%

OEBPS/image/B14870_01_20.jpg
total @

Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx
Trwxrwxrwx
Lrwxrwxrwx
Lrwxrwxrwx
Trwxrwxrwx

PRPRPRPR

root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root

ocooooeS

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

18
18
18
18
18
18
18
18

cgroup
ipc ->
mnt ->
net ->
pid ->

pid_for]

user ->
uts ->

'cgroup: [4026531835]"
ipc: [4026532244]"
mnt : [4026532242]"
inet: [4026532247]"
pid: [4026532245]"
children -> 'pid:[4026532245]"
'user:[4026531837]"

uts : [4026532243]"

OEBPS/image/B14870_14_02.jpg
deployment.apps/kubernetes-test-ha-application-with-mysql-deployment created
service/kubernetes—test—ha-application-with-mysql created
statefulset.apps/mysql created

service/mysql created

secret/mysql-secret-config created

OEBPS/image/B14870_18_15.jpg
Using cluster from kubectl context: myfirstcluster.k8s.local

Validating cluster myfirstcluster.k8s.local

I0315 00:59:45.180939 3785 gce_cloud.go:273] Scanning zones:
utheastl-b australia-southeastl-c australia-southeastl-a]

INSTANCE GROUPS

INSTANCE GROUPS

NAME
master-australia-southeastl-a
-southeastl
master—-australia-southeastl-b
-southeastl
master-australia-southeastl-c
-southeastl

nodes

-southeastl

ROLE
Master

Master

Master

Node

MACHINETYPE
nl-standard-1

nl-standard-1

nl-standard-1

nl-standard-2

[australia-so

SUBNETS
australia

australia

australia

australia

OEBPS/image/B14870_01_28.jpg
CONTAINER ID IMAGE COMMAND CREATED STAT
us PORTS NAMES

366bd13714ca hweicdl/memconsumer:v@.0.1 "/main” 35 seconds ago Up 3
4 seconds memconsumer

OEBPS/image/B14870_15_19.jpg
00 W kubernetes-test-ha-application — -zsh — 100x28

Reference: Deployment/kubernetes-test-ha—application-wit
h-autoscaler-deployment
Metrics: (current / target)
resource cpu on pods (as a percentage of request): 0% (@) / 50%
Min replicas: 2
Max replicas: 100
Deployment pods: 2 current / 2 desired
Conditions:
Type Status Reason Message
AbleToScale True ReadyForNewScale recommended size matches current size
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica cou
nt from cpu resource utilization (percentage of request)
ScalingLimited True TooFewReplicas the desired replica count is increasing faster than the
maximum scale rate
Events:
Type Reason Age Message
Warning FailedGetResourceMetric 10m (x3 over 10m) horizontal-pod-autoscaler unable t
o get metrics for resource cpu: no metrics returned from resource metrics API
Warning FailedComputeMetricsReplicas 16m (x3 over 10m) horizontal-pod-autoscaler Invalid

metrics (1 invalid out of 1), last error was: failed to get cpu utilization: unable to get metrics f
or resource cpu: no metrics returned from resource metrics API

Warning FailedGetResourceMetric 7m51s (x9 over 9m52s) horizontal-pod-autoscaler missing
request for cpu

Warning FailedComputeMetricsReplicas 5m35s (x18 over 9m52s) horizontal-pod-autoscaler Invalid
metrics (1 invalid out of 1), last error was: failed to get cpu utilization: missing request for cpu
zarnold@zachs—mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_17_06.jpg
Name: minikube

Roles: master

Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=1inux
data-center=sydney
kubernetes.io/arch=amd64
kubernetes.io/hostname=minikube
kubernetes.io/os=1linux
node-role.kubernetes.io/master=

OEBPS/image/B14870_07_10.jpg
NAME
app-deployment-6d85cc6748-8n5h9
app-deployment-d4f979c99-6qltn
app-deployment-d4f979c99-ts6n8
app-deployment-d4f979c99-zpbrf

READY
0/1
1/1
1/1
171

STATUS

Running
Running
Running

RESTARTS

ImagePullBackOff | @

[}
[}
[}

AGE
2ma2s
4m
3m57s
3m54s

OEBPS/image/B14870_01_29.jpg
CONTAINER ID IMAGE COMMAND CREATED STA
TUS PORTS NAMES

298541bc4685 hweicdl/memconsumer:v@.0.1 "/memconsumer" About a minute ago Exi
ted (137) About a minute ago memconsumer

OEBPS/image/B14870_03_01.jpg
Kubectl commands or
yaml manifest

REST call
Response

Authenticate and validate

AP| Server

Update and retrieve data

OEBPS/image/B14870_17_07.jpg
LAST SEEN TYPE REASON

<unknown> Warning FailedScheduling
e: 1 node(s) didn't match node selector.
<unknown> Warning FailedScheduling
e: 1 node(s) didn't match node selector.
<unknown> Warning FailedScheduling

OBJECT
pod/pod-with-node-affinity

pod/pod-with-node-affinity

pod/pod-with-node-affinity

pod: schedulerdemo/pod-with-node-affinity

pod/pod-with-node-affinity
pod/pod-with-node-affinity
pod/pod-with-node-affinity

pod/pod-with-node-affinity

<unknown> Normal Scheduled
schedulerdemo/pod-with-node-affinity to minikube
16s Normal Pulling

.io/busybox"

16s Normal Pulled

age "k8s.gcr.io/busybox"

16s Normal Created
with-node-affinity-container

15s Normal Started

with-node-affinity-container

pod/pod-with-node-affinity

MESSAGE
0/1 nodes are availabl

0/1 nodes are availabl
skip schedule deleting
Successfully assigned

Pulling image "k8s.gcr
Successfully pulled im
Created container pod-

Started container pod-

OEBPS/image/B14870_16_05.jpg
apiVersion: vl
data:

url: google.com
kind: ConfigMap
metadata:

annotations:
custompatched: "true"
teamname: kubeteam
creationTimestamp: "2019-10-18T0@5:50:50Z"
name: simple-configmap
namespace: webhooks
resourceVersion: "22786"
selfLink: /api/vl/namespaces/webhooks/configmaps/simple-configmap
uid: 3d793dle-f16b-11e9-b0@5a-000c2917147b

OEBPS/image/B14870_18_31.jpg
NAME
master-australia-southeastl-a-g2pw
master-australia-southeastl-b-4jll
master-australia-southeastl-c-0ndl
nodes-6htd

nodes-71x0

nodes-wjth

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES
master
master
master
node
node
node

AGE
9h

9h

9h
7h34m
7h20m
7h27m

VERSION

v1.15.10
v1.15.10
v1l.15.10
v1.15.10
v1.15.10
v1.15.10

OEBPS/image/B14870_17_13.jpg
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)

Resource Requests Limits
cpu 1555m (77%) 800m (40%)
memory 1214Mi (64%) 1364Mi (72%)

ephemeral-storage @ (0%) 0 (0%)

OEBPS/image/B14870_04_35.jpg
KIND: Ingress
VLRSION: networking.kss.io/vibetal

RESOURCE: spec <Object>

DESCRLPTLON:
spec is the desired state of the Ingress. More info:
https://git.k8s.io/community/contributors/devel/sig architecture/api
s.mdftspec-and-status

Ingressspec describes the Ingress the user wishes to exist.

FIELDS:

backend <Object>
A defaull backend capable of servicing requests that don't match any
AU least one of 'backend’ or 'rules’ must be specified. This field i
optional to allow the loadbalancer controller or defaulting logic to
specify a global default.

rules <[Jobject>
A list of host rules used to configure the Ingress. If unspecified,
rule matches, all traffic is sent to the default backend.

tls <[]object>
TIS configuration. Currently the Tngress only supports a single TIS
443. Tf multiple memhers of this list specify different hosts, they
multiplexed on the same port according to the hostname specified thr
the SNT TIS extension, if the ingress controller fulfilling the ingr.
supports SNT.

OEBPS/image/B14870_10_08.jpg
Name: test-secret
Namespace: configmap-test
Labels: <none>
Annotations: <none>

Type: Opaque

DER:]

password: 11 bytes

OEBPS/image/B14870_18_08.jpg
NAME

sleep-868969c989-5jwmh
sleep-868969c989-hfsvc
sleep-868969c989-vm2bm
sleep-868969c989-vtndb

READY
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running

RESTARTS
0

0
0
0

AGE
T17s
17s
76s
17s

.40.0.
+40+0,
.42.0.
.42.0.

RN e

NODE

kube-group-1-v627
kube-group-1-v627
kube-group-1-mdlr
kube-group-1-mdlr

OEBPS/image/B14870_01_13.jpg
REPOSTTORY. TAG
[k8s-for-beginners| (ve.0.1)
nginx latest
alpine 3.10
hello-world latest

IMAGE ID

59261c473efe
540a289bab6c
965ea09ff2eb
fce289e99eb9

CREATED

About a minute ago
3 weeks ago

3 weeks ago

10 months ago

SIZE
11.4MB
126MB
5.55MB
1.84kB

OEBPS/image/B14870_04_52.jpg
apivVersion: vl
data:

ca.crt: [LSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLSOtCk1ISUM1ekNDQWMrZOF3SUIBZO1C
QVRBTkIna3Foa21HOXcwQkFRcOZBREFWTVINdOVRWURWUVFERXdwdGFXNXAKYTNWaVpVTkINQ]
RYRFRFNULURXhOVEUZTURreU@xb1hEVEK1TVRFeE16RTNNRGt5TTFvd@ZURVRNQKVHQTFVRQPB
eE1LY1dsdWFXdDFZbVZEUVRDQOFTSXAEUV1KS29aSWh2Y@5BUUVCQ1FBRGANRVBBRENDQVFVQ2
dnRUJBT@5XCk9CR2VaS1ZQVk81eWUzRXBZbESkTVhNV2VDQWF4RN16MkZIYm8y T2xKN@55Uzhp
RmIVQ1R@Z29tancyWG5LQOcKdXNWS@k1d11RRk1IYUFtY1doZnBXU21WM@Z2NOXEWEF JRXg4Ne
MwQTM1YnMvN2EwcTY2cURCKZzICU1ZMST1GaQptTF1nWk1IckINMDBmV2N1T29nZW1CUi9DRHVR
T3ZmOXJLQzBXYkswckI3Mm4weE1mMmpGZFBhb3dHelo4Mm1oC1NMVks3RDI3akNONWVOMTNVMk
1QZ1dUbehDVWhiV2RnL2teOUVpGQ29ZK@5hWHAEeUZZT1FoUWZUeHdVNmk@NFYKRDArUFBkK@dX
aDk2cS9SUDRIK 3h4NGE4NmdpdGIMS jBGbnIXY25TdzdjNmxZNOkzVTIzVFZDNXk4Qk5ZTO1GNQ
PpGeWIWY25vSmNOYnFRakJuSTFrQeF3RUFBYUSDTUVBd@RNWURWUJBQQVFILOIBUURBZOtrTUIW
ROEXVWRKUVFXCk1CUUdDQ3NHQVFVRkI3TUNCZ2dyQmdFRkIRY@RBVEFQQMdOVKhSTUIBZjhFQL
RBREFRSCONQTBHQ1NXR1NIYIFMKRFFFQKN3VUFBNE1CQVFCN31ZTm5MazdraXB5enAzUnFvQ21Z
SWhtRUMXN2RmN3VIbU11UnJPcX1NUFhJb1VVOQpzcnFMb3EXUEZSSZFsZ1JIMm1KY@RBYk9SYm
XYcytkTGY2T31jSmNzcXhkdnNhQU83NkewUkI1Z8YyQzVUTjBOCI1Sm82UjRaTjZXUDIORMIE
MFNYRkgyYUgydkpnRFVERHNCLORTVZVHOUpiZTZ6SmlpMkFmincydjdj T1E2R1EKTitQUVRSOV
F5TStwalW9rNedvcoxeRDhOMGRIWNMZVUV1TVy94ak5abncwVE1lmY]gwRXIxb2RIREWON2pVdnZP
bApXchgyYjNzd25jaldwWUIpVzk2RVRpek9wSnMyazM2QjhGeGVHMG83L11WaVZ0eC9qQjRLLY
toWi85c3QxUGR4Cm1aZXNCTz1CYmdNci9ROXY4QUZXWF IMM1dOVWIVWVN3cHZ6UwotLSetLUVO
RCBDRVJUSUZJQ@FURSetLSetCg==

namespace: ZGVmYXVsdA==

token: |ZX1KaGIHY21PaUpTVXpJIMU5pSXNIbXRwWkNINk1gZENZamcyY1U5VWIWSnNUa3RwV
Uc4emJrOVdVMHdeVmswM@55MHdZalJ0VVdGUIRGSMZaVEZXUTNNaWZRLMV5SnBjMe1pT21KemR
XSmxjbTVsZEdWekwzTmxjblpwWTIWaFky TnZkVzUwSW13aWEzVmlaWEp1W1hSbGNSNXBie T16W
1hKMmFXTmxZV@5qYjNWdWRDOXVZVzF sYzNCaFkyVW1PaUprildaaGRXeDBJaXdpYTNWaVpYSnV
aWFJsY3k1cGI50XpaWEoyYVAObF1XTmpiM1Z1ZEM5e1pXTnlaWFF1Ym1GdFpTSTZIbVIsWm1GM
WIIUXRKkRz1yW1lc@dGQzUnJhelVpTENKcmRXSmxjbTVsZEdWekxtbHZMMO5sY25acFkyVmhZMKk5
2ZFcIMEwzTmxjblpwiTIVdF1XTmpiM1Z1ZEM1dVIXMWxJam9pWkdWbV1YVnNkQe1zSW1eMV1tV
n1ibVYwh1hNdWFXOHZjM1Z5ZG1salpXRmpZMjkxYm5RdmMyVnlkbWxgqWlMxaFkyTnZkVzUwTG5
WcFpDSTZIbUKWTURRMLpHSTIMVFZpT1RVAESEZZNNe TALWmpOakxUTTIOVOUWTkdWaFpgWTFNU
©1zSW50MV1pSTZIbk41YzNSbGIUcHpaWEoyYVAObF 1XTmpiM1Z1ZERwalpXWmhkV3gwT21SbFp
tRjFiSFFpZ1EucmptYzR2cEFtYW4waHpKSm1tMUNINXpwbGVEMH1SQjR3TFRgakdsNE8zV1Vxe
US5KVkdOZHdqYWptMS@zQTRHTM5Id1hQZHB2b3hVS2F4RUUZzaC1HQ1htZ1pIS2NGekI3ZZzhSTmI
wbVBROV8zLUFKWmhkQUNFM1c5a@1RVHF IcGRhU1BZViWXxxeUI4MzR1Z11IVTA4Y3RQVKFicXIvL
XRWmEyMG9iWkppb2plT1RuUUdCNWY2MmeOwSWexTXFYczRnd3AOMWpgd3ZQajRPZTVjaFpmMnB

OEBPS/image/B14870_01_30.jpg

OEBPS/image/B14870_18_25.jpg
NAME
master-australia-southeastl-a-g2pw
master-australia-southeastl-b-4j11
master-australia-southeastl-c-0ndl
nodes-6htd

nodes-71x0

nodes-wjth

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES
master
master
master
node
node
node

AGE
23m
10m
2mls
39m
39m
39m

VERSION
v1.15.10
v1.15.10
v1.15.10
v1.15.7
v1.15.7
v1.15.7

OEBPS/image/B14870_15_20.jpg
00 i kubernetes-test-ha-application — -zsh — 97x26

...a-application — -zsh

'zarnold@zachs-mbp kubernetes-test-—ha-application % kubectl get svc ingr

-0 jsonpath='{.status.loadBalancer.ingress[@].hostname}'
a3a284c12d8024a8db07446b4635bebc-919380467 .us—east-1.elb.amazonaws.com
zarnold@zachs—-mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_15_03.jpg
[zarnold@zachs-mbp terraform % kubectl
{"kin: "NodeMetricsList","apiVersio
s"},"items":[{"metadata":{"name":
s/ip-10-0-0-192.us-west-2.

t —-raw "/apis/metrics.k8s.io/vlbetal/nodes"
"selfLink"

/apis/metrics.k8s.io/vlbetal/node
"selfLink":"/apis/metrics.k8s.io/vlbetal/node
"creationTimestamp":"2019-12-15T08:03:512' ,"timestamp":"2019-12-15T08:03: 392
", "window":"30s"," ,"memory":"424080Ki"}}, {"metadata":{"name "1p -10-0-2-152.us-west—2.comp!
ternal","selfLin "/apis/metrics.k8s.io/vibetal/nodes/ip-10-0-2-152.us-west-2.compute.internal, "creationTimestamp
9-12-15T@8:03:51Z"}, "timestamp":"2019-12-15T08:03:38Z", "window" : "3@s", "usage":{"cpu":"38985507n" , "memory": "556972Ki"}}1}
zarnold@zachs-mbp terraform % [

OEBPS/image/B14870_04_03.jpg
User

Privileges

Namespace

ClusterAdmin

Can perform all tasks

All namespaces

ReadOnlyUser

Can read pod status

default

OEBPS/image/B14870_04_20.jpg
5477 round_trippers.go:449] Response Headers:

5477 round_trippers.go:452] Cache-Control: no-cache, private
5477 round_trippers.go:452] Content-Type: application/json
5477 round_trippers.go:452] Date: Sat, 23 Nov 2019 13:04:42 GMT

OEBPS/image/B14870_18_10.jpg
NAME

sleep-868969c989-5jwmh
sleep-868969c989-c9s8z
sleep-868969c989-hfsvc
sleep-868969c989-v8k51

READY
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running

RESTARTS
0

0
0
0

AGE
4m52s
113s
4m52s
113s

Ip

10.40.0.1
10.40.0.3
10.40.0.2
10.40.0.4

NODE

kube-group-1-v627
kube-group-1-v627
kube-group-1-v627
kube-group-1-v627

OEBPS/image/B14870_16_11.jpg
Generating a 2048 bit RSA private key
s

writing new private key to 'controller_ca.key'

OEBPS/image/B14870_02_15.jpg
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes

Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes

Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!
Beginners!

OEBPS/image/B14870_01_07.jpg
Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

1b930d010525: Pull complete

Digest: sha256:c3b4ada4687bbaal70745b3e4dd8ac3f194ca95b2d0518b417fb47e5879d9b5f
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(Camd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

OEBPS/image/B14870_03_07.jpg
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 34d
melonvote-front LoadBalancer 10.0.243.12 40.68.95.73 80:32651/TCP 7d6h
redis-back ClusterIP 10.0.133.234 <none> 6379/TCP 7d6h

OEBPS/image/B14870_15_01.jpg
api
K8s API Server

]

Metrics Server

]

Metric Server Service

Kubernetes Cluster

Prometheus Service

Prometheus
Deployment

Collected Prometheus
Metric Data

Grafana Service

84

leploy

Grafana Dashboard
Deployment

You

OEBPS/image/B14870_10_03.jpg
apiVersion: vi1
data:
partner—-url: https://www.auppost.com.au
kind: ConfigMap
metadata:
creationTimestamp: "2019-07-24T01:48:32Z"
name: singlevalue-map
namespace: configmap-test
resourceVersion: "547609"
selfLink: /api/vil/namespaces/configmap-test/configmaps/singlevalue-map
uid: 24d1f3ab-adb5-11e9-89ac-000c2917147b

OEBPS/image/B14870_12_03.jpg
provider.aws.region
The region where AWS operations will take place. Examples
are us—east-1, us-west-2, etc.

Enter a value: us-west-2
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:

aws_s3_bucket.my_bucket will be created
+ resource "aws_s3_bucket" "my_bucket" {

+ acceleration_status = (known after apply)
+ acl = "private"

+ arn = (known after apply)
+ bucket "zparnold-test-bucket"
+ bucket_domain_name = (known after apply)
+ bucket_regional_domain_name = (known after apply)
+ force_destroy = false

+ hosted_zone_id = (known after apply)
+ id = (known after apply)
+ region = (known after apply)
+ request_payer = (known after apply)
+ website_domain = (known after apply)
+ website_endpoint = (known after apply)

&

versioning {
+ enabled
+ mfa_delete

}

(known after apply)
(known after apply)

nwon

}
Plan: 1 to add, @ to change, @ to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: yesf]

OEBPS/image/B14870_01_31.jpg
root 1037, 1 005:517 00 00 /usr/bin/containerd

root 19374 37 0 05:54 7 00:00:00 _ containerd-shim -namespace moby -workdir /var/lib
/containerd/#. containerd. runtime.v1.linux/moby/c7ee681ff8f73fa58cf@b37bc5ce08306913f27c5733c725f7fe9d
7717025625d -dydress /run/containerd/containerd.sock -containerd-binary /usr/bin/containerd -runtime-
root /var/run/dycker/runtime-runc

root 19394 19374 1 05:54 ? 00:00:00 _ /k8s-for-beginners
root 19455 19121 @ 05:54 pts/@ 00:00:00 _ grep containerd -A 1
root 1073 1 0 05:517 00:00:00 /usr/bin/python3 /usr/share/unattended-upgrades/unatt

ended-upgrade-shutdown --wait-for-signal

root 19145 1 @ 05:54 7 00:00:00 /usr/bin/dockerd -H fd:// --containerd=/run/container
d/containerd.sock

OEBPS/image/B14870_06_05.jpg
Name: pod-wi

thout-initial-labels

Namespace: default
Priority: 0
Node: minikube/10.0.2.15
Start Time: Mon, 14 Oct 2019 22:32:42 +0200
Labels: app=nginx
foo=bar
foo2=baz
Annotations: <none>
Status: Running
IP: 172.17.0.5
IPs:
IRz 472174055
Containers:

first-container:
Container ID:
Image:
Image ID:
ccdl
Port:
Host Port:
State:
Started:
Ready:
Restart Count:
Environment:
Mounts:
/var/run/secre
Conditions:
Type
Initialized
Ready
ContainersReady
PodScheduled
Volumes:
default-token-wéxv
Type: Sec
SecretName: def
Optional: fal
QoS Class: Bes
Node-Selectors: <nol
Tolerations: nod
nod
Events:
Type Reason
Normal Scheduled
minikube
Normal Pulling
Normal Pulled
Normal Created
Normal Started

docker://5f85bacb30f858c80654039e498886d684635627ae58a199c90669f8a54a29¢c
nginx
docker-pullable://nginx@sha256:aeded@f2a861747f43a01cf1018cf9efe2bdd@2afd57d2bl1fcc7fcadcl6

<none>
<none>

Running

Mon, 14 Oct 2019 22:32:46 +0200
True

[

<none>

ts/kubernetes.io/serviceaccount from default-token-wéxvp (ro)

Status
True
True
True
True

p:
ret (a volume populated by a Secret)
ault-token-w6xvp

se

tEffort

ne>

e.kubernetes.io/not-ready:NoExecute for 300s
e.kubernetes.io/unreachable:NoExecute for 300s

Age From Message

<unknown> default-scheduler Successfully assigned default/pod-without-initial-labels to

13m kubelet, minikube Pulling image "nginx"
13m kubelet, minikube Successfully pulled image "nginx"
13m kubelet, minikube Created container first-container

13m kubelet, minikube Started container first-container

OEBPS/image/B14870_0_01.jpg
1} System Tools
B storage
B Senices and Applications

OEBPS/image/B14870_18_26.jpg
Using cluster from kubectl context: myfirstcluster.k8s.local

NAME ROLE MACHINETYPE MIN MAX ZONES

master-australia-southeastl-a Master nl-standard-1 1 1 australia-southeastl
;:ster—australia—southeastl—b Master nl-standard-1 1 1 australia-southeastl
;:ster—australia—southeastl—c Master nl-standard-1 1 1 australia-southeastl
;gdes Node nl-standard-2 3 3 australia-southeastl

-a,australia-southeastl-b,australia-southeastl-c

OEBPS/image/B14870_18_34.jpg
NAME

sleep-8689c746£f4-8cjws
sleep-8689c746f4-brdjh
sleep-8689c746f4-fb7cv
sleep-8689c746£f4-15fkh

READY
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running

RESTARTS
0

0
0
0

AGE

7h35m
7h28m
7h35m
7h28m

OEBPS/image/B14870_04_17.jpg
5477 round_trippers.go:420] GET https://192.168.99.110:8443/api/v1l/namespaces/kube-system/pods?1imit=500

OEBPS/image/B14870_08_13.jpg
The Service "nginx-service-custom-clusterip” is invalid: spec.clusterIP: Inva
1id value: "10.90.10.70": provided IP is not in the valid range. The range of

valid IPs is |10.96.0.0/12

OEBPS/image/B14870_02_13.jpg
Actor

Minikube VM

Port 32571

Port 80

Port 8080

Pod

OEBPS/image/B14870_19_08.jpg
$kubectl get pods -w -n crddemo

NAME READY
crd-server-77ffcff74b-wdk9j 1/1
long-running-pod-example 0/1
long-running-pod-example 0/1
long-running-pod-example 0/1
long-running-pod-example 171
long-running-pod-example 1/1

long-running-pod-example 1/1

STATUS RESTARTS
Running @
Pending 0
Pending 0
ContainerCreating
Running
Terminating
Terminating

0s
4s
6ls
6ls

OEBPS/image/B14870_02_05.jpg
< ()N /N
_
AN

)

&)

NI/
[G A N N G B B B PO B [€

D) OO OO/

) ()
<

C
D

o
|
(@

OEBPS/image/B14870_16_03.jpg
2. The API server
passes the
AdmissionReview
object to the
webhook.

%
1. The API request
comes to the server
(for example, kubectl).

Custom Webhook
Service

3. The webhook returns
the AdmissionReview
object with updates.

The Kubernetes
API Server —
Mutating
Webhook

4. If the modification response is marked as
successful, the request moves on to the next
stage. If not, an error is returned to the caller.

OEBPS/image/B14870_11_05.jpg
10125 15:14:35.716296 10817 apply_cluster.go:556] Gossip DNS: skipping DNS validation

10125 15:14:39.522404 10817 executor.go:103] Tasks: @ done / 95 total; 43 can run

10125 15:14:43.191821 10817 vfs_castore.go:729] Issuing new certificate: "etcd-manager-ca-events"
10125 15:14:43.271673 10817 vfs_castore.go:729] Issuing new certificate: "etcd-peers-ca-main"
10125 15:14:43.305705 10817 vfs_castore.go:729] Issuing new certificate: "etcd-peers-ca-events"
10125 15:14:43.410568 10817 vfs_castore.go:729] Issuing new certificate: "etcd-manager-ca-main"
10125 15:14:43.760330 10817 vfs_castore.go:729] Issuing new certificate: "ca"

10125 15:14:44.406332 10817 vfs_castore.go:729] Issuing new certificate: "apiserver-aggregator-ca"
10125 15:14:45.177145 10817 vfs_castore.go:729] Issuing new certificate: "etcd-clients-ca"

10125 15:14:48.989778 10817 executor.go:1@3] Tasks: 43 done / 95 total; 26 can run

10125 15:14:54.592041 10817 vfs_castore.go:729] Issuing new certificate: "kube-scheduler"

10125 15:14:54.644617 10817 vfs_castore.go:729] Issuing new certificate: "kube-controller-manager"
10125 15:14:54.654585 10817 vfs_castore.go:729] Issuing new certificate: "apiserver-aggregator"
10125 15:14:54.782827 10817 vfs_castore.go:729] Issuing new certificate: "kube-proxy"

10125 15:14:54.783214 10817 vfs_castore.go:729] Issuing new certificate: "kops"

10125 15:14:54.896238 10817 vfs_castore.go:729] Issuing new certificate: "apiserver-proxy-client"
10125 15:14:54.999278 10817 vfs_castore.go:729] Issuing new certificate: "kubelet"

10125 15:14:55.263693 10817 vfs_castore.go:729] Issuing new certificate: "kubelet-api®

10125 15:14:56.427218 10817 vfs_castore.go:729] Issuing new certificate: "kubecfg"

10125 15:15:01.674217 10817 executor.go:103] Tasks: 69 done / 95 total; 22 can run

10125 15:15:09.663504 10817 executor.go:103] Tasks: 91 done / 95 total; 3 can run

10125 15:15:14.581826 10817 vfs_castore.go:729] Issuing new certificate: "master"

10125 15:15:17.656541 10817 executor.go:103] Tasks: 94 done / 95 total; 1 can run

10125 15:15:24.768284 10817 executor.go:103] Tasks: 95 done / 95 total; @ can run

10125 15:15:31.422504 10817 update_cluster.go:294] Exporting kubecfg for cluster

kops has set your kubectl context to myfirstcluster.k8s.local

Cluster is starting. It should be ready in a few minutes.

Suggestions:

* validate cluster: kops validate cluster

* list nodes: kubectl get nodes --show-labels

* ssh to the master: ssh -i ~/.ssh/id_rsa admin@api.myfirstcluster.k8s.local

* the admin user is specific to Debian. If not using Debian please use the appropriate user based on your OS.
* read about installing addons at: https://github.com/kubernetes/kops/blob/master/docs/addons.md.

OEBPS/image/B14870_01_27.jpg
59b5849a22b12941el

cgroup.
cgroup.
cgroup.
memory .
memory .
memory .
memory .
memory .
memory .
memory .
memory .
memory .
memory .
memory .

clone_children
event_control

procs

failent

force_empty

kmem. failcnt
kmem.limit_in_bytes
kmem.max_usage_in_bytes
kmem.slabinfo

kmem. tcp. failent
kmem.tcp.limit_in_bytes
kmem. tcp.max_usage_in_bytes
kmem. tcp.usage_in_bytes
kmem.usage_in_bytes

memory .
memory .
memory
memory .
memory .
memory .
memory .
memory .
memory .
notify_
tasks

tes

ax_usage_in
move_charge_at_immigrate
numa_stat

.oom_control

pressure_level
soft_limit_in_bytes
stat

swappiness
usage_in_bytes
use_hierarchy
on_release

OEBPS/image/B14870_13_05.jpg
node. kubernetes.io/memory—pressure:NoSchedule
node.kubernetes.io/network-unavailable:NoSchedule
node. kubernetes.io/not-ready:NoExecute

node. kubernetes.io/pid-pressure:NoSchedule
node.kubernetes.io/unreachable:NoExecute
node.kubernetes.io/unschedulable:NoSchedule

Events:

Type Reason Age From Mes
sage

Normal Scheduled 39m default-scheduler Suc

cessfully assigned kube-system/aws-node-fzrém to ip-10-0-0-61.us-west-2.compute.
internal

Normal Pulling 39m kubelet, ip-10-0-0-61.us-west-2.compute.internal Pul
ling image "602401143452.dkr.ecr.us—-west—2.amazonaws.com/amazon-k8s-cni:v1.5.3"

Normal Pulled 39m kubelet, ip-10-0-0-61.us-west-2.compute.internal Suc
cessfully pulled image "602401143452.dkr.ecr.us-west-2.amazonaws.com/amazon—k8s-
cni:vl.5.3"

Normal Created 39m kubelet, ip-10-0-0-61.us-west-2.compute.internal Cre
ated container aws-node

Normal Started 39m kubelet, ip-10-0-0-61.us-west-2.compute.internal Sta
rted container aws-node
zarnold®Zachs-MBP ~ %

OEBPS/image/B14870_05_03.jpg

OEBPS/image/B14870_15_24.jpg
Request
Instances

Kubernetes VPC

No Room For More Pods

@

EKS Control Plane

Server Contents

&

©
©
©
©

ClusterAutoscaler Other Deployment

©
©
©
©

Other Deployment Other Deployment

©
©
©
©

Other Deployment Other Deployment

Other Deployment Other Deployment
Other Deployment Other Deployment

Other Deployment Other Deployment

OEBPS/image/B14870_0_08.jpg
Rufus 3111676 (Portable) - X

Drive Propel
Device

{Flash Disk (F) (16 GB] i
Boot selection

wbuntu-18.044 desktop-amdsd so X © [saeer

Persistent parttion size.
' 0 (No persistence)

Partition scheme. Target system
GPT v UEFI (non CSM). v

~ Show advanced drive properties

Format Options
Volume label

[Upuntu 1804 TS omdst

Frm e
FATS2 (Deful) O [s192bytes Oefout) 5
P e

Qick format

e

] Check device forbad blocks = g

Status

READY

90=® close

Using image: ubuntu-18.04 4-desktop-amdsA.iso

OEBPS/image/B14870_10_15.jpg
Name: test-tls
Namespace: configmap-test
Labels: <none>
Annotations: <none>

Type: kubernetes.io/tls

DER:]

tls.key: 1704 bytes
tls.crt: 997 bytes

OEBPS/image/B14870_03_15.jpg
deployment.extensions/kubeserve with revision #3
Pod Template:
Labels: app=kubeserve
pod-template-hash=6995cffd5f
Annotations: kubernetes.io/change-cause: kubectl set image deployment/kubeserve nginx=nginx:1.91 --record=true
Containers:

nginx:

Image: nginx:1.91
Port: 80/TCP

Host Port: ©/TCP
Environment: <none>
Mounts: <none>

Volumes: <none>

OEBPS/image/B14870_04_45.jpg
“kind": “Namespace",
"apiversion": "vi",
“metadata®: {
“name example”,
"selfLink": "/api/vl/namespaces/example”,
"uid": "@e3a5217-9836-4525-af13-80e6f8c97022",
"resourceVersion "3448348",
"creationTimestam "2020-05-02T18:14:372"
1
"spec”: {
“finalizers": [
"kubernetes"
1
s
"status": {
“phase": “"Active"

OEBPS/image/B14870_04_02.jpg
HTTP Client (Kubect)

Kubernetes API Server

(o 8

‘Service Account

Authentication

Authorization

Admission Control

elod

OEBPS/image/B14870_04_36.jpg
KIND: Tngress
VERSION: networking.k8s.io/vlbetal

RESOURCE: backend <Object>

DESCRIPTION:
A default backend capable of servicing requests that don't match any rule.
At least one of ‘backend® or ‘rules’' must be specified. This field is
optional to allow the loadbalancer controller or defaulting logic to
specify a global default.

IngressBackend describes all endpoints for a given service and port.
FIELDS:
serviceName <string> -required-

specifies the name of the referenced service.

servicePort <string> -required
Specifies the port of the referenced service.

OEBPS/image/B14870_14_07.jpg
Chart.yaml

charts

release.yaml

templates
NOTES. txt
_helpers.tpl
deployment.yaml
hpa.yaml
ingress.yaml
service.yaml
serviceaccount.yaml
tests
L— test-connection.yaml

values.yaml

3 directories, 11 files

OEBPS/image/B14870_02_29.jpg

OEBPS/image/B14870_17_05.jpg
Name:
Roles:
Labels:

Annotations:

minikube

master

beta.kubernetes.io/arch=amd64

beta.kubernetes.io/os=1linux

kubernetes.io/arch=amd64

kubernetes.io/hostname=minikube

kubernetes.io/os=linux

node-role.kubernetes.io/master=
kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock
node.alpha.kubernetes.io/ttl: @
volumes.kubernetes.io/controller-managed-attach-detach: true

OEBPS/image/B14870_13_08.jpg
daemonset.apps/calico-node created
customresourcedefinition.apiextensions.k8s.io/felixconfigurations.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/ipamblocks.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/blockaffinities.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/bgpconfigurations.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/bgppeers.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/ippools.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/hostendpoints.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/clusterinformations.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/globalnetworkpolicies.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/globalnetworksets.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/networkpolicies.crd.projectcalico.org created
customresourcedefinition.apiextensions.k8s.io/networksets.crd.projectcalico.org created
serviceaccount/calico-node created

clusterrole.rbac.authorization.k8s.io/calico-node created
clusterrolebinding.rbac.authorization.k8s.io/calico-node created

deployment.apps/calico-typha created

poddisruptionbudget.policy/calico-typha created
clusterrolebinding.rbac.authorization.k8s.io/typha-cpha created
clusterrole.rbac.authorization.k8s.io/typha-cpha created
configmap/calico-typha-horizontal-autoscaler created
deployment.apps/calico-typha-horizontal-autoscaler created
role.rbac.authorization.k8s.io/typha-cpha created

serviceaccount/typha-cpha created

rolebinding.rbac.authorization.k8s.io/typha-cpha created

service/calico-typha created

OEBPS/image/B14870_01_04.jpg
Unable to find image 'nginx:latest' locally

latest: Pulling from library/nginx

8d691f585fa8: Pull complete

5b@7f4e08ad@: Pull complete

abc291867bca: Pull complete

Digest: sha256:922c815aa4df050d4df476e92daed4231f466acc8ee9d0e@e774951b0fd7195a4
Status: Downloaded newer image for nginx:latest
96c374000f6f84aec7367b4e50939d257a83c746c0ca3436b2349047cafab7c0

OEBPS/image/B14870_15_21.jpg
O © O W kubernetes-test-ha-application — docker run --rm skandyla/wrk -t100 -c¢100 -d120 -H Host: counter.c...

[zarnold@zachs-mbp kubernetes-test-ha-application % docker run —-rm skandyla/wrk -t100 -c100 -d120 -H]
'Host: counter.com' http://ac74d703e@a264db5aadees01440fbbe—dcbssbabaa3201b9.elb.us—east-1.amazonaw

s.com/get-number

Running 2m test @ http://ac74d703e@a264db5aadees01440fbbe—-dcbsbbabaa3201b9.elb.us—east-1.amazonaws.c

om/get-number

OEBPS/image/B14870_04_21.jpg
11123 15:04:42.107397 5477 request.go:968] {"kind":"Table","apiVersion": "meta.k8s.io/vlbetal", "meta
data":{"selfLink":"/api/v1/namespaces/kube-system/pods","resourceVersion":"1051"},"columnDefinitions":[{"name": "Name"
,"type":"string","format":"name","description”:"Name must be unique within a namespace. Is required when creating res
ources, although some resources may allow a client to request the generation of an appropriate name automatically. Na
me is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: http://
kubernetes.io/docs/user-guide/identifiers#names", "priority":0},{"name": "Ready","type": "str‘mg","For'mat":"","descripti
on":"The aggregate readiness state of this pod for accepting traffic.","priority":0},{"name":"Status","type":"string"

'format" "description":"The aggregate status of the containers in this pod.","priority":0},{"name":"Restarts","ty

,"description":"The number of times the containers in this pod have been restarted.","priori
"str‘l [truncated 9336 chars] |

OEBPS/image/B14870_15_09.jpg
Configuration

Organization: Main Org.

€ Data Sources & Users & Teams & Plugins == Preferences A, API Keys

There are no data sources defined yet

o ProTip: You can also define data sources through configuration files. Learn more

OEBPS/image/B14870_04_09.jpg
--enable-admission-plugins strings admission plugins that should be
enabled in addition to default enabled ones (NamespacelLifecycle, LimitRanger, Se
rviceAccount, TaintNodesByCondition, Priority, DefaultTolerationSeconds, Default
StorageClass, StorageObjectInUseProtection, PersistentVolumeClaimResize, Mutatin
gAdmissionWebhook, ValidatingAdmissionWebhook, RuntimeClass, ResourceQuota). Com
ma-delimited list of admission plugins: AlwaysAdmit, AlwaysDeny, AlwaysPullImage
s, DefaultStorageClass, DefaultTolerationSeconds, DenyEscalatingExec, DenyExecOn
Privileged, EventRatelLimit, ExtendedResourceToleration, ImagePolicyWebhook, Limi
tPodHardAntiAffinityTopology, LimitRanger, MutatingAdmissionWebhook, NamespaceAu
toProvision, NamespaceExists, NamespacelLifecycle, NodeRestriction, OwnerReferenc
esPermissionEnforcement, PersistentVolumeClaimResize, PersistentVolumelLabel, Pod
NodeSelector, PodPreset, PodSecurityPolicy, PodTolerationRestriction, Priority,
ResourceQuota, RuntimeClass, SecurityContextDeny, ServiceAccount, StorageObjectI
nUseProtection, TaintNodesByCondition, ValidatingAdmissionWebhook. The order of
plugins in this flag does not matter.

OEBPS/image/B14870_08_09.jpg
Name: nginx-service-clusterip

Namespace: default

Labels: <none>

Annotations: <none>

Selector: app=nginx,environment=production

Type: ClusterIP

IP: 10.99.11.74

Port: <unset> 80/TCP|

TargetPort: 80/TCP |

Endpoints: 172.17.0.3:80,172.17.0.4:80,172.17.0.5:80 |

Session Affinity:

Events:

None
<none>

OEBPS/image/B14870_19_09.jpg
$kubectl create -f pod-normaliser-crd-adv.yaml -n crddemo i
cgstomresour‘cedefinitionAupiextensions.k8$.io/podlifecycleconﬁgsadv.controllers‘kube.book.au created

OEBPS/image/B14870_02_14.jpg
NAME READY STATUS RESTARTS AGE

k8s-for-beginners-66644bb776-739mw 1/1 Running @ 106s
k8s-for-beginners-66644bb776-dzf9j 1/1 Running @ 106s
k8s-for-beginners-66644bb776-fg8s5 1/1 Running @ 106s

OEBPS/image/B14870_01_12.jpg
Sending build context to Docker daemon 5.863MB

Step 1/3 : FROM alpine:3.10

3.10: Pulling from library/alpine

89d9c30c1d48: Pull complete

Digest: sha256:c19173c5ada610a5989151111163d28a67368362762534d8a8121ce95cf2bdSa

Status: Downloaded newer image for alpine:3.10
---> 965ea09ff2eb

Step 2/3 : COPY k8s-for-beginners /
---> 6b859897a4e9

Step 3/3 : (MD ["/k8s-for-beginners"]
---> Running in Sb6edafbb116

Removing intermediate container Sb6edafbbl16
---> 59261c473efe

Successfully built 59261c473efe

Successfully tagged k8s-for-beginners:v0.0.1

OEBPS/image/B14870_10_18.jpg
external-system-location=https://testvendor.example.com
external-system-basic-auth-username=user123
external-system-basic—-auth—-password=passwordi23

OEBPS/image/B14870_18_07.jpg
kube-group-1-54cx
kube-group-l-gxwc
kube-group-1-1b51
kube-group-l1-mdlr
kube-group-1-v627

Ready
Ready
Ready
Ready
Ready

master
master
master
worker
worker

71lm
67m
69m
477m
48m

vl.
vl.
vl.
vl.
vl.

14.
14.
14.,
14.
14.

W 0 0 W W

OEBPS/image/B14870_07_11.jpg
deployment.apps/app-deployment

REVISION CHANGE-CAUSE

1 <none>

2 kubectl apply --filename=app-deployment.yaml --record=true

3 |kubect1 set image deployment app-deployment nginx=ngnx --record=true

OEBPS/image/B14870_01_19.jpg
root 5897 | 5879 @ ©5:19 ? 00:00:00 /k8s-for-beginners
root 6097 2212 @ 06:09 pts/0 00:00:00 grep --color=auto k8s-for-beginners

OEBPS/image/B14870_07_07.jpg
NAME

nginx-deployment-588765684f-6wkkc
nginx-deployment-588765684f-7hq4q
nginx-deployment-588765684f-82wpf

READY
171
171
171

STATUS

Running
Running
Running

RESTARTS
]
0
4]

AGE
19s
19s
19s

OEBPS/image/B14870_18_11.jpg
Labels:

Annotations:

CreationTimestamo:

beta.kubernetes.io/arch=amd64

beta.kubernetes.io/os=linux

kubernetes.io/arch=amd64

kubernetes.io/hostname=instance-2

kubernetes.io/os=1inux

kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock
node.alpha.kubernetes.io/ttl: @
volumes.kubernetes.io/controller-managed-attach-detach: true
Sun. 24 Nov 2019 13:39:42 10000

Taints:
Unschedulable:

node . kubernetes.io/unschedulable:NoSchedule
true

OEBPS/image/B14870_12_06.jpg
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:
aws_eks_cluster.demo:

Still
Still
Still
Still
Still
Still
Still
Still
Still

creatin
creatin
creatin
creatin
creatin
creating
creatin
creatin
creatin

[3m26s elapsed]
[3m36s elapsed]
[3ms0s elapsed]
[3m50s elapsed]
[4m@s elapsed]
[4m1es elapsed]
[4m20s elapsed]
[4m36s elapsed]
[4ms0s elapsed]

OEBPS/image/B14870_12_19.jpg
zarnold@zachs-mbp kubernetes % curl —-H 'Host: counter.com' a3960d10c980e40199887]
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

zarnold@zachs-mbp kubernetes % curl —-H 'Host: counter.com' a3960d10c980e40199887]
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 1}% 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 2}% 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 3}% 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us—-east-1.elb.amazonaws.com/get—number

{number: 4}% 1
zarnold@zachs-mbp kubernetes % curl -H 'Host: counter.com' a3960d10c980e40f99887
ea@68f41b7b-1447612395.us-east-1.elb.amazonaws.com/get—number

{number: 5}%

OEBPS/image/B14870_07_06.jpg
Deployment

ReplicaSet

OEBPS/image/B14870_18_27.jpg
NAME
master-australia-southeastl-a-q2pw
master-australia-southeastl-b-4jll
master-australia-southeastl-c-0ndl
nodes-6htd

nodes-71x0

nodes-wjth

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES
master
master
master
node
node
node

AGE
40m
26m
18m
55m
55m
55m

VERSION
v1.15.10
v1.15.10
v1.15.10
v1l.15.7
v1l.15.7
v1l.15.7

OEBPS/image/B14870_11_10.jpg
eyJhbGci0iJSUzIINiIsImtpZCI6IiJ9.eyIpc3Mi0idrdwllcm51dGVzL3N1cnZpY2VhY2Nvdw50Iiw
1a3ViZXJuzZXR1lcy5pby9zZXJ2aWN1YWNjb3VudCouYW11c3BhY2Ui0iJrdWI1LXN5c3R1bSIsImt1YmV
ybmV@ZXMuawW8vc2VydmljZWFjY291bnQvc2VjcmVeLm5hbWUi0idhZG1pbillc2VyLXRva2VulLWec50wWZ
iIiwia3VizZXJuZXR1lcy5pby9zZXJ2aWN1YWNjb3VudC9zZXJ2aWN1LWFjY291bnQubmFtZSI6ImFkbWl
uLXVzZXIilLCJrdwJlcm51dGVzLmlvL3N1lcnZpY2VhY2Nvdw50L3N1cnZpY2UtYWNjb3VudC51awQioid
kMT1kNGQzYi1iOTQ4LTQOZWYtODA2Ni1iMGMzZGNiM2U1YmQiLCJIzdWIi0iJzeXNOZWO6Cc2VydmljZWF
jY291bnQ6a3VizS1zeXNOZWO6YWRtaW4tdXN1cid9.C5IRqbTNVFeMI4L80Ss1seAbiDHE8s8U@1Dih—
91VIyrVTcS1VSVifXeTg5zcn8F1Ebp-VDPvVhZiSmIQIYRNNIk5zQx1hftjVOcLmyYapOzwORS2IMRCH
e50MauczAdBvX3MzAHhDG]jyZsNEDQRPa8E_CGjZQ1lZvWSSuAHvff8FDr8nnXnufbuzNLOWIyRskZiPSx
FbEQa2FEQgQuFtC_LX50eX3wkugkz1Pm3JzPjgAN-xLQUPf7uXyCU7R@3gdcGaiOviré7h_ul211m5T0]
ZUW6zufGX_fvaqkyapSewInP—Oépj1EfqeOaR9u1EAArSOAZZtZTdeLblBUSbA%

OEBPS/image/B14870_12_10.jpg
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 895 100 895 [} (] 2193) ==H=—idm= ==g=—==— =—d=—=— 2l}}

OEBPS/image/B14870_04_16.jpg
42.086493 5477 loader.go:375] Config loaded from file: /Users/mohammed/.kube/config

OEBPS/image/B14870_08_14.jpg
NAME
nginx-service-custom-clusterip

TYPE
ClusterIP

CLUSTER-IP
10.96.0.5

EXTERNAL-IP
<none>

PORT(S)
80/TCP

AGE
14m

OEBPS/image/B14870_03_14.jpg
deployment.extensions/kubeserve
REVISION CHANGE-CAUSE
i <none>

3 kubectl set image deployment/kubeserve nginx=nginx:1.91 --record=true
4 <none>

OEBPS/image/B14870_04_22.jpg
NAME

coredns-5644d7b6d9-292kd
coredns-5644d7b6d9-21g9r
etcd-minikube
kube-addon-manager-minikube
kube-apiserver-minikube
kube-controller-manager-minikube
kube-proxy-cpbjg
kube-scheduler-minikube
storage-provisioner

READY
1
1
1
1
1
1
1
1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

LS ACSIS RS ISR B IS RS

AGE
8m25s
8m25s
7m21s
8m33s
5m5s
5m5s
8m26s
7ml2s
8m24s

OEBPS/image/B14870_03_08.jpg
NAMESPACE
default
default
default
keda

keda

keda

keda

keda

keda
kube-system
kube-system
kube-system
kube-system
kube-system

kube-system

NAME

aci-helloworld

melonvote-front

redis-back

keda

osiris-osiris-edge-activator
osiris-osiris-edge-endpoints-controller
osiris-osiris-edge-endpoints-hijacker
osiris-osiris-edge-proxy-injector
osiris-osiris-edge-zeroscaler
aci-connector-linux

coredns

coredns-autoscaler
kubernetes-dashboard

metrics-server

tunnelfront

READY
/il
1/1
171
i/l
iyl
1/1
1/1
1/1
L7l
1/1
575
1/1
1/1
il
1/1

UP-TO-DATE

R RRRURRRRRRRRR R

AVAILABLE

RPRRRBURRRRRERRRRRR

AGE
34d
7d6h
7d6h
34d
34d
34d
34d
34d
34d
34d
34d
34d
34d
34d
34d

OEBPS/image/B14870_01_26.jpg
/sys/fs/cgroup/blkio/docker
/sys/fs/cgroup/cpu, cpuacct/docker
/sys/fs/cgroup/cpuset/docker
/sys/fs/cgroup/devices/docker
/sys/fs/cgroup/freezer/docker
/sys/fs/cgroup/hugetlb/docker
/sys/fs/cgroup/memory/jdocker
/sys/fs/cgroup/net_cls,net_prio/docker
/sys/fs/cgroup/perf_event/docker
/sys/fs/cgroup/pids/docker
/sys/fs/cgroup/systemd/docker

OEBPS/image/B14870_11_04.jpg
apiVersion: kops.k8s.io/vlalpha2
kind: Cluster
metadata:
creationTimestamp: "2020-01-25T13:37:24Z"
name: myfirstcluster.k8s.local
spec:
api:
loadBalancer:
type: Public
authorization:
rbac: {}
channel: stable
cloudProvider: aws
configBase: s3://kops-abzelcw4wsf@t/myfirstcluster.k8s.local
etcdClusters:
— cpuRequest: 200m
etcdMembers:
— instanceGroup: master-us-west-2a
name: a
memoryRequest: 100Mi
name: main
— cpuRequest: 100m
etcdMembers:
— instanceGroup: master-us-west-2a
name: a
memoryRequest: 100Mi
name: events
iam:
allowContainerRegistry: true
legacy: false

OEBPS/image/B14870_12_04.jpg
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes
aws_s3_bucket.my_bucket: Creating...
aws_s3_bucket.my_bucket: Still creating... [18s elapsed]

aws_s3_bucket.my_bucket: Creation complete after 14s [id=zparnold-test-bucket]

Apply complete! Resources: 1 added, © changed, @ destroyed.

OEBPS/image/B14870_15_17.jpg
000 B kubernetes-test-ha-application — -zsh — 100x28

zarnold@zachs-mbp kubernetes-test-ha—application % kubectl apply -f https://raw.githubusercontent.co
m/kubernetes/ingress-nginx/controller-0.31.0/deploy/static/provider/aws/deploy.yaml
namespace/ingress—-nginx created

serviceaccount/ingress-nginx created

configmap/ingress—-nginx-controller created
clusterrole.rbac.authorization.k8s.io/ingress-nginx created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx created
role.rbac.authorization.k8s.io/ingress-nginx created
rolebinding.rbac.authorization.k8s.io/ingress-nginx created
service/ingress-nginx-controller-admission created

service/ingress-nginx-controller created

deployment.apps/ingress—-nginx—controller created
validatingwebhookconfiguration.admissionregistration.k8s.io/ingress—-nginx-admission created
clusterrole.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrolebinding.rbac.authorization.k8s.io/ingress—-nginx-admission created
job.batch/ingress—-nginx-admission-create created
job.batch/ingress—-nginx-admission-patch created
role.rbac.authorization.k8s.io/ingress-nginx-admission created
rolebinding.rbac.authorization.k8s.io/ingress—-nginx-admission created
serviceaccount/ingress-nginx-admission created

zarnold@zachs-mbp kubernetes-test-ha-application % I

OEBPS/image/B14870_14_09.jpg
Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

OEBPS/image/B14870_08_08.jpg
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 54d
nginx-service-clusterip ClusterIP 10.99.11.74 <none> 80/TCP 82m|

OEBPS/image/B14870_13_12.jpg
Sending build context to Docker daemon 3.072kB
Step 1/3 : FROM debian:latest
——-> 3de@e2c97e5c

Step 2/3 : USER @

—--> Using cache

———> 16326e22a5e9

Step 3/3 : CMD echo $(whoami)
—--> Using cache

———> ecf183764859

Successfully built ecf183764859
Successfully tagged root:latest

OEBPS/image/B14870_02_12.jpg
[g=rzesaoas lszsarmasa-amnaszzas lsz=arsssz=as lgsrrsssnesmsnmnnanoneaans |
| NAMESPACE | NAME | TARGET PORT | URL |
R] |ommommmmmc e eeee [R e e e e L e e e L |
| default | k8s-for-beginners | | http://192.168.99.100:32571 |
-=1

OEBPS/image/B14870_18_33.jpg
NAME
master-australia-southeastl-a-g2pw
master-australia-southeastl-b-4jll
master-australia-southeastl-c-0ndl
nodes-6htd

nodes-71x0
nodes-wijth

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

ROLES
master
master
master
node
node
node

AGE
40m
26m
18m
55m
55m
55m

VERSION
v1.15.10
v1.15.10
v1.15.10
v1.15.7
v1l.15.7
vl.15.7

OEBPS/image/B14870_19_07.jpg
Start

Connect to the k8s API
Server and Register
Callbacks

CR Added
Callback
Triggered

Start a Go
Routine to listen
to the k8s API

(Asyns) Go Routine that
constantly monitors the

CR Deleted
Callback
Triggered

Stop the corresponding
GO Routine that listens
to the k8s API

api

PODs and terminates
them as per the CR
Specifications

OEBPS/image/B14870_02_06.jpg
NAMES
k8s_coredns_coredns-5644d7b6d9-ptps6_kube-system_cd4@b8e7-b86e-4451-b4d2-3b364b69574e_0
k8s_coredns_coredns-5644d7b6d9-5sz8f_kube-system_10985af6-c3bf-4eeb-9929-013dfdd20811_0
k8s_storage-provisioner_storage-provisioner_kube-system_c846ce4e-f65e-4f69-a855-f295ef722¢
aa_0

k8s_kube-proxy_kube-proxy-dzn4n_kube-system_3d2eb82c-39f6-4162-90f2-b2a549a90792_0
k8s_kube-addon-manager_kube-addon-manager-minikube_kube-system_c3e29047da86ce6690916750ab6
9c40b Q

kube-apiserver-minikube_kube-system_eal67c1941ae64c8329acadaee8ceb69_0
m etcd-minikube_kube-system_130dcd7636e79f6a2565de2a48e48a38_0
r)_kube-controller-manager-minikube_kube-system_67888a6f41348f1a4
1e3lBu7F7727902,0
kube-scheduler—minikube_kube-system_74deu8dal7006241e5e4F7b2ba4eld8e_0

OEBPS/image/B14870_13_06.jpg
NAMESPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

NAME

aws-node-fzrém
aws-node-z4r2r
coredns-5b9879fcff-4989r
coredns-5b9879fcff-nb425
kube-proxy-rnwsw
kube-proxy-x1fbj

READY
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running

RESTARTS

cooOO®

AGE
42m
42m
50m
50m
42m
42m

OEBPS/image/B14870_17_10.jpg
apiVersion: scheduling.k8s.io/v1l
description: Used for system critical pods that must run in the cluster, but can be
moved to another node if necessary.
kind: PriorityClass
metadata:
creationTimestamp: "2019-10-01T07:46:47Z"
generation: 1
name: system-cluster-critical
resourceVersion: "42"
selflink: /apis/scheduling.k8s.io/vl/priorityclasses/system-cluster-critical
uid: 9f@701d3-e41f-11e9-b737-000c2917147b
value: 2000000000

OEBPS/image/B14870_16_02.jpg
® minikube v1.9.2 on Darwin 10.15.5

: Using the hyperkit driver based on existing profile
& Starting control plane node m@l in cluster minikube
® Restarting existing hyperkit VM for "minikube" .
® Preparing Kubernetes v1.18.08 on Docker 19.03.8 ...

m apiserver.enable-admission-plugins=LimitRanger,NamespaceExists,NamespacelL
ifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,MutatingAdmissionWebh
ook, ValidatingAdmissionWebhook
¥ Enabling addons: default-storageclass, storage—provisioner
2 Done! kubectl is now configured to use "minikube"

OEBPS/image/B14870_04_37.jpg
@® minikube v1.5.2 on Darwin 10.15.1

® Tip: Use 'minikube start -p <name>' to create a new cluster, or 'minikube delete' to delet
e this one.

% Using the running virtualbox "minikube" WM ...

X Waiting for the host to be provisioned ...

@ Preparing Kubernetes v1.16.2 on Docker '18.09.9'

@ Relaunching Kubernetes using kubeadm ...
X Waiting for: apiserver
2 Done! kubectl is now configured to use "minikube"

OEBPS/image/B14870_05_02.jpg
Containers

: docker://d050324b76bcfb6ab1753cb@44a12c@3abd7df2274ae36dcabeddc1689dc3c3d
Inage: nginx

Image ID: docker-pullable://nginx@sha256:96fb261b66270b900eaSa2c17a26abbfabed5506e73c3a3c65869a6dbe83223a
Port: <none>
Host Port: <none>
State: Running
Started: Thu, 04 Jul 2019 15:12:37 +0200
Ready: True
Restart Count: 0
Environment: <none>
Mounts :

/var/run/secrets/kubernetes.io/serviceaccount from default-token-7rmnp (ro)

OEBPS/image/B14870_10_02.jpg
There is a newer version of minikube available (v1.2.0). Download it here:
https://github.com/kubernetes/minikube/releases/tag/v1.2.0

To

disable this notification, run the following:

minikube config set WantUpdateNotification false

A
A
A
s
x
]
L
z
V4

minikube v1.1.1 on darwin (amdé4)

Ignoring --vm-driver=virtualbox, as the existing "minikube" VM was created using the vmwarefusion driver.
To switch drivers, you may create a new VM using ‘minikube start -p <name> —--vm-driver=virtualbox’
Alternatively, you may delete the existing VM using ‘minikube delete —p minikube’

Restarting existing vmwarefusion VM for "minikube"

Waiting for SSH access

Configuring environment for Kubernetes vi1.14.3 on Docker 18.09.6
Relaunching Kubernetes v1.14.3 using kubeadm ...

Verifying: apiserver proxy etcd scheduler controller dns
Done! kubectl is now configured to use "minikube"

OEBPS/image/B14870_17_19.jpg
NAME READY STATUS RESTARTS AGE
pod-with-node-toleration-noschedule 1/1 Running @ 5m7s
pod-with-node-toleration-noschedulez 0/1 Pending @ 20s

OEBPS/image/B14870_06_10.jpg
NAME READY STATUS RESTARTS AGE LABELS
frontend-production 1/1 Running @ 7m39s | environment=production,role=frontend|

OEBPS/image/B14870_14_14.jpg
{number: 1}
[zarnold@zachs-mbp
{number: 2}
[zarnold@zachs-mbp
{number: 3}
[zarnold@zachs-mbp
{number: &4}
[zarnold@zachs-mbp
{number: 5}
[zarnold@zachs-mbp
{number: 6}
[zarnold@zachs-mbp
{number: 7}
[zarnold@zachs-mbp
{number: 8}
[zarnold@zachs-mbp
{number: 9}
[zarnold@zachs-mbp
{number: 10}
[zarnold@zachs-mbp
{number: 11}
[zarnold@zachs-mbp
{number: 12}

counter-mysql
counter-mysql
counter-mysql
counter-mysql
counter-mysql
counter-mysql
counter-mysql
counter-mysql
counter-mysql
counter-mysql

counter-mysql

curl

curl

curl

curl

curl

curl

curl

curl

curl

curl

curl

localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number
localhost:8080/get—number

localhost:8080/get—number

OEBPS/image/B14870_04_01.jpg
NAME
coredns-5644d7b6d9-gxrgx
coredns-5644d7b6d9-tv4g7
etcd-minikube

K 4 ninikube
kube-proxy-hgwpr
kube-scheduler-minikube
storage-provisioner

READY
1
1
1
1
1
1
1
1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

reoeoSoSoSOoSeSee®

AGE

8m27s
8m27s
m27s
8m30s
7m40s
7m30s
8m27s
7m19s
8m27s

OEBPS/image/B14870_13_07.jpg
Error from server (Forbidden): pods "aws-node-fzrém" is forbidden: User "system:
serviceaccount:default:test-sa" cannot get resource "pods" in API group "" in th
e namespace "kube-system"

OEBPS/image/B14870_04_38.jpg
e ~
3N
o
[N
i/
S
DAL
. \IIJ
T
metatal &
1]
V—— =
TR
s
NS
| J
A\
~, -0
Svl o
N T~
A |
V———y
OIS
S — ==
e
| as
I_vn
N —
T T
N == = NS
79
| as
I, vn
| o
1 'on

N—-v

OEBPS/image/B14870_15_16.jpg
CEORCHE O

+

QB PO

oa

Kubernetes Cluster (Prometheus) -

node *v namespace %~

+ Cluster Health

Cluster Pod Usage

_47.50%

Cluster Pod Capacity

pods
8888

o000 0010 0020

— alocatable — capacity = requested
~ Deployments

Deployment Replicas - Up To Date

Time Metric~ Value

~ Node

NUmber Of Nodas

Wt r @

Cluster CPU Usage Cluster Memory Usage.
_13.47% _1.975%
Cluster CPU Capacity Cluster Mem Capacity.
6 208
‘ 1568
o 1068
352 sce
o
000 010 0020 0000 0010 0020

= allocatable = capacity = requested

Deployment Replicas

13

= allocatable = capacity = requested

Deployment Replicas - Updated

13

Nodes Out of Disk

* ®w OB/ %w®oheoo| O
% Q2

@ Last 30 minutes v

a2

= Dashboards

Cluster Disk Usage

N/A

Cluster Disk Capacity.

Nodata

o000 o010 o020

s - Unavailable

0.048

OEBPS/image/B14870_04_44.jpg
\Timestamp: null

example

OEBPS/image/B14870_15_22.jpg
(- N J A zarnold — kubectl get pods --watch — 80x24

g] 14m
kubernetes-test—-ha—application-with-autoscaler-deployment-7vbk4 @/1 Pendin
g] 14m
kubernetes-test—ha—application-with-autoscaler-deployment-t7mdt 0/1 Pendin
g] 14m
kubernetes-test—ha—application-with-autoscaler-deployment-mx7mb 0/1 Pendin
g] 14m
kubernetes-test—ha—application-with-autoscaler-deployment-bp972 0/1 Pendin
g] 14m
kubernetes-test—ha-application-with-autoscaler-deployment-rq86x e/1 Pendin
g] 14m

prometheus-1593096646-node-exporter-48ngg 0/1 Pendin
g9] 6s

prometheus-1593096646-node-exporter-48ngg 0/1 Contai
nerCreating (2] 6s
kubernetes-test—ha—application-with-autoscaler-deployment-w4cxf 0/1 Pendin
g] 14m
kubernetes-test—ha—application-with-autoscaler-deployment-2jhkk @/1 Pendin
g] 6m43s
kubernetes-test—ha—application-with-autoscaler-deployment-p5pbt 0/1 Pendin
[}] 6m42s
kubernetes-test—-ha—application-with-autoscaler-deployment-b7kfr @/1 Pendin
g9] 6m43s

OEBPS/image/B14870_09_09.jpg
bin dev home 1ib32 1ibx32 mnt opt root sbin sys usr
boot etc 1lib 1ib64 media mounted-data-2 proc run srv tmp var

OEBPS/image/B14870_13_13.jpg
Error from server (Forbidden): error when creating "STDIN": pods "privileged" is
forbidden: unable to validate against any pod security policy: [spec.containers
[@].securityContext.privileged: Invalid value: true: Privileged containers are n
ot allowed]

OEBPS/image/B14870_10_17.jpg
Name: test-docker-registry-secret
Namespace: configmap-test

Labels: <none>

Annotations: <none>

Type: kubernetes.io/dockerconfigjson

DERS:]

.dockerconfigjson: 145 bytes

OEBPS/image/B14870_14_08.jpg
NAME: chart-1589678730
LAST DEPLOYED: Sat May 16 21:25:31 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
1. Get the application URL by running these commands:
export POD_NAME=$(kubectl get pods —--namespace default -1 "app.kubernetes.io/n
ame=chart-dev, app.kubernetes.io/instance=chart-1589678730" -o jsonpath="{.items[
@].metadata.name}")
echo "Visit http://127.0.0.1:8080 to use your application"
kubectl --namespace default Eort—forward $POD_NAME 8080:80

OEBPS/image/B14870_17_04.jpg
LAST SEEN TYPE REASON OBJECT MESSAGE
<unknown> Warning FailedScheduling pod/pod-with-node-affinity @/1 nodes are availabl
e: 1 node(s) didn't match node selector.

OEBPS/image/B14870_06_04.jpg
Name : pod-without-initial-labels

Namespace: default
Priority: [
Node: minikube/10.0.2.15
Start Time: Mon, 14 Oct 2019 22:32:42 +0200
abels: app=nginx
Annotations: <none>
Status: Running
IP: 172:17:9:5
IPs:
1Py 172.17.0.5
Containers:

first-container:
Container ID: docker://5f85bacb30f858c80654039e498886d684€635627ae58a199c90669f8a54a29¢

Image: nginx
Image ID: docker-pullable://nginx@sha256:aeded@f2a861747f43a01cf1018cf9efez2bdd@2afd57d2b11fcc7fcadcle
ccdl
Port: <none>
Host Port: <none>
State: Running
Started: Mon, 14 Oct 2019 22:32:46 +0200
Ready: True
Restart Count: 0@
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-wéxvp (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-wéxvp:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-w6xvp
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message

Normal Scheduled <unknown> default-scheduler Successfully assigned default/pod-without-initial-labels to
minikube

Normal Pulling 13m kubelet, minikube Pulling image "nginx"
Normal Pulled 13m kubelet, minikube Successfully pulled image "nginx"
Normal Created 13m kubelet, minikube Created container first-container

Normal Started 13m kubelet, minikube Started container first-container

OEBPS/image/B14870_18_12.jpg
Non-terminated Pods: (2 in total)
Namespace Name

kube-proxy-9ljcz 0 (0%) 0 (0%) 0 (0%) 0 (0%) m7s
20m (1%) o (0%) 0 (%) o (%) 5m27s

CPU Requests CPU Limits Memory Requests Memory Limits AGE

kube-system
kube-system weave-net-gkbfv

OEBPS/image/B14870_01_05.jpg
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

96c374000f6f nginx "nginx -g 'daemon of." 55 seconds ago Up 53 s

[80/tcp silly_hopper

OEBPS/image/B14870_12_05.jpg
provider.aws.region
The region where AWS operations will take place. Examples
are us—-east-1, us-west-2, etc.
Enter a value: us-west-2
aws_s3_bucket.my_bucket: Refreshing state... [id=zparnold-test-bucket]
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
— destroy

Terraform will perform the following actions:

aws_s3_bucket.my_bucket will be destroyed
— resource "aws_s3_bucket" "my_bucket" {

- acl = "private" -> null

— arn = "arn:aws:s3:::zparnold-test-bucket" -> nul
1

— bucket = "zparnold-test-bucket" -> null

— bucket_domain_name = "zparnold-test-bucket.s3.amazonaws.com" ->
null

— bucket_regional_domain_name
ws.com" —-> null

— force_destroy

— hosted_zone_id

"zparnold-test-bucket.s3.us-west-2.amazona

false —> null
"Z3BJ6K6RIION7M" —> null

- id = "zparnold-test-bucket" -> null
- region = "us-west-2" -> null

— request_payer = "BucketOwner" -> null

~ tags = {} -> null

— versioning {
— enabled
— mfa_delete
I

false —> null
false —> null

}
Plan: @ to add, @ to change, 1 to destroy.
Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.

There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yesf]

OEBPS/image/B14870_07_12.jpg
deployment.apps/app-deployment

REVISION CHANGE-CAUSE

1 <none>

3 kubectl set image deployment app-deployment nginx=ngnx --record=true
4 kubectl apply --filename=app-deployment.yaml --record=true

OEBPS/image/B14870_16_18.jpg
LELEH validating-pod-example
Namespace: webhooks—demo

Priority: 0

PriorityClassName: <none>

Node: minikube/192.168.247.150

Start Time: Sun, 25 Aug 2019 00:14:21 +1000
Labels: <none>

Annotations: podModified: true

Status: Running

IP: 172.17.0.8

OEBPS/image/B14870_04_59.jpg
ind": "PodList",

piversion™: "v1",

etadata”: {

"selfLink™: "/api/vi/namespaces/activity-example/pods”,
“resourceversion”: "53388"

"metadata™: {
“name”: “activity-nginx-84d75f9495-pgf6a”,
"generateName": "activity-nginx-8ad75f9495-",
“namespace”: “activity-example”,

“selfLink": "/api/vl/namespaces/aclivily-example/pos
s/activity-nginx-84d75f9495-pgfea”,

“uid": "d57dfbb7-a437-4366-8cdc-2dc2aadefod3”
"resourceversion™: "s3ee1”,
“creationTimestamp”: “2619-12-03721:13:587",
"labels™: {

“pod-template-hash™: "84d75f9495",

“ru “activity-nginx"

1

“"ownerReferences”: [

{
“apiversion”: "apps/vi",
"kind": "Replicaset”,

OEBPS/image/B14870_12_11.jpg
deployment.apps/kubernetes-test-ha-application-without-redis-deployment created
service/kubernetes-test-ha-application-without-redis created

OEBPS/image/B14870_02_28.jpg
NAME READY STATUS RESTARTS AGE IP NOD
E NOMINATED NODE READINESS GATES
k8s-for-beginners-66644bb776-kvwfr 1/1 Running @ 6m48s 172.17.0.4

min
ikube <none> <none>

OEBPS/image/B14870_01_11.jpg
Layer 2: App A

Layer 1: Tomcat

Base Layer: Ubuntu

OEBPS/image/B14870_04_50.jpg
"kind": "APIVersions",
"versions": [
1"
1,
"serverAddressByClientCIDRs": [
{
"clientCIDR": "0.0.0.0/0",
"serverAddress": "192.168.99.110:8443"
}
]
}

OEBPS/image/B14870_18_06.jpg
$1ls -rlt
total 8
-rw-r—-r—— 1 faisalmasood wheel 688 14 Jun 14:15 etcd-backup-2020-06-14_14:15:45_AEST.db

