

Zachary Arnold, Sahil Dua, Wei Huang, Faisal Masood, Melony Qin,

and Mohammed Abu Taleb

Learn how to build and run highly scalable

workloads on Kubernetes

The
Kubernetes
Workshop

The Kubernetes Workshop
Copyright © 2020 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Zachary Arnold, Sahil Dua, Wei Huang, Faisal Masood, Melony Qin,
and Mohammed Abu Taleb

Reviewers: Cory Cordell, Simon Krenger, Alok Malakar, and Craig Newton

Managing Editors: Prachi Jain, Clara Joseph, and Aniket Shedge

Acquisitions Editors: Royluis Rodrigues, Kunal Sawant, Sneha Shinde, Archie Vankar,
and Alicia Wooding

Production Editor: Salma Patel

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: September 2020

Production reference: 1230920

ISBN: 978-1-83882-075-6

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Introduction to Kubernetes and Containers 1

Introduction .. 2

The Evolution of Software Development .. 3

Virtual Machines versus Containers .. 5

Docker Basics ... 7

What's behind docker run? ... 8

Dockerfiles and Docker Images ... 13

Exercise 1.01: Creating a Docker Image and Uploading
It to Docker Hub ... 15

Exercise 1.02: Running Your First Application in Docker 19

The Essence of Linux Container Technology 23

Namespace ... 23

Exercise 1.03: Joining a Container to the Network
Namespace of Another Container ... 27

Cgroups ... 32

Containerization: The Mindset Change ... 41

Several Applications in One Container ..42

One Application in One Container ..42

A Comparison of These Approaches ..42

The Need for Container Orchestration .. 44

Container Interactions .. 44

Network and Storage .. 44

Resource Management and Scheduling ... 45

Failover and Recovery ... 45

Scalability .. 45

Service Exposure .. 46

Delivery Pipeline .. 46

Orchestrator: Putting All the Things Together 46

Welcome to the Kubernetes World .. 47

Activity 1.01: Creating a Simple Page Count Application 50

Summary .. 53

Chapter 2: An Overview of Kubernetes 55

Introduction ... 56

Setting up Kubernetes .. 56

An Overview of Minikube .. 57

Exercise 2.01: Getting Started with Minikube
and Kubernetes Clusters ... 58

Kubernetes Components Overview .. 63

etcd .. 66

API Server .. 66

Scheduler .. 67

Controller Manager ... 67

Where Is the kubelet? .. 68

kube-proxy .. 70

Kubernetes Architecture .. 71

Container Network Interface ... 72

Migrating Containerized Application to Kubernetes 72

Pod Specification .. 73

Applying a YAML Manifest .. 74

Exercise 2.02: Running a Pod in Kubernetes .. 75

Service Specification .. 78

Exercise 2.03: Accessing a Pod via a Service ... 80

Services and Pods .. 83

Delivering Kubernetes-Native Applications 84

Exercise 2.04: Scaling a Kubernetes Application 86

Pod Life Cycle and Kubernetes Components 92

Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle 95

Activity 2.01: Running the Pageview App in Kubernetes 104

A Glimpse into the Advantages of Kubernetes
for Multi-Node Clusters ... 108

Summary .. 108

Chapter 3: kubectl – Kubernetes Command Center 111

Introduction ... 112

How kubectl Communicates with Kubernetes 113

Setting up Environments with Autocompletion and Shortcuts 114

Exercise 3.01: Setting up Autocompletion .. 114

Setting up the kubeconfig Configuration File 116

Common kubectl Commands .. 118

Frequently Used kubectl Commands to Create,
Manage, and Delete Kubernetes Objects ... 118

Walkthrough of Some Simple kubectl Commands 119

Some Useful Flags for the get Command ..122

Populating Deployments in Kubernetes .. 124

Exercise 3.02: Creating a Deployment ... 125

Exercise 3.03: Updating a Deployment ... 127

Exercise 3.04: Deleting a Deployment .. 130

Activity 3.01: Editing a Live Deployment
for a Real-Life Application ... 131

Summary .. 133

Chapter 4: How to Communicate
with Kubernetes (API Server) 135

Introduction ... 136

The Kubernetes API Server .. 136

Kubernetes HTTP Request Flow .. 137

Authentication ... 138

Authorization .. 138

Admission Control ... 141

Exercise 4.01: Starting Minikube with a Custom Set of Modules 142

Validation .. 145

The Kubernetes API .. 146

Tracing kubectl HTTP Requests .. 149

API Resource Type .. 153

Scope of API Resources .. 154

Namespace-Scoped Resources .. 154

Cluster-Scoped Resources .. 155

API Groups ... 157

Core Group ... 157

Named Group ... 158

System-Wide ... 160

API Versions ... 161

Exercise 4.02: Getting Information about API Resources 163

How to Enable/Disable API Resources, Groups, or Versions 167

Exercise 4.03: Enabling and Disabling API Groups
and Versions on a Minikube Cluster .. 168

Interacting with Clusters Using the Kubernetes API 173

Accessing the Kubernetes API Server Using kubectl as a Proxy 173

Creating Objects Using curl .. 177

Exercise 4.04: Creating and Verifying a Deployment
Using kubectl proxy and curl .. 179

Direct Access to the Kubernetes API Using
Authentication Credentials ... 185

Method 1: Using Client Certificate Authentication 187

Method 2: Using a ServiceAccount Bearer Token 189

Activity 4.01: Creating a Deployment Using
a ServiceAccount Identity ... 197

Summary .. 199

Chapter 5: Pods 201

Introduction ... 202

Pod Configuration ... 203

Exercise 5.01: Creating a Pod with a Single Container 204

Name ... 206

Namespace ... 206

Exercise 5.02: Creating a Pod in a Different Namespace
by Specifying the Namespace in the CLI ... 207

Exercise 5.03: Creating a Pod in a Different Namespace by
Specifying the Namespace in the Pod Configuration YAML file 208

Exercise 5.04: Changing the Namespace for
All Subsequent kubectl Commands ... 209

Node .. 211

Status ... 212

Containers ... 212

Exercise 5.05: Using CLI Commands to Create
a Pod Running a Container ... 213

Exercise 5.06: Creating a Pod Running a Container
That Exposes a Port ... 215

Exercise 5.07: Creating a Pod Running a Container
with Resource Requirements ... 218

Exercise 5.08: Creating a Pod with Resource Requests
That Can't Be Met by Any of the Nodes .. 220

Exercise 5.09: Creating a Pod with Multiple Containers
Running inside It .. 223

Life Cycle of a Pod ... 226

Phases of a Pod .. 226

Probes/Health Checks .. 227

Types of Probes .. 227

Liveness Probe ..227

Readiness Probe ...227

Configuration of Probes .. 228

Implementation of Probes .. 228

Command Probe ...228

HTTP Request Probe ...229

TCP Socket Probe ..230

Restart Policy...231

Exercise 5.10: Creating a Pod Running a Container
with a Liveness Probe and No Restart Policy 231

Exercise 5.11: Creating a Pod Running a Container
with a Liveness Probe and a Restart Policy .. 235

Exercise 5.12: Creating a Pod Running a Container
with a Readiness Probe ... 237

Best Practices While Using Probes .. 240

Activity 5.01: Deploying an Application in a Pod 240

Summary .. 241

Chapter 6: Labels and Annotations 243

Introduction ... 244

Labels ... 244

Constraints for Labels ... 244

Label Keys ..245

Label Values ..245

Why Do We Need Labels? .. 245

Organizing Pods by Organization/Team/Project ..246

Running Selective Pods on Specific Nodes ..246

Exercise 6.01: Creating a Pod with Labels ... 247

Exercise 6.02: Adding Labels to a Running Pod 250

Exercise 6.03: Modifying And/Or Deleting Existing
Labels for a Running Pod .. 255

Selecting Kubernetes Objects Using Label Selectors 260

Equality-Based Selectors ..260

Exercise 6.04: Selecting Pods Using Equality-Based
Label Selectors ... 261

Set-Based Selectors ..264

Exercise 6.05: Selecting Pods Using Set-Based Label Selectors 265

Exercise 6.06: Selecting Pods Using a Mix of Label Selectors 267

Annotations ... 269

Constraints for Annotations ... 269

Annotation Keys ..269

Annotation Values ..270

Use Case for Annotations ... 270

Exercise 6.07: Adding Annotations to Help with
Application Debugging .. 271

Working with Annotations .. 273

Activity 6.01: Creating Pods with Labels/Annotations
and Grouping Them as per Given Criteria .. 273

Summary .. 275

Chapter 7: Kubernetes Controllers 277

Introduction ... 278

ReplicaSets ... 278

ReplicaSet Configuration .. 279

Replicas ..280

Pod Template ..280

Pod Selector ...280

Exercise 7.01: Creating a Simple ReplicaSet
with nginx Containers ... 281

Labels on the ReplicaSet ..285

Selectors for the ReplicaSet...285

Replicas ..285

Pods Status ..285

Pods Template ..285

Events ...286

Exercise 7.02: Deleting Pods Managed by a ReplicaSet 286

Exercise 7.03: Creating a ReplicaSet Given That
a Matching Pod Already Exists ... 288

Exercise 7.04: Scaling a ReplicaSet after It Is Created 292

Deployment ... 294

Deployment Configuration ... 296

Strategy ..297

Exercise 7.05: Creating a Simple Deployment
with Nginx Containers ... 299

Labels and Annotations on the Deployment ..302

Selectors for the Deployment ...302

Replicas ..302

Rolling Back a Deployment ... 303

Exercise 7.06: Rolling Back a Deployment .. 303

StatefulSets .. 308

StatefulSet Configuration ... 308

Use Cases for StatefulSets ...309

DaemonSets .. 309

Use Cases for DaemonSets ... 310

DaemonSet Configuration .. 310

Jobs ... 311

Job Configuration ... 312

A Use Case for Jobs in Machine Learning ..313

Exercise 7.07: Creating a Simple Job That Finishes in Finite Time 313

Activity 7.01: Creating a Deployment Running an Application 315

Summary .. 317

Chapter 8: Service Discovery 319

Introduction ... 320

Service .. 320

Service Configuration .. 322

Types of Services .. 322

NodePort Service ... 323

Exercise 8.01: Creating a Simple NodePort Service
with Nginx Containers ... 324

ClusterIP Service .. 330

Service Configuration ...330

Exercise 8.02: Creating a Simple ClusterIP Service
with Nginx Containers ... 331

Choosing a Custom IP Address for the Service ...336

Exercise 8.03: Creating a ClusterIP Service with a Custom IP 336

LoadBalancer Service .. 340

ExternalName Service ... 341

Ingress .. 342

Activity 8.01: Creating a Service to Expose the
Application Running on a Pod .. 343

Summary .. 345

Chapter 9: Storing and Reading Data on Disk 347

Introduction ... 348

Volumes ... 348

How to Use Volumes .. 350

Defining Volumes ... 350

Mounting Volumes ... 351

Types of Volumes ... 351

emptyDir ..351

hostPath ...353

Exercise 9.01: Creating a Pod with an emptyDir Volume 355

Exercise 9.02: Creating a Pod with an emptyDir Volume
Shared by Three Containers ... 363

Persistent Volumes ... 369

PersistentVolume Configuration ... 371

storageClassName ..371

capacity ..372

volumeMode ...372

accessModes ...372

persistentVolumeReclaimPolicy ...373

PV Status ... 373

PersistentVolumeClaim Configuration .. 374

storageClassName ..374

resources ...375

volumeMode ...375

accessMode ...375

selectors ...375

How to Use Persistent Volumes ... 375

Step 1 – Provisioning the Volume ...375

Step 2 – Binding the Volume to a Claim ...376

Step 3 – Using the Claim ..376

Exercise 9.03: Creating a Pod That Uses PersistentVolume
for Storage .. 377

Dynamic Provisioning ... 382

Activity 9.01: Creating a Pod That Uses a Dynamically
Provisioned PersistentVolume ... 384

Summary .. 386

Chapter 10: ConfigMaps and Secrets 389

Introduction ... 390

What Is a ConfigMap? ... 391

Exercise 10.01: Creating a ConfigMap from Literal Values
and Mounting It on a Pod Using Environment Variables 394

Defining a ConfigMap from a File and Loading It onto a Pod 397

Exercise 10.02: Creating a ConfigMap from a File 398

Exercise 10.03: Creating a ConfigMap from a Folder 401

What Is a Secret? ... 402

Secret versus ConfigMap .. 403

Exercise 10.04: Defining a Secret from Literal Values and
Loading the Values onto the Pod as an Environment Variable 404

Exercise 10.05: Defining a Secret from a File and Loading
the Values onto the Pod as a File ... 407

Exercise 10.06: Creating a TLS Secret .. 411

Exercise 10.07: Creating a docker-registry Secret 414

Activity 10.01: Using a ConfigMap and Secret to Promote
an Application through Different Stages .. 415

Summary .. 417

Chapter 11: Build Your Own HA Cluster 419

Introduction ... 420

How the Components of Kubernetes Work Together
to Achieve High Availability ... 421

etcd .. 421

Networking and DNS ... 422

Nodes' and Master Servers' Locations and Resources 422

Container Network Interface and Cluster DNS 425

Container Runtime Interfaces .. 425

Container Storage Interfaces ... 426

Building a High-Availability Focused Kubernetes Cluster 426

Self-Managed versus Vendor-Managed Kubernetes Solutions 426

kops ... 427

Other Commonly Used Tools ... 428

Authentication and Identity in Kubernetes .. 429

Exercise 11.01: Setting up Our Kubernetes Cluster 431

Kubernetes Service Accounts ... 439

Exercise 11.02: Deploying an Application on Our HA Cluster 440

Activity 11.01: Testing the Resilience of a Highly Available Cluster ... 446

Deleting Our Cluster .. 447

Summary .. 449

Chapter 12: Your Application and HA 451

Introduction ... 452

An Overview of Infrastructure Life Cycle Management 452

Terraform ... 454

Exercise 12.01: Creating an S3 Bucket with Terraform 456

Exercise 12.02: Creating a Cluster with EKS Using Terraform 464

Kubernetes Ingress ... 468

Highly Available Applications Running on Top of Kubernetes 470

Exercise 12.03: Deploying a Multi-Replica Non-HA

Application in Kubernetes .. 470

Working with Stateful Applications .. 476

The CI/CD Pipeline ... 477

Exercise 12.04: Deploying an Application
with State Management .. 478

Activity 12.01: Expanding the State Management
of Our Application .. 481

Summary .. 483

Chapter 13: Runtime and Network Security
in Kubernetes 485

Introduction ... 486

Threat Modeling .. 486

The 4Cs of Cloud Native Security ... 488

Cluster Security ... 489

Kubernetes RBAC .. 490

Role .. 492

RoleBinding ... 493

ClusterRole ... 493

ClusterRoleBinding .. 493

Some Important Notes about RBAC Policies .. 494

ServiceAccount ... 494

Exercise 13.01: Creating a Kubernetes RBAC ClusterRole 495

NetworkPolicies .. 500

Exercise 13.02: Creating a NetworkPolicy ... 502

PodSecurityPolicy ... 505

Exercise 13.03: Creating and Testing a PodSecurityPolicy 507

Activity 13.01: Securing Our App .. 511

Summary .. 513

Chapter 14: Running Stateful Components
in Kubernetes 515

Introduction ... 516

Stateful Apps ... 516

Understanding StatefulSets .. 519

Deployments versus StatefulSets .. 520

Further Refactoring Our Application .. 520

Exercise 14.01: Deploying a Counter App with a MySQL Backend 524

Exercise 14.02: Testing the Resilience of StatefulSet
Data in PersistentVolumes ... 526

Helm ... 530

Exercise 14.03: Chart-ifying Our Redis-Based Counter Application ... 536

Activity 14.01: Chart-ifying Our StatefulSet Deployment 540

Summary .. 542

Chapter 15: Monitoring and Autoscaling
in Kubernetes 545

Introduction ... 546

Kubernetes Monitoring .. 546

Kubernetes Metrics API/Metrics Server .. 548

Prometheus .. 548

Grafana ... 549

Monitoring Your Applications .. 549

Exercise 15.01: Setting up the Metrics Server
and Observing Kubernetes Objects ... 550

Autoscaling in Kubernetes ... 562

HorizontalPodAutoscaler .. 563

Exercise 15.02: Scaling Workloads in Kubernetes 566

ClusterAutoscaler .. 572

Exercise 15.03: Configuring the ClusterAutoscaler 574

Activity 15.01: Autoscaling Our Cluster Using ClusterAutoscaler 580

Deleting Your Cluster Resources ... 581

Summary .. 582

Chapter 16: Kubernetes Admission Controllers 585

Introduction ... 586

How Admission Controllers Work ... 587

Creating Controllers with Custom Logic .. 589

The Mutating Admission Webhook ... 589

The Validating Admission Webhook .. 591

How a Webhook Works .. 592

Exercise 16.01: Modifying a ConfigMap Object through a Patch 593

Guidelines for Building a Mutating Admission WebHook 596

Exercise 16.02: Deploying a Webhook .. 598

Configuring the Webhook to Work with Kubernetes 602

How to Encode a Certificate in Base64 Format 603

Activity 16.01: Creating a Mutating Webhook That
Adds an Annotation to a Pod .. 604

Validating a Webhook .. 605

Coding a Simple Validating WebHook ... 606

Activity 16.02: Creating a Validating Webhook That
Checks for a Label in a Pod ... 607

Controlling the Effect of a Webhook on Selected Namespaces 609

Exercise 16.03: Creating a Validating Webhook with
the Namespace Selector Defined .. 610

Summary .. 620

Chapter 17: Advanced Scheduling in Kubernetes 623

Introduction ... 624

The Kubernetes Scheduler ... 624

The Pod Scheduling Process .. 625

Filtering ... 625

Scoring ... 626

Assigning ... 626

Timeline of Pod Scheduling .. 627

Managing the Kubernetes Scheduler ... 628

Node Affinity and Anti-Affinity ... 628

Exercise 17.01: Running a Pod with Node Affinity 630

Pod Affinity and Anti-Affinity .. 635

Exercise 17.02: Running Pods with Pod Affinity 637

Pod Priority .. 642

Exercise 17.03: Pod Priority and Preemption 644

Taints and Tolerations .. 651

Exercise 17.04: Taints and Tolerations .. 654

Using a Custom Kubernetes Scheduler .. 659

Activity 17.01: Configuring a Kubernetes Scheduler
to Schedule Pods .. 660

Summary .. 662

Chapter 18: Upgrading Your Cluster
without Downtime 665

Introduction ... 666

The Need to Upgrade Your Kubernetes Cluster 666

Kubernetes Components – Refresher .. 668

A Word of Caution .. 669

The Upgrade Process .. 669

Some Considerations for kops ... 670

An overview of the Upgrade Process .. 670

The Importance of Automation ... 672

Backing up the etcd Datastore ... 672

Exercise 18.01: Taking a Snapshot of the etcd Datastore 673

Draining a Node and Making It Non-Schedulable 675

Exercise 18.02: Draining All the Pods from the Nodes 676

Upgrading Kubernetes Master Components 680

Exercise 18.03: Upgrading Kubernetes Master Components 681

Upgrading Kubernetes Worker Nodes ... 688

Exercise 18.04: Upgrading the Worker Nodes 689

Activity 18.01: Upgrading the Kubernetes Platform
from Version 1.15.7 to 1.15.10 .. 694

Summary .. 695

Chapter 19: Custom Resource Definitions
in Kubernetes 697

Introduction ... 698

What Is a Custom Controller? .. 699

The Relationship between a CRD, a CR, and a Controller 699

Standard Kubernetes API Resources .. 700

Why We Need Custom Resources? ... 703

Example Use Case 1 ... 703

Example Use Case 2 ... 703

Example Use Case 3 ... 703

How Our Custom Resources Are Defined .. 704

apiVersion ... 705

kind .. 705

spec .. 705

namespaceName and podLiveForThisMinutes 706

The Definition of a CRD ... 706

Exercise 19.01: Defining a CRD ... 708

Exercise 19.02: Defining a CR Using a CRD ... 710

Writing the Custom Controller ... 711

The Components of the Custom Controller ..713

Activity 19.01: CRD and Custom Controller in Action 717

Adding Data to Our Custom Resource .. 719

Exercise 19.03: Adding Custom Information to the
CR List Command ... 720

Summary .. 723

Index 727

Preface

ii | Preface

About the Book
Thanks to its extensive support for managing hundreds of containers that run
cloud-native applications, Kubernetes is the most popular open source container
orchestration platform that makes cluster management easy. This workshop adopts
a practical approach to get you acquainted with the Kubernetes environment and
its applications.

Starting with an introduction to the fundamentals of Kubernetes, you'll install and
set up your Kubernetes environment. You'll understand how to write YAML files
and deploy your first simple web application container using Pod. You'll then assign
human-friendly names to Pods, explore various Kubernetes entities and functions,
and discover when to use them. As you work through the chapters, this Kubernetes
book will show you how you can make full-scale use of Kubernetes by applying a
variety of techniques for designing components and deploying clusters. You'll also
get to grips with security policies for limiting access to certain functions inside the
cluster. Toward the end of the book, you'll get a rundown of Kubernetes advanced
features for building your own controller and upgrading to a Kubernetes cluster
without downtime.

By the end of this workshop, you'll be able to manage containers and run cloud-based
applications efficiently using Kubernetes.

Audience

Whether you are new to the world of web programming or are an experienced
developer or software engineer looking to use Kubernetes for managing and scaling
containerized applications, you'll find this workshop useful. A basic understanding of
Docker and containerization is necessary to make the most of this book.

About the Chapters

Chapter 1, Introduction to Kubernetes and Containers, begins with containerization
technologies as well as various underlying Linux technologies that enable
containerization. The chapter ends by introducing Kubernetes into the
picture, while laying out the advantages it brings to the table.

Chapter 2, An Overview of Kubernetes, gives you your first hands-on introduction to
Kubernetes and provides an overview of the architecture of Kubernetes.

About the Book | iii

Chapter 3, kubectl – Kubernetes Command Center, lays out the various ways of using
kubectl while underlining the principle of declarative management.

Chapter 4, How to Communicate with Kubernetes (API Server), dives into the details of the
Kubernetes API server and the various ways of communicating with it.

Chapter 5, Pods, introduces the basic Kubernetes object used to deploy
any application.

Chapter 6, Labels and Annotations, covers the basic mechanism used in Kubernetes to
group, classify, and link different objects.

Chapter 7, Kubernetes Controllers, introduces various Kubernetes controllers, such as
Deployments and StatefulSets, among others, which are some of the key enablers of
the declarative management approach.

Chapter 8, Service Discovery, describes how you can make different Kubernetes objects
discoverable within the cluster as well as from outside the cluster.

Chapter 9, Storing and Reading Data on Disk, explains the various data storage
abstractions offered by Kubernetes to enable applications to read and store data
on disks.

Chapter 10, ConfigMaps and Secrets, teaches you how to decouple application
configuration data from the application itself, while looking at the advantages of
taking this approach.

Chapter 11, Build Your Own HA Cluster, walks you through setting up your own
highly available, multi-node Kubernetes cluster on the Amazon Web Services
(AWS) platform.

Chapter 12, Your Application and HA, lays out some concepts behind continuous
integration using Kubernetes and demonstrates a few of them using a highly
available, multi-node, managed Kubernetes cluster running on Amazon Elastic
Kubernetes Service.

Chapter 13, Runtime and Network Security in Kubernetes, gives you an overview of the
ways in which your application and cluster can be attacked, before covering the
access control and security features offered by Kubernetes.

iv | Preface

Chapter 14, Running Stateful Components in Kubernetes, teaches you how to properly
use different Kubernetes abstractions to reliably deploy stateful applications.

Chapter 15, Monitoring and Autoscaling in Kubernetes, covers the ways in which you
can monitor different Kubernetes objects and then use that information to scale the
capacity of your cluster.

Chapter 16, Kubernetes Admission Controllers, describes how Kubernetes allows us to
extend the functionalities provided by the API server to implement custom policies
before a request is accepted by the API server.

Chapter 17, Advanced Scheduling in Kubernetes, describes how the scheduler places
pods on the Kubernetes cluster. You will use advanced features to influence
scheduler placement decisions for the pods.

Chapter 18, Upgrading Your Cluster without Downtime, teaches you how you can
upgrade your Kubernetes platform to a newer version without suffering any
downtime for your platform or application.

Chapter 19, Custom Resource Definitions in Kubernetes, shows you one of the main
ways in which to extend the functionalities provided by Kubernetes. You will see how
custom resources allow you to implement concepts specific to your own domain on
your cluster.

Note

The solution to the activities presented in the chapters can be found at this
address: https://packt.live/304PEoD.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Create a file named
sample-pod.yaml in your current working directory."

A block of code, a terminal command, or text to create a YAML file is set as follows:

kubectl -n webhooks create secret tls webhook-server-tls \

--cert "tls.crt" \

--key "tls.key"

https://packt.live/304PEoD

About the Book | v

New important words are shown like this: "Kubernetes provides this capability via
Admission Controllers."

Key parts of code snippets are highlighted as follows:

kind: Pod

metadata:

 name: infra-libraries-application-staging

 namespace: metadata-activity

 labels:

 environment: staging

 team: infra-libraries

 annotations:

 team-link: "https://jira-link/team-link-2"

spec:

 containers:

Words that you see on the screen, for example, in menus or dialog boxes, appear
in the text like this: "On the left sidebar, click on Configuration and then on
Data Sources."

Long code snippets are truncated and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. The permalinks to the entire code
are placed below the code snippet. It should look as follows:

mutatingcontroller.go

46 //create the response with patch bytes
47 var admissionResponse *v1beta1.AdmissionResponse
48 admissionResponse = &v1beta1.AdmissionResponse {
49 allowed: true,
50 Patch: patchBytes,
51 PatchType: func() *v1beta1.PatchType {
52 pt := v1beta1.PatchTypeJSONPatch
53 return &pt
54 }(),
55 }

The complete code for this example can be found at https://packt.live/35ieNiX.

Setting Up Your Environment

Before we explore the book in detail, we need to set up specific software and tools.
In the following section, we shall see how to do that.

https://packt.live/35ieNiX

vi | Preface

Hardware Requirements

You need at least a dual core CPU with virtualization support, 4 GB of memory, and 20
GB of free disk space.

Operating System Requirements

Our recommended operating system is Ubuntu 20.04 LTS or macOS 10.15. If you are
using Windows, you can dual boot Ubuntu. We have provided the instructions for that
at the end of this section.

Virtualization

You need to have virtualization features enabled on your hardware as well as your
operating system.

In Linux, you can run the following command to check whether virtualization
is enabled:

grep -E --color 'vmx|svm' /proc/cpuinfo

You should get a non-empty response to this command. If you get an empty
response, then you don't have virtualization enabled.

In macOS, run the following command:

sysctl -a | grep -E --color 'machdep.cpu.features|VMX'

If virtualization is enabled, you should be able to see VMX in your output.

Note

You will not be able to follow the instructions in the book if your host
environment is virtualized, since Minikube (by default) runs all Kubernetes
components in a virtual machine, which will not work if the host environment
itself is virtualized. It is possible to use Minikube without a hypervisor, but
your results may sometimes be different compared to our demonstrations in
this book. Therefore, our recommendation is that one of the recommended
operating systems is directly installed on your machine.

About the Book | vii

Installation and Setup

This section lists installation instructions for all the software that you will need for this
book. Since we are recommending Ubuntu, we will use the APT package manager to
install most of the required software in Ubuntu.

For macOS, we recommend that you use Homebrew for convenience. You can install
it by running this script in your terminal:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install.sh)"

The terminal output for this script will show you what changes will be applied and
then ask for your confirmation. Once confirmed, the installation can be completed.

Updating Your Package Lists

Before you use APT to install any packages in Ubuntu, make sure that your package
lists are up to date. Use the following command:

sudo apt update

Furthermore, you may choose to upgrade any upgradable packages on your machine
by using the following command:

sudo apt upgrade

Similarly, in the case of macOS, update the package lists for Homebrew using the
following command:

brew update

Installing Git

The code bundle for this workshop is available on our GitHub repository. You can use
Git to clone the repository to get all the code files.

Use the following command to install Git on Ubuntu:

sudo apt install git-all

viii | Preface

If you use Xcode on macOS, it is likely that you may already have Git installed. You can
check that by running this command:

git --version

If you get a Command not found error, then you don't have it installed. You can
install it via Homebrew using this command:

brew install git

jq

jq is a JSON parser that is useful for extracting any information from API responses in
JSON format. You can install it using the following command on Ubuntu:

sudo apt install jq

You can use the following command for installation on macOS:

brew install jq

Tree

Tree is a package that will allow you to see the directory structure in the terminal.
You can install it using the following command on Ubuntu:

sudo apt install tree

You can use the following command for installation on macOS:

brew install tree

The AWS CLI

The AWS command line tool is a CLI tool that you can use from your terminal to
manage your AWS resources. You can install it using the installation instructions
at this URL: https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html.

Minikube and kubectl

Minikube allows us to create a single-node Kubernetes cluster for learning and testing
purposes. kubectl is a command line interface tool that allows us to communicate
with our cluster. You will find detailed installation instructions for these tools in
Chapter 2, An Overview of Kubernetes.

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

About the Book | ix

Even if you have Minikube installed already, we recommend that you work with the
version that is specified in Chapter 2, An Overview of Kubernetes, in order to guarantee
the reproducibility of all instructions in this book.

Minikube requires you to have a hypervisor installed. We will go with VirtualBox.

VirtualBox

VirtualBox is an open source hypervisor that can be used by Minikube to virtualize a
node for our cluster. Use the following command to install VirtualBox on Ubuntu:

sudo apt install virtualbox

For installation on macOS, first get the appropriate file from this link:

https://www.virtualbox.org/wiki/Downloads.

Then, follow the installation instructions mentioned here:

https://www.virtualbox.org/manual/ch02.html#installation-mac.

Docker

Docker is the default containerization engine used by Kubernetes. You will learn more
about Docker in Chapter 1, Introduction to Kubernetes and Containers.

To install Docker, follow the installation instructions at this link:

https://docs.docker.com/engine/install/.

To install Docker in Mac, following the installation instructions at the following link:

https://docs.docker.com/docker-for-mac/install/.

To install Docker in Ubuntu, following the installation instructions at the following link:

https://docs.docker.com/engine/install/ubuntu/.

Go

Go is a programming language that is used to build the applications demonstrated
in this book. Also, Kubernetes is written in Go. To install Go on your machine, use the
following command for Ubuntu:

sudo apt install golang-go

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch02.html#installation-mac
https://docs.docker.com/engine/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/engine/install/ubuntu/

x | Preface

For installation on macOS, use the following instructions:

1. Use the following command to install Go:

brew install golang

Note

The code is tested with Go versions 1.13 and 1.14. Please make sure
that you have these versions although the code is expected to work for all
1.x versions.

2. Now, we need to set a few environment variables. Use the following commands:

mkdir - p $HOME/go

export GOPATH=$HOME/go

export GOROOT="$(brew --prefix golang)/libexec"

export PATH="$PATH:${GOPATH}/bin:${GOROOT}/bin"

kops

kops is a command line interface tool that allows you to set up a Kubernetes
cluster on AWS. The actual process of installing Kubernetes using kops is
covered in Chapter 11, Build Your Own HA Cluster. To ensure the reproducibility
of the instructions given in this book, we recommend that you install kops
version 1.15.1.

For installation on Ubuntu, follow these steps:

1. Download the binary for kops version 1.15.1 using the following command:

curl -LO https://github.com/kubernetes/kops/releases/download/1.15.0/
kops-linux-amd64

2. Now, make the binary executable using the following command:

chmod +x kops-linux-amd64

3. Add the executable to your path:

sudo mv kops-linux-amd64 /usr/local/bin/kops

About the Book | xi

4. Check whether kops has been successfully installed by running the
following command:

kops version

If kops has been successfully installed, you should get a response stating the
version as 1.15.0.

For installation on macOS, follow these steps:

1. Download the binary for kops version 1.15.1 using the following command:

curl -LO https://github.com/kubernetes/kops/releases/download/1.15.0/
kops-darwin-amd64

2. Now, make the binary executable using the following command:

chmod +x kops-darwin-amd64

3. Add the executable to your path:

sudo mv kops-darwin-amd64 /usr/local/bin/kops

4. Check whether kops has been successfully installed by running the
following command:

kops version

If kops has been successfully installed, you should get a response stating the
version as 1.15.0.

Dual-Booting Ubuntu for Windows Users

In this section, you will find instructions on how to dual-boot Ubuntu if you are
running Windows.

Note

Before installing any operating system, it is highly recommended that you
back up your system state as well as all of your data.

xii | Preface

Resizing Partitions

If you have Windows set up on your machine, it is most likely that your hard disk is
completely utilized – that is, all of the available space is partitioned and formatted.
We need to have some unallocated space on the hard disk. Hence, we will resize a
partition with plenty of free space to make space for our Ubuntu partitions:

1. Open the Computer Management utility. Press Win + R and enter
compmgmt.msc:

Figure 0.1: The Computer Management utility on Windows

About the Book | xiii

2. In the left side pane, go to the Storage > Disk Management option as
shown here:

Figure 0.2: Disk Management

You will see a summary of all your partitions in the lower half of the screen. You
can also see the drive letters associated with all of the partitions and information
about the Windows boot drive. If you have a partition that has plenty of free
space (20 GB +) and is neither the boot drive (C:), nor the recovery partition, nor
the EFI system partition, this will be the ideal option to choose. If there's no such
partition, then you can resize the C: drive.

xiv | Preface

3. In this example, we will choose the D: drive. You can right-click on any partition
and open Properties to check the free space available:

Figure 0.3: Checking the properties of the D: drive

Now, before we resize the partition, we need to ensure that there are no errors
on the filesystem or any hardware faults. We will do this by using the chkdsk
utility on Windows.

4. Open Command Prompt by pressing Win + R and entering cmd.exe.
Now, run the following command:

chkdsk D: /f

Replace the drive letter with the one that you want to use. You should see a
response similar to the following:

About the Book | xv

Figure 0.4: Scanning a drive for any filesystem errors

Note that in this screenshot, Windows reports that it has scanned the filesystem
and found no problems. If any problems are encountered for your case, you
should get them fixed first to prevent the loss of data.

xvi | Preface

5. Now, come back to the Computer Management window, right-click on the
desired drive, and then click on Shrink Volume, as shown here:

Figure 0.5: Opening the Shrink Volume dialog box

About the Book | xvii

6. In the prompt window, enter the amount of space you want to clear in the only
field that you can edit. In this example, we are clearing approximately 25 GB of
disk space by shrinking our D: drive:

Figure 0.6: Clearing 25 GB by shrinking the existing volume

xviii | Preface

7. After you shrink your drive, you should be able to see unallocated space on your
drive, as seen here:

Figure 0.7: Unallocated space after shrinking the volume

Now we are ready to install Ubuntu. But first, we need to download it and create a
bootable USB, which is one of the most convenient installation media.

Creating a Bootable USB Drive to Install Ubuntu

You will need a flash drive with a minimum capacity of 4 GB. Note that all the data on
this will be erased:

1. Download the ISO image for Ubuntu Desktop from this link:
https://releases.ubuntu.com/20.04/.

2. Next, we need to burn the ISO image to a USB flash disk and create a bootable
USB drive. There are many tools available for this, and you can use any of them.
In this example, we are using Rufus, which is free and open source. You can get it
from this link: https://www.fosshub.com/Rufus.html.

https://releases.ubuntu.com/20.04/
https://www.fosshub.com/Rufus.html

About the Book | xix

3. Once you have installed Rufus, plug in your USB flash disk and open
Rufus. Ensure that the proper Device option is selected, as shown
in the following screenshot.

4. Press the SELECT button under Boot selection and then open the Ubuntu
18.04 image that you have downloaded.

5. The choice for Partition scheme will depend on how your BIOS and your
disk drive are configured. GPT will be the best option for most modern systems,
while MBR will be compatible with older systems:

Figure 0.8: Configurations for Rufus

xx | Preface

6. You may leave all other options on default, and then press START. After
completion, close Rufus. You now have a bootable USB drive ready to
install Ubuntu.

Installing Ubuntu

Now, we will use the bootable USB drive to install Ubuntu:

1. To install Ubuntu, boot using the bootable installation media that we just
created. In most cases, you should be able to do that by simply having the USB
drive plugged in while starting up your machine. If you don't automatically boot
into the Ubuntu setup, go into your BIOS settings and ensure that your USB
device is at the highest boot priority and that Secure Boot is turned off. The
instructions for entering the BIOS setup are usually displayed on the splash
screen (the screen with your PC manufacturer logo when you start up your
computer) that is displayed during POST checks. You may also have the option
to enter a boot menu while starting up. Usually, you have to hold down Delete,
F1, F2, F12, or some other key while your PC boots up. It depends on your
motherboard's BIOS.

You should see a screen with a Try Ubuntu or Install Ubuntu option. If
you don't see this screen, and instead you see a shell with a message that begins
with Minimal BASH Like Line Editing is Supported..., then it is
likely that there may have been some data corruption while downloading the ISO
file or creating your bootable USB drive. Check the integrity of the downloaded
ISO file by calculating the MD5, SHA1, or SHA256 hash of your downloaded
file and comparing it to the ones you can find in the files named MD5SUMS,
SHA1SUMS, or SHA256SUMS on the Ubuntu download page mentioned earlier.
Then, repeat the steps in the previous section to reformat and recreate the
bootable USB drive.

If you have set the highest boot priority to the correct USB device in the BIOS and
you are still unable to boot using your USB device (your system may just ignore it
and boot into Windows instead), then there are two most likely issues:

- The USB drive was not properly configured to be recognized as a bootable
device or the GRUB bootloader was not properly set up. Verifying the integrity of
your downloaded image and recreating the bootable USB drive should fix this in
most cases.

- You have chosen the wrong Partition scheme option for your system
configuration. Try the other one and recreate the USB drive.

About the Book | xxi

2. Once you boot your machine using the USB drive, select Install Ubuntu.

3. Choose the language that you want and then press Continue.

4. On the next screen, choose the appropriate keyboard layout and continue to the
next screen.

5. On the next screen, select Normal installation.

Check the Download updates while installing Ubuntu and
Install third-party software for graphics and Wi-Fi
hardware and additional media formats options.

Then, continue to the next screen.

6. On the next screen, select Install Ubuntu alongside Windows Boot
Manager, and then click Install now. You will see a prompt describing the
changes that Ubuntu will make to your system, such as the new partitions that
will be created. Confirm the changes and proceed to the next screen.

7. On the next screen, choose your region and press Continue.

8. On the next screen, set your name (optional), username, computer name, and
password, and then press Continue.

The installation should now begin. It will take a while depending on your system
configurations. Once the installation is complete, you will be prompted to restart
your computer. Unplug your USB drive, and then click Restart Now.

If you forget to remove your USB drive, you may boot back into the Ubuntu
installation. In that case, just exit the setup. If a live instance of Ubuntu has been
started up, restart your machine. Remember to remove the USB drive this time.

If, after restarting, you boot directly into Windows with no option to choose
the operating system, the likely issue is that the GRUB bootloader installed
by Ubuntu has not taken precedence over the Windows bootloader. In some
systems, the precedence/priority for bootloaders on your hard disk is set in the
BIOS. You will need to explore your BIOS settings menu to find the appropriate
setting. It may be named something similar to UEFI Hard Disk Drive
Priorities. Ensure that GRUB/Ubuntu is set to the highest priority.

xxii | Preface

Other Requirements

Docker Hub account: You can create a free Docker account at this link:
https://hub.docker.com/.

AWS account: You will need your own AWS account and some basic knowledge about
using AWS. You can create an account here: https://aws.amazon.com/.

Note

The requirements of the exercises and activities in this book go beyond the
AWS free tier, so you should be aware that you will incur bills for the use
of the cloud service. You can use the pricing information available here:
https://aws.amazon.com/pricing/.

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/3bE3zWY.

After installing Git, you can clone the repository using the following command:

git clone https://github.com/PacktWorkshops/Kubernetes-Workshop

cd Kubernetes-Workshop

If you have any issues or questions about installation, please email us at
workshops@packt.com.

https://hub.docker.com/
https://aws.amazon.com/
https://aws.amazon.com/pricing/
https://packt.live/3bE3zWY

Overview

The chapter begins by describing the evolution of software development
and delivery, beginning with running software on bare-metal machines,
through to the modern approach of containerization. We will also take a
look at the underlying Linux technologies that enable containerization. By
the end of the chapter, you will be able to run a basic Docker container from
an image. You will also be able to package a custom application to make
your own Docker image. Next, we will take a look at how we can control
the resource limits and group for a container. Finally, the end of the chapter
describes why we need to have a tool such as Kubernetes, along with a
short introduction to its strengths.

Introduction to Kubernetes

and Containers

1

2 | Introduction to Kubernetes and Containers

Introduction
About a decade ago, there was a lot of discussion over software development
paradigms such as service-oriented architecture, agile development, and software
design patterns. In hindsight, those were all great ideas, but only a few of them were
practically adopted a decade ago.

One of the major reasons for the lack of adoption of these paradigms is that the
underlying infrastructure couldn't offer the resources or capabilities for abstracting
fine-grained software components and managing an optimal software development
life cycle. Hence, a lot of duplicated efforts were still required for resolving some
common issues of software development such as managing software dependencies
and consistent environments, software testing, packaging, upgrading, and scaling.

In recent years, with Docker at the forefront, containerization technology has
provided a new encapsulation mechanism that allows you to bundle your
application, its runtime, and its dependencies, and also brings in a new angle
to view the development of software. By using containerization technology,
the underlying infrastructure gets abstracted away so that applications can be
seamlessly moved among heterogeneous environments. However, along with
the rising volume of containers, you may need orchestration tools to help you to
manage their interactions with each other as well as to optimize the utilization of the
underlying hardware.

That's where Kubernetes comes into play. Kubernetes provides a variety of options to
automate deployment, scaling, and the management of containerized applications. It
has seen explosive adoption in recent years and has become the de-facto standard in
the container orchestration field.

As this is the first chapter of this book, we will start with a brief history of software
development over the past few decades, and then illustrate the origins of containers
and Kubernetes. We will focus on explaining what problems they can solve, and three
key reasons why their adoption has seen a considerable rise in recent years.

The Evolution of Software Development | 3

The Evolution of Software Development
Along with the evolution of virtualization technology, it's common for companies to
use virtual machines (VMs) to manage their software products, either in the public
cloud or an on-premises environment. This brings huge benefits such as automatic
machine provisioning, better hardware resource utilization, resource abstraction,
and more. More critically, for the first time, it employs the separation of computing,
network, and storage resources to unleash the power of software development from
the tediousness of hardware management. Virtualization also brings in the ability
to manipulate the underlying infrastructure programmatically. So, from a system
administrator and developer's perspective, they can better streamline the workflow
of software maintenance and development. This is a big move in the history of
software development.

However, in the past decade, the scope and life cycle of software development have
changed vastly. Earlier, it was not uncommon for software to be developed in big
monolithic chunks with a slow-release cycle. Nowadays, to catch up with the rapid
changes of business requirements, a piece of software may need to be broken down
into individual fine-grained subcomponents, and each component may need to have
its release cycle so that it can be released as often as possible to get feedback from
the market earlier. Moreover, we may want each component to be scalable and
cost-effective.

So, how does this impact application development and deployment? In comparison
to the bare-metal era, adopting VMs doesn't help much since VMs don't change the
granularity of how different components are managed; the entire software is still
deployed on a single machine, only it is a virtual one instead of a physical one. Making
a number of interdependent components work together is still not an easy task.

A straightforward idea here is to add an abstraction layer to connect the machines
with the applications running on them. This is so that application developers would
only need to focus on the business logic to build the applications. Some examples of
this are Google App Engine (GAE) and Cloud Foundry.

4 | Introduction to Kubernetes and Containers

The first issue with these solutions is the lack of consistent development experience
among different environments. Developers develop and test applications on their
machines with their local dependencies (both at the programming language and
operating system level); while in a production environment, the application has to
rely on another set of dependencies underneath. And we still haven't talked about
the software components that need the cooperation of different developers in
different teams.

The second issue is that the hard boundary between applications and the underlying
infrastructure would limit the applications from being highly performant, especially
if the application is sensitive to the storage, compute, or network resources. For
instance, you may want the application to be deployed across multiple availability
zones (isolated geographic locations within data centers where cloud resources are
managed), or you may want some applications to coexist, or not to coexist, with other
particular applications. Alternatively, you may want some applications to adhere
to particular hardware (for example, solid-state drives). In such cases, it becomes
hard to focus on the functionality of the app without exposing the topological
characteristics of the infrastructure to upper applications.

In fact, in the life cycle of software development, there is no clear boundary between
the infrastructure and applications. What we want to achieve is to manage the
applications automatically, while making optimal use of the infrastructure.

So, how could we achieve this? Docker (which we will introduce later in this
chapter) solves the first issue by leveraging Linux containerization technologies to
encapsulate the application and its dependencies. It also introduces the concept of
Docker images to make the software aspect of the application runtime environment
lightweight, reproducible, and portable.

The second issue is more complicated. That's where Kubernetes comes in.
Kubernetes leverages a battle-tested design rationale called the Declarative API
to abstract the infrastructure as well as each phase of application delivery such
as deployment, upgrades, redundancy, scaling, and more. It also offers a series of
building blocks for users to choose, orchestrate, and compose into the eventual
application. We will gradually move on to study Kubernetes, which is the core of this
book, toward the end of this chapter.

Note

If not specified particularly, the term "container" might be used
interchangeably with "Linux container" throughout this book.

Virtual Machines versus Containers | 5

Virtual Machines versus Containers
A virtual machine (VM), as the name implies, aims to emulate a physical computer
system. Technically, VMs are provisioned by a hypervisor, and the hypervisor runs on
the host OS. The following diagram illustrates this concept:

Figure 1.1: Running applications on VMs

Here, the VMs have full OS stacks, and the OS running on the VM (called the Guest
OS) must rely on the underlying hypervisor to function. The applications and
operating system reside and run inside the VM. Their operations go through the guest
OS's kernel and are then translated to the system calls by the hypervisor, which are
eventually executed on the host OS.

Containers, on the other hand, don't need a hypervisor underneath. By leveraging
some Linux containerization technologies such as namespaces and cgroups (which
we will revisit later), each container runs independently on the host OS. The following
diagram illustrates containerization, taking Docker containers as an example:

Figure 1.2: Running applications in containers

6 | Introduction to Kubernetes and Containers

It's worth mentioning that we put Docker beside the containers instead of between
the containers and the host OS. That's because, technically, it's not necessary to have
Docker Engine hosting those containers. Docker Engine plays more of a manager
role to manage the life cycle of the containers. It is also inappropriate to liken Docker
Engine to the hypervisor because once a container is up and running, we don't need
an extra layer to "translate" the application operations to be understandable by the
host OS. From Figure 1.2, you can also tell that applications inside the containers are
essentially running directly on the host OS.

When we spin up a container, we don't need to bring up an entire OS; instead, it
leverages the features of the Linux kernel on the host OS. Therefore, containers start
up faster, function with less overhead, and require much less space compared to
VMs. The following is a table comparing VMs with containers:

Figure 1.3: Comparison of VMs and Containers

Looking at this comparison, it seems that containers win in all aspects except for
isolation. The Linux container technologies that are leveraged by the containers
are not new. The key Linux kernel features, namespace, and cgroup (which we will
study later in this chapter) have existed for more than a decade. There were some
older container implementations such as LXC and Cloud Foundry Warden before
the emergence of Docker. Now, an interesting question is: given that container
technology has so many benefits, why has it been adopted in recent years instead of
a decade ago? We will find some answers to this question in the following sections.

Docker Basics | 7

Docker Basics
Until now, we have seen the different advantages that containerization provides
as opposed to running applications on a VM. Docker is the most commonly used
containerization technology by a wide margin. In this section, we will start with
some Docker basics and perform some exercises to get you first-hand experience of
working with Docker.

Note

Apart from Docker, there are other container managers such as containerd
and podman. They behave differently in terms of features and user
experiences, for example, containerd and podman are claimed to be more
lightweight than Docker, and better fit than Kubernetes. However, they are
all Open Container Initiatives (OCI) compliant to guarantee the container
images are compatible.

Although Docker can be installed on any OS, you should be aware that, on Windows
and macOS, it actually creates a Linux VM (or uses equivalent virtualization
technology such as HyperKit in macOS) and embeds Docker into the VM. In this
chapter, we will use Ubuntu 18.04 LTS as the OS and the Docker Community
Edition 18.09.7.

Before you proceed, please ensure that Docker is installed as per the instructions in
the Preface. You can confirm whether Docker is installed by querying the version of
Docker using the following command:

docker --version

You should see the following output:

Docker version 18.09.7, build 2d0083d

Note

All the commands in the following sections are executed as root. Enter
sudo -s in the terminal, followed by the admin password when prompted,
to get root access.

8 | Introduction to Kubernetes and Containers

What's behind docker run?

After Docker is installed, running a containerized application is quite simple. For
demonstration purposes, we will use the Nginx web server as an example application.
We can simply run the following command to start up the Nginx server:

docker run -d nginx

You should see the similar result:

Figure 1.4: Starting up Nginx

This command involves several actions, described as follows:

1. docker run tells Docker Engine to run an application.

2. The -d parameter (short for --detach) forces the application to run in the
background so that you won't see the output of the application in the terminal.
Instead, you have to run docker logs <container ID> to implicitly get
the output.

Note

The "detached" mode usually implies that the application is a
long-running service.

3. The last parameter, nginx, indicates the image name on which the application
is based. The image encapsulates the Nginx program as well as its dependencies.

Docker Basics | 9

The output logs explain a brief workflow: first, it tried to fetch the nginx image
locally, which failed, so it retrieved the image from a public image repository (Docker
Hub, which we will revisit later). Once the image is downloaded locally, it uses that
image to start an instance, and then outputs an ID (in the preceding example, this is
96c374…), identifying the running instance. As you can observe, this is a hexadecimal
string, and you can use the beginning four or more unique characters in practice to
refer to any instance. You should see that even the terminal outputs of the docker
commands truncate the ID.

The running instance can be verified using the following command:

docker ps

You should see the following result:

Figure 1.5: Getting a list of all the running Docker containers

The docker ps command lists all the running containers. In the preceding
example, there is only one container running, which is nginx. Unlike a typical Nginx
distribution that runs natively on a physical machine or VM, the nginx container
functions in an isolated manner. The nginx container does not, by default, expose
its service on host ports. Instead, it serves at the port of its container, which is
an isolated entity. We can get to the nginx service by calling on port 80 of the
container IP.

First, let's get the container IP by running the following command:

docker inspect --format '{{.NetworkSettings.IPAddress}}' <Container ID or
NAME>

You should see the following output (it may vary depending on your
local environment):

172.17.0.2

As you can see, in this case, the nginx container has an IP address of 172.17.0.2.
Let's check whether Nginx responds by accessing this IP on port 80:

curl <container IP>:80

10 | Introduction to Kubernetes and Containers

You should see the following output:

Figure 1.6: Response of the Nginx container

As you can see in Figure 1.6, we get a response, which is displayed in the terminal as
the source HTML of the default home page.

Usually, we don't rely on the internal IP to access the service. A more practical way
is to expose the service on some port of the host. To map the host port 8080 to the
container port 80, use the following command:

docker run -p 8080:80 -d nginx

You should see a similar response:

39bf70d02dcc5f038f62c276ada1675c25a06dd5fb772c5caa19f02edbb0622a

Docker Basics | 11

The -p 8080:80 parameter tells Docker Engine to start the container and map the
traffic on port 8080 of the host to the inside container at port 80. Now, if we try to
access the localhost on port 8080, we will be able to access the containerized
nginx service. Let's try it out:

curl localhost:8080

You should see the same output as in Figure 1.6.

Nginx is an example of a type of workload that doesn't have a fixed termination time,
that is, it does not just show output and then terminates. This is also known as a
long-running service. The other type of workload, which just runs to completion and
exits, is called a short-time service, or simply a job. For containers running jobs, we
can omit the -d parameter. Here is an example of a job:

docker run hello-world

You should see the following response:

Figure 1.7: Running the hello-world image

12 | Introduction to Kubernetes and Containers

Now, if you run docker ps, which is intended to list running containers, it doesn't
show the hello-world container. This is as expected since the container has
finished its job (that is, printing out the response text that we saw in the previous
screenshot) and exited. To be able to find the exited container, you can run the same
command with the -a flag, which will show all the containers:

docker ps -a

You should see the following output:

Figure 1.8: Checking our exited container

For a container that has stopped, you can delete it using docker rm <container
ID>, or rerun it with docker run <container ID>. Alternatively, if you rerun
the docker run hello-world, it will again bring up a new container with a new
ID and exit after it finishes its job. You can try this out yourself as follows:

docker run hello-world

docker ps -a

You should see the following output:

Figure 1.9: Checking multiple exited containers

Docker Basics | 13

Thus, you can see that running multiple containers based on the same underlying
image is pretty straightforward.

By now, you should have a very basic understanding of how a container is launched,
and how to check its status.

Dockerfiles and Docker Images

In the VM era, there was no standard or unified way to abstract and pack various
kinds of applications. The traditional way was to use a tool, such as Ansible, to
manage the installation and update the processes for each application. This is still
used nowadays, but it involves lots of manual operations and is error-prone due to
inconsistencies between different environments. From a developer's perspective,
applications are developed on local machines, which are vastly different from the
staging and eventual production environment.

So, how does Docker resolve these issues? The innovation it brings is called
Dockerfile and Docker image. A Dockerfile is a text file that abstracts a series
of instructions to build a reproducible environment including the application itself as
well as all of its dependencies.

By using the docker build command, Docker uses the Dockerfile to generate
a standardized entity called a Docker image, which you can run on almost any OS.
By leveraging Docker images, developers can develop and test applications in the
same environment as the production one, because the dependencies are abstracted
and bundled within the same image. Let's take a step back and look at the nginx
application we started earlier. Use the following command to list all the locally
downloaded images:

docker images

You should see the following list:

Figure 1.10: Getting a list of images

14 | Introduction to Kubernetes and Containers

Unlike VM images, Docker images only bundle the necessary files such as application
binaries, dependencies, and the Linux root filesystem. Internally, a Docker image is
separated into different layers, with each layer being stacked on top of another one.
In this way, upgrading the application only requires an update to the relevant layers.
This reduces both the image footprint as well as the upgrade time.

The following figure shows the hierarchical layers of a hypothetical Docker image
that is built from the base OS layer (Ubuntu), the Java web application runtime layer
(Tomcat), and the topmost user application layer:

Figure 1.11: An example of stacked layers in a container

Note that it is common practice to use the images of a popular OS as a starting
point for building Docker images (as you will see in the following exercise) since it
conveniently includes the various components required to develop an application.
In the preceding hypothetical container, the application would use Tomcat as well as
some dependencies included in Ubuntu in order to function properly. This is the only
reason that Ubuntu is included as the base layer. If we wanted, we could bundle the
required dependencies without including the entire Ubuntu base image. So, don't
confuse this with the case of a VM, where including a guest OS is necessary.

Let's take a look at how we can build our own Docker image for an application in the
following exercise.

Docker Basics | 15

Exercise 1.01: Creating a Docker Image and Uploading It to Docker Hub

In this exercise, we will build a Docker image for a simple application written in Go.

We're going to use Go in this exercise so that the source code and its language
dependencies can be compiled into a single executable binary. However, you're
free to use any programming language you prefer; just remember to bundle the
language runtime dependencies if you're going to use Java, Python, Node.js, or any
other language:

1. For this exercise, we will create a file named Dockerfile. Note that this
filename has no extension. You can use your preferred text editor to create this
file with the following content:

FROM alpine:3.10

COPY k8s-for-beginners /

CMD ["/k8s-for-beginners"]

Note

From the terminal, whenever you create a file using any simple text editor
such as vim or nano or using the cat command, it will be created in the
current working directory in any Linux distro or even macOS. The default
working directory when you open the terminal is /home/. If you prefer to
use a different directory, please take that into account when following any of
the exercise steps throughout this book.

The first line specifies which base image to use as the foundation. This example
uses Alpine, a popular base image that takes only about 5 MB and is based on
Alpine Linux. The second line copies a file called k8s-for-beginners from
the directory where the Dockerfile is located to the root folder of the image.
In this example, we will build a tiny web server and compile it to a binary with the
name k8s-for-beginners, which will be placed in the same directory as the
Dockerfile. The third line specifies the default startup command. In this case,
we just start our sample web server.

16 | Introduction to Kubernetes and Containers

2. Next, let's build our sample web server. Create a file named main.go with the
following content:

package main

import (

 "fmt"

 "log"

 "net/http"

)

func main() {

 http.HandleFunc("/", handler)

 log.Fatal(http.ListenAndServe("0.0.0.0:8080", nil))

}

func handler(w http.ResponseWriter, r *http.Request) {

 log.Printf("Ping from %s", r.RemoteAddr)

 fmt.Fprintln(w, "Hello Kubernetes Beginners!")

}

As you can observe from func main(), this application serves as a web
server that accepts an incoming HTTP request at port 8080 on the root path and
responds with the message Hello Kubernetes Beginners.

3. To verify this program works, you can just run go run main.go, and then
open http://localhost:8080 on the browser. You're expected to get the
"Hello Kubernetes Beginners!" output.

4. Use go build to compile runtime dependencies along with the source code
into one executable binary. Run the following command in the terminal:

CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -o k8s-for-beginners

Note

Unlike step 3, the arguments GOOS=linux GOARCH=amd64 tell the Go
compiler to compile the program on a specific platform, which turns out to
be compatible with the Linux distro we are going to build this problem into.
CGO_ENABLED=0 is aimed to generate a statically linked binary so that it
can work with some minimum-tailored image (For example, alpine).

http://localhost:8080

Docker Basics | 17

5. Now, check whether the k8s-for-beginners file is created:

ls

You should see the following response:

Dockerfile k8s-for-beginners main.go

6. Now we have both the Dockerfile and the runnable binary. Build the Docker
image by using the following command:

docker build -t k8s-for-beginners:v0.0.1 .

Don't miss the dot (.) at the end of this command. You should see the
following response:

Figure 1.12: Output of docker build command

There are two parameters in the command that we used: -t k8s-for-
beginners:v0.0.1 provides a tag on the image with format
<imagename:version>, while . (the dot at the end of the command) denotes
the path to look for the Dockerfile. In this case, . refers to the current
working directory.

Note

If you clone the GitHub repository for this chapter, you will find that we
have provided a copy of the Dockerfile in each directory so that you
can conveniently run the docker build command by navigating to
the directory.

18 | Introduction to Kubernetes and Containers

7. Now, we have the k8s-for-beginners:v0.0.1 image available locally.
You can confirm that by running the following command:

docker images

You should see the following response:

Figure 1.13: Verifying whether our Docker image has been created

An interesting thing to observe is that the image merely consumes 11.4 MB,
which includes both the Linux system files and our application. A tip here is to
only include necessary files in the Docker image to make it compact so that it is
easy to distribute and manage.

Now that we have built our image, we will run it in a container in the next exercise.
Another thing to note is that, currently, this image resides on our local machine, and
we can build a container using it only on our machine. However, the advantage of
packaging an application with its dependencies is that it can be easily run on different
machines. To easily facilitate that, we can upload our images to online Docker image
repositories such as Docker Hub (https://hub.docker.com/).

Note:

In addition to Docker Hub, there are other public image repositories such
as quay.io, gcr.io, and more. You can refer to the documentation of the
respective repository to configure it properly in your Docker client.

https://hub.docker.com/
http://quay.io
http://gcr.io

Docker Basics | 19

Exercise 1.02: Running Your First Application in Docker

In Exercise 1.01, Creating a Docker Image and Uploading it to Docker Hub, we packaged
the web application into a Docker image. In this exercise, we will run it and push it to
Docker Hub:

1. First, we should clean up any leftover containers from the previous exercise by
running the following command in the terminal:

docker rm -f $(docker ps -aq)

You should see the following response:

43c01e2055cf

286bc0c92b3a

39bf70d02dcc

96c374000f6f

We have seen that docker ps -a returns the information of all the
containers. The extra q in the -aq flag means "quiet" and the flag will only
display numeric IDs. These IDs will be passed to docker rm -f, and,
therefore, all the containers will be removed forcefully.

2. Run the following command to start the webserver:

docker run -p 8080:8080 -d k8s-for-beginners:v0.0.1

You should see the following response:

9869e9b4ab1f3d5f7b2451a7086644c1cd7393ac9d78b6b4c1bef6d423fd25ac

As you can see in the preceding command, we are mapping the internal port
8080 of the container to the host machine's port 8080. The 8080:8080
parameter preceded by -p maps port 8080 of the container to port 8080 on
the host machine. The -d parameter indicates the detached mode. By default,
Docker checks the local registry first. So, in this case, the local Docker image will
be used for launching the container.

3. Now, let us check whether it works as expected by sending an HTTP request to
localhost at port 8080:

curl localhost:8080

The curl command checks for a response from the stated address. You should
see the following response:

Hello Kubernetes Beginners!

20 | Introduction to Kubernetes and Containers

4. We can also observe the logs of the running container by using the
following commands:

docker logs <container ID>

You should see the following logs:

2019/11/18 05:19:41 Ping from 172.17.0.1:41416

Note

Before running the following commands, you should register for a Docker
Hub account and have your username and password ready.

5. Finally, we need to log in to Docker Hub, and then push the local image to the
remote Docker Hub registry. Use the following command:

docker login

Now enter the username and password to your Docker Hub account when
prompted. You should see the following response:

Figure 1.14: Logging in to Docker Hub

6. Next, we will push the local image, k8s-for-beginners:v0.0.1, to the
remote Docker Hub registry. Run the following command:

docker push k8s-for-beginners:v0.0.1

You should see the following response:

Figure 1.15: Failing to push the image to Docker Hub

Docker Basics | 21

But wait, why does it say, "requested access to the resource
is denied"? That is because the parameter followed by the docker
push must comply with a <username/imagename:version> naming
convention. In the previous exercise, we specified a local image tag, k8s-for-
beginners:v0.0.1, without a username. In the docker push command,
if no username is specified, it will try to push to the repository with the default
username, library, which also hosts some well-known libraries such as
Ubuntu, nginx, and more.

7. To push our local image to our own user, we need to give a compliant name
for the local image by running docker tag <imagename:version>
<username/imagename:version>, as shown in the following command:

docker tag k8s-for-beginners:v0.0.1 <your_DockerHub_username>/
k8s-for-beginners:v0.0.1

8. You can verify that the image has been properly tagged using the
following command:

docker images

You should see the following output:

Figure 1.16: Checking the tagged Docker image

After tagging it properly, you can tell that the new image actually has the same
IMAGE ID as the old one, which implies they're the same image.

22 | Introduction to Kubernetes and Containers

9. Now that we have the image tagged appropriately, we're ready to push this
image to Docker Hub by running the following command:

docker push <your_username>/k8s-for-beginners:v0.0.1

You should see a response similar to this:

Figure 1.17: Image successfully pushed to Docker Hub

10. The image will be live after a short time on Docker Hub. You can verify it
by replacing the <username> with your username in the following link:
https://hub.docker.com/repository/docker/<username>/
k8s-for-beginners/tags.

You should be able to see some information regarding your image, similar to the
following image:

Figure 1.18: The Docker Hub page for our image

Now our Docker image is publicly accessible for anyone to use, just like the nginx
image we used at the beginning of this chapter.

The Essence of Linux Container Technology | 23

In this section, we learned how to build Docker images and push them to Docker
Hub. Although it looks inconspicuous, it is the first time we have a unified mechanism
to manage the applications, along with their dependencies, consistently across all
environments. Docker images and their underlying layered filesystem are also the
primary reason why container technology has been widely adopted in recent years,
as opposed to a decade ago.

In the next section, we will dive a little deeper into Docker to see how it leverages
Linux container technologies.

The Essence of Linux Container Technology
All things look elegant and straightforward from the outside. But what's the magic
working underneath to make a container so powerful? In this section, we will try to
open the hood to take a look inside. Let us take a look at a few Linux technologies
that lay the foundation for containers.

Namespace

The first key technology relied upon by containers is called a Linux namespace.
When a Linux system starts up, it creates a default namespace (the root
namespace). Then, by default, the processes created later join the same namespace,
and, hence, they can interact with each other boundlessly. For example, two
processes are able to view the files in the same folder, and also interact through
the localhost network. This sounds pretty straightforward, but technically it's all
credited to the root namespace, which connects all the processes.

To support advanced use cases, Linux offers the namespace API to enable different
processes being grouped into different namespaces so that only the processes that
belong to the same namespace can be aware of each other. In other words, different
groups of processes are isolated. This also explains why we mentioned earlier
that the isolation of Docker is process-level. The following is a list of the types of
namespaces supported in the Linux kernel:

• Mount namespaces

• PID (Process ID) namespaces

• Network namespaces

• IPC (Inter-Process Communication) namespaces

• UTS (Unix Time-sharing System) namespaces

24 | Introduction to Kubernetes and Containers

• User namespaces (since Linux kernel 3.8)

• Cgroup namespaces (since Linux kernel 4.6)

• Time namespaces (to be implemented in a future version of the Linux kernel)

For the sake of brevity, we will choose two easy ones (UTS and PID) and use concrete
examples to explain how they're reflected in Docker later.

Note

If you are running macOS, some of the following commands will need to be
used differently, since we are exploring Linux features. Docker on macOS
runs inside a Linux VM using HyperKit. So, you need to open another
terminal session and log into the VM:

screen ~/Library/Containers/com.docker.docker/Data/
vms/0/tty

After this command, you may see an empty screen. Press Enter, and
you should have root access to the VM that is running Docker. To exit
the session, you can press Ctrl + A + K, and then press Y when asked for
confirmation for killing the window.

We recommend that you use a different terminal window to access the
Linux VM. We will mention which commands need to be run in this terminal
session if you are using macOS. If you are using any Linux OS, you can
ignore this and simply run all the commands in the same terminal session,
unless mentioned otherwise in the instructions.

Once a Docker container is created, Docker creates and associates a number of
namespaces with the container. For example, let's take a look at the sample
container we created in the previous section. Let's use the following command:

docker inspect --format '{{.State.Pid}}' <container ID>

The preceding command checks the PID of the container running on the host OS.
You should see a response similar to the following:

5897

The Essence of Linux Container Technology | 25

In this example, the PID is 5897, as you can see in the preceding response. Now, run
this command in the Linux VM:

ps -ef | grep k8s-for-beginners

This should give an output similar to this:

Figure 1.19: Checking the PID of our process

The ps -ef command lists all the running processes on the host OS, and | grep
k8s-for-beginners then filters this list to display the processes that have
k8s-for-beginners in their name. We can see that the process also has the PID
5897, which is consistent with the first command. This reveals an important fact that
a container is nothing but a particular process running directly on the host OS.

Next, run this command:

ls -l /proc/<PID>/ns

For macOS, run this command in the VM terminal. You should see the
following output:

Figure 1.20: Listing the different namespaces created for our container

This command checks the /proc folder (which is a Linux pseudo-filesystem) to list all
the namespaces created along with the start of the container. The result shows some
well-known namespaces (take a look at the highlighted rectangle) such as uts, pid,
net, and more. Let's take a closer look at them.

26 | Introduction to Kubernetes and Containers

The uts namespace is created to enable the container to have its hostname instead
of the host's hostname. By default, a container is assigned its container ID as the
hostname, and it can be changed using the -h parameter while running a container,
as shown here:

docker run -h k8s-for-beginners -d packtworkshops/the-kubernetes-
workshop:k8s-for-beginners

This should give the following response:

df6a15a8e2481ec3e46dedf7850cb1fbef6efafcacc3c8a048752da24ad793dc

Using the returned container ID, we can enter the container and check its hostname
using the following two commands one after the other:

docker exec -it <container ID> sh

hostname

You should see the following response:

k8s-for-beginners

The docker exec command tries to enter into the container and execute the
sh command to launch the shell inside the container. And once we're inside the
container, we run the hostname command to check the hostname from inside the
container. From the output, we can tell that the -h parameter is in effect because we
can see k8s-for-beginners as the hostname.

In addition to the uts namespace, the container is also isolated in its own PID
namespace, so it can only view the processes launched by itself, and the launching
process (specified by CMD or ENTRYPOINT in the Dockerfile that we created
in Exercise 1.01, Creating a Docker Image and Uploading it to Docker Hub) is assigned
PID 1. Let's take a look at this by entering the following two commands one after
the other:

docker exec -it <container ID> sh

ps

The Essence of Linux Container Technology | 27

You should see the following response:

Figure 1.21: The list of processes inside our container

Docker provides the --pid option for a container to join another container's
PID namespace.

In addition to the uts and pid namespaces, there are some other namespaces that
Docker leverages. We will examine the network namespace ("net" in Figure 1.20) in
the next exercise.

Exercise 1.03: Joining a Container to the Network Namespace of Another

Container

In this exercise, we will recreate the k8s-for-beginners container without host
mapping, and then create another container to join its network namespace:

1. As with the previous exercise, remove all the existing containers by running the
following command:

docker rm -f $(docker ps -aq)

You should see an output similar to this:

43c01e2055cf

286bc0c92b3a

39bf70d02dcc

96c374000f6f

2. Now, begin by running our container using the following command:

docker run -d packtworkshops/the-kubernetes-workshop:k8s-for-
beginners

You should see the following response:

33003ddffdf4d85c5f77f2cae2528cb2035d37f0a7b7b46947206ca104bbbaa5

28 | Introduction to Kubernetes and Containers

3. Next, we will get the list of running containers so that we can see the
container ID:

docker ps

You should see the following response:

Figure 1.22: Getting a list of all of the running containers

4. Now, we will run an image called netshoot in the same network namespace as
the container that we created in step 1, by using the --net parameter:

docker run -it --net container:<container ID> nicolaka/netshoot

Use the container ID of our previous container that we obtained in the previous
step. You should see a response that is similar to the following:

Figure 1.23: Starting up the netshoot container

nicolaka/netshoot is a tiny image packaged with some commonly used
network libraries such as iproute2, curl, and more.

The Essence of Linux Container Technology | 29

5. Now, let's run the curl command inside netshoot to check whether we are
able to access the k8s-for-beginners container:

curl localhost:8080

You should see the following response:

Hello Kubernetes Beginners!

The preceding example proves that the netshoot container was created by
joining the network namespace of k8s-for-beginners; otherwise, accessing
port 8080 on localhost wouldn't have got us a response.

6. This can also be verified by double-checking the network namespace IDs of the
two containers, which we will do in the following steps.

To confirm our result, let us first open another terminal without exiting the
netshoot container. Get the list of containers to ensure both containers
are running:

docker ps

You should see a response as follows:

Figure 1.24: Checking whether both of the k8s-for-beginners and netshoot
containers are online

7. Next, get the PID of the k8s-for-beginners container:

docker inspect --format '{{.State.Pid}}' <container ID>

You should see the following response:

7311

As you can see, the PID for this example is 7311.

30 | Introduction to Kubernetes and Containers

8. Now get the pseudo-filesystem of the process using the preceding PID:

ls -l /proc/<PID>/ns/net

If you are using macOS, run this command on the Linux VM in another terminal
session. Use the PID you obtained in the previous step in this command. You
should see the following response:

lrwxrwxrwx 1 root root 0 Nov 19 08:11 /proc/7311/ns/net ->
'net:[4026532247]'

9. Similarly, get the PID of the netshoot container using the following command:

docker inspect --format '{{.State.Pid}}' <container ID>

Use the appropriate container ID from step 6 in this command. You should see
the following response:

8143

As you can see, the PID of the netshoot container is 8143.

10. Next, we can get its pseudo-filesystem using its PID or by using this command:

ls -l /proc/<PID>/ns/net

If you are using macOS, run this command on the Linux VM in another session.
Use the PID from the previous step in this command. You should see the
following response:

lrwxrwxrwx 1 root root 0 Nov 19 09:15 /proc/8143/ns/net ->
'net:[4026532247]'

As you can observe from the outputs of step 8 and step 10, the two containers
share the same network namespace (4026532247).

11. As a final cleanup step, let's remove all of the containers:

docker rm -f $(docker ps -aq)

You should see a response similar to the following:

61d0fa62bc49

33003ddffdf4

The Essence of Linux Container Technology | 31

12. What if you want to join a container to the host's root namespace? Well, --net
host is a good way of achieving that. To demonstrate this, we will start a
container using the same image, but with the --net host parameter:

docker run --net host -d packtworkshops/the-kubernetes-workshop:k8s-
for-beginners

You should see the following response:

8bf56ca0c3dc69f09487be759f051574f291c77717b0f8bb5e1760c8e20aebd0

13. Now, list all of the running containers:

docker ps

You should see the following response:

Figure 1.25: Listing all the containers

14. Get the PID of the running container using the following command:

docker inspect --format '{{.State.Pid}}' <container ID>

Use the appropriate container ID in this command. You should see the
following response:

8380

15. Find the network namespace ID by looking up the PID:

ls -l /proc/<PID>/ns/net

If you are using macOS, run this command on the Linux VM. Use the appropriate
PID in this command. You should see the following response:

lrwxrwxrwx 1 root root 0 Nov 19 09:20 /proc/8380/ns/net ->
'net:[4026531993]'

You may be confused by the 4026531993 namespace. By giving the
--net host parameter, shouldn't Docker bypass the creation of a new
namespace? The answer to this is that it's not a new namespace; in fact, it's the
aforementioned Linux root namespace. We will confirm this in the next step.

32 | Introduction to Kubernetes and Containers

16. Get the namespace of PID 1 of the host OS:

ls -l /proc/1/ns/net

If you are using macOS, run this command on the Linux VM. You should see the
following response:

lrwxrwxrwx 1 root root 0 Nov 19 09:20 /proc/1/ns/net ->
'net:[4026531993]'

As you can see in this output, this namespace of the host is the same as that of
the container we saw in step 15.

From this exercise, we can get an impression of how a container is isolated into
different namespaces, and also which Docker parameter can be used to relate it
with other namespaces.

Cgroups

By default, no matter which namespace a container joins, it can use all of the
available resources of the host. That is, for sure, not what we want when we are
running multiple containers on a system; otherwise, a few containers may hog the
resources shared among all the containers.

To address this, the cgroups (short for Control Groups) feature was introduced in
Linux kernel version 2.6.24 onward to limit the resource usage of processes. Using
this feature, a system administrator can control the most important resources, such
as memory, CPU, disk space, and network bandwidth.

In Ubuntu 18.04 LTS, a series of cgroups under path /sys/fs/cgroup/<cgroup
type> are created by default.

Note

You can run mount -t cgroup in order to view all the cgroups in
Ubuntu; though, we are leaving them out of the scope of this book since
they are not very relevant to us.

The Essence of Linux Container Technology | 33

Right now, we don't quite care about the system processes and their cgroups; we just
want to focus on how Docker is related in the whole cgroups picture. Docker has its
cgroups folders under the path /sys/fs/cgroup/<resource kind>/docker.
Use the find command to retrieve the list:

find /sys/fs/cgroup/* -name docker -type d

If you are using macOS, run this command on the Linux VM in another session.
You should see the following results:

Figure 1.26: Getting all the cgroups related to Docker

Each folder is read as a control group, and the folders are hierarchical, meaning that
each cgroup has a parent from which it inherits properties, all the way up to the root
cgroup, which is created at the system start.

To illustrate how a cgroup works in Docker, we will use the memory cgroup,
highlighted in Figure 1.26 as an example.

But first, let's remove all existing containers using the following command:

docker rm -f $(docker ps -aq)

You should see a response similar to the following:

61d0fa62bc49

34 | Introduction to Kubernetes and Containers

Let's confirm that by using the following command:

docker ps

You should see an empty list as follows:

CONTAINER ID IMAGE COMMAND CREATED STATUS

 PORTS NAMES

Let's see whether there is a cgroup memory folder:

find /sys/fs/cgroup/memory/docker/* -type d

If you are using macOS, run this command on the Linux VM. You should then see the
following response:

root@ubuntu: ~# find /sys/fs/cgroup/memory/docker/* -type d

No folders show up. Now, let's run a container:

docker run -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners

You should see the output similar to the following:

8fe77332244b2ebecbda27a4496268264218c4e59614d59b5849a22b12941e1

Check the cgroup folder again:

find /sys/fs/cgroup/memory/docker/* -type d

If you are using macOS, run this command on the Linux VM. You should see
this response:

/sys/fs/cgroup/memory/
docker/8fe77332244b2ebecbda27a4496268264218c4e59614d59b5849a22b12941e1

By now, you can see that once we create a container, Docker creates its cgroup folder
under a specific resource kind (in our example, it's memory). Now, let's take a look at
which files are created in this folder:

ls /sys/fs/cgroup/memory/
docker/8fe77332244b2ebecbd8a2704496268264218c4e59614d59b5849022b12941e1

The Essence of Linux Container Technology | 35

If you are using macOS, run this command on the Linux VM. Please use the
appropriate path that you obtained from the previous screenshot for your
instance. You should see the following list of files:

Figure 1.27: Exploring memory cgroups created by Docker

We won't go through every setting here. The setting we're interested in is
memory.limit_in_bytes, as highlighted previously, which denotes how
much memory the container can use. Let's see what value is written in this file:

cat /sys/fs/cgroup/memory/
docker/8fe77332244b2ebecbd8a2704496268264218c4e59614d59b5849022b12941e1/
memory.limit_in_bytes

If you are using macOS, run this command on the Linux VM. You should see the
following response:

9223372036854771712

The value 9223372036854771712 is the largest positive signed integer (263 – 1) in a
64-bit system, which means unlimited memory can be used by this container.

36 | Introduction to Kubernetes and Containers

To discover how Docker deals with the containers that overuse claimed memory,
we're going to show you another program that consumes a certain amount of RAM.
The following is a Golang program used to consume 50 MB of RAM incrementally and
then hold the entire program (sleep for 1 hour) so as to not exit:

package main

import (

 "fmt"

 "strings"

 "time"

)

func main() {

 var longStrs []string

 times := 50

 for i := 1; i <= times; i++ {

 fmt.Printf("===============%d===============\n", i)

 // each time we build a long string to consume 1MB
 (1000000 * 1byte) RAM
 longStrs = append(longStrs, buildString(1000000,
 byte(i)))
 }

 // hold the application to exit in 1 hour

 time.Sleep(3600 * time.Second)

}

// buildString build a long string with a length of `n`.

func buildString(n int, b byte) string {

 var builder strings.Builder

 builder.Grow(n)

 for i := 0; i < n; i++ {

 builder.WriteByte(b)

 }

 return builder.String()

}

The Essence of Linux Container Technology | 37

You may try building an image using this code, as shown in Exercise 1.01, Creating
a Docker Image and Uploading it to Docker Hub. This code will be used in place of
the code provided in step 2 of that exercise, and then you can tag the image with
<username>/memconsumer. Now, we can test resource limitations. Let's use the
Docker image and run it with the --memory (or -m) flag to instruct Docker that we
only want to use a certain amount of RAM.

If you are using Ubuntu or any other Debian-based Linux, to continue with the
chapter, you may need to manually enable cgroup memory and swap capabilities if
you see the following warning message when running this command:

docker info > /dev/null

This is the warning message that you may see:

WARNING: No swap limit support

The steps to enable cgroup memory and swap capabilities are as follows:

Note

The following three steps are not applicable if you are using macOS.

1. Edit the /etc/default/grub file (you may need root privileges for this).
Add or edit the GRUB_CMDLINE_LINUX line to add the following two
key-value pairs:

GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"

2. Run update-grub using root privileges.

3. Reboot the machine.

Next, we should be able to limit the container memory usage to 100 MB by running
the following command:

docker run --name memconsumer -d --memory=100m --memory-swap=100m
packtworkshops/the-kubernetes-workshop:memconsumer

Note

This command pulls the image that we have provided for this
demonstration. If you have built your image, you can use that by using
<your_username>/<tag_name> in the preceding command.

38 | Introduction to Kubernetes and Containers

You should see the following response:

WARNING: Your kernel does not support swap limit capabilities or the
cgroup is not mounted. Memory limited without swap.
366bd13714cadb099c7ef6056e3b72853735473938b2e633a5cdbf9e94273143

This command disables usage on the swap memory (since we specify the same
value on --memory and --memory-swap) so as to gauge the consumption of
memory easily.

Let's check the status of our container:

docker ps

You should see the following response:

Figure 1.28: Getting the list of containers

Now, let's confirm the restrictions placed on the container by reading the cgroup file
for the container:

cat /sys/fs/cgroup/memory/
docker/366bd13714cadb099c7ef6056e3b7285373547e9e8b2e633a5cdbf9e94273143/
memory.limit_in_bytes

If you are using macOS, run this command on the Linux VM. Please use the
appropriate path in this command. You should see the following response:

104857600

The container is launched with a request of 100 MB of RAM, and it runs without any
problem since it internally only consumes 50 MB of RAM. From the cgroup setting,
you can observe that the value has been updated to 104857600, which is exactly
100 MB.

But what if the container requests less than 50 MB, while the program running in it
requires more than 50 MB? How will Docker and Linux respond to that? Let's take
a look.

The Essence of Linux Container Technology | 39

First, let's remove any running containers:

docker rm -f $(docker ps -aq)

You should see the following response:

366bd13714ca

Next, we're going to run the container again, but we will request only 20 MB
of memory:

docker run --name memconsumer -d --memory=20m --memory-swap=20m
packtworkshops/the-kubernetes-workshop:memconsumer

You should see this response:

298541bc46855a749f9f8944860a73f3f4f2799ebda7969a5eada60e3809539bab

Now, let's check the status of our container:

docker ps

You should see an empty list like this:

CONTAINER ID IMAGE COMMAND CREATED STATUS

 PORTS NAMES

As you can see, we cannot see our container. Let's list all kinds of containers:

docker ps -a

You should see the following output:

Figure 1.29: Getting a list of all containers

We found our container. It has been forcibly killed. It can be verified by checking the
container logs:

docker logs memconsumer

40 | Introduction to Kubernetes and Containers

You should see the following output:

Figure 1.30: The logs of our terminated container

The container tried to increase the memory consumed by 1 MB each time, and when
it came to the memory limit (20 MB), it was killed.

From the preceding examples, we have seen how Docker exposes flags to end-users,
and how those flags interact with underlying Linux cgroups to limit resource usage.

The Essence of Linux Container Technology | 41

Containerization: The Mindset Change

In the previous sections, we looked at the anatomy of Linux namespaces and cgroups.
We explained that a container is essentially a process running natively on the host OS.
It is a special process with additional limitations such as OS-level isolation from other
processes and the control of resource quotas.

Since Docker 1.11, containerd has been adopted as the default container runtime,
instead of directly using Docker Daemon (dockerd) to manage containers. Let's take
a look at this runtime. First, restart our container normally:

docker run -d packtworkshops/the-kubernetes-workshop:k8s-for-beginners

You should see the following response:

c7ee681ff8f73fa58cf0b37bc5ce08306913f27c5733c725f7fe97717025625d

We can use ps -aef --forest to list all of the running processes in a hierarchy,
and then use | grep containerd to filter the output by the containerd
keyword. Finally, we can use -A 1 to output one extra line (using -A 1) so that at
least one running container shows up:

ps -aef --forest | grep containerd -A 1

If you are using macOS, run this command on the Linux VM without the --forest
flag. You should see the following response:

Figure 1.31: Getting processes related to containerd

In the output, we can see that containerd (PID 1037) acts as the top parent
process, and it manages containerd-shim (PID 19374), and containerd-shim
manages most of the child processes of k8s-for-beginners (PID 19394), which
is the container we started.

42 | Introduction to Kubernetes and Containers

Keeping the core idea of a container in mind can help you while migrating any
VM-based applications to container-based ones. Basically, there are two patterns to
deploy applications in containers:

Several Applications in One Container

This kind of implementation requires a supervisor application to launch and hold the
container. And then, we can put applications into the container as child processes of
the supervisor. The supervisor has several variants:

• A customized wrapper script: This needs complicated scripting to control the
failures of managed applications.

• A third-party tool such as supervisord or systemd: Upon application failures, the
supervisor is responsible for getting it restarted.

One Application in One Container

This kind of implementation does not require any supervisor as in the previous case.
In fact, the life cycle of the application is tied to the life cycle of the container.

A Comparison of These Approaches

By deploying several applications in a single container, we are essentially treating a
container as a VM. This container as a lightweight VM approach was once used as a
promotion slogan of container technologies. However, as explained, they vary in a
lot of aspects. Of course, this way can save the migration efforts from the VM-based
development/deployment model to the containers, but it also introduces several
drawbacks in the following aspects:

• Application life cycle control: Looking from the outside, the container is
exposed as one state, as it is essentially a single host process. The life cycles
of the internal applications are managed by the "supervisor", and, therefore,
cannot be observed from the outside. So, looking from the outside, you may
observe that a container stays healthy, but some applications inside it may be
restarting persistently. It may keep restarting due to a fatal error in one of its
internal applications, which you may not be able to point out.

• Version upgrade: If you want to upgrade any one of the different applications
in a container, you may have to pull down the entire container. This causes
unnecessary downtime for the other applications in that container, which don't
need a version upgrade. Thus, if the applications require components that are
developed by different teams, their release cycles have to be tightly coupled.

The Essence of Linux Container Technology | 43

• Horizontal scaling: If only one application needs to be scaled out, you have no
option but to scale out the whole container, which will also replicate all the other
applications. This leads to a waste of resources on the applications that don't
need scaling.

• Operational concerns: Checking the logs of the applications becomes more
challenging as the standard output (stdout) and error (stderr) of the
container don't represent the logs of the applications inside containers. You
have to make an extra effort to manage those logs, such as installing additional
monitoring tools to diagnose the health of each application.

Technically, having multiple applications in a single container works, and it doesn't
require many mindset changes from a VM perspective. However, when we adopt
the container technology to enjoy its benefits, we need to make a trade-off between
migration conveniences and long-term maintainability.

The second way (that is, having one application in one container) enables a container
to automatically manage the life cycle of the only application present inside it. In this
way, we can unify container management by leveraging native Linux capabilities,
such as getting an application status by checking the container state and fetching
application logs from the stdout/stderr of the container. This enables you to
manage each application in its own release cycle.

However, this is not an easy task. It requires you to rethink the relationship and
dependencies of different components so as to break the monolithic applications into
microservices. This may require a certain amount of refactoring of the architectural
design to include both source code and delivery pipeline changes.

To summarize, adopting container technology is a break-up-and-reorganize journey.
It not only takes time for the technology to mature but also, more importantly,
it requires changes in people's mindsets. Only with this mindset change can you
restructure the applications as well as the underlying infrastructure to unleash
the value of containers and enjoy their real benefits. It's the second reason that
container technologies only started to rise in recent years instead of a decade ago.

44 | Introduction to Kubernetes and Containers

The Need for Container Orchestration
The k8s-for-beginners container we built in Exercise 1.01, Creating a Docker
Image and Uploading it to Docker Hub, is nothing but a simple demonstration. In the
case of a serious workload deployed in a production environment, and to enable
hundreds of thousands of containers running in a cluster, we have many more things
to consider. We need a system to manage the following problems:

Container Interactions

As an example, suppose that we are going to build a web app with a frontend
container displaying information and accepting user requests, and a backend
container serving as a datastore that interacts with the frontend container. The first
challenge is to figure out how to specify the address of the backend container to
the frontend container. It is not a good idea to hardcode the IP, as the container IP
is not static. In a distributed system, it is not uncommon for containers or machines
to fail due to unexpected issues. So, the link between any two containers must be
discoverable and effective across all the machines. On the other hand, the second
challenge is that we may want to limit which containers (for example, the backend
container) can be visited by which kind of containers (for example, its corresponding
frontend ones).

Network and Storage

All the examples that we gave in the previous sections used containers running on the
same machine. This is pretty straightforward, as the underlying Linux namespaces
and cgroup technologies were designed to work within the same OS entity. If we want
to run thousands of containers in a production environment, which is pretty common,
we have to resolve the network connectivity issue to ensure that different containers
across different machines are able to connect with each other. On the other hand,
local or temporary on-disk storage doesn't always work for all workloads. Applications
may need the data to be stored remotely and be available to be mounted at will
to any machine in the cluster the container is run on, no matter if the container is
starting up for the first time or restarting after a failure.

The Need for Container Orchestration | 45

Resource Management and Scheduling

We have seen that a container leverages Linux cgroups to manage its resource
usage. To be a modern resource manager, it needs to build an easy-to-use resource
model to abstract resources such as CPU, RAM, disk, and GPU. We need to manage a
number of containers efficiently, and to provision and free up resources in time so as
to achieve high cluster utilization.

Scheduling involves assigning an appropriate machine in the cluster for each of our
workloads to run on. We will take a closer look at scheduling as we proceed further in
this book. To ensure that each container has the best machine to run, the scheduler
(a Kubernetes component that takes care of scheduling) needs to have a global view
of the distribution of all containers across the different machines in the cluster.
Additionally, in large data centers, the containers would need to be distributed
based on the physical locations of the machines or the availability zones of the
cloud services. For example, if all containers supporting a service are allocated
to the same physical machine, and that machine happens to fail, the service will
experience a period of outage regardless of how many replicas of the containers
you had deployed.

Failover and Recovery

Application or machine errors are quite common in a distributed system. Therefore,
we must consider container and machine failures. When containers encounter fatal
errors and exit, they should be able to be restarted on the same or another suitable
machine that is available. We should be able to detect machine faults or network
partitions so as to reschedule the containers from problematic machines to healthy
ones. Moreover, the reconciliation process should be autonomous, to make sure the
application is always running in its desired state.

Scalability

As demand increases, you may want to scale up an application. Take a web frontend
application as an example. We may need to run several replicas of it and use a
load balancer to distribute the incoming traffic evenly among the many replicas of
containers supporting the service. To walk one step further, depending on the volume
of incoming requests, you may want the application to be scaled dynamically, either
horizontally (by having more or fewer replicas), or vertically (by allocating more or
fewer resources). This takes the difficulty of system design to another level.

46 | Introduction to Kubernetes and Containers

Service Exposure

Suppose we've tackled all the challenges mentioned previously; that's to say, all
things are working great within the cluster. Well, here comes another challenge: how
can the applications be accessed externally? On one hand, the external endpoint
needs to be associated with the underlying on-premises or cloud environment so that
it can leverage the infrastructure's API to make itself always accessible. On the other
hand, to keep the internal network traffic always going through, the external endpoint
needs to be associated with internal backing replicas dynamically – any unhealthy
replicas need to be taken out and backfilled automatically to ensure that the
application remains online. Moreover, L4 (TCP/UDP) and L7 (HTTP, HTTPS) traffic has
different characteristics in terms of packets, and, therefore, needs to be treated in
slightly different ways to ensure efficiency. For example, the HTTP header information
can be used to reuse the same public IP to serve multiple backend applications.

Delivery Pipeline

From a system administrator's point of view, a healthy cluster must be monitorable,
operable, and autonomous in responding to failures. This requires the applications
deployed on to the cluster to follow a standardized and configurable delivery
pipeline so that it can be managed well at different phases, as well as in
different environments.

An individual container is typically used only for completing a single functionality,
which is not enough. We need to provide several building blocks to connect the
containers all together to accomplish a complicated task.

Orchestrator: Putting All the Things Together

We don't mean to overwhelm you, but the aforementioned problems are very
serious, and they arise as a result of the large number of containers that need to be
automatically managed. Compared to the VM era, containers do open another door
for application management in a large, distributed cluster. However, this also takes
container and cluster management challenges to another level. In order to connect
the containers to each other to accomplish the desired functionality in a scalable,
high-performant, and self-recovering manner, we need a well-designed container
orchestrator. Otherwise, we would not be able to migrate our applications from
VMs to containers. It's the third reason why containerization technologies began
to be adopted on a large scale in recent years, particularly upon the emergence of
Kubernetes – which is the de facto container orchestrator nowadays.

Welcome to the Kubernetes World | 47

Welcome to the Kubernetes World
Unlike typical software that usually evolves piece by piece, Kubernetes got a kick-
start as it was designed based on years of experience on Google's internal large-scale
cluster management software such as Borg and Omega. That's to say, Kubernetes
was born equipped with lots of best practices in the container orchestration and
management field. Since day one, the team behind it understood the real pain points
and came up with proper designs for tackling them. Concepts such as pods, one
IP per pod, declarative APIs, and controller patterns, among others that were first
introduced by Kubernetes, seemed to be a bit "impracticable", and some people at
that time might have questioned their real value. However, 5 years later, those design
rationales remain unchanged and have proven to be the key differentiators from
other software.

Kubernetes resolves all the challenges mentioned in the previous section. Some of
the well-known features that Kubernetes provides are:

• Native support for application life cycle management

This includes built-in support for application replicating, autoscaling, rollout, and
rollback. You can describe the desired state of your application (for example,
how many replicas, which image version, and so on), and Kubernetes will
automatically reconcile the real state to meet its desired state. Moreover, when
it comes to rollout and rollback, Kubernetes ensures that the old replicas are
replaced by new ones gradually to avoid downtime of the application.

• Built-in health-checking support

By implementing some "health check" hooks, you can define when the
containers can be viewed as ready, alive, or failed. Kubernetes will only start
directing traffic to a container when it's healthy as well as ready. It will also
restart the unhealthy containers automatically.

• Service discovery and load balancing

Kubernetes provides internal load balancing between different replicas of a
workload. Since containers can fail occasionally, Kubernetes doesn't use an IP for
direct access. Instead, it uses an internal DNS and exposes each service with a
DNS record for communication within a cluster.

48 | Introduction to Kubernetes and Containers

• Configuration management

Kubernetes uses labels to describe the machines and workloads. They're
respected by Kubernetes' components to manage containers and dependencies
in a loosely coupled and flexible fashion. Moreover, the simple but powerful
labels can be used to achieve advanced scheduling features (for example, taint/
toleration and affinity/anti-affinity).

In terms of security, Kubernetes provides the Secret API to allow you to store and
manage sensitive information. This can help application developers to associate
the credentials with your applications securely. From a system administrator's
point of view, Kubernetes also provides varied options for managing
authentication and authorization.

Moreover, some options such as ConfigMaps aim to provide fine-grained
mechanics to build a flexible application delivery pipeline.

• Network and storage abstraction

Kubernetes initiates the standards to abstract the network and storage
specifications, which are known as the CNI (Container Network Interface) and
CSI (Container Storage Interface). Each network and storage provider follows
the interface and provides its implementation. This mechanism decouples the
interface between Kubernetes and heterogeneous providers. With that, end
users can use standard Kubernetes APIs to orchestrate their workloads in a
portable manner.

Under the hood, there are some key concepts supporting the previously mentioned
features, and, more critically, Kubernetes provides different extension mechanics for
end-users to build customized clusters or even their own platform:

• The Declarative API

The Declarative API is a way to describe what you want to be done. Under this
contract, we just specify the desired final state rather than describing the steps
to get there.

The declarative model is widely used in Kubernetes. It not only enables
Kubernetes' core features to function in a fault-tolerant way but also serves
as a golden rule to build Kubernetes extension solutions.

Welcome to the Kubernetes World | 49

• Concise Kubernetes core

It is common for a software project to grow bigger over time, especially for
famous open source software such as Kubernetes. More and more companies
are getting involved in the development of Kubernetes. But fortunately, since
day one, the forerunners of Kubernetes set some baselines to keep Kubernetes'
core neat and concise. For example, instead of binding to a particular container
runtime (for example, Docker or Containerd), Kubernetes defines an interface
(CRI or the container runtime interface) to be technology-agnostic so that
users can choose which runtime to use. Also, by defining the CNI (Container
Network Interface), it delegates the pod and host's network routing
implementation to different projects such as Calico and Weave Net. In this
way, Kubernetes is able to keep its core manageable, and also encourage more
vendors to join, so the end-users can have more choices to avoid vendor
lock-ins.

• Configurable, pluggable, and extensible design

All Kubernetes' components provide configuration files and flags for users to
customize the functionalities. And each core component is implemented strictly
to adhere to the public Kubernetes API; for advanced users, you can choose
to implement a part of or the entire component yourself to fulfill a special
requirement, as long as it is subject to the API. Moreover, Kubernetes provides
a series of extension points to extend Kubernetes' features, as well as building
your platform.

In the course of this book, we will walk you through the high-level Kubernetes
architecture, its core concepts, best practices, and examples to help you master the
essentials of Kubernetes, so that you can build your applications on Kubernetes, and
also extend Kubernetes to accomplish complex requirements.

50 | Introduction to Kubernetes and Containers

Activity 1.01: Creating a Simple Page Count Application

In this activity, we will create a simple web application that counts the number of
visitors. We will containerize this application, push it to a Docker image registry, and
then run the containerized application.

A PageView Web App

We will first build a simple web application to show the pageviews of a particular
web page:

1. Use your favorite programming language to write an HTTP server to listen on
port 8080 at the root path (/). Once it receives a request, it adds 1 to its internal
variable and responds with the message Hello, you're visitor #i,
where i is the accumulated number. You should be able to run this application
on your local development environment.

Note

In case you need help with the code, we have provided a sample piece of
code written in Go, which is also used for the solution to this activity. You
can get this from the following link: https://packt.live/2DcCQUH.

2. Compose a Dockerfile to build the HTTP server and package it along with its
dependencies into a Docker image. Set the startup command in the last line to
run the HTTP server.

3. Build the Dockerfile and push the image to a public Docker images registry
(for example, https://hub.docker.com/).

4. Test your Docker images by launching a Docker container. You should use either
Docker port mapping or an internal container IP to access the HTTP server.

https://packt.live/2DcCQUH
https://hub.docker.com/

Welcome to the Kubernetes World | 51

You can test whether your application is working by repeatedly accessing it using the
curl command as follows:

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #1.

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #2.

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #3.

Bonus Objective

Until now, we have implemented the basics of Docker that we have learned in this
chapter. However, we can demonstrate the need to link different containers by
extending this activity.

For an application, usually, we need multiple containers to focus on different
functionalities and then connect them together as a fully functional application. Later
on, in this book, you will learn how to do this using Kubernetes; however, for now,
let's connect the containers directly.

We can enhance this application by attaching a backend datastore to it. This will allow
it to persist its state even after the container is terminated, that is, it will retain the
number of visitors. If the container is restarted, it will continue the count instead of
resetting it. Here are some guidelines for building on top of the application that you
have built so far.

A Backend Datastore

We may lose the pageview number when the container dies, so we need to persist it
into a backend datastore:

1. Run one of the three well-known datastores: Redis, MySQL, or MongoDB within
a container.

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD. We have implemented Redis for our datastore.

https://packt.live/304PEoD

52 | Introduction to Kubernetes and Containers

You can find more details about the usage of the Redis container at this link:
https://hub.docker.com/_/redis.

If you wish to use MySQL, you can find details about its usage at this
link: https://hub.docker.com/_/mysql.

If you wish to use MongoDB, you can find details about its usage at this link:
https://hub.docker.com/_/mongo.

2. You may need to run the container using the --name db flag to make it
discoverable. If you are using Redis, the command should look like this:

docker run --name db -d redis

Modifying the Web App to Connect to a Backend Datastore

1. Every time a request comes in, you should modify the logic to read the pageview
number from the backend, then add 1 to its internal variable, and respond with
a message of Hello, you're visitor #i, where i is the accumulated
number. At the same time, store the added pageview number in the datastore.
You may need to use the datastore's specific SDK Software Development Kit
(SDK) to connect to the datastore. You can put the connection URL as db:<db
port> for now.

Note

You may use the source code from the following
link: https://packt.live/3lBwOhJ.

If you are using the code from this link, ensure that you modify it to map to
the exposed port on your datastore.

2. Rebuild the web app with a new image version.

3. Run the web app container using the --link db:db flag.

4. Verify that the pageview number is returned properly.

5. Kill the web app container and restart it to see whether the pageview number
gets restored properly.

https://hub.docker.com/_/redis
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mongo
https://packt.live/3lBwOhJ

Summary | 53

Once you have created the application successfully, test it by accessing it repeatedly.
You should see it working as follows:

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #1.

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #2.

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #3.

Then, kill the container and restart it. Now, try accessing it. The state of the
application should be persisted, that is, the count must continue from where
it was before you restarted the container. You should see a result as follows:

root@ubuntu:~# curl localhost: 8080

Hello, you're visitor #4.

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
In this chapter, we walked you through a brief history of software development and
explained some of the challenges in the VM era. With the emergence of Docker,
containerization technologies open a new gate in terms of resolving the problems
that existed with earlier methods of software development.

We walked you through the basics of Docker and detailed the underlying features
of Linux such as namespaces and cgroups, which enable containerization. We then
brought up the concept of container orchestration and illustrated the problems it
aims to solve. Finally, we gave a very brief overview of some of the key features and
methodologies of Kubernetes.

In the next chapter, we will dive a little deeper and take a look at Kubernetes'
architecture to understand how it works.

https://packt.live/304PEoD

Overview

In this chapter, we will have our first hands-on introduction to Kubernetes.
This chapter will give you a brief overview of the different components
of Kubernetes and how they work together. We will also try our hand at
working with some fundamental Kubernetes components.

By the end of this chapter, you will have a single-node Minikube
environment set up where you can run many of the exercises and activities
in this book. You will be able to understand the high-level architecture of
Kubernetes and identify the roles of the different components. You will
also learn the basics required to migrate containerized applications to a
Kubernetes environment.

An Overview of Kubernetes

2

56 | An Overview of Kubernetes

Introduction
We ended the previous chapter by providing a brief and abstract introduction to
Kubernetes, as well as some of its advantages. In this chapter, we will provide you
with a much more concrete high-level understanding of how Kubernetes works. First,
we will walk you through how to install Minikube, which is a handy tool that creates a
single-node cluster and provides a convenient learning environment for Kubernetes.
Then, we will take a 10,000-foot overview of all the components, including their
responsibilities and how they interact with each other. After that, we will migrate the
Docker application that we built in the previous chapter to Kubernetes and illustrate
how it can enjoy the benefits afforded by Kubernetes, such as creating multiple
replicas, and version updates. Finally, we will explain how the application responds
to external and internal traffic.

Having an overview of Kubernetes is important before we dive deeper into the
different aspects of it so that when we learn more specifics about the different
aspects, you will have an idea of where they fit in the big picture. Also, when we
go even further and explore how to use Kubernetes to deploy applications in a
production environment, you will have an idea of how everything is taken care of
in the background. This will also help you with optimization and troubleshooting.

Setting up Kubernetes
Had you asked the question, "How do you easily install Kubernetes?" three years
ago, it would have been hard to give a compelling answer. Embarrassing, but true.
Kubernetes is a sophisticated system, and getting it installed and managing it well
isn't an easy task.

However, as the Kubernetes community has expanded and matured, more and more
user-friendly tools have emerged. As of today, based on your requirements, there are
a lot of options to choose from:

• If you are using physical (bare-metal) servers or virtual machines (VMs),
Kubeadm is a good fit.

• If you're running on cloud environments, Kops and Kubespray can ease
Kubernetes installation, as well as integration with the cloud providers. In fact,
we will teach you how to deploy Kubernetes on AWS using Kops in Chapter 11,
Build Your Own HA Cluster, and we will take another look at the various options
we can use to set up Kubernetes.

Setting up Kubernetes | 57

• If you want to drop the burden of managing the Kubernetes control plane
(which we will learn about later in this chapter), almost all cloud providers have
their Kubernetes managed services, such as Google Kubernetes Engine (GKE),
Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes Service (AKS),
and IBM Kubernetes Service (IKS).

• If you just want a playground to study Kubernetes in, Minikube and Kind can
help you spin up a Kubernetes cluster in minutes.

We will use Minikube extensively throughout this book as a convenient learning
environment. But before we proceed to the installation process, let's take a closer
look at Minikube itself.

An Overview of Minikube

Minikube is a tool that can be used to set up a single-node cluster, and it provides
handy commands and parameters to configure the cluster. It primarily aims to
provide a local testing environment. It packs a VM containing all the core components
of Kubernetes that get installed onto your host machine, all at once. This allows it to
support any operating system, as long as there is a virtualization tool (also known as a
Hypervisor) pre-installed. The following are the most common Hypervisors supported
by Minikube:

• VirtualBox (works for all operating systems)

• KVM (Linux-specific)

• Hyperkit (macOS-specific)

• Hyper-V (Windows-specific)

Regarding the required hardware resources, the minimum requirement is 2 GB RAM
and any dual-core CPU that supports virtualization (Intel VT or AMD-V), but you will, of
course, need a more powerful machine if you are trying out heavier workloads.

Just like any other modern software, Kubernetes provides a handy command-line
client called kubectl that allows users to interact with the cluster conveniently. In the
next exercise, we will set up Minikube and use some basic kubectl commands. We will
go into more detail about kubectl in the next chapter.

58 | An Overview of Kubernetes

Exercise 2.01: Getting Started with Minikube and Kubernetes Clusters

In this exercise, we will use Ubuntu 20.04 as the base operating system to install
Minikube, using which we can start a single-node Kubernetes cluster easily. Once the
Kubernetes cluster has been set up, you should be able to check its status and use
kubectl to interact with it:

Note

Since this exercise deals with software installations, you will need to be
logged in as root/superuser. A simple way to switch to being a root user is to
run the following command: sudo su -.

In step 9 of this exercise, we will create a regular user and then switch back
to it.

1. First, ensure that VirtualBox is installed. You can confirm this by using the
following command:

which VirtualBox

You should see the following output:

/usr/bin/VirtualBox

If VirtualBox has been successfully installed, the which command should show
the path of the executable, as shown in the preceding screenshot. If not, then
please ensure that you have installed VirtualBox as per the instructions provided
in the Preface.

2. Download the Minikube standalone binary by using the following command:

curl -Lo minikube https://github.com/kubernetes/minikube/releases/
download/<version>/minikube-<ostype-arch> && chmod +x minikube

Setting up Kubernetes | 59

In this command, <version> should be replaced with a specific version, such
as v1.5.2 (which is the version we will use in this chapter) or the latest.
Depending on your host operating system, <ostype-arch> should be
replaced with linux-amd64 (for Ubuntu) or darwin-amd64 (for macOS).

Note

To ensure compatibility with the commands provided in this book,
we recommend that you install Minikube version v1.5.2.

You should see the following output:

Figure 2.1: Downloading the Minikube binary

The preceding command contains two parts: the first command, curl,
downloads the Minikube binary, while the second command, chmod, changes
the permission to make it executable.

3. Move the binary into the system path (in the example, it's /usr/local/bin)
so that we can directly run Minikube, regardless of which directory the command
is run in:

mv minikube /usr/local/bin

When executed successfully, the move (mv) command does not give a response
in the terminal.

4. After running the move command, we need to confirm that the Minikube
executable is now in the correct location:

which minikube

60 | An Overview of Kubernetes

You should see the following output:

/usr/local/bin/minikube

Note

If the which minikube command doesn't give you the expected result,
you may need to explicitly add /usr/local/bin to your system path by
running export PATH=$PATH:/usr/local/bin.

5. You can check the version of Minikube using the following command:

minikube version

You should see the following output:

minikube version: v1.5.2

commit: 792dbf92a1de583fcee76f8791cff12e0c9440ad-dirty

6. Now, let's download kubectl version v1.16.2 (so that it's compatible with the
version of Kubernetes that our setup of Minikube will create later) and make it
executable by using the following command:

curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.16.2/bin/<ostype>/amd64/kubectl && chmod +x kubectl

As mentioned earlier, <ostype> should be replaced with linux (for Ubuntu)
or darwin (for macOS).

You should see the following output:

Figure 2.2: Downloading the kubectl binary

7. Then, move it to the system path, just like we did for the executable
of Minikube earlier:

mv kubectl /usr/local/bin

8. Now, let's check whether the executable for kubectl is at the correct path:

which kubectl

Setting up Kubernetes | 61

You should see the following response:

/usr/local/bin/kubectl

9. Since we are currently logged in as the root user, let's create a regular user
called k8suser by running the following command:

useradd k8suser

Enter your desired password when you are prompted for it. You will also be
prompted to enter other details, such as your full name. You may choose to
skip those details by simply pressing Enter. You should see an output similar to
the following:

Figure 2.3: Creating a new Linux user

Enter Y and hit Enter to confirm the final prompt for creating a user, as shown at
the end of the previous screenshot.

10. Now, switch user from root to k8suser:

su - k8suser

You should see the following output:

root@ubuntu:~# su – k8suser

k8suser@ubuntu:~$

62 | An Overview of Kubernetes

11. Now, we can create a Kubernetes cluster using minikube start:

minikube start --kubernetes-version=v1.16.2

Note

If you want to manage multiple clusters, Minikube provides a --profile
<profile name> parameter to each cluster.

It will take a few minutes to download the VM images and get everything set up.
After Minikube has started up successfully, you should see a response that looks
similar to the following:

Figure 2.4: Minikube first startup

As we mentioned earlier, Minikube starts up a VM instance with all the
components of Kubernetes inside it. By default, it uses VirtualBox, and you can
use the --vm-driver flag to specify a particular hypervisor driver (such as
hyperkit for macOS). Minikube also provides the --kubernetes-version
flag so you can specify the Kubernetes version you want to use. If not specified,
it will use the latest version that was available when the Minikube release was
finalized. In this chapter, to ensure compatibility of the Kubernetes version with
the kubectl version, we have specified Kubernetes version v1.16.2 explicitly.

The following commands should help establish that the Kubernetes cluster that
was started by Minikube is running properly.

Kubernetes Components Overview | 63

12. Use the following command to get the basic status of the various components of
the cluster:

minikube status

You should see the following response:

host: Running

kubelet: Running

apiserver: Running

kubeconfig: Configured

13. Now, let's look at the version of the kubectl client and Kubernetes server:

kubectl version --short

You should see the following response:

Client Version: v1.16.2

Server Version: v1.16.2

14. Let's learn how many machines comprise the cluster and get some basic
information about them:

kubectl get node

You should see a response similar to the following:

NAME STATUS ROLES AGE VERSION

minikube Ready master 2m41s v1.16.2

After finishing this exercise, you should have Minikube set up with a single-node
Kubernetes cluster. In the next section, we will enter the Minikube VM to take a look
at how the cluster is composed and the various components of Kubernetes that make
it work.

Kubernetes Components Overview
By completing the previous exercise, you have a single-node Kubernetes cluster up
and running. Before playing your first concert, let's hold on a second and pull the
curtains aside to take a look backstage to see how Kubernetes is architected behind
the scenes, and then check how Minikube glues its various components together
inside its VM.

64 | An Overview of Kubernetes

Kubernetes has several core components that make the wheels of the machine turn.
They are as follows:

• API server

• etcd

• Controller manager

• Scheduler

• Kubelet

These components are critical for the functioning of a Kubernetes cluster.

Besides these core components, you would deploy your applications in containers,
which are bundled together as pods. We will learn more about pods in Chapter 5,
Pods. These pods, and several other resources, are defined by something called
API objects.

An API object describes how a certain resource should be honored in Kubernetes.
We usually define API objects using a human-readable manifest file, and then use
a tool (such as kubectl) to parse it and hand it over to a Kubernetes API server.
Kubernetes then tries to create the resource specified in the object and match its
state to the desired state in the object definition, as mentioned in the manifest file.
Next, we will walk you through how these components are organized and behave
in a single-node cluster created by Minikube.

Minikube provides a command called minikube ssh that's used to gain SSH access
from the host machine (in our machine, it's the physical machine running Ubuntu
20.04) to the minikube virtual machine, which serves as the sole node in our
Kubernetes cluster. Let's see how that works:

minikube ssh

You will see the following output:

Figure 2.5: Accessing the Minikube VM via SSH

Kubernetes Components Overview | 65

Note

All the commands that will be shown later in this section are presumed to
have been run inside the Minikube VM, after running minikube ssh.

Container technology brings the convenience of encapsulating your application.
Minikube is no exception – it leverages containers to glue the Kubernetes
components together. In the Minikube VM, Docker is pre-installed so that it can
manage the core Kubernetes components. You can take a look at this by running
docker ps; however, the result may be overwhelming as it includes all the running
containers – both the core Kubernetes components and add-ons, as well as all the
columns – which will output a very large table.

To simplify the output and make it easier to read, we will pipe the output from
docker ps into two other Bash commands:

1. grep -v pause: This will filter the results by not displaying the
"sandbox" containers.

Without grep -v pause, you would find that each container is "paired" with
a "sandbox" container (in Kubernetes, it's implemented as a pause image).
This is because, as mentioned in the previous chapter, Linux containers can be
associated (or isolated) by joining the same (or different) Linux namespace. In
Kubernetes, a "sandbox" container is used to bootstrap a Linux namespace, and
then the containers that run the real application are able to join that namespace.
Finer details about how all this works under the hood have been left out of scope
for the sake of brevity.

Note

If not specified explicitly, the term "namespace" is used interchangeably with
"Kubernetes namespace" across this book. In terms of "Linux namespace",
"Linux" would not be omitted to avoid confusion.

2. awk '{print $NF}': This will only print the last column with a
container name.

Thus, the final command is as follows:

docker ps | grep -v pause | awk '{print $NF}'

66 | An Overview of Kubernetes

You should see the following output:

Figure 2.6: Getting the list of containers by running the Minikube VM

The highlighted containers shown in the preceding screenshot are basically the
core components of Kubernetes. We'll discuss each of these in detail in the
following sections.

etcd

A distributed system may face various kinds of failures (network, storage, and so on)
at any moment. To ensure it still works properly when failures arise, critical cluster
metadata and state must be stored in a reliable way.

Kubernetes abstracts the cluster metadata and state as a series of API objects. For
example, the node API object represents a Kubernetes worker node's specification,
as well as its latest status.

Kubernetes uses etcd as the backend key-value database to persist the API objects
during the life cycle of a Kubernetes cluster. It is important to note that nothing
(internal cluster resources or external clients) is allowed to talk to etcd without going
through the API server. Any updates to or requests from etcd are made only via calls
to the API server.

In practice, etcd is usually deployed with multiple instances to ensure the data is
persisted in a secure and fault-tolerant manner.

API Server

The API server allows standard APIs to access Kubernetes API objects. It is the only
component that talks to backend storage (etcd).

Kubernetes Components Overview | 67

Additionally, by leveraging the fact that it is the single point of contact for
communicating to etcd, it provides a convenient interface for clients to "watch" any
API objects that they may be interested in. Once the API object has been created,
updated, or deleted, the client that is "watching" will get instant notifications so they
can act upon those changes. The "watching" client is also known as the "controller",
which has become a very popular entity that's used in both built-in Kubernetes
objects and Kubernetes extensions.

Note

You will learn more about the API server in Chapter 4, How to Communicate
with Kubernetes (API Server), and about controllers in Chapter 7,
Kubernetes Controllers.

Scheduler

The scheduler is responsible for distributing the incoming workloads to the most
suitable node. The decision regarding distribution is made by the scheduler's
understanding of the whole cluster, as well as a series of scheduling algorithms.

Note

You will learn more about the scheduler in Chapter 17, Advanced Scheduling
in Kubernetes.

Controller Manager

As we mentioned earlier in the API Server subsection, the API server exposes ways to
"watch" almost any API object and notify the watchers about the changes in the API
objects being watched.

It works pretty much like a Publisher-Subscriber pattern. The controller manager acts
as a typical subscriber and watches the only API objects that it is interested in, and
then attempts to make appropriate changes to move the current state toward the
desired state described in the object.

68 | An Overview of Kubernetes

For example, if it gets an update from the API server saying that an application
claims two replicas, but right now there is only one living in the cluster, it will create
the second one to make the application adhere to its desired replica number. The
reconciliation process keeps running across the controller manager's life cycle to
ensure that all applications stay in their expected state.

The controller manager aggregates various kinds of controllers to honor the
semantics of API objects, such as Deployments and Services, which we will
introduce later in this chapter.

Where Is the kubelet?

Note that etcd, the API server, the scheduler, and the controller manager comprise
the control plane of Kubernetes. A machine that runs these components is called a
master node. The kubelet, on the other hand, is deployed on each worker machine.

In our single-node Minikube cluster, the kubelet is deployed on the same node that
carries the control plane components. However, in most production environments,
it is not deployed on any of the master nodes. We will learn more about production
environments when we deploy a multi-node cluster in Chapter 11, Build Your Own
HA Cluster.

The kubelet primarily aims at talking to the underlying container runtime
(for example, Docker, containerd, or cri-o) to bring up the containers and
ensure that the containers are running as expected. Also, it's responsible for
sending the status update back to the API server.

However, as shown in the preceding screenshot, the docker ps command doesn't
show anything named kubelet. To start, stop, or restart any software and make
it auto-restart upon failure, usually, we need a tool to manage its life cycle. In Linux,
systemd has that responsibility. In Minikube, the kubelet is managed by systemd
and runs as a native binary instead of a Docker container. We can run the following
command to check its status:

systemctl status kubelet

Kubernetes Components Overview | 69

You should see an output similar to the following:

Figure 2.7: Status of kubelet

By default, the kubelet has the configuration for staticPodPath in its config file
(which is stored at /var/lib/kubelet/config.yaml). kubelet is instructed
to continuously watch the changes in files under that path, and each file under that
path represents a Kubernetes component. Let's understand what this means by first
finding staticPodPath in the kubelet's config file:

grep "staticPodPath" /var/lib/kubelet/config.yaml

You should see the following output:

staticPodPath: /etc/kubernetes/manifests

Now, let's see the contents of this path:

ls /etc/kubernetes/manifests

You should see the following output:

addon-manager.yaml.tmpl kube-apiserver.yaml kube-scheduler.yaml

etcd.yaml kube-controller-manager.yaml

As shown in the list of files, the core components of Kubernetes are defined by
objects that have a definition specified in YAML files. In the Minikube environment,
in addition to managing the user-created pods, the kubelet also serves as a systemd
equivalent in order to manage the life cycle of Kubernetes system-level components,
such as the API server, the scheduler, the controller manager, and other add-ons.
Once any of these YAML files is changed, the kubelet auto-detects that and updates
the state of the cluster so that it matches the desired state defined in the updated
YAML configuration.

70 | An Overview of Kubernetes

We will stop here without diving deeper into the design of Minikube. In addition to
"static components", the kubelet is also the manager of "regular applications" to
ensure that they're running as expected on the node and evicts pods according to
the API specification or upon resource shortage.

kube-proxy

kube-proxy appears in the output of the docker ps command, but it was not
present at /etc/kubernetes/manifests when we explored that directory in
the previous subsection. This implies its role – it's positioned more as an add-on
component instead of a core one.

kube-proxy is designed as a distributed network router that runs on every node.
Its ultimate goal is to ensure that inbound traffic to a Service (this is an API object
that we will introduce later) endpoint can be routed properly. Moreover, if multiple
containers are serving one application, it is able to balance the traffic in a round-robin
manner by leveraging the underlying Linux iptables/IPVS technology.

There are also some other add-ons such as CoreDNS, though we will skip those so
that we can focus on the core components and get a high-level picture.

Note

Sometimes, kube-proxy and CoreDNS are also considered core
components of a Kubernetes installation. To some extent, that's technically
true as they're mandatory in most cases; otherwise, the Service API object
won't work. However, in this book, we're leaning more toward categorizing
them as "add-ons" as they focus on the implementation of one particular
Kubernetes API resource instead of general workflow. Also, kube-proxy and
CoreDNS are defined in addon-manager.yaml.tmpl instead of being
portrayed on the same level as the other core Kubernetes components.

Kubernetes Architecture | 71

Kubernetes Architecture
In the previous section, we gained a first impression of the core Kubernetes
components: etcd, the API server, the scheduler, the controller manager, and
the kubelet. These components, plus other add-ons, comprise the Kubernetes
architecture, which can be seen in the following diagram:

Figure 2.8: Kubernetes architecture

At this point, we won't look at each component in too much detail. However, at a
high-level view, it's critical to understand how the components communicate with
each other and why they're designed in that way.

The first thing to understand is which components the API server can interact with.
From the preceding diagram, we can easily tell that the API server can talk to almost
every other component (except the container runtime, which is handled by the
kubelet) and that it also serves to interact with end-users directly. This design makes
the API server act as the "heart" of Kubernetes. Additionally, the API server also
scrutinizes incoming requests and writes API objects into the backend storage (etcd).
This, in other words, makes the API server the throttle of security control measures
such as authentication, authorization, and auditing.

72 | An Overview of Kubernetes

The second thing to understand is how the different Kubernetes components
(except for the API server) interact with each other. It turns out that there is no explicit
connection among them – the controller manager doesn't talk to the scheduler,
nor does the kubelet talk to kube-proxy.

You read that right – they do need to work in coordination with each other to
accomplish many functionalities, but they never directly talk to each other. Instead,
they communicate implicitly via the API server. More precisely, they communicate
by watching, creating, updating, or deleting corresponding API objects. This is also
known as the controller/operator pattern.

Container Network Interface

There are several networking aspects to take into consideration, such as how
a pod communicates with its host machine's network interface, how a node
communicates with other nodes, and, eventually, how a pod communicates with
any pod across different nodes. As the network infrastructure differs vastly in the
cloud or on-premises environments, Kubernetes chooses to solve those problems by
defining a specification called the Container Network Interface (CNI). Different CNI
providers can follow the same interface and implement their logic that adheres to
the Kubernetes standards to ensure that the whole Kubernetes network works. We
will revisit the idea of the CNI in Chapter 11, Build Your Own HA Cluster. For now, let's
return to our discussion of how the different Kubernetes components work.

Later in this chapter, Exercise 2.05, How Kubernetes Manages a Pod's Life Cycle, will help
you consolidate your understanding of this and clarify a few things, such as how
the different Kubernetes components operate synchronously or asynchronously to
ensure a typical Kubernetes workflow, and what would happen if one or more of
these components malfunctions. The exercise will help you better understand the
overall Kubernetes architecture. But before that, let's introduce our containerized
application from the previous chapter to the Kubernetes world and explore a few
benefits of Kubernetes.

Migrating Containerized Application to Kubernetes
In the previous chapter, we built a simple HTTP server called k8s-for-beginners,
and it runs as a Docker container. It works perfectly for a sample application.
However, what if you have to manage thousands of containers, and coordinate and
schedule them properly? How can you upgrade a service without downtime? How
do you keep a service healthy upon unexpected failure? These problems exceed the
abilities of a system that simply uses containers alone. What we need is a platform
that can orchestrate, as well as manage, our containers.

Migrating Containerized Application to Kubernetes | 73

We have told you that Kubernetes is the solution that we need. Next, we will walk
you through a series of exercises regarding how to orchestrate and run containers
in Kubernetes using a Kubernetes native approach.

Pod Specification

A straightforward thought is that we wish to see what the equivalent API call or
command to run a container in Kubernetes is. As explained in Chapter 1, Introduction
to Kubernetes and Containers, a container can join another container's namespace
so that they can access each other's resources (for example, network, storage,
and so on) without additional overhead. In the real world, some applications may
need several containers working closely, either in parallel or in a particular order
(the output of one will be processed by another). Also, some generic containers
(for example, logging agent, network throttling agent, and so on) may need to
work closely with their target containers.

Since an application may often need several containers, a container is not the
minimum operational unit in Kubernetes; instead, it introduces a concept called pods
to bundle one or multiple containers. Kubernetes provides a series of specifications
to describe how this pod is supposed to be, including several specifics such as
images, resource requests, startup commands, and more. To send this pod spec to
Kubernetes, particularly to the Kubernetes API server, we're going to use kubectl.

Note

We will learn more about pods in Chapter 5, Pods, but we will use
them in this chapter for the purpose of simple demonstrations.
You can refer to the complete list of available pod specifications
at this link: https://godoc.org/k8s.io/api/core/v1#PodSpec.

Next, let's learn how to run a single container in Kubernetes by composing the pod
spec file (also called the specification, manifest, config, or configuration file). In
Kubernetes, you can use YAML or JSON to write this specification file, though YAML
is commonly used since it is more human-readable and editable.

https://godoc.org/k8s.io/api/core/v1#PodSpec

74 | An Overview of Kubernetes

Consider the following YAML spec for a very simple pod:

kind: Pod

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

Let's go through the different fields briefly:

• kind tells Kubernetes which type of object you want to create. Here, we
are creating a Pod. In later chapters, you will see many other kinds, such as
Deployment, StatefulSet, ConfigMap, and so on.

• apiVersion specifies a particular version of an API object. Different versions
may behave a bit differently.

• metadata includes some attributes that can be used to uniquely identify the
pod, such as name and namespace. If we don't specify a namespace, it goes in
the default namespace.

• spec contains a series of fields describing the pod. In this example, there is one
container that has its image URL and name specified.

Pods are one of the simplest Kubernetes objects to deploy, so we will use them to
learn how to deploy objects using YAML manifests in the following exercise.

Applying a YAML Manifest

Once we have a YAML manifest ready, we can use kubectl apply -f <yaml
file> or kubectl create -f <yaml file> to instruct the API server
to persist the API resources defined in this manifest. When you create a pod
from scratch for the first time, it doesn't make much difference which of the two
commands you use. However, we may often need to modify the YAML (let's say,
for example, if we want to upgrade the image version) and reapply it. If we use the
kubectl create command, we have to delete and recreate it. However, with the
kubectl apply command, we can rerun the same command and the delta change
will be calculated and applied automatically by Kubernetes.

Migrating Containerized Application to Kubernetes | 75

This is very convenient from an operational point of view. For example, if we use
some form of automation, it is much simpler to repeat the same command. So, we
will use kubectl apply across the following exercise, regardless of whether it's
the first time it's being applied or not.

Note

A detailed on kubectl can be obtained in Chapter 4, How to Communicate
with Kubernetes (API Server).

Exercise 2.02: Running a Pod in Kubernetes

In the previous exercise, we started up Minikube and looked at the various
Kubernetes components running as pods. Now, in this exercise, we shall
deploy our pod. Follow these steps to complete this exercise:

Note

If you have been trying out the commands from the Kubernetes Components
Overview section, don't forget to leave the SSH session by using the exit
command before beginning this exercise. Unless otherwise specified, all
commands using kubectl should run on the host machine and not inside
the Minikube VM.

1. In Kubernetes, we use a spec file to describe an API object such as a pod. As
mentioned earlier, we will stick to YAML as it is more human-readable and
editable friendly. Create a file named k8s-for-beginners-pod.yaml
(using any text editor of your choice) with the following content:

kind: Pod

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-
 beginners

76 | An Overview of Kubernetes

Note

Please replace the image path in the last line of the preceding YAML file
with the path to your image that you created in the previous chapter.

2. On the host machine, run the following command to create this pod:

kubectl apply -f k8s-for-beginners-pod.yaml

You should see the following output:

pod/k8s-for-beginners created

3. Now, we can use the following command to check the pod's status:

kubectl get pod

You should see the following response:

NAME READY STATUS RESTARTS AGE

k8s-for-beginners 1/1 Running 0 7s

By default, kubectl get pod will list all the pods using a table format. In
the preceding output, we can see the k8s-for-beginners pod is running
properly and that it has one container that is ready (1/1). Moreover, kubectl
provides an additional flag called -o so we can adjust the output format. For
example, -o yaml or -o json will return the full output of the pod API object
in YAML or JSON format, respectively, as it's stored version in Kubernetes'
backend storage (etcd).

4. You can use the following command to get more information about the pod:

kubectl get pod -o wide

You should see the following output:

Figure 2.9: Getting more information about pods

As you can see, the output is still in the table format and we get additional
information such as IP (the internal pod IP) and NODE (which node the pod is
running on).

Migrating Containerized Application to Kubernetes | 77

5. You can get the list of nodes in our cluster by running the following command:

kubectl get node

You should see the following response:

NAME STATUS ROLES AGE VERSION

minikube Ready master 30h v1.16.2

6. The IP listed in Figure 2.9 refers to the internal IP Kubernetes assigned for this
pod, and it's used for pod-to-pod communication, not for routing external traffic
to pods. Hence, if you try to access this IP from outside the cluster, you will get
nothing. You can try that using the following command from the host machine,
which will fail:

curl 172.17.0.4:8080

Note

Remember to change 172.17.0.4 to the value you get for your
environment in step 4, as seen in Figure 2.9.

The curl command will just hang and return nothing, as shown here:

k8suser@ubuntu:~$ curl 172.17.0.4:8080

^C

You will need to press Ctrl + C to abort it.

7. In most cases, end-users don't need to interact with the internal pod IP.
However, just for observation purposes, let's SSH into the Minikube VM:

minikube ssh

You will see the following response in the terminal:

Figure 2.10: Accessing the Minikube VM via SSH

78 | An Overview of Kubernetes

8. Now, try calling the IP from inside the Minikube VM to verify that it works:

curl 172.17.0.4:8080

You should get a successful response:

Hello Kubernetes Beginners!

With this, we have successfully deployed our application in a pod on the Kubernetes
cluster. We can confirm that it is working since we get a response when we call the
application from inside the cluster. Now, you may end the Minikube SSH session
using the exit command.

Service Specification

The last part of the previous section proves that network communication works great
among different components inside the cluster. But in the real world, you would
not expect users of your application to gain SSH access into your cluster to use your
applications. So, you would want your application to be accessed externally.

To facilitate just that, Kubernetes provides a concept called a Service to abstract
the network access to your application's pods. A Service acts as a network proxy to
accept network traffic from external users and then distributes it to internal pods.
However, there should be a way to describe the association rule between the Service
and the corresponding pods. Kubernetes uses labels, which are defined in the pod
definitions, and label selectors, which are defined in the Service definition, to describe
this relationship.

Note

You will learn more about labels and label selectors in Chapter 6, Labels
and Annotations.

Let's consider the following sample spec for a Service:

kind: Service

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 selector:

 tier: frontend

Migrating Containerized Application to Kubernetes | 79

 type: NodePort

 ports:

 - port: 80

 targetPort: 8080

Similar to a pod spec, here, we define kind and apiVersion, while name is defined
under the metadata field. Under the spec field, there are several critical fields to
take note of:

• selector defines the labels to be selected to match a relationship with
the corresponding pods, which, as you will see in the following exercise,
are supposed to be labeled properly.

• type defines the type of Service. If not specified, the default type is
ClusterIP, which means it's only used within the cluster, that is, internally.
Here, we specify it as NodePort. This means the Service will expose a port in
each node of the cluster and associate the port with the corresponding pods.
Another well-known type is called LoadBalancer, which is typically not
implemented in a vanilla Kubernetes offering. Instead, Kubernetes delegates
the implementation to each cloud provider, such as GKE, EKS, and so on.

• ports include a series of port fields, each with a targetPort field. The
targetPort field is the actual port that's exposed by the destination pod.

Thus, the Service can be accessed internally via <service ip>:<port>.
Now, for example, if you have an NGINX pod running internally and listening on
port 8080, then you should define targetPort as 8080. You can specify any
arbitrary number for the port field, such as 80 in this case. Kubernetes will set
up and maintain the mapping between <service IP>:<port> and <pod
IP>:<targetPort>. In the following exercise, we will learn how to access the
Service from outside the cluster and bring external traffic inside the cluster via
the Service.

In the following exercise, we will define Service manifests and create them using
kubectl apply commands. You will learn that the common pattern for resolving
problems in Kubernetes is to find out the proper API objects, then compose the
detailed specs using YAML manifests, and finally create the objects to bring them
into effect.

80 | An Overview of Kubernetes

Exercise 2.03: Accessing a Pod via a Service

In the previous exercise, we observed that an internal pod IP doesn't work for anyone
outside the cluster. In this exercise, we will create Services that will act as connectors
to map the external requests to the destination pods so that we can access the pods
externally without entering the cluster. Follow these steps to complete this exercise:

1. Firstly, let's tweak the pod spec from Exercise 2.02, Running a Pod in Kubernetes, to
apply some labels. Modify the contents of the k8s-for-beginners-pod1.
yaml file, as follows:

kind: Pod

apiVersion: v1

metadata:

 name: k8s-for-beginners

 labels:

 tier: frontend

spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-
 beginners

Here, we added a label pair, tier: frontend, under the labels field.

2. Because the pod name remains the same, let's rerun the apply command so
that Kubernetes knows that we're trying to update the pod's spec, instead of
creating a new pod:

kubectl apply -f k8s-for-beginners-pod1.yaml

You should see the following response:

pod/k8s-for-beginners configured

Behind the scenes, for the kubectl apply command, kubectl generates
the difference of the specified YAML and the stored version in the Kubernetes
server-side storage (that is, etcd). If the request is valid (that is, we have not
made any errors in the specification format or the command), kubectl will send
an HTTP patch to the Kubernetes API server. Hence, only the delta changes will
be applied. If you look at the message that's returned, you'll see it says pod/
k8s-for-beginners configured instead of created, so we can be sure
it's applying the delta changes and not creating a new pod.

Migrating Containerized Application to Kubernetes | 81

3. You can use the following command to explicitly display the labels that have
been applied to existing pods:

kubectl get pod --show-labels

You should see the following response:

NAME READY STATUS RESTARTS AGE LABELS

k8s-for-beginners 1/1 Running 0 16m tier=frontend

Now that the pod has the tier: frontend attribute, we're ready to create a
Service and link it to the pods.

4. Create a file named k8s-for-beginners-svc.yaml with the
following content:

kind: Service

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 selector:

 tier: frontend

 type: NodePort

 ports:

 - port: 80

 targetPort: 8080

5. Now, let's create the Service using the following command:

kubectl apply -f k8s-for-beginners-svc.yaml

You should see the following response:

service/k8s-for-beginners created

6. Use the get command to return the list of created Services and confirm whether
our Service is online:

kubectl get service

82 | An Overview of Kubernetes

You should see the following response:

Figure 2.11: Getting the list of Services

So, you may have noticed that the PORT(S) column outputs 80:32571/TCP.
Port 32571 is an auto-generated port that's exposed on every node, which is
done intentionally so that external users can access it. Now, before moving
on to the next step, exit the SSH session.

7. Now, we have the "external port" as 32571, but we still need to find the
external IP. Minikube provides a utility we can use to easily access the
k8s-for-beginners Service:

minikube service k8s-for-beginners

You should see a response that looks similar to the following:

Figure 2.12: Getting the URL and port to access the NodePort Service

Depending on your environment, this may also automatically open a browser
web page so you can access the Service. From the URL, you will be able to
see that the Service port is 32571. The external IP is actually the IP of the
Minikube VM.

8. You can also access our application from outside the cluster via the
command line:

curl http://192.168.99.100:32571

You should see the following response:

Hello Kubernetes Beginners!

Migrating Containerized Application to Kubernetes | 83

As a summary, in this exercise, we created a NodePort Service to enable external
users to access the internal pods without entering the cluster. Under the hood, there
are several layers of traffic transitions that make this happen:

• The first layer is from the external user to the machine IP at the auto-generated
random port (3XXXX).

• The second layer is from the random port (3XXXX) to the Service IP (10.X.X.X) at
port 80.

• The third layer is from the Service IP (10.X.X.X) ultimately to the pod IP at
port 8080.

The following is a diagram illustrating these interactions:

Figure 2.13: Routing traffic from a user outside the cluster
to the pod running our application

Services and Pods

In step 3 of the previous exercise, you may have noticed that the Service tries to
match pods by labels (the selector field under the spec section) instead of using
a fixed pod name or something similar. From a pod's perspective, it doesn't need to
know which Service is bringing traffic to it. (In some rare cases, it can even be mapped
to multiple Services; that is, multiple Services may be sending traffic to a pod.)

This label-based matching mechanism is widely used in Kubernetes. It enables the
API objects to be loosely coupled at runtime. For example, you can specify tier:
frontend as the label selector, which will, in turn, be associated with the pods that
are labeled as tier: frontend.

84 | An Overview of Kubernetes

Due to this, by the time the Service is created, it doesn't matter if the backing pods
exist or not. It's totally acceptable for backing pods to be created later, and after
they are created, the Service object will become associated with the correct pods.
Internally, the whole mapping logic is implemented by the service controller, which is
part of the controller manager component. It's also possible that a Service may have
two matching pods at a time, and later a third pod is created with matching labels,
or one of the existing pods gets deleted. In either case, the service controller can
detect such changes and ensure that users can always access their application via
the Service endpoint.

It's a very commonly used pattern in Kubernetes to orchestrate your application using
different kinds of API objects and then glue them together by using labels or other
loosely coupled conventions. It's also the key part of container orchestration.

Delivering Kubernetes-Native Applications
In the previous sections, we migrated a Docker-based application to Kubernetes and
successfully accessed it from inside the Minikube VM, as well as externally. Now, let's
see what other benefits Kubernetes can provide if we design our application from the
ground up so that it can be deployed using Kubernetes.

Along with the increasing usage of your application, it may be common to run several
replicas of certain pods to serve a business functionality. In this case, grouping
different containers in a pod alone is not sufficient. We need to go ahead and create
groups of pods that are working together. Kubernetes provides several abstractions
for groups of pods, such as Deployments, DaemonSets, Jobs, CronJobs, and so on.
Just like the Service object, these objects can also be created by using a spec that's
been defined in a YAML file.

To start understanding the benefits of Kubernetes, let's use a Deployment to
demonstrate how to replicate (scale up/down) an application in multiple pods.

Abstracting groups of pods using Kubernetes gives us the following advantages:

• Creating replicas of pods for redundancy: This is the main advantage of
abstractions of groups of pods such as Deployments. A Deployment can create
several pods with the given spec. A Deployment will automatically ensure that
the pods that it creates are online, and it will automatically replace any pods
that fail.

Delivering Kubernetes-Native Applications | 85

• Easy upgrades and rollbacks: Kubernetes provides different strategies that
you can use to upgrade your applications, as well as rolling versions back. This
is important because in modern software development, the software is often
developed iteratively, and updates are released frequently. An upgrade can
change anything in the Deployment specification. It can be an update of labels
or any other field(s), an image version upgrade, an update on its embedded
containers, and so on.

Let's take a look at some notable aspects of the spec of a sample Deployment:

k8s-for-beginners-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8s-for-beginners

spec:

 replicas: 3

 selector:

 matchLabels:

 tier: frontend

 template:

 metadata:

 labels:

 tier: frontend

 spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-
 beginners

In addition to wrapping the pod spec as a "template", a Deployment must also specify
its kind (Deployment), as well as the API version (apps/v1).

Note

For some historical reason, the spec name apiVersion is still being
used. But technically speaking, it literally means apiGroupVersion.
In the preceding Deployment example, it belongs to the apps group and
is version v1.

86 | An Overview of Kubernetes

In the Deployment spec, the replicas field instructs Kubernetes to start three pods
using the pod spec defined in the template field. The selector field plays the
same role as we saw in the case of the Service – it aims to associate the Deployment
object with specific pods in a loosely coupled manner. This is particularly useful if you
want to bring any preexisting pods under the management of your new Deployment.

The replica number defined in a Deployment or other similar API object represents
the desired state of how many pods are supposed to be running continuously. If
some of these pods fail for some unexpected reason, Kubernetes will automatically
detect that and create a corresponding number of pods to take their place. We will
explore that in the following exercise.

We'll see a Deployment in action in the following exercise.

Exercise 2.04: Scaling a Kubernetes Application

In Kubernetes, it's easy to increase the number of replicas running the application by
updating the replicas field of a Deployment spec. In this exercise, we'll experiment
with how to scale a Kubernetes application up and down. Follow these steps to
complete this exercise:

1. Create a file named k8s-for-beginners-deploy.yaml using the content
shown here:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8s-for-beginners

spec:

 replicas: 3

 selector:

 matchLabels:

 tier: frontend

 template:

 metadata:

 labels:

 tier: frontend

 spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-
 beginners

Delivering Kubernetes-Native Applications | 87

If you take a closer look, you'll see that this Deployment spec is largely based
on the pod spec from earlier exercises (k8s-for-beginners-pod1.yaml),
which you can see under the template field.

2. Next, we can use kubectl to create the Deployment:

kubectl apply -f k8s-for-beginners-deploy.yaml

You should see the following output:

deployment.apps/k8s-for-beginners created

3. Given that the Deployment has been created successfully, we can use the
following command to show all the Deployment's statuses, such as their
names, running pods, and so on:

kubectl get deploy

You should get the following response:

NAME READY UP-TO-DATE AVAILABLE AGE

k8s-for-beginners 3/3 3 3 41s

Note

As shown in the previous command, we are using deploy instead of
deployment. Both of these will work and deploy is an allowed short
name for deployment. You can find a quick list of some commonly
used short names at this link: https://kubernetes.io/docs/reference/kubectl/
overview/#resource-types.

You can also view the short names by running kubectl api-
resources, without specifying the resource type.

4. A pod called k8s-for-beginners exists that we created in the previous
exercise. To ensure that we see only the pods being managed by the
Deployment, let's delete the older pod:

kubectl delete pod k8s-for-beginners

You should see the following response:

pod "k8s-for-beginners" deleted

https://kubernetes.io/docs/reference/kubectl/overview/#resource-types
https://kubernetes.io/docs/reference/kubectl/overview/#resource-types

88 | An Overview of Kubernetes

5. Now, get a list of all the pods:

kubectl get pod

You should see the following response:

Figure 2.14: Getting the list of pods

The Deployment has created three pods, and their labels (specified in the
labels field in step 1) happen to match the Service we created in the previous
section. So, what will happen if we try to access the Service? Will the network
traffic going to the Service be smartly routed to the new three pods? Let's test
this out.

6. To see how the traffic is distributed to the three pods, we can simulate a number
of consecutive requests to the Service endpoint by running the curl command
inside a Bash for loop, as follows:

for i in $(seq 1 30); do curl <minikube vm ip>:<service node port>;
done

Note

In this command, use the same IP and port that you used in the previous
exercise if you are running the same instance of Minikube. If you have
restarted Minikube or have made any other changes, please get the proper
IP of your Minikube cluster by following step 9 of the previous exercise.

Delivering Kubernetes-Native Applications | 89

Once you've run the command with the proper IP and port, you should see the
following output:

Figure 2.15: Repeatedly accessing our application

From the output, we can tell that all 30 requests get the expected response.

7. You can run kubectl logs <pod name> to check the log of each pod.
Let's go one step further and figure out the exact number of requests each pod
has responded to, which might help us find out whether the traffic was evenly
distributed. To do that, we can pipe the logs of each pod into the wc command
to get the number of lines:

kubectl logs <pod name> | wc -l

Run the preceding command three times, copying the pod name you obtained,
as shown in Figure 2.16:

Figure 2.16: Getting the logs of each of the three pod replicas running our application

90 | An Overview of Kubernetes

The result shows that the three pods handled 9, 10, and 11 requests,
respectively. Due to the small sample size, the distribution is not absolutely
even (that is, 10 for each), but it is sufficient to indicate the default round-robin
distribution strategy used by a Service.

Note

You can read more about how kube-proxy leverages iptables to perform
the internal load balancing by looking at the official documentation: https://
kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-
iptables.

8. Next, let's learn how to scale up a Deployment. There are two ways of
accomplishing this: one way is to modify the Deployment's YAML config, where
we can set the value of replicas to another number (such as 5), while the
other way is to use the kubectl scale command, as follows:

kubectl scale deploy k8s-for-beginners --replicas=5

You should see the following response:

deployment.apps/k8s-for-beginners scaled

9. Let's verify whether there are five pods running:

kubectl get pod

You should see a response similar to the following:

Figure 2.17: Getting the list of pods

The output shows that the existing three pods are kept and that two new pods
are created.

https://kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables
https://kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables
https://kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables

Delivering Kubernetes-Native Applications | 91

10. Similarly, you can specify replicas that are smaller than the current number.
In our example, let's say that we want to shrink the replica's number to 2.
The command for this would look as follows:

kubectl scale deploy k8s-for-beginners --replicas=2

You should see the following response:

deployment.apps/k8s-for-beginners scaled

11. Now, let's verify the number of pods:

kubectl get pod

You should see a response similar to the following:

Figure 2.18: Getting the list of pods

As shown in the preceding screenshot, there are two pods, and they are both
running as expected. Thus, in Kubernetes' terms, we can say, "the Deployment
is in its desired state".

12. We can run the following command to verify this:

kubectl get deploy

You should see the following response:

NAME READY UP-TO-DATE AVAILABLE AGE

k8s-for-beginners 2/2 2 2 19m

13. Now, let's see what happens if we delete one of the two pods:

kubectl delete pod <pod name>

You should get the following response:

pod "k8s-for-beginners-66644bb776-7j9mw" deleted

92 | An Overview of Kubernetes

14. Check the status of the pods to see what has happened:

kubectl get pod

You should see the following response:

Figure 2.19: Getting the list of pods

We can see that there are still two pods. From the output, it's worth noting that
the first pod name is the same as the second pod in Figure 2.18 (this is the one
that was not deleted), but that the highlighted pod name is different from any of
the pods in Figure 2.18. This indicates that the highlighted one is the pod that was
newly created to replace the deleted one. The Deployment created a new pod so
that the number of running pods satisfies the desired state of the Deployment.

In this exercise, we have learned how to scale a deployment up and down. You can
scale other similar Kubernetes objects, such as DaemonSets and StatefulSets, in the
same way. Also, for such objects, Kubernetes will try to auto-recover the failed pods.

Pod Life Cycle and Kubernetes Components
The previous sections in this chapter briefly described the Kubernetes components
and how they work internally with each other. On the other hand, we also
demonstrated how to use some Kubernetes API objects (Pods, Services, and
Deployments) to compose your applications.

But how is a Kubernetes API object managed by different Kubernetes components?
Let's consider a pod as an example. Its life cycle can be illustrated as follows:

Pod Life Cycle and Kubernetes Components | 93

Figure 2.20: The process behind the creation of a pod

This entire process can be broken down as follows:

1. A user starts to deploy an application by sending a Deployment YAML manifest
to the Kubernetes API server. The API server verifies the request and checks
whether it's valid. If it is, it persists the Deployment API object to its backend
datastore (etcd).

Note

For any step that evolves by modifying API objects, interactions have to
happen between etcd and the API server, so we don't list the interactions as
extra steps explicitly.

2. By now, the pod hasn't been created yet. The controller manager gets a
notification from the API server that a Deployment has been created.

3. Then, the controller manager checks whether the desired number of replica
pods are running already.

94 | An Overview of Kubernetes

4. If there are not enough pods running, it creates the appropriate number of pods.
The creation of pods is accomplished by sending a request with the pod spec
to the API server. It's quite similar to how a user would apply the Deployment
YAML, but with the major difference being that this happens inside the controller
manager in a programmatic manner.

5. Although pods have been created, they're nothing but some API objects stored in
etcd. Now, the scheduler gets a notification from the API server saying that new
pods have been created and no node has been assigned for them to run.

6. The scheduler checks the resource usage, as well as existing pods allocation, and
then calculates the node that fits best for each new pod. At the end of this step,
the scheduler sends an update request to the API server by setting the pod's
nodeName spec to the chosen node.

7. By now, the pods have been assigned a proper node to run on. However, no
physical containers are running. In other words, the application doesn't work yet.
Each kubelet (running on different worker nodes) gets notifications, indicating
that some pods are expected to be run. Each kubelet will then check whether
the pods to be run have been assigned the node that a kubelet is running on.

8. Once the kubelet determines that a pod is supposed to be on its node, it calls
the underlying container runtime (Docker, containerd, or cri-o, for instance) to
spin up the containers on the host. Once the containers are up, the kubelet is
responsible for reporting its status back to the API server.

With this basic flow in mind, you should now have a vague understanding of the
answers to the following questions:

• Who is in charge of pod creation? What's the state of the pod upon creation?

• Who is responsible for placing a pod? What's the state of the pod
after placement?

• Who brings up the concrete containers?

• Who is in charge of the overall message delivery process to ensure that all
components work together?

In the following exercise, we will use a series of concrete experiments to help you
solidify this understanding. This will allow you to see how things work in practice.

Pod Life Cycle and Kubernetes Components | 95

Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle

As a Kubernetes cluster comprises multiple components, and each component works
simultaneously, it's usually difficult to know what's exactly happening in each phase
of a pod's life cycle. To solve this problem, we will use a film editing technique to "play
the whole life cycle in slow motion", so as to observe each phase. We will turn off the
master plane components and then attempt to create a pod. Then, we will respond to
the errors that we see, and slowly bring each component online, one by one. This will
allow us to slow down and examine each stage of the process of pod creation step-
by-step. Follow these steps to complete this exercise:

1. First, let's delete the Deployment and Service we created earlier by using the
following command:

kubectl delete deploy k8s-for-beginners && kubectl delete service
k8s-for-beginners

You should see the following response:

deployment.apps "k8s-for-beginners" deleted

service "k8s-for-beginners" deleted

2. Prepare two terminal sessions: one (host terminal) to run commands on your
host machine and another (Minikube terminal) to pass commands inside the
Minikube VM via SSH. Thus, your Minikube session will be initiated like this:

minikube ssh

You will see the following output:

Figure 2.21: Accessing the Minikube VM via SSH

Note

All kubectl commands are expected to be run in the host terminal
session, while all docker commands are to be run in the Minikube
terminal session.

96 | An Overview of Kubernetes

3. In the Minikube session, clean up all stopped Docker containers:

docker rm $(docker ps -a -q)

You should see the following output:

Figure 2.22: Cleaning up all stopped Docker containers

You may see some error messages such as "You cannot remove a running
container ...". This is because the preceding docker rm command runs against
all containers (docker ps -a -q), but it won't stop any running containers.

4. In the Minikube session, stop the kubelet by running the following command:

sudo systemctl stop kubelet

This command does not show any response upon successful execution.

Note

Later in this exercise, we will manually stop and start other Kubernetes
components, such as the API server, that are managed by the kubelet
in a Minikube environment. Hence, it's required that you stop the kubelet
first in this exercise; otherwise, the kubelet will automatically restart its
managed components.

Note that in typical production environments, unlike Minikube, it's not
necessary to run the kubelet on the master node to manage the
master plane components; the kubelet is only a mandatory
component on worker nodes.

Pod Life Cycle and Kubernetes Components | 97

5. After 30 seconds, check the cluster's status by running the following command in
your host terminal session:

kubectl get node

You should see the following response:

NAME STATUS ROLES AGE VERSION

minikube NotReady master 32h v1.16.2

It's expected that the status of the minikube node is changed to NotReady
because the kubelet has been stopped.

6. In your Minikube session, stop kube-scheduler, kube-controller-
manager, and kube-apiserver. As we saw earlier, all of these are running
as Docker containers. Hence, you can use the following commands, one after
the other:

docker stop $(docker ps | grep kube-scheduler | grep -v pause | awk
'{print $1}')

docker stop $(docker ps | grep kube-controller-manager | grep -v
pause | awk '{print $1}')

docker stop $(docker ps | grep kube-apiserver | grep -v pause | awk
'{print $1}')

You should see the following responses:

Figure 2.23: Stopping the containers running Kubernetes components

As we explained in the Kubernetes Components Overview section, the grep -v
pause | awk '{print $1}' command can fetch the exact container ID ($1
= the first column) of the required Docker containers. Then, the docker pause
command can pause that running Docker container.

Now, the three major Kubernetes components have been stopped.

98 | An Overview of Kubernetes

7. Now, you need to create a Deployment spec on your host machine. Create a file
named k8s-for-beginners-deploy2.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8s-for-beginners

spec:

 replicas: 1

 selector:

 matchLabels:

 tier: frontend

 template:

 metadata:

 labels:

 tier: frontend

 spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-
 beginners

8. Try to create the Deployment by running the following command on your
host session:

kubectl apply -f k8s-for-beginners-deploy2.yaml

You should see a response similar to this:

Figure 2.24: Trying to create a new Deployment

Unsurprisingly, we got a network timeout error since we intentionally
stopped the Kubernetes API server. If the API server is down, you cannot run
any kubectl commands or use any equivalent tools (such as Kubernetes
Dashboard) that rely on API requests:

The connection to the server 192.168.99.100:8443 was refused – did
you specify the right host or port?

Pod Life Cycle and Kubernetes Components | 99

9. Let's see what happens if we restart the API server and try to create the
Deployment once more. Restart the API server container by running the
following command in your Minikube session:

docker start $(docker ps -a | grep kube-apiserver | grep -v pause |
awk '{print $1}')

This command tries to find the container ID of the stopped container carrying
the API server, and then it starts it. You should get a response like this:

9e1cf098b67c

10. Wait for 10 seconds. Then, check whether the API server is online. You can
run any simple kubectl command for this. Let's try getting the list of nodes by
running the following command in the host session:

kubectl get node

You should see the following response:

NAME STATUS ROLES AGE VERSION

minikube NotReady master 32h v1.16.2

As you can see, we are able to get a response without errors.

11. Let's try to create the Deployment again:

kubectl apply -f k8s-for-beginners-deploy2.yaml

You should see the following response:

deployment.apps/k8s-for-beginners created

12. Let's check whether the Deployment has been created successfully by running
the following command:

kubectl get deploy

You should see the following response:

NAME READY UP-TO-DATE AVAILABLE AGE

k8s-for-beginners 0/1 0 0 113s

From the preceding screenshot, there seems to be something wrong as in
the READY column, we can see 0/1, which indicates that there are 0 pods
associated with this Deployment, while the desired number is 1 (which we
specified in the replicas field in the Deployment spec).

100 | An Overview of Kubernetes

13. Let's check that all the pods that are online:

kubectl get pod

You should get a response similar to the following:

No resources found in default namespace.

We can see that our pod has not been created. This is because the Kubernetes
API server only creates the API objects; the implementation of any API object is
carried out by other components. For example, in the case of Deployment, it's
kube-controller-manager that creates the corresponding pod(s).

14. Now, let's restart the kube-controller-manager. Run the following
command in your Minikube session:

docker start $(docker ps -a | grep kube-controller-manager | grep -v
pause | awk '{print $1}')

You should see a response similar to the following:

35facb013c8f

15. After waiting for a few seconds, check the status of the Deployment by running
the following command in the host session:

kubectl get deploy

You should see the following response:

NAME READY UP-TO-DATE AVAILABLE AGE

k8s-for-beginners 0/1 1 0 5m24s

As we can see, the pod that we are looking for is still not online.

16. Now, check the status of the pod:

kubectl get pod

You should see the following response:

Figure 2.25: Getting the list of pods

Pod Life Cycle and Kubernetes Components | 101

The output is different from the one in step 15, as in this case, one pod was
created by kube-controller-manager. However, we can see Pending
under the STATUS column. This is because assigning a pod to a suitable node is
not the responsibility of kube-controller-manager; it's the responsibility
of kube-scheduler.

17. Before starting kube-scheduler, let's take a look at some additional
information about the pod:

kubectl get pod -o wide

You should see the following response:

Figure 2.26: Getting more information about the pod

The highlighted NODE column indicates that no node has been assigned to this
pod. This proves that the scheduler is not working properly, which we know
because we took it offline. If the scheduler were to be online, this response
would indicate that there is no place to land this pod.

Note

You will learn a lot more about pod scheduling in Chapter 17, Advanced
Scheduling in Kubernetes.

18. Let's restart kube-scheduler by running the following command in the
Minikube session:

docker start $(docker ps -a | grep kube-scheduler | grep -v pause |
awk '{print $1}')

You should see a response similar to the following:

11d8a27e3ee0

102 | An Overview of Kubernetes

19. We can verify that kube-scheduler is working by running the following
command in the host session:

kubectl describe pod k8s-for-beginners-66644bb776-kvwfr

Please get the pod name from the response you get at step 17, as seen in Figure
2.26. You should see the following output:

Name: k8s-for-beginners-66644bb776-kvwfr

Namespace: default

Priority: 0

Node: <none>

We are truncating the output screenshots for a better presentation. Please take
a look at the following excerpt, highlighting the Events section:

Figure 2.27: Examining the events reported by the pod

In the Events section, we can see that the kube-scheduler has tried
scheduling, but it reports that there is no node available. Why is that?

This is because, earlier, we stopped the kubelet, and the Minikube environment
is a single-node cluster, so there is no available node(s) with a functioning
kubelet for the pod to be placed.

20. Let's restart the kubelet by running the following command in the
Minikube session:

sudo systemctl start kubelet

This should not give any response in the terminal upon successful execution.

21. In the host terminal, verify the status of the Deployment by running the following
command in the host session:

kubectl get deploy

You should see the following response:

NAME READY UP-TO-DATE AVAILABLE AGE

k8s-for-beginners 1/1 1 1 11m

Pod Life Cycle and Kubernetes Components | 103

Now, everything looks healthy as the Deployment shows 1/1 under the READY
column, which means that the pod is online.

22. Similarly, verify the status of the pod:

kubectl get pod -o wide

You should get an output similar to the following:

Figure 2.28: Getting more information about the pod

We can see Running under STATUS and that it's been assigned to the
minikube node.

In this exercise, we traced each phase of a pod's life cycle by breaking the Kubernetes
components and then recovering them one by one. Now, based on the observations
we made about this exercise; we have better clarity regarding the answers to the
questions that were raised before this exercise:

• Steps 12 – 16: We saw that in the case of a Deployment, a controller manager is
responsible for requesting the creation of pods.

• Steps 17 – 19: The scheduler is responsible for choosing a node to place in the
pod. It assigns the node by setting a pod's nodeName spec to the desired node.
Associating a pod to a node, at this moment, merely happened at the level of the
API object.

• Steps 20 – 22: The kubelet actually brings up the containers to get our
pod running.

Throughout a pod's life cycle, Kubernetes components cooperate by updating a pod's
spec properly. The API server serves as the key component that accepts pod update
requests, as well as to report pod changes to interested parties.

In the following activity, we will bring together the skills we learned in the chapter to
find out how we can migrate from a container-based environment to a Kubernetes
environment in order to run our application.

104 | An Overview of Kubernetes

Activity 2.01: Running the Pageview App in Kubernetes

In Activity 1.01, Creating a Simple Page Count Application, in the previous chapter,
we built a web application called Pageview and connected it to a Redis backend
datastore. So, here is a question: without making any changes to the source code,
can we migrate the Docker-based application to Kubernetes and enjoy Kubernetes'
benefits immediately? Try it out in this activity with the guidelines given.

This activity is divided into two parts: in the first part, we will create a simple pod
with our application that is exposed to traffic outside the cluster by a Service and
connected to a Redis datastore running as another pod. In the second part, we will
scale the application to three replicas.

Connecting the Pageview App to a Redis Datastore Using a Service

Similar to the --link option in Docker, Kubernetes provides a Service that serves as
an abstraction layer to expose one application (let's say, a series of pods tagged with
the same set of labels) that can be accessed internally or externally. For example, as
we discussed in this chapter, a frontend app can be exposed via a NodePort Service
so that it can be accessed by external users. In addition to that, in this activity, we
need to define an internal Service in order to expose the backend application to the
frontend application. Follow these steps:

1. In Activity 1.01, Creating a Simple Page Count Application, we built two Docker
images – one for the frontend Pageview web app and another for the backend
Redis datastore. You can use the skills we learned in this chapter to migrate
them into Kubernetes YAMLs.

2. Two pods (each managed by a Deployment) for the application is not enough.
We also have to create the Service YAML to link them together.

Ensure that the targetPort field in the manifest is consistent with the
exposed port that was defined in the Redis image, which was 6379 in this
case. In terms of the port field, theoretically, it can be any port, as long as it's
consistent with the one specified in the Pageview application.

The other thing worth mentioning here is the name field of the pod for Redis
datastore. It's the symbol that's used in the source code of the Pageview app to
reference the Redis datastore.

Now, you should have three YAMLs – two pods and a Service. Apply them
using kubectl -f <yaml file name>, and then use kubectl get
deploy,service to ensure that they're created successfully.

Pod Life Cycle and Kubernetes Components | 105

3. At this stage, the Pageview app should function well since it's connected to
the Redis app via the Service. However, the Service only works as the internal
connector to ensure they can talk to each other inside the cluster.

To access the Pageview app externally, we need to define a NodePort Service.
Unlike the internal Service, we need to explicitly specify the type as NodePort.

4. Apply the external Service YAML using kubectl -f <yaml file name>.

5. Run minikube service <external service name> to fetch the
Service URL.

6. Access the URL multiple times to ensure that the Pageview number gets
increased by one each time.

With that, we have successfully run the Pageview application in Kubernetes. But what
if the Pageview app is down? Although Kubernetes can create a replacement pod
automatically, there is still downtime between when the failure is detected and when
the new pod is ready.

A common solution is to increase the replica number of the application so that the
whole application is available as long as there is at least one replica running.

Running the Pageview App in Multiple Replicas

The Pageview app can certainly work with a single replica. However, in a production
environment, high availability is essential and is achieved by maintaining multiple
replicas across nodes to avoid single points of failure. (This will be covered in detail in
upcoming chapters.)

In Kubernetes, to ensure the high availability of an application, we can simply increase
the replica number. Follow these steps to do so:

1. Modify the Pageview YAML to change replicas to 3.

2. Apply these changes by running kubectl apply -f <pageview
app yaml>.

3. By running kubectl get pod, you should be able to see three Pageview
pods running.

4. Access the URL shown in the output of the minikube service command
multiple times.

Check the logs of each pod to see whether the requests are handled evenly
among the three pods.

106 | An Overview of Kubernetes

5. Now, let's verify the high availability of the Pageview app. Terminate any
arbitrary pods continuously while keeping one healthy pod. You can achieve this
manually or automatically by writing a script. Alternatively, you can open another
terminal and check whether the Pageview app is always accessible.

If you opt for writing scripts to terminate the pods, you will see results similar
to the following:

Figure 2.29: Killing pods via a script

Pod Life Cycle and Kubernetes Components | 107

Assuming that you take a similar approach and write a script to check whether the
application is online, you should see an output similar to the following:

Figure 2.30: Repeatedly accessing the application via the script

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

108 | An Overview of Kubernetes

A Glimpse into the Advantages of Kubernetes for Multi-Node Clusters

You can only truly appreciate the advantages of Kubernetes after seeing it in the
context of a multi-node cluster. This chapter, like many of the other chapters in
this book, uses a single-node cluster (Minikube environment) to demonstrate the
features that Kubernetes provides. However, in a real-world production environment,
Kubernetes is deployed with multiple workers and master nodes. Only then can
you ensure that a fault in a single node won't impact the general availability of
the application. And reliability is just one of the many benefits that a multi-node
Kubernetes cluster can bring to us.

But wait – isn't it true that we can implement applications and deploy them in a
highly available manner without using Kubernetes? That's true, but that usually comes
with a lot of management hassle, both in terms of managing the application as well
as the infrastructure. For example, during the initial Deployment, you may have to
intervene manually to ensure that all redundant containers are not running on the
same machine. In the case of a node failure, you will have to not only ensure that a
new replica is respawned properly but to guarantee high availability, you also need
to ensure that the new one doesn't land on the nodes that are already running
existing replicas. This can be achieved either by using a DevOps tool or injecting logic
on the application side. However, either way is very complex. Kubernetes provides a
unified platform that we can use to wire apps to proper nodes by describing the high
availability features we want using Kubernetes primitives (API objects). This pattern
frees the minds of application developers, as they only need to consider how to build
their applications. Features that are required for high availability, such as failure
detection and recovery, are taken care of by Kubernetes under the hood.

Summary
In this chapter, we used Minikube to provision a single-node Kubernetes cluster
and gave a high-level overview of Kubernetes' core components, as well as its key
design rationale. After that, we migrated an existing Docker container to Kubernetes
and explored some basic Kubernetes API objects, such as pods, Services, and
Deployments. Lastly, we intentionally broke a Kubernetes cluster and restored it one
component at a time, which allowed us to understand how the different Kubernetes
components work together to get a pod up and running on a node.

Throughout this chapter, we have used kubectl to manage our cluster. We provided a
quick introduction to this tool, but in the following chapter, we will take a closer look
at this powerful tool and explore the various ways in which we can use it.

Overview

In this chapter, we will demystify some common kubectl commands and see
how we can use kubectl to control our Kubernetes cluster. We will begin
this chapter by taking a brief look at what the end-to-end process looks like
when using kubectl commands to communicate with a Kubernetes cluster.
Then, we will set up a few shortcuts and autocompletion for the Bash
terminal. We will begin with the basics of using kubectl by learning how to
create, delete, and manage Kubernetes objects. We will learn about the
two approaches to managing resources in Kubernetes - declarative and
imperative - with exercises. By the end of this chapter, you will also have
learned how to update a live application running on your Kubernetes cluster
in real-time using kubectl.

kubectl – Kubernetes

Command Center

3

112 | kubectl – Kubernetes Command Center

Introduction
In Chapter 1, Introduction to Kubernetes and Containers, we saw that Kubernetes is a
portable and highly extensible open-source container orchestration tool. It provides
very powerful capabilities that can be used to manage containerized workloads
at scale. In the previous chapter, you got the big picture of how the different
components of Kubernetes work together to achieve the desired goals. We also
demonstrated some basic usage of kubectl in Chapter 2, An Overview of Kubernetes.
In this chapter, we will take a closer look at this utility and look at how we can make
use of its potential.

To reiterate, kubectl is a command-line utility for interacting with Kubernetes
clusters and performing various operations. There are two ways to use kubectl
while managing your cluster - imperative management, which focuses on commands
rather than the YAML manifests to achieve the desired state, and declarative
management, which focuses on creating and updating YAML manifest files. kubectl
can support both these management techniques to manage Kubernetes API objects
(also called Kubernetes API primitives). In the previous chapter, we saw how the
various components constantly try to change the state of the cluster from the
actual state to the desired state. This can be achieved by using kubectl commands
or YAML manifests.

kubectl allows you to send commands to Kubernetes clusters. The kubectl
command can be used to deploy applications, inspect, and manage Kubernetes
objects, or troubleshoot and view logs. Interestingly, even though kubectl is the
standard tool for controlling and communicating with a Kubernetes cluster,
it doesn't come with Kubernetes. So, even if you are running kubectl on any of
the nodes of your cluster, you need to install the kubectl binary separately, which
we did in Exercise 2.01, Getting Started with Minikube and Kubernetes Clusters, in the
previous chapter.

This chapter will walk you through the behind-the-scenes functionality of kubectl
and provide more insights into how to use kubectl commands to interact with some
commonly used Kubernetes objects. We will learn how to set up some shortcuts for
kubectl. We will walk you through not only creating new objects with kubectl but
also making changes to a live Deployment in Kubernetes. But before that, let's take
a peek behind the curtains and get an idea of exactly how kubectl communicates
with Kubernetes.

How kubectl Communicates with Kubernetes | 113

How kubectl Communicates with Kubernetes
As we saw in the previous chapter, the API server manages communications between
the end-user and Kubernetes, and it also acts as an API gateway to the cluster. To
achieve this, it implements the RESTful API over the HTTP and HTTPS protocols to
perform CRUD operations to populate and modify Kubernetes API objects such as
pods, services, and more based upon the instructions sent by a user via kubectl.
These instructions can be in various forms. For example, to retrieve information for
pods running in the cluster, we would use the kubectl get pods command, while
to create a new pod, we would use the kubectl run command.

First, let's take a look at what happens behind the scenes when you run a kubectl
command. Take a look at the following illustration, which provides an overview of the
process, and then we will take a closer look at the different details of the process:

Figure 3.1: A representative flowchart for the kubectl utility

114 | kubectl – Kubernetes Command Center

A kubectl command is translated into an API call, which is then sent to the API server.
The API server then authenticates and validates the requests. Once the authentication
and validation stages have been successful, the API server retrieves and updates data
in etcd and responds with the requested information.

Setting up Environments with Autocompletion and Shortcuts
In most Linux environments, you can set up autocompletion for kubectl commands
before you start working with the instructions mentioned in this chapter. Learning
how autocompletion and shortcuts work in Linux environments will be significantly
helpful for those who are interested in getting certifications such as Certified
Kubernetes Administrator (CKA) and Certified Kubernetes Application Developer
(CKAD), which are conferred by the Linux Foundation. We'll learn how to set up
autocompletion in the following exercise.

Exercise 3.01: Setting up Autocompletion

In this exercise, we will show you how to set up autocompletion and an alias for
kubectl commands in Bash. This is a useful feature that will help you save time and
avoid typos. Perform the following steps to complete this exercise:

1. We will need the bash-completion package, so install it if it is not already
installed. You can go to the GitHub repository to get installation instructions
for various platforms, at https://github.com/scop/bash-completion. If you are
running Ubuntu 20.04, you can install it via the APT package manager using the
following command:

sudo apt-get install bash-completion

2. You can use the following command to set up autocomplete in Bash:

source <(kubectl completion bash)

Note

This command, as well as the subsequent commands in this exercise,
will not show any responses in the terminal upon successful execution.

https://github.com/scop/bash-completion

Setting up Environments with Autocompletion and Shortcuts | 115

3. If you want to make autocomplete persistent in your Bash shell, you can use the
following command, which will write kubectl autocomplete to the .bashrc
file in your current user directory:

echo "source <(kubectl completion bash)" >> ~/.bashrc

4. You can also set up an alias for your kubectl commands by using the alias
keyword, as follows:

alias k=kubectl

5. Similarly, if you want to set up an alias for some specific commands, you can use
commands similar to the following:

alias kcdp='kubectl describe po'

alias kcds='kubectl describe svc'

alias kcdd='kubectl describe deploy'

6. Finally, you can use the following command to set up the completion of
kubectl commands when you press Tab:

complete -F __start_kubectl k

Note

You can also to set up autocomplete in zsh (an alternative to the Bash
shell) by using the following commands:

source <(kubectl completion zsh)

echo "if [$commands[kubectl]]; then source
<(kubectl completion zsh); fi" >> ~/.zshrc

By the end of this exercise, you will have an autocomplete set up for your Bash shell.
You can also use aliases such as k instead of kubectl in your commands. However,
to avoid confusion and maintain a standardized structure, we will use the full
commands throughout this book.

116 | kubectl – Kubernetes Command Center

Setting up the kubeconfig Configuration File

In most enterprise environments, there is generally more than one Kubernetes
cluster, depending on the strategy of the organization. An administrator, developer,
or any other role dealing with Kubernetes clusters would need to interact with several
of those clusters and switch between them to perform different operations on
different clusters.

A configuration file makes things a lot easier. You can use this file to store information
about different clusters, users, namespaces, and authentication mechanisms. Such
configuration files are referred to as kubeconfig files. Note that kubeconfig is a
generic way to refer to kubectl configuration files and that it is not the name of the
config file. kubectl uses such files to store the information needed for us to choose
a cluster and communicate with its API server.

By default, kubectl looks for the file in the $HOME/.kube directory. In most
scenarios, you can specify a KUBECONFIG environment variable or use the
--kubeconfig flag to specify the kubeconfig files. Those files are usually
saved in $HOME/.kube/config.

Note

You can find out more about how to configure access to multiple
clusters by setting up the KUBECONFIG environment variable and the
--kubeconfig flag at https://kubernetes.io/docs/tasks/access-application-
cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-
variable.

Security contexts are used to define the privilege and access control settings for the
pods. We will revisit the idea of access control and security in Chapter 13, Runtime and
Network Security in Kubernetes.

Let's take a look at the kubeconfig file to understand how this works. You can view
the kubeconfig file using the following command:

kubectl config view

Alternatively, you can also use the following command:

cat $HOME/.kube/config

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable

Setting up Environments with Autocompletion and Shortcuts | 117

You should get an output similar to the following:

Figure 3.2: The output of kubectl config view command

A context is a set of information that you need to access a cluster. It contains the
name of the cluster, the user, and the namespace. The current-context field in
Figure 3.2 shows the current context that you are working with. If you want to switch
the current context, you can use the following command:

kubectl config use-context <the cluster you want to switch to>

For example, if we wanted to switch to a context named minikube, we would use
the following command:

kubectl config use-context minikube

This would give an output similar to the following:

Switched to context "minikube".

118 | kubectl – Kubernetes Command Center

Common kubectl Commands
As previously described, kubectl is a CLI tool that is used to communicate with
the Kubernetes API server. kubectl has a lot of useful commands for working with
Kubernetes. In this section, we're going to walk you through some commonly used
kubectl commands and shortcuts that are used to manage Kubernetes objects.

Frequently Used kubectl Commands to Create, Manage, and Delete Kubernetes

Objects

There are several simple kubectl commands that you will use almost all the time.
In this section, we will take a look at some of the basic kubectl commands:

• get <object>: You can use this command to get the list of the desired types
of objects. Using all instead of specifying an object type will get the list of
all kinds of objects. By default, this will get the list of specified object types in
the default namespace. You can use the -n flag to get objects from a specific
namespace; for example, kubectl get pod -n mynamespace.

• describe <object-type> <object-name>: You can use this command
to check all the relevant information of a specific object; for example, kubectl
describe pod mypod.

• logs <object-name>: You can use this command to check all the relevant
logs of a specific object to find out what happened when that object was created;
for example, kubectl logs mypod.

• edit <object-type> <object-name>: You can use this command to edit
a specific object; for example, kubectl edit pod mypod.

• delete <object-type> <object-name>: You can use this command to
delete a specific object; for example, kubectl delete pod mypod.

• create <filename.yaml>: You can use this command to create a bunch
of Kubernetes objects that have been defined in the YAML manifest file; for
example, kubectl create -f your_spec.yaml.

• apply <filename.yaml>: You can use this command to create or update a
bunch of Kubernetes objects that have been defined in the YAML manifest file;
for example, kubectl apply -f your_spec.yaml.

Common kubectl Commands | 119

Walkthrough of Some Simple kubectl Commands

In this section, we're going to walk you through some of the commonly used kubectl
commands. This section is mostly for demonstration purposes, so you may not see
the exact output that you see in these images. However, this section will help you
understand how these commands are used. You will use most of them extensively in
later exercises, as well as throughout this book. Let's take a look:

• If you want to display nodes, use the following command:

kubectl get nodes

You will see an output similar to the following:

Figure 3.3: The output of kubectl get nodes command

Since we set up aliases in Exercise 3.01, Setting up Autocompletion, you can also
get the same result using the following command:

k get no

• If you want to display all current namespaces, you can use the
following command:

kubectl get namespaces

You should see an output similar to the following:

NAME STATUS AGE

default Active 7m5s

kube-node-lease Active 7m14s

kube-public Active 7m14s

kube-system Active 7m15s

You can also get the same result using the following shortened command:

k get ns

• If you want to check the version of kubectl, you can use the
following command:

kubectl version

120 | kubectl – Kubernetes Command Center

You will see an output similar to the following:

Client version: version.Info{Major:"1",
Minor:"17", GitVersion:"v1.17.2, GitCommit:
59603c6e503c87169aea6106f57b9f242f64df89", GitTreeState:"clean",
BuildDate:"2020-01-21T22:17:28Z, GoVersion:"go1.13.5", Compiler:"gc",
Platform:"linux/amd64}

Server version: version.Info{Major:"1",
Minor:"17", GitVersion:"v1.17.2, GitCommit:
59603c6e503c87169aea6106f57b9f242f64df89", GitTreeState:"clean",
BuildDate:"2020-01-18T23:22:30Z, GoVersion:"go1.13.5", Compiler:"gc",
Platform:"linux/amd64}

• If you want to see some information regarding your current Kubernetes cluster,
you can use the following command:

kubectl cluster-info

You should see an output similar to the following:

Figure 3.4: The output of kubectl cluster-info command

Before we move on further with the demonstrations, we will mention a few
commands that you can use to create a sample application, which we have already
provided in the GitHub repository for this chapter. Use the following command to
fetch the YAML specification for all the objects required to run the application:

curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter03/Activity03.01/sample-application.yaml --output
sample-application.yaml

Now, you can deploy the sample-application.yaml file using the
following command:

kubectl apply -f sample-application.yaml

If you can see the following output, this means that the sample application has been
successfully created in your Kubernetes cluster:

deployment.apps/redis-back created

service/redis-back created

deployment.apps/melonvote-front created

service/melonvote-front created

Common kubectl Commands | 121

Now that you have deployed the provided application, if you try any of the commands
shown later in this section, you will see the various objects, events, and so on
related to this application. Note that your output may not exactly match the images
shown here:

• You can use the following command to get everything in your cluster under the
default namespace:

kubectl get all

This will give an output similar to the following:

Figure 3.5: The output of kubectl get all command

• Events describe what has happened so far in the Kubernetes cluster, and
you can use events to get a better insight into your cluster and aid in any
troubleshooting efforts. To list all the events in the default namespace, use the
following command:

kubectl get events

This will give an output similar to the following:

Figure 3.6: The output of kubectl get events command

122 | kubectl – Kubernetes Command Center

• A service is an abstraction that's used to expose an application to the end-user.
You will learn more about services in Chapter 8, Service Discovery. You can use the
following command to list all services:

kubectl get services

This will give an output similar to the following:

Figure 3.7: The output of kubectl get services command

You can get the same result using the following shortened command:

k get svc

• A Deployment is an API object that allows us to easily manage and update pods.
You will learn more about Deployments in Chapter 7, Kubernetes Controllers. You
can get the list of Deployments using the following command:

kubectl get deployments

This should give a response similar to the following:

NAME READY UP-TO-DATE AVAILABLE AGE

aci-helloworld 1/1 1 1 34d

melonvote-front 1/1 1 1 7d6h

redis-back 1/1 1 1 7d6h

You can also get the same result using the following shortened version of
the command:

k get deploy

Some Useful Flags for the get Command

As you have seen, the get command is a pretty standard command that is used
when we need to get the list of objects in our cluster. It also has several useful flags.
Let's take a look at a few of them here:

• If you want to list a particular type of resource from all your namespaces, you
can add the --all-namespaces flag in the command. For example, if we want
to list all Deployments from all namespaces, we can use the following command:

kubectl get deployments --all-namespaces

Common kubectl Commands | 123

This will give an output similar to this:

Figure 3.8: The output of kubectl get deployments under all namespaces

You can also see that there is an additional column on the left-hand side that
specifies the namespaces of the respective Deployments.

• If you want to list a specific type of resource from a specific namespace, you
can use the -n flag. Here, the -n flag stands for namespace. For example,
if you want to list all Deployments in a namespace called keda, the following
command would be used:

kubectl get deployments -n keda

This command would show an output similar to the following:

Figure 3.9: The output of kubectl get deployments under the keda namespace

• You can add the --show-labels flag to display the labels of the objects in
the list. For example, if you wanted to get the list of all the pods in the default
namespace, along with their labels, you would use the following command:

kubectl get pods --show-labels

124 | kubectl – Kubernetes Command Center

This command should give an output similar to the following:

Figure 3.10: The output of kubectl get pods with all labels

There is an additional column on the right-hand side that specifies the labels of
the pods.

• You can use the -o wide flag to display more information about objects. Here,
the -o flag stands for output. Let's look at a simple example of how to use this
flag:

kubectl get pods -o wide

This will give an output similar to the following:

Figure 3.11: The output of kubectl get pods with additional information

You can also see there are additional columns on the right-hand side that specify
which nodes the pods are running on, as well as the internal IP addresses of the
node. You can find more ways to use the -o flag at https://kubernetes.io/docs/
reference/kubectl/overview/#output-options.

Note

We will limit this section to commands that are commonly used to limit the
scope of this chapter. You can find a lot more kubectl commands
at https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands.

Populating Deployments in Kubernetes
As we mentioned earlier, Deployment is a convenient way to manage and update
pods. Defining a Deployment in Kubernetes is an effective and efficient way to
provide declarative updates for the application running in your cluster.

https://kubernetes.io/docs/reference/kubectl/overview/#output-options
https://kubernetes.io/docs/reference/kubectl/overview/#output-options
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Populating Deployments in Kubernetes | 125

You can create a Deployment by using kubectl imperative commands or by using
declarative YAML manifest files. In the following exercise, we're going to deploy an
application (we will go with Nginx for this exercise) in Kubernetes and learn how to
interact with Deployments using kubectl commands, as well as how to modify the
YAML manifest file.

Exercise 3.02: Creating a Deployment

There are two ways to create a Deployment in Kubernetes – using the kubectl
create/run command and creating a manifest file in YAML format and then using
the kubectl apply command. We can achieve the same goal with those two
options. Let's try both and then compare them:

1. Create a Deployment using the following command directly:

kubectl create deployment kubeserve --image=nginx:1.7.8

You can expect an output similar to the following:

deployment.apps/kubeserve created

Note

You can also create a Deployment using the kubectl run command.
To achieve the same results here, you could use the following commands:

kubectl run nginx --image=nginx:1.7.8

kubectl run nginx --image=nginx:1.7.8 --replicas=3

2. You can also create a Deployment by defining the YAML manifest file for
your Deployment. Use your preferred text editor to create a file named
sample-deployment.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kubeserve

 labels:

 app: kubeserve

spec:

 replicas : 3

 selector:

126 | kubectl – Kubernetes Command Center

 matchLabels:

 app: kubeserve

 template:

 metadata:

 labels:

 app: kubeserve

 spec:

 containers:

 - name: nginx

 image: nginx

 ports:

 - containerPort: 80

In this YAML definition, the replicas field defines the number of replica pods
in this Deployment.

3. Use the following command to apply the configuration you've defined in the
YAML manifest file:

kubectl apply -f sample-deployment.yaml

The sample output will look as follows:

kubectl apply -f sample-deployment.yaml

4. Use the following command to check the Deployments that currently exist in the
default namespace:

kubectl get deployments

The output will look as follows:

NAME READY UP-TO-DATE AVAILABLE AGE

aci-helloworld 1/1 1 1 27d

kubeserve 3/3 3 3 26m

In this exercise, we have seen the differences in using the different approaches to
create a Deployment. The kubectl create command is widely used for testing.
For most enterprise solutions where modern DevOps approaches are implemented,
it makes more sense to use YAML definitions to conveniently define configurations,
and then track them with source control tools such as Git. When your organization
integrates YAML definitions with DevOps tools, it makes the solution more
manageable and traceable.

Populating Deployments in Kubernetes | 127

Now that we have seen how to create a Deployment, in the next exercise, we
will learn how to modify or update a Deployment that is already running. This is
something that you will need to do quite often as the software is updated to new
versions, bugs are identified and fixed, the demands on your application change, or
your organization moves on to completely new solutions. We will also learn how to
roll back a Deployment to an earlier version, which is something that you will want to
do if an update does not lead to the expected outcome.

Exercise 3.03: Updating a Deployment

In this exercise, we will update the application that we deployed in the previous
exercise to a more recent version and demonstrate how we can roll back the
Deployment to a previous version if necessary.

Similar to the two approaches that we saw for creating a Deployment, there are two
ways to update an application as well – using the kubectl set image command
and updating the YAML manifest file and then using the kubectl apply command.
These steps will guide you through both approaches:

1. First, let's get the details of the current Deployment using the
following command:

kubectl describe deploy kubeserve

You'll get an output similar to the following:

Figure 3.12: Describing the kubeserve Deployment

2. You can update the image using the following command:

kubectl set image deployment/kubeserve nginx=nginx:1.9.1 –-record

The image subcommand indicates that we want to update the image field
of the object, as defined in the YAML manifest that we saw in Step 2 of the
previous exercise.

128 | kubectl – Kubernetes Command Center

Then, we specify the object in the <object-type>/<object name> format.

The next part, nginx=nginx:1.9.1, tells Kubernetes to look for the specific
image tagged as 1.9.1 in the Docker Hub repository of NGINX. You can check
out the available tags at https://hub.docker.com/_/nginx?tab=tags.

The --record flag is very helpful when you want to save the updates that have
been made by your kubectl commands to the current resource.

By applying this, you'll get an output similar to the following:

deployment.extensions/kubeserve image updated

3. Now, let's get the details of the Deployment using the following command:

kubectl describe deploy kubeserve

You should see the following output:

Figure 3.13: Using the kubectl describe command to check the
image version in the container

In the preceding screenshot, you can see that the image has been successfully
updated to version 1.9.1.

Another way to achieve the same result is to modify the YAML file and then use
the kubectl apply command. We will use the same YAML file that we created
in the previous exercise. If you do not have the YAML file for an object, you can
export the YAML manifest using the following command:

kubectl get deploy kubeserve -o yaml > kubeserve-spec.yaml

This command will output a file named kubeserve-spec.yaml with the
manifest that is in effect in the cluster. Then, you can use vim, nano, or any
other text editor to edit it and then apply the edited kubeserve-spec.yaml
manifest using the kubectl apply command, as shown in the previous
exercise, with the addition of the --record flag.

https://hub.docker.com/_/nginx?tab=tags

Populating Deployments in Kubernetes | 129

4. If you want to perform a rollback, you can use the following command:

kubectl rollout undo deployments kubeserve

You'll see an output similar to the following:

deployment.extensions/kubeserve rolled back

5. You can use the kubectl rollout history command to check all the
revisions for a specific Deployment, as shown here:

kubectl rollout history deployment kubeserve

You'll see an output similar to the following:

Figure 3.14: The output of the kubectl rollout history command

6. You can also use the following command to check the details of a
specific revision:

kubectl rollout history deployment kubeserve --revision=3

The output for this command will be as follows:

Figure 3.15: Checking the details of revision 3

7. You can roll back a Deployment to a specific revision by specifying the
--to-revision flag:

kubectl rollout undo deployments kubeserve --to-revision=3

130 | kubectl – Kubernetes Command Center

You'll see an output similar to the following:

deployment.extensions/kubeserve rolled back

In this exercise, we have learned how to update an already existing Deployment, as
well as how to roll back a Deployment to its earlier specs.

Deployments allow us to define a desired state for the replica pod in a declarative
way. We will revisit how Deployment works and discover more about it in Chapter 7,
Kubernetes Controllers. If you delete the individual pod replica intentionally or if the
pod fails for any reason, since we define a Deployment with a set number of replicas,
the Deployment will keep recreating the pod as many times as you delete it. This
is what we call auto-healing. Therefore, you need to delete the Deployment itself,
which will also delete all the pods managed by it. We will learn how to do that in the
following exercise.

Exercise 3.04: Deleting a Deployment

In this exercise, we will delete the Deployment we created in the previous exercise:

1. Get a list of existing Deployments using the following command:

kubectl get deployment

You can expect an output similar to the following:

NAME READY UP-TO-DATE AVAILABLE AGE

aci-helloworld 1/1 1 1 27d

kubeserve 3/3 3 3 26m

melonkedaaf 0/0 0 0 26d

2. Let's say that, for the purpose of this exercise, we want to delete the
kubeserve Deployment that we created in the previous exercise.
Use the following command to delete the Deployment:

kubectl delete deployment kubeserve

The sample output will be similar to the following:

deployment.extensions "kubeserve" deleted

3. Get the list of Deployments to check and make sure that the target Deployment
has been deleted successfully:

kubectl get deployment

Populating Deployments in Kubernetes | 131

You should see an output similar to the following:

NAME READY UP-TO-DATE AVAILABLE AGE

aci-helloworld 1/1 1 1 27d

kubeserve 0/0 0 0 26d

You can use the kubectl delete command to delete any other object as well.
However, as we mentioned earlier, in cases such as pods managed by Deployments,
it is pointless to delete individual pods as the Deployment will just recreate them, so
you need to delete the Deployment.

Activity 3.01: Editing a Live Deployment for a Real-Life Application

Imagine that you are a SysOps engineer who has been asked to manage a cluster
and deploy a web application. You have deployed it to your Kubernetes cluster
and made it available to the public. You have been monitoring this application ever
since it was deployed successfully, and you've detected that the web application has
been experiencing throttling issues during peak times. Based on your monitoring,
the solution that you want to implement is to assign more memory and CPU to this
application. Therefore, you need to edit the Deployment so that you can allocate
enough CPU and memory resources to run the application and test this application at
the end. You need to demonstrate that your web application is up and running and
that it can be accessed through a public IP address via a browser of your choice.

To simulate this scenario, we're going to deploy a sample application in a Kubernetes
cluster and show you how to edit a live Deployment. Editing a live Deployment is
something that you will need to do when fixing issues or for testing purposes.

You can use the following command to get the YAML manifest file that you're going to
use in this activity:

curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter03/Activity03.01/sample-application.yaml --output
sample-application.yaml

This manifest file defines all the different objects that are required to run the
application, as well as the application itself.

Note

This manifest has been adapted from an open-source sample provided by
Microsoft Azure, available at https://github.com/Azure-Samples/azure-voting-
app-redis.

https://github.com/Azure-Samples/azure-voting-app-redis
https://github.com/Azure-Samples/azure-voting-app-redis

132 | kubectl – Kubernetes Command Center

Perform the following steps to complete this activity:

1. First, deploy the target web application using the kubectl apply command
and the provided YAML definition file.

2. Get the IP address of the service that exposes your application. For this simple
scenario, this will be similar to Exercise 2.03, Accessing a Pod via a Service, from the
previous chapter. Later chapters will explain how to work with ingress controllers
and create ingress resources to expose the frontend applications.

3. Use the kubectl edit command to edit the live deployment. You will need to
edit the deployment named melonvote-front. The following are the fields
that you need to modify to satisfy the requirements of this scenario. You can
simply double these values:

a) resources.limits.cpu: This is the resource limit for CPU usage.

b) resources.limits.memory: This is the resource limit for memory usage.

c) resources.requests.cpu: This is the minimum CPU usage requested to
get your application up and running.

d) resources.requests.memory: This is the minimum memory usage
requested to get your application up and running.

By the end of this activity, you will be able to see the UI of the application that you
deployed with Kubernetes:

Figure 3.16: Expected output of the activity

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

https://packt.live/304PEoD

Summary | 133

Summary
This chapter demystified how kubectl allows us to control our Kubernetes cluster
using API calls. First, we learned how to set up an environment for kubectl commands
and looked at a number of shortcuts. Furthermore, we covered how to create, edit,
and delete a Kubernetes object using kubectl commands and looked at a Deployment
as an example. Finally, we deployed a real-life application and showed you how to
edit a live Deployment. Every example in this chapter has been applied in a general
context; however, we believe that the skills developed in this chapter can help you
resolve specific problems that you might encounter in a professional environment.

In the next chapter, you'll explore the other side of this bridge and dive deeper into
how the API server works. You will also take a closer look at REST API requests and
how the API server deals with them.

Overview

In this chapter, we will build a foundational understanding of the Kubernetes
API server and the various ways of interacting with it. We will learn
how kubectl and other HTTP clients communicate with the Kubernetes
API server. We will use some practical demonstrations to trace these
communications and see the details of HTTP requests. Then, we will also
see how we can look up the API details so that you can write your own API
request from scratch. By the end of this chapter, you will be able to create
API objects by directly communicating with the API server using any HTTP
client, such as curl, to make RESTful API calls to the API server.

How to Communicate with

Kubernetes (API Server)

4

136 | How to Communicate with Kubernetes (API Server)

Introduction
As you will recall from Chapter 2, An Overview of Kubernetes, the API server acts as the
central hub that communicates with all the different components in Kubernetes. In
the previous chapter, we took a look at how we can use kubectl to instruct the API
server to do various things.

In this chapter, we will take a further look into the components that make up the
API server. As the API server is at the center of our entire Kubernetes system, it is
important to learn how to effectively communicate with the API server itself and
how API requests are processed. We will also look at various API concepts, such as
resources, API groups, and API versions, which will help you understand the HTTP
requests and responses that are made to the API server. Finally, we will interact with
the Kubernetes API using multiple REST clients to achieve many of the same results
we did in the previous chapter using the kubectl command-line tool.

The Kubernetes API Server
In Kubernetes, all communications and operations between the control plane
components and external clients, such as kubectl, are translated into RESTful API
calls that are handled by the API server. Effectively, the API server is a RESTful web
application that processes RESTful API calls over HTTP to store and update API objects
in the etcd datastore.

The API server is also a frontend component that acts as a gateway to and from the
outside world, which is accessed by all clients, such as the kubectl command-line
tool. Even the cluster components in the control plane interact with each other only
through the API server. Additionally, it is the only component that interacts directly
with the etcd datastore. Since the API server is the only way for clients to access the
cluster, it must be properly configured to be accessible by clients. You will usually see
the API server implemented as kube-apiserver.

Note

We will explain the RESTful API in more detail in the The Kubernetes API
section later in this chapter.

Now, let's recall how the API server looks in our Minikube cluster by running the
following command:

kubectl get pods -n kube-system

Kubernetes HTTP Request Flow | 137

You should see the following response:

Figure 4.1: Observing how the API server is implemented in Minikube

As we saw in previous chapters, in the Minikube environment, the API server is
referred to as kube-apiserver-minikube in the kube-system namespace. As
you can see in the preceding screenshot, we have a single instance of the API server:
kube-apiserver-minikube.

The API server is stateless (that is, its behavior will be consistent regardless of
the state of the cluster) and is designed to scale horizontally. Usually, for the high
availability of clusters, it is recommended to have at least three instances to handle
the load and fault tolerance better.

Kubernetes HTTP Request Flow
As we learned in earlier chapters, when we run any kubectl command, the
command is translated into an HTTP API request in JSON format and is sent to the API
server. Then, the API server returns a response to the client, along with any requested
information. The following diagram shows the API request life cycle and what
happens inside the API server when it receives a request:

Figure 4.2: API server HTTP request flow

138 | How to Communicate with Kubernetes (API Server)

As you can see in the preceding figure, the HTTP request goes through the
authentication, authorization, and admission control stages. We will take a
look at each of these in the following subtopics.

Authentication

In Kubernetes, every API call needs to authenticate with the API server, regardless
of whether it comes from outside the cluster, such as those made by kubectl, or a
process inside the cluster, such as those made by kubelet.

When an HTTP request is sent to the API server, the API server needs to authenticate
the client sending this request. The HTTP request will contain the information
required for authentication, such as the username, user ID, and group. The
authentication method will be determined by either the header or the certificate
of the request. To deal with these different methods, the API server has different
authentication plugins, such as ServiceAccount tokens, which are used to authenticate
ServiceAccounts, and at least one other method to authenticate users, such as X.509
client certificates.

Note

The cluster administrator usually defines authentication plugins during
cluster creation. You can learn more about the various authentication
strategies and authentication plugins at https://kubernetes.io/docs/reference/
access-authn-authz/authentication/.

We will take a look at the implementation of certificate-based authentication
in Chapter 11, Build Your Own HA Cluster.

The API server will call those plugins one by one until one of them authenticates
the request. If all of them fail, then the authentication fails. If the authentication
succeeds, then the authentication phase is complete and the request proceeds
to the authorization phase.

Authorization

After authentication is successful, the attributes from the HTTP request are sent to
the authorization plugin to determine whether the user is permitted to perform the
requested action. There are various levels of privileges that different users may have;
for example, can a given user create a pod in the requested namespace? Can the user
delete a Deployment? These kinds of decisions are made in the authorization phase.

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Kubernetes HTTP Request Flow | 139

Consider an example where you have two users. A user called ReadOnlyUser (just a
hypothetical name) should be allowed to list pods in the default namespace only,
and ClusterAdmin (another hypothetical name) should be able to perform all tasks
across all namespaces:

Figure 4.3: Privileges for our two users

To understand this better, take a look at the following demonstration:

Note

We will not dive into too much detail about how to create users as this will
be discussed in Chapter 13, Runtime and Network Security in Kubernetes.
For this demonstration, the users, along with their permissions, are
already set up, and the limitation of their privileges is demonstrated by
switching contexts.

Figure 4.4: Demonstrating different user privileges

140 | How to Communicate with Kubernetes (API Server)

Notice, from the preceding screenshot, that the ReadOnlyUser can only list pods
in the default namespace, but when trying to perform other tasks, such as deleting a
pod in the default namespace or listing pods in other namespaces, the user will get
a Forbidden error. This Forbidden error is returned by the authorization plugin.

kubectl provides a tool that you can call by using kubectl auth can-i to check
whether an action is allowed for the current user.

Let's consider the following examples in the context of the previous demonstration.
Let's say that the ReadOnlyUser runs the following commands:

kubectl auth can-i get pods --all-namespaces

kubectl auth can-i get pods -n default

The user should see the following responses:

Figure 4.5: Checking privileges for ReadOnlyUser

Now, after switching context, let's say that the ClusterAdmin user runs the
following commands:

kubectl auth can-i delete pods

kubectl auth can-i get pods

kubectl auth can-i get pods --all-namespaces

The user should see the following response:

Figure 4.6: Checking privileges for ClusterAdmin

Unlike authentication phase modules, authorization modules are checked in
sequence. If multiple authorization modules are configured, and if any authorizer
approves or denies a request, that decision is immediately returned, and no other
authorizer will be contacted.

Kubernetes HTTP Request Flow | 141

Admission Control

After the request is authenticated and authorized, it goes to the admission control
modules. These modules can modify or reject requests. If the request is only trying to
perform a READ operation, it bypasses this stage; but if it is trying to create, modify,
or delete, it will be sent to the admission controller plugins. Kubernetes comes with a
set of predefined admission controllers, although you can define custom admission
controllers as well.

These plugins may modify the incoming object, in some cases to apply
system-configured defaults or even to deny the request. Like authorization
modules, if any admission controller module rejects the request, then the
request is dropped and it will not process further.

Some examples are as follows:

• If we configure a custom rule that every object should have a label
(which you will learn how to do in Chapter 16, Kubernetes Admission
Controllers), then any request to create an object without a label will be
rejected by the admission controllers.

• When you delete a namespace, it goes to the Terminating state, where
Kubernetes will try to evict all the resources in it before deleting it. So, we cannot
create any new objects in this namespace. NamespaceLifecycle is what
prevents that.

• When a client tries to create a resource in a namespace that does not exist,
the NamespaceExists admission controller rejects the request.

Out of the different modules included in Kubernetes, not all of the admission control
modules are enabled by default, and the default modules usually change based
on the Kubernetes version. Providers of cloud-based Kubernetes solutions, such
as Amazon Web Services (AWS), Google, and Azure, control which plugins can be
enabled by default. Cluster administrators can also decide which modules to enable
or disable when initializing the API server. By using the --enable-admission-
plugins flag, administrators can control which modules should be enabled other
than the default ones. On the other hand, the --disable-admission-plugins
flag controls which modules from the default modules should be disabled.

Note

You will learn more about admission controllers, including creating custom
ones, in Chapter 16, Kubernetes Admission Controllers.

142 | How to Communicate with Kubernetes (API Server)

As you will recall from Chapter 2, An Overview of Kubernetes, when we created a cluster
using the minikube start command, Minikube enabled several modules for us
by default. Let's take a closer look at that in the next exercise in which we will not only
view the different API modules enabled for us by default but also start Minikube with
a custom set of modules.

Exercise 4.01: Starting Minikube with a Custom Set of Modules

In this exercise, we will take a look at how to view the different API modules enabled
for our instance of Minikube, and then restart Minikube using a custom set of
API modules:

1. If Minikube is not already running on your machine, start it up by using the
following command:

minikube start

You should see the following response:

Figure 4.7: Starting up Minikube

Kubernetes HTTP Request Flow | 143

2. Now, let's see which modules are enabled by default. Use the
following command:

kubectl describe pod kube-apiserver-minikube -n kube-system | grep
enable-admission-plugins

You should see the following response:

Figure 4.8: Default modules enabled in Minikube

As you can observe from the preceding output, Minikube has
enabled the following modules for us: NamespaceLifecycle,
LimitRanger, ServiceAccount, DefaultStorageClass,
DefaultTolerationSeconds, NodeRestriction,
MutatingAdmissionWebhook, ValidatingAdmissionWebhook,
and ResourceQuota.

Note

To know more about modules, please refer the following link: https://
kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

3. Another way to check the modules is to view the API server manifest by running
the following command:

kubectl exec -it kube-apiserver-minikube -n kube-system -- kube-
apiserver -h | grep "enable-admission-plugins" | grep -vi deprecated

Note

We used grep -vi deprecated because there is another flag,
--admission-control, that we are discarding from the output,
as this flag will be deprecated in future versions.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

144 | How to Communicate with Kubernetes (API Server)

kubectl has the exec command, which allows us to execute a command to our
running pods. This command will execute kube-apiserver -h inside our
kube-apiserver-minikube pod and return the output to our shell:

Figure 4.9: Checking the modules enabled by default in Minikube

4. Now, we will start Minikube with our desired configuration. Use the
following command:

minikube start --extra-config=apiserver.enable-admission-plugins="Limi
tRanger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccou
nt,DefaultStorageClass,MutatingAdmissionWebhook"

As you can see here, the minikube start command has the --extra-
config configurator flag, which allows us to pass additional configurations
to our cluster installation. In our case, we can use the --extra-config flag,
along with --enable-admission-plugins, and specify the plugins we need
to enable. Our command should produce this output:

Figure 4.10: Restarting Minikube with a custom set of modules

Kubernetes HTTP Request Flow | 145

5. Now, let's compare this instance of Minikube with our earlier one. Use the
following command:

kubectl describe pod kube-apiserver-minikube -n kube-system | grep
enable-admission-plugins

You should see the following response:

Figure 4.11: Checking a custom set of modules for Minikube

If you compare the set of modules seen here to the ones in Figure 4.7,
you will notice that only the specified plugins were enabled; while
the DefaultTolerationSeconds, NodeRestriction, and
ValidatingAdmissionWebhook modules are no longer enabled.

Note

You can revert to the default configurations in Minikube by running
minikube start again.

Validation

After letting the request pass through all three stages, the API server then validates
the object—that is, it checks whether the object specification, which is carried in JSON
format in the response body, meets the required format and standard.

After successful validation, the API server stores the object in the etcd datastore and
returns a response to the client. After that, as you learned in Chapter 2, An Overview
of Kubernetes, other components, such as the scheduler and the controller manager,
take over to find a suitable node and actually implement the object on your cluster.

146 | How to Communicate with Kubernetes (API Server)

The Kubernetes API
The Kubernetes API uses JSON over HTTP for its requests and responses. It follows
the REST architectural style. You can use the Kubernetes API to read and write
Kubernetes resource objects.

Note

For more details about the RESTful API, please refer to
https://restfulapi.net/.

Kubernetes API allows clients to create, update, delete, or read a description of an
object via standard HTTP methods (or HTTP verbs), such as the examples in the
following table:

Figure 4.12: HTTP verbs and their usage

In the context of Kubernetes API calls, it is helpful to understand how these HTTP
methods map to API request verbs. So, let's take a look at which verbs are sent
through which methods:

• GET: get, list, and watch

Some example kubectl commands are kubectl get pod, kubectl
describe pod <pod-name>, and kubectl get pod -w.

https://restfulapi.net/

The Kubernetes API | 147

• POST: create

An example kubectl command is kubectl create -f <filename.yaml>.

• PATCH: patch

An example kubectl command is kubectl set image deployment/
kubeserve nginx=nginx:1.9.1.

• DELETE: delete

An example kubectl command is kubectl delete pod <pod-name>.

• PUT: update

An example kubectl command is kubectl apply -f <filename.yaml>.

Note

If you have not encountered these commands yet, you will in the upcoming
chapters. Feel free to refer back to this chapter or the following Kubernetes
documentation to find out how each API request works for any command:
https://kubernetes.io/docs/reference/kubernetes-api/.

As mentioned earlier, these API calls carry JSON data, and all of them have a JSON
schema identified by the Kind and apiVersion fields. Kind is a string that
identifies the type of JSON schema that an object should have, and apiVersion is a
string that identifies the version of the JSON schema the object should have. The next
exercise should give you a better idea about this.

You can refer to the Kubernetes API reference documentation to see the different
HTTP methods in action, at https://kubernetes.io/docs/reference/kubernetes-api/.

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

148 | How to Communicate with Kubernetes (API Server)

For example, if you need to create a Deployment in a specific namespace, under
WORKLOADS APIS, you can navigate to Deployment v1 apps > Write
Operations > Create. You will see the HTTP request and different examples using
kubectl or curl. The following page from the API reference docs should give you
an idea of how to use this reference:

Figure 4.13: HTTP request for the kubectl create command

You will need to keep the version of your API server in mind when you refer to the
previously mentioned documentation. You can find your Kubernetes API server
version by running kubectl version --short command and looking for
Server Version. For example, if your Kubernetes API server version is running
version 1.14, you should navigate to the Kubernetes version 1.14 reference
documentation (https://v1-14.docs.kubernetes.io/docs/reference/generated/kubernetes-api/
v1.14/) to look up the relevant API information.

The best way to understand this is by tracing a kubectl command. Let's do exactly
that in the following section.

https://v1-14.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/
https://v1-14.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.14/

The Kubernetes API | 149

Tracing kubectl HTTP Requests

Let's try tracing the HTTP requests that kubectl sends to the API server to better
understand them. Before we begin, let's get all the pods in the kube-system
namespace by using the following command:

kubectl get pods -n kube-system

This command should display the output in a table view, as you can see in the
following screenshot:

Figure 4.14: Getting the list of pods in the kube-system namespace

Behind the scenes, since kubectl is a REST client, it invokes an HTTP GET request to
the API server endpoint and requests information from /api/v1/namespaces/
kube-system/pods.

We can enable verbose output by adding --v=8 to our kubectl command. v
indicates the verbosity of the command. The higher the number, the more details we
get in the response. This number can range from 0 to 10. Let's see the output with
verbosity of 8:

kubectl get pods -n kube-system --v=8

150 | How to Communicate with Kubernetes (API Server)

This should give output as follows:

Figure 4.15: Output of a get pods command with a verbosity of 8

Let's examine the preceding output bit by bit to get a better understanding of it:

• The first part of the output is as follows:

Figure 4.16: Part of the output indicating the loading of the config file

From this, we can see that kubectl loaded the configuration from our kubeconfig
file, which has the API server endpoint, port, and credentials, such as the
certificate or the authentication token.

• This is the next part of the output:

Figure 4.17: Part of the output indicating the HTTP GET request

The Kubernetes API | 151

In this, you can see the HTTP GET request mentioned as GET
https://192.168.99.100:8443/api/v1/namespaces/kube-
system/pods?limit=500. This line contains the operation that we need to
perform against the API server, and /api/v1/namespaces/kube-system/
pods is the API path. You can also see limit=500 at the end of the URL path,
which is the chunk size; kubectl fetches a large number of resources in chunks to
improve latency. We will see some examples relating to retrieving large results
sets in chunks later in this chapter.

• The next part of the output is as follows:

Figure 4.18: Part of the output indicating request headers

As you can see in this part of the output, Request Headers describes the
resource to be fetched or the client requesting the resource. In our example,
the output has two parts for content negotiation:

a) Accept: This is used by HTTP clients to tell the server what content types
they'll accept. In our example, we can see that kubectl informed the API server
about the application/json content type. If this does not exist in the
request header, the server will return the default preconfigured representation
type, which is the same as application/json for the Kubernetes API as it
uses the JSON schema. We can also see that it is requesting the output as a table
view, which is indicated by as=Table in this line.

b) User-Agent: This header contains information about the client that is
requesting this information. In this case, we can see that kubectl is providing
information about itself.

• Let's examine the next part:

Figure 4.19: Part of the output indicating the response status

Here, we can see that the API server returns the 200 OK HTTP status code,
which indicates that the request has been processed successfully on the
API server. We can also see the time taken to process this request, which is
10 milliseconds.

152 | How to Communicate with Kubernetes (API Server)

• Let's look at the next part:

Figure 4.20: Part of the output indicating the response headers

As you can see, this part shows the Response Headers, which include details
such as the date and time of the request, in our example.

• Now, let's come to the main response sent by the API server:

Figure 4.21: Part of the output indicating the response body

The Response Body contains the resource data that was requested by the
client. In our case, this is information about the pods in the kube-system
namespace. Here, this information is in raw JSON format before kubectl can
present it as a neat table. However, the highlighted section at the end of the
previous screenshot shows that the response body does not have all the JSON
output that we requested; part of the Response Body is truncated. This
is because --v=8 displays the HTTP request content with truncation of the
response content.

To see the full response body, you can run the same command with --v=10,
which does not truncate the output at all. The command would look like
as follows:

kubectl get pods -n kube-system --v=10

We will not examine the command with --v=10 verbosity for the sake
of brevity.

The Kubernetes API | 153

• Now, we come to the final part of the output that we are examining:

Figure 4.22: Part of the output indicating the final result

This is the final output as a table, which is what was requested. kubectl has taken the
raw JSON data and formatted it as a neat table for us.

Note

You can learn more about kubectl verbosity and debugging flags
at https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-
verbosity-and-debugging.

API Resource Type

In the previous section, we saw that the HTTP URL was made up of an API resource,
API group, and API version. Now, let's learn about the resource type defined in the
URL, such as pods, namespaces, and services. In JSON form, this is called Kind:

• Collection of resource: This represents a collection of instances for a resource
type, such as all pods in all namespaces. In a URL, this would be as follows:

GET /api/v1/pods

• Single resource: This represents a single instance of a resource type, such as
retrieving details of a specific pod in a given namespace. The URL for this case
would be as follows:

GET /api/v1/namespaces/{namespace}/pods/{name}

Now that we have learned about various aspects of a request made to the API server,
let's learn about the scope of API resources in the next section.

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging

154 | How to Communicate with Kubernetes (API Server)

Scope of API Resources
All resource types can either be cluster-scoped resources or namespace-scoped
resources. The scope of a resource affects the access of that resource and how
that resource is managed. Let's look at the differences between namespace and
cluster scope.

Namespace-Scoped Resources

As we saw in Chapter 2, An Overview of Kubernetes, Kubernetes makes use of Linux
namespaces to organize most Kubernetes resources. Resources in the same
namespace share the same control access policies and authorization checks.
When a namespace is deleted, all resources in that namespace are also deleted.

Let's see what forms the request paths for interacting with namespace-scoped
resources take:

• Return the information about a specific pod in a namespace:

GET /api/v1/namespaces/{my-namespace}/pods/{pod-name}

• Return the information about a collection of all Deployments in a namespace:

GET /apis/apps/v1/namespaces/{my-namespace}/deployments

• Return the information about all instances of the resource type (in this case,
services) across all namespaces:

GET /api/v1/services

Notice that when we are looking for information against all namespaces, it will
not have namespace in the URL.

You can get a full list of namespace-scoped API resources by using the
following command:

kubectl api-resources --namespaced=true

Scope of API Resources | 155

You should see a response similar to this:

Figure 4.23: Listing out all the namespace-scoped resources

Cluster-Scoped Resources

Most Kubernetes resources are namespace-scoped, but the namespace resource
itself is not namespace-scoped. Resources that are not scoped within namespaces
are cluster-scoped. Other examples of cluster-scoped resources are nodes. Since
a node is cluster-scoped, you can deploy a pod on the desired node regardless of
what namespace you want the pod to be in, and a node can host different pods from
different namespaces.

156 | How to Communicate with Kubernetes (API Server)

Let's see how the request paths for interacting with cluster-scoped resources look:

• Return the information about a specific node in the cluster:

GET /api/v1/nodes/{node-name}

• Return the information of all instances of the resource type (in this case, nodes)
in the cluster:

GET /api/v1/nodes

• You can get a full list of cluster-scoped API resources by using the
following command:

kubectl api-resources --namespaced=false

You should see an output similar to this:

Figure 4.24: Listing out all cluster-scoped resources

API Groups | 157

API Groups
An API group is a collection of resources that are logically related to each other.
For example, Deployments, ReplicaSets, and DaemonSets all belong to the apps
API group: apps/v1.

Note

You will learn about Deployments, ReplicaSets, and DaemonSets in detail
in Chapter 7, Kubernetes Controllers. In fact, this chapter will talk about
many API resources that you will encounter in later chapters.

The --api-group flag can be used to scope the output to a specific API group, as
we will see in the following sections. Let's take a closer look at the various API groups
in the following sections.

Core Group

This is also called the legacy group. It contains objects such as pods, services, nodes,
and namespaces. The URL path for these is /api/v1, and nothing other than the
version is specified in the apiVersion field. For example, consider the following
screenshot where we are getting information about a pod:

Figure 4.25: API group of a pod

As you can see here, the apiVersion: v1 field indicates that this resource belongs
to the core group.

158 | How to Communicate with Kubernetes (API Server)

Resources showing a blank entry in the kubectl api-resources command
output are part of the core group. You can also specify an empty argument flag
(--api-group='') to only display the core group resources, as follows:

kubectl api-resources --api-group=''

You should see an output as follows:

Figure 4.26: Listing out the resources in the core API group

Named Group

This group includes objects for whom the request URL is in the
/apis/$NAME/$VERSION format. Unlike the core group, named groups
contain the group name in the URL. For example, let's consider the following
screenshot where we have information about a Deployment:

API Groups | 159

Figure 4.27: The API group of a Deployment

As you can see, the highlighted field showing apiVersion: apps/v1 indicates
that this resource belongs to the apps API group.

You can also specify the --api-group='<NamedGroup Name>' flag to display
the resources in that specified named group. For example, let's list out the resources
under the apps API group by using the following command:

kubectl api-resources --api-group='apps'

This should give the following response:

Figure 4.28: Listing out the resources in the apps API group

All of these resources in the preceding screenshot are clubbed together because they
are part of the apps named group, which we specified in our query command.

160 | How to Communicate with Kubernetes (API Server)

As another example, let's look at the rbac.authorization.k8s.io API
group, which has resources to determine authorization policies. We can look
at the resources in that group by using the following command:

kubectl api-resources --api-group='rbac.authorization.k8s.io'

You should see the following response:

Figure 4.29: Listing out the resources in the rbac.authorization.k8s.io API group

System-Wide

This group consists of system-wide API endpoints, such as /version,
/healthz, /logs, and /metrics. For example, let's consider the
output of the following command:

kubectl version --short --v=6

This should give an output similar to this:

Figure 4.30: Request URL for the kubectl version command

As you can see in this screenshot, when you run kubectl --version, this goes to
the /version special entity, as seen in the GET request URL.

API Versions | 161

API Versions
In the Kubernetes API, there is the concept of API versioning; that is, the Kubernetes
API supports multiple versions of a type of resource. These different versions may
act differently. Each one has a different API path, such as /api/v1 or /apis/
extensions/v1beta1.

The different API versions differ in terms of stability and support:

• Alpha: This version is indicated by alpha in the apiVersion field—for
example, /apis/batch/v1alpha1. The alpha version of resources is disabled
by default as it is not intended for production clusters but can be used by early
adopters and developers who are willing to provide feedback and suggestions
and report bugs. Also, support for alpha resources may be dropped without
notice by the time the final stable version of Kubernetes is finalized.

• Beta: This version is indicated by beta in the apiVersion field—for example,
/apis/certificates.k8s.io/v1beta1. The beta version of resources
is enabled by default, and the code behind it is well tested. However, using it is
recommended for scenarios that are not business-critical because it is possible
that changes in subsequent releases may reduce incompatibilities; that is, some
features may not be supported for a long time.

• Stable: For these versions, the apiVersion field just contains the version
number without any mention of alpha or beta—for example, /apis/
networking.k8s.io/v1. The Stable version of resources is supported
for many subsequent versions releases of Kubernetes. So, this version of API
resources is recommended for any critical use cases.

You can get a complete list of the API versions enabled in your cluster by using the
following command:

kubectl api-versions

162 | How to Communicate with Kubernetes (API Server)

You should see a response similar to this:

Figure 4.31: List of enabled versions of API resources

An interesting thing that you may observe in this screenshot is that some API
resources, such as autoscaling, have multiple versions; for example, for
autoscaling, there is v1beta1, v1beta2, and v1. So, what is the difference
between them and which one should you use?

Let's again consider the example of autoscaling. This feature allows you to scale
the number of pods in a replication controller, such as Deployments, ReplicaSets, or
StatefulSets, based on specific metrics. For example, you can autoscale the number of
pods from 3 to 10 if the average CPU load exceeds 50%.

API Versions | 163

In this case, the difference in the versions is that of feature support. The Stable
release for autoscaling is autoscaling/v1, which only supports scaling the
number of pods based on the average CPU metric. The beta release for autoscaling,
which is autoscaling/v2beta1, supports scaling based on CPU and memory
utilization. The newer version in the beta release, which is autoscaling/v2beta2,
supports scaling the number of pods based on custom metrics in addition to CPU
and memory. However, since the beta release is still not meant to be used for
business-critical scenarios when you create an autoscaling resource, it will use
the autoscaling/v1 version. However, you can still use other versions to use
additional features by specifying the beta version in the YAML file until the required
features are added to the stable release.

All of this information can seem overwhelming. However, Kubernetes provides ways
to access all the information you need to navigate your way around the API resources.
You can use kubectl to access the Kubernetes docs and get the necessary information
about the various API resources. Let's see how that works in the following exercise.

Exercise 4.02: Getting Information about API Resources

Let's say that we want to create an ingress object. For the purposes of this
exercise, you don't need to know much about ingress; we will learn about it
in the upcoming chapters.

We will use kubectl to get more information about the Ingress API resource,
determine which API versions are available, and find out which groups it belongs to.
If you recall from previous sections, we need this information for the apiVersion
field of our YAML manifest. Then, we also get the information required for the other
fields of our manifest file:

1. Let's first ask our cluster for all the available API resources that match the
ingresses keyword:

kubectl api-resources | grep ingresses

This command will filter the list of all the API resources by the ingresses
keyword. You should get the following output:

ingresses ing extensions true Ingress

ingresses ing networking.k8s.io true Ingress

164 | How to Communicate with Kubernetes (API Server)

We can see that we have ingress resources on two different API
groups—extensions and networking.k8s.io.

2. We have also seen how we can get API resources belonging to specific groups.
Let's check the API groups that we saw in the previous step:

kubectl api-resources --api-group="extensions"

You should get the following output:

NAME SHORTNAMES APIGROUP NAMESPACED KIND

ingresses ing extensions true Ingress

Now, let's check the other group:

kubectl api-resources --api-group="networking.k8s.io"

You should see the following output:

Figure 4.32: Listing out the resources in the networking.k8s.io API group

However, if we were to use an ingress resource, we still don't know whether we
should use the one from the extensions group or the networking.k8s.
io group. In the next step, we will get some more information that will help us
decide that.

3. Use the following command to get more information:

kubectl explain ingress

API Versions | 165

You should get this response:

Figure 4.33: Getting details of the ingress resource from the extensions API group

As you can see, the kubectl explain command describes the API resource,
as well as the details about the fields associated with it. We can also see that
ingress uses the extensions/v1beta1 API version, but if we read the
DESCRIPTION, it mentions that this group version of ingress is deprecated by
networking.k8s.io/v1beta1. Deprecated means that the standard is in
the process of being phased out, and even though it is currently supported, it is
not recommended for use.

Note

If you compare this to the different versions of autoscaling that we saw
just before this exercise, you may think that the logical upgrade path from
v1beta would be v2beta, and that would totally make sense. However,
the ingress resource was moved from the extensions group to the
networking.k8s.io group, and so this bucks the naming trend.

4. It is not a good idea to use a deprecated version, so let's say that you want to use
the networking.k8s.io/v1beta1 version instead. However, we need to get
more information about it first. We can add a flag to the kubectl explain
command to get information about a specific version of an API resource,
as follows:

kubectl explain ingress --api-version=networking.k8s.io/v1beta1

166 | How to Communicate with Kubernetes (API Server)

You should see this response:

Figure 4.34: Getting details of the ingress resource from the networking.k8s.io API group

5. We can also filter the output of the kubectl explain command by using the
JSONPath identifier. This allows us to get information about the various fields
that we need to specify while defining the YAML manifest. So, for example, if we
would like to see the spec fields for Ingress, the command will be as follows:

kubectl explain ingress.spec --api-version=networking.k8s.io/v1beta1

This should give a response as follows:

Figure 4.35: Filtering the output of the kubectl explain command
to get the spec fields of ingress

API Versions | 167

6. We can dive deeper to get more details about the nested fields. For example,
if you wanted to get more details about the backend field of ingress, we can
specify ingress.spec.backend to get the required information:

kubectl explain ingress.spec.backend --api-version=networking.k8s.io/
v1beta1

This will give the following output:

Figure 4.36: Filtering the output of the kubectl explain command
to get the spec.backend field of ingress

Similarly, we can repeat this for any field that you need information about, which
is handy for building or modifying a YAML manifest. So, we have seen that the
kubectl explain command is very useful when you are looking for more details
and documentation about an API resource. It is also very useful when creating or
modifying objects using YAML manifest files.

How to Enable/Disable API Resources, Groups, or Versions

In a typical cluster, not all API groups are enabled by default. It depends on
the cluster use case as determined by the administrators. For example, some
Kubernetes cloud providers disable resources that use the alpha level for stability
and security reasons. However, those can still be enabled on the API server by
using the --runtime-config flag, which accepts comma-separated lists.

168 | How to Communicate with Kubernetes (API Server)

To be able to create any resource, the group and version should be enabled in the
cluster. For example, when you try to create a CronJob that uses apiVersion:
batch/v2alpha1 in its manifest file, if the group/version is not enabled, you will
get an error similar to the following:

No matches for kind "CronJob" in version "batch/v2alpha1".

To enable batch/v2alpha1, you will need to set --runtime-config=batch/
v2alpha1 on the API server. This can be done either during the creation of the
cluster or by updating the /etc/kubernetes/manifests/kube-apiserver.
yaml manifest file. The flag also supports disabling an API group or version by setting
a false value to the specific version—for example, --runtime-config=batch/
v1=false.

--runtime-config also supports the api/all special key, which is used to
control all API versions. For example, to turn off all API versions except v1, you can
pass the --runtime-config=api/all=false,api/v1=true flag. Let's try
our own hands-on example of creating and disabling API groups and versions in the
following exercise.

Exercise 4.03: Enabling and Disabling API Groups and Versions on a Minikube

Cluster

In this exercise, we will create specific API versions while starting up Minikube, disable
certain API versions in our running cluster, and then enable/disable resources in an
entire API group:

1. Start Minikube with the flag shown in the following command:

minikube start --extra-config=apiserver.runtime-config=batch/v2alpha1

You should see the following response:

Figure 4.37: Starting up Minikube with an additional API resource group

API Versions | 169

Note

You can refer to the minikube start documentation for further details
about the --extra-config flag, at https://minikube.sigs.k8s.io/docs/
handbook/config/.

2. You can confirm it is enabled by checking the details about the
kube-apiserver-minikube pod. Use the describe pod
command and filter the results by the runtime keyword:

kubectl describe pod kube-apiserver-minikube -n kube-system | grep
runtime

You should see the following response:

--runtime-config=batch/v2alpha1

3. Another way to confirm this is by looking at the enabled API versions by using
the following command:

kubectl api-versions | grep batch/v2alpha1

You should see the following response:

batch/v2alpha1

4. Now, let's create a resource called a CronJob, which uses batch/v2alpha1
to confirm that our API server accepts the API. Create a file named
sample-cronjob.yaml with the following contents:

apiVersion: batch/v2alpha1

kind: CronJob

metadata:

 name: hello

spec:

 schedule: "*/1 * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: hello

 image: busybox

https://minikube.sigs.k8s.io/docs/handbook/config/
https://minikube.sigs.k8s.io/docs/handbook/config/

170 | How to Communicate with Kubernetes (API Server)

 args:

 - /bin/sh

 - -c

 - date; echo Hello from the Kubernetes cluster

 restartPolicy: OnFailure

5. Now, create a CronJob by using this YAML file:

kubectl create -f sample-cronjob.yaml

You should see the following output:

cronjob.batch/hello created

As you can see, the API server accepted our YAML file and the CronJob is
created successfully.

6. Now, let's disable batch/v2alpha1 on our cluster. To do that, we need
to access the Minikube virtual machine (VM) using SSH, as demonstrated in
previous chapters:

minikube ssh

You should see this response:

Figure 4.38: Accessing the Minikube VM via SSH

7. Open the API server manifest file. This is the template Kubernetes uses for the
API server pods. We will use vi to modify this file, although you can use any text
editor of your preference:

sudo vi /etc/kubernetes/manifests/kube-apiserver.yaml

API Versions | 171

You should see a response like the following:

Figure 4.39: The API server spec file

Look for the line that contains --runtime-config=batch/v2alpha1 and
change it to --runtime-config=batch/v2alpha1=false. Then, save the
modified file.

8. End the SSH session by using the following command:

exit

172 | How to Communicate with Kubernetes (API Server)

9. For the changes in the API server manifest to take effect, we need to restart the
API server and the controller manager. Since these are deployed as stateless
pods, we can simply delete them and they will automatically get deployed again.
First, let's delete the API server by running this command:

kubectl delete pods -n kube-system -l component=kube-apiserver

You should see this output:

pod "kube-apiserver-minikube" deleted

Now, let's delete the controller manager:

kubectl delete pods -n kube-system -l component=kube-controller-
manager

You should see this output:

pod "kube-controller-manager-minikube" deleted

Note that for both of these commands, we did not delete the pods by their
names. The -l flag looks for labels. These commands deleted all the pods in the
kube-system namespace that had labels that match the ones specified after
the -l flag.

10. We can confirm that batch/v2alpha1 is no longer shown in API versions by
using the following command:

kubectl api-versions | grep batch/v2alpha1

This command will not give you any response, indicating that we have disabled
batch/v2alpha1.

So, we have seen how we can enable or disable a specific group or version of API
resources. But this is still a broad approach. What if you wanted to disable a specific
API resource?

For our example, let's say that you want to disable ingress. We saw in the previous
exercise that we have ingresses in the extensions as well as networking.k8s.
io API groups. If you are targeting a specific API resource, you need to specify its
group and version. Let's say that you want to disable ingress from the extensions
group because it is deprecated. In this group, we have just one version of ingresses,
which is v1beta, as you can observe from Figure 4.33.

Interacting with Clusters Using the Kubernetes API | 173

To achieve this, all we have to do is modify the --runtime-config flag to specify
the resource that we want. So, if we wanted to disable ingress from the extensions
group, the flag would be as follows:

--runtime-config=extensions/v1beta1/ingresses=false

To disable the resource, we can use this flag when starting up Minikube, as shown
in step 1 of this exercise, or we can add this line to the API server's manifest file, as
shown in step 7 of this exercise. Recall from this exercise that if we instead want to
enable the resource, we just need to remove the =false part from the end of
this flag.

Interacting with Clusters Using the Kubernetes API
Up until now, we've been using the Kubernetes kubectl command-line tool, which
made interacting with our cluster quite convenient. It does that by extracting the API
server address and authentication information from the client kubeconfig file, which
is located in ~/.kube/config by default, as we saw in the previous chapter. In this
section, we will look at the different ways to directly access the API server with HTTP
clients such as curl.

There are two possible ways to directly access the API server via the REST
API—by using kubectl in proxy mode or by providing the location and authentication
credentials directly to the HTTP client. We will explore both methods to understand
the pros and cons of each one.

Accessing the Kubernetes API Server Using kubectl as a Proxy

kubectl has a great feature called kubectl proxy, which is the recommended
approach for interacting with the API server. This is recommended because it is easier
to use and provides a more secure way of doing so because it verifies the identity of
the API server by using a self-signed certificate, which prevents man-in-the-middle
(MITM) attacks.

kubectl proxy routes the requests from our HTTP client to the API server while taking
care of authentication by itself. Authentication is also handled by using the current
configuration in our kubeconfig file.

In order to demonstrate how to use kubectl proxy, let's first create an NGINX
Deployment with two replicas in the default namespace and view it using kubectl
get pods:

kubectl create deployment mynginx --image=nginx:latest

174 | How to Communicate with Kubernetes (API Server)

This should give an output like the following:

deployment.apps/mynginx created

Now, we can scale our Deployment to two replicas with the following command:

kubectl scale deployment mynginx --replicas=2

You should see an output similar to this:

deployment.apps/mynginx scaled

Let's now check whether the pods are up and running:

kubectl get pods

This gives an output similar to the following:

NAME READY STATUS RESTARTS AGE

mynginx-565f67b548-gk5n2 1/1 Running 0 2m30s

mynginx-565f67b548-q6slz 1/1 Running 0 2m30s

To start a proxy to the API server, run the kubectl proxy command:

kubectl proxy

This should give output as follows:

Starting to serve on 127.0.0.1:8001

Note from the preceding screenshot that the local proxy connection is running on
127.0.0.1:8001, which is the default. We can also specify a custom port by adding
the --port=<YourCustomPort> flag, while adding an & (ampersand) sign at the
end of our command to allow the proxy to run in the terminal background so that
we can continue working in the same terminal window. So, the command would
look like this:

kubectl proxy --port=8080 &

This should give the following response:

[1] 48285

AbuTalebMBP:~ mohammed$ Starting to serve on 127.0.0.1:8080

The proxy is run as a background job, and in the preceding screenshot, [1] indicates
the job number and 48285 indicates its process ID. To exit a proxy running in the
background, you can run fg to bring the job back to the foreground:

fg

Interacting with Clusters Using the Kubernetes API | 175

This will show the following response:

kubectl proxy --port=8080

^C

After getting the proxy to the foreground, we can simply use Ctrl + C to exit it
(if there's no other job running).

Note

If you are not familiar with job control, you can learn about it at https://www.
gnu.org/software/bash/manual/html_node/Job-Control-Basics.html.

We can now start exploring the API using curl:

curl http://127.0.0.1:8080/apis

Recall that even though we are mostly using YAML for convenience, the data is stored
in etcd in JSON format. You will see a long response that begins something like this:

Figure 4.40: The response from the API server

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html
https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

176 | How to Communicate with Kubernetes (API Server)

But how do we find the exact path to query the Deployment we created earlier?
Also, how do we query the pods created by that Deployment?

You can start by asking yourself a few questions:

• What are the API version and API group used by Deployments?

In Figure 4.27, we saw that the Deployments are in apps/v1, so we can start by
adding that to the path:

curl http://127.0.0.1:8080/apis/apps/v1

• Is it a namespace-scoped resource or a cluster-scoped resource? If it is a
namespace-scoped resource, what is the name of the namespace?

We also saw in the scope of the API resources section that Deployments are
namespace-scoped resources. When we created the Deployment, since we did
not specify a different namespace, it went to the default namespace. So,
in addition to the apiVersion field, we would need to add namespaces/
default/deployments to our path:

curl http://127.0.0.1:8080/apis/apps/v1/namespaces/default/
deployments

This will return a large output with the JSON data that is stored on this path.
This is the part of the response that gives us the information that we need:

Figure 4.41: Getting information about all the Deployments using curl

Interacting with Clusters Using the Kubernetes API | 177

As you can see in this output, this lists all the Deployments in the default
namespace. You can infer that from "kind": "DeploymentList". Also,
note that the response is in JSON format and is not neatly presented as a table.

Now, we can specify a specific Deployment by adding it to our path:

curl http://127.0.0.1:8080/apis/apps/v1/namespaces/default/deployments/
mynginx

You should see this response:

Figure 4.42: Getting information about our NGINX Deployment using curl

You can use this method with any other resource as well.

Creating Objects Using curl

When you use any HTTP client, such as curl, to send requests to the API server to
create objects, you need to change three things:

1. Change the HTTP request method to POST. By default, curl will use the GET
method. To create objects, we need to use the POST method, as we learned in
The Kubernetes API section. You can change this using the -X flag.

2. Change the HTTP request header. We need to modify the header to inform
the API server what the intention of the request is. We can modify the header
using the -H flag. In this case, we need to set the header to 'Content-Type:
application/yaml'.

178 | How to Communicate with Kubernetes (API Server)

3. Include the spec of the object to be created. As you learned in the previous two
chapters, each API resource is persisted in the etcd as an API object, which is
defined by a YAML spec/manifest file. To create an object, you need to use the
--data flag to pass the YAML manifest to the API server so that it can persist it
in etcd as an object.

So, the curl command, which we will implement in the following exercise, will look
something like this:

curl -X POST <URL-path> -H 'Content-Type: application/yaml' --data <spec/
manifest>

At times, you will have the manifest files handy. However, that may not always be the
case. Also, we have not yet seen what manifests for namespaces look like.

Let's consider a case where we want to create a namespace. Usually, you would
create a namespace as follows:

kubectl create namespace my-namespace

This will give the following response:

namespace/my-namespace created

Here, you can see that we created a namespace called my-namespace. However,
for passing the request without using kubectl, we need the spec used to define a
namespace. We can get that by using the --dry-run=client and -o flags:

kubectl create namespace my-second-namespace --dry-run=client -o yaml

This will give the following response:

Figure 4.43: Getting the spec for a namespace using dry-run

Interacting with Clusters Using the Kubernetes API | 179

When you run a kubectl command with the --dry-run=client flag, the API
server takes it through all the stages of a normal command, except that it does not
persist the changes into etcd. So, the command is authenticated, authorized, and
validated, but changes are not permanent. This is a great way to test whether a
certain command works, and also to get the manifest that the API server would have
created for this command, as you can see in the previous screenshot. Let's see how to
put this in practice and use curl to create a Deployment.

Exercise 4.04: Creating and Verifying a Deployment Using kubectl proxy and

curl

For this exercise, we will create an NGINX Deployment called nginx-example
with three replicas in a namespace called example. We will do this by sending our
requests to the API server with curl via kubectl proxy:

1. First, let's start our proxy:

kubectl proxy &

This should give the following response:

[1] 50034

AbuTalebMBP:~ mohammed$ Starting to serve on 127.0.0.1:8080

The proxy started as a background job and is listening on the localhost at
port 8001.

2. Since the example namespace does not exist, we should create that namespace
before creating the Deployment. As we learned in the previous section, we
need to get the spec that should be used to create the namespace. Let's use the
following command:

kubectl create namespace example --dry-run -o yaml

Note

For Kubernetes versions 1.18+, please use --dry-run=client.

180 | How to Communicate with Kubernetes (API Server)

This will give the following output:

Figure 4.44: Getting the spec required for our namespace

Now, we have the spec required for creating the namespace.

3. Now, we need to send a request to the API server using curl. Namespaces belong
to the core group and hence the path will be /api/v1/namespaces. The final
curl command to create the namespace after adding all required parameters
should look like the following:

curl -X POST http://127.0.0.1:8001/api/v1/namespaces -H 'Content-
 Type: application/yaml' --data "
apiVersion: v1

kind: Namespace

metadata:

 creationTimestamp: null

 name: example

spec: {}

status: {}

"

Note

You can discover the required path for any resource, as shown in the
previous exercise. In this command, the double-quotes (") after --data
allow you to enter multi-line input in Bash, which is delimited by another
double-quote at the end. So, you can copy the output from the previous
step here before the delimiter.

Interacting with Clusters Using the Kubernetes API | 181

Now, if everything was correct in our command, you should get a response like
the following:

Figure 4.45: Using curl to send a request to create a namespace

4. The same procedure applies to Deployment. So, first, let's use the kubectl
create command with --dry-run=client to get an idea of how our YAML
data looks:

kubectl create deployment nginx-example -n example
--image=nginx:latest --dry-run -o yaml

Note

For Kubernetes versions 1.18+, please use --dry-run=client.

182 | How to Communicate with Kubernetes (API Server)

You should get the following response:

Figure 4.46: Using curl to send a request to create a Deployment

Note

Notice that the namespace will not show if you are using the
--dry-run=client flag because we need to specify it in
our API path.

Interacting with Clusters Using the Kubernetes API | 183

5. Now, the command for creating the Deployment will be constructed similarly to
the command for creating the namespace. Note that the namespace is specified
in the API path:

curl -X POST http://127.0.0.1:8001/apis/apps/v1/namespaces/example/
 deployments -H 'Content-Type: application/yaml' --data "
apiVersion: apps/v1

kind: Deployment

metadata:

 creationTimestamp: null

 labels:

 run: nginx-example

 name: nginx-example

spec:

 replicas: 3

 selector:

 matchLabels:

 run: nginx-example

 strategy: {}

 template:

 metadata:

 creationTimestamp: null

 labels:

 run: nginx-example

 spec:

 containers:

 - image: nginx:latest

 name: nginx-example

 resources: {}

status: {}

"

184 | How to Communicate with Kubernetes (API Server)

If everything is correct, you should get a response like the following from the
API server:

Figure 4.47: Response from API server after creating a Deployment

Note that the kubectl proxy process is still running in the background. If you are done
with interacting with the API server using kubectl proxy, then you may want to stop
the proxy from running in the background. To do that, run the fg command to bring
the kubectl proxy process to the foreground and then press Ctrl + C.

Direct Access to the Kubernetes API Using Authentication Credentials | 185

So, we have seen how we can interact with the API server using kubectl proxy, and by
using curl, we have been able to create an NGINX Deployment in a new namespace.

Direct Access to the Kubernetes API Using Authentication
Credentials
Instead of using kubectl in proxy mode, we can provide the location and credentials
directly to the HTTP client. This approach can be used if you are using a client that
may get confused by proxies, but it is less secure than using the kubectl proxy due to
the risk of MITM attacks. To mitigate this risk, it is recommended that you import the
root certificate and verify the identity of the API server when using this method.

When thinking about accessing the cluster using credentials, we need to understand
how authentication is configured and what authentication plugins are enabled in our
cluster. Several authentication plugins can be used, which allow different ways of
authenticating with the server:

• Client certificates

• ServiceAccount bearer tokens

• Authenticating proxy

• HTTP basic auth

Note

Note that the preceding list includes only some of the authentication
plugins. You can learn more about authentication at https://kubernetes.io/
docs/reference/access-authn-authz/authentication/.

Let's check what authentication plugins are enabled in our cluster by looking at the
API server running process using the following command and looking at the flags
passed to the API server:

kubectl exec -it kube-apiserver-minikube -n kube-system -- /bin/sh -c
"apt update ; apt -y install procps ; ps aux | grep kube-apiserver"

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/

186 | How to Communicate with Kubernetes (API Server)

This command will first install/update procps (a tool used to inspect processes)
within the API server, which is running as a pod on our Minikube server. Then, it will
get the list of processes and filter it by using the kube-apiserver keyword. You
will get a long output, but here is the part that we are interested in:

Figure 4.48: Getting the details flags passed to the API server

The following two flags from this screenshot tell us some important information:

• --client-ca-file=/var/lib/minikube/certs/ca.crt

• --service-account-key-file=/var/lib/minikube/certs/sa.pub

Direct Access to the Kubernetes API Using Authentication Credentials | 187

These flags tell us that we have two different authentication plugins
configured—X.509 client certificates (based on the first flag) and ServiceAccount
tokens (based on the second flag). We will now learn how to use both of these
authentication methods for communicating with the API server.

Method 1: Using Client Certificate Authentication

X.509 certificates are used for authenticating external requests, which is the current
configuration in our kubeconfig file. The --client-ca-file=/var/lib/
minikube/certs/ca.crt flag indicates the certificate authority that is used
to validate client certificates, which will authenticate with the API server. An X.509
certificate defines a subject, which is what identifies a user in Kubernetes. For
example, the X.509 certificate used for SSL by https://www.google.com/ has a subject
containing the following information:

Common Name = www.google.com

Organization = Google LLC

Locality = Mountain View

State = California

Country = US

When an X.509 certificate is used for authenticating a Kubernetes user, the Common
Name of the subject is used as the username for the user, and the Organization
field is used as the group membership of that user.

Kubernetes uses a TLS protocol for all of its API calls as a security measure. The HTTP
client that we have been using so far, curl, can work with TLS. Earlier, kubectl proxy
took care of communicating over TLS for us, but if we want to do it directly using curl,
we need to add three more details to all of our API calls:

• --cert: The client certificate path

• --key: The private key path

• --cacert: The certificate authority path

So, if we combine them, the command syntax should look as follows:

curl --cert <ClientCertificate> --key <PrivateKey> --cacert
<CertificateAuthority> https://<APIServerAddress:port>/api

https://www.google.com/

188 | How to Communicate with Kubernetes (API Server)

In this section, we will not create these certificates, but instead, we will be using the
certificates that were created when we bootstrapped our cluster using Minikube. All
the relevant information can be taken from our kubeconfig file, which was prepared
by Minikube when we initialized the cluster. Let's see that file:

kubectl config view

You should get the following response:

Figure 4.49: The API server IP and authentication certificates in kubeconfig

The final command should look like the following: you can see that we can explore
the API:

curl --cert ~/.minikube/client.crt --key ~/.minikube/client.key --cacert
~/.minikube/ca.crt https://192.168.99.110:8443/api

Direct Access to the Kubernetes API Using Authentication Credentials | 189

You should get the following response:

Figure 4.50: Response from API server

So, we can see that the API server is responding to our calls. You can use this method
to achieve everything that we have done in the previous section using kubectl proxy.

Method 2: Using a ServiceAccount Bearer Token

Service accounts are meant to authenticate processes running within the cluster,
such as pods, to allow internal communication with the API server. They use signed
bearer JSON Web Tokens (JWTs) to authenticate with the API server. These tokens
are stored in Kubernetes objects called Secrets, which are a type of entities used to
store sensitive information, such as the aforementioned authentication tokens. The
information stored inside a Secret is Base64-encoded.

So, each ServiceAccount has a corresponding secret associated with it. When a pod
uses a ServiceAccount to authenticate with the API server, the secret is mounted on
the pod and the bearer token is decoded and then mounted at the following location
inside a pod: /run/secrets/kubernetes.io/serviceaccount. This can then
be used by any process in the pod to authenticate with the API server. Authentication
by use of ServiceAccounts is enabled by a built-in module known as an admission
controller, which is enabled by default.

However, ServiceAccounts alone are not sufficient; once authenticated,
Kubernetes also needs to permit any actions for that ServiceAccount (which is
the authorization phase). This is managed by Role-Based Access Control (RBAC)
policies. In Kubernetes, you can define certain Roles, and then use RoleBinding to
bind those Roles to certain users or ServiceAccounts.

190 | How to Communicate with Kubernetes (API Server)

A Role defines what actions (API verbs) are allowed and which API groups and
resources can be accessed. A RoleBinding defines which user or ServiceAccount can
assume that Role. A ClusterRole is similar to a Role, except that a Role is namespace-
scoped, while a ClusterRole is a cluster-scoped policy. The same distinction is true for
RoleBinding and ClusterRoleBinding.

Note

You will learn more about secrets in Chapter 10, ConfigMaps and Secrets;
more on RBAC in Chapter 13, Runtime and Network Security in Kubernetes;
and admission controllers in Chapter 16, Kubernetes Admission Controllers.

Every namespace contains a ServiceAccount called default. We can see that by
using the following command:

kubectl get serviceaccounts --all-namespaces

You should see the following response:

Figure 4.51: Examining default ServiceAccounts for each namespace

As mentioned earlier, a ServiceAccount is associated with a secret that contains
the CA certificate of the API server and a bearer token. We can view the
ServiceAccount-associated secret in the default namespace, as follows:

kubectl get secrets

Direct Access to the Kubernetes API Using Authentication Credentials | 191

You should get the following response:

NAME TYPE DATA AGE

default-token-wtkk5 kubernetes.io/service-account-token 3 10h

We can see that we have a secret named default-token-wtkk5 (where wtkk5
is a random string) in our default namespace. We can view the content of the Secret
resource by using the following command:

kubectl get secrets default-token-wtkk5 -o yaml

This command will get the object definition as it is stored in etcd and display it in
YAML format so that it is easy to read. This will produce an output as follows:

Figure 4.52: Displaying the information stored in a secret

192 | How to Communicate with Kubernetes (API Server)

Note from the preceding secret that namespace, token, and the CA certificate
of the API server (ca.crt) are Base64-encoded. You can decode it using base64
--decode in your Linux terminal, as follows:

echo "<copied_value>" | base64 --decode

Copy and paste the value from ca.crt or token in the preceding command. This
will output the decoded value, which you can then write to a file or a variable for later
use. However, in this demonstration, we will show another method to get the values.

Let's take a peek into one of our pods:

kubectl exec -it <pod-name> -- /bin/bash

This command enters the pod and then runs a Bash shell on it. Then, once we have
the shell running inside a pod, we can explore the various mount points available in
the pod:

df -h

This will give an output similar to the following:

Figure 4.53: The mount point for the bearer token

The mount point can be explored further:

ls /var/run/secrets/kubernetes.io/serviceaccount

You should see an output similar to the following:

ca.crt namespace token

Direct Access to the Kubernetes API Using Authentication Credentials | 193

As you can see here, the mount point contains the API server CA certificate, the
namespace this secret belongs to, and the JWT bearer token. If you are trying these
commands on your terminal, you can exit the pod's shell by entering an exit.

If we try to access the API server using curl from inside the pod, we would need to
provide the CA path and the token. Let's try to list all the pods in the pod's namespace
by accessing the API server from inside a pod.

We can create a new Deployment and start a Bash terminal with the
following procedure:

kubectl run my-bash --rm --restart=Never -it --image=ubuntu -- bash

This may take a few seconds to start up, and then you will get a response similar
to this:

If you don't see a command prompt, try pressing enter.

root@my-bash: /#

This will start up a Deployment running Ubuntu and immediately take us inside the
pod and open up the Bash shell. The --rm flag in this command will delete the pod
after all the processes inside the pod are terminated—that is, after we leave the pod
using the exit command. But for now, let's install curl:

apt update && apt -y install curl

This should produce a response similar to this:

Figure 4.54: Installing curl

194 | How to Communicate with Kubernetes (API Server)

Now that we have installed curl, let's try to list the pods using curl by accessing the
API path:

curl https://kubernetes/api/v1/namespaces/$NAMESPACE/pods

You should see the following response:

Figure 4.55: Trying to access the API without TLS

Notice that the command has failed. This happened since Kubernetes forces all
communication to use TLS, which usually rejects insecure connections (without any
authentication tokens). Let's add the --insecure flag, which will allow an insecure
connection with curl, and observe the results:

curl --insecure https://kubernetes/api/v1/namespaces/$NAMESPACE/pods

You should get a response as follows:

Figure 4.56: Anonymous request to the API server

Direct Access to the Kubernetes API Using Authentication Credentials | 195

We can see that we were able to reach the server using an insecure connection.
However, the API server treated our request as anonymous since there was no
identity provided to our command.

Now, to make commands easier, we can add the namespace, CA certificate (ca.crt),
and the token to variables so that the API server knows the identity of the service
account generating the API request:

CACERT=/run/secrets/kubernetes.io/serviceaccount/ca.crt

TOKEN=$(cat /run/secrets/kubernetes.io/serviceaccount/token)

NAMESPACE=$(cat /run/secrets/kubernetes.io/serviceaccount/namespace)

Note that here we can use the values directly as they are in plaintext (not encoded)
when looking from inside a pod, compared to having to decode them from a Secret.
Now, we have all the parameters ready. When using bearer token authentication, the
client should send this token in the header of the request, which is the authorization
header. This should look like this: Authorization: Bearer <token>.
Since we have added the token into a variable, we can simply use that. Let's run
the curl command to see whether we can list the pods using the identity of the
ServiceAccount:

curl --cacert $CACERT -H "Authorization: Bearer $TOKEN" https://
kubernetes/api/v1/namespaces/$NAMESPACE/pods

You should get the following response:

Figure 4.57: Request to the API server using the default ServiceAccount

196 | How to Communicate with Kubernetes (API Server)

Notice that we were able to reach the API server, and the API server verified the
"system:serviceaccount:default:default" identity, which is represented
in this format: system:<resource_type>:<namespace>:<resource_name>
However, we still got a Forbidden error because ServiceAccounts do not have
any permissions by default. We need to manually assign permissions to our default
ServiceAccount in order to be able to list pods. This can be done by creating a
RoleBinding and linking it to the view ClusterRole.

Open another terminal window, ensuring that you don't close the terminal session
running the my-bash pod (because the pod will be deleted and you will lose your
progress if you close it). Now, in the second terminal session, you can run the
following command to create a rolebinding defaultSA-view to attach the
view ClusterRole to the ServiceAccount:

kubectl create rolebinding defaultSA-view \

 --clusterrole=view \

 --serviceaccount=default:default \

 --namespace=default

Note

The view ClusterRole should already exist for your Kubernetes cluster,
as it is one of the default ClusterRoles available for use.

As you might recall from the previous chapter, this is an imperative approach to
creating resources; you will learn how to create manifests for RBAC policies in
Chapter 13, Runtime and Network Security in Kubernetes. Note that we have to specify
the ServiceAccount as <namespace>:<ServiceAccountName>, and we have a
--namespace flag since a RoleBinding can only apply to the ServiceAccounts within
that namespace. You should get the following response:

rolebinding.rbac.authorization.k8s.io/defaultSA-view created

Now, go back to the terminal window where we accessed the my-bash pod.
With the necessary permissions set, let's try our curl command again:

curl --cacert $CACERT -H "Authorization: Bearer $TOKEN" https://
kubernetes/api/v1/namespaces/$NAMESPACE/pods

Direct Access to the Kubernetes API Using Authentication Credentials | 197

You should get the following response:

Figure 4.58: Successful response from the API server

Our ServiceAccount can now authenticate with the API server, and it is authorized to
list pods in the default namespace.

It is also valid to use ServiceAccount bearer tokens outside the cluster. You may want
to use tokens instead of certificates as an identity for long-standing jobs since the
token does not expire as long as the ServiceAccount exists, whereas a certificate has
an expiry date set by the certificate-issuing authority. An example of this is CI/CD
pipelines, where external services commonly use ServiceAccount bearer tokens
for authentication.

Activity 4.01: Creating a Deployment Using a ServiceAccount Identity

In this activity, we will bring together all that we have learned in this chapter. We will
be using various operations on our cluster and using different methods to access the
API server.

Perform the following operations using kubectl:

1. Create a new namespace called activity-example.

2. Create a new ServiceAccount called activity-sa.

198 | How to Communicate with Kubernetes (API Server)

3. Create a new RoleBinding called activity-sa-clusteradmin to attach
the activity-sa ServiceAccount to the cluster-admin ClusterRole
(which exists by default). This step is to ensure that our ServiceAccount has
the necessary permissions to interact with the API server as a cluster admin.

Perform the following operations using curl with bearer tokens for authentication:

1. Create a new NGINX Deployment with the identity of the activity-sa
ServiceAccount.

2. List the pods in your Deployment. Once you use curl to check the Deployment,
if you have successfully gone through the previous steps, you should get a
response that looks something like this:

Figure 4.59: Expected response when checking the Deployment

Summary | 199

3. Finally, delete the namespace with all associated resources. When using
curl to delete a namespace, you should see a response with phase set to
terminating for the status field of the namespace resource, as in the
following screenshot:

"status": {

 "phase": "Terminating"

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
In this chapter, we took a closer look at the Kubernetes API server, the way that
Kubernetes uses the RESTful API, and how API resources are defined. We learned that
all commands from the kubectl command-line utility are translated into RESTful HTTP
API calls and are sent to the API server. We learned that API calls go through multiple
stages, including authentication, authorization, and admission control. We also had a
closer look at each stage and some of the modules involved.

Then, we learned about some API resources, how they are categorized as
namespace-scoped or cluster-scoped resources, and their API group and API
version. We then learned how we can use this information to build an API path
for interacting with the Kubernetes API.

We also applied what we learned by making an API call directly to the API server,
using the curl HTTP client to interact with objects by using different authentication
methods, such as ServiceAccounts and an X.509 certificate.

In the next few chapters, we will inspect most of the commonly used API objects
more closely, mainly focusing on the different functionalities offered by these objects
to enable us to deploy and maintain our application in a Kubernetes cluster. We
will begin this series of chapters by taking a look at the basic unit of deployment in
Kubernetes (pods) in the next chapter.

https://packt.live/304PEoD

Overview

This chapter introduces the concept of pods and teaches how to properly
configure and deploy them. We will begin by creating a simple pod with your
application container running in it. We will explain what the different aspects
of pod configuration mean and decide which configuration to use based on
your application or use case. You will be able to define resource allocation
requirements and limits for pods. We will then move on to see how we
can debug the pod, check the logs, and make changes to it when needed.
Some more useful tools for managing faults in pods, such as liveness and
readiness probes and restart policies, are also covered in this chapter.

Pods

5

202 | Pods

Introduction
In the previous chapter, we learned how to use kubectl to interact with the
Kubernetes API. In this chapter and the upcoming chapters, we will use that
knowledge to interact with the API to create various types of Kubernetes objects.

In a Kubernetes system, many entities represent the state of the cluster and what
the cluster's workload looks like. These entities are known as Kubernetes objects.
Kubernetes objects describe various things, for example, what containers will be
running in the cluster, what resources they will be using, how those containers will
interact with each other, and how they will be exposed to the outer world.

A pod is the basic building block of Kubernetes, and it can be described as the basic
unit of deployment. Just like we define a process as a program in execution, we can
define a pod as a running process in the Kubernetes world. Pods are the smallest
unit of replication in Kubernetes. A pod can have any number of containers running
in it. A pod is basically a wrapper around containers running on a node. Using pods
instead of individual containers has a few benefits. For example, containers in a pod
have shared volumes, Linux namespaces, and cgroups. Each pod has a unique IP
address and the port space is shared by all the containers in that pod. This means
that different containers inside a pod can communicate with each other using their
corresponding ports on localhost.

Ideally, we should use multiple containers in a pod only when we want them to be
managed and located together in the Kubernetes cluster. For example, we may have
a container running our application and another container that fetches logs from the
application container and forwards them to some central storage. In this case, we
would want both of our containers to stay together, to share the same IP so that they
can communicate over localhost, and to share the same storage so that the second
container can read the logs our application container is generating.

In this chapter, we will cover what a pod is, how it works, and how to define its pod
spec, which describes the state of a pod. We will go through different phases of the
life cycle of a pod and learn how to control the pods using health checks or probes.
Let's begin by learning how a pod is configured.

Pod Configuration | 203

Pod Configuration
In order to be able to successfully configure a pod, we must first be able to read and
understand a pod configuration file. Here is an example pod configuration file:

apiVersion: v1

kind: Pod

metadata:

 name: pod-name

spec:

 containers:

 - name: container1-name

 image: container1-image

 - name: container2-name

 image: container2-image

We can break down the configuration of a pod into four main components:

• apiVersion: Version of the Kubernetes API we are going to use.

• kind: The kind of Kubernetes object we are trying to create, which is a Pod in
this case.

• metadata: Metadata or information that uniquely identifies the object
we're creating.

• spec: Specification of our pod, such as container name, image name, volumes,
and resource requests.

apiVersion, kind, and metadata apply to all types of Kubernetes objects and
are required fields. spec is also a required field; however, its layout is different for
different types of objects.

The following exercise demonstrates how to use such a pod configuration file to
create a simple pod.

204 | Pods

Exercise 5.01: Creating a Pod with a Single Container

In this exercise, we aim to create our first simple pod that runs a single container.
To complete this exercise, perform the following steps:

1. Create a file called single-container-pod.yaml with the
following contents:

apiVersion: v1

kind: Pod

metadata:

 name: first-pod

spec:

 containers:

 - name: my-first-container

 image: nginx

2. Run the following command in Terminal to create a pod with the
preceding configuration:

kubectl create -f single-container-pod.yaml

You should see the following response:

pod/first-pod created

The output indicates that the pod has been created.

3. Verify that the pod was created by getting the list of all the pods using
this command:

kubectl get pods

You should see the following response:

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 5m44s

4. Now that we have created our first pod, let's look into it in more detail. To do
that, we can describe the pod we just created using the following command
in Terminal:

kubectl describe pod first-pod

Pod Configuration | 205

You should see the following output:

Figure 5.1: Describing first-pod

The output shows various details about the pod we just created. In the following
sections, we shall go through the highlighted sections of the preceding output to find
out more about the pod that's running.

206 | Pods

Name

This field states the name of the pod, and it is also sometimes referred to as the pod
ID. Pod names are unique in a particular namespace. A pod name can be a maximum
of 253 characters long. The characters allowed in a pod name are numerals (0-9),
lowercase letters (a-z), hyphens (-), and dots (.).

Consider the second line in the output shown in Figure 5.1:

Name: first-pod

It is the same as the one we mentioned in our YAML configuration.

Namespace

Kubernetes supports namespaces to create multiple virtual clusters within the same
physical cluster. We may need to use namespaces if we want to provide separate
environments to our different teams working on the same cluster. Namespaces also
help in scoping the object names. For example, you cannot have two pods with the
same name within the same namespace. However, it's possible to have two pods with
the same name in two different namespaces. Now, consider the second line in the
output shown in Figure 5.1:

Namespace: default

We can either temporarily change the namespace of the request by passing the
--namespace argument for a particular kubectl command, or we can update the
kubectl config to change the namespace for all subsequent kubectl commands. To
create a new namespace, we can use the following command:

kubectl create namespaces <namespace-name>

There are two ways to create pods in different namespaces – by using a CLI
command, or by specifying the namespace in the pod configuration. The following
exercises demonstrate how you can create pods in different namespaces to reap the
benefits of namespaces that were mentioned earlier.

Pod Configuration | 207

Exercise 5.02: Creating a Pod in a Different Namespace by Specifying the

Namespace in the CLI

In this exercise, we will create a pod in a namespace other than default. We will do
that using the same pod configuration from Exercise 5.01, Creating a Pod with a Single
Container, by specifying the namespace in the command argument. Follow these
steps to complete the exercise:

1. Run the following command to view all the available namespaces in our
Kubernetes cluster:

kubectl get namespaces

You should see the following list of namespaces:

NAME STATUS AGE

default Active 16d

kube-node-lease Active 16d

kube-public Active 16d

kube-system Active 16d

The output shows all the namespaces in our Kubernetes cluster. The default
namespace is, as the word implies, the default namespace for all Kubernetes
objects created without any namespace.

2. Run the following command to create the pod with the single-container-
pod.yaml pod configuration but in a different namespace:

kubectl --namespace kube-public create -f single-container-pod.yaml

You should see the following response:

pod/first-pod created

Note

If you create a pod in a particular namespace, you can only view it by
switching to that namespace.

208 | Pods

3. Verify that the pod was created in the kube-public namespace:

kubectl --namespace kube-public get pods

You should see the following response:

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 8s

The output here shows that we have successfully created the pod in the
kube-public namespace.

The next exercise demonstrates how to create a pod in different namespace based
on a YAML file.

Exercise 5.03: Creating a Pod in a Different Namespace by Specifying the

Namespace in the Pod Configuration YAML file

In this exercise, we shall add a line to the YAML configuration file to specify that all
pods created using this file use a specified namespace.

1. Run the following command to view all the available namespaces in our
Kubernetes cluster:

kubectl get namespaces

You should see the following list of namespaces:

NAME STATUS AGE

default Active 16d

kube-node-lease Active 16d

kube-public Active 16d

kube-system Active 16d

2. Next, create a file named single-container-pod-with-namespace.
yaml with the following configuration:

apiVersion: v1

kind: Pod

metadata:

 name: first-pod-with-namespace

 namespace: kube-public

spec:

Pod Configuration | 209

 containers:

 - name: my-first-container

 image: nginx

3. Run the following command to create a pod with the single-container-
pod-with-namespace.yaml pod configuration:

kubectl create -f single-container-pod-with-namespace.yaml

You should see the following response:

pod/first-pod-with-namespace created

4. Verify that the pod was created in the kube-public namespace:

kubectl --namespace kube-public get pods

You should see the following list of pods:

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 5m2s

first-pod-with-namespace 1/1 Running 0 46s

The output shows that the new pod we created occupies the kube-public
namespace. Any other pods created using the single-container-pod-
with-namespace.yaml pod configuration will occupy the same namespace.

In the following exercise, we shall change the default kubectl namespace so that
all pods without a defined namespace take our newly defined namespace instead
of default.

Exercise 5.04: Changing the Namespace for All Subsequent kubectl Commands

In this exercise, we will change the namespace for all subsequent kubectl commands
from default to kube-public.

1. Run the following command to view all the available namespaces in our
Kubernetes cluster:

kubectl get namespaces

You should see the following list of namespaces:

NAME STATUS AGE

default Active 16d

kube-node-lease Active 16d

kube-public Active 16d

kube-system Active 16d

210 | Pods

2. Run the following command to change the namespace for all subsequent
requests by modifying the current context:

kubectl config set-context $(kubectl config current-context)
--namespace kube-public

You should see the following response:

Context "minikube" modified.

3. Run the following command to list all the pods in the kube-public namespace
without using the namespace argument:

kubectl get pods

You should see the following list of pods:

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 48m

first-pod-with-namespace 1/1 Running 0 44m

The output shows that the preceding command lists all the pods that we have
created in the kube-public namespace. We saw in Exercise 5.01, Creating a Pod
with a Single Container, that the kubectl get pods command shows pods
in the default namespace. But here, we get results from the kube-public
namespace instead.

4. In this step, we will undo the changes so that it doesn't affect the upcoming
exercises in this chapter. We will change the default namespace to default
again to avoid any confusion:

kubectl config set-context $(kubectl config current-context)
--namespace default

You should see the following response:

Context "minikube" modified.

In this exercise, we have seen how to change and reset the default namespace of
the context.

Pod Configuration | 211

Node

As you have learned in earlier chapters, nodes are the various machines running in
our cluster. This field reflects the node in the Kubernetes cluster where this pod was
running. Knowing what node a pod is running on can help us with debugging issues
with that pod. Observe the sixth line of the output shown in Figure 5.1:

Node: minikube/10.0.2.15

We can list all the nodes in our Kubernetes cluster by running the
following command:

kubectl get nodes

You should see the following response:

NAME STATUS ROLES AGE VERSION

minikube Ready <none> 16d v1.14.3

In this case, there's only one node in our cluster because we are using Minikube for
these exercises:

apiVersion: v1

kind: Pod

metadata:

 name: firstpod

spec:

 nodeName: my-favorite-node # run this pod on a specific node

 containers:

 - name: my-first-pod

 image: nginx

If we have more than one node in our cluster, we can configure our pod to run on a
particular node by adding the following nodeName field to the configuration, as seen
in the sixth line in the previous spec.

Note

In a production environment, nodeName is typically not used for assigning
a certain pod to run on the desired node. In the next chapter, we will learn
about nodeSelector, which is a better way to control which node the
pod gets assigned to.

212 | Pods

Status

This field tells us the status of the pod so that we can take appropriate action, such
as starting or stopping a pod as required. While this demonstration shows one of
the ways to get the status of the pod, in actual practice, you would want to automate
actions based on the pod status. Consider the tenth line of the output shown in
Figure 5.1:

Status: Running

This states that the current status of the pod is Running. This field reflects which
phase of its life cycle a pod is in. We will talk about various phases of a pod's life cycle
in the next section of this chapter.

Containers

Earlier in this chapter, we saw that we can bundle various containers inside a pod.
This field lists all the containers that we have created in this pod. Consider the output
field from line 12 onwards in Figure 5.1:

Figure 5.2: Containers field from the describe command

We have only one in this case. We can see that the name and the image of the
container are the same as we specified in the YAML configuration. The following is a
list of the other fields that we can set:

• Image: Name of the Docker image

• Args: The arguments to the entry point for the container

• Command: The command to run on the container once it starts

• Ports: A list of ports to expose from the container

Pod Configuration | 213

• Env: A list of environment variables to be set in the container

• resources: The resource requirements of the container

In the following exercise, we shall create a container using a simple command.

Exercise 5.05: Using CLI Commands to Create a Pod Running a Container

In this exercise, we will create a pod that will run a container by running a command.

1. First, let's create a file named pod-with-container-command.yaml with
the following pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: command-pod

spec:

 containers:

 - name: container-with-command

 image: ubuntu

 command:

 - /bin/bash

 - -ec

 - while :; do echo '.'; sleep 5; done

2. Run the following command to create the pod using the configuration defined in
the pod-with-container-command.yaml file:

kubectl create -f pod-with-container-command.yaml

You should see the following response:

pod/command-pod created

The YAML file we created in the previous step instructs the pod to start a
container with an Ubuntu image and run the following command:

/bin/bash -ec "while :; do echo '.'; sleep 5; done"

This command should print a dot (.) character on a new line every 5 seconds.

3. Let's check the logs of this pod to verify that it's doing what it's expected to do.
To check the logs of a pod, we can use the kubectl logs command:

kubectl logs command-pod -f

214 | Pods

You should see the following response:

Figure 5.3: Following logs for command-pod

In the log, which keeps updating periodically, we see a dot (.) character
printed on a new line every 5 seconds. Thus, we have successfully created the
desired container.

Note

The -f flag is to follow the logs on the container. That is, the log keeps
updating in real-time. If we skip that flag, we will see the logs without
following them.

In the next exercise, we shall run a container that opens up a port, which is something
that you would have to do regularly to make the container accessible to the rest of
your cluster or the internet.

Pod Configuration | 215

Exercise 5.06: Creating a Pod Running a Container That Exposes a Port

In this exercise, we will create a pod that runs a container that will expose a port that
we can access from outside the pod.

1. First, let's create a file named pod-with-exposed-port.yaml with the
following pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: port-exposed-pod

spec:

 containers:

 - name: container-with-exposed-port

 image: nginx

 ports:

 - containerPort: 80

2. Run the following command to create the pod using the pod-with-exposed-
port.yaml file:

kubectl create -f pod-with-exposed-port.yaml

You should see the following response:

pod/port-exposed-pod created

This pod should create a container and expose its port 80. We have configured
the pod to run a container with an nginx image, which is a popular web server.

3. Next, we will forward port 80 from the pod to localhost:

sudo kubectl port-forward pod/port-exposed-pod 80

You should see the following response:

Forwarding from 127.0.0.1:80 -> 80

Forwarding from [::1] -> 80

216 | Pods

This will expose port 80 from the pod to localhost port 80.

Note

We will need to keep this command running in one terminal.

4. Now, we can simply enter either http://localhost or
http://127.0.0.1 in the address bar of the browser.

5. Alternatively, we can run the following command and see the HTML source code
of the default index page in the response:

curl 127.0.0.1

You should see the following output:

Figure 5.4: Getting the HTML source using curl

Pod Configuration | 217

6. Next, let's verify that the pod is actually receiving the request by checking the
logs using the kubectl logs command:

kubectl logs port-exposed-pod

You should see the following response:

Figure 5.5: Checking the logs for the nginx pod

The log shows that our container that is running an nginx image is receiving
our HTTP request to localhost and responding as expected.

We can also define the minimum and maximum resource allocation for our
containers. This is useful for managing the resources used by our deployments.
This can be achieved using the following two fields in the YAML configuration file:

• limits: Describes the maximum amount of resources allowed for
this container.

• requests: Describes the minimum amount of resources required for
this container.

We can use these fields to define the minimum and maximum memory and CPU
resources for our containers. The CPU resource is measured in CPU units. 1 CPU
unit means that the container has access to 1 logical CPU core.

In the next exercise, we shall create a container with defined resource requirements.

218 | Pods

Exercise 5.07: Creating a Pod Running a Container with Resource Requirements

In this exercise, we will create a pod with a container that has resource requirements.
First of all, let's see how we can configure the container's resource requirements:

1. Create a file named pod-with-resource-requirements.yaml with a pod
configuration that specifies both limits and requests for memory and CPU
resources, as shown here:

apiVersion: v1

kind: Pod

metadata:

 name: resource-requirements-pod

spec:

 containers:

 - name: container-with-resource-requirements

 image: nginx

 resources:

 limits:

 memory: "128M"

 cpu: "1"

 requests:

 memory: "64M"

 cpu: "0.5"

In this YAML file, we define the minimum memory requirement for the container
to be 64 MB and the maximum memory that the container can occupy to be
128 MB. If the container tries to allocate more than 128 MB of memory, it will be
killed with a status of OOMKilled.

The minimum CPU requirement for CPU is 0.5 (which can also be understood as
500 milli-CPUs and can be written as 500m instead of 0.5) and the container will
only be allowed to use a maximum of 1 CPU unit.

2. Next, we will create the pod that uses this YAML configuration with the kubectl
create command:

kubectl create -f pod-with-resource-requirements.yaml

You should see the following response:

pod/resource-requirements-pod created

Pod Configuration | 219

3. Next, let's make sure the pod is created with the correct resource requirements.
Check the pod definitions using the describe command:

kubectl describe pod resource-requirements-pod

You should see the following output:

Figure 5.6: Describing resource-requirements-pod

The highlighted fields in the output show that the pod has been assigned the
limits and requests sections that we stated in the YAML file.

220 | Pods

What happens if we define unrealistic resource requirements for our pod? Let's
explore that in the following exercise.

Exercise 5.08: Creating a Pod with Resource Requests That Can't Be Met by Any

of the Nodes

In this exercise, we will create a pod with large resource requests that are too big for
the nodes in the cluster and see what happens.

1. Create a file named pod-with-huge-resource-requirements.yaml
with the following pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: huge-resource-requirements-pod

spec:

 containers:

 - name: container-with-huge-resource-requirements

 image: nginx

 resources:

 limits:

 memory: "128G"

 cpu: "1000"

 requests:

 memory: "64G"

 cpu: "500"

In this YAML file, we define the minimum requirement to be 64 GB of memory
and 500 CPU cores. It is unlikely that the machine that you are running this
exercise on would meet those requirements.

Pod Configuration | 221

2. Next, we will create the pod that uses this YAML configuration with the kubectl
create command:

kubectl create -f pod-with-huge-resource-requirements.yaml

You should see the following response:

pod/huge-resource-requirements-pod created

3. Now, let's see what's going on with our pod. Get its status using the kubectl
get command:

kubectl get pod huge-resource-requirements-pod

You should see the following response:

Figure 5.7: Getting the status of huge-resource-requirements-pod

We see that the pod has been in the Pending state for almost a minute.
That's unusual!

4. Let's dig deeper and describe the pod using the following command:

kubectl describe pod huge-resource-requirements-pod

222 | Pods

You should see the following output:

Figure 5.8: Describing huge-resource-requirements-pod

Let's focus on the last line of the output. We can clearly see that there's
a warning stating that the Kubernetes controller couldn't find any nodes
that satisfy the CPU and memory requirements of the pod. Hence, the pod
scheduling has failed.

To summarize, pod scheduling works on the basis of resource requirements. A pod
will only be scheduled on a node that satisfies all its resource requirements. If we do
not specify a resource (memory or CPU) limit, there's no upper bound on the number
of resources a pod can use.

Pod Configuration | 223

This poses the risk of one bad pod consuming too much CPU or allocating too much
memory that impacts the other pods running in the same namespace/cluster. Hence,
it's a good idea to add resource requests and limits to the pod configuration in a
production environment.

As mentioned earlier in the chapter, a pod can run more than one container. In the
following exercise, we will create a pod with more than one container.

Exercise 5.09: Creating a Pod with Multiple Containers Running inside It

In this exercise, we will create a pod with multiple containers. For that, we can use the
configuration that we used in the previous section, with the only difference being that
the containers field will now contain more than one container spec. Follow these
steps to complete the exercise:

1. Create a file named multiple-container-pod.yaml with the following
pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: multi-container-pod

spec:

 containers:

 - name: first-container

 image: nginx

 - name: second-container

 image: ubuntu

 command:

 - /bin/bash

 - -ec

 - while :; do echo '.'; sleep 5; done

2. Next, we will create a pod that uses the preceding YAML configuration with the
kubectl create command:

kubectl create -f multiple-container-pod.yaml

You should see the following response:

pod/multi-container-pod created

224 | Pods

3. Next, we will describe the pod and see what containers it is running:

kubectl describe pod multi-container-pod

You should see the following output:

Figure 5.9: Describing multi-container-pod

Pod Configuration | 225

As can be seen from the preceding output, we have two containers running
in a single pod. Now, we need to make sure we can access the logs from
either container.

We can specify the container name to get the logs for a particular container
running in a pod, as shown here:

kubectl logs <pod-name> <container-name>

For example, to see the logs for a second container that is printing out dots on a
new line every 5 seconds, use this command:

kubectl logs multi-container-pod second-container -f

You should see the following response:

Figure 5.10: The logs for second-container inside multi-container-pod

The output we see here is similar to Exercise 5.05, Using CLI Commands to Create
a Pod Running a Container, as we have essentially used a similar container as we
defined there.

Thus, we have created a pod with multiple containers and accessed the logs of the
desired container.

226 | Pods

Life Cycle of a Pod
Now that we know how to run a pod and how to configure it for our use cases, in
this section, we will talk about the life cycle of a pod to understand how it works in
more detail.

Phases of a Pod

Every pod has a pod status that tells us what stage of its life cycle a pod is in. We can
see the pod status by running the kubectl get command:

kubectl get pod

You will see the following response:

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 5m44s

For our first pod, named first-pod, we see that the pod is in the Running state.

Let's see what the different states that a pod can have in its life cycle are:

• Pending: This means that the pod has been submitted to the cluster, but the
controller hasn't created all its containers yet. It may be downloading images or
waiting for the pod to be scheduled on one of the cluster nodes.

• Running: This state means that the pod has been assigned to one of the cluster
nodes and at least one of the containers is either running or is in the process of
starting up.

• Succeeded: This state means that the pod has run, and all of its containers
have been terminated with success.

• Failed: This state means the pod has run and at least one of the containers
has terminated with a non-zero exit code, that is, it has failed to execute
its commands.

• Unknown: This means that the state of the pod could not be found. This may be
because of the inability of the controller to connect with the node that the pod
was assigned to.

Note

The get pod command cannot get evicted or deleted pods. To do that,
you can use the --show-all flag, but it has been deprecated since
Kubernetes v1.15.

Probes/Health Checks | 227

Probes/Health Checks
A probe is a health check that can be configured to check the health of the containers
running in a pod. A probe can be used to determine whether a container is running or
ready to receive requests. A probe may return the following results:

• Success: The container passed the health check.

• Failure: The container failed the health check.

• Unknown: The health check failed for unknown reasons.

Types of Probes

The following types of probes are available for us to use.

Liveness Probe

This is a health check that's used to determine whether a particular container is
running or not. If a container fails the liveness probe, the controller will try to restart
the pod on the same node according to the restart policy configured for the pod.

It's a good idea to specify a liveness probe when we want the container to be
terminated and restarted when a particular check fails.

Readiness Probe

This is a health check that's used to determine whether a particular container is ready
to receive requests or not. How we define the readiness of a container depends
largely on the application running inside the container.

For example, for a container serving a web application, readiness may mean that the
container has loaded all static assets, established a connection with the database,
started the webserver, and opened a specific port on the host to start serving
requests. On the other hand, for a container serving some data, the readiness probe
should succeed only when it has loaded all the data from disk and is ready to start
serving the requests for that data.

If a container fails its readiness probe, the Kubernetes controller will ensure that
the pod doesn't receive any requests. If a container specifies a readiness probe, its
default state will be Failure until the readiness probe succeeds. The container will
start receiving requests only after the readiness probe returns with the Success
state. If no readiness probe is configured, the container will start receiving requests
as soon as it starts.

228 | Pods

Configuration of Probes

There are a bunch of generic fields we can use to configure the probes:

Figure 5.11: Table showing configuration fields for probes

Implementation of Probes

Probes (liveness or readiness) can be implemented by passing a command to the
container, getting it to fetch some resources, or trying to connect to it, as we shall
see in this section. We can use different implementations for liveness and readiness
probes within the same container.

Command Probe

In the command implementation of a probe, the controller will get the container to
execute the specified command in order to perform the probe on the container. For
this implementation, we use the command field. This field specifies the command to
execute in order to perform the probe on the container. It can either be a string or
an array.

Probes/Health Checks | 229

The following example shows how liveness and readiness probe configuration can be
used in the container spec:

livenessProbe:

 exec:

 command:

 - cat

 - /tmp/health

 initialDelaySeconds:

 periodSeconds: 15

 failureThreshold: 3

readinessProbe:

 exec:

 command:

 - cat

 - /tmp/health

 initialDelaySeconds:

 periodSeconds: 15

HTTP Request Probe

In this type of probe, the controller will send a GET HTTP request to the given address
(host and port) to perform the probe on the container. It's possible to set the custom
HTTP headers to be sent in the probe request.

We can set the following fields to configure an HTTP request probe:

• host: Hostname to which the request will be made. It defaults to the pod
IP address.

• path: Path to make the request to.

• port: Name or number of the port to make the request to.

• httpHeaders: Custom headers to be set in the request.

• scheme: Scheme to use while making the request. The default value is HTTP.

230 | Pods

Here's an example of an HTTP request probe for liveness and readiness:

livenessProbe:

 httpGet:

 path: /health-check

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 20

readinessProbe:

 httpGet:

 path: /health-check

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

TCP Socket Probe

In this implementation of a probe, the controller will try to establish a connection on
the given host and the specified port number. We can use the following two fields for
this probe:

• host: Hostname to which the connection will be established. It defaults to the
pod IP address.

• port: Name or number of the port to connect to.

Here's an example of a TCP socket probe:

livenessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 20

readinessProbe:

 tcpSocket:

 port:8080

 initialDelaySeconds: 5

 periodSeconds: 10

Probes/Health Checks | 231

Restart Policy

We can specify restartPolicy in the pod specification to instruct the
controller about the conditions required to restart the pod. The default value
of restartPolicy is Always. It can take the following values:

• Always: Always restart the pod when it terminates.

• OnFailure: Restart the pod only when it terminates with failure.

• Never: Never restart the pod after it terminates.

If we want the pod to crash and restart when it has some issues or becomes
unhealthy, we should set the restart policy to either Always or OnFailure.

In the following exercise, we shall create a liveness probe with the command
implementation.

Exercise 5.10: Creating a Pod Running a Container with a Liveness Probe and No

Restart Policy

In this exercise, we will create a pod with a liveness probe and no restart policy.
Not specifying a restart policy for a pod means that the default policy of Always
will be used.

1. Create liveness-probe.yaml with the following pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: liveness-probe

spec:

 containers:

 - name: ubuntu-container

 image: ubuntu

 command:

 - /bin/bash

 - -ec

 - touch /tmp/live; sleep 30; rm /tmp/live; sleep 600

 livenessProbe:

 exec:

232 | Pods

 command:

 - cat

 - /tmp/live

 initialDelaySeconds: 5

 periodSeconds: 5

This pod configuration means that there will be a container created from an
Ubuntu image and the following command will be run once it starts:

/bin/bash -ec "touch /tmp/live; sleep 30; rm /tmp/live; sleep 600"

The preceding command creates an empty file at path /tmp/live, sleeps for
30 seconds, deletes the /tmp/live file, and then sleeps for 10 minutes before
terminating with success.

Next, we have a liveness probe that executes the following command every 5
seconds with an initial delay of 5 seconds:

cat /tmp/live

2. Run the following command to create the pod using liveness-probe.yaml:

kubectl create -f liveness-probe.yaml

3. When the container starts, the liveness probe will succeed because the
command will execute successfully. Now, let's wait for at least 30 seconds
and run the describe command:

kubectl describe pod liveness-probe

Probes/Health Checks | 233

You should see the following output:

Figure 5.12: Describing liveness-probe: first failure

In the last line, which is highlighted, we can see that the liveness probe has failed
for the first time.

234 | Pods

4. Let's wait for a few more seconds until the probe has failed three times and run
the same command again:

kubectl describe pod liveness-probe

You should see the following output:

Figure 5.13: Describing liveness-probe: after three failures

The last two highlighted lines in the output tell us that the liveness probe has
failed three times. And now, the pod will be killed and restarted.

5. Next, we will verify that the pod has been restarted at least once using the
following command:

kubectl get pod liveness-probe

Probes/Health Checks | 235

You should see the following response:

NAME READY STATUS RESTARTS AGE

liveness-probe 1/1 Running 1 89s

This output shows that the pod has been restarted upon failing the liveness probe.

Let's now take a look at what happens if we set the restart policy to Never.

Exercise 5.11: Creating a Pod Running a Container with a Liveness Probe and a

Restart Policy

In this exercise, we will use the same pod configuration from the last exercise, the
only difference being that the restartPolicy field will be set to Never. Follow
these steps to complete the activity:

1. Create liveness-probe-with-restart-policy.yaml with the following
pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: liveness-probe-never-restart

spec:

 restartPolicy: Never

 containers:

 - name: ubuntu-container

 image: ubuntu

 command:

 - /bin/bash

 - -ec

 - touch /tmp/ready; sleep 30; rm /tmp/ready; sleep 600

 livenessProbe:

 exec:

 command:

 - cat

 - /tmp/ready

 initialDelaySeconds: 5

 periodSeconds: 5

236 | Pods

2. Run the following command to create the pod using liveness-probe.yaml:

kubectl create -f liveness-probe-with-restart-policy.yaml

You should see the following response:

pod/liveness-probe-never-restart created

3. Let's wait for around one minute and run the describe command:

kubectl describe pod liveness-probe-never-restart

You should see the following output:

Figure 5.14: Describing liveness-probe-never-restart

Probes/Health Checks | 237

As we can see, in the last two highlighted lines, the controller will only kill the
container and will never attempt to restart it, respecting the restart policy
specified in the pod specification.

In the following exercise, we shall take a look at the implementation of a
readiness probe.

Exercise 5.12: Creating a Pod Running a Container with a Readiness Probe

In this exercise, we will create a pod with a container that has a readiness probe.

1. Create a file named readiness-probe.yaml with the following
pod configuration:

apiVersion: v1

kind: Pod

metadata:

 name: readiness-probe

spec:

 containers:

 - name: ubuntu-container

 image: ubuntu

 command:

 - /bin/bash

 - -ec

 - sleep 30; touch /tmp/ready; sleep 600

 readinessProbe:

 exec:

 command:

 - cat

 - /tmp/ready

 initialDelaySeconds: 10

 periodSeconds: 5

The preceding pod configuration specifies that there will be a container created
from an Ubuntu image and the following command will be run once it starts:

/bin/bash -ec "sleep 30; touch /tmp/ready; sleep 600"

238 | Pods

The preceding command sleeps for 30 seconds, creates an empty file at
/tmp/ready, and then sleeps for 10 minutes before terminating with success.

Next, we have a readiness probe that executes the following command every
5 seconds with an initial delay of 10 seconds:

cat /tmp/ready

2. Run the following command to create the pod using
readiness-probe.yaml:

kubectl create -f readiness-probe.yaml

You should see the following response:

pod/readiness-probe created

When the container starts, the default value of the readiness probe will be
Failure. It will wait for 10 seconds before executing the probe for the
first time.

3. Let's check the state of the pod:

kubectl get pod readiness-probe

You should see the following response:

NAME READY STATUS RESTARTS AGE

readiness-probe 0/1 Running 0 8s

We can see that the pod is not ready yet.

4. Now, let's try to find more information about this pod using the describe
command. If we wait for more than 10 seconds after the container starts,
we will see that the readiness probe starts failing:

kubectl describe pod readiness-probe

Probes/Health Checks | 239

You should see the following output:

Figure 5.15: Describing readiness-probe

That output tells us that the readiness probe has failed once already. If we
wait for a while and run that command again, we will see that the readiness
probe keeps failing until 30 seconds have elapsed since the starting time of the
container. After that, the readiness probe will start succeeding since a file will be
created at /tmp/ready.

240 | Pods

5. Let's check the state of the pod again:

kubectl get pod readiness-probe

You should see the following response:

NAME READY STATUS RESTARTS AGE

readiness-probe 1/1 Running 0 66s

We can see that the probe has succeeded, and the pod is now in the Ready state.

Best Practices While Using Probes

An incorrect use of probes will not help you achieve the intended purpose or may
even break a pod. Follow these practices to make proper use of probes:

• For liveness probes, initialDelaySeconds should be significantly larger
than the time it takes for the application to start up. Otherwise, the container is
likely to get stuck in a restart loop where it keeps failing the liveness probe and
hence keeps on getting restarted by the controller.

• For readiness probes, initialDelaySeconds could be small because we
want to enable the traffic to the pod as soon as the container is ready, and
polling the container more frequently while it's starting up doesn't cause any
harm in most cases.

• For readiness probes, we should be careful with setting failureThreshold
to make sure our readiness probe doesn't give up prematurely in case of
temporary outages or issues with the system.

Activity 5.01: Deploying an Application in a Pod

Imagine you are working with a team of developers who have built an awesome
application that they want you to deploy in a pod. The application has a process that
starts up and takes approximately 20 seconds to load all the required assets. Once
the application starts up, it's ready to start receiving requests. If, for some reason, the
application crashes, you would want the pod to restart itself as well. They have given
you the task of creating the pod using a configuration that will satisfy these needs for
the application developers in the best way possible.

We have provided a pre-made application image to emulate the behavior of the
application mentioned above. You can get it by using this line in your pod spec:

image: packtworkshops/the-kubernetes-workshop:custom-application-for-
 pods-chapter

Summary | 241

Note

Ideally, you would want to create this pod in a different namespace to keep
it separate from the rest of the stuff that you created during the exercises.
So, feel free to create a namespace and create the pod in that namespace.

Here are the high-level steps to complete this activity:

1. Create a new namespace for your pod.

2. Create a pod configuration that's suitable for the application requirements.
Ensure that you use an appropriate namespace, restart policy, readiness and
liveness probes, and container image given by application developers.

3. Create a pod using the configuration you've just created.

4. Make sure the pod is running as per the requirements.

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
In this chapter, we have explored various components of pod configuration and
learned when to use what. We should now be able to create a pod and choose
the right values of various fields in the pod configuration according to the needs
of your application. This ability puts us in a position where we can use our strong
understanding of this essential, basic building block and extend it to develop a
full-fledged application that's deployed reliably.

In the next chapter, we will discuss how we can add labels and arbitrary metadata to
pods and use them to identify or search for pods. That will help us to organize our
pods as well as choose a subset of them when required.

https://packt.live/304PEoD

Overview

Metadata is extremely useful for any organization and has its use in
managing potentially thousands of resources in a cluster. This chapter
teaches you how to add metadata to your pods or any other Kubernetes
objects. You will be introduced to the concept of labels and annotations.
We will also explain their use cases so that you can decide whether to
use labels or annotations for a particular use case. You'll utilize labels to
organize your objects by using label selectors to select or filter organized
sets of objects. You'll also use annotations to add unstructured metadata
information to objects.

Labels and Annotations

6

244 | Labels and Annotations

Introduction
In the previous chapter, we created various kinds of pods and managed their life
cycles. Once we start working with different pods, ideally, we would want to organize,
group, and filter them based on certain properties. To do that, we need to add some
information to our pods so that we can later use that information to organize them.
We have already seen the use of the name and namespace fields as metadata for
the pods. In addition to those fields, we can also add key-value pairs to the pods in
order to add extra information as labels and annotations.

In this chapter, we will assign metadata to these pods in order to identify the pods
through queries based on some metadata and then add additional unstructured
metadata. We will cover labels and annotations in detail and examine the differences
between them. We will use both labels and annotations and see when to use one or
the other.

Labels
Labels are the metadata that contain identifiable information pertaining to the
Kubernetes objects. These are basically key-value pairs that can be attached
to objects such as pods. Each key must be unique for an object. Labels contain
information that is meaningful to users. Labels can be attached to pods at the time
of creation and can also be added or modified during their runtime too. Here is an
example of how labels in a YAML file would appear:

metadata:

 labels:

 key1: value1

 key2: value2

Constraints for Labels

As noted earlier, labels are key-value pairs. There are certain rules that label keys
and values should follow. These constraints exist because this way, the queries using
labels can be evaluated faster by using optimized data structures and algorithms
internally. Kubernetes internally maintains the mappings of labels to corresponding
objects using optimized data structures to make these queries faster.

Labels | 245

Label Keys

Here's an example of what a label key looks like:

label_prefix.com/worker-node-1

As we can see, the label key consists of two parts: the label prefix and the label name.
Let's take a closer look at these two parts:

• Label prefix: The label prefix is optional and must be a DNS subdomain.
It cannot be longer than 253 characters and cannot contain spaces. The
label prefix is always followed by a forward slash (/). If no prefix is used, the
label key is assumed to be private to the user. Some of the prefixes, such
as kubernetes.io/ and k8s.io/, are reserved for use solely by the
Kubernetes core systems.

In our example, label_prefix.com/ is the prefix for that label key.

• Label name: The label name is required and can be up to 63 characters long.
The label name can only start and end with alphanumeric characters (a – z,
A – Z, 0 – 9); however, it can contain dashes (-), underscores (_), dots (.), and
alphanumeric characters in between. A label name cannot have spaces or
line breaks.

In the example of label_prefix.com/worker-node-1, the name for the
label key is worker-node-1.

Label Values

Label values can be up to 63 characters long. Similar to label names, label values
should also start and end with alphanumeric characters. However, they can contain
dashes (-), underscores (_), dots (.), and alphanumeric characters in between. A label
value cannot have spaces or line breaks.

Why Do We Need Labels?

Labels are generally used for organizing a subset of objects. These objects can then
be filtered on the basis of these labels. With labels, you can also run your specific
pods on selected nodes. Both of these scenarios are explained in detail in the
following section.

246 | Labels and Annotations

Organizing Pods by Organization/Team/Project

One of the use cases for labels could be using labels based on teams or organizations
in your company. Let's say that your organization has several teams working on
different projects. You can enable different teams to list only their pods and even
those specific to certain projects. Expanding on this, if you are an infrastructure
service provider, you can use an organization label to apply changes only to the pods
associated with a particular client organization. For such use cases, you can use label
keys such as team, org, and project. The following is an example labels section
for such a use case:

metadata:

 labels:

 environment: production

 team: devops-infra

 project: test-k8s-infra

Running Selective Pods on Specific Nodes

Another useful scenario can be when you want your pod to be assigned to a certain
node with specific hardware or other properties. This can be achieved by adding
labels to the nodes that have special hardware or other properties. We can use
nodeSelector to assign the pod to any node that has a particular label.
Consider the following example:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-node-selector

spec:

 containers:

 - name: first-container

 image: nginx

 nodeSelector:

 region: east-us

 disktype: ssd

Labels | 247

The preceding pod template can be used to make sure the pod will be assigned to a
node that is in the east-us region and has ssd storage. This check is based on the
labels added to the nodes. So, we need to ensure that the appropriate region and
disktype labels are assigned to all nodes where applicable.

Note

Please note that the exact node labels to be used in the nodeSelector
section will be provided by the cloud infrastructure provider and that the
label keys and values may change. The values used in this example are just
to demonstrate the use case.

In the upcoming exercises, we will show you how you can create pods with labels, add
labels to a running pod, and modify and/or delete existing labels for a running pod.

Exercise 6.01: Creating a Pod with Labels

In this exercise, we aim to create a pod with some labels. In order to complete this
exercise successfully, perform the following steps:

1. Create a file called pod-with-labels.yaml with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-labels

 labels:

 app: nginx

 foo: bar

spec:

 containers:

 - name: first-container

 image: nginx

248 | Labels and Annotations

As can be seen in the preceding snippet, we have added the app and foo labels
and assigned them the values of nginx and bar, respectively. Now, we need to
create a pod with these labels and verify whether the labels have actually been
included in the pod, which will be the focus of the next few steps.

2. Run the following command in the Terminal to create the pod with the
preceding configuration:

kubectl create -f pod-with-labels.yaml

You should see the following response:

pod/pod-with-labels created

3. Verify that the pod was created by using the kubectl get command:

kubectl get pod pod-with-labels

The following output indicates that the pod has been created:

NAME READY STATUS RESTARTS AGE

pod-with-labels 1/1 Running 0 4m4s

4. Verify that the labels metadata was actually added to the pod using the
kubectl describe command:

kubectl describe pod pod-with-labels

Labels | 249

This should lead to the following output:

Figure 6.1: Describing pod-with-labels

250 | Labels and Annotations

The output shows various details relating to the pod (as we have seen in the
previous chapter as well). In this case, we will focus on the highlighted section
of the output, which shows that the desired labels, app=nginx, and foo=bar,
were actually added to the pod. Note that, in this exercise, we added labels
while creating the pod. However, how can you add labels to a pod when a pod is
already running? The next exercise will answer this question.

Exercise 6.02: Adding Labels to a Running Pod

In this exercise, we aim to create a pod without labels and then add labels once
the pod is running. In order to complete this exercise successfully, perform the
following steps:

1. Create a file called pod-without-initial-labels.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-without-initial-labels

spec:

 containers:

 - name: first-container

 image: nginx

Note that we have not yet added any labels to our pod.

2. Run the following command in the Terminal to create the pod with the
configuration mentioned in the previous step:

kubectl create -f pod-without-initial-labels.yaml

You should see the following response:

pod/pod-without-initial-labels created

3. Verify that the pod was created by using the kubectl get command:

kubectl get pod pod-without-initial-labels

The following output indicates that the pod has been created:

Figure 6.2: Checking the status of pod-without-initial-labels

Labels | 251

4. Check if the labels metadata was actually added to the pod using the
kubectl describe command:

kubectl describe pod pod-without-initial-labels

You should see the following output:

Figure 6.3: Describing pod-without-initial-labels

252 | Labels and Annotations

In the highlighted section of the output, we can note that the Labels field is
empty. Hence, we can verify that, by default, no label was added to the pod.
In the next few steps, we will add a label and then run the pod again to verify
whether the label was actually included in the pod.

5. Add a label using the kubectl label command as follows:

kubectl label pod pod-without-initial-labels app=nginx

You should see the following response:

pod/pod-without-initial-labels labeled

The output shows that the pod-without-initial-labels pod
was labeled.

6. Verify that the label was actually added in the last step by using the kubectl
describe command:

kubectl describe pod pod-without-initial-labels

Labels | 253

You should see the following output:

Figure 6.4: Verifying that the app=nginx label was added

We can observe in the highlighted section of the output that the app=nginx
label was actually added to the pod. In the preceding case, we only added a
single label. However, you can add multiple labels to a pod, as will be done in the
next steps.

7. Next, let's add multiple labels in the same command. We can do this by passing
multiple labels in the key=value format, separated by spaces:

kubectl label pod pod-without-initial-labels foo=bar foo2=baz

254 | Labels and Annotations

You should see the following response:

pod/pod-without-initial-labels labeled

8. Verify that the two labels were added to the pod using the kubectl
describe command:

kubectl describe pod pod-without-initial-labels

You should see the following output:

Figure 6.5: Verifying that the new two labels were also added

Labels | 255

In the highlighted section of the output, we can see that the two new labels,
foo=bar, and foo2=baz, were also added to the pod.

In the next exercise, we will see how we can delete and modify the existing labels for
a pod that is already running.

Exercise 6.03: Modifying And/Or Deleting Existing Labels for a Running Pod

In this exercise, we aim to create a pod with some labels and modify and delete
the labels while the pod is running. In order to complete this exercise successfully,
perform the following steps:

1. Create a file called pod-with-some-labels.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-some-labels

 labels:

 app: nginx

spec:

 containers:

 - name: first-container

 image: nginx

As you can see in the pod definition, we have added just one label, app, with the
value of nginx.

2. Run the following command in the Terminal to create the pod with the
preceding configuration:

kubectl create -f pod-with-some-labels.yaml

You should see the following response:

pod/pod-with-some-labels created

3. Verify that the pod was created by using the kubectl get command:

kubectl get pod pod-with-some-labels

256 | Labels and Annotations

The following output indicates that the pod has been created:

Figure 6.6: Checking the status of the pod-with-some-labels pod

4. Verify that the labels were added as specified in the pod configuration using the
kubectl describe command:

kubectl describe pod pod-with-some-labels

You should see the following output:

Figure 6.7: Verifying that the labels were added to pod-with-some-labels

Labels | 257

Once we are sure that the app=nginx label is present, we will modify this label
in the next step.

5. Modify the app=nginx label to app=nginx-application using the
kubectl label command:

kubectl label --overwrite pod pod-with-some-labels app=nginx-
application

You should see the following response:

pod/pod-with-some-labels labeled

6. Verify that the value of label was modified from nginx to
nginx-application using the kubectl describe command:

kubectl describe pod pod-with-some-labels

258 | Labels and Annotations

The following screenshot shows the output of this command:

Figure 6.8: Verifying that the label value has been modified

As highlighted in the output, we can see that the label with the app key has a
new value, nginx-application.

7. Delete the label with the app key using the kubectl label command:

kubectl label pod pod-with-some-labels app-

Labels | 259

Note the hyphen at the end of the preceding command. You should see the
following response:

pod/pod-with-some-labels labeled

8. Verify that the label with the app key was actually deleted using the kubectl
describe command:

kubectl describe pod pod-with-some-labels

You should see the following output:

Figure 6.9: Verifying that the desired label was actually deleted from the pod

260 | Labels and Annotations

As highlighted in the preceding output, we can again note that the label with the app
key was deleted and, hence, the pod now has no label. Thus, we have learned how to
modify and delete an existing label for a running pod.

Selecting Kubernetes Objects Using Label Selectors

In order to group various objects based on their labels, we use a label selector.
It allows users to identify a set of objects matching certain criteria.

We can use the following syntax for the kubectl get command and pass the label
selector using the -l or --label argument:

kubectl get pods -l {label_selector}

In the following exercises, we will see how to use this command in an actual scenario.
Before that, let's understand what kinds of {label_selector} arguments we can
use in these commands.

Currently, there are two types of label selectors: equality-based and set-based.

Equality-Based Selectors

Equality-based selectors allow Kubernetes objects to be selected according to label
keys and values. These kinds of selectors allow us to match all objects that have
specific label values for given label keys. In fact, we have inequality-based selectors
as well.

Overall, there are three kinds of operators: =, ==, and !=.

The first two are actually identical in operation, and denote equality-based
operations, while the third one denotes inequality-based operations. While using
these kinds of selectors, we can specify more than one condition using any of the
preceding operators.

For example, if we are using label keys such as environment and team, we may
want to use the following selectors:

environment=production

The preceding selector matches all the objects that have a label key environment and
the corresponding production value:

team!=devops-infra

Labels | 261

The preceding selector matches all the objects that either doesn't have a team label
key or those for which a team label key exists, and the corresponding value is not
equal to devops-infra.

Similarly, we can also use both the selectors together, separated by commas (,):

environment=production,team!=devops-infra

In the preceding example, the selector will match all the objects that match both the
criteria specified by the two selectors. The comma acts as a logical AND (&&) operator
between the two selectors specified. Let's now try our hands at the implementation
of these selectors in the following exercises.

Exercise 6.04: Selecting Pods Using Equality-Based Label Selectors

In this exercise, we aim to create some pods with different labels and then select
them using equality-based selectors. In order to complete this exercise successfully,
perform the following steps:

1. Create a file called pod-frontend-production.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: frontend-production

 labels:

 environment: production

 role: frontend

spec:

 containers:

 - name: application-container

 image: nginx

As we can see, this is the template for the pod with the following two labels:
environment=production and role=frontend.

2. Create another file called pod-backend-production.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: backend-production

262 | Labels and Annotations

 labels:

 environment: production

 role: backend

spec:

 containers:

 - name: application-container

 image: nginx

This is the template for the pod with the following two labels:
environment=production and role=backend.

3. Create another file called pod-frontend-staging.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: frontend-staging

 labels:

 environment: staging

 role: frontend

spec:

 containers:

 - name: application-container

 image: nginx

This is the template for the pod with the following two labels:
environment=staging and role=frontend.

4. Create all three pods using the following three commands:

kubectl create -f pod-frontend-production.yaml

You should see the following response:

pod/frontend-production created

Now, run the following command:

kubectl create -f pod-backend-production.yaml

The following response indicates that the pod has been created:

pod/backend-production created

Labels | 263

Now, run the following command:

kubectl create -f pod-frontend-staging.yaml

This should give the following response:

pod/frontend-staging created

5. Verify that all three pods are created with correct labels using the
--show-labels argument to the kubectl get command.
First, let's check the frontend-production pod:

kubectl get pod frontend-production --show-labels

The following response indicates that the frontend-production pod has
been created:

Figure 6.10: Verifying labels for the frontend-production pod

6. Now, check the backend-production pod:

kubectl get pod backend-production --show-labels

The following response indicates that the backend-production pod has
been created:

Figure 6.11: Verifying labels for the backend-production pod

7. Finally, check the frontend-staging pod:

kubectl get pod frontend-staging --show-labels

The following response indicates that the frontend-staging pod has
been created:

Figure 6.12: Verifying labels for the frontend-staging pod

264 | Labels and Annotations

8. Now, we will use label selectors to see all the pods that are assigned to the
production environment. We can do this by using environment=production
as the label selector with the kubectl get command:

kubectl get pods -l environment=production

In the following output, we can see that it only shows those pods that have a
label with the environment key and the production value:

NAME READY STATUS RESTARTS AGE

backend-production 1/1 Running 0 67m

frontend-production 1/1 Running 0 68m

You can confirm from Figure 6.10 and Figure 6.11 that these are the pods with the
environment=production label.

9. Next, we will use label selectors to see all the pods that have the frontend role
and the staging environment. We can do this by using the label selector with
the kubectl get command, as shown here:

kubectl get pods -l role=frontend,environment=staging

In the following output, we can see that it only shows those pods that have
staging as the environment and frontend as the role:

NAME READY STATUS RESTARTS AGE

frontend-staging 1/1 Running 0 72m

In this exercise, we have used label selectors to select particular pods. Such label
selectors for the get command provide a convenient way to choose the required
set of pods based on the labels. This also represents a common scenario, where you
would want to apply some changes only to the pods involved in the production or
staging environment, or the frontend or backend infrastructure.

Set-Based Selectors

Set-based selectors allow Kubernetes objects to be selected on the basis of a set of
values for given keys. These kinds of selectors allow us to match all objects that have
a given label key with a value in a given set of values.

There are three kinds of operators: in, notin, and exists. Let's see what these
operators mean with the help of some examples:

environment in (production, staging)

Labels | 265

In the preceding example, the selector matches all the objects that have an
environment label key and the value is either production or staging:

team notin (devops-infra)

The selector in the preceding example matches all the objects that have a team label
key and the value is anything other than devops-infra. It also matches those
objects that don't have the team label key:

!critical

In the preceding example, the selector is equivalent to the exists operation.
It matches all the objects that don't have the critical label key. It doesn't
check for a value at all.

Note

The two types of selectors can also be used together, as we will observe in
Exercises 6.06, Selecting Pods Using a Mix of Label Selectors.

Let's implement the set-based selectors in the following exercise.

Exercise 6.05: Selecting Pods Using Set-Based Label Selectors

In this exercise, we aim to create some pods with different labels and then select
them using set-based selectors.

Note

In this exercise, we assume that you have successfully completed
Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors.
We will be reusing the pods created in that exercise.

In order to complete this exercise successfully, perform the following steps:

1. Open the terminal and verify that the frontend-production pod we created
in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors, is still running
and has the required labels. We will be using the --show-labels argument
with the kubectl get command:

kubectl get pod frontend-production --show-labels

266 | Labels and Annotations

The following response indicates that the frontend-production pod exists:

Figure 6.13: Verifying labels for the frontend-production pod

2. Verify that the backend-production pod we created in Exercise 6.04,
Selecting Pods Using Equality-Based Label Selectors is still running and
has the required labels using the kubectl get command with the
--show-labels argument:

kubectl get pod backend-production --show-labels

The following response indicates that the backend-production pod exists:

Figure 6.14: Verifying labels for the backend-production pod

3. Verify that the frontend-staging pod we created in Exercise 6.04,
Selecting Pods Using Equality-Based Label Selectors is still running and
has the required labels using the kubectl get command with the
--show-labels argument:

kubectl get pod frontend-staging --show-labels

The following response indicates that the frontend-staging pod exists:

Figure 6.15: Verifying labels for the frontend-staging pod

4. Now, we will use the label selectors to match all the pods for which the
environment is production, and the role is either frontend or backend.
We can do this by using the label selector with the kubectl get command
as shown here:

kubectl get pods -l 'role in (frontend, backend),environment in
(production)'

Labels | 267

You should see the following response:

NAME READY STATUS RESTARTS AGE

backend-production 1/1 Running 0 82m

frontend-production 1/1 Running 0 82m

5. Next, we will use the label selectors to match all those pods that have the
environment label and whose role is anything other than backend.
We also want to exclude those pods that don't have the role label set:

kubectl get pods -l 'environment,role,role notin (backend)'

This should produce the following output:

NAME READY STATUS RESTARTS AGE

frontend-production 1/1 Running 0 86m

frontend-staging 1/1/ Running 0 86m

In this example, we have the set-based selectors that can be used to get the desired
pods. We can also combine these with selector-based pods, as we shall see in the
following exercise.

Exercise 6.06: Selecting Pods Using a Mix of Label Selectors

In this exercise, we aim to create some pods with different labels and then select
them using a combination of equality-based and set-based selectors.

Note

In this exercise, we assume that you have successfully completed
Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors.
We will be reusing the pods created in that exercise.

In order to complete this exercise successfully, perform the following steps:

1. Open the terminal and verify that the frontend-production pod we created
in Exercise 6.04, Selecting Pods Using Equality-Based Label Selectors, is still running
and has the required labels. We will be using the --show-labels argument
with the kubectl get command:

kubectl get pod frontend-production --show-labels

268 | Labels and Annotations

The following response indicates that the frontend-production pod exists:

Figure 6.16: Verifying labels for the frontend-production pod

2. Verify that the backend-production pod we created in Exercise 6.04,
Selecting Pods Using Equality-Based Label Selectors is still running and
has the required labels using the kubectl get command with the
--show-labels argument:

kubectl get pod backend-production --show-labels

The following response indicates that the backend-production pod exists:

Figure 6.17: Verifying labels for the backend-production pod

3. Verify that the frontend-staging pod we created in Exercise 6.04,
Selecting Pods Using Equality-Based Label Selectors is still running and
has the required labels using the kubectl get command with the
--show-labels argument:

kubectl get pod frontend-staging --show-labels

The following response indicates that the frontend-staging pod exists:

Figure 6.18: Verifying labels for the frontend-staging pod

4. Now, we will use the label selectors to match all the pods that have a frontend
role and whose environment is one of production, staging, or dev:

kubectl get pods -l 'role=frontend,environment in
(production,staging,dev)'

This command should give the following list of pods:

NAME READY STATUS RESTARTS AGE

frontend-production 1/1 Running 0 95m

frontend-staging 1/1 Running 0 95m

Annotations | 269

In the output, we can only see those pods that have a frontend role, whereas the
environment can be any one of the given values. Thus, we have seen that a mix of
different types of selectors can be used as required.

Annotations
As we have seen previously, labels are used to add the identifying metadata that we
can later use to filter or select objects by. However, labels have certain constraints in
terms of what we can store in the values, such as the limitation of 63 characters and
alphanumeric characters at the beginning and end. Annotations, on the other hand,
have fewer constraints in terms of what kind of data can be stored in them. However,
we cannot filter or select objects by using annotations.

Annotations are also key-value pairs that can be used to store the unstructured
information pertaining to the Kubernetes objects. Here is an example of how
annotations in a YAML file would appear:

metadata:

 annotations:

 key1: value1

 key2: value2

Constraints for Annotations

As noted in the previous section, annotations are key-value pairs, just like labels.
However, the rules for annotations are more relaxed than the rules for label keys
and values. The reason for more relaxed constraints is the lack of support for
filtering or selecting objects using annotations. This is because the key-value pairs
of annotations are not stored in a lookup-efficient data structure. Hence, there are
fewer restrictions here.

Annotation Keys

Similar to label keys, annotation keys also have two parts: a prefix and a name.
The constraints for both annotation prefixes and names are the same as those
for the label prefixes and names, respectively.

Here's an example of how an annotation key may appear:

annotation_prefix.com/worker-node-identifier

270 | Labels and Annotations

Annotation Values

There are no restrictions in terms of what kinds of data annotation values
may contain.

Use Case for Annotations

Annotations are generally used to add metadata that won't be used to filter or select
objects. It's used to add metadata that will be used by users or tools to get more
subjective information regarding the Kubernetes objects. Let's look at some of the
scenarios where using annotations can be useful:

• Annotations can be used to add timestamps, commit SHA, issue tracker links, or
names/information about users who are responsible for specific objects in an
organization. In this case, we can use the following type of metadata, depending
on our use case:

metadata:

 annotations:

 timestamp: 123456789

 commit-SHA: d6s9shb82365yg4ygd782889us28377gf6

 JIRA-issue: "https://your-jira-link.com/issue/ABC-1234"

 owner: "https://internal-link.to.website/username"

• Annotations can also be used to add information about client libraries or tools.
We can add information such as the name of the library, the version used, and
public documentation links. This information can later be used for debugging
issues in our application:

metadata:

 annotations:

 node-version: 13.1.0

 node-documentation: "https://nodejs.org/en/docs/"

• We can also use annotations to store the previous pod configuration deployed.
This can be really helpful in figuring out what configuration was deployed before
the current revision and what has changed:

metadata:

 annotations:

 previous-configuration: "{ some json containing the
 previously deployed configuration of the object }"

Annotations | 271

• Annotations can also be used to store the configuration or checkpoints that can
be helpful in the deployment process for our applications.

We will learn how to add annotations to a pod in the following exercise.

Exercise 6.07: Adding Annotations to Help with Application Debugging

In this exercise, we will add some arbitrary metadata to our pod. In order to complete
this exercise successfully, perform the following steps:

1. Create a file called pod-with-annotations.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-annotations

 annotations:

 commit-SHA: d6s9shb82365yg4ygd782889us28377gf6

 JIRA-issue: "https://your-jira-link.com/issue/ABC-1234"

 timestamp: "123456789"

 owner: "https://internal-link.to.website/username"

spec:

 containers:

 - name: application-container

 image: nginx

The highlighted part in the pod definition shows the annotations that we
have added.

2. Run the following command in the Terminal to create the pod using the
kubectl create command:

kubectl create -f pod-with-annotations.yaml

You should get the following response:

pod/pod-with-annotations created

3. Run the following command in the Terminal to verify that the pod was created
as desired:

kubectl get pod pod-with-annotations

272 | Labels and Annotations

You should see the following list of pods:

NAME READY STATUS RESTARTS AGE

pod-with-annotations 1/1 Running 0 29s

4. Run the following command in the Terminal to verify that the created pod has
the desired annotations:

kubectl describe pod pod-with-annotations

You should see the following output of this command:

Figure 6.19: Verifying annotations for the pod-with-annotations pod

Annotations | 273

As we can see in the highlighted section of the preceding output, the desired
metadata has been added as annotations to the pod. Now, this data can be used
by any deployment tools or clients who may know about the key names used.

Working with Annotations

In the previous exercise, we created a pod with annotations. Similar to labels, we can
add annotations to a running pod and modify/delete the annotations of a running
pod. This can be achieved by running similar commands as those for labels. The
following list presents you with the various operations that can be performed on
annotations along with the relevant commands:

• Thus, we can add annotations to a running pod by using the following command:

kubectl annotate pod <pod_name> <annotation_key>=<annotation_label>

In the preceding command, we can add multiple annotations similar to multiple
labels, as in step 7 of Exercise 6.02, Adding Labels to a Running Pod.

• We can also modify (overwrite) an annotation as follows:

kubectl annotate --overwrite pod <pod_name> <annotation_
key>=<annotation_label>

• Finally, we can delete an annotation using the following command:

kubectl annotate pod <pod_name> <annotation_key>-

Note the hyphen at the end of the preceding command. Now that we have learned
about labels and annotations as well as the various ways in which we can use them,
let's bring all of this together in the following activity.

Activity 6.01: Creating Pods with Labels/Annotations and Grouping Them as per

Given Criteria

Consider that you're working on supporting two teams called
product-development and infra-libraries. Both teams have
some application pods for different environments (production or staging).
The teams also want to mark their pods as critical if that is indeed the case.

In short, you need to create three pods as per the following metadata requirements:

• An arbitrary-product-application pod that runs in a production
environment and is owned by the product-development team. This needs
to be marked as a non-critical pod.

274 | Labels and Annotations

• An infra-libraries-application pod that runs in a production
environment and is owned by the infra-libraries team. This needs
to be marked as a critical pod.

• An infra-libraries-application-staging pod that runs in a staging
environment and is owned by the infra-libraries team. Since it runs in
staging, the criticality of the pod does not need to be indicated.

In addition to this, both teams also want to add another piece of metadata – "team-
link" in which they want to store the internal link of the team's contact information.

You should be able to perform the following tasks once all three pods have
been created:

1. Group all the pods that run in the production environment and are critical.

2. Group all the pods that are not critical among all environments.

Note

Ideally, you would want to create this pod to be in a different namespace so
as to keep it separate from the rest of the stuff that you created during the
exercises. Therefore, feel free to create a namespace and create the pod in
that namespace.

The high-level steps to perform this activity are as follows:

1. Create a namespace for this activity.

2. Write the pod configurations for all three pods. Ensure that all the metadata
requested is added correctly among the labels and annotations.

3. Create all three pods using the configurations written in the previous step.

4. Make sure that all three pods are running and have all the requested metadata.

5. Group all the pods that run in the production environment and are critical.

6. Group all the pods that are not critical among all environments.

Summary | 275

For the first task, your goal should get the infra-libraries-application pod
once you complete the activity, as shown here:

NAME READY STATUS RESTARTS AGE

infra-libraries-application 1/1 Running 0 12m

For the second task, your goal is to obtain arbitrary-product-application
and infra-libraries-application-staging once you complete the activity,
as shown here:

NAME READY STATUS RESTARTS AGE

arbitrary-product-application 1/1 Running 0 14m

infra-libraries-application-staging 1/1 Running 0 14m

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
In this chapter, we have described labels and annotations and used them to add
metadata information, which can either be identifiable information that can be used
to filter or select objects, or non-identifiable information that can be used by users
or tools to get more context regarding the state of the application. More specifically,
we have also organized objects such as pods using labels and annotations. These are
important skills that will help you manage your Kubernetes objects more efficiently.

In the following chapters, as we become familiar with more Kubernetes objects such
as Deployments and Services, we will see the further application of labels and label
selectors while organizing pods for deployment or discovery.

https://packt.live/304PEoD

Overview

This chapter introduces the concept of Kubernetes controllers and explains
how to use them to create replicated Deployments. We will describe the
use of different types of controllers, such as ReplicaSets, Deployments,
DaemonSets, StatefulSets, and Jobs. You will learn how to choose a
suitable controller for specific use cases. Using hands-on exercises,
we will guide you through how to use these controllers with the desired
configuration to deploy several replicas of Pods for your application.
You will also learn how to manage them using various commands.

Kubernetes Controllers

7

278 | Kubernetes Controllers

Introduction
In previous chapters, we created different Pods, managed their life cycle manually,
and added metadata (labels or annotations) to them to help organize and identify
various Pods. In this chapter, we will take a look at a few Kubernetes objects that help
you manage several replica Pods declaratively.

When deploying your application in production, there are several reasons why you
would want to have more than one replica of your Pods. Having more than one
replica ensures that your application continues to work in cases where one or more
Pods fail. In addition to handling failures, replication also allows you to balance the
load across the different replicas so that one Pod is not overloaded with a lot of
requests, thereby allowing you to easily serve higher traffic than what a single Pod
can serve.

Kubernetes supports different controllers that you can use for replication, such
as ReplicaSets, Deployments, DaemonSets, StatefulSets, and Jobs. A controller is
an object that ensures that your application runs in the desired state for its entire
runtime. Each of these controllers is useful for specific use cases. In this chapter, we
will explore some of the most commonly used controllers one by one and understand
how and when to use them in real-life scenarios.

ReplicaSets
As discussed earlier, having multiple replicas of our application ensures that it is
still available even if a few replicas fail. This also makes it easy for us to scale our
application to balance the load to serve more traffic. For example, if we are building
a web application that's exposed to users, we'd want to have at least two replicas of
the application in case one of them fails or dies unexpectedly. We would also want
the failed replica to recover on its own. In addition to that, if our traffic starts growing,
we would want to increase the number of Pods (replicas) running our application. A
ReplicaSet is a Kubernetes controller that keeps a certain number of Pods running at
any given time.

ReplicaSet acts as a supervisor for multiple Pods across the different nodes in a
Kubernetes cluster. A ReplicaSet will terminate or start new Pods to match the
configuration specified in the ReplicaSet template. For this reason, it is a good idea to
use them even if your application only needs one Pod. Even if someone deletes the
only running Pod, the ReplicaSet will ensure that a new Pod is created to replace it,
thereby ensuring that one Pod is always running.

ReplicaSets | 279

A ReplicaSet can be used to reliably run a single Pod indefinitely or to run multiple
instances of the same Pod.

ReplicaSet Configuration

Let's first look at an example of the configuration of a ReplicaSet, and then we will
cover what the different fields mean:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: nginx-replicaset

 labels:

 app: nginx

spec:

 replicas: 2

 selector:

 matchLabels:

 environment: production

 template:

 metadata:

 labels:

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

As with Pod configuration, a ReplicaSet also needs fields such as apiVersion,
kind, and metadata. For a ReplicaSet, the API version, apps/v1, is the current
version and the kind field will always be ReplicaSet. One field that is different
from what we have seen in Pod configuration so far is the spec.

Now, we will see what information we need to specify in the spec field.

280 | Kubernetes Controllers

Replicas

The replicas field under spec specifies how many Pods the ReplicaSet should
keep running concurrently. You can see the following value in the preceding example:

replicas: 2

The ReplicaSet will create or delete Pods in order to match this number. The default
value for this field, if not specified, is 1.

Pod Template

In the template field, we will specify the template of the Pod that we want to run
using this ReplicaSet. This Pod template will be exactly the same as the Pod templates
we used in the previous two chapters. As usual, we can add metadata in the form
of labels and annotations to the Pods. The ReplicaSet will use this Pod template to
create new Pods whenever there is a need for them. The following section from the
previous example comprises the template:

template:

 metadata:

 labels:

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

Pod Selector

This is a really important section. In the selector field under spec, we can
specify the label selectors that will be used by the ReplicaSet to identify which
Pods to manage:

selector:

 matchLabels:

 environment: production

The preceding example ensures that our controller will only manage Pods with an
environment: production label.

Let's now proceed to create our first ReplicaSet.

ReplicaSets | 281

Exercise 7.01: Creating a Simple ReplicaSet with nginx Containers

In this exercise, we will create a simple ReplicaSet and examine the Pods created by it.
To successfully complete this exercise, perform the following steps:

1. Create a file called replicaset-nginx.yaml with the following content:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: nginx-replicaset

 labels:

 app: nginx

spec:

 replicas: 2

 selector:

 matchLabels:

 environment: production

 template:

 metadata:

 labels:

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

As you can see in the highlighted part of the configuration, we have three
fields: replicas, selector, and template. We have set the number of
replicas to 2. The Pod selector has been set in such a way that this ReplicaSet
will manage the Pods with the environment: production label. The Pod
template has the simple Pod configuration that we used in previous chapters.
We have ensured that the Pod label selector matches the Pod's labels in the
template exactly.

282 | Kubernetes Controllers

2. Run the following command to create the ReplicaSet using the
preceding configuration:

kubectl create -f replicaset-nginx.yaml

You should see the following response:

replicaset.apps/nginx-replicaset created

3. Verify that the ReplicaSet was created by using the kubectl get command:

kubectl get rs nginx-replicaset

Note that rs is a short form of replicaset in all kubectl commands.

You should see the following response:

NAME DESIRED CURRENT READY AGE

nginx-replicaset 2 2 2 30s

As you can see, we have a ReplicaSet with two desired replicas, as we defined in
replicaset-nginx.yaml in step 1.

4. Verify that the Pods were actually created by using the following command:

kubectl get pods

You should get the following response:

NAME READY STATUS RESTARTS AGE

nginx-replicaset-b8fwt 1/1 Running 0 51s

nginx-replicaset-k4h9r 1/1 Running 0 51s

We can see that the names of the Pods created by the ReplicaSet take the name
of the ReplicaSet as a prefix.

ReplicaSets | 283

5. Now that we have created our first ReplicaSet, let's look at it in more detail to
understand what actually happened during its creation. To do that, we can
describe the ReplicaSet we just created by using the following command in
the terminal:

kubectl describe rs nginx-replicaset

You should see output similar to the following:

Figure 7.1: Describing nginx-replicaset

284 | Kubernetes Controllers

6. Next, we will inspect the Pods created by this ReplicaSet and verify that they
have been created with the correct configuration. Run the following command to
get a list of the Pods that are running:

kubectl get pods

You should see a response as follows:

NAME READY STATUS RESTARTS AGE

nginx-replicaset-b8fwt 1/1 Running 0 38m

nginx-replicaset-k4h9r 1/1 Running 0 38m

7. Run the following command to describe one of the Pods by copying its name:

kubectl describe pod <pod_name>

You should see output similar to the following:

Figure 7.2: Listing Pods

In the highlighted sections of the preceding output, we can clearly see that
the pod has the environment=production label and is controlled by
ReplicaSet/nginx-replicaset.

So, we have created a simple ReplicaSet in this exercise. In the following subtopics,
we will go through the highlighted sections of the preceding output to understand the
ReplicaSet that's running.

ReplicaSets | 285

Labels on the ReplicaSet

Consider the following line from the output shown in Figure 7.1:

Labels: app=nginx

It shows that, as desired, the ReplicaSet was created with a label key called app with a
value of nginx.

Selectors for the ReplicaSet

Now, consider the following line from the output shown in Figure 7.1:

Selector: environment=production

This shows that the ReplicaSet is configured with an environment=production
Pod selector. This means that this ReplicaSet will try to acquire Pods that have
this label.

Replicas

Consider the following line from the output shown in Figure 7.1:

Replicas: 2 current / 2 desired

We can see that the ReplicaSet has the desired count of 2 for the Pods, and it also
shows that there are currently two replicas present.

Pods Status

While the Replicas field only shows the number of Pods currently present,
Pods Status shows the actual status of those Pods:

Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed

We can see that there are currently two Pods running under this ReplicaSet.

Pods Template

Now, let's consider the Pod Template section of the output shown in Figure 7.1.
We can see that the Pod template is the same as was described in the configuration.

286 | Kubernetes Controllers

Events

In the last section of the output shown in Figure 7.1, we can see that there are two
events, which denotes that two pods were created to get to the desired count of two
Pods for the ReplicaSet.

In the last exercise, we created a ReplicaSet to maintain a number of running replicas.
Now, let's consider a scenario where some nodes or Pods fail for some reason.
We will see how the ReplicaSet will behave in this situation.

Exercise 7.02: Deleting Pods Managed by a ReplicaSet

In this exercise, we will delete one of the Pods managed by a ReplicaSet to see how it
responds. This way, we will be simulating a single or multiple Pods failing during the
runtime of a ReplicaSet:

Note

In this exercise, we will assume that you have successfully completed
the previous exercise as we will be reusing the ReplicaSet created in
that exercise.

1. Verify that the Pods created by the ReplicaSet are still running:

kubectl get pods

You should see something similar to the following response:

NAME READY STATUS RESTARTS AGE

nginx-replicaset-9tgb9 1/1 Running 0 103s

nginx-replicaset-zdjb5 1/1 Running 0 103s

2. Delete the first Pod to replicate Pod failure during runtime by using the
following command:

kubectl delete pod <pod_name>

You should see a response similar to the following:

pod "nginx-replicaset-9tgb9" deleted

3. Describe the ReplicaSet and check the events:

kubectl describe rs nginx-replicaset

ReplicaSets | 287

You should see output similar to the following:

Figure 7.3: Describing the ReplicaSet

As highlighted in the preceding output, we can see that after a Pod is deleted,
the ReplicaSet creates a new Pod using the Pod configuration in the Template
section of the ReplicaSet configuration. Even if we delete all the Pods managed
by the ReplicaSet, they will be recreated. So, to delete all the Pods permanently
and to avoid the recreation of the Pods, we need to delete the ReplicaSet itself.

4. Run the following command to delete the ReplicaSet:

kubectl delete rs nginx-replicaset

You should see the following response:

replicaset.apps "nginx-replicaset" deleted

As shown in the preceding output, the nginx-replicaset ReplicaSet
was deleted.

288 | Kubernetes Controllers

5. Run the following command to verify that the Pods managed by the ReplicaSet
were also deleted:

kubectl get pods

You should get the following response:

No resources found in default namespace

As you can see from this output, we can verify that the Pods were deleted.

Consider a scenario where you have already deployed a single Pod for testing. Now,
it is ready to go live. You apply the required label changes from development to
production, and now you want to control this using a ReplicaSet. We will see how to
do this in the following exercise.

Exercise 7.03: Creating a ReplicaSet Given That a Matching Pod Already Exists

In this exercise, we will create a Pod that matches the Pod template in the ReplicaSet
and then create the ReplicaSet. Our aim is to prove that the newly created ReplicaSet
will acquire the existing Pod and start managing it as if it created that Pod itself.

In order to successfully complete this exercise, perform the following steps:

1. Create a file called pod-matching-replicaset.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-matching-replicaset

 labels:

 environment: production

spec:

 containers:

 - name: first-container

 image: nginx

2. Run the following command to create the Pod using the preceding configuration:

kubectl create -f pod-matching-replicaset.yaml

You should see the following response:

pod/pod-matching-replicaset created

ReplicaSets | 289

3. Create a file called replicaset-nginx.yaml with the following content:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: nginx-replicaset

 labels:

 app: nginx

spec:

 replicas: 2

 selector:

 matchLabels:

 environment: production

 template:

 metadata:

 labels:

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

4. Run the following command to create the ReplicaSet using the
preceding configuration:

kubectl create -f replicaset-nginx.yaml

You should see a response similar to the following:

replicaset.apps/nginx-replicaset created

This output indicates that the Pod has been created.

5. Run the following command to check the status of the ReplicaSet:

kubectl get rs nginx-replicaset

You should get the following response:

NAME DESIRED CURRENT READY AGE

nginx-replicaset 2 2 2 2

We can see that there are currently two Pods managed by the ReplicaSet,
as desired.

290 | Kubernetes Controllers

6. Next, let's check what Pods are running by using the following command:

kubectl get pods

You should see output similar to the following:

NAME READY STATUS RESTARTS AGE

nginx-replicaset-4dr7s 1/1 Running 0 28s

pod-matching-replicaset 1/1 Running 0 81s

In this output, we can see that the manually created Pod named
pod-matching-replicaset is still running and that there was only one new
Pod created by the nginx-replicaset ReplicaSet.

7. Next, we will use the kubectl describe command to check whether the Pod
named pod-matching-replicaset is being managed by the ReplicaSet:

kubectl describe pod pod-matching-replicaset

You should see output similar to the following:

Figure 7.4: Describing the Pod

In the highlighted section of the truncated output, we can see that even though
this Pod was created manually before the ReplicaSet event existed, this Pod is
now managed by the ReplicaSet itself.

8. Next, we will describe the ReplicaSet to see how many Pod creations were
triggered by it:

kubectl describe rs nginx-replicaset

ReplicaSets | 291

You should see output similar to the following:

Figure 7.5: Describing the ReplicaSet

9. Run the following command to delete the ReplicaSet for cleanup:

kubectl delete rs nginx-replicaset

You should see the following response:

replicaset.apps "nginx-replicaset" deleted

So, we can see that a ReplicaSet is capable of acquiring existing Pods as long as
they match the label selector criteria. In cases where there are more matching
Pods than the desired count, the ReplicaSet will terminate some of the Pods in
order to maintain the total count of running Pods.

Another common operation is horizontally scaling a ReplicaSet that you previously
created. Let's say that you create a ReplicaSet with a certain number of replicas and
later you need to have more or fewer replicas to manage increased or decreased
demand. Let's see how you can scale the number of replicas in the next exercise.

292 | Kubernetes Controllers

Exercise 7.04: Scaling a ReplicaSet after It Is Created

In this exercise, we will create a ReplicaSet with two replicas and then modify it to
increase the number of replicas. Then, we will reduce the number of replicas.

In order to successfully complete this exercise, perform the following steps:

1. Create a file called replicaset-nginx.yaml with the following content:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: nginx-replicaset

 labels:

 app: nginx

spec:

 replicas: 2

 selector:

 matchLabels:

 environment: production

 template:

 metadata:

 labels:

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

2. Run the following command to create the ReplicaSet using the kubectl apply
command, as described in the preceding code:

kubectl apply -f replicaset-nginx.yaml

You should get the following response:

replicaset.apps/nginx-replicaset created

ReplicaSets | 293

3. Run the following command to check all the existing Pods:

kubectl get pods

You should get a response similar to the following:

NAME READY STATUS RESTARTS AGE

nginx-replicaset-99tj7 1/1 Running 0 23s

nginx-replicaset-s4stt 1/1 Running 0 23s

We can see that there are two Pods created by the replica set.

4. Run the following command to scale up the number of replicas for the
ReplicaSet to 4:

kubectl scale --replicas=4 rs nginx-replicaset

You should see the following response:

replicaset.apps/nginx-replicaset scaled

5. Run the following command to check all the Pods that are running:

kubectl get pods

You should see output similar to the following:

NAME READY STATUS RESTARTS AGE

nginx-replicaset-99tj7 1/1 Running 0 75s

nginx-replicaset-klh6k 1/1 Running 0 21s

nginx-replicaset-lrqsk 1/1 Running 0 21s

nginx-replicaset-s4stt 1/1 Running 0 75s

We can see that now there are a total of four Pods. The ReplicaSet created two
new Pods after we applied the new configuration.

294 | Kubernetes Controllers

6. Next, let's run the following command to scale down the number of replicas to 1:

kubectl scale --replicas=1 rs nginx-replicaset

You should see the following response:

replicaset.apps/nginx-replicaset scaled

7. Run the following command to check all the Pods that are running:

kubectl get pods

You should see a response similar to the following:

nginx-replicaset-s4stt 1/1 Running 0 11m

We can see that this time, the ReplicaSet deleted all the Pods exceeding the
count from the desired count of 1 and kept only one replica running.

8. Run the following command to delete the ReplicaSet for cleanup:

kubectl delete rs nginx-replicaset

You should see the following response:

replicaset.apps "nginx-replicaset" deleted

In this exercise, we have managed to scale the number of replicas up and down.
This could be particularly useful if the traffic to your application grows or decreases
for any reason.

Deployment
A Deployment is a Kubernetes object that acts as a wrapper around a ReplicaSet
and makes it easier to use. In general, in order to manage replicated services, it's
recommended that you use Deployments that, in turn, manage the ReplicaSet and
the Pods created by the ReplicaSet.

Deployment | 295

The major motivation for using a Deployment is that it maintains a history of
revisions. Every time a change is made to the ReplicaSet or the underlying Pods,
a new revision of the ReplicaSet is recorded by the Deployment. This way, using a
Deployment makes it easy to roll back to a previous state or version. Keep in mind
that every rollback will also create a new revision for the Deployment. The following
diagram provides an overview of the hierarchy of the different objects managing your
containerized application:

Figure 7.6: Hierarchy of Deployment, ReplicaSet, Pods, and containers

296 | Kubernetes Controllers

Deployment Configuration

The configuration of a Deployment is actually very similar to that of a ReplicaSet.
Here's an example of a Deployment configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 selector:

 matchLabels:

 app: nginx

 environment: production

 template:

 metadata:

 labels:

 app: nginx

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

The value for the kind field is Deployment. The rest of the configuration remains
the same as that for ReplicaSets. Deployments also have the replicas, selector,
and Pod template fields used in the same way as ReplicaSets.

Deployment | 297

Strategy

In the strategy field under spec, we can specify which strategy the Deployment
should use when it replaces old pods with new ones. This can either be
RollingUpdate or Recreate. The default value is RollingUpdate.

RollingUpdate

This is a strategy used to update a Deployment without having any downtime. With
the RollingUpdate strategy, the controller updates the Pods one by one. Hence,
at any given time, there will always be some Pods running. This strategy is particularly
helpful when you want to update the Pod template without incurring any downtime
for your application. However, be aware that having a rolling update means that there
may be two different versions of Pods (old and new) running at the same time.

If applications serve static information, this is usually fine because there's usually
no harm in serving traffic using two different versions of an application, so long
as the information that is served is the same. So, RollingUpdate is usually a
good strategy for these applications. In general, we can use RollingUpdate for
applications for which the data stored by a new version can be read and handled by
the old version of the application.

Here's an example configuration for setting the strategy to RollingUpdate:

strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

maxUnavailable is the maximum number of Pods that can be unavailable during
the update. This field can be specified as either an integer representing the maximum
number of unavailable Pods or a string representing the percentage of total replicas
that can be unavailable. For the preceding example configuration, Kubernetes will
ensure that no more than one replica becomes unavailable while applying an update.
The default value for maxUnavailable is 25%.

298 | Kubernetes Controllers

maxSurge is the maximum number of Pods that can be scheduled/created above
the desired number of Pods (as specified in the replicas field). This field can also
be specified as either an integer or a percentage string, as with maxUnavailable.
The default value for maxSurge is also 25%.

Hence, in the preceding example, we are telling the Kubernetes controller to update
the Pods one at a time, in such a way that no more than one Pod is ever unavailable
and that no more than four Pods are ever scheduled.

The two parameters—maxUnavailable and maxSurge—can be tuned for
availability and the speed of scaling up or down the Deployment. For example,
maxUnavailable: 0 and maxSurge: "30%" ensure a rapid scale-up while
maintaining the desired capacity at all times. maxUnavailable: "15%" and
maxSurge: 0 ensure that the deployment can be performed without using any
extra capacity at the cost of having, at worst, 15% fewer Pods running.

Recreate

In this strategy, all the existing pods are killed before creating the new Pods with an
updated configuration. This means there will be some downtime during the update.
This, however, ensures that all the Pods running in the Deployment will be on the
same version (old or new). This strategy is particularly useful when working with
application Pods that need to have a shared state and so we can't have two different
versions of Pods running at the same time. This strategy can be specified as follows:

strategy:

 type: Recreate

A good use case for using the Recreate update strategy is if we need to run some
data migration or data processing before the new code can be used. In this case, we
will need to use the Recreate strategy because we can't afford to have any new
code running along with the old one without running the migration or processing first
for all the Pods.

Now that we have studied the different fields in the configuration of a Deployment,
let's implement them in the following exercise.

Deployment | 299

Exercise 7.05: Creating a Simple Deployment with Nginx Containers

In this exercise, we will create our first Deployment Pod using the configuration
described in the previous section.

To successfully complete this exercise, perform the following steps:

1. Create a file called nginx-deployment.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: production

 template:

 metadata:

 labels:

 app: nginx

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

In this configuration, we can see that the Deployment will have three
replicas of Pods running with the app: nginx and environment:
production labels.

300 | Kubernetes Controllers

2. Run the following command to create the Deployment defined in the
previous step:

kubectl apply -f nginx-deployment.yaml

You should see the following response:

deployment.apps/nginx-deployment created

3. Run the following command to check the status of the Deployment:

kubectl get deployment nginx-deployment

You should see a response similar to the following:

NAME READY UP-TO-DATE AVAILABLE AGE

nginx-deployment 3/3 3 3 26m

4. Run the following command to check all the Pods that are running:

kubectl get pods

You should see a response similar to the following:

Figure 7.7: A list of Pods created by the Deployment

We can see that the Deployment has created three Pods, as desired.

Let's try to understand the names given to the Pods automatically. nginx-
deployment creates a ReplicaSet named nginx-deployment-
588765684f. The ReplicaSet then creates three replicas of Pods, each of
which has a name that is prefixed with the name of the ReplicaSet followed by a
unique identifier.

5. Now that we have created our first Deployment, let's look at it in more detail
to understand what actually happened during its creation. To do that, we can
describe the Deployment we just created using the following command in
the terminal:

kubectl describe rs nginx-deployment

Deployment | 301

You should see output similar to this:

Figure 7.8: Describing nginx-deployment

This output shows various details about the Deployment we just created. In the
following subtopics, we will go through the highlighted sections of the preceding
output to understand the Deployment that's running.

302 | Kubernetes Controllers

Labels and Annotations on the Deployment

Similar to ReplicaSets, we can see the following line highlighted in the output shown
in Figure 7.8:

Labels: app=nginx

This indicates that the Deployment was created with an app=nginx label. Now, let's
consider the next field in the output:

Annotations: deployment.kubernetes.io/revision: 1

 kubectl.kubernetes.io/last-applied-configuration:

{"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":{},
"labels":{"app":"nginx"},"name":"nginx-deployment","namespace":"d...

There are two annotations added to the Deployment automatically.

The Revision annotation

The Kubernetes controller adds an annotation with the deployment.
kubernetes.io/revision key, which contains information about how many
revisions have been there for a particular Deployment.

The last-applied-configuration annotation

Another annotation added by the controller has the kubectl.kubernetes.io/
last-applied-configuration key, which contains the last configuration (in
JSON format) that was applied to the Deployment. This annotation is particularly
helpful in rolling back a Deployment to a previous revision if a new revision doesn't
work well.

Selectors for the Deployment

Now, consider the following line from the output shown in Figure 7.8:

Selector: app=nginx,environment=production

This shows which Pod selectors the Deployment is configured with. So, this
Deployment will try to acquire the Pods that have both of these labels.

Replicas

Consider the following line from the output shown in Figure 7.8:

Replicas: 3 desired | 3 updated | 3 total | 3 available | 0
unavailable

Deployment | 303

We can see that the Deployment has the desired count of 3 for the Pods, and it also
shows that there are currently 3 replicas present.

Rolling Back a Deployment

In a real-life scenario, you may make a mistake when making a change in the
Deployment configuration. You can easily undo a change and roll back to a previous
stable revision of the Deployment.

We can use the kubectl rollout command to check the revision history and
rollback. But to make this work, we also need to use the --record flag when we
use any apply or set commands to modify the Deployment. This flag records the
rollout history. Then, you can view the rollout history using the following command:

kubectl rollout history deployment <deployment_name>

Then, we can undo any updates by using the following command:

kubectl rollout undo deployment <deployment_name>

Let's take a closer look at how this works in the following exercise:

Exercise 7.06: Rolling Back a Deployment

In this exercise, we will update the Deployment twice. We will make an intentional
mistake in the second update and try to roll back to a previous revision:

1. Create a file called app-deployment.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: app-deployment

 labels:

 environment: production

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: production

 template:

 metadata:

 labels:

304 | Kubernetes Controllers

 app: nginx

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

2. Run the following command to create the Deployment:

kubectl apply -f app-deployment.yaml

You should see the following response:

deployment.apps/app-deployment created

3. Run the following command to check the rollout history of the newly
created Deployment:

kubectl rollout history deployment app-deployment

You should see the following response:

deployment.apps/app-deployment

REVISION CHANGE-CAUSE

1 <none>

This output shows that the Deployment has no rollout history as of now.

4. For the first update, let's change the name of the container to nginx instead of
nginx-container. Update the content of the app-deployment.yaml file
with the following:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: app-deployment

 labels:

 environment: production

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: production

 template:

 metadata:

Deployment | 305

 labels:

 app: nginx

 environment: production

 spec:

 containers:

 - name: nginx

 image: nginx

As you can see, the only thing that has changed in this template is the
container name.

5. Apply the changed configuration using the kubectl apply command with the
--record flag. The --record flag ensures that the update to the Deployment
is recorded in the rollout history of the Deployment:

kubectl apply -f app-deployment.yaml --record

You should see the following response:

deployment.apps/app-deployment configured

Note that the rollout history maintained by the --record flag is different
from the past configs stored in the annotations, which we saw in the Labels
and Annotations on the Deployment subsection.

6. Wait for a few seconds to allow the Deployment to recreate the Pods with the
updated Pod configuration, and then run the following command to check the
rollout history of the Deployment:

kubectl rollout history deployment app-deployment

You should see the following response:

Figure 7.9: Checking the deployment history

In the output, we can see that the second revision of the Deployment
was created. It also keeps track of what command was used to update
the Deployment.

306 | Kubernetes Controllers

7. Next, let's update the Deployment and assume that we made a mistake while
doing so. In this example, we will update the container image to ngnx (note the
intentional spelling error) instead of nginx using the set image command:

kubectl set image deployment app-deployment nginx=ngnx --record

You should see the following response:

deployment.apps/app-deployment image updated

8. Wait for a few seconds for Kubernetes to recreate the new containers, and
then check the status of the Deployment rollout using the kubectl rollout
status command:

kubectl rollout status deployment app-deployment

You should see the following response:

Waiting for deployment "app-deployment" rollout to finish: 1 out of 3
new replicas have been updated...

In this output, we can see that none of the new replicas are ready yet.
Press Ctrl + C to exit and proceed.

9. Run the following command to check the state of the Pods:

kubectl get pods

You should see the following output:

Figure 7.10: Checking the status of Pods

We can see in the output that the newly created Pod has failed with an
ImagePullBackOff error, which means that the Pods aren't able to pull the
image. This is expected because we have a typo in the name of the image.

10. Next, check the revision history of the Deployment again by using the
following command:

kubectl rollout history deployment app-deployment

Deployment | 307

You should see the following response:

Figure 7.11: Checking the rollout history of the Deployment

We can see that a third revision of the Deployment was created using the set
image command containing the typo. Now that we have pretended to have
made a mistake in updating the Deployment, we will see how to undo this and
roll back to the last stable revision of the Deployment.

11. Run the following command to roll back to the previous revision:

kubectl rollout undo deployment app-deployment

You should see the following response:

deployment.apps/app-deployment rolled back

As we can see in this output, the Deployment has not been rolled back to the
previous revision. To practice, we may want to roll back to a revision different
from the previous revision. We can use the --to-revision flag to specify the
revision number to which we want to roll back. For example, in the preceding
case, we could have used the following command and the result would have
been exactly the same:

kubectl rollout undo deployment app-deployment --to-revision=2

12. Run the following command to check the rollout history of the
Deployment again:

kubectl rollout history deployment app-deployment

You should see the following output:

Figure 7.12: The rollout history for the Deployment after rollback

308 | Kubernetes Controllers

We can see in this output that a new revision was created, which applied the
revision that was previously revision 2. We can see that revision 2 is no longer
present in the list of revisions. This is because rollouts are always done in a
rolling-forward manner. This means that any time we update a revision, a new
revision of a higher number is created. Similarly, in the case of a rollback to
revision 2, revision 2 became revision 4.

In this exercise, we explored a lot of different possible operations relating to updating
a Deployment, rolling it forward with some changes, tracking the history of a
Deployment, undoing some changes, and rolling back to a previous revision.

StatefulSets
StatefulSets are used to manage stateful replicas. Similar to a Deployment, a
StatefulSet creates and manages the specified number of Pod replicas from an
identical Pod template. However, where StatefulSets differ from Deployments is that
they maintain a unique identity for each of their Pods. So, even if all the Pods are of
identical specs, they are not interchangeable. Each of the Pods has a sticky identity
that can be used by the application code to manage the state of the application on
a particular Pod. For a StatefulSet with n replicas, each Pod is assigned a unique
integer ordinal between 0 and n – 1. The names of the Pods reflect the integer identity
assigned to them. When a StatefulSet is created, all the Pods are created in the order
of their integer ordinal.

Each of the Pods managed by a StatefulSet will persist their sticky identity (integer
ordinal) even if the Pod restarts. For example, if a particular Pod crashes or is deleted,
a new Pod will be created and assigned the same sticky identity as that of the old Pod.

StatefulSet Configuration

The configuration of a StatefulSet is also very similar to that of a ReplicaSet. Here's an
example of StatefulSet configuration:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: example-statefulset

spec:

 replicas: 3

 selector:

 matchLabels:

 environment: production

DaemonSets | 309

 template:

 metadata:

 labels:

 environment: production

 spec:

 containers:

 - name: name-container

 image: image_name

As we can see in the preceding configuration, apiVersion for a StatefulSet is
apps/v1 and kind is StatefulSet. The rest of the fields are used in the same
way as for ReplicaSets.

Note

You will learn how to implement StatefulSets on a multi-node cluster in
Chapter 14, Running Stateful Components in Kubernetes.

Use Cases for StatefulSets

• StatefulSets are useful if you need persistent storage. Using a StatefulSet, you
can partition the data and store it in different Pods. In this case, it would also be
possible for a Pod to go down and a new Pod come up with the same identity
and have the same partition of data previously stored by the old Pod.

• A StatefulSet can also be used if you require ordered updates or scaling.
For example, if you want to create or update your Pods in the order of the
identities assigned to them, using a StatefulSet is a good idea.

DaemonSets
DaemonSets are used to manage the creation of a particular Pod on all or a selected
set of nodes in a cluster. If we configure a DaemonSet to create Pods on all nodes,
then if new nodes are added to the cluster, new pods will be created to run on these
new nodes. Similarly, if some nodes are removed from the cluster, the Pods running
on these nodes will be destroyed.

310 | Kubernetes Controllers

Use Cases for DaemonSets

• Logging: One of the most common use cases for a DaemonSet is to manage
running a log collection Pod on all nodes. These Pods can be used to collect logs
from all the nodes and then process them in a log processing pipeline.

• Local data caching: A DaemonSet can also be used to manage caching Pods on
all the nodes. These Pods can be used by other application Pods to store the
cached data temporarily.

• Monitoring: Another use case for a DaemonSet is to manage running monitoring
Pods on all the nodes. This can be used to collect system- or application-level
metrics for Pods running on a particular node.

DaemonSet Configuration

The configuration of a DaemonSet is also very similar to that of a ReplicaSet or a
Deployment. Here's an example of DaemonSet configuration:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: daemonset-example

 labels:

 app: daemonset-example

spec:

 selector:

 matchLabels:

 app: daemonset-example

 template:

 metadata:

 labels:

 app: daemonset-example

 spec:

 containers:

 - name: busybox-container

 image: busybox

 args:

 - /bin/sh

 - -c

 - sleep 10000

Jobs | 311

As we can see in the preceding configuration, apiVersion for a DaemonSet is set to
apps/v1 and kind is set to DaemonSet. The rest of the fields are used in the same
way as for ReplicaSets.

To limit the scope of this book, we will not cover the details for
implementing DaemonSets.

Up until now in this chapter, you have learned about ReplicaSets, which help us
manage several replicas of Pods running an application, and how a Deployment acts
as a wrapper on a ReplicaSet to add some features to control rolling out updates
and maintaining the update history, with the option of rolling back if needed. Then,
we learned about StatefulSets, which are handy if we need to treat each replica as a
unique entity. We also learned how DaemonSets allow us to schedule a Pod on each
of our nodes.

All of these controllers have one common characteristic—they are useful for
applications or workloads that are to be run continually. However, some workloads
have a graceful conclusion, and there is no need to keep the Pods running after the
task is done. For this, Kubernetes has a controller called a Job. Let's take a look at this
in the following section.

Jobs
A Job is a supervisor in Kubernetes that can be used to manage Pods that are
supposed to run a determined task and then terminate gracefully. A Job creates
the specified number of Pods and ensures that they successfully complete their
workloads or tasks. When a Job is created, it creates and tracks the Pods that were
specified in its configuration. When a specified number of Pods complete successfully,
the Job is considered complete. If a Pod fails because of underlying node failures, the
Job will create a new Pod to replace it. This also means that the application or code
running on the Pod should be capable of gracefully handling a case where a new Pod
comes up during the runtime of the process.

The Pods created by a Job aren't deleted following completion of the job. The Pods
run to completion and stay in the cluster with a Completed status.

312 | Kubernetes Controllers

A Job can be used in several different ways:

• The simplest use case is to create a Job that runs only one Pod to completion.
The Job will only create additional new Pods if the running pod fails. For example,
a Job can be used for one-off or recurring data analysis work or for the training
of a machine learning model.

• Jobs can also be used for parallel processing. We can specify more than one
successful Pod completion to ensure that the Job will complete only when a
certain number of Pods have terminated successfully.

Job Configuration

The configuration of a Job follows a similar pattern to that of a ReplicaSet or a
Deployment. Here's an example of Job configuration:

apiVersion: batch/v1

kind: Job

metadata:

 name: one-time-job

spec:

 template:

 spec:

 containers:

 - name: busybox-container

 image: busybox

 args:

 - /bin/sh

 - -c

 - date

 restartPolicy: OnFailure

The apiVersion field for a Job object is set to batch/v1. The batch API group
contains objects relating to batch processing jobs. The kind field is set to Job.

Jobs | 313

A Use Case for Jobs in Machine Learning

Jobs are perfect for batch processes—processes that run for a certain amount of
time before exiting. This makes Jobs ideal for many types of production machine
learning tasks, such as feature engineering, cross-validation, model training, and
batch inference. For instance, you can create a Kubernetes Job that trains a machine
learning model and persists the model and training metadata to external storage.
Then, you can create another Job to perform batch inference. This Job would create a
Pod that fetches the pre-trained model from storage, loads both the model and data
into memory, performs inference, and stores the predictions.

Exercise 7.07: Creating a Simple Job That Finishes in Finite Time

In this exercise, we will create our first Job, which will run a container that simply
waits for 10 seconds and then finishes.

To successfully complete this exercise, perform the following steps:

1. Create a file called one-time-job.yaml with the following content:

apiVersion: batch/v1

kind: Job

metadata:

 name: one-time-job

spec:

 template:

 spec:

 containers:

 - name: busybox-container

 image: busybox

 args:

 - /bin/sh

 - -c

 - date; sleep 20; echo "Bye"

 restartPolicy: OnFailure

2. Run the following command to create the Deployment using the kubectl
apply command:

kubectl apply -f one-time-job.yaml

You should see the following response:

job.batch/one-time-job created

314 | Kubernetes Controllers

3. Run the following command to check the status of the Job:

kubectl get jobs

You should see a response similar to this:

NAME COMPLETIONS DURATION AGE

one-time-job 0/1 3s 3s

We can see that the Job requires one completion and is not yet completed.

4. Run the following command to check the Pod running the Job:

kubectl get pods

Note that you should run this before the Job is complete to see the response
shown here:

NAME READY STATUS RESTARTS AGE

one-time-job-bzz8l 1/1 Running 0 7s

We can see that the Job has created a Pod named one-time-job-bzz8l to
run the task specified in the Job template.

5. Next, run the following command to check the logs for the Pod created by
the Job:

kubectl logs -f <pod_name>

You should see logs similar to the following:

Sun Nov 10 15:20:19 UTC 2019

Bye

We can see that the Pod printed the date, waited for 20 seconds, and then
printed Bye in the terminal.

6. Let's check the status of the Job again by using the following command:

kubectl get job one-time-job

You should see a response similar to this:

NAME COMPLETIONS DURATION AGE

one-time-job 1/1 24s 14m

We can see that the Job has now been completed.

Jobs | 315

7. Run the following command to verify that the Pod has run to completion:

kubectl get pods

You should see a response similar to this:

NAME READY STATUS RESTARTS AGE

one-time-job-whw79 0/1 Completed 0 32m

We can see that the Pod has a Completed status.

8. Run the following command to delete the job (as well as the Pod it created)
for cleanup:

kubectl delete job one-time-job

You should see the following response:

job.batch "one-time-job" deleted

In this exercise, we created a one-time Job and verified that the Pod created by
the Job runs to completion. Implementing Jobs for parallel tasks is a bit more
complicated, and we will leave that out of this workshop for brevity.

Next, let's wrap this chapter up with an activity where we will create a Deployment
and bring together several ideas learned in this chapter.

Activity 7.01: Creating a Deployment Running an Application

Consider a scenario where the product/application team you're working with is now
ready to put their application in production and they need your help to deploy it in a
replicated and reliable manner. For the scope of this exercise, consider the following
requirements for the application:

• The default number of replicas should be 6.

• For simplicity, you can use the nginx image for the container running in
the Pod.

• Make sure all the Pods have the following two labels with corresponding values:

chapter=controllers

activity=1

• The update strategy for the Deployment should be RollingUpdate. At worst,
no more than half of the Pods can be down, and similarly, at no point should
there be more than 150% of the desired count of Pods.

316 | Kubernetes Controllers

You should be able to perform the following tasks once the Deployment has
been created:

• Scale up the number of replicas to 10.

• Scale down the number of replicas to 5.

Note

Ideally, you would want to create this Deployment to be in a different
namespace to keep it separate from the rest of the stuff that you created
during the previous exercises. So, feel free to create a namespace and
create the Deployment in that namespace.

The following are the high-level steps to perform this activity:

1. Create a namespace for this activity.

2. Write the Deployment configuration. Ensure that it meets all the requirements
that are specified.

3. Create the Deployment using the configuration from the previous step.

4. Verify that six Pods were created by the Deployment.

5. Perform both of the tasks mentioned previously and verify the number of Pods
after performing each step.

You should be able to get the list of Pods to check whether you can scale up the
number of Pods, as shown in the following image:

Figure 7.13: Checking whether the number of Pods is scaled up

Summary | 317

Similarly, you should also be able to scale down and check the number of Pods,
as shown here:

Figure 7.14: Checking whether the number of Pods is scaled down

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
Kubernetes treats Pods as ephemeral entities, and ideally you would not deploy
any application or a microservice in an individual Pod. Kubernetes offers various
controllers to leverage various benefits, including automatic replication, health
monitoring, and automatic scaling.

In this chapter, we covered different kinds of controllers and understood when to
use each of them. We created ReplicaSets and observed how they manage Pods. We
learned when to use DaemonSets and StatefulSets. We also created a Deployment
and learned how we can scale up and down the number of replicas and roll back
to an earlier version of the Deployment. Finally, we learned how to create Jobs for
one-time tasks. All of these controllers come into play when you want to deploy a
production-ready application or workload, as you will see in the upcoming chapters.

In the next chapter, we will see how we can discover and access the Pods or replicas
managed by a Deployment or a ReplicaSet.

https://packt.live/304PEoD

Overview

In this chapter, we will take a look at how to route traffic between the
various kinds of objects that we have created in previous chapters and
make them discoverable from both within and outside our cluster. This
chapter also introduces the concept of Kubernetes Services and explains
how to use them to expose the application deployed using controllers such
as Deployments. By the end of this chapter, you will be able to make your
application accessible to the external world. You will also know about the
different types of Services and be able to use them to make different sets of
pods interact with each other.

Service Discovery

8

320 | Service Discovery

Introduction
In the past few chapters, we learned about Pods and Deployments, which help us run
containerized applications. Now that we are equipped to deploy our applications, in
this chapter, we will take a look at some API objects that help us with the networking
setup to ensure that our users can reach our application and that the different
components of our application, as well as different applications, can work together.

As we have seen in the previous chapters, each Kubernetes Pod gets its IP address.
However, setting up networking and connecting everything is not as simple as coding
in Pod IP addresses. We can't rely on a single Pod to run our applications reliably.
Due to this, we use a Deployment to ensure that, at any given moment, we will have
a fixed number of specific kinds of Pods running in the cluster. However, this means
that during the runtime of our application, we can tolerate the failure of a certain
number of Pods as new pods are automatically created to replace them. Hence,
the IP addresses of these Pods don't stay the same. For example, if we have a set
of Pods running the frontend application that need to talk to another set of Pods
running the backend application inside our cluster, we need to find a way to make
the Pods discoverable.

To solve this problem, we use Kubernetes Services. Services allow us to make a logical
set of Pods (for example, all pods managed by a Deployment) discoverable and
accessible for other Pods running inside the same cluster or to the external world.

Service
A Service defines policies by which a logical set of Pods can be accessed. Kubernetes
Services enable communication between various components of our application, as
well as between different applications. Services help us connect the application with
other applications or users. For example, let's say we have a set of Pods running the
frontend of an application, a set of Pods running the backend, and another set of
Pods connecting the data source. The frontend is the one that users need to interact
with directly. The frontend then needs to connect to the backend, which, in turn,
needs to talk to the external data source.

Consider you are making a survey app that also allows users to make visualizations
based on their survey results. Using a bit of simplification, we can imagine three
Deployments – one that runs the forms' frontend to collect the data, another that
validates and stores the data, and a third one that runs the data visualization
application. The following diagram should help you visualize how Services would
come into the picture for routing traffic and exposing different components:

Service | 321

Figure 8.1: Using Services to route traffic into and within the cluster

Hence, the abstraction of Services helps in keeping the different parts of the
application decoupled and enables communication between them. In legacy
(non-Kubernetes) environments, you may expect different components to be linked
together by the IP addresses of different VMs or bare-metal machines running
different resources. When working with Kubernetes, the predominant way of
linking different resources together is using labels and label selectors, which allows
a Deployment to easily replace failed Pods or scale the number of Deployments
as needed. Thus, you can think of a Service as a translation layer between the IP
addresses and label selector-based mechanism of linking different resources. Hence,
you just need to point toward a Service, and it will take care of routing the traffic to
the appropriate application, regardless of how many replica Pods are associated with
the application or which nodes these Pods are running on.

322 | Service Discovery

Service Configuration

Similar to the configuration of Pods, ReplicaSets, and Deployments, the configuration
for a Service also contains four high-level fields; that is, apiVersion, kind,
metadata, and spec.

Here is an example manifest for a Service:

apiVersion: v1

kind: Service

metadata:

 name: sample-service

spec:

 ports:

 - port: 80

 targetPort: 80

 selector:

 key: value

For a Service, apiVersion is v1 and kind will always be Service. In the
metadata field, we will specify the name of the Service. In addition to the name,
we can also add labels and annotations in the metadata field.

The content of the spec field depends on the type of Service we want to create. In
the next section, we will go through the different types of Services and understand
various parts of the spec field regarding the configuration.

Types of Services

There are four different types of Services:

• NodePort: This type of Service makes internal Pod(s) accessible on a port on the
node on which the Pod(s) are running.

• ClusterIP: This type of Service exposes the Service on a certain IP inside the
cluster. This is the default type of Service.

• LoadBalancer: This type of Service exposes the application externally using the
load balancer provided by the cloud provider.

• ExternalName: This type of Service points to a DNS rather than a set of Pods.
The other types of Services use label selectors to select the Pods to be exposed.
This is a special type of Service that doesn't use any selectors by default.

We will take a closer look at all these Services in the following sections.

Service | 323

NodePort Service

A NodePort Service exposes the application on the same port on all the nodes in the
cluster. The Pods may be running across all or some of the nodes in the cluster.

In a simplified case where there's only one node in the cluster, the Service exposes all
the selected Pods on the port configured in the Service. However, in a more practical
case, where the Pods may be running on multiple nodes, the Service spans across all
the nodes and exposes the Pods on the specific port on all the nodes. This way, the
application can be accessed from outside the Kubernetes cluster using the following
IP/port combination: <NodeIP>:<NodePort>.

A config file for a sample Service would look like this:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 type: NodePort

 ports:

 - targetPort: 80

 port: 80

 nodePort: 32023

 selector:

 app: nginx

 environment: production

As we can see, there are three ports involved in the definition of a NodePort Service.
Let's take a look at these:

• targetPort: This field represents the port where the application running on
the Pods is exposed. This is the port that the Service forwards the request to.
By default, targetPort is set to the same value as the port field.

• port: This field represents the port of the Service itself.

• nodePort: This field represents the port on the node that we can use to access
the Service itself.

324 | Service Discovery

Besides the ports, there's also another field called selector in the Service spec
section. This section is used to specify the labels that a Pod needs to have in order
to be selected by a Service. Once this Service is created, it will identify all the Pods
that have the app: nginx and environment: production labels and
add endpoints for all such Pods. We will look at endpoints in more detail in the
following exercise.

Exercise 8.01: Creating a Simple NodePort Service with Nginx Containers

In this exercise, we will create a simple NodePort Service with Nginx containers.
Nginx containers, by default, expose port 80 on the Pod with an HTML page saying
Welcome to nginx!. We will make sure that we can access that page from a
browser on our local machine.

To successfully complete this exercise, perform the following steps:

1. Create a file called nginx-deployment.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 strategy:

 type: Recreate

 selector:

 matchLabels:

 app: nginx

 environment: production

 template:

 metadata:

 labels:

 app: nginx

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

Service | 325

2. Run the following command to create the Deployment using the
kubectl apply command:

kubectl apply -f nginx-deployment.yaml

You should get the following output:

deployment.apps/nginx-deployment created

As we can see, nginx-deployment has been created.

3. Run the following command to verify that the Deployment has created
three replicas:

kubectl get pods

You should see a response similar to the following:

Figure 8.2: Getting all Pods

4. Create a file called nginx-service-nodeport.yaml with the
following content:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service-nodeport

spec:

 type: NodePort

 ports:

 - port: 80

 targetPort: 80

 nodePort: 32023

 selector:

 app: nginx

 environment: production

326 | Service Discovery

5. Run the following command to create the Service:

kubectl create -f nginx-service-nodeport.yaml

You should see the following output:

service/nginx-service-nodeport created

Alternatively, we can use the kubectl expose command to expose a
Deployment or a Pod using a Kubernetes Service. The following command will
also create a NodePort Service named nginx-service-nodeport, with
port and targetPort set to 80. The only difference is that this command
doesn't allow us to customize the nodePort field. nodePort is automatically
allocated when we create the Service using the kubectl expose command:

kubectl expose deployment nginx-deployment --name=nginx-service-
nodeport --port=80 --target-port=80 --type=NodePort

If we use this command to create the Service, we will be able to figure out what
nodePort was automatically assigned to the Service in the following step.

6. Run the following command to verify that the Service was created:

kubectl get service

This should give a response similar to the following:

Figure 8.3: Getting the NodePort Service

You can ignore the additional Service named kubernetes, which already
existed before we created our Service. This Service is used to expose the
Kubernetes API of the cluster internally.

7. Run the following command to verify that the Service was created with the
correct configuration:

kubectl describe service nginx-service-nodeport

Service | 327

This should give us the following output:

Figure 8.4: Describing the NodePort Service

In the highlighted sections of the output, we can confirm that the Service was
created with the correct Port, TargetPort, and NodePort fields.

There's also another field called Endpoints. We can see that the value of
this field is a list of IP addresses; that is, 172.17.0.3:80, 172.17.0.4:80,
and 172.17.0.5:80. Each of these IP addresses points to the IP addresses
allocated to the three Pods created by nginx-deployment, along with the
target ports exposed by all of those Pods. We can use the custom-columns
output format alongside the kubectl get pods command to get the IP
addresses for all three pods. We can create a custom column output using the
status.podIP field, which contains the IP address of a running Pod.

8. Run the following command to see the IP addresses of all three Pods:

kubectl get pods -o custom-columns=IP:status.podIP

You should see the following output:

IP

172.17.0.4

172.17.0.3

172.17.0.5

Hence, we can see that the Endpoints field of the Service actually points to the
IP addresses of our three Pods.

328 | Service Discovery

As we know in the case of a NodePort Service, we can access the Pod's
application using the IP address of the node and the port exposed by the Service
on the node. To do this, we need to find out the IP address of the node in the
Kubernetes cluster.

9. Run the following command to get the IP address of the Kubernetes cluster
running locally:

minikube ip

You should see the following response:

192.168.99.100

10. Run the following command to send a request to the IP address we obtained
from the previous step at port 32023 using curl:

curl 192.168.99.100:32023

You should get a response from Nginx like so:

Figure 8.5: Sending a curl request to check the NodePort Service

Service | 329

11. Finally, open your browser and enter 192.168.99.100:32023 to make sure
we can get to the following page:

Figure 8.6: Accessing the application in a browser

Note

Ideally, you would want to create the objects for each exercise and activity
in different namespaces to keep them separate from the rest of your
objects. So, feel free to create a namespace and create the Deployment in
that namespace. Alternatively, you can ensure that you clean up any objects
shown in the following commands so that there is no interference.

12. Delete both the Deployment and the Service to ensure you're working on the
clean ground for the rest of the exercises in this chapter:

kubectl delete deployment nginx-deployment

You should see the following response:

deployment.apps "nginx-deployment" deleted

Now, delete the Service using the following command:

kubectl delete service nginx-service-nodeport

You should see this response:

service "nginx-service-nodeport" deleted

In this exercise, we have created a Deployment with three replicas of the Nginx
container (this can be replaced with any real application running in the container)
and exposed the application using the NodePort Service.

330 | Service Discovery

ClusterIP Service

As we mentioned earlier, a ClusterIP Service exposes the application running on the
Pods on an IP address that's accessible from inside the cluster only. This makes the
ClusterIP Service a good type of Service to use for communication between different
types of Pods inside the same cluster.

For example, let's consider our earlier example of a simple survey application.
Let's say we have a survey application that serves the frontend to show the forms to
the users where they can fill in the surveys. It's running on a set of Pods managed
by the survey-frontend Deployment. We also have another application that is
responsible for validating and storing the data filled by the users. It's running on
a set of Pods managed by the survey-backend Deployment. This backend
application needs to be accessed internally by the survey frontend application.
We can use a ClusterIP Service to expose the backend application so that the
frontend Pods can easily access the backend application using a single IP address
for that ClusterIP Service.

Service Configuration

Here's an example of what the configuration for a ClusterIP Service looks like:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 type: ClusterIP

 ports:

 - targetPort: 80

 port: 80

 selector:

 app: nginx

 environment: production

The type of Service is set to ClusterIP. Only two ports are needed for this
type of the Service: targetPort and port. These represent the port where the
application is exposed on the Pod and the port where the Service is created on a
given cluster IP, respectively.

Service | 331

Similar to the NodePort Service, the ClusterIP Service's configuration also needs a
selector section, which is used to decide which Pods to select by the Service. In
this example, this Service will select all the Pods that have both app: nginx and
environment: production labels. We will create a simple ClusterIP Service in
the following exercise based on a similar example.

Exercise 8.02: Creating a Simple ClusterIP Service with Nginx Containers

In this exercise, we will create a simple ClusterIP Service with Nginx containers.
Nginx containers, by default, expose port 80 on the Pod with an HTML page saying
Welcome to nginx!. We will make sure that we can access that page from inside
the Kubernetes cluster using the curl command. Let's get started:

1. Create a file called nginx-deployment.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 strategy:

 type: Recreate

 selector:

 matchLabels:

 app: nginx

 environment: production

 template:

 metadata:

 labels:

 app: nginx

 environment: production

 spec:

 containers:

 - name: nginx-container

 image: nginx

332 | Service Discovery

2. Run the following command to create the Deployment using the
kubectl apply command:

kubectl create -f nginx-deployment.yaml

You should see the following response:

deployment.apps/nginx-deployment created

3. Run the following command to verify that the Deployment has created
three replicas:

kubectl get pods

You should see output similar to the following:

Figure 8.7: Getting all the Pods

4. Create a file called nginx-service-clusterip.yaml with the
following content:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service-clusterip

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 80

 selector:

 app: nginx

 environment: production

5. Run the following command to create the Service:

kubectl create -f nginx-service-clusterip.yaml

You should see the following response:

service/nginx-service-clusterip created

Service | 333

6. Run the following command to verify that the Service was created:

kubectl get service

You should see the following response:

Figure 8.8: Getting the ClusterIP Service

7. Run the following command to verify that the Service has been created with the
correct configuration:

kubectl describe service nginx-service-clusterip

You should see the following response:

Figure 8.9: Describing the ClusterIP Service

We can see that the Service has been created with the correct Port and
TargetPort fields. In the Endpoints field, we can see the IP addresses
of the Pods, along with the target ports on those Pods.

334 | Service Discovery

8. Run the following command to see the IP addresses of all three Pods:

kubectl get pods -o custom-columns=IP:status.podIP

You should see the following response:

IP

172.17.0.5

172.17.0.3

172.17.0.4

Hence, we can see that the Endpoints field of the Service actually points to the
IP addresses of our three Pods.

9. Run the following command to get the cluster IP of the Service:

kubectl get service nginx-service-clusterip

This results in the following output:

Figure 8.10: Getting the cluster IP from the Service

As we can see, the Service has a cluster IP of 10.99.11.74.

We know that, in the case of a ClusterIP Service, we can access the application
running on its endpoints from inside the cluster. So, we need to go inside the
cluster to be able to check whether this really works.

10. Run the following command to access the minikube node via SSH:

minikube ssh

You will see the following response:

Figure 8.11: SSHing into the minikube node

Service | 335

11. Now that we are inside the cluster, we can try to access the cluster IP address of
the Service and see whether we can access the Pods running Nginx:

curl 10.99.11.74

You should see the following response from Nginx:

Figure 8.12: Sending a curl request to the Service from inside the cluster

Here, we can see that curl returns the HTML code for the default Nginx landing
page. Thus, we can successfully access our Nginx Pods. Next, we will delete the
Pods and Services.

12. Run the following command to exit the SSH session inside minikube:

exit

13. Delete the Deployment and the Service to ensure you're working on the clean
ground for the following exercises in this chapter:

kubectl delete deployment nginx-deployment

336 | Service Discovery

You should see the following response:

deployment.apps "nginx-deployment" deleted

Delete the Service using the following command:

kubectl delete service nginx-service-clusterip

You should see the following response:

service "nginx-service-clusterip" deleted

In this exercise, we were able to expose the application running on multiple Pods
on a single IP address. This can be accessed by all the other Pods running inside the
same cluster.

Choosing a Custom IP Address for the Service

In the previous exercise, we saw that the Service was created with a random available
IP address inside the Kubernetes cluster. We can also specify an IP address if we
want. This may be particularly useful if we already have a DNS entry for a particular
address and we want to reuse that for our Service.

We can do this by setting the spec.clusterIP field with a value of the IP address
we want the Service to use. The IP address specified in this field should be a valid IPv4
or IPv6 address. If an invalid IP address is used to create the Service, the API server
will return an error.

Exercise 8.03: Creating a ClusterIP Service with a Custom IP

In this exercise, we will create a ClusterIP Service with a custom IP address. We will
try a random IP address. As in the previous exercise, we will make sure that we can
access the default Nginx page from inside the Kubernetes cluster by using the curl
command to the set IP address. Let's get started:

1. Create a file called nginx-deployment.yaml with the same content that we
used in the previous exercises in this chapter.

2. Run the following command to create the Deployment:

kubectl create -f nginx-deployment.yaml

You should see the following response:

deployment.apps/nginx-deployment created

Service | 337

3. Create a file named nginx-service-custom-clusterip.yaml with the
following content:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service-custom-clusterip

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 80

 clusterIP: 10.90.10.70

 selector:

 app: nginx

 environment: production

This uses a random ClusterIP value at the moment.

4. Run the following command to create a Service with the preceding configuration:

kubectl create -f nginx-service-custom-clusterip.yaml

You should see the following response:

Figure 8.13: Service creation failure due to incorrect IP address

As we can see, the command gives us an error because the IP address we used
(10.90.10.70) isn't in the valid IP range. As highlighted in the preceding
output, the valid IP range is 10.96.0.0/12.

338 | Service Discovery

We can actually find this valid range of IP addresses before creating the Service
using the kubectl cluster-info dump command. It provides a lot of
information that can be used for cluster debugging and diagnosis. We can filter
for the service-cluster-ip-range string in the output of the command
to find out the valid ranges of IP addresses we can use in a cluster. The following
command will output the valid IP range:

kubectl cluster-info dump | grep -m 1 service-cluster-ip-range

You should see the following output:

"--service-cluster-ip-range=10.96.0.0/12",

We can then use the appropriate IP address for clusterIP for our Service.

5. Modify the nginx-service-custom-clusterip.yaml file by changing the
value of clusterIP to 10.96.0.5 since that's one of the valid values:

apiVersion: v1

kind: Service

metadata:

 name: nginx-service-custom-clusterip

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 80

 clusterIP: 10.96.0.5

 selector:

 app: nginx

 environment: production

6. Run the following command to create the Service again:

kubectl create -f nginx-service-custom-clusterip.yaml

You should see the following output:

service/nginx-service-custom-clusterip created

We can see that the Service has been created successfully.

Service | 339

7. Run the following command to ensure that the Service was created with the
custom ClusterIP we specified in the configuration:

kubectl get service nginx-service-custom-clusterip

You should see the following output:

Figure 8.14: Getting the ClusterIP from the Service

Here, we can confirm that the Service was indeed created with the IP address
mentioned in the configuration; that is, 10.96.0.5.

8. Next, let's confirm that we can access the Service using the custom IP address
from inside the cluster:

minikube ssh

You should see the following response:

Figure 8.15: SSHing into the minikube node

9. Now, run the following command to send a request to 10.96.0.5:80
using curl:

curl 10.96.0.5

340 | Service Discovery

We intentionally skipped the port number (80) in the curl request because,
by default, curl assumes the port number to be 80. If the Service were using
a different port number, we would have to specify that in the curl request
explicitly. You should see the following output:

Figure 8.16: Sending a curl request to a Service from the minikube node

Thus, we can see that we are able to access our Service from inside the cluster and
that that service can be accessed at the IP address that we defined for clusterIP.

LoadBalancer Service

A LoadBalancer Service exposes the application externally using the load
balancer provided by the cloud provider. This type of Service has no default local
implementation and can only be deployed using a cloud provider. The cloud
providers provision a load balancer when a Service of the LoadBalancer
type is created.

Service | 341

Thus, a LoadBalancer Service is basically a superset of the NodePort Service.
The LoadBalancer Service uses the implementation offered by the cloud provider
and assigns an external IP address to the Service.

The configuration of a LoadBalancer Service depends on the cloud provider.
Each cloud provider requires you to add a particular set of metadata in the
form of annotations. Here's a simplified example of the configuration for a
LoadBalancer Service:

apiVersion: v1

kind: Service

metadata:

 name: loadbalancer-service

spec:

 type: LoadBalancer

 clusterIP: 10.90.10.0

 ports:

 - targetPort: 8080

 port: 80

 selector:

 app: nginx

 environment: production

ExternalName Service

The ExternalName Service maps a Service to a DNS name. In the case of the
ExternalName Service, there's no proxying or forwarding. Redirecting the
request happens at the DNS level instead. When a request comes for the Service,
a CNAME record is returned with the value of the DNS name that was set in the
Service configuration.

The configuration of the ExternalName Service doesn't contain any selectors.
It looks as follows:

apiVersion: v1

kind: Service

metadata:

 name: externalname-service

spec:

 type: ExternalName

 externalName: my.example.domain.com

342 | Service Discovery

The preceding Service template maps externalname-service to a DNS name;
for example, my.example.domain.com.

Let's say you're migrating your production applications to a new Kubernetes cluster.
A good approach is to start with stateless parts and move them to a Kubernetes
cluster first. During the migration process, you will need to make sure those stateless
parts in the Kubernetes cluster can still access the other production Services, such
as database storage or other backend Services/APIs. In such a case, we can simply
create an ExternalName Service so that our Pods from the new cluster can still access
resources from the old cluster, which are outside the bounds of the new cluster.
Hence, ExternalName provides communication between Kubernetes applications
and external Services running outside the Kubernetes cluster.

Ingress
Ingress is an object that defines rules that are used to manage external access to the
Services in a Kubernetes cluster. Typically, Ingress acts like a middleman between the
internet and the Services running inside a cluster:

Figure 8.17: Ingress

Ingress | 343

You will learn much more about Ingress and the major motivations for using it in
Chapter 12, Your Application and HA. Due to this, we will not cover the implementation
of Ingress here.

Now that we have learned about the different types of Services in Kubernetes,
we will implement all of them to get an idea of how they would work together
in a real-life scenario.

Activity 8.01: Creating a Service to Expose the Application Running on a Pod

Consider a scenario where the product team you're working with has created a
survey application that has two independent and decoupled components – a frontend
and a backend. The frontend component of the survey application renders the
survey forms and needs to be exposed to external users. It also needs to
communicate with the backend component, which is responsible for
validating and storing the survey's responses.

For the scope of this activity, consider the following tasks:

1. To avoid overcomplicating this activity, you can deploy the Apache server
(https://hub.docker.com/_/httpd) as the frontend, and we can treat its default
placeholder home page as the component that should be visible to the survey
applicants. Expose the frontend application so that it's accessible on the host
node at port 31000.

2. For the backend application, deploy an Nginx server. We will treat the default
home page of Nginx as the page that you should be able to see from the
backend. Expose the backend application so that it's accessible for the
frontend application Pods in the same cluster.

Both Apache and Nginx are exposed at port 80 on the Pods by default.

Note

We are using Apache and Nginx here to keep the activity simple. In a
real-world scenario, these two would be replaced with the frontend survey
site and the backend data analysis component of your survey application,
along with a database component for storing all the survey data.

https://hub.docker.com/_/httpd

344 | Service Discovery

3. To make sure frontend applications are aware of the backend application
Service, add an environment variable to the frontend application Pods that
contain the IP and the port address of the backend Service. This will ensure that
the frontend applications know where to send a request to backend applications.

To add environment variables to a Pod, we can add a field named env to the
spec section of a Pod configuration that contains a list of name and value pairs
for all the environment variables we want to add. Here's an example of how
to add an environment variable called APPLICATION_TYPE with a value
of Frontend:

apiVersion: v1

kind: Pod

metadata:

 name: environment-variables-example

 labels:

 application: frontend

spec:

 containers:

 - name: apache-httpd

 image: httpd

 env:

 - name: APPLICATION_TYPE

 value: "Frontend"

Note

We used something called a ConfigMap to add an environment variable
here. We will learn more about them in Chapter 10, ConfigMaps and Secrets.

4. Let's assume that, based on load testing the application, you have estimated that
you'll initially need five replicas of the frontend application and four replicas of
the backend application.

The following are the high-level steps you will need to perform in order to complete
this activity:

1. Create a namespace for this activity.

2. Write an appropriate Deployment configuration for the backend application and
create the Deployment.

Summary | 345

3. Write an appropriate Service configuration for the backend application with the
appropriate Service type and create the Service.

4. Ensure that the backend application is accessible, as expected.

5. Write an appropriate Deployment configuration for the frontend application.
Make sure it has the environment variables set for the IP address and the port
address for the backend application Service.

6. Create a deployment for the frontend application.

7. Write an appropriate Service configuration for the frontend application with the
appropriate service type and create the Service.

8. Ensure that the frontend application is accessible as expected on port 31000 on
the host node.

Expected Output:

At the end of the exercise, you should be able to access the frontend application in
the browser using the host IP address at port 31000. You should see the following
output in your browser:

Figure 8.18: Expected output of Activity 8.01

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
In this chapter, we covered the different ways in which we can expose our application
running on Pods. We have seen how we can use a ClusterIP Service to expose an
application inside the cluster. We have also seen how we can use a NodePort Service
to expose an application outside the cluster. We have also covered the LoadBalancer
and ExternalName Services in brief.

Now that we have created a Deployment and learned how to make it accessible
from the external world, in the next chapter, we will focus on storage aspects.
There, we will cover reading and storing data on disk, in and across Pods.

https://packt.live/304PEoD

Overview

This chapter introduces the concept of using Volumes to store or read data
from the containers running inside pods. By the end of this chapter, you will
be able to create Volumes to temporarily store data in a pod independent of
a container's life cycle, as well as share the data among different containers
inside the same pod. You will also learn how to use PersistentVolumes
(PVs) to store data on your cluster independent of the pod life cycle. We will
also cover how to create PersistentVolumeClaims (PVCs) to dynamically
provision volumes and use them inside a pod.

Storing and Reading Data on

Disk

9

348 | Storing and Reading Data on Disk

Introduction
In previous chapters, we created Deployments to create multiple replicas of our
application and exposed our application using Services. However, we have not yet
properly explored how Kubernetes facilitates applications to store and read data,
which is the subject of this chapter.

In practice, most applications interact with data in some way. It's possible that we
may have an application that needs to read data from a file. Similarly, our application
may need to write some data locally in order for other parts of the application, or
different applications, to read it. For example, if we have a container running our
main application that produces some logs locally, we would want to have a sidecar
container (which is a second container running inside the pod along with the main
application container) that can run inside the same pod to read and process the local
logs produced by the main application. However, to enable this, we need to find a
way to share the storage among different containers in the same pod.

Let's say we are training a machine learning model in a pod. During the intermediate
stages of the model training, we would need to store some data locally on a disk.
Similarly, the end result – the trained model – will need to be stored on a disk, such
that it can be retrieved later even once the pod terminates. For this use case, we need
some way of allocating some storage to the pod such that the data written in that
storage exists even beyond the life cycle of the pod.

Similarly, we may have some data that needs to be written or read by multiple
replicas of the same application. This data should also persist when some of such
pod replicas crash and/or restart. For example, if we have an e-commerce website,
we may want to store the user data, as well as inventory records, in a database. This
data will need to be persisted across pod restarts as well as Deployment updates
or rollbacks.

To serve these purposes, Kubernetes provides an abstraction called Volume.
A PersistentVolume (PV) is the most common type of Volume that you will
encounter. In this chapter, we will cover this, as well as many other types of
Volumes. We will learn how to use them and provision them on-demand.

Volumes
Let's say we have a pod that stores some data locally on a disk. Now, if the container
that's storing the data crashes and is restarted, the data will be lost. The new
container will start with an empty disk space allocated. Thus, we cannot rely on
containers themselves even for the temporary storage of data.

Volumes | 349

We may also have a case where one container in a pod stores some data that needs
to be accessed by other containers in the same pod as well.

The Kubernetes Volume abstraction solves both of these problems. Here's a diagram
showing Volumes and their interaction with physical storage and the application:

Figure 9.1: Volume as a storage abstraction for applications

As you can see from this diagram, a Volume is exposed to the applications as an
abstraction, which eventually stores the data on any type of physical storage that
you may be using.

The lifetime of a Kubernetes Volume is the same as that of the pod that uses it. In
other words, even if the containers within a pod restart, the same Volume will be
used by the new container as well. Hence, the data isn't lost across container restarts.
However, once a pod terminates or is restarted, the Volume ceases to exist, and the
data is lost. To solve this problem, we can use PVs, which we will cover later in
this chapter.

350 | Storing and Reading Data on Disk

How to Use Volumes

A Volume is defined in the pod spec. Here's an example of a pod configuration
with Volumes:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-emptydir-volume

spec:

 restartPolicy: Never

 containers:

 - image: ubuntu

 name: ubuntu-container

 volumeMounts:

 - mountPath: /data

 name: data-volume

 volumes:

 - name: data-volume

 emptyDir: {}

As we can see in the preceding configuration, to define a Volume, a pod configuration
needs to set two fields:

• The .spec.volumes field defines what Volumes this pod is planning to use.

• The .spec.containers.volumeMounts defines where to mount those
Volumes in individual containers. This will be defined separately for all
the containers.

Defining Volumes

In the preceding example, the .spec.volumes field has two fields that define the
configuration of a Volume:

• name: This is the name of the Volume by which it will be referred to in the
containers' volumeMounts fields when it will be mounted. It has to be a valid
DNS name. The name of the Volume must be unique within a single pod.

• emptyDir: This varies based on the type of the Volume being used (which,
in the case of the preceding example, is emptyDir). This defines the actual
configuration of the Volume. We will go through the types of Volumes in the
next section with some examples.

Volumes | 351

Mounting Volumes

Each container needs to specify volumeMounts separately to mount the volume.
In the preceding example, you can see that the .spec.containers[*].
volumeMounts configuration has the following fields:

• name: This is the name of the Volume that needs to be mounted for
this container.

• mountPath: This is the path inside the container where the Volume should be
mounted. Each container can mount the same Volume on different paths.

Other than these, there are two other notable fields that we can set:

• subPath: This is an optional field that contains the path from the Volume that
needs to be mounted on the container. By default, the volume is mounted from
its root directory. This field can be used to mount only a sub-directory in the
volume and not the entire volume. For example, if you're using the same Volume
for multiple users, it's useful to mount a sub-path on the containers, rather than
the root directory of the Volume.

• readonly: This is an optional flag that determines whether the mounted
volume will be read-only or not. By default, the volumes are mounted with
read-write access.

Types of Volumes

As mentioned earlier, Kubernetes supports several types of Volumes and the
availability of most of them depends on the cloud provider that you use. AWS,
Azure, and Google Cloud all have different types of Volumes supported.

Let's take a look at some common types of Volumes in detail.

emptyDir

An emptyDir Volume refers to an empty directory that's created when a pod is
assigned to a node. It only exists as long as the pod does. All the containers running
inside the pod have the ability to write and read files from this directory. The same
emptyDir Volume can be mounted on different paths for different containers.

352 | Storing and Reading Data on Disk

Here's an example of pod configuration using the emptyDir Volume:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-emptydir-volume

spec:

 restartPolicy: Never

 containers:

 - image: ubuntu

 name: ubuntu-container

 volumeMounts:

 - mountPath: /data

 name: data-volume

 volumes:

 - name: data-volume

 emptyDir: {}

In this example, {} indicates that the emptyDir Volume will be defined in the
default manner. By default, the emptyDir Volumes are stored on the disk or SSD,
depending on the environment. We can change it to use RAM instead by setting the
.emptyDir.medium field to Memory.

Thus, we can modify the volumes section of the preceding pod configuration to use
the emptyDir Volume backed by memory, as follows:

 volumes:

 - name: data-volume

 emptyDir:

 medium: Memory

This informs Kubernetes to use a RAM-based filesystem (tmpfs) to store the Volume.
Even though tmpfs is very fast compared to data on a disk, there are a couple of
downsides to using in-memory Volume. First, the tmpfs storage is cleared on the
system reboot of the node on which the pod is running. Second, the data stored in a
memory-based Volume counts against the memory limits of the container. Hence, we
need to be careful while using memory-based Volumes.

Volumes | 353

We can also specify the size limit of the storage to be used in the emptyDir Volume
by setting the .volumes.emptyDir.sizeLimit field. This size limit applies to
both disk-based and memory-based emptyDir Volumes. In the case of memory-
based Volumes, the maximum usage allowed will be either the sizeLimit field
value or the sum of memory limits on all containers in the pod – whichever is lower.

Use Cases

Some of the use cases for emptyDir Volumes are as follows:

• Temporary scratch space for computations requiring a lot of space, such as
on-disk merge sort

• Storage required for storing checkpoints for a long computation, such as training
machine learning models where the progress needs to be saved to recover
from crashes

hostPath

A hostPath Volume is used to mount a file or a directory from the host node's
filesystem to a pod.

Here's an example of pod configuration using the hostPath Volume:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-hostpath-volume

spec:

 restartPolicy: Never

 containers:

 - image: ubuntu

 name: ubuntu-container

 volumeMounts:

 - mountPath: /data

 name: data-volume

 volumes:

 - name: data-volume

 hostPath:

 path: /tmp

 type: Directory

354 | Storing and Reading Data on Disk

In this example, the /home/user/data directory from the host node will be
mounted on the /data path on the container. Let's look at the two fields
under hostPath:

• path: This is the path of the directory or the file that will be mounted on the
containers mounting this Volume. It can also be a symlink (symbolic link) to a
directory or a file, the address of a UNIX socket, or a character or block device,
depending on the type field.

• type: This is an optional field that allows us to specify the type of the Volume.
If this field is specified, certain checks will be performed before mounting the
hostPath Volume.

The type field supports the following values:

• "" (an empty string): This is the default value implying that no checks will be
performed before mounting the hostPath Volume. If the path specified doesn't
exist on the node, the pod will still be created without verifying the existence of
the path. Hence, the pod will keep crashing indefinitely because of this error.

• DirectoryOrCreate: This implies that the directory path specified may or
may not already exist on the host node. If it doesn't exist, an empty directory
is created.

• Directory: This implies that a directory must exist on the host node at the
path specified. If the directory doesn't exist at the path specified, there will be a
FailedMount error while creating the pod, indicating that the hostPath type
check has failed.

• FileOrCreate: This implies that the file path specified may or may not already
exist on the host node. If it doesn't exist, an empty file is created.

• File: This implies that a file must exist on the host node at the path specified.

• Socket: This implies that a UNIX socket must exist at the path specified.

• CharDevice: This implies that a character device must exist at the
path specified.

• BlockDevice: This implies that a block device must exist at the path specified.

Volumes | 355

Use Cases

In most cases, your application won't need a hostPath Volume. However, there are
some niche use cases where the hostPath Volume may be particularly useful. Some
of these use cases for the hostPath Volume are as follows:

• Allowing pods to be created only if a particular host path exists on the host
node before running the pod. For example, a pod may require some Secrets or
credentials to be present in a file on the host before it can run.

• Running a container that needs access to Docker internals. We can do that by
setting hostPath to /var/lib/docker.

Note

In addition to the two types of Volumes covered here, Kubernetes supports
many more, some of which are specific to certain cloud platforms. You can
find more information about them at https://kubernetes.io/docs/concepts/
storage/volumes/#types-of-volumes.

In the previous sections, we learned about Volumes and how to use their different
types. In the following exercises, we will put these concepts into action and use
Volumes with pods.

Exercise 9.01: Creating a Pod with an emptyDir Volume

In this exercise, we will create a basic pod with an emptyDir Volume. We will also
simulate data being written manually, and then make sure that the data stored in the
Volume is kept across container restarts:

1. Create a file called pod-with-emptydir-volume.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-emptydir-volume

spec:

 containers:

 - image: nginx

 name: nginx-container

 volumeMounts:

https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes

356 | Storing and Reading Data on Disk

 - mountPath: /mounted-data

 name: data-volume

 volumes:

 - name: data-volume

 emptyDir: {}

In this pod configuration, we have used an emptyDir Volume mounted at the
/mounted-data directory.

2. Run the following command to create the pod using the preceding configuration:

kubectl create -f pod-with-emptydir-volume.yaml

You should see the following response:

pod/pod-with-emptydir-volume created

3. Run the following command to confirm that the pod was created and is ready:

kubectl get pod pod-with-emptydir-volume

You should see the following response:

NAME READY STATUS RESTARTS AGE

pod-with-emptydir-volume 1/1 Running 0 20s

4. Run the following command to describe the pod so that we can verify that the
correct Volume was mounted on this pod:

kubectl describe pod pod-with-emptydir-volume

Volumes | 357

This will give a long output. Look for the following section in the terminal output:

Figure 9.2: Describing the pod with a mounted emptyDir volume

As highlighted in the preceding image, the emptyDir Volume named
data-volume was created and it was mounted on nginx-container
at the /mounted-data path. We can see that the Volume has been
mounted in rw mode, which stands for read-write.

Now that we have verified that the pod was created with the correct Volume
configured, we will manually write some data to this path. In practice, this writing
will be done by your application code.

5. Now, we will use the kubectl exec command to run the Bash shell inside
the pod:

kubectl exec pod-with-emptydir-volume -it /bin/bash

You should see the following on your terminal screen:

root@pod-with-emptydir-volume:/#

358 | Storing and Reading Data on Disk

This will now allow you to run commands via an SSH connection on the Bash
shell running in the nginx-container. Note that we are running as a
root user.

Note

If you had a sidecar container running in the pod (or any number of multiple
containers in a pod), then you can control where the kubectl exec
command will execute by adding the -c parameter to specify the container,
as you will see in the next exercise.

6. Run the following command to check the content of the root directory of
the pod:

ls

You should see an output similar to this one:

bin dev home lib64 mnt opt root sbin sys usr

boot etc lib media mounted-data proc run srv tmp var

Notice that there's a directory called mounted-data.

7. Run the following commands to go to the mounted-data directory and check
its content:

cd mounted-data

ls

You should see a blank output, as follows:

root@pod-with-emptydir-volume:/mounted-data#

This output indicates that the mounted-data directory is empty as expected
because we don't have any code running inside the pod that would write to
this path.

Volumes | 359

8. Run the following command to create a simple text file inside the
mounted-data directory:

echo "Manually stored data" > manual-data.txt

9. Now, run the ls command again to check the content of the directory:

ls

You should see the following output:

manual-data.txt

Thus, we have created a new file with some content in the mounted volume
directory. Now, our aim will be to verify that this data will still exist if the
container is restarted.

10. In order to restart the container, we will kill the nginx process, which will trigger
a restart. Run the following commands to install the procps package so that we
can use the ps command to find out the process ID (PID) of the process that we
want to kill. First, update the package lists:

sudo apt-get update

You should see an output similar to the following:

Figure 9.3: An apt-get update

Our package lists are up to date and we are now ready to install procps.

360 | Storing and Reading Data on Disk

11. Use the following command to install procps:

sudo apt-get install procps

Enter Y when prompted to confirm the installation, and then the installation will
proceed with an output similar to the following:

Figure 9.4: Using apt-get to install procps

12. Now, run the following command to check the list of processes running on
the container:

ps aux

You should see the following output:

Figure 9.5: A list of the running processes

In the output, we can see that among several other processes, the nginx
master process is running with a PID of 1.

Volumes | 361

13. Run the following command to kill the nginx master process:

kill 1

You should see the following response:

Figure 9.6: Killing the container

The output shows that the terminal exited the Bash session on the pod. This is
because the container was killed. The 137 exit code indicates that the session
was killed by manual intervention.

14. Run the following command to get the status of the pod:

kubectl describe pod pod-with-emptydir-volume

Observe the following section in the output that you get:

Figure 9.7: Describing the pod

You will see that there's now a Restart Count field for nginx-container
that has a value of 1. That means that the container was restarted after we
killed it. Please note that restarting a container doesn't trigger a restart of a pod.
Hence, we should expect the data stored in the Volume to still exist. Let's verify
that in the next step.

15. Let's run Bash inside the pod again and go to the /mounted-data directory:

kubectl exec pod-with-emptydir-volume -it /bin/bash

cd mounted-data

You will see the following output:

root@pod-with-emptydir-volume:/# cd mounted data/

362 | Storing and Reading Data on Disk

16. Run the following command to check the contents of
/mounted-data directory:

ls

You will see the following output:

manual-data.txt

This output indicates that the file we created before killing the container still
exists in the Volume.

17. Run the following command to verify the contents of the file we created in
the Volume:

cat manual-data.txt

You will see the following output:

Manually stored data

This output indicates that the data we stored in the Volume stays intact even
when the container gets restarted.

18. Run the following command to delete the pod:

kubectl delete pod pod-with-emptydir-volume

You will see the following output confirming that the pod has been deleted:

pod "pod-with-emptydir-volume" deleted

In this exercise, we created a pod with the emptyDir Volume, checked that the
pod was created with an empty directory mounted at the correct path inside the
container, and verified that we can write the data inside that directory and that the
data stays intact across the container restarts as long as the pod is still running.

Now, let's move to a scenario that lets us observe some more uses for Volumes.
Let's consider a scenario where we have an application pod that runs a total of three
containers. We can assume that two of the three containers are serving traffic and
they dump the logs into a shared file. The third container acts as a sidecar monitoring
container that reads the logs from the file and dumps them into an external log
storage system where the logs can be preserved for further analysis and alerting.
Let's consider this scenario in the next exercise and understand how we can utilize
an emptyDir Volume shared between the three containers of a pod.

Volumes | 363

Exercise 9.02: Creating a Pod with an emptyDir Volume Shared by Three

Containers

In this exercise, we will show some more uses of the emptyDir Volume and share it
among three containers in the same pod. Each container will mount the same volume
at a different local path:

1. Create a file called shared-emptydir-volume.yaml with the
following content:

apiVersion: v1

kind: Pod

metadata:

 name: shared-emptydir-volume

spec:

 containers:

 - image: ubuntu

 name: container-1

 command: ['/bin/bash', '-ec', 'sleep 3600']

 volumeMounts:

 - mountPath: /mounted-data-1

 name: data-volume

 - image: ubuntu

 name: container-2

 command: ['/bin/bash', '-ec', 'sleep 3600']

 volumeMounts:

 - mountPath: /mounted-data-2

 name: data-volume

 - image: ubuntu

 name: container-3

 command: ['/bin/bash', '-ec', 'sleep 3600']

 volumeMounts:

 - mountPath: /mounted-data-3

 name: data-volume

 volumes:

 - name: data-volume

 emptyDir: {}

In this configuration, we have defined an emptyDir Volume named
data-volume, which is being mounted on three containers at different paths.

364 | Storing and Reading Data on Disk

Note that each of the containers has been configured to run a command on
startup that makes them sleep for 1 hour. This is intended to keep the ubuntu
container running so that we can perform the following operations on the
containers. By default, an ubuntu container is configured to run whatever
command is specified and exit upon completion.

2. Run the following command to create the pod with the preceding configuration:

kubectl create -f shared-emptydir-volume.yaml

You will see the following output:

pod/shared-emptydir-volume created

3. Run the following command to check the status of the pod:

kubectl get pod shared-emptydir-volume

You will see the following output:

NAME READY STATUS RESTARTS AGE

shared-emptydir-volume 3/3 Running 0 13s

This output indicates that all three containers inside this pod are running.

4. Next, we will run the following command to run Bash in the first container:

kubectl exec shared-emptydir-volume -c container-1 -it -- /bin/bash

Here, the -c flag is used to specify the container that we want to run Bash in.
You will see the following in the terminal:

root@shared-emptydir-volume:/#

5. Run the following command to check the content of the root directory on
the container:

ls

You will see the following output:

Figure 9.8: Listing the content of the root directory inside the container

Volumes | 365

We can see that the mounted-data-1 directory has been created on the
container. Also, you can see the list of directories you would see in a typical
Ubuntu root directory, in addition to the mounted-data-1 directory that
we created.

6. Now, we will go to the mounted-data-1 directory and create a simple text file
with some text in it:

cd mounted-data-1

echo 'Data written on container-1' > data-1.txt

7. Run the following command to verify that the file has been stored:

ls

You will see the following output:

data-1.txt

8. Run the following command to exit container-1 and go back to your
host terminal:

exit

9. Now, let's run Bash inside the second container, which is named container-2:

kubectl exec shared-emptydir-volume -c container-2 -it -- /bin/bash

You will see the following in your terminal:

root@shared-emptydir-volume:/#

10. Run the following command to locate the mounted directory in the root
directory on the container:

ls

You will see the following output:

Figure 9.9: Listing the content of the root directory inside the container

Note the directory called mounted-data-2, which is the mount point for our
Volume inside container-2.

366 | Storing and Reading Data on Disk

11. Run the following command to check the content of the mounted-data-2
directory:

cd mounted-data-2

ls

You will see the following output:

data-1.txt

This output indicates that there's already a file called data-1.txt, which we
created in container-1 earlier.

12. Let's verify that it's the same file that we created in earlier steps. Run the
following command to check the content of this file:

cat data-1.txt

You will see the following output:

Data written on container-1

This output verifies that this is the same file that we created in earlier steps of
this exercise.

13. Run the following command to write a new file called data-2.txt into
this directory:

echo 'Data written on container-2' > data-2.txt

14. Now, let's confirm that the file has been created:

ls

You should see the following output:

data-1.txt data-2.txt

As you can see in this screenshot, the new file has been created and there are
now two files – data-1.txt and data-2.txt – in the mounted directory.

15. Run the following command to exit the Bash session on this container:

exit

Volumes | 367

16. Now, let's run Bash inside container-3:

kubectl exec shared-emptydir-volume -c container-3 -it -- /bin/bash

You will see the following in your terminal:

root@shared-empty-dir-volume:/#

17. Go to the /mounted-data-3 directory and check its content:

cd mounted-data-3

ls

You will see the following output:

data-1.txt data-2.txt

This output shows that this container can see the two files – data-1.txt
and data-2.txt – that we created in earlier steps from container-1 and
container-2, respectively.

18. Run the following command to verify the content of the first file, data-1.txt:

cat data-1.txt

You should see the following output:

Data written on container-1

19. Run the following commands to verify the content of the second file,
data-2.txt:

cat data-2.txt

You should see the following output:

Data written on container-2

The output of the last two commands proves that the data written by any
container on the mounted volume is accessible by other containers for reading.
Next, we will verify that other containers have write access to the data written by
a particular container.

20. Run the following command to overwrite the content of the data-2.txt file:

echo 'Data updated on container 3' > data-2.txt

368 | Storing and Reading Data on Disk

21. Next, let's exit container-3:

exit

22. Run the following command to run Bash inside container-1 again:

kubectl exec shared-emptydir-volume -c container-1 -it -- /bin/bash

You should see the following in your terminal:

root@shared-emptydir-volume:/#

23. Run the following command to check the content of the data-2.txt file:

cat mounted-data-1/data-2.txt

You should see the following output:

Data updated on container 3

This output indicates that the data overwritten by container-3 becomes
available for other containers to read as well.

24. Run the following command to come out of the SSH session inside
container-3:

exit

25. Run the following command to delete the pod:

kubectl delete pod shared-emptydir-volume

You should see the following output, indicating that the pod has been deleted:

pod "shared-emptydir-volume" deleted

In this exercise, we learned how to use Volumes and verified that the same Volume
can be mounted at different paths in different containers. We also saw that the
containers using the same Volume can read or write (or overwrite) content of
the Volume.

Persistent Volumes | 369

Persistent Volumes
The Volumes we have seen so far have the limitation that their life cycle depends on
the life cycle of pods. Volumes such as emptyDir or hostPath get deleted when the
pod using them is deleted or gets restarted. For example, if we use Volumes to store
user data and inventory records for our e-commerce website, the data will be deleted
when the application pod restarts. Hence, Volumes are not suited to store data that
you want to persist.

To solve this problem, Kubernetes supports persistent storage in the form of
a Persistent Volume (PV). A PV is a Kubernetes object that represents a block
of storage in the cluster. It can either be provisioned beforehand by the cluster
administrators or be dynamically provisioned. A PV can be considered a cluster
resource just like a node and, hence, it is not scoped to a single namespace. These
Volumes work similarly to the Volumes we have seen in previous sections. The life
cycle of a PV doesn't depend on the life cycle of any pod that uses the PV. From the
pod's perspective, however, there's no difference between using a normal Volume
and a PV.

In order to use a PV, a PersistentVolumeClaim (PVC) needs to be created. A PVC is
a request for storage by a user or a pod. A PVC can request a specific size of storage
and specific access modes. A PVC is effectively an abstract way of accessing the
various storage resources by users. PVCs are scoped by namespaces, so pods can
only access the PVCs created within the same namespace.

Note

At any time, a PV can be bound to one PVC only.

370 | Storing and Reading Data on Disk

Here's a diagram showing how an application interacts with a PV and PVC:

Figure 9.10: How PV and PVC work together to provide storage to your application pod

As you can see in this diagram, Kubernetes uses a combination of PV and PVC to
make storage available to your applications. A PVC is basically a request to provide a
PV that meets certain criteria.

This is a notable variation from what we saw in the previous exercises, where we
created Volumes directly in the pod definitions. This separation of the request (PVC)
and the actual storage abstraction (PV) allows an application developer to not worry
about the specifics and the statuses of all the different PVs present on the cluster;
they can simply create a PVC with the application requirements and then use it in
the pod. This kind of loose binding also allows the entire system to be resilient and
remain stable in the case of pod restarts.

Persistent Volumes | 371

Similar to Volumes, Kubernetes supports several types of PVs. Some of them may be
specific to your cloud platform. You can find a list of the different supported types
at this link: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-
persistent-volumes

PersistentVolume Configuration

Here's an example of PV configuration:

apiVersion: v1

kind: PersistentVolume

metadata:

 name: example-persistent-volume

spec:

 storageClassName: standard

 capacity:

 storage: 10Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy: Retain

 nfs:

 server: 172.10.1.1

 path: /tmp/pv

As usual, the PV object also has the three fields that we have already seen:
apiVersion, kind, and metadata. Since this is an nfs type of PV, we have the
nfs section in the configuration. Let's go through some important fields in the PV
spec section one by one.

storageClassName

Each PV belongs to a certain storage class. We define the name of the storage class
that the PV is associated with using the storageClassName field. A StorageClass is
a Kubernetes object that provides a way for administrators to describe the different
types or profiles of storages they support. In the preceding example, standard is
just an example of a storage class.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

372 | Storing and Reading Data on Disk

Different storage classes allow you to allocate different types of storage based on
performance and capacity to different applications based on the specific needs of the
application. Each cluster administrator can configure their own storage classes. Each
storage class can have its own provisioners, backup policies, or reclamation policies
determined by administrators. A provisioner is a system that determines how to
provision a PV of a particular type. Kubernetes supports a set of internal provisioners
as well as external ones that can be implemented by users. The details about how to
use or create a provisioner are, however, beyond the scope of this book.

A PV belonging to a certain storage class can only be bound to a PVC requesting that
particular class. Note that this is an optional field. Any PV without the storage class
field will only be available to PVCs that do not request a specific storage class.

capacity

This field denotes the storage capacity of the PV. We can set this field in a similar way
as we would define constraints used by memory and CPU limit fields in a pod spec. In
the preceding example spec, we have set the capacity to 10 GiB.

volumeMode

The volumeMode field denotes how we want the storage to be used. It can have two
possible values: Filesystem (default) and Block. We can set the volumeMode
field to Block in order to use the raw block device as storage, or Filesystem to
use a traditional filesystem on the persistent volume.

accessModes

The access mode for a PV represents the capabilities allowed for a mounted Volume.
A Volume can be mounted using only one of the supported access modes at a time.
There are three possible access modes:

• ReadWriteOnce (RWO): Mounted as read-write by a single node only

• ReadOnlyMany (ROX): Mounted as read-only by many nodes

• ReadWriteMany (RWX): Mounted as read-write by many nodes

Note that not all the types of volumes support all the access modes. Please check the
reference for the allowed access modes for the specific type of volume you are using.

Persistent Volumes | 373

persistentVolumeReclaimPolicy

Once a user is done with a volume, they can delete their PVC, and that allows the PV
resource to be reclaimed. The reclaim policy field denotes the policy that will be used
to allow a PV to be claimed after its release. A PV being released implies that the PV is
no longer associated with the PVC since that PVC is deleted. Then, the PV is available
for any other PVCs to use, or in other words, reclaim. Whether a PV can be reused or
not depends on the reclaim policy. There can be three possible values for this field:

• Retain: This reclaim policy indicates that the data stored in the PV is kept
in storage even after the PV has been released. The administrator will need
to delete the data in storage manually. In this policy, the PV is marked as
Released instead of Available. Thus, a Released PV may not necessarily
be empty.

• Recycle: Using this reclaim policy means that once the PV is released, the data
on the volume is deleted using a basic rm -rf command. This marks the PV as
Available and hence ready to be claimed again. Using dynamic provisioning
is a better alternative to using this reclaim policy. We will discuss the dynamic
provisioning in the next section.

• Delete: Using this reclaim policy means that once the PV is released, both the
PV as well as the data stored in the underlying storage will be deleted.

Note

Various cloud environments have different default values for reclaim
policies. So, make sure you check the default value of the reclaim policy for
the cloud environment you're using to avoid the accidental deletion of data
in PVs.

PV Status

At any moment of its life cycle, a PV can have one of the following statuses:

• Available: This indicates that the PV is available to be claimed.

• Bound: This indicates that the PV has been bound to a PVC.

• Released: This indicates that the PVC bound to this resource has been deleted;
however, it's yet to be reclaimed by some other PVC.

• Failed: This indicates that there was a failure during reclamation.

374 | Storing and Reading Data on Disk

Now that we have taken a look at the various aspects of the PV, let's take a look
at the PVC.

PersistentVolumeClaim Configuration

Here's an example of PVC configuration:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: example-persistent-volume-claim

spec:

 storageClassName: standard

 resources:

 requests:

 storage: 500Mi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteMany

 selector:

 matchLabels:

 environment: "prod"

Again, as usual, the PVC object also has three fields that we have already seen:
apiVersion, kind, and metadata. Let's go through some important fields
in the PVC spec section one by one.

storageClassName

A PVC can request a particular class of storage by specifying the
storageClassName field. Only the PVs of the specified storage class
can be bound to such a PVC.

If the storageClassName field is set to an empty string (""), these PVCs will only
be bound to PVs that have no storage class set.

On the other hand, if the storageClassName field in the PVC is not set, then
it depends on whether DefaultStorageClass has been enabled by the
administrator. If a default storage class is set for the cluster, the PVCs with no
storageClassName field set will be bound to PVs with that default storage class.
Otherwise, PVCs with no storageClassName field set will only be bound to PVs
that have no storage class set.

Persistent Volumes | 375

resources

Just as we learned that pods can make specific resource requests, PVCs can also
request resources in a similar manner by specifying the requests and limits
fields, which are optional. Only the PVs satisfying the resource requests can be
bound to a PVC.

volumeMode

PVCs follow the same convention as PVs to indicate the use of storage as a filesystem
or a raw block device. A PVC can only be bound to a PV that has the same Volume
mode as the one specified in the PVC configuration.

accessMode

A PVC should specify the access mode that it needs, and a PV is assigned as per the
availability based on that access mode.

selectors

Similar to pod selectors in Services, PVCs can use the matchLabels and/or
matchExpressions fields to specify the criteria of volumes that can satisfy a
particular claim. Only the PVs whose labels satisfy the conditions specified in the
selectors field are considered for a claim. When both of these fields are used
together as selectors, the conditions specified by the two fields are combined using
an AND operation.

How to Use Persistent Volumes

In order to use a PV, we have the following three steps: provisioning the volume,
binding it to a claim (PVC), and using the claim as a volume on a pod. Let's go through
these steps in detail.

Step 1 – Provisioning the Volume

A Volume can be provisioned in two ways – statically and dynamically:

• Static: In static provisioning, the cluster administrator has to provision several
PVs beforehand, and only then are they available to PVCs as available resources.

376 | Storing and Reading Data on Disk

• Dynamic: If you are using dynamic provisioning, the administrator doesn't need
to provision all the PVs beforehand. In this kind of provisioning, the cluster will
dynamically provision the PV for the PVC based on the storage class requested.
Thus, as the applications or microservices demand more storage, Kubernetes
can automatically take care of it and expand the cloud infrastructure as needed.

We will go through dynamic provisioning in more detail in a later section.

Step 2 – Binding the Volume to a Claim

In this step, a PVC is to be created with the requested storage limits, a certain access
mode, and a specific storage class. Whenever a new PVC is created, the Kubernetes
controller will search for a PV matching its criteria. If a PV matching all of the PVC
criteria is found, it will bind the claim to the PV. Each PV can be bound to only one PVC
at a time.

Step 3 – Using the Claim

Once the PV has been provisioned and bound to a PVC, the PV can be used by the
pod as a Volume. Next, when a pod uses a PVC as a Volume, Kubernetes will take the
PV bound to that PVC and mount that PV for the pod.

Here's an example of pod configuration using a PVC as a Volume:

apiVersion: v1

kind: Pod

metadata:

 name: pod-pvc-as-volume

spec:

 containers:

 - image: nginx

 name: nginx-application

 volumeMounts:

 - mountPath: /data/application

 name: example-storage

 volumes:

 - name: example-storage

 persistentVolumeClaim:

 claimName: example-claim

Persistent Volumes | 377

In this example, we assume that we have a PVC named example-claim that has
already been bound to PersistentVolume. The pod configuration specifies
persistentVolumeClaim as the type of the Volume and specifies the name of
the claim to be used. Kubernetes will then find the actual PV bound to this claim and
mount it on /data/application inside the container.

Note

The pod and the PVC have to be in the same namespace for this to
work. This is because Kubernetes will look for the claim inside the pod's
namespace only, and if the PVC isn't found, the pod will not be scheduled.
In this case, the pod will be stuck in a Pending state until deleted.

Now, let's put these concepts into action by creating a pod that uses PV in the
following exercise.

Exercise 9.03: Creating a Pod That Uses PersistentVolume for Storage

In this exercise, we will first provision the PV pretending that the cluster administrator
does it in advance. Next, assuming the role of a developer, we will create a PVC that
is bound to the PV. After that, we will create a pod that will use this claim as a Volume
mounted on one of the containers:

1. First of all, we will access the host node via SSH. In the case of Minikube, we can
do so by using the following command:

minikube ssh

You should see an output similar to this one:

Figure 9.11: SSH to the minikube node

378 | Storing and Reading Data on Disk

2. Run the following command to create a directory named data inside the
/mnt directory:

sudo mkdir /mnt/data

3. Run the following command to create a file called data.txt inside the
/mnt/data directory:

sudo bash -ec 'echo "Data written on host node" > /mnt/data/data.txt'

This command should create a file, data.txt, with the Data written on
host node content. We will use the content of this file to verify at a later stage
that we can successfully mount this directory on a container using a PV and
a PVC.

4. Run the following command to exit the host node:

exit

That will bring us back to the local machine terminal where we can run
kubectl commands.

5. Create a file called pv-hostpath.yaml with the following content:

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-hostpath

spec:

 storageClassName: local-pv

 capacity:

 storage: 500Mi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: /mnt/data

In this PV configuration, we have used the local-pv storage class. The Volume
will be hosted at the /mnt/data path on the host node. The size of the volume
will be 500Mi and the access mode will be ReadWriteOnce.

Persistent Volumes | 379

6. Run the following command to create the PV using the preceding configuration:

kubectl create -f pv-hostpath.yaml

You should see the following output:

persistentvolume/pv-hostpath created

7. Run the following command to check the status of the PV we just created:

kubectl get pv pv-hostpath

As you can see in this command, pv is an accepted shortened name for
PersistentVolume. You should see the following output:

Figure 9.12: Checking the status of the PV

In the preceding output, we can see that the Volume was created with the
required configuration and that its status is Available.

8. Create a file called pvc-local.yaml with the following content:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-local

spec:

 storageClassName: local-pv

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Mi

In this configuration, we have a claim that requests a Volume with the
local-pv storage class, the ReadWriteOnce access mode and a
storage size of 100Mi.

9. Run the following command to create this PVC:

kubectl create -f pvc-local.yaml

You should see the following output:

persistentvolumeclaim/pvc-local created

380 | Storing and Reading Data on Disk

Once we create this PVC, Kubernetes will search for a matching PV to satisfy
this claim.

10. Run the following command to check the status of this PVC:

kubectl get pvc pvc-local

You should see the following output:

Figure 9.13: Checking the status of the claim

As we can see in this output, the PVC has been created with the required
configuration and has been immediately bound to the existing PV named
pv-hostpath that we created in earlier steps of this exercise.

11. Next, we can create a pod that will use this PVC as a Volume. Create a file called
pod-local-pvc.yaml with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: pod-local-pvc

spec:

 restartPolicy: Never

 containers:

 - image: ubuntu

 name: ubuntu-container

 command: ['/bin/bash', '-ec', 'cat /data/application/data.txt']

 volumeMounts:

 - mountPath: /data/application

 name: local-volume

 volumes:

 - name: local-volume

 persistentVolumeClaim:

 claimName: pvc-local

The pod will use a PVC named pvc-local as a Volume and mount it at the
/data/application path in the container. Also, we have a container that will
run the cat /data/application/data.txt command on startup. This is
just a simplified example where we will showcase that the data we wrote in the
PV directory on the host node initially is now available to this pod.

Persistent Volumes | 381

12. Run the following command to create this pod:

kubectl create -f pod-local-pvc.yaml

You should see the following output:

pod/pod-local-pvc created

This output indicates that the pod was created successfully.

13. Run the following command to check the status of the pod we just created:

kubectl get pod pod-local-pvc

You should see the following output:

NAME READY STATUS RESTARTS AGE

pod-local-pvc 0/1 Completed 1 7s

In this output, we can see that the pod has run to completion since we didn't add
any sleep commands this time.

14. Run the following command to check the logs. We expect to see the output of
the cat /data/application/data.txt command in the logs:

kubectl logs pod-local-pvc

You should see the following output:

Data written on host node

This output clearly indicates that this pod has access to the file that we created
at /mnt/data/data.txt. This file is a part of the directory mounted at
/data/application in the container.

15. Now, let's clean up the resources created in this exercise. Use the following
command to delete the pod:

kubectl delete pod pod-local-pvc

You should see the following output, indicating that the pod has been deleted:

pod "pod-local-pvc" deleted

16. Use this command to delete the PVC:

kubectl delete pvc pvc-local

You should see the following output, indicating that the PVC has been deleted:

persistentvolumeclaim "pvc-local" deleted

382 | Storing and Reading Data on Disk

Note that if we try to delete the PV before the PVC is deleted, the PV will be stuck
in the Terminating phase and will wait for it to be released by the PVC. Hence,
we need to first delete the PVC bound to the PV before the PV can be deleted.

17. Now that our PVC has been deleted, we can safely delete the PV by running the
following command:

kubectl delete pv pv-hostpath

You should see the following output, indicating that the PV has been deleted:

persistentvolume "pv-hostpath" deleted

In this exercise, we learned how to provision PVs, create claims to use these volumes,
and then use those PVCs as volumes inside pods.

Dynamic Provisioning
In previous sections of this chapter, we saw that the cluster administrator needs to
provision PVs for us before we can use them as storage for our application. To solve
this problem, Kubernetes supports dynamic volume provisioning as well. Dynamic
volume provisioning enables the creation of storage volumes on-demand. This
eliminates the need for administrators to create volumes before creating any PVCs.
The volume is provisioned only when there's a claim requesting it.

In order to enable dynamic provisioning, the administrator needs to create one
or more storage classes that users can use in their claims to make use of dynamic
provisioning. These StorageClass objects need to specify what provisioner will be
used along with its parameters. The provisioner depends on the environment. Every
cloud provider supports different provisioners, so make sure you check with your
cloud provider if you happen to create this kind of storage class in your cluster.

Here's an example of the configuration for creating a new StorageClass on the
AWS platform:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: example-storage-class

provisioner: kubernetes.io/aws-ebs

parameters:

 type: io1

 iopsPerGB: "10"

 fsType: ext4

Dynamic Provisioning | 383

In this configuration, the kubernetes.io/aws-ebs provisioner is used – EBS
stands for Elastic Block Store and is only available on AWS. This provisioner takes
various parameters, including type, which we can use to specify what kind of disk we
want to use for this storage class. Please check the AWS docs to find out more about
the various parameters we can use and their possible values. The provisioner and the
parameters required will change based on what cloud provider you use.

Once a storage class is created by the cluster administrator, users can create a PVC,
requesting storage with that storage class name set in the storageClassName
field. Kubernetes will then automatically provision the storage volume, create a PV
object with that storage class satisfying the claim, and bind it to the claim:

Here's an example of the configuration for a PVC using the storage class we
defined previously:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: example-pvc

spec:

 storageClassName: example-storage-class

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

As we can see, the configuration of the PVC stays the same, except that now, we have
to use a storage class that has already been created by the cluster administrator
for us.

Once the claim has been bound to an automatically created Volume, we can create
pods using that PVC as a Volume, as we saw in the previous section. Once the claim
is deleted, the Volume is automatically deleted.

384 | Storing and Reading Data on Disk

Activity 9.01: Creating a Pod That Uses a Dynamically Provisioned

PersistentVolume

Consider that you are a cluster administrator, at first, and are required to create a
custom storage class that will enable the developers using your cluster to provision
PVs dynamically. To create a storage class on a minikube cluster, you can use the
k8s.io/minikube-hostpath provisioner without any extra parameters,
similar to what we showed in the StorageClass example in the Dynamic
Provisioning section.

Next, acting as a developer or a cluster user, claim a PV with a storage request
of 100Mi and mount it on the containers inside the pod created using the
following specifications:

1. The pod should have two containers.

2. Both the containers should mount the same PV locally.

3. The first container should write some data into the PV and the second container
should read and print out the data written by the first container.

For simplicity, consider writing a simple string to a file in the PV from the first
container. For the second container, add a bit of wait time so that the second
container does not start reading data until it is fully written. Then, the latter container
should read and print out the content of the file written by the first container.

Note

Ideally, you would want to create this deployment to be in a different
namespace to keep it separate from the rest of the stuff that you created
during these exercises. So, feel free to create a namespace and create all
the objects in this activity in that namespace.

Dynamic Provisioning | 385

The high-level steps to perform this activity are as follows:

1. Create a namespace for this activity.

2. Write the appropriate configuration for the storage class using the given
information, and create the StorageClass object.

3. Write the appropriate configuration for the PVC using the storage class created
in the previous step. Create the PVC using this configuration.

4. Verify that the claim was bound to an automatically created PV of the same
storage class that we created in step 2.

5. Write the appropriate configuration for the pod using the given information
and the PVC from the previous step as a Volume. Create the pod using
this configuration.

6. Verify that one of the containers can read the content of the file written to PV by
another container.

You should be able to check the logs of the second container and verify that the data
written by the first container in the PV can be read by the second container, as shown
in the following output:

Data written by container-1

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

https://packt.live/304PEoD

386 | Storing and Reading Data on Disk

Summary
As we mentioned in the introduction, most applications need to store or retrieve data
for a lot of different reasons. In this chapter, we saw that Kubernetes provides various
ways of provisioning storage for not just storing the state of an application, but also
for the long-term storage of data.

We have covered ways to use storage for our application running inside pods. We
saw how we can use the different types of Volumes to share temporary data among
containers running in the same pod. We also learned how to persist data across
pod restarts. We learned how to manually provision PVs to create PVCs to bind to
those Volumes, as well as how to create pods that can use these claims as Volumes
mounted on their containers. Next, we learned how to request storage dynamically
using only the PVCs with pre-created storage classes. We also learned about the life
cycle of these volumes with respect to that of the pods.

In the next chapter, we will extend these concepts further and learn how to store
application configurations and secrets.

Overview

In this chapter, we will learn how to decouple application configuration data
from the application itself and the advantages of taking this approach. By
the end of this chapter, you will be able to define Kubernetes ConfigMap
and Secret objects, run a simple Pod that uses data from ConfigMaps and
Secrets, describe the advantages of decoupling configuration data from
applications, and use ConfigMaps and Secrets to decouple application
configuration data from the application container.

ConfigMaps and Secrets

10

390 | ConfigMaps and Secrets

Introduction
In Chapter 5, Pods, we learned that Pods are the minimal unit of deployment in
Kubernetes. Pods can have multiple containers, and each container can have a
container image associated with it. This container image generally packages the target
application that you plan to run. Once the developers are satisfied that the code is
running as expected, the next step is to promote the code to testing, integration,
and production environments.

Easy, right? One problem, however, is that as we move our packaged container
from one environment to another, although the application remains the same,
it needs environment-specific data, for example, the database URL to connect to.
To overcome this problem, we can write our applications in such a way that the
environment-specific data is provided to the application by the environment it is
being deployed into.

In this chapter, we will discover what Kubernetes provides to associate
environment-specific data with our application containers without changing
our container image. There are multiple ways to provide environment-specific
configuration data to our application:

1. Provide command-line arguments to the Pods.

2. Provide environment variables to the Pods.

3. Mount configuration files in the containers.

First, we need to define our configuration data using an object called ConfigMap.
Once the data is defined and loaded into Kubernetes, the second step is to provide
the defined data to your application.

However, what if you have sensitive data, such as database passwords, that you want
to provide to your application container? Well, Kubernetes Secret provides a way to
define sensitive data to an application.

What Is a ConfigMap? | 391

ConfigMap and Secret objects both serve a similar purpose. Both provide a way to
define data that can be injected into your applications so that the same container can
be used across different environments. There is little difference between them, which
we will learn in detail later on in this chapter. As a quick rule, Secrets are designed to
hold confidential data (such as passwords, private keys, and more), while ConfigMaps
are more suited for general configuration data such as a database location.
ConfigMaps and Secrets reside in the specific namespace in which they are
created. They can only be referenced by Pods residing in the same namespace.

Kubernetes uses an internal key-value store called etcd as its database to store all the
objects defined in Kubernetes. As ConfigMaps and Secrets are Kubernetes objects,
they get stored in the internal key-value store.

Let's dig a bit deeper into ConfigMaps first.

What Is a ConfigMap?
A ConfigMap allows us to define application-related data. A ConfigMap decouples
the application data from the application so that the same application can be ported
across different environments. It also provides a way to inject customized data into
running services from the same container image.

ConfigMaps can be created through a literal value or from a file or all the files in a
directory. Note that the primary data we stored in ConfigMaps is for non-sensitive
configuration, for example, config files or environment variables.

Once a ConfigMap is defined, it will be loaded to the application via an environment
variable or a set of files. The application can then see the files as local files and
can read from them. It is important to note that (from 1.9.6 version onward of
Kubernetes), files loaded from ConfigMaps are read-only. ConfigMaps can also
hold configuration data for system applications such as operators and controllers.

392 | ConfigMaps and Secrets

In the following exercises, you will see different ways of defining ConfigMaps and
different ways to make the ConfigMap data available to the running Pods.

Let's see what Kubernetes offers us in terms of ConfigMap creation. Kubernetes help
commands provide a good starting point:

kubectl create configmap --help

You should see the following response:

Figure 10.1: Kubernetes built-in help for creating ConfigMap

As you can see from the preceding output, ConfigMaps can be created for a single
value, a list of values, or from an entire file or directory. We will learn exactly how to
do each of these in the exercises in this chapter. Note that the command to create a
ConfigMap has the following format:

kubectl create configmap <map-name> <data-source>

Here, <map-name> is the name you want to assign to the ConfigMap and
<data-source> is the directory, file, or literal value to draw the data from.

The data source corresponds to a key-value pair in the ConfigMap, where:

• Key is the filename or the key you provided on the command line

• Value is the file content or the literal value you provided on the command line

What Is a ConfigMap? | 393

Before we start with the exercises, let's make sure that you have Kubernetes
running and that you can issue commands to it. We will use minikube to easily
run a single-node cluster on your local computer.

Start up minikube using the following command:

minikube start

You should see the following response as minikube starts up:

Figure 10.2: Starting up minikube

For all of the exercises in this chapter, we recommend creating a new namespace.
Recall from Chapter 5, Pods, that namespaces are Kubernetes' way to group
components of the solution together. Namespaces can be used to apply policies,
quotas, and could also be used to separate resources if the same Kubernetes
resources are being used by different teams.

In the following exercise, we will create a ConfigMap from literal values using
the kubectl CLI commands. The idea is that we have some configuration data
(for example, the master database name) that we can inject into, for example, a
MySQL Pod, and it will create the database as per the given environment variable.
This set of commands can also be used in the automated code pipelines that are
responsible for application deployments across multiple environments.

394 | ConfigMaps and Secrets

Exercise 10.01: Creating a ConfigMap from Literal Values and Mounting It on a

Pod Using Environment Variables

In this exercise, we will create a ConfigMap in the Kubernetes cluster. This exercise
shows how to create ConfigMaps using a key-value pattern. Please follow these steps
to complete the exercise:

1. First, let's begin by creating a namespace for all of the exercises in this chapter.

kubectl create namespace configmap-test

You should see a response like this:

namespace/configmap-test created

Note

We will use the configmap-test namespace for all the exercises in this
chapter unless mentioned otherwise.

2. First, let's create a ConfigMap that contains a single name-value pair. Use the
command shown here:

kubectl create configmap singlevalue-map --from-literal=partner-
url=https://www.auppost.com.au --namespace configmap-test

You should see the following output in the terminal:

configmap/singlevalue-map created

3. Once we create the ConfigMap, let's confirm that it is created by issuing a
command to get all the ConfigMaps in the namespace:

kubectl get configmaps --namespace configmap-test

As singlevalue-map is the only ConfigMap in the configmap-test
namespace, you should see an output that looks something like this:

NAME DATA AGE

singlevalue-map 1 111s

What Is a ConfigMap? | 395

4. Let's see what the Kubernetes ConfigMap object looks like. Enter the Kubernetes
get command as follows:

kubectl get configmap singlevalue-map -o yaml --namespace configmap-
test

The full object should be described something like this:

Figure 10.3: Describing singlevalue-map

As you can see in the third line of the preceding output, the ConfigMap is created
and the literal value we entered is available as a key-value pair in the data
section of the ConfigMap.

5. Now, we will create a YAML file named configmap-as-env.yaml
to create a Pod into which we will inject fields from our ConfigMap as an
environment variable. Using your favorite text editor, create a YAML file
with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-pod

spec:

 containers:

 - name: configmap-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "env"]

 envFrom:

 - configMapRef:

 name: singlevalue-map

396 | ConfigMaps and Secrets

You can see that the envFrom section in the preceding file is loading the data
from the ConfigMap.

6. Let's create a Pod from the preceding specification. This Pod is using
the busybox container image, which runs the command specified in the
command section of the YAML file mentioned in the previous step:

kubectl create -f configmap-as-env.yaml --namespace configmap-test

You should see an output like this:

pod/configmap-env-pod created

7. Let's check the logs for this Pod using the following command:

kubectl logs -f configmap-env-pod --namespace configmap-test

You should see the logs as shown here:

Figure 10.4: Getting logs for configmap-env-pod

The ["/bin/sh", "-c", "env"] command will display all the
environment variables loaded into the Pod. In the ConfigMap, we have
defined the property name as partner-url, which is part of the output.

What Is a ConfigMap? | 397

In this exercise, the name of the environment variable, partner-url, is the same
as the key in our key-value pair. We can also make the name of the environment
variable different from the key. For example, if we want to have partner-server-
location as the name of our environment variable, we can replace the content of
the YAML file in the exercise with the following:

apiVersion: v1

kind: Pod

metadata:

 name: configmap-multi-env-pod

spec:

 containers:

 - name: configmap-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "echo $(partner-server-location)"
]
 env:

 - name: partner-server-location

 valueFrom:

 configMapKeyRef:

 name: singlevalue-map

 key: partner-url

Pay special attention to the env section in the preceding YAML file. The first name
field after env defines the name of the environment variable, and the key field
under configMapKeyRef defines the name of the key in the ConfigMap.

Defining a ConfigMap from a File and Loading It onto a Pod

In this section, we will create a ConfigMap from a file and then load the file onto the
application Pod. As mentioned previously, this newly mounted file will be accessible
as a local file to the application running inside the Pod.

This is common when applications store their configuration data externally,
allowing easier upgrades, as well as patches of the container image across different
environments. We can have such a file in our source control repository, and we load
the correct file in the correct container using a ConfigMap.

398 | ConfigMaps and Secrets

Let's understand this through an example. Imagine that you have written a web
application that connects to a database to store information. When you deploy
the application in a development environment, you will want to connect to the
development database. Once you are satisfied that the application is working
correctly, you will want to deploy the application to a testing environment. Since the
application is packaged in a container, you would not want to change the container
to deploy the application to the testing environment. But to run the application
in the testing environment, you need to connect to a different database. An easy
solution to this is that you configure your application to read the database server
URL from a file, and that file can be mounted through a ConfigMap. This way, the file
is not packaged as part of the container, but injected from outside via Kubernetes;
thus, you do not need to modify your containerized application. Another use case
would be that external software vendors can provide a container image, and any
specific configuration settings can be mounted on the image as per a specific
client's requirements.

Exercise 10.02: Creating a ConfigMap from a File

In this exercise, we will create a ConfigMap from a file, which can be mounted onto
any Pods later on:

1. First, create a file named application.properties containing the following
configuration details. You may use your preferred text editor:

partner-url=https://www.fedex.com

partner-key=1234

2. Now, create a ConfigMap from the file using the following command:

kubectl create configmap full-file-map --from-file=./application.
properties --namespace configmap-test

You should see the following output indicating that the ConfigMap has
been created:

configmap/full-file-map created

3. Get the list of all ConfigMaps to confirm that our ConfigMap has been created:

kubectl get configmaps --namespace configmap-test

What Is a ConfigMap? | 399

You should see a list of all ConfigMaps, as shown here:

NAME DATA AGE

full-file-map 1 109m

singlevalue-map 1 127m

You can see that the names of the ConfigMaps are displayed alongside the
number of keys they have.

You might be wondering, why does this output show only one key, even though
we have added two keys? Let's understand this in the next step.

4. Let's see how the ConfigMap is being stored by using the following command:

kubectl get configmap full-file-map -o yaml --namespace configmap-test

You should see the following output:

Figure 10.5: Getting details of full-file-map

Note that the name of the file, application.properties, becomes the key
under the data section, and the entire file payload is the value of the key.

5. Now that we have defined our ConfigMap, the next step is to mount it onto a
container. Create a YAML file named mount-configmap-as-volume.yaml
to be used as our Pod configuration using the following content:

apiVersion: v1

kind: Pod

metadata:

 name: configmap-test-pod

spec:

 containers:

 - name: configmap-container

400 | ConfigMaps and Secrets

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "ls /etc/appconfig/"]

 volumeMounts:

 - name: config-volume

 mountPath: /etc/appconfig

 volumes:

 - name: config-volume

 configMap:

 # Provide the name of the ConfigMap containing the
 files you want
 # to add to the container

 name: full-file-map

 restartPolicy: Never

First, let's focus on the volumes section in the preceding file. In this section,
we are instructing Kubernetes to define a volume from our ConfigMap named
full-file-map.

Secondly, in the volumeMounts section, we are defining that Kubernetes
should mount the volume in the /etc/appconfig directory.

Note that the command field in the container allows us to configure what
command we want the container to execute when it starts. In this example,
we are running the ls command, which is a Linux command to list the
contents of a directory. This is similar to the Windows dir command. This will
print the contents of directory /etc/appconfig, where we have mounted
the ConfigMap.

Note

The name field under the volume and volumeMounts sections has to
be the same so that Kubernetes can identify which volume is associated
with which volumeMounts.

6. Now, use the following command to start a Pod using the YAML file we
just created:

kubectl create -f mount-configmap-as-volume.yaml --namespace configmap-
test

You should get a response saying that the Pod has been created:

pod/configmap-test-pod created

What Is a ConfigMap? | 401

7. The YAML file we used specifies the name of the Pod as configmap-test-
pod and configures it to just display the content of the folder. To verify this, just
issue the following command to get the output logs of the Pod:

kubectl logs -f configmap-test-pod --namespace configmap-test

This should print application.properties, which is the file we placed in
the folder:

application.properties

As you can see, we get the contents of /etc/appconfig, which is the output
of the ls command in the Pod.

You have just successfully defined a ConfigMap and mounted it as a file in a Pod that
printed the name of the file.

Exercise 10.03: Creating a ConfigMap from a Folder

In this exercise, we will load all the files in a folder as a ConfigMap. Each filename
becomes a key for the ConfigMap, and when you mount it, all the files will
be mounted at the volumeMounts location (as defined in the YAML file for
the container):

1. Create two files in a new folder. Name one of them fileone.txt, with its
contents as file one, and name the other filetwo.txt, with its contents as
file two. The folder name can be anything for this exercise. You can confirm
that the files have been created using the ls command:

ls

You will see the following list of files:

fileone.txt filetwo.txt

2. Use the following command to create ConfigMap from a folder. Note that
instead of specifying the filename, we just mentioned the name of the folder:

kubectl create configmap map-from-folder --from-file=./ -n configmap-
test

You should see the following response:

configmap/map-from-folder created

402 | ConfigMaps and Secrets

3. Now, let's describe the ConfigMap to see what it contains:

kubectl describe configmap map-from-folder -n configmap-test

You should see the following output:

Figure 10.6: Describing the map-from-folder ConfigMap

Notice that there are two keys in the ConfigMap – one for each file, that is, fileone.
txt and filetwo.txt. The values of the keys are the contents of the files. Thus,
we can see that a ConfigMap can be created from all the files in a folder.

What Is a Secret?
A ConfigMap provides a way to decouple application configuration data from the
application itself. However, the problem with a ConfigMap is that it stores the data in
plain text as a Kubernetes object. What if we want to store some sensitive data such
as a database password? Kubernetes Secret provides a way to store sensitive data
that can then be made available to the applications that require it.

What Is a Secret? | 403

Secret versus ConfigMap

You can think of a Secret as the same as a ConfigMap with the following differences:

1. Unlike a ConfigMap, a Secret is intended to store a small amount (1 MB for a
Secret) of sensitive data. A Secret is base64-encoded, so we cannot treat it as
secure. It can also store binary data such as a public or private key.

2. Kubernetes ensures that Secrets are passed only to the nodes that are running
the Pods that need the respective Secrets.

Note

Another way to store sensitive data is a vault solution, such as HashiCorp
Vault. We have left such implementation out of the scope of the workshop.

But wait; if the Kubernetes Secrets are not secure enough due to their base64
encoding, then what is the solution for storing extremely sensitive data? One way is
to encrypt it and then store it in Secrets. The data can be decrypted while it is being
loaded to the Pod, though we are leaving this implementation out of the scope of
this workshop.

Once we define our Secrets, we need to expose them to the applications
Pods. The way we expose Secrets to the running application is the same as for
ConfigMaps, that is, by mounting them as an environment variable or as a file.

As for ConfigMaps, let's use the built-in help command for secret to see what
types of Secrets are offered by Kubernetes:

kubectl create secret --help

404 | ConfigMaps and Secrets

The help command should show the following:

Figure 10.7: Output of the built-in help command for Secret

As you can see in the preceding output, the Available Commands section lists
three types of Secrets:

• generic: A generic Secret holds any custom-defined key-value pair.

• tls: A TLS Secret is a special kind of Secret for holding a public-private key pair
for communication using the TLS protocol.

• docker-registry: This is a special kind of Secret that stores the username,
password, and email address to access a Docker registry.

We will take a deeper dive into the implementation and uses of these Secrets in the
following exercises.

Exercise 10.04: Defining a Secret from Literal Values and Loading the Values

onto the Pod as an Environment Variable

In this exercise, we will define a Secret from a literal value and load it as an
environment variable in the running Pod on Kubernetes. This literal value maybe
something like a password to your internal database. Since we are creating this Secret
from a literal value, it would be categorized as a generic Secret. Follow these steps to
perform the exercise:

1. First, create a Secret that will hold a simple password by using the
following command:

kubectl create secret generic test-secret --from-
literal=password=secretvalue --namespace configmap-test

You should get a response as follows:

secret/test-secret created

What Is a Secret? | 405

2. Once we define our Secret, we can use the Kubernetes describe command to
obtain more details about it:

kubectl describe secret test-secret --namespace configmap-test

Figure 10.8: Describing test-secret

You can see that it stored our value against the password key:

3. Now that our Secret is created, we will mount it as an environment variable in a
Pod. To create a Pod, make a YAML file named mount-secret-as-env.yaml
with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: secret-env-pod

spec:

 containers:

 - name: secret-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "env"]

 envFrom:

 - secretRef:

 name: test-secret

Pay attention to the envFrom section, which mentions the Secret to load. In the
command section for the container, we specify the env command, which will
make the container display all the environment variables loaded into the Pod.

406 | ConfigMaps and Secrets

4. Now, let's use the YAML configuration to create a Pod and see it in action:

kubectl create -f mount-secret-as-env.yaml --namespace=configmap-test

You should see a response as follows:

pod/secret-env-pod created

5. Now, let's get the logs for the Pod to see all the environment variables displayed
by our container:

kubectl logs -f secret-env-pod --namespace=configmap-test

You should see the logs similar to the following screenshot:

Figure 10.9: Getting logs from secret-env-pod

As you can see in the highlighted line of the preceding output, the password
key is displayed with its value as secretvalue, which was what we
had specified.

The following exercise demonstrates how to use a public-private key combination
and mount the private key file into a Pod. The public key can then be made available
to any other service connecting to this Pod, but that is not demonstrated in this
exercise. Using a separate file as a Secret enables us to use any kind of file instead of
simple key-value strings. This opens up the possibility of using binary files like private
key stores.

What Is a Secret? | 407

Exercise 10.05: Defining a Secret from a File and Loading the Values onto the

Pod as a File

In this exercise, we will create a private key, store it in a new Secret, and then load it
onto a Pod as a file:

1. First, let's create a private key. We will use a tool used to create SSH keys.
Enter the following command in the terminal:

ssh-keygen -f ~/test_rsa -t rsa -b 4096 -C "test@example.com"

If prompted, do not provide any password for the key.

Note

If you require more information about the SSH protocol and its uses,
please refer to https://www.ssh.com/ssh/protocol/.

After this is executed successfully, you will see two files named test_rsa and
test_rsa.pub. You should see an output similar to the one shown here:

Figure 10.10: Creating SSH keys

https://www.ssh.com/ssh/protocol/

408 | ConfigMaps and Secrets

Your output may not be exactly the same as shown here because the keys
are randomized.

Note

Most Linux distros include the ssh-keygen tool. However, if you don't
have or cannot use ssh-keygen, you can use any other file instead of the
private key to proceed with this exercise.

2. Now, let's load the newly created private key as a Secret. This time, we will use
the from-file argument of the create secret command:

kubectl create secret generic test-key-secret --from-file=private-
key=/Users/faisalmassod/test_rsa --namespace=configmap-test

You should get a response like this:

secret/test-key-secret created

3. Once the Secret is created, we can get its details using the describe command:

kubectl describe secret test-key-secret --namespace=configmap-test

The Secret should be described as follows:

Figure 10.11: Describing test-key-secret

What Is a Secret? | 409

4. Now that our Secret is created, let's mount it onto a Pod. The process is similar
to mounting a ConfigMap. First, create a YAML file named mount-secret-as-
volume.yaml with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: secret-test-pod

spec:

 containers:

 - name: secret-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "ls /etc/appconfig/; cat
 /etc/appconfig/private-key"]
 volumeMounts:

 - name: secret-volume

 mountPath: /etc/appconfig

 volumes:

 - name: secret-volume

 secret:

 # Provide the name of the Secret containing the files
 you want
 # to add to the container

 secretName: test-key-secret

In the preceding Pod specification, note that volumes are mounted the
same way as we mounted the earlier ConfigMap. In the volumes section,
we are instructing Kubernetes to define a volume from our Secret. In the
volumeMounts section, we are defining the specific path on which
Kubernetes should mount the volume. The "/bin/sh", "-c",
"ls /etc/appconfig/; cat /etc/appconfig/private-key"
command will print out the contents of the file loaded onto it as a Secret.

Note

The name field in the volume and volumeMounts sections has
to be the same so that Kubernetes can identify which volume is
associated with which volumeMounts. For this example, we have
used secret-volume as the name in both places.

410 | ConfigMaps and Secrets

5. Now, let's create a Pod using the YAML file as the Pod definition using the
following command:

kubectl create -f mount-secret-as-volume.yaml --namespace=configmap-
test

If the Pod is successfully created, you should see the following output:

pod/secret-test-pod created

6. To check whether our Pod has the Secret loaded, we can get its logs and
examine them. Use the following command:

kubectl logs -f secret-test-pod --namespace=configmap-test

The logs should show the contents of the private key, as follows:

Figure 10.12: Getting logs of secret-test-pod

As you can see from the log, the container is displaying the contents of the
Secret mounted onto the Pod.

Note

Since the SSH key is randomized, your output may not look exactly the
same as the one shown here.

What Is a Secret? | 411

7. The SSH key is randomized, so each time you will get a different output. You
can try this exercise multiple times and see for yourself. Make sure to either
delete the Pod or change the name every time. You can delete the Pod using the
following command:

kubectl delete pod secret-test-pod --namespace=configmap-test

You will see the following output if the Pod is successfully deleted:

pod "secret-test-pod" deleted

In this exercise, we created a key pair using another tool and loaded the private
key onto our Pod by mounting it as a binary file. However, public-private key pairs
are used for encryption in the TLS protocol, which is a cryptographic standard for
securing web traffic.

Note

To learn more about TLS, please refer to
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/.

Kubernetes provides its own way of creating a key pair and storing keys for TLS.
Let's see how to create a TLS Secret in the following exercise.

Exercise 10.06: Creating a TLS Secret

In this exercise, we will see how to create a Secret that can store a cryptographic key
for TLS:

1. Use the following command to create a pair of private-public keys:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout tls.key
-out tls.crt -subj "/CN=kube.example.com"

This command creates the private key in the file named tls.key, and the
public certificate in the file named tls.crt.

Note

For more details on how the openssl tool is used here, you can refer to
https://www.openssl.org/docs/manmaster/man1/req.html.

https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.openssl.org/docs/manmaster/man1/req.html

412 | ConfigMaps and Secrets

If the key is successfully generated, you should see an output like this:

Figure 10.13: Creating SSL keys

2. Once it is successful, we can create a Secret to hold the files using the
following command:

kubectl create secret tls test-tls --key="tls.key" --cert="tls.crt"
--namespace=configmap-test

Once the Secret is successfully created, you will see the following output:

secret/test-tls created

3. Verify that our Secret is created by listing down all Secrets in the configmap-
test namespace using the following command:

kubectl get secrets --namespace configmap-test

Our Secret must be listed in the following output:

Figure 10.14: Listing down all secrets in configmap-test

4. If we issue the describe command for the newly created Secret, you can see
that it stores the two parts, the public and the private key, as two different keys
of the Secret:

kubectl describe secrets test-tls --namespace configmap-test

What Is a Secret? | 413

You should see the following response:

Figure 10.15: Describing test-tls

Thus, we have created a set of public-private keys for TLS using a special set of
commands provided by Kubernetes. This Secret can be mounted in a similar way as
demonstrated in Exercise 10.05, Defining a Secret from a File and Loading the Values onto
the Pod as a File.

Another common task is to fetch Docker images from an external Docker registry.
Many organizations use enterprise container registries (for example, Nexus)
for their applications, which can then be fetched and deployed as needed.
Kubernetes also provides a special type of Secret to store authentication information
for accessing these Docker registries. Let's see how to implement it in the
following exercise.

414 | ConfigMaps and Secrets

Exercise 10.07: Creating a docker-registry Secret

In this exercise, we will create a docker-registry Secret that can be used for
authentication while fetching a Docker image from a registry:

1. We can create the Secret directly using the following command:

kubectl create secret docker-registry test-docker-registry-secret
--docker-username=test --docker-password=testpassword --docker-
email=example@a.com --namespace configmap-test

As you can see in the command arguments, we need to specify the username,
password, and email address for the Docker account. Once the Secret is created,
you should see the following response:

secret/test-docker-registry-secret created

2. Verify that it is created by using this command:

kubectl get secrets test-docker-registry-secret --namespace configmap-
test

You should see test-docker-registry-secret as displayed in the
following output:

Figure 10.16: Checking test-docker-registry-secret

3. Let's use the describe command and get more details about our Secret:

kubectl describe secrets test-docker-registry-secret --namespace
configmap-test

The command should return the following details:

Figure 10.17: Describing test-docker-registry-secret

What Is a Secret? | 415

As you can see under the Data section of the preceding output, a single key with
the name .dockerconfigjson has been created.

Note

This exercise is just an easy way to load a .dockerconfigjson file.
You can create and load the file manually using other methods and achieve
the same objective as we have in this exercise.

Activity 10.01: Using a ConfigMap and Secret to Promote an Application through

Different Stages

Let's assume that we have an application and we want to promote it to different
environments. Your task is to promote the application from testing to production
environments, and each environment has different configuration data.

In this activity, we will use the ConfigMap and Secret to easily reconfigure the
application for different stages in its life cycle. It should also give you an idea of how
the separation of ConfigMap data and Secret data from the application can help
in the easier transition of an application through various stages of development
and deployment.

These guidelines should help you to complete the activity:

1. Define a namespace called my-app-test.

2. Define a ConfigMap named my-app-data in the my-app-test namespace
with the following key values:

external-system-location=https://testvendor.example.com

external-system-basic-auth-username=user123

3. Define a Secret named my-app-secret in the my-app-test namespace with
the following key values:

external-system-basic-auth-password=password123

4. Define a Pod specification and deploy the ConfigMap in the /etc/app-data
folder with the filename application-data.properties.

5. Define a Pod specification and deploy the Secret in the /etc/secure-data
folder with the filename application-secure.properties.

416 | ConfigMaps and Secrets

6. Run the Pod so that it displays all the contents from the ConfigMap and the
Secret. You should see something like this:

Figure 10.18: Key values for the test environment

7. Define another namespace called my-app-production.

8. Define a ConfigMap named my-app-data in my-app-production with the
following key values:

external-system-location=https://vendor.example.com

external-system-basic-auth-username=activityapplicationuser

9. Define a Secret named my-app-secret in my-app-production with the
following key values:

external-system-basic-auth-password=A#4b*(1=B88%tFr3

10. Use the same Pod specification as defined in step 5 and run the Pod in the
my-app-production namespace.

11. Check whether the application running in my-app-production displays the
correct data. You should see output like this:

Figure 10.19: Key values for the production environment

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD. The GitHub repository also includes a Bash script
for this activity, which will execute all these solution steps automatically.
However, please take a look at the detailed steps provided in the solution
to get a complete understanding of how to perform the activity.

https://packt.live/304PEoD

Summary | 417

Summary
In this chapter, we have seen the different ways that Kubernetes provides to
associate environment-specific data with our applications running as containers.

Kubernetes provides ways to store sensitive data as Secrets and normal application
data as ConfigMaps. We have also seen how to create ConfigMaps and Secrets and
associate them with our containers via CLI. Running everything via the command
line will facilitate the automation of these steps and improve the overall agility of
your application.

Associating data with containers enables us to use the same container across
different environments in our IT systems (for example, in test and production). Using
the same container across different environments provides a way for secure and
trusted code promotion techniques for IT processes. Each team can use a container
as a unit of deployment and sign the container so that other parties can trust the
container. This also provides a trusted way of distributing code not only across the
same IT organizations but also across multiple organizations. For example, a software
vendor can just provide you with a container as packaged software. ConfigMaps and
Secrets can then be used to provide specific configurations for using the packaged
software in your organization.

The next set of chapters is all about deploying Kubernetes and running it in high
availability mode. These chapters will provide you with fundamental and practical
knowledge regarding how to run stable clusters for Kubernetes.

Overview

In this chapter, we will learn how Kubernetes enables us to deploy
infrastructure with remarkable resilience and how to set up a
high-availability Kubernetes cluster in the AWS cloud. This chapter
will help you understand what enables Kubernetes to be used for highly
available deployments and, in turn, enable you to make the right choices
while architecting a production environment for your use case. By the end
of the chapter, you will be able to set up a suitable cluster infrastructure on
AWS to support your highly available (HA) Kubernetes cluster. You will
also be able to deploy an application in a production environment.

Build Your Own HA Cluster

11

420 | Build Your Own HA Cluster

Introduction
In the previous chapters, you learned about application containerization, how
Kubernetes works, and some of the "proper nouns" or "objects" in Kubernetes that
allow you to create a declarative-style application architecture that Kubernetes will
execute on your behalf.

Software and hardware instability are a reality in all environments. As applications
need higher and higher availability, shortcomings in the infrastructure become more
obvious. Kubernetes was purpose-built to help solve this challenge for containerized
applications. But what about Kubernetes itself? As cluster operators, do we shift
from watching our individual servers like hawks to watching our single Kubernetes
control infrastructure?

As it turns out, this aspect was one of the design considerations for Kubernetes.
One of the design goals of Kubernetes is to be able to withstand instability in its own
infrastructure. This means that when set up properly, the Kubernetes control plane
could withstand quite a few disasters, including:

• Network splits/partitions

• Control plane (master) server failure

• Data corruption in etcd

• Many other less severe events that impact availability events

Not only can Kubernetes help your application tolerate failure, but you can rest
easy at night knowing that Kubernetes can also tolerate failures in its own control
infrastructure. In this chapter, we are going to build a cluster of our very own and
make sure that it is highly available. High availability implies that the system is very
reliable and almost always available. This does not mean that everything in it always
works perfectly; it just means that whenever the user or client wants something, the
architecture stipulates that the API server should be available to do the job. This
means that we have to design a system for our applications to automatically respond
to and take corrective measures in response to any faults.

In this chapter, we will look at how Kubernetes integrates such measures to tolerate
faults in its own control architecture. Then, you will have the chance to extend
this concept a bit further by designing your application to take advantage of this
horizontally scalable, fault-tolerant architecture. But first, let's look at how the
different cogs in the machine turn together to enable it to be highly available.

How the Components of Kubernetes Work Together to Achieve High Availability | 421

How the Components of Kubernetes Work Together to Achieve High
Availability
You have learned in Chapter 2, An Overview of Kubernetes, how the pieces of
Kubernetes work together to provide a runtime for your application containers. But
we need to investigate deeper how these components work together to achieve high
availability. To do that, we'll start with the memory bank of Kubernetes, otherwise
known as etcd.

etcd

As you have learned in earlier chapters, etcd is the place where all Kubernetes
configuration is stored. This makes it arguably the single most important component
of the cluster since changes in etcd affect the state of everything. More specifically,
any change to a key-value pair in etcd will cause the other components of Kubernetes
to react to this change, which could mean disruptions to your application. In order to
achieve high availability for Kubernetes, it is wise to have more than one etcd node.

But many more challenges arise when you add multiple nodes to an eventually
consistent datastore like etcd. Do you have to write to every node to persist a change
of state? How does replication work? Do we read from just one node or as many
as are available? How does it handle networking failures and partitions? Who is the
master of the cluster and how does leader election work? The short answer is that,
by design, etcd makes these challenges either non-existent or easy to deal with. etcd
uses a consensus algorithm called Raft to achieve replication and fault tolerance in
relation to many of the aforementioned issues. Thus, if we're building a Kubernetes
HA cluster, we need to make sure that we set up multiple nodes (preferably an odd
number to make leader election tie-breaking easier) of an etcd cluster properly, and
we can rely on that from there.

Note

Leader election in etcd is a process where multiple instances of the
database software collectively vote on which host will be an authority for
dealing with any issues that arise in achieving database consensus. For
more details, refer to this link: https://raft.github.io/

https://raft.github.io/

422 | Build Your Own HA Cluster

Networking and DNS

Many of the applications that run on Kubernetes require some form of network to
be useful. Therefore, networking is an important consideration when designing a
topology for your clusters. For example, your network should be able to support
all of the protocols that your application uses, including the ones for Kubernetes.
Kubernetes itself uses TCP for all of its communication between masters, nodes, and
etcd, and it uses UDP for internal domain name resolution, which is otherwise known
as service discovery. Your network should also be provisioned to have at least as
many IP addresses as the number of nodes that you plan to have in the cluster. For
example, if you planned to have more than 256 machines (nodes) in your cluster, you
probably shouldn't use an IP CIDR address space of /24 or higher since that only has
255 or fewer available IP addresses.

Later in this workshop, we will talk about the security decisions you will need to make
as a cluster operator. However, in this section, we will not discuss them because
they do not directly relate to Kubernetes' ability to achieve high availability. We will
deal with the security of Kubernetes in Chapter 13, Runtime and Network Security
in Kubernetes.

One final thing to take into consideration about the network where your master and
worker nodes will run is that every master node should be able to communicate
with every worker node. The reason this is important is that each master node
communicates with the Kubelet process running on the worker node in order to
determine the state of the full cluster.

Nodes' and Master Servers' Locations and Resources

Because of the design of etcd's Raft algorithm, which allows distributed consensus
to happen in the key-value store of Kubernetes, we are able to run multiple master
nodes, each of which is capable of controlling the entire cluster without the fear
of them behaving independently from each other (in other words, going rogue).
As a reminder of why master nodes being out of sync is a problem in Kubernetes,
consider that the runtime of your application is being controlled by commands
that Kubernetes issues on your behalf. If those commands conflict with each other
because of state sync problems between master nodes, then your application
runtime will suffer as a result. By introducing multiple master nodes, we again
provide resistance to faults and network partitions that could potentially sacrifice
the availability of the cluster.

How the Components of Kubernetes Work Together to Achieve High Availability | 423

Kubernetes is actually able to run in a "headless" mode. This means whatever
instructions the Kubelets (worker nodes) have last received from the master nodes
will continue to be carried out until communication with the master nodes can be
re-established. In theory, this means an application that was deployed on Kubernetes
could run indefinitely, even if the entire control plane (all master nodes) went
down and nothing else changed on the worker nodes where the Pods running the
application were scheduled. Obviously, this is a worst-case scenario for the availability
of a cluster, but it is reassuring to know that, even in the worst case, applications
don't necessarily have to suffer downtime.

When you are planning the design and capacity for a high-availability deployment of
Kubernetes, it is important to know a few things about the design of your network,
which we discussed previously. For example, if you are running a cluster in a popular
cloud provider, they likely have a concept of "availability zones". A similar concept for
data center environments would be physically isolated data centers. If possible, there
should be at least one master node and multiple worker nodes per availability zone.
This is important because, in the event of an availability zone (data center) outage,
your cluster is still able to operate within the remaining availability zones. This is
illustrated in the following diagrams:

Figure 11.1: The cluster before the outage of an availability zone

424 | Build Your Own HA Cluster

Let's assume that there is a total outage of Availability Zone – C, or at least we are no
longer able to communicate with any servers that are running inside it. Here is how
the cluster now behaves:

Figure 11.2: The cluster following the outage of an availability zone

As you can see in the diagram, Kubernetes can still execute. Additionally, if the loss
of the nodes running in Availability Zone - C causes an application to no longer be
in its desired state, which is dictated by the application's Kubernetes manifest, the
remaining master nodes will work to schedule the interrupted workload on the
remaining worker nodes.

Note

Depending on the number of worker nodes in your Kubernetes cluster, you
may have to plan for additional resource constraints because of the amount
of CPU power needed to run a master connected to several worker nodes.
You can use the chart at this link to determine the resource requirements of
the master nodes you should deploy for controlling your cluster:
https://kubernetes.io/docs/setup/best-practices/cluster-large/

https://kubernetes.io/docs/setup/best-practices/cluster-large/

How the Components of Kubernetes Work Together to Achieve High Availability | 425

Container Network Interface and Cluster DNS

The next decision you need to make with respect to your cluster is how the containers
themselves communicate across each of the nodes. Kubernetes itself has a container
network interface called kubenet, which is what we will use in this chapter.

For smaller deployments and simple operations, kubenet more than exceeds the
needs of those clusters from a Container Network Interface (CNI) perspective.
However, it does not work for every workload and network topology. So, Kubernetes
provides support for several different CNIs. When considering container network
interfaces from a high-availability perspective, you will want the most performant and
stable option possible. It is beyond the scope of this introduction to Kubernetes to
discuss each of the CNI offerings at length.

Note

If you plan to use a managed Kubernetes service provider or plan to have
a more complex network topology such as multiple subnets inside a single
VPC, kubenet will not work for you. In this case, you will have to pick one of
the more advanced options. More information on selecting the right CNI for
your environment can be found here: https://chrislovecnm.com/kubernetes/
cni/choosing-a-cni-provider/

Container Runtime Interfaces

One of the final decisions you will have to make is how your containers will run on
your worker nodes. The Kubernetes default for this is the Docker container runtime
interface, and Kubernetes was initially built to work with Docker. Since then, however,
open standards have been developed and other container runtime interfaces are
now compatible with the Kubernetes API. Generally, cluster operators tend to stick
with Docker because it is extremely well established. Even if you want to explore
alternatives, keep in mind when designing a topology capable of maintaining high
availability for your workloads and Kubernetes that you'll probably want to go with
more established and stable options like Docker.

Note

You can find some of the other container runtime interfaces that are
compatible with Kubernetes on this page: https://kubernetes.io/docs/setup/
production-environment/container-runtimes/

https://chrislovecnm.com/kubernetes/cni/choosing-a-cni-provider/
https://chrislovecnm.com/kubernetes/cni/choosing-a-cni-provider/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/

426 | Build Your Own HA Cluster

Container Storage Interfaces

Recent versions of Kubernetes have introduced improved ways of interacting with
the persistence tools that are available in data centers and cloud providers such as
storage arrays and blob storage. The most important improvement has been the
introduction and standardization of the container storage interface for managing
StorageClass, PersistentVolume, and PersistentVolumeClaim in
Kubernetes. The consideration for highly available clusters you will need to make with
regard to storage is more specific per application. For example, if your application
makes use of Amazon EBS volumes, which must reside within an availability zone,
then you will have to ensure appropriate redundancy is available in your worker
nodes so that the Pod that depends on that volume can be rescheduled in the event
of an outage. More information on CSI drivers and implementations can be found
here: https://kubernetes-csi.github.io/docs/

Building a High-Availability Focused Kubernetes Cluster
Hopefully, by reading the previous section, you're starting to realize that Kubernetes
is less magical than it may seem when you first approached the topic. It is an
extremely powerful tool on its own, but Kubernetes really shines when we take full
advantage of its capability of running in a highly available configuration. So now we're
going to see how to implement it and actually build a cluster using a cluster life cycle
management tool. But before we do that, we need to know the different ways that we
can deploy and manage a Kubernetes cluster.

Self-Managed versus Vendor-Managed Kubernetes Solutions

Amazon Web Services, Google Cloud Platform, Microsoft Azure, and practically
every other major cloud services provider has a managed Kubernetes offering. So,
when you are deciding how you are going to build and run your cluster, you should
consider some of the different managed providers and their strategic offerings to see
whether or not they align with your business needs and goals. For example, if you use
Amazon Web Services, then Amazon EKS might be a viable solution for you.

https://kubernetes-csi.github.io/docs/

Building a High-Availability Focused Kubernetes Cluster | 427

There are trade-offs with choosing a managed service provider over an open-source
and self-managed solution. For example, a lot of the hard work of cluster assembly
is done for you, but you forfeit a great deal of control in the process. So, you need
to decide how much value you place on being able to control the Kubernetes
master plane and whether or not you would like to be able to pick your container
networking interface or container runtime interface. For the purposes of this tutorial,
we are going to use an open-source solution because it can be deployed anywhere,
and it also helps us understand how Kubernetes works and how it is supposed to
be configured.

Note

Please ensure that you have an AWS account and are able to access it
using the AWS CLI: https://aws.amazon.com/cli.

If you are unable to access it, then please follow the instructions at the
preceding link.

Assuming for now that we want more control over our cluster and are comfortable
with managing it by ourselves, let's look at some open-source tools that can be used
for setting up a cluster.

kops

We will use one of the more popular open-source installation tools to do this called
kops, which stands for Kubernetes Operations. It is a complete cluster life cycle
management tool and has a very easy API to understand. As a part of the cluster
creation/updating process, kops can generate Terraform configuration files so you
can run the infrastructure upgrade process as part of your own pipeline. It also has
good tooling to support the upgrade path between versions of Kubernetes.

Note

Terraform is an infrastructure life cycle management tool that we will briefly
learn about in the next chapter.

https://aws.amazon.com/cli

428 | Build Your Own HA Cluster

Some of the drawbacks of kops are that it tends to be about two versions of
Kubernetes behind, it has not always been able to respond to vulnerability
announcements as fast as other tools, and it is currently limited to creating
clusters in AWS, GCP, and OpenStack.

The reason we have decided to use kops for our cluster life cycle management in this
chapter is four-fold:

• We wanted to select a tool that would abstract away some of the more confusing
bits of the Kubernetes setup as we ease you into cluster administration.

• It supports more cloud platforms than just AWS, so you don't have to be locked
into Amazon if you choose not to be.

• It supports a broad array of customizations to the Kubernetes infrastructure,
such as choosing CNI providers, deciding on a VPC network topology, and node
instance group customizations.

• It has first-class support for zero-downtime cluster version upgrades and
handles the process automatically.

Other Commonly Used Tools

Besides kops, there are several other tools that can be used to set up a Kubernetes
cluster. You can find the full list at this link: https://kubernetes.io/docs/setup/#production-
environment.

We will mention a couple of them here so you get an idea of what's available:

• kubeadm: This is generated from the Kubernetes source code and is the tool
that will allow the greatest level of control over each component of Kubernetes.
It can be deployed in any environment.

Using kubeadm requires an expert level knowledge of Kubernetes to be useful.
It gives cluster administrators little room for error, and it is complicated to
upgrade a cluster using kubeadm.

https://kubernetes.io/docs/setup/#production-environment
https://kubernetes.io/docs/setup/#production-environment

Building a High-Availability Focused Kubernetes Cluster | 429

• Kubespray: This uses Ansible/Vagrant-style configuration management, which
is familiar to many IT professionals. It is better for environments where the
infrastructure is more static rather than dynamic (such as the cloud). Kubespray
is very composable and configurable from a tooling perspective. It also allows
the deployment of a cluster on bare-metal servers. The key to watch out for here
is coordinating software upgrades of cluster components and hardware and
operating systems. Since you are providing much of the functionality a cloud
provider does, you have to make sure your upgrade processes won't break the
applications running on top of the cluster.

Because Kubespray uses Ansible for provisioning, you are restricted by the
underlying limitations of Ansible for provisioning large clusters and keeping
them in spec. Currently, Kubespray is limited to the following environments:
AWS, GCP, Azure, OpenStack, vSphere, Packet, Oracle Cloud Infrastructure, or
your own bare-metal installations.

Authentication and Identity in Kubernetes

Kubernetes uses two concepts for authentication: ServiceAccounts are meant to
identify processes running inside Pods, and User Accounts are meant to identify
human users. We will take a look at ServiceAccounts in a later topic in this chapter,
but first, let's understand User Accounts.

From the very beginning, Kubernetes has tried to remain incredibly agnostic to any
form of authentication and identity for user accounts, because most companies
have a very specific way of authenticating users. Some use Microsoft Active Directory
and Kerberos, some may use Unix passwords and UGW permission sets, and some
may use a cloud provider or software as a service-based IAM solution. In addition,
there are a number of different authentication strategies that may be used by
an organization.

Because of this, Kubernetes does not have built-in identity management or a
required single way of authenticating those identities. Instead, it has a concept of
authentication "strategies." A strategy is essentially a way for Kubernetes to delegate
the verification of identity to another system or method.

430 | Build Your Own HA Cluster

In this chapter, we will be using x509 certificate-based authentication. X509 certificate
authentication essentially makes use of the Kubernetes Certificate Authority and
common names/organization names. Since Kubernetes RBAC rules use usernames
and group names to map authenticated identities to permission sets, x509 common
names become the usernames of Kubernetes, and organization names
become the group names in Kubernetes. kops automatically provisions x509-based
authentication certificates for you so there is little to worry about; but when it comes
to adding your own users, you will want to be aware of this.

Note

Kubernetes RBAC stands for Role-Based Access Control, which allows us
to allow or deny certain access to our users based on their roles. This will
be covered in more depth in Chapter 13, Runtime and Network Security
in Kubernetes.

An interesting feature of kops is that you can use it in a similar way to manage cluster
resources as you would use kubectl to manage cluster resources. kops handles
a node similar to how Kubernetes would handle a Pod. Just as Kubernetes has a
resource called "Deployment" to manage a bunch of Pods, kops has a resource called
InstanceGroup (which can also be referred to by its short form, ig) to manage a
bunch of nodes. In the case of AWS, a kops InstanceGroup effectively creates an AWS
EC2 Autoscaling group.

Extending this comparison, kops get instancegroups or kops get ig is
analogous to kubectl get deployments, and kops edit works similarly
to kubectl edit. We will make use of this feature in the activity later in the
chapter, but first, let's get our basic HA cluster infrastructure up and running in
the following exercise.

Note

In this chapter, the commands have been run using the Zsh shell. However,
they are completely compatible with Bash.

Building a High-Availability Focused Kubernetes Cluster | 431

Exercise 11.01: Setting up Our Kubernetes Cluster

Note

This exercise will exceed the free tier of AWS that is normally given to new
account holders for the first 12 months. Pricing information on EC2 can be
found here: https://aws.amazon.com/ec2/pricing/

Also, you should remember to delete your instances at the end of the
chapter to stop being billed for your consumed AWS resources.

In this exercise, we will prepare our infrastructure for running a Kubernetes cluster
on AWS. There's nothing particularly special about the choice of AWS; Kubernetes is
platform-agnostic, though it already has code that allows it to integrate with native
AWS services (EBS, EC2, and IAM) on behalf of cluster operators. This is also true for
Azure, GCP, IBM Cloud, and many other cloud platforms.

We will set up a cluster with the following specifications:

• Three master nodes

• Three etcd nodes (to keep things simple, we will run these on the master nodes)

• Two worker nodes

• At least two availability zones

Once we have our cluster set up, we will deploy an application on it in the next
exercise. Now follow these steps to complete this exercise:

1. Ensure that you have installed kops as per the instructions in the Preface. Verify
that kops is properly installed and configured using the following command:

kops version

You should see the following response:

Version 1.15.0 (git-9992b4055)

Now before we move on to the following steps, we need to do some setup in
AWS. Most of the following settings are configurable, but we will be making a few
decisions for you for the sake of convenience.

https://aws.amazon.com/ec2/pricing/

432 | Build Your Own HA Cluster

2. First, we will set up an AWS IAM user that kops will use to provision your
infrastructure. Run the following commands one after the other in your terminal:

aws iam create-group --group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEC2FullAccess --group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/
AmazonRoute53FullAccess --group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/
AmazonS3FullAccess --group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/
IAMFullAccess --group-name kops

aws iam attach-group-policy --policy-arn arn:aws:iam::aws:policy/
AmazonVPCFullAccess --group-name kops

aws iam create-user --user-name kops

aws iam add-user-to-group --user-name kops --group-name kops

aws iam create-access-key --user-name kops

Building a High-Availability Focused Kubernetes Cluster | 433

You should see output similar to this:

Figure 11.3: Setting up an IAM user for kops

434 | Build Your Own HA Cluster

Note the highlighted AccessKeyID and SecretAccessKey fields you
will receive for your output. This is sensitive information, and the keys in the
preceding screenshot will, of course, be invalidated by the author. We will need
the highlighted information for our next step.

3. Next, we need to export the created credentials for kops as environment
variables for our terminal session. Use the highlighted information from the
screenshot in the previous step:

export AWS_ACCESS_KEY_ID=<AccessKeyId>

export AWS_SECRET_ACCESS_KEY=<SecretAccessKey>

4. Next, we need to create an S3 bucket for kops to store its state. To create a
random bucket name, run the following command:

export BUCKET_NAME="kops-$(LC_ALL=C tr -dc 'a-z0-9' </dev/urandom |
head -c 13 ; echo)" && echo $BUCKET_NAME

The second command outputs the name of the S3 bucket created, and you
should see a response similar to the following:

kops-aptjv0e9o2wet

5. Run the following command to create the required bucket using the AWS CLI:

aws s3 mb s3://$BUCKET_NAME --region us-west-2

Here, we are using the us-west-2 region. You can use a region closer
to you if you want. You should see the following response for a successful
bucket creation:

make_bucket: kops-aptjv0e9o2wet

Now that we have our S3 bucket, we can begin to set our cluster up. There
are numerous options we can choose, but right now we're going to work with
the defaults.

6. Export the name of your cluster and the S3 bucket that kops will use to store
its state:

export NAME=myfirstcluster.k8s.local

export KOPS_STATE_STORE=s3://$BUCKET_NAME

Building a High-Availability Focused Kubernetes Cluster | 435

7. Generate all the config and store it in the S3 bucket from earlier to create a
Kubernetes cluster using the following command:

kops create cluster --zones us-west-2a,us-west-2b,us-west-2c
--master-count=3 --kubernetes-version=1.15.0 --name $NAME

By passing the --zones argument, we are specifying the availability zones we
want our cluster to span, and by specifying the master-count=3 parameter,
we are effectively saying we want to use a highly available Kubernetes cluster.
By default, kops will create two worker nodes.

Note that this did not actually create the cluster, but it created a pre-flight set
of checks so we can create a cluster in just a moment. It is informing us that in
order to access our AWS instances, we need to provide a public key – the default
search location is ~/.ssh/id_rsa.pub.

8. Now, we need to create an SSH key to be added to all of the master and worker
nodes so we can log in to them with SSH. Use the following command:

kops create secret --name myfirstcluster.k8s.local sshpublickey admin
-i ~/.ssh/id_rsa.pub

The type of secret (sshpublickey) is a special keyword reserved to kops for
this operation. More information can be found at this link: https://github.com/
kubernetes/kops/blob/master/docs/cli/kops_create_secret_sshpublickey.md.

Note

The key being specified here at ~/.ssh/id_rsa.pub will be the key
that kops is going to distribute to all master and worker nodes and can be
used for SSH from your local computer to the running server for diagnostic
or maintenance purposes.

You can use the following command to use the key to log in with an
admin account:

ssh -i ~/.ssh/id_rsa admin@<public_ip_of_instance>

While this is not required for this exercise, you will find this useful for a
later chapter.

https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_secret_sshpublickey.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_secret_sshpublickey.md

436 | Build Your Own HA Cluster

9. To view our configuration, let's run the following command:

kops edit cluster $NAME

This will open your text editor with the definition of our cluster, as shown here:

Figure 11.4: Examining the definition of our cluster

We have truncated this screenshot for brevity. At this point, you can make
any edits, though, for this exercise, we will proceed without making any
changes. We will keep the description of this spec out of the scope of this
workshop for brevity. If you want more details about the various elements in
the clusterSpec of kops, you can find more details here: https://github.com/
kubernetes/kops/blob/master/docs/cluster_spec.md.

https://github.com/kubernetes/kops/blob/master/docs/cluster_spec.md
https://github.com/kubernetes/kops/blob/master/docs/cluster_spec.md

Building a High-Availability Focused Kubernetes Cluster | 437

10. Now, take the configuration we generated and stored in S3 and actually run
commands to reconcile the AWS infrastructure with what we said we wanted it
to be in our config files:

kops update cluster $NAME --yes

Note

All commands in kops are dry-run (nothing will actually happen except
some validation steps) by default unless you specify the --yes flag. This is
a protectionary measure, so you don't accidentally do something harmful to
your cluster in production.

This will take a long time, but after it's done, we'll have a working Kubernetes HA
cluster. You should see the following response:

Figure 11.5: Updating the cluster to match the generated definition

438 | Build Your Own HA Cluster

11. To validate that our cluster is running, let's run the following command. This may
take up to 5-10 minutes to fully work:

kops validate cluster

You should see the following response:

Figure 11.6: Validating our cluster

From this screenshot, we can see we have three Kubernetes master nodes
running in separate availability zones, and two worker nodes spread across two
of the three availability zones (making this a highly available cluster). Also, all of
the nodes as well as the cluster appear to be healthy.

Note

Remember your cluster resources are still running. If you plan to proceed to
the next exercise after a significant amount of time, you may want to delete
this cluster to stop the billing for the AWS resources. To delete this cluster,
you can use the following command:

kops delete cluster --name ${NAME} --yes

Building a High-Availability Focused Kubernetes Cluster | 439

Kubernetes Service Accounts

As we learned earlier, a Kubernetes ServiceAccount object serves as an identification
marker for a process inside a Pod. While Kubernetes does not manage and
authenticate the identity of human users, it does manage and authenticate
ServiceAccount objects. And then, similar to users, you can allow role-based
access to Kubernetes resources for ServiceAccount.

ServiceAccount acts as a way of authenticating to the cluster using JSON Web Token
(JWT) style, header-based authentication. Every ServiceAccount is paired with a
token stored in a secret that is created by the Kubernetes API and then mounted
into the Pod associated with that ServiceAccount. Whenever any process in the
Pod needs to make an API request, it passes the token along with it to the API
server, and Kubernetes maps that request to the ServiceAccount. Based on that
identity, Kubernetes can then determine the level of access to the resources/objects
(authorization) that a process should be granted. Typically, service accounts are
given to Pods inside the cluster as they are intended only to be used internally.
A ServiceAccount is a Kubernetes namespace-scoped object.

An example spec for a ServiceAccount would look as follows:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kube-system

We will use this example in the next exercise. You would attach this ServiceAccount
to an object by including this field in the definition of an object such as a
Kubernetes deployment:

serviceAccountName: admin-user

If you create a Kubernetes object without specifying a service account, it will be
created with the default service account. A default service account is created
by Kubernetes for each namespace.

In the following exercise, we will deploy the Kubernetes Dashboard on our cluster.
Kubernetes Dashboard is arguably one of the most helpful tools to have running in
any Kubernetes cluster. It is useful for debugging issues with configuring workloads
in Kubernetes.

440 | Build Your Own HA Cluster

Note

You can find more information about it here: https://kubernetes.io/docs/tasks/
access-application-cluster/web-ui-dashboard/.

Exercise 11.02: Deploying an Application on Our HA Cluster

In this exercise, we will use the same cluster that we deployed in the previous
exercise and deploy Kubernetes Dashboard. If you have deleted your cluster
resources, then please rerun the previous exercise. kops will automatically add the
required information to connect to the cluster in your local Kube config file (found at
~/.kube/config) and set that cluster as the default context.

Since the Kubernetes Dashboard is an application that helps us in administration
tasks, the default ServiceAccount does not have sufficient privileges. We will be
creating a new ServiceAccount with generous privileges in this exercise:

1. To begin with, we will apply the Kubernetes Dashboard manifest sourced directly
from the official Kubernetes repository. This manifest defines all the objects that
we will need for our application. Run the following command:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/v2.0.0-beta1/aio/deploy/recommended.yaml

You should see the following response:

Figure 11.7: Applying the manifest for Kubernetes Dashboard

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

Building a High-Availability Focused Kubernetes Cluster | 441

2. Next, we need to configure a ServiceAccount to access the dashboard. To do this,
create a file called sa.yaml with the following content:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: admin-user

 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

- kind: ServiceAccount

 name: admin-user

 namespace: kube-system

Note

We are giving this user very liberal permissions, so please treat the access
token with care. ClusterRole and ClusterRoleBinding objects are a part of
RBAC policies, which are covered in Chapter 13, Runtime and Network
Security in Kubernetes.

442 | Build Your Own HA Cluster

3. Next, run the following command:

kubectl apply -f sa.yaml

You should see this response:

serviceaccount/admin-user created

clusterrolebinding.rbac.authorization.k8s.io/admin-user created

4. Now, let's confirm the ServiceAccount details by running the following command:

kubectl describe serviceaccount -n kube-system admin-user

You should see the following response:

Figure 11.8: Examining our ServiceAccount

When you create a ServiceAccount in Kubernetes, it will also create a Secret in
the same namespace with the contents of the JWT needed to make API calls
against the API server. As we can see from the previous screenshot, the Secret in
this case is named admin-user-token-vx84g.

5. Let's examine the secret object:

kubectl get secret -n kube-system -o yaml admin-user-token-vx84g

Building a High-Availability Focused Kubernetes Cluster | 443

You should see the following output:

Figure 11.9: Examining the token in our ServiceAccount

This is a truncated screenshot of the output. As we can see, we have a token
here in this secret. Note that this is Base64 encoded, which we will decode in the
next step.

444 | Build Your Own HA Cluster

6. Now we need the content of the token for the account Kubernetes just created
for us, so let's use this command:

kubectl -n kube-system get secret $(kubectl -n kube-system get secret
| grep admin-user | awk '{print $1}') -o jsonpath='{.data.token}' |
base64 --decode

Let's break this command down. The command gets the secret called
admin-user because we created a ServiceAccount with that name. When a
ServiceAccount is created in Kubernetes, it places a secret named the same with
the token we use to authenticate to the cluster. The rest of the command is
syntactic sugar to decode the result in a useful form for copying and pasting into
the dashboard. You should get an output as shown in the following screenshot:

Figure 11.10: Getting the content of the token associated
with the admin-user ServiceAccount

Copy the output you receive, while being careful not to copy the $ or % signs
(seen in Bash or Zsh, respectively) seen at the very end of the output.

7. By default, Kubernetes Dashboard is not exposed to the public internet outside
our cluster. So, in order to access it with our browser, we need a way to allow our
browser to communicate with Pods inside the Kubernetes container network.
One useful way is to use the proxy built into kubectl:

kubectl proxy

You should see this response:

Starting to serve on 127.0.0.1:8001

8. Open your browser and navigate to the following URL:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/
services/https:kubernetes-dashboard:/proxy/

Building a High-Availability Focused Kubernetes Cluster | 445

You should see the following prompt:

Figure 11.11: Entering the token to sign in to Kubernetes Dashboard

Paste your token copied from step 4, and then click on the SIGN IN button.

After logging in successfully, you should see the dashboard as shown in the
following screenshot:

Figure 11.12: Kubernetes Dashboard landing page

In this exercise, we have deployed Kubernetes Dashboard to the cluster to allow you
to administer your application from a convenient GUI. During the course of deploying
this application, we have seen how we can create ServiceAccounts for our cluster.

446 | Build Your Own HA Cluster

Throughout this chapter, you've learned how to create the cloud infrastructure
using kops to make a highly available Kubernetes cluster. Then, we deployed the
Kubernetes Dashboard and learned about ServiceAccounts in the process. Now that
you have seen the steps required to make a cluster and get an application running on
it, we will make another cluster and see its resilience in action in the following activity.

Activity 11.01: Testing the Resilience of a Highly Available Cluster

In this activity, we will test out the resiliency of a Kubernetes cluster we create
ourselves. Here are some guidelines for proceeding with this activity:

1. Deploy Kubernetes Dashboard. But this time, set the replica count of the
deployment running the application to something higher than 1.

The Kubernetes Dashboard application is run on Pods managed by a
deployment named kubernetes-dashboard, which runs in a namespace
called kubernetes-dashboard. This is the deployment that you need
to manipulate.

2. Now, start shutting down various nodes from the AWS console to remove nodes,
delete Pods, and do what you can to make the underlying system unstable.

3. After each attempt you make to take down the cluster, refresh the Kubernetes
console if the console is still accessible. So long as you get any response from
the application, this means that the cluster and our application (in this case,
Kubernetes Dashboard) is still online. As long as the application is online,
you should be able to access the Kubernetes Dashboard as shown in the
following screenshot:

Figure 11.13: Kubernetes Dashboard prompt for entering a token

Building a High-Availability Focused Kubernetes Cluster | 447

This screenshot shows just the prompt where you need to enter your token, but
it is a good enough indicator that our application is online. If your request times
out, this means that our cluster is no longer functional.

4. Join another node to this cluster.

To achieve this, you need to find and edit the InstanceGroup resource that is
managing the nodes. The spec contains maxSize and minSize fields, which
you can manipulate to control the number of nodes. When you update your
cluster to match the modified specification, you should be able to see three
nodes, as shown in the following screenshot:

Figure 11.14: Number of master and worker nodes in the cluster

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD. Make sure you have deleted your clusters
once you have completed the activity. More details on how to delete your
clusters are presented in the following section (Deleting Our Cluster).

Deleting Our Cluster

Once we're done with all the exercises and activities in this chapter, you should delete
the cluster by running the following command:

kops delete cluster --name ${NAME} --yes

https://packt.live/304PEoD

448 | Build Your Own HA Cluster

You should see this response:

Figure 11.15: Deleting our cluster

At this point, you should no longer be receiving charges from AWS for the Kubernetes
infrastructure you have spun up in this chapter.

Summary | 449

Summary
Highly available infrastructure is one of the key components to achieving high
availability for applications. Kubernetes is an extremely well-designed tool and has
many built-in resiliency features that make it able to withstand major networking
and compute events. It works to keep those events from impacting your application.
During our exploration of high-availability systems, we investigated some
components of Kubernetes and how they work together to achieve high availability.
Then, we constructed a cluster of our own on AWS that was designed to be highly
available using the kops cluster life cycle management tool.

In the next chapter, we're going to take a look at how we make our applications more
resilient by leveraging Kubernetes primitives to ensure high availability.

Overview

In this chapter, we will explore Kubernetes cluster life cycle management
through the use of Terraform and Amazon Elastic Kubernetes Service
(EKS). We will also deploy an application and learn some principles to make
applications better suited to the Kubernetes environment.

This chapter will walk you through using Terraform to create a fully
functioning, highly available Kubernetes environment. You will deploy an
application to the cluster and modify its functionality to make it suitable for
a highly available environment. We will also learn how to get traffic from
the internet to an application running in a cluster by using a Kubernetes
ingress resource.

Your Application and HA

12

452 | Your Application and HA

Introduction
In the previous chapter, we set up our first multi-node Kubernetes cluster in a
cloud environment. In this section, we're going to talk about how we operationalize
a Kubernetes cluster for our application—that is, we will use the cluster to run a
containerized application other than the dashboard.

Since Kubernetes has as many uses as can be imagined by a cluster operator, no two
use cases for Kubernetes are alike. So, we're going to make some assumptions about
the type of application that we're operationalizing our cluster for. We're going to
optimize a workflow for deploying a stateless web application with a stateful backend
that has high-availability requirements in a cloud-based environment. In doing so,
we're hopefully going to cover a large percentage of what people generally use
Kubernetes clusters for.

Kubernetes can be used for just about anything. Even if what we cover does not
exactly match your use case for Kubernetes, it's worth studying since this point is
important. What we're going to be doing in this chapter is merely running through an
example workflow for running a web application on Kubernetes in the cloud. Once
you have studied the principles that we will use for running the example workflow in
this chapter, you can look up many other resources on the internet that can help you
discover other ways of optimizing your workflow with Kubernetes if this doesn't fit
your use case.

But before we move on to ensure the high availability of the application that we will
be running on the cluster, let's take a step back and consider the high-availability
requirements for your cloud infrastructure. In order to maintain high availability
at an application level, it is also imperative that we manage our infrastructure with
the same goal in mind. This brings us to a discussion about infrastructure life
cycle management.

An Overview of Infrastructure Life Cycle Management
In simple words, infrastructure life cycle management refers to how we manage our
servers through each phase of its useful life. This involves provisioning, maintaining,
and decommissioning physical hardware or cloud resources. Since we are leveraging
cloud infrastructure, we should leverage infrastructure life cycle management tools
to provision and de-provision resources programmatically. To understand why this is
important, let's consider the following example.

An Overview of Infrastructure Life Cycle Management | 453

Imagine for a moment that you work as a system administrator, DevOps engineer,
site reliability engineer, or any other role that requires you to deal with server
infrastructure for a company that is in the digital news industry. What that means
is that the primary output of the people who are working for this company is the
information that they publish on their website. Now, imagine that the entirety of the
website runs on one server in your company's server room. The application running
on the server is a PHP blog site with a MySQL backend. One day, an article goes viral
and suddenly you are handling an exponentially higher amount of traffic than you
were handling the day before. What do you do? The website keeps crashing (if it loads
at all) and your company is losing money while you try to figure out a solution.

Your solution is to start separating concerns and isolating single points of failure.
The first thing you do is buy a lot more hardware and start configuring it to hopefully
scale the website horizontally. After doing this, you're running five servers, with
one running HAProxy, which is load-balancing connections to your PHP application
running on three servers and a database server. OK, now you think that you have
it under control. However, not all of the server hardware is the same—they run
different distributions of Linux, the resource requirements are different for each
machine, and patching, upgrading, and maintaining each server individually becomes
difficult. Well, as luck would have it, another article goes viral and suddenly you're
experiencing five times more requests than the current hardware can handle. What
do you do now? Keep scaling it out horizontally? You're only one person, though,
so you're bound to make a mistake in configuring the next set of servers. Due to
that mistake, you've crashed the website in new and exciting ways that no one in
management is happy about. Are you feeling as stressed reading this as I was
writing it?

It's because of misconfigurations that engineers began to leverage tools and
configuration written in source code to define their topologies. That way, if a
mutation in the infrastructure state is required, it can be tracked, controlled,
and rolled out in a way that makes the code responsible for resolving differences
between your declared infrastructure state and what it observes in reality.

Infrastructure is only as good as the life cycle management tools that surround
it and the application that runs atop it. What this means is that if your cluster is
well-built but there is no tool that exists to successfully update your application on
that cluster, then it won't serve you well. In this chapter, we're going to take a look
at an application-level view of how we can leverage a continuous integration build
pipeline to be able to roll out new updates to our application in a zero-downtime,
cloud-native manner.

454 | Your Application and HA

In this chapter, we will provide a test application for you to manage. We will also
be using an infrastructure life cycle management tool called Terraform in order
to manage the Deployment of Kubernetes cloud infrastructure more efficiently.
This chapter should help you develop an effective skill set that will allow you to
begin creating your own application delivery pipeline in your own environment in
Kubernetes very quickly.

Terraform
In the last chapter, we used kops to create a Kubernetes cluster from scratch.
However, this process can be viewed as tedious and difficult to replicate, which
creates a high probability of misconfiguration, resulting in unexpected events at
application runtime. Luckily, there is a very powerful community-supported tool that
solves this issue very well for Kubernetes clusters running on Amazon Web Services
(AWS), as well as several other cloud platforms, such as Azure, Google Cloud
Platform (GCP), and many more.

Terraform is a general-purpose infrastructure life cycle management tool; that
is, Terraform can manage the state of your infrastructure as defined through
code. The goal of Terraform, when it was initially created, was to create both a
language (HashiCorp Configuration Language (HCL)) and runtime that can create
infrastructure in a repeatable manner and control changes to that infrastructure
in the same way that we control changes to application source code—through pull
requests, reviews, and version control. Terraform has since grown considerably, and
it is now a general-purpose configuration management tool. In this chapter, we will
be using its original functionality of infrastructure life cycle management in its most
classical sense.

Terraform files are written in a language called HCL. HCL looks a lot like YAML and
JSON, but with a few differences. For example, HCL supports the interpolation of
references to other resources in its files and is capable of determining the order in
which resources need to be created so as to ensure that resources that depend on
the creation of other resources won't be created in the wrong order. Terraform files
have the .tf file extension.

Terraform | 455

You can think of a Terraform file as specifying the desired state of your entire
infrastructure in a similar way as, for example, a Kubernetes YAML file would specify
the desired state of a Deployment. This allows the declarative management of your
entire infrastructure. So, we arrive at the idea of managing Infrastructure as
Code (IaC).

Terraform works in two stages—plan and apply. This is to ensure that you have the
chance to review infrastructure changes before making them. Terraform assumes
that it alone is responsible for all state changes to your infrastructure. So, if you are
using Terraform to manage your infrastructure, it would be inadvisable to make
infrastructure changes by any other means (for example, by adding a resource via
the AWS console). This is because if you make a change and don't make sure that it
is updated in the Terraform file, then the next time the Terraform file is applied, it
will remove your one-time change. It isn't a bug, it's a feature, for real this time. The
reason for this is that when you track infrastructure as code, every change can be
tracked, reviewed, and managed with automated tooling, such as a CI/CD pipeline.
So, if the state of your system drifts away from what is written down, then Terraform
will be responsible for reconciling your observed infrastructure to what you have
written down.

In this chapter, we will introduce you to Terraform as it is very commonly used in
the industry as a convenient way to manage infrastructure as code. However, we will
not dive deep into creating every single AWS resource with Terraform to keep our
discussion focused on Kubernetes. We will just carry out a quick demo to ensure that
you understand some basic principles.

Note

You can learn more about using Terraform for AWS in this book:
https://www.packtpub.com/networking-and-servers/getting-started-terraform-
second-edition

https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition

456 | Your Application and HA

Exercise 12.01: Creating an S3 Bucket with Terraform

In this exercise, we will implement some common commands that you will use
when working with Terraform and introduce you to a Terraform file that will be the
definition of our infrastructure as code

Note

Terraform will create resources on our behalf in AWS, which will cost
you money.

1. First, let's make a directory where we're going to make our Terraform changes,
and then we will navigate to that directory:

mkdir -p ~/Desktop/eks_terraform_demo

cd Desktop/eks_terraform_demo/

2. Now, we're going to make our first Terraform file. Terraform files have a .tf file
extension. Create a file named main.tf (there is no significance to the word
main, unlike some other languages) with the following content:

resource "aws_s3_bucket" "my_bucket" {

 bucket = "<<NAME>>-test-bucket"

 acl = "private"

}

This block has a definition called aws_s3_bucket, which means that it will
create an Amazon S3 bucket with the name specified in the bucket field. The
acl="private" line indicates that we are not allowing public access to this
bucket. Be sure to replace <<NAME>> with a unique name of your own.

Terraform | 457

3. To get started with Terraform, we need to initialize it. So, let's do that with the
following command:

terraform init

You should see the following response:

Figure 12.1: Initializing Terraform

4. Run the following command to have Terraform determine a plan to create
resources defined by the main.tf file that we created earlier:

terraform plan

458 | Your Application and HA

You will be prompted to enter an AWS region. Use the one that's closest to you.
In the following screenshot, we are using us-west-2:

Figure 12.2: Calculating the required changes to the cluster resources
for creating an S3 bucket

Terraform | 459

So, we can see that Terraform has accessed our AWS account using the access
keys that we set up in Exercise 11.01, Setting Up Our Kubernetes Cluster of the
previous chapter and calculated what it will need to do in order to make our
AWS environment look like what we have defined in our Terraform file. As we
can see in the screenshot, it's planning to add an S3 bucket for us, which is what
we want.

Note

Terraform will try to apply all the files with a .tf extension in your current
working directory.

In the previous screenshot, we can see that the terraform command is
indicating that we haven't specified an -out parameter, so it won't guarantee
that the exact calculated plan will be applied. This is because something in your
AWS infrastructure could have changed from the time of planning to the time
of applying. Let's say that you calculate a plan today. Then, later, you add or
remove a few resources. So, the required modifications to achieve the given
state would be different. So, unless you specify the -out parameter, Terraform
will recalculate its plan before applying it.

5. Run the following command to apply the configuration and create the resources
specified in our Terraform file:

terraform apply

460 | Your Application and HA

Terraform will give us one more chance to review the plan and decide what we
want to do before making the changes to the AWS resources for us:

Figure 12.3: Calculation of the changes and confirmation prompt for creating an S3 bucket

Terraform | 461

As mentioned earlier, Terraform calculated the required changes even when we
used the apply command. Confirm the actions displayed by Terraform, and
then enter yes to proceed with the plan displayed. Now, Terraform has made an
S3 bucket for us:

Figure 12.4: Creating an S3 bucket after confirmation

6. Now, we're going to destroy all the resources that we created to clean up before
we move on to the next exercise. To destroy them, run the following command:

terraform destroy

462 | Your Application and HA

Again, to confirm this action, you must explicitly allow Terraform to destroy your
resources by entering yes when prompted, as in the following screenshot:

Figure 12.5: Destroying resources created using Terraform

Terraform | 463

In this exercise, we demonstrated how to create a single resource (an S3 bucket)
using Terraform, and also how to destroy a bucket. This should have familiarized
you with the simple tooling of Terraform, and we will now expand on these
concepts further.

Now, let's make a Kubernetes cluster with Terraform. Last time, we built and
managed our own cluster control plane. Since almost every cloud provider provides
this service to their customers, we will be leveraging Amazon Elastic Kubernetes
Service (EKS), a managed service for Kubernetes provided by AWS.

When we use a managed Kubernetes service, the following is taken care of by the
cloud service vendor:

• Managing and securing etcd

• Managing and securing user authentication

• Managing the control plane components, such as the controller manager(s),
the scheduler, and the API server

• Provisioning the CNI running between Pods in your network

The control plane is exposed to your nodes through elastic network interfaces
bound to your VPC. You still need to manage the worker nodes and they run as EC2
instances in your account. So, using a managed service allows you to focus on the
work that you want to get done using Kubernetes, but the drawback is not having
very granular control of the control plane.

Note

Since AWS handles user authentication for the cluster, we will have to use
AWS IAM credentials to access our Kubernetes clusters. We can leverage
the AWS IAM Authenticator binary on our machines to do that. More on this
in the upcoming sections.

464 | Your Application and HA

Exercise 12.02: Creating a Cluster with EKS Using Terraform

For this exercise, we will use the main.tf file that we have already provided to
create a production-ready, highly available Kubernetes cluster.

Note

This Terraform file is adapted from the examples available at https://github.
com/terraform-aws-modules/terraform-aws-eks/tree/master/examples.

This will enable Terraform to create the following:

• A VPC with IP address space 10.0.0.0/16. It will have three public subnets
with /24s (255) worth of IP addresses each.

• Route tables and an internet gateway for the VPC to work properly.

• Security groups for the control plane to communicate with the nodes, as well as
to receive traffic from the outside world on the allowed and required ports.

• IAM roles for both the EKS control plane (to perform tasks such as creating ELB
(Elastic Load Balancer) for services on your behalf) and the nodes (to handle
EC2 API-related concerns).

• The EKS control plane and a setup of all the necessary connections to your VPC
and nodes.

• An ASG (Autoscaling Group) for nodes to join the cluster (it will provision two
m4.large instances).

• Generate both a kubeconfig file and a ConfigMap, which are necessary for the
nodes to join the cluster and for you to communicate with the cluster.

https://github.com/terraform-aws-modules/terraform-aws-eks/tree/master/examples
https://github.com/terraform-aws-modules/terraform-aws-eks/tree/master/examples

Terraform | 465

This is a relatively secure and stable way for you to create a Kubernetes cluster that is
capable of reliably handling production workloads. Let's begin with the exercise:

1. Use the following command to fetch the main.tf file that we have provided:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter12/Exercise12.02/main.tf

This will replace the existing main.tf file, if you still have it from the
previous exercise. Note that you should not have any other Terraform
files in the directory.

2. Now, we need Terraform to apply the state defined in the main.tf file to your
cloud infrastructure. To do that, use the following command:

terraform apply

Note

You should not use the AWS IAM user we generated for kops in the
previous chapter to execute these commands, but rather a user with
Administrative access to your AWS account so there is no chance of
accidental permissions issues.

This may take around 10 minutes to complete. You should see a very long output
similar to the following:

Figure 12.6: Creating resources for our EKS cluster

466 | Your Application and HA

Once this is done, there will be two terminal outputs—a ConfigMap for
nodes and a kubeconfig file for accessing the cluster, as demonstrated
in the following screenshot:

Figure 12.7: Getting the information required to access our cluster

Terraform | 467

Copy the ConfigMap to a file and name it configmap.yaml, and then copy the
kubeconfig file and write it to the ~/.kube/config file on your computer.

3. Now, we need to apply the changes to allow our worker nodes to communicate
with the control plane. This is a YAML-formatted file for joining the worker
nodes to your EKS cluster; we already saved this as configmap.yaml.
Run the following command:

kubectl apply -f configmap.yaml

Note

To run this command, you need the aws-iam-authenticator binary
installed on your computer. To do that, follow the instructions here: https://
docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html.

This applies the ConfigMap that allows the Kubernetes cluster to communicate
with the nodes. You should see the following response:

configmap/aws-auth created

4. Now, let's verify that everything is running OK. Run the following command in
the terminal:

kubectl get node

You should see the following output:

Figure 12.8: Checking whether our nodes are accessible

https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html

468 | Your Application and HA

At this stage, we have a running Kubernetes cluster using EKS as the control plane
and two worker nodes.

Note

Remember that your cluster resources will stay online until you delete them.
If you plan to come back to the following exercises later, you may want
to delete your cluster to minimize your bill. To do that, run terraform
destroy. To get your cluster back online, run this exercise again.

Now that we have our cluster set up, in the next section, let's take a look at an
efficient and flexible way to bring traffic to any application to be run on our cluster.

Kubernetes Ingress
In the early days of the Kubernetes project, the Service object was used to get traffic
from outside the cluster to the running Pods. You had only two options to get that
traffic from outside in—using either a NodePort service or a LoadBalancer service.
The latter option was preferred in public cloud provider environments because the
cluster would automatically manage setting up security groups/firewall rules and to
point the LoadBalancer to the correct ports on your worker nodes. However, there
is one slight problem with that approach, especially for those who are just getting
started with Kubernetes or those who have tight cloud budgets. The problem is that
one LoadBalancer can only point toward a single Kubernetes service object.

Now, imagine that you have 100 microservices running in Kubernetes, all of which
need to be exposed publicly. In AWS, the average cost of an ELB (a load balancer
provided by AWS) is roughly $20 per month. So, in this scenario, you're paying $2,000
per month just to have the option of getting traffic into your cluster, and we still have
not factored in the additional costs for networking.

Let's also understand another limitation of the one-to-one relationship between
Kubernetes Service objects and AWS load balancers. Let's say that for your project,
you need to have a path-based mapping to internal Kubernetes services from the
same load-balancing endpoint. Let's suppose that you have a web service running
at api.example.io and you want api.example.io/users to go to one
microservice and api.examples.io/weather to go to another completely
separate microservice. Before the arrival of Ingress, you would need to set up
your own Kubernetes Service and do the internal path resolution to your app.

Kubernetes Ingress | 469

This is now no longer a problem due to the advent of the Kubernetes Ingress
resource. The Kubernetes Ingress resource is meant to operate in conjunction with
an Ingress controller (which is an application running in your cluster watching the
Kubernetes API server for changes to the Ingress resource). Together, these two
components allow you to define multiple Kubernetes services, which do not have
to be exposed externally themselves to be routed through a single load-balancing
endpoint. Let's examine the following diagram to understand this a bit better:

Figure 12.9: Using Ingress to route traffic to our services

In this example, all requests are being routed to api.example.io from the
internet. One request is going to api.example.io/a, another is going to
api.example.io/b, and the last to api.example.io/c. The requests are
going to a single load balancer and a Kubernetes Service, which is controlled through
a Kubernetes Ingress resource. This Ingress resource forwards the traffic from the
single Ingress endpoint to the services it was configured to forward traffic to. In the
following sections, we will set up the ingress-nginx Ingress controller, which is
a commonly used open-source tool used in the Kubernetes community for ingress.
Then, we will configure the Ingress to allow traffic into our cluster to access our highly
available application.

470 | Your Application and HA

Highly Available Applications Running on Top of Kubernetes
Now that you've had a chance to spin up an EKS cluster and learn about Ingress, let's
introduce you to our application. We have provided an example application that has
a flaw that prevents it from being cloud-native and really being able to be horizontally
scaled in Kubernetes. We will deploy this application in the following exercise and
observe its behavior. Then, in the next section, we will deploy a modified version of
this application and observe how it is more suited to achieve our stated objective of
being highly available.

Exercise 12.03: Deploying a Multi-Replica Non-HA Application in Kubernetes

In this exercise, we will deploy a version of the application that's not horizontally
scalable. We will try to scale it and observe the problem that prevents it from being
scaled horizontally:

Note

We have provided the source code for this application in the GitHub
repository for reference. However, since our focus is on Kubernetes, we will
use commands to fetch it directly from the repository in this exercise.

1. Use the following command to get the manifest for all of the objects required to
run the application:

curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter12/Exercise12.03/without_redis.yaml > without_
redis.yaml

This should download the manifest to your current directory:

Figure 12.10: Downloading the application manifest

If you take a look at the manifest, it has a Deployment running a single replica of
a Pod and a Service of the ClusterIP type to route traffic to it.

2. Then, create a Kubernetes Deployment and Service object so that we can run
our application:

kubectl apply -f without_redis.yaml

Highly Available Applications Running on Top of Kubernetes | 471

You should see the following response:

Figure 12.11: Creating the resources for our application

3. Now, we need to add a Kubernetes Ingress resource to be able to access
this website. To get started with Kubernetes Ingress, we need to run the
following commands:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/service-l4.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/patch-
configmap-l4.yaml

These three commands will deploy the Nginx Ingress controller implementation
for EKS. You should see the following response:

Figure 12.12: Implementing the Ingress controllers

472 | Your Application and HA

Note

This command is to be run for the AWS cloud provider only. If you
are running your cluster on another platform, you will need to find the
appropriate link from https://kubernetes.github.io/ingress-nginx/deploy/#aws.

4. Then, we need to create an Ingress for ourselves. In the same folder we are in,
let's create a file named ingress.yaml with the following content:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 rules:

 - host: counter.com

 http:

 paths:

 - path: /

 backend:

 serviceName: kubernetes-test-ha-application-
 without-redis
 servicePort: 80

5. Now, run the Ingress using the following command:

kubectl apply -f ingress.yaml

You should see the following response:

ingress.networking.k8s.io/ingress created

6. Now, we will configure the Ingress controller such that when a request arrives
at the load balancer that has a Host: header of counter.com, it should be
forwarded to the kubernetes-test-ha-application-without-redis
service on port 80.

https://kubernetes.github.io/ingress-nginx/deploy/#aws

Highly Available Applications Running on Top of Kubernetes | 473

First, let's find the URL that we need to access:

kubectl describe svc -n ingress-nginx ingress-nginx

You should see an output similar to the following:

Figure 12.13: Checking the URL to access the Ingress load balancer endpoint

From the preceding screenshot, note that the Ingress load balancer endpoint
that Kubernetes created for us in AWS is as follows:

a0c805e36932449eab6c966b16b6cf1-13eb0d593e468ded.elb.us-east-1.
amazonaws.com

Your value will likely be different from the preceding one and you should use the
one that you get for your setup.

7. Now, let's access the endpoint using curl:

curl -H 'Host: counter.com' a0c805e36932449eab6c966b16b6cf1-
13eb0d593e468ded.elb.us-east-1.amazonaws.com/get-number

You should get a response similar to the following:

{number: 1}%

474 | Your Application and HA

If you run it multiple times, you'll see that the number increases by 1 each time:

Figure 12.14: Repeatedly accessing our application

8. Now, let's discover the problem with the application. In order to make the
application highly available, we need to have multiple replicas of it running
simultaneously so that we can allow at least one replica to be unavailable.
This, in turn, enables the app to tolerate failure. To scale the app, we're going
to run the following command:

kubectl scale deployment --replicas=3 kubernetes-test-ha-application-
without-redis-deployment

You should see the following response:

Figure 12.15: Scaling the application Deployment

9. Now, try accessing the application again multiple times, as we did in step 7:

curl -H 'Host: counter.com'
a3960d10c980e40f99887ea068f41b7b-1447612395.us-east-1.elb.amazonaws.
com/get-number

Highly Available Applications Running on Top of Kubernetes | 475

You should see a response similar to the following:

Figure 12.16: Repeatedly accessing the scaled application to observe the behavior

Note

This output may not be exactly the same for you, but if you see the number
increasing with the first few attempts, keep accessing the application again.
You will be able to observe the problem behavior after a few attempts.

This output highlights the problem with our application—the number isn't always
increasing. Why is that? That is because the load balancer may pass the request to
any one of the replicas, and the replica that receives the request returns a response
based on its local state.

476 | Your Application and HA

Working with Stateful Applications
The previous exercise demonstrates the challenge of working with stateful
applications in a distributed context. As a brief overview, a stateless app is an
application program that does not save client data generated in one session for use
in the next session with that client. This means that in general, a stateless application
depends entirely on the input to derive its output. Imagine a server displaying a static
web page that does not need to change for any reason. In the real world, stateless
applications typically need to be combined with stateful applications in order to
create a useful experience for clients or consumers of the application. There are,
of course, exceptions to this.

A stateful application is one whose output depends on multiple factors, such as
user input, input from other applications, and past saved events. These factors are
called the "state" of the application, which determines its behavior. One of the most
important parts of creating distributed applications with multiple replicas is that any
state that is used to generate output needs to be shared among all the replicas. If
the different replicas of your application are working with different states, then your
application is going to exhibit random behavior based on which replica your request
is routed to. This effectively defeats the purpose of horizontally scaling an application
using replicas.

In the use case from the previous exercise, for each replica to respond with the
correct number, we need to move the storage of that number outside each replica. To
do this, we need to modify the application. Let's think for a second about how this can
be done. Could we communicate the numbers between the replicas using another
request? Could we assign each replica to only respond with multiples of the number
it is assigned? (If we had three replicas, one would only respond with 1, 4, 7…, while
another would respond with 2, 5, 8…, and the last one would respond with 3, 6,
9….) Or, might we share the number in an external state store, such as a database?
Regardless of what we choose, the path forward will involve updating our running
application in Kubernetes. So, we will need to talk briefly about a strategy to do this.

Working with Stateful Applications | 477

The CI/CD Pipeline

With the help of containerization technology and a container image tag revision
policy, we can push an incremental update to our application in a fairly easy manner.
Just as with source code and infrastructure as code, we can keep the scripts and
Kubernetes manifests that execute steps of our build and deploy a pipeline versioned
in a tool such as git. This allows us to have tremendous visibility into, and flexibility to
control, how software updates happen in our cluster using approaches such as CI
and CD.

For the uninitiated, CI/CD stands for Continuous Integration and Continuous
Deployment/Delivery. The CI aspect uses tooling, such as Jenkins or Concourse CI,
to integrate new changes to our source code in a repeatable process for testing and
assembling our code into a final artifact for deployment. The goal of CI is manifold,
but here are a few benefits:

• Defects in the software are found earlier in the process (if testing is adequate).

• Repeatable steps create reproducible results when we are deploying to
an environment.

• Visibility exists to communicate the status of a feature with stakeholders.

• It encourages frequent software updates to give developers confidence that their
new code is not breaking existing functionality.

The other part, CD, is the incorporation of automated mechanisms to constantly
deliver small updates to end-users, such as updating Deployment objects in
Kubernetes and tracking rollout statuses. The CI/CD pipeline is the prevalent
DevOps model today.

Ideally, a CI/CD pipeline should be able to reliably and predictably take code from a
developer's machine and bring it all the way to a production environment with as few
manual interventions as possible. A CI pipeline should ideally have components for
compilation (where necessary), testing, and final application assembly (in the case of
a Kubernetes cluster, this is a container).

478 | Your Application and HA

A CD pipeline should have some way of automating its interactions with an
infrastructure to take the application revision and deploy it, along with any dependent
configurations and one-off deployment tasks, in such a way that the desired version
of the software becomes the running version of the software via some kind of
strategy (such as using a Deployment object in Kubernetes). It should also include
telemetry tooling to observe the immediate impact of the Deployment on the
surrounding environment.

The problem that we observed in the previous section with our application is that
each replica is working off of its local state to return a number via HTTP. To solve
this problem, we propose that we should use an external state store (database)
to manage the information (the number) shared between each replica of our
application. We have several options of state stores to choose from. We chose Redis
simply because it's easy to get started with and it's simple to understand. Redis is a
high-performance key-value database, much like etcd. In our example refactor, we
will be sharing the state between the replicas by setting a key with the num name and
the value is the increasing integer value that we want to return. During each request,
this value will be incremented and stored back into the database so that each replica
can work off the most up-to-date information.

Every company and individual has a different process that they use to manage new
versions of code being deployed. Therefore, we are going to use simple commands to
perform our steps, which can be automated via Bash with the tool of your choice.

Exercise 12.04: Deploying an Application with State Management

In this exercise, we will deploy a modified version of the application that we
deployed in the previous exercise. As a reminder, this application counts how many
times it has been accessed and returns that value in JSON format to the requestor.
However, at the end of the previous exercise, we observed in Figure 12.16 that when
we scale this application horizontally with multiple replicas, we get numbers that are
not always increasing.

Note

We have provided the source code for this application in the GitHub
repository for your reference. However, since our focus is on Kubernetes,
we will use commands to directly fetch it from the repository in this exercise.

Working with Stateful Applications | 479

In this modified version of the application, we have refactored our code to add the
capability of storing this increasing count in a Redis database. This allows us to have
multiple replicas of our application, but always have the count increase each time we
make a request to the endpoint:

Note

In our implementation of Redis, we are not using a transaction to set
the count after getting it. So, there is a very small chance that we are
getting and acting on old information when we update the value set in the
database, which may lead to unexpected results.

1. Use the following command to get the manifest of all the objects required for
this application:

curl https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter12/Exercise12.04/with_redis.yaml > with_redis.
yaml

You should see a response similar to the following:

Figure 12.17: Downloading the manifest for the modified application

If you open this manifest, you will see that we have a Deployment for our app
running three replicas: a ClusterIP Service to expose it, a Deployment for Redis
running one replica, and another ClusterIP Service to expose Redis. We are also
modifying the Ingress object created earlier to point to the new Service.

2. Now, it is time to deploy it on Kubernetes. We can run the following command:

kubectl apply -f with_redis.yaml

You should see a response similar to the following:

Figure 12.18: Creating the resources required for our cluster

480 | Your Application and HA

3. Now, let's see what this application gives us by using the following command:

curl -H 'Host: counter.com'
a3960d10c980e40f99887ea068f41b7b-1447612395.us-east-1.elb.amazonaws.
com/get-number

Run this command repeatedly. You should be able to see an increasing number,
as shown:

Figure 12.19: Predictable output with consistently increasing numbers

As you can see in the preceding output, the program now outputs numbers
in sequence because all of the replicas of our Deployment now share a single
datastore responsible for managing the application state (Redis).

There are a lot of other paradigms that need to be shifted if you want to create a truly
highly available, fault-tolerant software system, and it is beyond the scope of this
book to explore them in detail. However, for more information, you can check out
Packt's book on distributed systems at this link: https://www.packtpub.com/virtualization-
and-cloud/hands-microservices-kubernetes.

Note

Again, remember that your cluster resources are still running at this point.
Don't forget to tear down your cluster using terraform destroy if you
expect to continue with the activity later.

https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes

Working with Stateful Applications | 481

Now that we have built our application with the ability to persist and share its state
among different replicas, we will expand it further in the following activity.

Activity 12.01: Expanding the State Management of Our Application

Right now, our application can leverage a shared Redis database running inside our
Kubernetes cluster to manage the variable counter that we return to the user when it
is fetched.

But let's suppose for a moment that we don't trust Kubernetes to reliably manage the
Redis container (since it's a volatile in-memory datastore) and instead we want to use
AWS ElastiCache to do so. Your goal in this activity is to use the tools we have learned
in this chapter to modify our application to work with AWS ElastiCache.

You can use the following guidelines to complete this activity:

1. Use Terraform to provision ElastiCache.

You can find the required parameter values for provisioning ElastiCache at this
link: https://www.terraform.io/docs/providers/aws/r/elasticache_cluster.html#redis-
instance.

2. Change the application to connect to Redis. You will need to use an environment
variable in your Kubernetes Deployment for that. You can find the required
information in the redis_address field when you run the terraform
apply command.

3. Add the ElastiCache endpoint to the appropriate Kubernetes manifest
environment variable.

4. Roll out the new version of code onto the Kubernetes cluster using any tool
you want.

https://www.terraform.io/docs/providers/aws/r/elasticache_cluster.html#redis-instance
https://www.terraform.io/docs/providers/aws/r/elasticache_cluster.html#redis-instance

482 | Your Application and HA

By the end, you should be able to observe the application responding similarly to
what we saw in the previous exercise, but this time, it will use ElastiCache for its
state management:

Figure 12.20: Expected output of the Activity 12.01

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD. Remember that your cluster resources will
stay online until you delete them. To delete the cluster, you need to run
terraform destroy.

https://packt.live/304PEoD

Summary | 483

Summary
In an earlier chapter of this book, we explored how Kubernetes works favorably
with a declarative approach to application management; that is, you define your
desired state and let Kubernetes take care of the rest. Throughout this chapter, we
took a look at some tools that help us manage our cloud infrastructure in a similar
way. We introduced Terraform as a tool that can help us manage the state of our
infrastructure and introduced the idea of treating your infrastructure as code.

We then created a mostly secure, production-ready Kubernetes cluster using
Terraform in Amazon EKS. We took a look at the Ingress object and learned about
the major motivations for using it, as well as the various advantages that it provides.
Then, we deployed two versions of an application on a highly available Kubernetes
cluster and explored some concepts that allow us to improve at horizontally scaling
stateful applications. This gave us a glimpse of the challenges that come with running
stateful applications, and we will explore some more ways of dealing with them in
Chapter 14, Running Stateful Components in Kubernetes.

In the next chapter, we're going to take a look at continuing our production readiness
by further securing our cluster.

Overview

In this chapter, we will look at various resources that we can use to secure
workloads running in our cluster. We will also understand a rough threat
model and apply it to architect a secure cluster so that we can defend
our cluster and application against various types of threats. By the end of
this chapter, you will be able to create Role and ClusterRole, as well as
RoleBinding and ClusterRoleBinding to control the access of any process or
user to the Kubernetes API server and objects. Then, you will learn how to
create a NetworkPolicy to restrict communication between your application
and the database. You will also learn how to create a PodSecurityPolicy to
ensure that the running components of your application are conforming to
the defined limits.

Runtime and Network

Security in Kubernetes

13

486 | Runtime and Network Security in Kubernetes

Introduction
In the last couple of chapters, we had our DevOps hat on and learned how to set
up a cluster, as well as how to roll out new application versions safely and without
downtime in Kubernetes.

Now, it's time to switch gears a bit, take our DevOps hat off, and put on our security
analyst hat. First, we will look at where someone might attack our Kubernetes cluster
and how an unauthorized user could potentially wreak havoc in our cluster. After
that, we're going to introduce a few of the security primitives of Kubernetes and how
we can combat the most common forms of attack. Finally, we'll further modify our
application and demonstrate how some of these security primitives work.

But before we get to any of it, let's begin by taking a brief look at the various areas
of concern for security in a modern web application, as well as a basic paradigm for
implementing effective security for our cluster. We'll start by examining what we call
the "4Cs of Cloud Native Security."

Threat Modeling
It is far beyond the scope of this chapter to adequately teach many of the necessary
disciplines of security so that you have a rigorous understanding of how modern
workload security should be implemented and orchestrated. However, we will briefly
gain an idea of how we should be thinking about it. Threat modeling is a discipline
where we examine the various areas where our applications could be subject to an
attack or unauthorized usage.

For example, consider an HTTP web server. It will typically have ports 80 and 443
exposed for serving web traffic, but it also acts as an entry point for any potential
attackers. It may have a web management console exposed at a certain port. It may
have certain other management ports open and API access to allow other software to
manage it for automation purposes. The application runtime may need to regularly
handle sensitive data. The entire end-to-end pipeline meant to create and deliver
the application could expose various points that are vulnerable to compromise.
The encryption algorithms that an application relies on may be compromised or
made obsolete due to the increased sophistication of brute-force attacks. All these
represent the various areas where our application could be subject to an attack.

Threat Modeling | 487

An easy way to organize some of the attack vectors of our application is to remember
the acronym STRIDE. It stands for the following types of attacks:

• Spoofing: A user or an application disguising themselves as someone else.

• Tampering: Changing any data without seeking consent from or providing
information to the concerned stakeholders.

• Repudiation: Being able to deny your involvement in your actions and/or the lack
of ability to trace any actions to a particular user.

• Information disclosure: Exfiltrating privileged or sensitive information you were
not intended to have.

• Denial of service: Flooding a server with bogus requests to saturate its resources
and deny it the ability to serve its intended purpose.

• Elevation of privilege: Getting access to a restricted resource or privilege by
exploiting bugs.

Many of the attacks that hackers carry out are designed to do one or more of the
preceding, usually to jeopardize the confidentiality, integrity, and availability of
our data. With this in mind, we can use a mental model of how we can think about
where threats to our system might exist in various parts of a modern cloud native
application stack. This mental model is called "The 4Cs of Cloud Native Security," and
we'll be using it to organize our exploration of the security primitives of Kubernetes.
Ideally, by leveraging all these primitives, this should give you a good level of
confidence in your application's resistance to STRIDE-like attacks, specifically
within the context of Kubernetes.

488 | Runtime and Network Security in Kubernetes

The 4Cs of Cloud Native Security

Security can and should be organized into layers. This is considered a "defense in
depth" approach to security and it is widely regarded by the technology community
as the best way to prevent the compromise of any single component from exposing
the whole system. When it comes to cloud native applications, we think of security in
four layers: securing your code, containers, cluster, and cloud. The following diagram
shows how they are organized. This helps us visualize that if a compromise happens
at a lower level, it will most assuredly compromise a higher level that depends on it:

Figure 13.1: The 4Cs of Cloud Native Security

Since this book is focused on Kubernetes, we'll zoom into cluster security and then
begin to implement some of the suggestions in our example application.

Note

For suggestions on the other C's, take a look at this link:
https://kubernetes.io/docs/concepts/security/overview/.

https://kubernetes.io/docs/concepts/security/overview/

Cluster Security | 489

Cluster Security
One way to think about Kubernetes is as a gigantic self-orchestrating pool of
compute, networking, and storage. As such, in many respects, Kubernetes is exactly
like a cloud platform. It is important to understand this equivalence because this
mental abstraction allows us to reason differently as a cluster operator versus a
cluster developer. A cluster operator would want to ensure that all the components
of the cluster were secure and hardened against any workload. A cluster developer
would concern themselves with ensuring that the workload they are defining for
Kubernetes is running securely inside the cluster.

Here is where your work becomes a bit easy – most cloud provider offerings from
Kubernetes will ensure the security of the Kubernetes control plane for you. If,
for whatever reason, you're not able to leverage a cloud provider offering, you'll
want to read more in the documentation about securing your cluster at this link:
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/.

Even when you are using a cloud provider's offering, just because they are securing
your control plane does not mean that your Kubernetes cluster is secure. The
reason you cannot rely on your cloud provider's security is that your application,
its container, or a poor policy implementation could leave your infrastructure very
exposed to attacks. So, now, we need to talk about securing workloads within
our cluster.

Note

There is active work being done in the Kubernetes community to improve
security concepts and implementations. The relevant Kubernetes
documentation should be revisited often to determine whether
improvements have been made.

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/

490 | Runtime and Network Security in Kubernetes

To fortify our internal cluster security, we need to take a look at the following
three concepts:

• Kubernetes RBAC: This is the main policy engine of Kubernetes. It defines a
system of roles and permissions, as well as how permissions are granted to
those roles.

• NetworkPolicies: These are (depending on your Container Network Interface
plugin) policies that act as a "firewall" between Pods. Think of them as a
Kubernetes-aware network access control list.

• PodSecurityPolicies: These are defined at a particular scope (namespace, whole
cluster) and serve as a definition of how a Pod is allowed to run in Kubernetes.

We will not be covering encrypting Kubernetes Secrets at rest in etcd as most cloud
providers either handle that for you or the implementation is specific to that cloud
provider (such as AWS KMS).

Kubernetes RBAC
Before we dive into RBAC, recall from Chapter 4, How to Communicate with Kubernetes
(API Server), how Kubernetes authorizes requests to the API. We learned that there
are three stages – Authentication, Authorization, and AdmissionControl. We will learn
more about Admission Controllers in Chapter 16, Kubernetes Admission Controllers.

Kubernetes supports multiple different methods of authenticating with the cluster,
and you'll want to reference your cloud provider's documentation to get more details
on their specific implementation.

Authorization logic is handled through something called RBAC. It stands for
role-based access control and it's the foundation of how we constrain certain users
and groups to the minimum necessary permissions to perform their job. This is based
on a concept in software security called "the principle of least privilege." For example,
if you are a software engineer for a credit card processing company, Payment Card
Industry Data Security Standard (PCI DSS) compliance requires that you shouldn't
have access to production clusters and customer data. Therefore, if you did have
access to a cluster in production, you should have a role that has no privileges.

Kubernetes RBAC | 491

RBAC is implemented by cluster administrators through four different API objects:
Roles, RoleBindings, ClusterRoles, and ClusterRoleBindings. Let's look at how they
work together by examining a diagram:

Figure 13.2: Different objects interacting to implement RBAC

In this diagram, we can see that Kubernetes User/Group and ServiceAccount
objects obtain their permissions by being bound to a Role or ClusterRole. Let's
understand these objects individually.

492 | Runtime and Network Security in Kubernetes

Role

Here is a sample spec for a Role:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: test-role

rules:

 - verbs:

 - "list"

 apiGroups:

 - ""

 resources:

 - "pods"

The various fields define the permissions that a Role should have:

• namespace: Roles are scoped to a Kubernetes namespace, which is defined
in this field. This makes a Role different from a ClusterRole, whose permissions
apply for any namespace in the cluster.

• verbs: These describe which Kubernetes actions we are allowing. Some
examples of commonly used verbs include get, list, watch, create,
update, and delete. There are more, but these are usually good enough for
most use cases. For a refresher on this, please refer to The Kubernetes API section
of Chapter 4, How to Communicate with Kubernetes (API Server).

• apiGroups: These describe which Kubernetes API groups the Role will have
access to. These are specified as <group>/<version> (such as apps/v1).
If you use CustomResourceDefinitions, these API groups can be referenced here
as well.

Note

A full list of API groups that ship with Kubernetes can be found here (as of
version 1.18): https://kubernetes.io/docs/reference/generated/kubernetes-api/
v1.18/.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/

Kubernetes RBAC | 493

• resources: These describe which API objects we are talking about and are
defined by the value in the Kind field of the object definition; for example,
deployment, secret, configmap, pod, node, and others.

RoleBinding

As shown in the preceding diagram, a RoleBinding binds or associates a Role to
ServiceAccounts, users, or groups of users. Here's a sample spec for a RoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: test-role-binding

 namespace: default

roleRef:

 name: test-role

 kind: ClusterRole

 apiGroup: rbac.authorization.k8s.io

subjects:

 - kind: ServiceAccount

 name: test-sa

 namespace: default

This spec defines the subjects that should be able to use a Role to perform an action
that requires authorization in Kubernetes:

• subjects: This refers to an authenticated ServiceAccount, user, or group that
should be able to use this Role.

• roleRef: This refers to the Role they can assume.

ClusterRole

A ClusterRole is identical to a Role in every way except one. Instead of granting
permissions only inside one Kubernetes namespace, it grants this set of permissions
cluster-wide.

ClusterRoleBinding

This is identical to a RoleBinding except that it must be bound to a ClusterRole and
not a Role. You cannot bind a ClusterRoleBinding to a Role, nor a RoleBinding to
a ClusterRole.

494 | Runtime and Network Security in Kubernetes

Some Important Notes about RBAC Policies

• RBAC policy documents are allow-only. This means that, by default, a subject has
no access, and only via RoleBinding or ClusterRoleBinding will it have the specific
access set forth in the corresponding Role or ClusterRole.

• Bindings are immutable. This means that once you have bound a subject to a
Role or ClusterRole, it cannot be changed. This is to prevent privilege escalation.
As such, an entity can be granted permission to modify objects (which is good
enough for many use cases) while preventing it from elevating its own privileges.
If you need to modify a binding, simply delete and recreate it.

• A ClusterRole or Role that can create other ClusterRoles and Roles will only be
able to grant, at most, the same permissions it has. Otherwise, it would be a
clear privilege escalation path.

ServiceAccount

In the previous chapters, when we learned about authentication in terms of Minikube
and Kops, we saw that Kubernetes generated certificates that we used. In the case of
EKS, AWS IAM roles and the AWS IAM Authenticator were used.

As it turns out, Kubernetes has a special object type for allowing resources within the
cluster to authenticate with the API server.

We can use the ServiceAccount resource to allow Pods to receive a Kubernetes-
generated token that it will pass to the API server for authentication. All official
Kubernetes client libraries support this type of authentication, so it is the preferred
method for programmatic Kubernetes cluster access from within the cluster.

When you are running as a cluster admin, you can use kubectl to authenticate
using a particular ServiceAccount using the --as parameter. For the example
ServiceAccount shown previously, this would look something like this:

kubectl --as=system:serviceaccount:default:test-sa get pods

We'll learn how these objects work together so that we can control access in the
following exercise.

Kubernetes RBAC | 495

Exercise 13.01: Creating a Kubernetes RBAC ClusterRole

In this exercise, we will create a ClusterRole and ClusterRoleBinding. Then, we will
become the user and inherit their permissions, as defined by the ClusterRole, and
demonstrate how Kubernetes prevents access to certain APIs based on rules. Let's
get started:

1. To begin with, we will recreate the EKS cluster from the Terraform file we used
in Exercise 12.02, Creating a Cluster with EKS Using Terraform. If you already have
the main.tf file, you can work with it. Otherwise, you can run the following
command to get it:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter12/Exercise12.02/main.tf

Now, use the following two commands, one after the other, to get your cluster
resources up and running:

terraform init

terraform apply

Note

After performing any of these exercises, if you plan to continue working
through the following exercises after a significant amount of time, it might
be a good idea to deallocate your cluster resources to stop AWS billing.
You can do that using the terraform destroy command. Then, you
can run this step to get everything back online again when you are ready to
perform an exercise or activity.

If any exercise or activity relies on objects that were created in the previous
exercises, you will need to recreate those objects as well.

2. Now, we're going to create three YAML files for our RBAC resources. The first is a
ServiceAccount that lets us have identity and authentication tokens granted to us
by the cluster. Create a file called sa.yaml with the following content:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: test-sa

 namespace: default

496 | Runtime and Network Security in Kubernetes

3. Next, we are going to create a ClusterRole object and assign it some permissions.
Create a file called cr.yaml with the following content:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 namespace: default

 name: test-sa-cluster-role

rules:

 - verbs:

 - "list"

 apiGroups:

 - ""

 resources:

 - "pods"

We are defining a ClusterRole with the ability to list all the Pods in any
namespace, but nothing else.

4. Next, we are going to create a ClusterRoleBinding object that will bind the
created ServiceAccount and ClusterRole. Create a file called crb.yaml with the
following content:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: test-sa-cluster-role-binding

 namespace: default

roleRef:

 name: test-sa-cluster-role

 kind: ClusterRole

 apiGroup: rbac.authorization.k8s.io

subjects:

 - kind: ServiceAccount

 name: test-sa

 namespace: default

Kubernetes RBAC | 497

In these files, we are defining three objects: a ServiceAccount,
a ClusterRole, and a ClusterRoleBinding.

5. Run the following command to create this RBAC policy, as well as
our ServiceAccount:

kubectl apply -f sa.yaml -f cr.yaml -f crb.yaml

You should see the following response:

Figure 13.3: Creating a ServiceAccount, a ClusterRole, and a ClusterRoleBinding

6. In the following steps, we will demonstrate that using our service account's
ClusterRole will prevent us from describing Pods. But before that, let's get a
list of the Pods and prove that everything still works. Do this by running the
following command:

kubectl get pods --all-namespaces

You should see the following response:

Figure 13.4: Getting the list of Pods

7. Now, let's describe the first Pod. The name of the first Pod here is aws-node-
fzr6m. The describe command, in this case, would be as follows:

kubectl describe pod -n kube-system aws-node-fzr6m

498 | Runtime and Network Security in Kubernetes

Please use the Pod name that you have for your cluster. You should see a
response similar to the following:

Figure 13.5: Describing the aws-node-fzr6m Pod

The preceding screenshot shows the truncated version of the output of the
describe command.

8. Now, we will run the same commands we used previously, but this time
pretending to be the user using the ServiceAccount that is currently bound to the
ClusterRole and ClusterRoleBinding that we created. We'll do this by using the
--as parameter with kubectl. Thus, the command will look like this:

kubectl --as=system:serviceaccount:default:test-sa get pods
--all-namespaces

Kubernetes RBAC | 499

Note that we can assume the ClusterRole because we are an admin in the cluster
that we created. You should see the following response:

Figure 13.6: Getting the list of Pods while assuming the test-sa ServiceAccount

Sure enough, that still works. As you may recall from step 3, we mentioned
the list as an allowed verb, which is what's used for fetching the list of all
resources of a certain kind.

9. Now, let's see what happens if a user with the ClusterRole we created attempts
to describe a Pod:

kubectl --as=system:serviceaccount:default:test-sa describe pod -n
kube-system aws-node-fzr6m

You should see the following response:

Figure 13.7: Forbidden error

The kubectl describe command uses the get verb. Recall from step 3 that it
was not on the allowed list of verbs for our ClusterRole.

If this were a user (or a hacker) trying to use any command not allowed for them,
we would have successfully stopped it. There are many practical RBAC examples
available on the Kubernetes documentation website. It is beyond the scope of this
chapter to talk about all the design patterns for RBAC in Kubernetes. All we can say
is this: wherever possible, you should be practicing the "principle of least privilege"
to limit unnecessary access to the Kubernetes API server. That is, everyone should
get the minimum level of access required to do their job; not everyone needs to be a
cluster admin.

500 | Runtime and Network Security in Kubernetes

While we cannot make specific recommendations about security at your company,
we can say that there are a few good "rules of thumb," which can be stated as follows:

• Whenever possible, try to make cluster contributors/users inside of a Role
instead of a ClusterRole. Since a Role is constrained to a namespace, this will
prevent that user from gaining unauthorized access to another namespace.

• Only cluster admins should have access to ClusterRoles, which should be
limited and temporary in scope. For example, if you do on-call rotations where
engineers are responsible for the availability of your services, then they should
only have an admin ClusterRole for the time they are on call.

NetworkPolicies
NetworkPolicy objects in Kubernetes are essentially Network Access Control Lists but
at the Pod and namespace level. They work by using label selection (such as Services)
or by indicating a CIDR IP address range to allow on a particular port/protocol.

This is immensely helpful for ensuring security, especially when you have multiple
microservices running on a cluster. Now, imagine you have a cluster that hosts many
applications for your company. It hosts a marketing website that runs an open-source
library, a database server with sensitive data, and an application server that controls
access to that data. If the marketing website doesn't need to access the database,
then there should be no reason for it to be allowed access to the database. By using
a NetworkPolicy, we can prevent an exploit or a bug in the marketing website from
allowing an attacker to expand that attack so that they can access your business
data by preventing the marketing website Pod from even being able to talk to the
database. Let's take a look at a sample NetworkPolicy document and decipher it:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: sample-network-policy

 namespace: my-namespace

spec:

 podSelector:

 matchLabels:

 role: db

 policyTypes:

 - Ingress

 - Egress

 ingress:

NetworkPolicies | 501

 - from:

 - ipBlock:

 cidr: 192.18.0.0/16

 except:

 - 192.18.1.0/24

 - namespaceSelector:

 matchLabels:

 project: sample-project

 - podSelector:

 matchLabels:

 role: frontend

 ports:

 - protocol: TCP

 port: 3257

 egress:

 - to:

 - ipBlock:

 cidr: 10.0.0.0/24

 ports:

 - protocol: TCP

 port: 5832

Let's examine some of the fields of this NetworkPolicy:

• It contains the standard apiVersion, kind, and metadata fields that we
described earlier in this chapter.

• podSelector: The labels it should look for in the namespace to apply
the policy.

• policyTypes: Can be either ingress, egress, or both. This means that the
network policy applies to either traffic coming into the Pods being selected,
leaving the Pods being selected, or both.

• Ingress: This takes a from block that defines where traffic can originate from
in the policy. This can be a namespace, a Pod selector, or an IP address block and
port combination.

• Egress: This takes a to block and defines where traffic is allowed to go to in
the network policy. This can be a namespace, a Pod selector, or an IP address
block and port combination.

502 | Runtime and Network Security in Kubernetes

Your CNI may not have a mature implementation of NetworkPolicies, so be sure to
consult your cloud provider's documentation for more information. In the case of
the cluster we set up using EKS, it is using the Amazon CNI. We can use Calico, an
open-source project, to augment the existing EKS CNI and make up for deficiencies
with respect to enforcing NetworkPolicy declarations. It is worth mentioning that
Calico can be used as a CNI as well, but we will only be using the supplementary
functionality for NetworkPolicy enforcement in the following exercise.

Exercise 13.02: Creating a NetworkPolicy

In this exercise, we will implement Calico to augment the out-of-the-box enforcement
of NetworkPolicy declarations available with Amazon CNI in EKS. Let's get started:

1. Run the following command to install the Amazon CNI with Calico:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-
cni-k8s/release-1.5/config/v1.5/calico.yaml

You should see a response similar to the following:

Figure 13.8: Installing Amazon CNI with Calico

2. To verify that you have deployed the DaemonSet corresponding to Calico
successfully, use the following command:

kubectl get daemonset calico-node --namespace kube-system

NetworkPolicies | 503

You should see the calico-node DaemonSet, as shown here:

Figure 13.9: Checking the calico-node DaemonSet

3. Now, let's create our NetworkPolicy object. First, create a file named
net_pol_all_deny.yaml with the following content:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny

spec:

 podSelector: {}

 policyTypes:

 - Ingress

 - Egress

This policy is a very simple NetworkPolicy. It says that no traffic to and from Pods
is allowed in or out of the cluster. This is the secure base on which we're going to
continue expanding our application.

4. Let's apply our policy using the following command:

kubectl apply -f net_pol_all_deny.yaml

You should see the following response:

networkpolicy.networking.k8s.io/default-deny created

Now, there is no traffic flowing through our cluster. We can prove this by
deploying our application since it needs the network to communicate with itself.

5. As a test application, we will use the same application we used in Exercise 12.04,
Deploying an Application Version Update. If you already have the YAML file for
that, you can use it. Otherwise, run the following command to get the file in
your working directory:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter12/Exercise12.04/with_redis.yaml

504 | Runtime and Network Security in Kubernetes

Then, use the following command to deploy the application:

kubectl apply -f with_redis.yaml

You should see the following response:

Figure 13.10: Deploying our application

6. Now, let's check the status of our deployment using the following command:

kubectl describe deployment kubernetes-test-ha-application-with-
redis-deployment

You should see the following response:

Figure 13.11: Checking the status of our application

This is a truncated screenshot. As you can see, we have an issue that we are
unable to communicate with Redis. Fixing this will be a part of Activity 13.01,
Going Beyond Primitives.

7. We are going to test network access now, so in a separate Terminal window,
let's start our proxy:

kubectl proxy

You should see this response:

Starting to serve on 127.0.0.1:8001

Another way to verify that the NetworkPolicy is preventing traffic is to use our
curl command:

curl localhost:8001/api/v1/namespaces/default/services/kubernetes-
test-ha-application-with-redis:/proxy/get-number

PodSecurityPolicy | 505

You should see a response similar to this:

Error: 'dial tcp 10.0.0.193:8080: i/o timeout'

Trying to reach: 'http:10.0.0.193:8080/get-number'%

As we can see, we are able to prevent unauthorized communication between Pods in
our Kubernetes cluster. By leveraging NetworkPolicies, we can prevent attackers from
doing further damage if they are able to compromise some of the components of our
cluster, containers, or source code.

PodSecurityPolicy
So far, we have learned about and tested Kubernetes RBAC to prevent unauthorized
API server access, and also applied a NetworkPolicy to prevent unnecessary network
communication. The next most important area of security outside the network is
the application runtime. Attackers need access to the network to get in and out,
but they also need a vulnerable runtime to do anything more serious. This is where
Kubernetes PodSecurityPolicy objects help prevent that from happening.

PodSecurityPolicy objects overlap with a specific type of AdmissionController and
allow a cluster operator to dynamically define the minimum runtime requirements of
a Pod that's been admitted for scheduling on the cluster.

To understand exactly how PodSecurityPolicies can be useful, let's consider the
following scenario. You are a Kubernetes cluster admin at a large financial institution.
Your company uses ticket-based change management software in an ITIL-compliant
fashion (ITIL is a standardized change management framework for IT services) to
ensure that changes that are made to the environment are stable. This prevents
developers from doing anything disastrous in production. To keep up with the change
of pace in the market that your customers are demanding, you need a programmatic
way to enable developers to do more change management autonomously. But you
also need to do so in a way that is secure and compliant with certain standards.
PodSecurityPolicies help us do this because they allow administrators to create policy
definitions in software that are enforced when a Pod is being admitted to a cluster.
This means that developers can move more rapidly, and cluster admins can still
certify that their environment is fully compliant with the set standards.

Further extending this scenario, you might want to prevent users from running
their container as the root user so that attackers can't exploit any vulnerabilities in
Docker. By applying a PodSecurityPolicy, you can prevent your users from accidentally
deploying unsecured containers.

506 | Runtime and Network Security in Kubernetes

Now that we have seen how they can be useful, let's consider a sample
PodSecurityPolicy and examine it:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: psp-example

 namespace: default

spec:

 privileged: true

 seLinux:

 rule: RunAsAny

 supplementalGroups:

 rule: MustRunAs

 ranges:

 - min: 1

 max: 2500

 runAsUser:

 rule: MustRunAsNonRoot

 fsGroup:

 rule: MustRunAs

 ranges:

 - min: 655

 max: 655

 volumes:

 - '*'

Let's examine a few noteworthy fields here:

• metadata.namespace: This is going to create the PodSecurityPolicy in the
default namespace and will apply to Pods in the same namespace.

• privileged: This controls whether containers are allowed to run in a
privileged execution context on the node, which effectively grants the container
root-level access to the host. You can find more information about privileged
containers here: https://docs.docker.com/engine/reference/run/#runtime-privilege-and-
linux-capabilities.

• seLinux: This defines any SELinux settings. Some Kubernetes clusters run in
SELinux environments, which implement something called "mandatory access
control" outside of the cluster. This allows those controls to be projected into the
cluster. By stating RunAsAny, we are allowing any SELinux user.

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

PodSecurityPolicy | 507

• supplementalGroups: This is a mandatory field of the policy. It essentially
tells us that we are allowing any Linux user group ID (GID). In this sample
spec, we are saying that users from any Linux user group with IDs 1 to 2500
are allowed.

• runAsUser: This allows us to specify specific Linux users who are permitted to
run any process in the Pod. By stating MustRunAsNonRoot, we are saying that
any process in the Pod must not run with root privileges.

• fsGroup: This is the Linux group ID the container process must be running
as to interact with certain volumes on the cluster. Thus, even if a volume exists
on a Pod, we can restrict certain processes in that Pod from accessing it. In this
sample spec, we are saying that only Linux users in the devops group with a
GID of 655 can access the volume. This is applied regardless of the location of
the Pod in the cluster or where the volume is.

• volumes: This allows us to permit the different types of volume that can be
mounted to that Pod, such as a configmap or a persistentVolumeClaim.
In this sample spec, we have specified * (an asterisk), which implies that all kinds
of volumes are allowed to be used by the processes in this Pod.

Now that we have understood what the different fields in the spec mean, we'll create
a PodSecurityPolicy in the following exercise.

Exercise 13.03: Creating and Testing a PodSecurityPolicy

In this exercise, we're going to be creating a PodSecurityPolicy and applying it to our
cluster to demonstrate the types of functionalities Pods must now comply with in our
cluster after we apply it. Let's get started:

1. Create a file named pod_security_policy_example.yaml with the
following content:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: psp-example

 namespace: default

spec:

 privileged: false

 seLinux:

 rule: RunAsAny

 supplementalGroups:

508 | Runtime and Network Security in Kubernetes

 rule: MustRunAs

 ranges:

 - min: 1

 max: 2500

 runAsUser:

 rule: MustRunAsNonRoot

 fsGroup:

 rule: MustRunAs

 ranges:

 - min: 655

 max: 655

 volumes:

 - '*'

2. To apply this to the cluster, run the following command:

kubectl apply -f pod_security_policy_example.yaml

You should see the following response:

podsecuritypolicy.policy/psp-example created

To check that our policy is enforced, let's try to create a Pod that doesn't comply
with this policy. Now we have a policy called MustRunAsNonRoot, so we
should try to run a container as root and see what happens.

3. To create a Docker container that would violate this PodSecurityPolicy, first,
create a file named Dockerfile with the following content:

FROM debian:latest

USER 0

CMD echo $(whoami)

The second line of this Dockerfile switches to the root user (indicated by the
UID of 0), and then the echo command should tell us what user is running in
this container when it starts.

PodSecurityPolicy | 509

4. Build the Docker image by running the following command:

docker build -t root .

You should see the following response:

Figure 13.12: Building our Docker image

5. Let's run our Docker container:

docker run root:latest

You should see the following response:

root

As we can see, this container is going to run as root.

6. Now, we need to create a Pod from this container. Create a file named
pod.yaml with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: rooter

spec:

 containers:

 - name: rooter

 image: packtworkshops/the-kubernetes-workshop:root-tester

You can push your own image to your Docker Hub repository and replace
this link, or you can use the container that we have already provided for
convenience. As a general rule of thumb, you should always be careful when
downloading something that is supposed to run with root access.

510 | Runtime and Network Security in Kubernetes

7. By default, a PodSecurityPolicy does nothing until the use permission is installed
on a user, group, or ServiceAccount that will be creating the Pod. To mimic this,
we will quickly create a ServiceAccount:

kubectl create serviceaccount fake-user

You should see the following response:

serviceaccount/fake-user created

8. Now, let's create a Role that will be subject to this PodSecurityPolicy:

kubectl create role psp:unprivileged --verb=use
--resource=podsecuritypolicy --resource-name=psp-example

Note that this is another quick way to create a Role. Here, psp:unprivileged
corresponds to the name of the role, while the flags correspond to the fields that
we studied earlier. We are using the --resource-name flag to apply the Role
to our specific PodSecurityPolicy. You should get the following response:

role.rbac.authorization.k8s.io/psp:unprivileged created

9. Let's bind this role to our ServiceAccount using a RoleBinding:

kubectl create rolebinding fake-user:psp:unprivileged
--role=psp:unprivileged --serviceaccount=psp-example:fake-user

Here, we are using a command similar to the one we used in the previous step.
You should see the following response:

rolebinding.rbac.authorization.k8s.io/fake-user: psp:unprivileged
created

10. Now, let's masquerade as this user and try to create this Pod:

kubectl --as=system:serviceaccount:psp-example:fake-user apply -f
pod.yaml

You should see the following response:

Figure 13.13: Trying to create a Pod while assuming the fake-user ServiceAccount

PodSecurityPolicy | 511

At the beginning of this chapter, we explored the 4Cs of cluster security, and then
throughout this chapter, we have seen different ways in which Kubernetes allows
us to harden our cluster against various areas of attack. We learned that RBAC
policies allow us to control access to our API and objects, NetworkPolicy allows us
to harden the networking topology, and PodSecurityPolicy helps us protect against
compromised runtimes.

Now, let's bring these concepts together in the following activity.

Activity 13.01: Securing Our App

As it stands, our application from the previous chapter is already quite secure for the
use case. What we need to do, though, is prevent users from deploying Pods that are
privileged (so that they can't escalate their permissions) and make sure that our app
can communicate with both the outside world and its datastore. A correct solution to
this application would be to have the following functionality:

• The application should work seamlessly, as we demonstrated in the previous
chapter, but now, it should prevent any unnecessary network traffic.
Unnecessary here refers to the fact that the only Pod communicating with the
Redis server should be the app, and that the app should only be communicating
with other IP ranges.

• In Exercise 13.02, Creating a NetworkPolicy, we saw that our application did not
work due to the highly restrictive NetworkPolicy. However, in this case, you
should see the application running with an output similar to the following:

Figure 13.14: Expected output for Activity 13.01

512 | Runtime and Network Security in Kubernetes

Here are some steps that can help you complete this activity:

1. Ensure that you have a cluster infrastructure and all the objects from
Exercise 13.01, Creating a Kubernetes RBAC ClusterRole.

2. Create a file named pod_security_policy.yaml (and then apply it).
Keep in mind the functionality as described in the first bullet point above when
creating this file. You might want to re-visit the section PodSecurityPolicy where
we describe each of the fields used in such a file in detail.

3. Create a file named network_policy.yaml. Keep in mind the requirement
as listed in the second bullet point above when creating this file. You might want
to re-visit the section NetworkPolicies where we describe each of the fields used
in such a file in detail. Make sure to apply this policy once you have created it.

4. If you have the application from Exercise 14.02, Creating a NetworkPolicy still
deployed in your cluster, you can move on to the next step. Otherwise, rerun
steps 5 and 6 from that exercise.

5. Now, test the application.

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Also, consider deleting the NetworkPolicy and PodSecurityPolicy after you
are done with this chapter to avoid any interference with later chapters.

https://packt.live/304PEoD

Summary | 513

Summary
In our journey of building a production-ready Kubernetes environment, security is a
critical aspect. With that in mind, in this chapter, we examined how threat modeling
allows us to think in an adversarial way about our application infrastructure and
how it informs us of how we can defend it from attack. Then, we looked at the 4Cs of
Cloud Native Security to understand where our attack surfaces are, followed by how
Kubernetes can help us run workloads securely in the cluster.

Kubernetes has several security features that we can leverage to secure our cluster.
We learned about three security measures that are important to leverage: RBAC,
NetworkPolicies, and PodSecurityPolicies. We also learned about their various
applications when it comes to securing access to your cluster, securing your
container network, and securing your container runtimes.

In the next chapter, we're going to examine how to manage storage objects in
Kubernetes and deal with apps that are stateful.

Overview

In this chapter, we will expand our skills to go beyond stateless applications
and learn how to deal with stateful applications. We will learn about the
various forms of state preservation mechanisms available to Kubernetes
cluster operators and derive a mental model for where certain options can
be invoked to run applications well. We will also introduce Helm, a useful
tool for deploying complex applications with various Kubernetes objects.

By the end of this chapter, you will be able to use StatefulSets and
PersistentVolumes in conjunction to run apps that require disk-based state
to be retained in between pod interruptions. You will also be able to deploy
applications using Helm charts.

Running Stateful Components

in Kubernetes

14

516 | Running Stateful Components in Kubernetes

Introduction
From everything that you have learned up until this point, you know that pods and
the containers that run in them are considered ephemeral. This means that they are
not to be depended upon for stability as Kubernetes will intervene and move them
around the cluster in order to comply with the desired state specified by the various
manifests in the cluster. But there's a problem in this – what do we do with the parts
of our applications that depend on the state being persisted from one interaction to
the next? Without certain guarantees such as predictable naming for the pods and
dependable storage operations, which we will learn about later in the chapter, such
stateful components may fail if Kubernetes restarts the relevant pods or moves
them around. However, before diving into the details of the aforementioned
topics, let's talk briefly about stateful apps and why it's challenging to run
them in a containerized environment.

Stateful Apps
We briefly introduced the concept of statefulness in Chapter 12, Your Application and
HA. Stateful components of applications are a necessity to just about all information
technology systems in the world. They're necessary to keep account details, records
of transactions, information on HTTP requests, and a whole host of other purposes.
The challenging part of running these applications in a production environment
almost always has to do with either the network or the persistence mechanism.
Whether it's spinning metal disks, flash storage, block storage, or some other
yet-to-be-invented tool, persistence is notoriously difficult to deal with in all forms.
Part of why this is difficult is because all of these forms have a non-zero probability of
failure, which can become very significant once you need to have hundreds or even
thousands of storage devices in a production environment. These days, many cloud
providers will give assistance to customers and offer managed services to account
for this difficulty. In the case of AWS, we have tools such as S3, EBS, RDS, DynamoDB,
Elasticache, and many others that help developers and operators run stateful
applications smoothly without much heavy lifting (provided you are OK with
vendor lock-in.)

Another trade-off that some companies face with running stateful applications
and the persistence mechanisms they depend on is between either training and
maintaining a large body of staff capable of keeping these systems of record online,
healthy, and up to date, or attempting to develop a set of tools and programmatically
enforced processes for common operational scenarios. These two approaches differ
in the amount of human maintenance effort needed as the organization scales.

Stateful Apps | 517

For example, a human-centric approach to operations will allow things to move
swiftly at first, but all operational costs scale linearly with the application scale, and
eventually, the bureaucracy causes diminishing productivity returns with each new
hire. Software-centric approaches are a higher upfront investment, but costs scale
logarithmically with application scale and have a higher probability of cascading
failures in the event of an unexpected bug.

Some examples of these operational scenarios are provisioning and configuration,
normal operations, scaling input/output, backups, and abnormal operations.
Examples of abnormal operations include network failures, hard drive failures,
corruption of data on disk, security breaches, and application-specific irregularities.
Examples of application-specific irregularities could be handling MySQL-specific
collation concerns, handling S3 eventually consistent read failures, etcd Raft protocol
resolution errors, and so on.

Many companies find it easier to pay for vendor support, use cloud-managed
product offerings, or re-train their staff rather than developing programmatic state
management processes and software.

One of the benefits of a Kubernetes-enabled development life cycle is on the
workload definition side. The more effort a company puts into rigorously defining
the smallest logical unit of compute (a pod template or PersistentVolume definition),
the better they will be prepared for Kubernetes to intervene in irregular operations
and appropriately orchestrate the entire application. This is largely because
Kubernetes orchestration is a classical dynamic constraint satisfaction problem
(CSP). The more information in the form of constraints the CSP solver has to work
with at its disposal, the more predictable workload orchestration will become
because the number of feasible steady-state solutions is reduced. So, using the end
goal of predictable workload orchestration, is it then possible to run state-bearing
components of our application in Kubernetes? The answer is an unequivocal yes. It
is common to be hesitant to run stateful workloads in Kubernetes. We've said from
the beginning of this book that pods are ephemeral and should not be depended on
for stability because, in the event of a node failure, they will be moved and restarted.
So, before you decide that it's too risky to run a database in Kubernetes, consider
this – the world's largest search engine company runs databases in a very similar
tool to Kubernetes. This tells us that it's not only possible but in reality, it's preferable
to work on defining workloads well enough that they can be run by an orchestrator
because it can likely handle application failures much faster than a human.

518 | Running Stateful Components in Kubernetes

So, how do we accomplish this? The answer to that question is the use of a
combination of two Kubernetes objects that you have learned about earlier –
PersistentVolumes and StatefulSets. These are introduced in Chapters 7 and 9,
so we won't belabor their usage here except to say that we're going to be bringing
together all of the introductory topics into an example relevant to our application.

The key to effective stateful workload orchestration is modularization and
abstraction. These are fundamental software concepts that are taught to engineers
so they can design well-architected software systems, and the same holds for
well-architected infrastructure systems. Let's consider the following diagram as an
example of modularization when it comes to running a database in Kubernetes:

Figure 14.1: Modular stateful components in Kubernetes

Understanding StatefulSets | 519

As you can see in the preceding diagram, and as you have learned up until now
in this book, Kubernetes is made up of modular components. Thus, by leveraging
the StatefulSet resource, we can compose the usage of PersistentVolumes,
PersistentVolumeClaims, StorageClasses, pods, and some special rules around
their life cycles that make much stronger guarantees about the condition that the
persistence layers of our app are in.

Understanding StatefulSets
In Figure 14.1, we can see that a StatefulSet is invoked to be able to manage pod
life cycles. A StatefulSet (in older versions of Kubernetes, this was called a PetSet)
operates very similarly to a Deployment in that we provide a pod template of what
we want to run and how many instances of it we want to run. What differs between a
StatefulSet and a Deployment is the following:

• A clear naming scheme that can be depended upon by pods in DNS queries:

This means that in the preceding diagram when we name a StatefulSet mysql,
the first pod in that StatefulSet will always be mysql-0. This is unlike a
traditional deployment where pod IDs are assigned randomly. It also means that
if you had a pod named mysql-2 and it crashed, it would be resurrected on the
cluster using exactly the same name.

• A clearly ordered way in which updates must proceed:

Depending on the update strategy in this StatefulSet, each pod will be taken
down in a very specific order. So, if you have a well-known upgrade path (such as
in the case of minor software revisions in MySQL), you should be able to leverage
one of the Kubernetes-provided software update strategies.

• Dependable storage operations:

Since storage is the most critical part of a stateful solution, having deterministic
actions taken by a StatefulSet is imperative. By default, any PersistentVolume
provisioned for a StatefulSet will be retained, even if that StatefulSet has been
deleted. While this behavior is meant to prevent accidental deletion of data, it
can lead to significant charges from your cloud provider during testing, so you
should monitor this closely.

520 | Running Stateful Components in Kubernetes

• A serviceName field that must be defined in the StatefulSet:

This serviceName field must refer to something called a "headless"
service that points to this group of pods. This exists to allow the pods to
be individually addressable using the common Kubernetes DNS syntax. So
for example, if my StatefulSet is running in the default namespace and has
the name zachstatefulset, then the first pod will have the DNS entry
zachstatefulset-0.default.svc.cluster.local. The same DNS
entry will be used by any replacement pod if this one fails.

More on headless services can be found at this link: https://kubernetes.io/docs/
concepts/services-networking/service/#headless-services.

Deployments versus StatefulSets

Now that you've been introduced to StatefulSets at a slightly more granular level, on
what basis should you choose between a StatefulSet and a Deployment that uses
a PersistentVolumeClaim? The answer to that depends on what you're looking
to orchestrate.

In theory, you could achieve similar behavior using both types of Kubernetes object.
Both create pods, both have update strategies, and both can use PVCs to create and
manage PersistentVolume objects. The reason StatefulSets were designed was to give
the guarantees laid out in the preceding bullet points. Typically, you would want these
guarantees when orchestrating databases, file servers, and other forms of sensitive
persistence-dependent applications.

As we understand how StatefulSets are useful to predictably run the stateful
components of our applications, let's look at a specific example that's relevant to
us. As you'll recall from previous chapters, we have a little counter app that we are
refactoring to leverage as many cloud-native principles as possible as we go along. In
this chapter, we will be replacing the state persistence mechanism and testing out a
new engine.

Further Refactoring Our Application
We'd like to now take our application a little further into cloud-native principles. Let's
consider that the product manager for our counter app said that we're getting insane
amounts of load (and you can confirm this through your observability toolset), and
some people are not always getting a strictly increasing number; sometimes, they are
getting duplicates of the same number. So, you confer with your colleagues and come
to the conclusion that in order to guarantee the increasing number, you will need
guarantees around how data is accessed and persisted in your app.

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Further Refactoring Our Application | 521

Specifically, you need a guarantee that operations against this datastore are
atomically unique, consistent between operations, isolated from other operations,
and durable against failure. That is, you are looking for an ACID-compliant database.

Note

More on what ACID compliance is can be found at this link:
https://database.guide/what-is-acid-in-databases/.

The team wants to be able to use a database, but they'd rather not pay for that
database to be run by AWS. They would also rather not be locked into AWS if they
find better deals on GCP or Azure later.

So, after a brief look at Google for some options, your team settles on using MySQL.
MySQL is one of the more popular open-source RDBMS solutions, and as such has a
lot of documentation, support, and community suggestions for implementation as a
database solution in Kubernetes.

Now the work begins on changing your code to support incrementing the counter
using a transaction supported by MySQL. So, to do this, we need to change a
few things:

• Change our application code to use SQL instead of Redis to access the data and
increment the counter.

• Modify our Kubernetes cluster to run MySQL instead of Redis.

• Ensure the durability of the storage underneath the database in case of
catastrophic failure.

You may be asking yourself why a cluster operator or administrator would need to
be able to understand and refactor code. The advent of Kubernetes accelerated a
trend in the software industry of leveraging DevOps tooling, practices, and culture
to begin to deliver value to customers more rapidly and more predictably. This
means beginning to scale our operations using software and not people. We need
robust automation to take the place of human-centric processes to be able to
make guarantees around functionalities and delivery speed. Thus, an infrastructure
designer or administrator having systems-level software engineering experience to
allow them to assist in refactoring a codebase to leverage more cloud-native practices
is a huge benefit for them in their careers, and it may soon become a job requirement
for all DevOps engineers. So, let's take a look at how to refactor our application for
StatefulSets using MySQL for the transactions.

https://database.guide/what-is-acid-in-databases/

522 | Running Stateful Components in Kubernetes

Note

If you are not yet comfortable programming or you are not familiar with the
syntax of the language the authors chose (Golang in this example), you
don't have to worry – all of the solutions have been worked out and are
ready to be used.

First, let's examine our code for Exercise 12.04, Deploying an Application with
State Management:

main.go

28 if r.Method == "GET" {
29 val, err := client.Get("num").Result()
30 if err == redis.Nil {
31 fmt.Println("num does not exist")
32 err := client.Set("num", "0", 0).Err()
33 if err != nil {
34 panic(err)
35 }
36 } else if err != nil {
37 w.WriteHeader(500)
38 panic(err)
39 } else {
40 fmt.Println("num", val)
41 num, err := strconv.Atoi(val)
42 if err != nil {
43 w.WriteHeader(500)
44 fmt.Println(err)
45 } else {
46 num++
47 err := client.Set("num", strconv.Itoa(num), 0).Err()
48 if err != nil {
49 panic(err)
50 }
51 fmt.Fprintf(w, "{number: %d}", num)
52 }
53 }

The complete code for this step can be found at https://packt.live/3jSWTHB.

Highlighted in the preceding code are the two instances where we are accessing our
persistence layer. As you can see, not only are we not using a transaction, but we are
manipulating the value in the code and therefore cannot guarantee the constraint
that this is a strictly incrementing counter. To do this, we must change our strategy.

Note

You can find the required information for using a MySQL container at this
link: https://hub.docker.com/_/mysql?tab=description.

https://packt.live/3jSWTHB
https://hub.docker.com/_/mysql?tab=description

Further Refactoring Our Application | 523

We have provided the refactored application that uses SQL. Let's take a look at the
code of the refactored application:

main.go

38 fmt.Println("Starting HTTP server")
39 http.HandleFunc("/get-number", func(w http.ResponseWriter, r
 *http.Request) {
40 if r.Method == "GET" {
41 tx, err := db.Begin()
42 if err != nil {
43 panic(err)
44 }
45 _, err = tx.Exec(t1)
46 if err != nil {
47 tx.Rollback()
48 fmt.Println(err)
49 }
50 err = tx.Commit()
51 if err != nil {
52 fmt.Println(err)
53 }
54 row := db.QueryRow(t2, 1)
55 switch err := row.Scan(&num); err {
56 case sql.ErrNoRows:
57 fmt.Println("No rows were returned!")
58 case nil:
59 fmt.Fprintf(w, "{number: %d}\n", num)
60 default:
61 panic(err)
62 }
63 } else {
64 w.WriteHeader(400)
65 fmt.Fprint(w, "{\"error\": \"Only GET HTTP method is
 supported.\"}")
66 }
67 }

The complete code for this step can be found at https://packt.live/35ck7nX.

As you can see, it's roughly the same as the Redis code, except now our value is being
set in a transaction. Unlike Redis, MySQL is not a volatile in-memory datastore, so
operations against the database must be persisted to disk to succeed, and ideally,
they are persisted to a disk that won't disappear when the pod is interrupted. Let's
set up the other required components of our application in the following exercise.

https://packt.live/35ck7nX

524 | Running Stateful Components in Kubernetes

Exercise 14.01: Deploying a Counter App with a MySQL Backend

In this exercise, we will reconfigure our counter app to work with a MySQL backend
instead of Redis:

1. To begin with, we will recreate your EKS cluster from the Terraform file in Exercise
12.02, Creating a Cluster with EKS Using Terraform. If you already have the main.
tf file, you can work with it. Otherwise, you can run the following command to
get it:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter12/Exercise12.02/main.tf

Now, use the following two commands one after the other to get your cluster
resources up and running:

terraform init

terraform apply

Note

After performing any of the exercises, if you plan to continue to the following
exercises after a significant amount of time, it might be a good idea to
deallocate your cluster resources to stop AWS from billing you. You can do
that using the terraform destroy command. Then, you can run this
step to get everything back online again when you are ready to perform an
exercise or an activity.

If any exercise or activity relies on objects created in the previous exercises,
you will need to recreate those objects as well.

2. Run the following command to get the manifest file, with_mysql.yaml, which
defines all the required objects:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter14/Exercise14.01/with_mysql.yaml

Further Refactoring Our Application | 525

Open the file for inspection so we can examine this StatefulSet:

with_mysql.yaml

44 apiVersion: apps/v1
45 kind: StatefulSet
46 metadata:
47 name: mysql
48 spec:
49 selector:
50 matchLabels:
51 app: mysql
52 serviceName: mysql
53 replicas: 1
54 template:
55 metadata:
56 labels:
57 app: mysql
58 spec:

The complete code for this step can be found at https://packt.live/2R2WN3x.

Note

Here, a PersistentVolumeClaim is automatically binding a 10 GiB volume
from Amazon EBS on startup to each pod. Kubernetes will automatically
provision the EBS volume using the IAM role that we defined in our
Terraform file.

When the pod gets interrupted for any reason, Kubernetes will automatically
re-bind the appropriate PersistentVolume to the pod when it restarts, even
if it is on a different worker node, so long as it is in the same availability zone.

3. Let's apply this to our cluster by running the following command:

kubectl apply -f with_mysql.yaml

You should see this response:

Figure 14.2: Deploying the refactored application that uses a MySQL backend

https://packt.live/2R2WN3x

526 | Running Stateful Components in Kubernetes

4. Now run kubectl proxy in this window and let's open up another
terminal window:

kubectl proxy

You should see this response:

Starting to serve on 127.0.0.1:8001

5. In the other window, run the following command to access our application:

curl localhost:8001/api/v1/namespaces/default/services/kubernetes-
test-ha-application-with-mysql:/proxy/get-number

You should see this response:

{number: 1}

You should see the app running as expected, as we have seen in the previous
chapters. And just like that, we have a working StatefulSet with our application
using MySQL that is persisting data.

As we've said, one of the things that will cause cluster operators to not pursue
StatefulSets as a way of being able to manage their data infrastructure is a mistaken
belief that the information in PersistentVolumes is as ephemeral as the pods they
are bound to. This is not true. The PersistentVolumeClaims created by a StatefulSet
will not be deleted if a pod or even the StatefulSet is deleted. This is to protect the
data contained in these volumes at all costs. Thus, for cleanup, we need to delete the
PersistentVolume separately. Cluster operators also have other tools at their disposal
to prevent this from happening, such as changing the reclamation policy of the
PersistentVolumes (or the StorageClass it was created from) that you are creating.

Exercise 14.02: Testing the Resilience of StatefulSet Data in PersistentVolumes

In this exercise, we will continue from where we left off in the last exercise and test
the resilience of the data that is in our application by deleting a resource and seeing
how Kubernetes responds:

1. Now for the fun part, let's try to test the resilience of our persistence mechanism
by deleting the MySQL pod:

kubectl delete pod mysql-0

You should see this response:

pod "mysql-0" deleted

Further Refactoring Our Application | 527

2. The app may crash at this point, but if you keep trying the preceding curl
command again after a few seconds, it should automatically continue counting
from the number it had before we deleted the pod. We can verify this by trying
to access the application again:

curl localhost:8001/api/v1/namespaces/default/services/kubernetes-
test-ha-application-with-mysql:/proxy/get-number

You should see a response similar to the following:

{number: 2}

As you can see, we not only get a valid response from the application, but we
also get the next number in the sequence (2), meaning that no data was lost
when we lost our MySQL pod and Kubernetes recovered it.

After you've created this StatefulSet, cleaning it up is not as simple as running
kubectl delete -f with_mysql.yaml. This is because Kubernetes will
not automatically destroy a PersistentVolume created by a StatefulSet.

Note

This also means that even if we try to delete all of our AWS resources using
terraform destroy, we will still be paying for orphaned EBS volumes
in AWS indefinitely (and we don't want that in this example).

3. So, to clean up, we need to find out what PersistentVolumes are bound to
this StatefulSet. Let's list the PersistentVolumes in the default namespace
of our cluster:

kubectl get pv

You should see a response similar to the following:

Figure 14.3: Getting the list of PersistentVolumes

528 | Running Stateful Components in Kubernetes

4. It looks like we have a PersistentVolume named data-mysql-0, which is the
one we want to delete. First, we need to remove the objects that created this.
Thus, let's first delete our application and all of its components:

kubectl delete -f with_mysql.yaml

You should see this response:

Figure 14.4: Deleting the PersistentVolume associated with MySQL

5. Let's check on the PersistentVolume that we were trying to remove:

kubectl get pv

You should see a response similar to this:

Figure 14.5: Getting the list of PersistentVolumes

From this image, it appears that our volume is still there.

6. We need to remove both the PersistentVolume and the PersistentVolumeClaim
that created it. To do this, let's run the following command:

kubectl delete pvc data-mysql-0

You should see this response:

persistentvolumeclaim "data-mysql-0" deleted

Once we delete the PersistentVolumeClaim, the PersistentVolume becomes
unbound and is subject to its reclaim policy, which we can see in the screenshot
of the previous step. In this case, the policy is to delete the underlying
storage volume.

7. To verify that the PV is deleted, let's run the following:

kubectl get pv

Further Refactoring Our Application | 529

You should see the following response:

No resources found in default namespace.

As is apparent in this screenshot, our PersistentVolume has now been deleted.

Note

If the reclaim policy for your case is anything other than Delete, you will
need to manually delete the PersistentVolume as well.

8. Now that we have cleaned up our PersistentVolumes and
PersistentVolumeClaims, we can continue to clean up as we would
normally by running the following command:

terraform destroy

You should see a response that ends as in this screenshot:

Figure 14.6: Cleaning up resources created by Terraform

530 | Running Stateful Components in Kubernetes

In this exercise, we have seen how Kubernetes tries to preserve PersistentVolumes
even when we delete the StatefulSet. We have also seen how to proceed when we
actually want to remove a PersistentVolume.

Now that we have seen how to set up a StatefulSet and run a MySQL database
attached to it, we will extend the principle of high availability further in the following
activity. Before we do this, though, we need to address the problem of Kubernetes
manifest sprawl, because it seems to take more and more YAML manifests to achieve
our objective of building highly available stateful applications. In the following section,
we will learn about a tool that will help us better organize and manage the manifests
for our applications.

Helm
In this section, we are going to be taking a look at a tool that is very helpful in the
Kubernetes ecosystem called Helm. Helm was created by Microsoft after it quickly
became apparent that for any sizeable deployment of Kubernetes (for example, those
involving 20 or more separate components, observability tools, services, and other
objects), there are a lot of YAML manifests to keep track of. Couple that with the fact
that many companies run multiple environments other than production, which you
need to be able to keep in sync with each other, and you start to have an unwieldy
problem on your hands.

Helm allows you to write Kubernetes manifest templates, to which you supply
arguments that override any defaults, and then Helm creates the appropriate
Kubernetes manifests for you. Thus, you can use Helm as a sort of package manager,
where your entire application can be deployed using a Helm chart, and you can tweak
a few small parameters before installing. Another way to use Helm is as a templating
engine. It allows an experienced Kubernetes operator to write a good template only
one time and then it can be used by people not familiar with the Kubernetes manifest
syntax to successfully create Kubernetes resources. A Helm chart can be created
with any number of fields set by arguments, and a base template can be adapted to
deploy vastly different implementations of a piece of software or a microservice to
suit different needs.

Helm packages are called "charts" and they have a specific folder structure. You can
either use a shared Helm chart repository from Git, an Artifactory server, or a local
filesystem. In the upcoming exercise, we're going to look at a Helm chart and install it
on our clusters.

Helm | 531

This is a good point to be introduced to Helm in your journey of learning Kubernetes
because if you've been following along, you've written quite a bit of YAML and applied
it to your cluster. Also, a lot of what we've written is a repeat of things that we've seen
before. So, leveraging Helm's templating functionality will be helpful for packaging
up similar components and delivering them using Kubernetes. You don't have to
leverage the templating components of Helm to use it, but it helps so that you
can reuse the chart for multiple different permutations of the resulting
Kubernetes object.

Note

We will be using Helm 3, which has significant differences from its
predecessor, Helm 2, and was only recently released. If you are familiar
with Helm 2 and want to know about the differences, you can refer to the
documentation at this link: https://v3.helm.sh/docs/faq/#changes-since-
helm-2.

Detailed coverage of Helm is beyond the scope of this book, but the fundamentals
covered here serve as a great starting point, and also put into perspective how
different tools and technologies can work together to remove several hurdles of
complex application orchestration in Kubernetes.

Let's see how we can create a chart (which is the Helm term for a package) and apply
it to a cluster. Then, we will understand how Helm generates Kubernetes manifest
files from a Helm chart.

Let's make a new Helm chart by running the following command:

helm create chart-dev

You should see the following response:

Creating chart-dev

When you create a new chart, Helm will generate a chart for NGINX as a placeholder
application by default. This will create a new folder and skeleton chart for us
to examine.

Note

For the following section, make sure that you have tree installed as per
the instructions in the Preface.

https://v3.helm.sh/docs/faq/#changes-since-helm-2
https://v3.helm.sh/docs/faq/#changes-since-helm-2

532 | Running Stateful Components in Kubernetes

Let's use the Linux tree command and take a look at what Helm has made for us:

tree .

You should see a response similar to the following:

Figure 14.7: Directory structure of a Helm chart

Pay attention to the templates folder and the values.yaml file. Helm works
by using the values found in the values.yaml file and fills those values into the
corresponding placeholders in the files inside the templates folder. Let's examine a
part of the values.yaml file:

values.yaml

1 # Default values for chart-dev.
2 # This is a YAML-formatted file.
3 # Declare variables to be passed into your templates.
4
5 replicaCount: 1
6
7 image:
8 repository: nginx
9 pullPolicy: IfNotPresent
10 # Overrides the image tag whose default is the chart appVersion.
11 tag: ""
12
13 imagePullSecrets: []
14 nameOverride: ""
15 fullnameOverride: ""

The complete code for this step can be found at https://packt.live/33ej2cO.

https://packt.live/33ej2cO

Helm | 533

As we can see here, this is not a Kubernetes manifest, but it looks like it has many
of the same fields. In the preceding snippet, we have highlighted the entire image
block. This has three fields (repository, pullPolicy, and tag), each with their
corresponding values.

Another notable file is Chart.yaml. The following line from this file is relevant to
our discussion:

appVersion: 1.16.0

Note

You can find the complete file at this link: https://packt.live/2FboR2a.

The comment in the file is pretty descriptive of what this means: "This is the version
number of the application being deployed. This version number should be incremented
each time you make changes to the application. Versions are not expected to follow
Semantic Versioning. They should reflect the version the application is using."

So, how does Helm assemble these into the traditional Kubernetes manifest format
that we expect? To understand that, let's inspect the corresponding section of the
deployment.yaml file in the templates folder:

deployment.yaml

30 containers:
31 - name: {{ .Chart.Name }}
32 securityContext:
33 {{- toYaml .Values.securityContext | nindent 12 }}
34 image: "{{ .Values.image.repository }}:{{ .Values.image.tag |
 default .Chart.AppVersion }}"
35 imagePullPolicy: {{ .Values.image.pullPolicy }}

The complete code for this step can be found at https://packt.live/3k0OGRL.

This file looks a lot more like a Kubernetes manifest with a bunch of variables added
into it. Comparing the template placeholders from deployment.yaml to the
observations from values.yaml and Chart.yaml, we can infer the following:

• {{ .Values.image.repository }} will be interpreted as nginx.

• {{ .Values.image.tag | default .Chart.AppVersion }} will be
interpreted as 1.16.0.

Thus, we get the resultant field for our deployment spec as
image: nginx:1.16.0.

https://packt.live/2FboR2a
https://packt.live/3k0OGRL

534 | Running Stateful Components in Kubernetes

This is our first glimpse into the Helm templating language. For those familiar
with templating engines such as Jinja, Go templating, or Twig, this syntax
should look familiar. As mentioned earlier, we will not dive into too many
details about Helm, but you can find more on the Helm documentation
at this link: https://helm.sh/docs/chart_template_guide/.

Now, let's install the sample chart chart-dev that we have generated. This chart
will deploy an example NGINX app to our Kubernetes cluster. To install a Helm chart,
the command would look as follows:

helm install [NAME] [CHART] [flags]

We can use --generate-name to get a random name. Also, since we are already
in the chart-dev directory, we can directly use values.yaml from the root of
the current working directory:

helm install --generate-name -f values.yaml .

You should see the following response:

Figure 14.8: Installing a Helm chart

Notice that in the output, you are given instructions on what to do next. These are
customizable instructions from the templates/NOTES.txt file. When you make
your own Helm chart, you can use these to guide whoever is using the chart. Now,
let's run these commands.

Note

The exact values in this output are customized to your particular
environment, so you should copy the commands from your terminal
output. This applies to the following command.

https://helm.sh/docs/chart_template_guide/

Helm | 535

The first command sets the pod name into an environment variable named
POD_NAME:

export POD_NAME=$(kubectl get pods --namespace default -l "app.
kubernetes.io/name=chart-dev,app.kubernetes.io/instance=chart-1589678730"
-o jsonpath="{.items[0].metadata.name}")

We'll skip the echo command; it just tells you how to access your application. The
reason this echo command exists is to show what the next commands are going to
be in the terminal output.

Now before we access our application, we need to do some port forwarding. The next
command maps port 8080 on your host to port 80 on the pod:

kubectl --namespace default port-forward $POD_NAME 8080:80

You should see this response:

Forwarding from 127.0.0.1:8080 ->80

Forwarding from [::1]:8080 -> 80

Now let's try to access NGINX. In a browser, go to localhost:8080. You should be
able to see the default NGINX landing page:

Figure 14.9: Accessing our default NGINX test application

You can clean this up by deleting our resources. First, let's get the generated name of
this release by getting a list of all the releases installed by Helm in your cluster:

helm ls

You should see a response similar to this:

Figure 14.10: Getting a list of all applications installed by Helm

536 | Running Stateful Components in Kubernetes

Now, we can remove the release as follows:

helm uninstall chart-1589678730

Use the name from the previous output. You should see this response:

release "chart-1589678730" uninstalled

And just like that, we've written our first chart. So, let's proceed to the following
exercise, where we will learn exactly how Helm can make our job easier.

Exercise 14.03: Chart-ifying Our Redis-Based Counter Application

We created a generic Helm chart in the previous section, but what if we want to make
our own chart for our software? In this exercise, we will create a Helm chart that
will deploy our HA Redis-based solution from Chapter 12, Your Application and HA,
using Helm.

1. If you are inside the chart-dev directory, navigate to the parent directory:

cd ..

2. Let's start by making a fresh Helm chart:

helm create redis-based-counter && cd redis-based-counter

You should see this response:

Creating redis-based-counter

3. Now let's remove the unnecessary files from our chart:

rm templates/NOTES.txt; \

rm templates/*.yaml; \

rm -r templates/tests/; \

cd templates

Helm | 537

4. Now, we need to navigate into the templates folder of our chart and copy in
the files from our repo for the Redis-based counter application:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter14/Exercise14.03/templates/redis-deployment.
yaml; \

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter14/Exercise14.03/templates/deployment.yaml;\
curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter14/Exercise14.03/templates/redis-service.yaml;
\

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter14/Exercise14.03/templates/service.yaml

You may recall from previous chapters that we had multiple Kubernetes
manifests sharing one file, separated by the --- YAML file separator string. Now
that we have a tool for managing Kubernetes manifests, it's better to keep them
in separate files so that we can manage them independently. The job of bundling
will now be handled by Helm.

5. There should be four files in the templates folder. Let's confirm that
as follows:

tree .

You should see the following response:

Figure 14.11: Expected file structure for our application

538 | Running Stateful Components in Kubernetes

6. ow we need to modify the values.yaml file. Delete all contents from that file
and copy only the following into it:

deployment:

 replicas: 3

redis:

 version: 3

7. Now, to wire them together, we need to edit both deployment.yaml and
redis-deployment.yaml. The one we will edit first is deployment.
yaml. We should replace replicas: 3 with the template, as shown in the
highlighted line in the following manifest:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kubernetes-test-ha-application-with-redis-deployment

 labels:

 app: kubernetes-test-ha-application-with-redis

spec:

 replicas: {{ .Values.deployment.replicas }}

 selector:

 matchLabels:

 app: kubernetes-test-ha-application-with-redis

 template:

 metadata:

 labels:

 app: kubernetes-test-ha-application-with-redis

 spec:

 containers:

 - name: kubernetes-test-ha-application-with-redis

 image: packtworkshops/the-kubernetes-workshop:demo-app-
 with-redis
 imagePullPolicy: Always

 ports:

 - containerPort: 8080

 env:

 - name: REDIS_SVC_ADDR

 value: "redis.default:6379"

Helm | 539

8. Next, edit the redis-deployment.yaml file and add a similar block of
templating language, as shown in the highlighted line in the following manifest:

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2

kind: Deployment

metadata:

 name: redis

 labels:

 app: redis

spec:

 selector:

 matchLabels:

 app: redis

 replicas: 1

 template:

 metadata:

 labels:

 app: redis

 spec:

 containers:

 - name: master

 image: redis:{{ .Values.redis.version }}

 resources:

 requests:

 cpu: 100m

 memory: 100Mi

 ports:

 - containerPort: 6379

9. Now let's install our application using Helm:

helm install --generate-name -f values.yaml .

You should see a response similar to this:

Figure 14.12: Installing our Helm chart with an auto-generated name

540 | Running Stateful Components in Kubernetes

10. To check whether our application is online, we can get the list of deployments:

kubectl get deployment

You should see the following output:

Figure 14.13: Getting the list of deployments

As you can see, Helm has deployed our application deployment, as well as the Redis
backend for it. With these skills in the bag, you are soon to be a captain of Helm.

In the following activity, we will bring together the two things we learned in this
chapter – refactoring our application for stateful components and then deploying
it as a Helm chart.

Activity 14.01: Chart-ifying Our StatefulSet Deployment

Now that you have experience with MySQL, StatefulSets, and Helm for resource
management, your activity is to take what you learned in Exercises 14.01, 14.02,
and 14.03 and combine them together.

For this activity, we will refactor our Redis-based application to use MySQL as the
backend datastore using StatefulSets, and then deploy it using Helm.

Follow these high-level guidelines to complete the activity:

1. Set up the required cluster infrastructure as shown in step 1 of Exercise 14.01,
Deploying a Counter App with a MySQL Backend.

2. Introduce a new Helm chart called counter-mysql.

3. Create a template for our counter application that uses MySQL as its backend.

4. Create a template for our MySQL StatefulSet.

5. Wire everything together with Kubernetes Service objects wherever appropriate.

6. Configure the template such that the values.yaml file is able to change the
version of MySQL.

Helm | 541

7. Test the application. You should see a similar output to that which we've seen in
previous exercises with our counter application:

Figure 14.14: Expected output of Activity 14.01

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Also, don't forget to clean up your cloud resources using the terraform
destroy command to stop AWS from billing you after you are done with
the activity.

https://packt.live/304PEoD

542 | Running Stateful Components in Kubernetes

Summary
Over the course of this chapter, we have applied our skills to be able to leverage
StatefulSets in our example application. We have looked at how to think about
running stateful portions of our software programmatically and how to refactor
applications to leverage that change in state persistence. Finally, we learned how to
create and run Kubernetes StatefulSets that will allow us to run stateful components
in our cluster and make guarantees about how that workload will be run.

Being equipped with the skills needed to manage stateful components on our
Kubernetes cluster is a major step in being able to operate effectively in many
real-world applications that you are likely to come across.

In the next chapter, we're going to talk more about data-driven application
orchestration with the use of Metrics Server, HorizontalPodAutoscalers, and
ClusterAutoscaler. We will learn how these objects help us respond to varying
levels of demand on our application running on a Kubernetes cluster.

Overview

This chapter will introduce you to how Kubernetes enables you to monitor
your cluster and workloads, and then use the data collected to automatically
drive certain decisions. You will learn about the Kubernetes Metric Server,
which aggregates all cluster runtime information, allowing you to use this
information to drive application runtime scaling decisions. We will walk
you through setting up monitoring using the Kubernetes Metrics server
and Prometheus and then use Grafana to visualize those metrics. By the
end of this chapter, you will also have learned how to automatically scale
up your application to completely utilize the resources on the provisioned
infrastructure, as well as automatically scale your cluster infrastructure
as needed.

Monitoring and Autoscaling

in Kubernetes

15

546 | Monitoring and Autoscaling in Kubernetes

Introduction
Let's take a moment to reflect on our progress through this series of chapters
beginning from Chapter 11, Build Your Own HA Cluster. We started by setting up a
Kubernetes cluster using kops to configure AWS infrastructure in a highly available
manner. Then, we used Terraform and some scripting to improve the stability of
our cluster and deploy our simple counter app. After this, we began hardening the
security and increasing the availability of our app using Kubernetes/cloud-native
principles. Finally, we learned how to run a stateful database responsible for using
transactions to ensure that we always get a series of increasing numbers from
our application.

In this chapter, we are going to explore how to leverage the data that already exists in
Kubernetes about our applications to drive and automate decision-making processes
around scaling them so that they are always the right size for our load. Because
it takes time to observe application metrics, schedule and start containers, and
bootstrap nodes from scratch, this scaling is not instantaneous but will eventually
(usually within minutes) balance the number of pods and nodes needed to perform
the work of the load on the cluster. To achieve this, we need a way of getting
this data, understanding/interpreting this data, and feeding back instructions to
Kubernetes with this data. Luckily, there are already tools in Kubernetes that will help
us do this. These are the Kubernetes Metric Server, HorizontalPodAutoscalers
(HPAs), and the ClusterAutoscaler.

Kubernetes Monitoring
Kubernetes has built-in support for providing useful monitoring information about
infrastructure components as well as various Kubernetes objects. The Kubernetes
Metrics server is a component (which does not come built-in) that gathers and
exposes the metrics data at an API endpoint on the API server. Kubernetes uses this
data to manage the scaling of Pods, but this data can also be scraped by a third-party
tool such as Prometheus for use by cluster operators. Prometheus has a few very
basic data visualization functions and primarily serves as a metric-gathering and
storage tool, so you can use a more powerful and useful data visualization tool such
as Grafana. Grafana allows cluster admins to create useful dashboards to monitor
their clusters. You can learn more about how monitoring in Kubernetes is architected
at this link: https://github.com/kubernetes/community/blob/master/contributors/design-
proposals/instrumentation/monitoring_architecture.md.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/monitoring_architecture.md

Kubernetes Monitoring | 547

Here's how this will look for us in a diagram:

Figure 15.1: An overview of the monitoring pipeline that
we will implement in this chapter

This diagram represents how the monitoring pipeline is going to be implemented
through various Kubernetes objects. In summary, the monitoring pipeline will work
as follows:

1. The various components of Kubernetes are already instrumented to provide
various metrics. The Kubernetes Metrics server will fetch these metrics from
the components.

2. The Kubernetes Metrics server will then expose these metrics on an
API endpoint.

3. Prometheus will access this API endpoint, scrape these metrics, and add it to its
special database.

4. Grafana will query the Prometheus database to gather these metrics and
present it in a neat dashboard with graphs and other visual representations.

Now, let's look at each of the previously mentioned components to understand
them better.

548 | Monitoring and Autoscaling in Kubernetes

Kubernetes Metrics API/Metrics Server

The Kubernetes Metrics server (formerly known as Heapster) gathers and exposes
metric data on the running state of all Kubernetes components and objects in
Kubernetes. Nodes, control plane components, running pods, and really any
Kubernetes objects are all observable via the Metrics server. Some examples of the
metrics that it collects are the number of pods that are desired in a Deployment/
ReplicaSet, the number of pods posting a Ready status in that Deployment, and the
CPU and memory utilization of each container.

We will mostly be using the default exposed metrics while gathering the information
relevant to the Kubernetes objects that we are orchestrating our application.

Prometheus

Prometheus is a metric collector, a time-series database, and an alert manager for
just about anything. It makes use of a scraping function to pull metrics from running
processes that expose those metrics in Prometheus format at a defined interval.
Those metrics are then stored in their own time-series database and you can run
queries on this data to get a snapshot of the state of your running applications.

It also comes with an alert manager function, which allows you to set up triggers to
alert your on-call admins. As an example, you can configure the alert manager to
automatically trigger an alert if the CPU utilization on one of your nodes is above 90%
for 15 minutes. The alert manager can interface with several third-party services to
send the alert via various means, such as email, chat messages, or SMS phone alerts.

Note

If you want to learn more about Prometheus, you can refer to this book:
https://www.packtpub.com/virtualization-and-cloud/hands-infrastructure-
monitoring-prometheus.

https://www.packtpub.com/virtualization-and-cloud/hands-infrastructure-monitoring-prometheus
https://www.packtpub.com/virtualization-and-cloud/hands-infrastructure-monitoring-prometheus

Kubernetes Monitoring | 549

Grafana

Grafana is an open-source tool that can be used to visualize data and create useful
dashboards. Grafana will query the Prometheus database for metrics and graph
them on dashboard charts that are easier for humans to understand and spot trends
or discrepancies. These tools are indispensable when running a production cluster as
they help us spot issues in the infrastructure quickly and resolve issues.

Monitoring Your Applications

While application monitoring is beyond the scope of this book, we will provide
some rough guidelines so that you can explore more on this topic. We would
recommend that you expose your application's metrics in Prometheus format and
use Prometheus to scrape them; there are many libraries for most languages that
can help with this.

Another way is to use Prometheus exporters that are available for various
applications. Exporters gather the metrics from an application and expose
them to an API endpoint so that Prometheus can scrape it. You can find
several open-source exporters for common applications at this link:
https://prometheus.io/docs/instrumenting/exporters/.

For your custom applications and frameworks, you can create your own exporters
using the libraries provided by Prometheus. You can find the relevant guidelines at
this link: https://prometheus.io/docs/instrumenting/writing_exporters/.

Once you have exposed and scraped the metrics from your applications, you can
present them in a Grafana dashboard, similar to the one we will create for monitoring
Kubernetes components.

https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/

550 | Monitoring and Autoscaling in Kubernetes

Exercise 15.01: Setting up the Metrics Server and Observing Kubernetes

Objects

In this exercise, we are going to be setting up monitoring for Kubernetes objects
in our cluster and running a few queries and creating visualizations to see what's
going on. We're going to be installing Prometheus, Grafana, and the Kubernetes
Metrics server:

1. To begin with, we will recreate your EKS cluster from the Terraform file in
Exercise 12.02, Creating a Cluster with EKS Using Terraform. If you already have
the main.tf file, you can work with it. Otherwise, you can run the following
command to get it:

curl -O https://github.com/PacktWorkshops/Kubernetes-Workshop/blob/
master/Chapter12/Exercise12.02/main.tf

Now, use the following two commands one after the other to get your cluster
resources up and running:

terraform init

terraform apply

Note

You will need jq for the following command. jq is a simple tool to
manipulate JSON data. If you don't already have it installed, you can
do so by using this command: sudo apt install jq.

2. To set up the Kubernetes Metrics server in our cluster, we need to run the
following in sequence:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter15/Exercise15.01/metrics_server.yaml

kubectl apply -f metrics_server.yaml

Kubernetes Monitoring | 551

You should see a response similar to the following:

Figure 15.2: Deploying all the objects required for the Metrics server

3. To test this, let's run the following command:

kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"

Note

If you are getting a ServiceUnavailable error, please check whether
your firewall rules are allowing the API server to communicate with the node
running the Metrics server.

We have been frequently using the kubectl get commands by naming the
object. We have seen in Chapter 4, How to Communicate with Kubernetes (API
Server), that Kubectl interprets the request, points the request to the appropriate
endpoint, and formats the results in a readable format. But here, since we have
created a custom endpoint at our API server, we have to point toward it using
the --raw flag. You should see a response similar to the following:

Figure 15.3: Response from the Kubernetes Metrics server

As we can see here, the response contains JSON blobs that define a metric
namespace, metric values, and metric metadata, such as a node name and
availability zones. However, these metrics are not very readable. We will make
use of Prometheus to aggregate them and then use Grafana to present the
aggregated metrics in a concise dashboard.

552 | Monitoring and Autoscaling in Kubernetes

4. Now, we have metric data being aggregated. Let's start scraping and visualizing
with Prometheus and Grafana. For this, we will install Prometheus and Grafana
using Helm. Run the following command:

helm install --generate-name stable/prometheus

Note

If you are installing and running helm for the first time, you will need to run
the following command to get stable repos:

help repo add stable https://kubernetes-charts.
storage.googleapis.com/

You should see an output similar to the following:

Figure 15.4: Installing the Helm chart for Prometheus

Kubernetes Monitoring | 553

5. Now, let's install Grafana in a similar fashion:

helm install --generate-name stable/grafana

You should see the following response:

Figure 15.5: Installing the Helm chart for Grafana

In this screenshot, notice the NOTES: section, which lists two steps. Follow these
steps to get your Grafana admin password and your endpoint to access Grafana.

6. Here, we are running the first command that Grafana showed in the output of
the previous step:

kubectl get secret --namespace default grafana-1576397218 -o
jsonpath="{.data.admin-password}" | base64 --decode ; echo

554 | Monitoring and Autoscaling in Kubernetes

Please use the version of the commands that you got; the command will be
customized for your instance. This command gets your password, which is
stored in a Secret, decodes it, and echoes it in your terminal output so that
you can copy it for use in further steps. You should see a response similar
to the following:

brM8aEVPCJtRtu0XgHVLWcBwJ76wBixUqkCmwUK)

7. Now, let's run the next two commands that Grafana asked us to run, as seen in
Figure 15.5:

export POD_NAME=$(kubectl get pods --namespace default
-l "app.kubernetes.io/name=grafana,app.kubernetes.io/
instance=grafana-1576397218" -o jsonpath="{.items[0].metadata.name}")

kubectl --namespace default port-forward $POD_NAME 3000

Again, use the command that you obtain for your instance as this will be
customized. These commands find the Pod that Grafana is running on and
then map a port from our local machine to it so that we can easily access it.
You should see the following response:

Forwarding from 127.0.0.1:3000 -> 3000

Forwarding from [::1]:3000 -> 3000

Note

At this step, if you are facing any issues with getting the proper Pod name,
you can simply run kubectl get pods to find the name of the Pod
running Grafana and use that name instead of the shell ($POD_NAME)
variable. So, your command will look similar to this:

kubectl --namespace default port-forward grafana-
1591658222-7cd4d8b7df-b2hlm 3000.

8. Now, open your browser and visit http://localhost:3000 to access
Grafana. You should see the following landing page:

Kubernetes Monitoring | 555

Figure 15.6: The log-in page for the Grafana dashboard

The default username is admin and the password is the value echoed in the
output of step 6. Use that to log in.

9. After a successful login, you should see this page:

Figure 15.7: The Grafana Home dashboard

556 | Monitoring and Autoscaling in Kubernetes

10. Now, let's create a dashboard for Kubernetes metrics. To do so, we need to
set up Prometheus as a data source for Grafana. On the left sidebar, click on
Configuration and then on Data Sources:

Figure 15.8: Selecting Data Sources from the Configuration menu

11. You will see this page:

Figure 15.9: The Add data source option

Kubernetes Monitoring | 557

Now, click on the Add data source button.

12. You should see this page with several database options. Prometheus should be
on top. Click on that:

Figure 15.10: Choosing Prometheus as our data source for the Grafana dashboard

Now, before we move on to the next screen, here, we need to get the URL that
Grafana will use to access the Prometheus database from inside the cluster.
We will do that in the next step.

13. Open a new terminal window and run the following command:

kubectl get svc --all-namespaces

You should see a response similar to the following:

Figure 15.11: Getting the list of all services

Copy the name of the service that starts with prometheus and ends
in server.

558 | Monitoring and Autoscaling in Kubernetes

14. After step 12, you will have arrived at the screen shown in the
following screenshot:

Figure 15.12: Entering the address of our Prometheus service in Grafana

In the URL field of the HTTP section, enter the following value:

http://<YOUR_PROMETHEUS_SERVICE_NAME>.default

Note that you should see Data source is working, as shown in the
preceding screenshot. Then, click on the Save and Test button at the
bottom. The reason we have added .default to our URL is that we deployed
this Helm chart to the default Kubernetes namespace. If you deployed
it to another namespace, you should replace default with the name of
your namespace.

Kubernetes Monitoring | 559

15. Now, let's set up the dashboard. Back on the Grafana home page
(http://localhost:3000), click on the + symbol on the left
sidebar, and then click on Import, as shown here:

Figure 15.13: Navigating to import Dashboard option

16. On the next page, you should see the Grafana.com Dashboard field,
as shown here:

Figure 15.14: Entering the source to import the dashboard from

560 | Monitoring and Autoscaling in Kubernetes

Paste the following link into the Grafana.com Dashboard field:

https://grafana.com/api/dashboards/6417/revisions/1/download

This is an officially supported Kubernetes dashboard. Once you click anywhere
outside the file, you should automatically advance to the next screen.

17. The previous step should lead you to this screen:

Figure 15.15: Setting Prometheus as the data source for the imported dashboard

Where you see the prometheus, click on the drop-down list next to it, select
Prometheus, and hit Import.

Kubernetes Monitoring | 561

18. The result should look like this:

Figure 15.16: The Grafana dashboard to monitor our cluster

As you can see, we have a concise dashboard for monitoring workloads in
Kubernetes. In this exercise, we deployed our Metric Server to collect and expose
Kubernetes object metrics, then we deployed Prometheus to store those metrics and
Grafana to help us visualize the collected metrics in Prometheus, which will inform
us as to what's going on in our cluster at any point in time. Now, it's time to use that
information to scale things.

562 | Monitoring and Autoscaling in Kubernetes

Autoscaling in Kubernetes
Kubernetes allows you to automatically scale your workloads to adapt to changing
demands on your applications. The information gathered from the Kubernetes
Metrics server is the data that is used for driving the scaling decisions. In this book,
we will be covering two types of scaling action—one that impacts the number of
running pods in a Deployment and another that impacts the number of running
nodes in a cluster. Both are examples of horizontal scaling. Let's briefly gain an
intuition for what both the horizontal scaling of pods and the horizontal scaling of
nodes would entail:

• Pods: Assuming that you filled out the resources: section of podTemplate
when creating a Deployment in Kubernetes, each container within that pod will
have the requests and limits fields, as designated by the corresponding
cpu and memory fields. When the resources needed to process a workload
exceed that which you have allocated, then by adding additional replicas of a
pod to the Deployment, you are horizontally scaling to add capacity to your
Deployment. By letting a software process decide the number of replicas
of a Pod in a Deployment for you based on load, you are autoscaling your
deployment to keep the number of replicas consistent with the metric you have
defined to express your application's load. One such metric for application load
could be the percentage of the allocated CPU that is currently being consumed.

• Nodes: Every node has a certain amount of CPU (typically expressed by the
number of cores) and memory (typically expressed in gigabytes) that it has
available for consumption by Pods. When the total capacity of all worker nodes
is exhausted by all running pods (meaning that the CPU and memory requests/
limits for all the Pods are equal to or greater than that of the whole cluster), then
we have saturated the resources of our cluster. In order to allow more Pods to
be run on the cluster, or to allow more autoscaling to take place in the cluster,
we need to add capacity in the form of additional worker nodes. When we
allow a software process to make this decision for us, we are considered to be
autoscaling the total capacity of our cluster. In Kubernetes, this is handled by the
ClusterAutoscaler.

Autoscaling in Kubernetes | 563

Note

When you increase the number of pod replicas of an application, it is known
as horizontal scaling and is handled by the HorizontalPodAutoscaler.
If, instead, you were to increase the resource limits for your replicas,
that would be called vertical scaling. Kubernetes also offers
VerticalPodAutoscaler, but we are leaving it out for brevity, and due to
the fact that it is not yet generally available and safe for use in production.

Using both HPAs and ClusterAutoscalers in conjunction with each other can be an
effective way for companies to ensure that they always have the right amount of
application resources deployed for their load and that they aren't paying too much
for it at the same time. Let's examine both of them in the following subsections.

HorizontalPodAutoscaler

HPAs are responsible for making sure that the number of replicas of your application
in a Deployment match whatever the current demand as measured by a metric. This
is useful because we can use real-time metric data, which is already gathered by
Kubernetes, to always ensure that our application is meeting the demands we have
set forth in our thresholds. This may be a new concept to some application owners
who are not used to running applications using data, but once you begin to leverage
tools that can right-size your deployments, you will never want to go back.

Kubernetes has an API resource in the autoscaling/v1 and autoscaling/
v2beta2 groups to provide a definition of autoscaling triggers that can run against
another Kubernetes resource, which is most often a Kubernetes Deployment object.
In the case of autoscaling/v1, the only supported metric is the current CPU
consumption, and in the case of autoscaling/v2beta2, there is support for
any custom metrics.

HPA queries the Kubernetes Metric Server to look at the metrics for the particular
deployment. Then, the autoscaling resource will determine whether or not the
currently observed metric is beyond the threshold for a scaling target. If it is, then
it will change the number of Pods desired by the deployment to be higher or lower
depending on the load.

564 | Monitoring and Autoscaling in Kubernetes

As an example, consider a shopping cart microservice hosted by an e-commerce
company. The shopping cart service experiences a heavy load during the coupon
code-entry process because it must traverse all items in the cart and search for active
coupons on them before validating a coupon code. On a random Tuesday morning,
there are many shoppers online using the service and they all want to use coupons.
Normally, the service would become overwhelmed and requests would start to fail.
However, if you were able to use an HPA, Kubernetes would use the spare computing
power of your cluster to ensure that there are enough Pods of this shopping cart
service to be able to handle the load.

Note that simply autoscaling a Deployment is not a "one-size-fits-all" solution
to performance problems in an application. There are many places in modern
applications where slowdowns can occur, so careful consideration should be
made about your application architecture to see where you can identify other
bottlenecks not solved by simple autoscaling. One such example would be slow
query performance on a database. However, for this chapter, we will be focusing on
application problems that can be solved by autoscaling in Kubernetes.

Let's look at the structure of an HPA to understand a bit better:

with_autoscaler.yaml

115 apiVersion: autoscaling/v1
116 kind: HorizontalPodAutoscaler
117 metadata:
118 name: shopping-cart-hpa
119 spec:
120 scaleTargetRef:
121 apiVersion: apps/v1
122 kind: Deployment
123 name: shopping-cart-deployment
124 minReplicas: 20
125 maxReplicas: 50
126 targetCPUUtilizationPercentage: 50

You can find the full code at this link: https://packt.live/3bE9v28.

In this spec, observe the following fields:

• scaleTargetRef: This is the reference to the object that is being scaled. In
this case, it is a pointer to the Deployment of a shopping-cart microservice.

• minReplicas: The minimum replicas in the Deployment, regardless of
scaling triggers.

• maxReplicas: The maximum number of replicas in the Deployment,
regardless of scaling triggers.

https://packt.live/3bE9v28

Autoscaling in Kubernetes | 565

• targetCPUUtilizationPercentage: The goal percentage of average CPU
utilization across all Pods in this deployment. Kubernetes will re-evaluate this
metric constantly and increase and decrease the number of pods so that the
actual average CPU utilization matches this target.

To simulate stress on our application, we will use wrk, because it is simple to
configure and has a Docker container already made for us. wrk is an HTTP
load-testing tool. It is simple to use and only has a few options; however, it will be
able to generate large amounts of load by making requests over and over using
multiple simultaneous HTTP connections against a specified endpoint.

Note

You can find out more about wrk at this link: https://github.com/wg/wrk.

For the following exercise, we will use a modified version of the application we've
been running to help drive scaling behavior. In this revision of our application,
we have modified it such that the application will perform a Fibonacci sequence
calculation in a naïve way out to the 10,000,000th entry so that it will be slightly more
computationally expensive and exceed our CPU autoscaling trigger. If you examine
the source code, you can see that we have added this function:

main.go

74 func FibonacciLoop(n int) int {
75 f := make([]int, n+1, n+2)
76 if n < 2 {
77 f = f[0:2]
78 }
79 f[0] = 0
80 f[1] = 1
81 for i := 2; i <= n; i++ {
82 f[i] = f[i-1] + f[i-2]
83 }
84 return f[n]
85 }

You can find the full code at this link: https://packt.live/3h5wCEd.

Other than this, we will be using an Ingress, which we learned about in
Chapter 12, Your Application and HA, and the same SQL database that
we built in the previous chapter.

Now, with all of that said, let's dig into the implementation of these autoscalers in the
following exercise.

https://github.com/wg/wrk
https://packt.live/3h5wCEd

566 | Monitoring and Autoscaling in Kubernetes

Exercise 15.02: Scaling Workloads in Kubernetes

In this exercise, we're going to be putting together a few different pieces from before.
Since our application has several moving parts at this point, we need to lay out some
steps that we're going to take so that you understand where we're headed:

1. We need to have our EKS cluster set up as we have in Exercise 12.02, Creating a
Cluster with EKS Using Terraform.

2. We need to have the required components for the Kubernetes Metrics server
set up.

Note

Considering these two points, you need to complete the previous exercise
successfully to be able to perform this exercise.

3. We need to install our counter application using a modification so that it will be a
computationally intensive exercise to get the next number in a sequence.

4. We need to install the HPA and set a metric target for the CPU percentage.

5. We need to install the ClusterAutoscaler and give it the permissions to change
the Autoscaling Group (ASG) size in AWS.

6. We need to stress test our application by generating enough load to be able to
scale the application out and cause the HPA to trigger a cluster-scaling action.

We will use a Kubernetes Ingress resource to load test using traffic external to our
cluster so that we can create an even more realistic simulation.

After doing this, you'll be a Kubernetes captain, so let's dive in:

1. Now, let's deploy the ingress-nginx setup by running the following
commands one after the other:

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/service-l4.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
ingress-nginx/nginx-0.30.0/deploy/static/provider/aws/patch-
configmap-l4.yaml

Autoscaling in Kubernetes | 567

You should see the following responses:

Figure 15.17: Deploying the nginx Ingress controller

2. Now, let's fetch the manifest for our application with HA MySQL, Ingress, and
an HPA:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter15/Exercise15.02/with_autoscaler.yaml

Before we apply it, let's look at our autoscaling trigger:

with_autoscaler.yaml

115 apiVersion: autoscaling/v1
116 kind: HorizontalPodAutoscaler
117 metadata:
118 name: counter-hpa
119 spec:
120 scaleTargetRef:
121 apiVersion: apps/v1
122 kind: Deployment
123 name: kubernetes-test-ha-application-with-autoscaler-
 deployment
124 minReplicas: 2
125 maxReplicas: 1000
126 targetCPUUtilizationPercentage: 10

The full code can be found at this link: https://packt.live/3bE9v28.

https://packt.live/3bE9v28

568 | Monitoring and Autoscaling in Kubernetes

Here, we are starting with two replicas of this deployment and allowing ourselves
to grow up to 1000 replicas while trying to keep the CPU at a constant 10%
utilization. Recall from our Terraform template that we are using m4.large EC2
instances to run these Pods.

3. Let's deploy this application by running the following command:

kubectl apply -f with_autoscaler.yaml

You should see the following response:

Figure 15.18: Deploying our application

4. With that, we are ready to load test. Before we begin, let's check on the number
of Pods in our deployment:

kubectl describe hpa counter-hpa

This may take up to 5 minutes to show a percentage, after which you should see
something like this:

Autoscaling in Kubernetes | 569

Figure 15.19: Getting details about our HPA

The Deployment pods: field shows 2 current / 2 desired, meaning
our HPA has changed the desired replica count from 3 to 2 because we have a
CPU utilization of 0%, which is below the target of 10%.

Now, we need to get some load going. We're going to run a load test from our
computer to the cluster using wrk as a Docker container. But first, we need to get
the Ingress endpoint to access our cluster.

570 | Monitoring and Autoscaling in Kubernetes

5. Run the following command to first get your Ingress endpoint:

kubectl get svc ingress-nginx -n ingress-nginx -o jsonpath='{.status.
loadBalancer.ingress[0].hostname}'

You should see the following response:

Figure 15.20: Checking our Ingress endpoint

6. In another terminal session, run a wrk load test using the following command:

docker run --rm skandyla/wrk -t10 -c1000 -d600 -H ‚Host: counter.
com' http://YOUR_HOSTNAME/get-number

Let's quickly understand these parameters:

-t10: The number of threads to use for this test, which is 10 in this case.

-c1000: The total number of connections to hold open. In this case, each thread
is handling 1,000 connections each.

-d600: The number of seconds to run this test (which in this case is 600 seconds
or 10 minutes).

You should get output like the following:

Figure 15.21: Running a load test to our Ingress endpoint

Autoscaling in Kubernetes | 571

7. In another session, let's keep an eye on the pods for our application:

kubectl get pods --watch

You should be able to see a response similar to this:

Figure 15.22: Watching pods backing our application

In this terminal window, you should see the number of Pods increasing.
Note that we can also check the same in our Grafana dashboard.

Here, it is increased by 1; but soon, these pods will exceed all the available space.

8. In yet another terminal session, you can again set up port forwarding to Grafana
to observe the dashboard:

kubectl --namespace default port-forward $POD_NAME 3000

You should see the following response:

Forwarding from 127.0.0.1:3000 -> 3000

Forwarding from [::1]:3000 -> 3000

572 | Monitoring and Autoscaling in Kubernetes

9. Now, access the dashboard on your browser at localhost:3000:

Figure 15.23: Observing our cluster in the Grafana dashboard

You should be able to see the number of Pods increasing here as well. Thus, we have
successfully deployed an HPA that is automatically scaling up the number of Pods as
the load on our application increases.

ClusterAutoscaler

If the HPA ensures that there are always the right number of Pods running in a
Deployment, then what happens when we run out of capacity on the cluster for all
of those Pods? We need more of them, but we also don't want to be paying for that
additional cluster capacity when we don't need it. This is where the ClusterAutoscaler
comes in.

The ClusterAutoscaler will work inside your cluster to ensure that the number
of nodes running in the ASG (in the case of AWS) always has enough capacity
to run the currently deployed application components of your cluster. So, if 10
pods in a Deployment can fit on 2 nodes, then when you need an 11th Pod, the
ClusterAutoscaler will ask AWS to add a 3rd node to your Kubernetes cluster to
get that Pod scheduled. When that Pod is no longer needed, that Node goes
away, too. Let's look at a brief architecture diagram to understand how the
ClusterAutoscaler works:

Autoscaling in Kubernetes | 573

Figure 15.24: Cluster with nodes at full capacity

Note that in this example, we have an EKS cluster running two worker nodes and all
available cluster resources are taken up. So, here's what the ClusterAutoscaler does.

When a request for a Pod that won't fit arrives at the control plane, it remains in a
Pending state. When the ClusterAutoscaler observes this, it will communicate with
the AWS EC2 API and request for the ASG, which has our worker nodes deployed in
them, to scale up by another node. This requires the ClusterAutoscaler to be able to
communicate with the API for the cloud provider it is running in in order to change
worker node count. In the case of AWS, this also means that we will either have to
generate IAM credentials for the ClusterAutoscaler or allow it to use the IAM role of
the machine to access the AWS APIs.

574 | Monitoring and Autoscaling in Kubernetes

A successful scaling action should look like the following:

Figure 15.25: Additional node provisioned to run the additional pods

We will implement the ClusterAutoscaler in the following exercise, and then load test
it in the activity after that.

Exercise 15.03: Configuring the ClusterAutoscaler

So, now that we've seen our Kubernetes Deployment scale, it's time to see it scale
to the point where it needs to add more node capacity to the cluster. We will be
continuing where the last lesson left off and run the exact same application and load
test but let it run a little longer:

1. To create a ClusterAutoscaler, first, we need to create an AWS IAM account and
give it the permissions to manage our ASGs. Create a file called permissions.
json with the following contents:

{

 "Version": "2012-10-17",

 "Statement": [

Autoscaling in Kubernetes | 575

 {

 "Effect": "Allow",

 "Action": [

 "autoscaling:DescribeAutoScalingGroups",

 "autoscaling:DescribeAutoScalingInstances",

 "autoscaling:DescribeLaunchConfigurations",

 "autoscaling:SetDesiredCapacity",

 "autoscaling:TerminateInstanceInAutoScalingGroup",

 "autoscaling:DescribeLaunchConfigurations",

 "ec2:DescribeLaunchTemplateVersions",

 "autoscaling:DescribeTags"

],

 "Resource": "*"

 }

]

}

2. Now, let's run the following command to create an AWS IAM policy:

aws iam create-policy --policy-name k8s-autoscaling-policy --policy-
document file://permissions.json

You should see the following response:

Figure 15.26: Creating an AWS IAM policy

Note down the value of the Arn: field from the output that you get.

576 | Monitoring and Autoscaling in Kubernetes

3. Now, we need to create an IAM user and then attach a policy to it. First, let's
create the user:

aws iam create-user --user-name k8s-autoscaler

You should see this response:

Figure 15.27: Creating an IAM user to use our policy

4. Now, let's attach the IAM policy to the user:

aws iam attach-user-policy --policy-arn <ARN_VALUE> --user-name
k8s-autoscaler

Use the ARN value that you obtained in step 2.

5. Now, we need the secret access key for this IAM user. Run the
following command:

aws iam create-access-key --user-name k8s-autoscaler

You should get this response:

Figure 15.28: Fetching the secret access key for the created IAM user

Autoscaling in Kubernetes | 577

In the output of this command, note AccessKeyId and SecretAccessKey.

6. Now, get the manifest file for ClusterAutoscaler that we have provided:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter15/Exercise15.03/cluster_autoscaler.yaml

7. We need to create a Kubernetes Secret to expose these credentials to the
ClusterAutoscaler. Open the cluster_autoscaler.yaml file. In the first
entry, you should see the following:

cluster_autoscaler.yaml

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: aws-secret
5 namespace: kube-system
6 type: Opaque
7 data:
8 aws_access_key_id: YOUR_AWS_ACCESS_KEY_ID
9 aws_secret_access_key: YOUR_AWS_SECRET_ACCESS_KEY

You can find the full code at this link: https://packt.live/2DCDfzZ.

You need to replace YOUR_AWS_ACCESS_KEY_ID and YOUR_AWS_SECRET_
ACCESS_KEY with the Base64-encoded versions of the values returned by AWS
in step 5.

8. To encode in Base64 format, run the following command:

echo -n <YOUR_VALUE> | base64

Run this twice, using AccessKeyID and SecretAccessKey in place of
<YOUR_VALUE> to get the corresponding Base64-encoded version that
you need to enter into the secret fields. Here's what it should look like
when complete:

aws_access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK

aws_secret_access_key:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=

https://packt.live/2DCDfzZ

578 | Monitoring and Autoscaling in Kubernetes

9. Now, in the same cluster_autoscaler.yaml file, go to line 188. You will
need to replace the value of YOUR_AWS_REGION with the value of the region
you deployed your EKS cluster into, such as us-east-1:

cluster_autoscaler.yaml

176 env:
177 - name: AWS_ACCESS_KEY_ID
178 valueFrom:
179 secretKeyRef:
180 name: aws-secret
181 key: aws_access_key_id
182 - name: AWS_SECRET_ACCESS_KEY
183 valueFrom:
184 secretKeyRef:
185 name: aws-secret
186 key: aws_secret_access_key
187 - name: AWS_REGION
188 value: <YOUR_AWS_REGION>

You can find the entire code at this link: https://packt.live/2F8erkb.

10. Now, apply this file by running the following:

kubectl apply -f cluster_autoscaler.yaml

You should see a response similar to the following:

Figure 15.29: Deploying our ClusterAutoscaler

11. Note that we need to now modify our ASG in AWS to allow for a scale-up;
otherwise, the ClusterAutoscaler will not attempt to add any nodes. To do this,
we have provided a modified main.tf file that has only one line changed:
max_size = 5 (line 299). This will allow the cluster to add up a maximum
of five EC2 nodes to itself.

Navigate to the same location where you downloaded the previous Terraform
file, and then run the following command:

curl -O https://raw.githubusercontent.com/PacktWorkshops/Kubernetes-
Workshop/master/Chapter15/Exercise15.03/main.tf

https://packt.live/2F8erkb

Autoscaling in Kubernetes | 579

You should see this response:

Figure 15.30: Downloading the modified Terraform file

12. Now, apply the modifications to the Terraform file:

terraform apply

Verify that the changes are only applied to the ASG max capacity, and then type
yes when prompted:

Figure 15.31: Applying our Terraform modifications

580 | Monitoring and Autoscaling in Kubernetes

Note

We will test this ClusterAutoscaler in the following activity. Hence, do not
delete your cluster and API resources for now.

At this point, we have deployed our ClusterAutoscaler and configured it to access the
AWS API. Thus, we should be able to scale the number of nodes as required.

Let's proceed to the following activity, where we will load test our cluster. You should
plan to do this activity as soon as possible in order to keep costs down.

Activity 15.01: Autoscaling Our Cluster Using ClusterAutoscaler

In this activity, we are going to run another load test and this time, we are going to
run it for longer and observe the changes to the infrastructure as the cluster expands
to meet demands. This activity should repeat the previous steps (as shown in Exercise
15.02, Scaling Workloads in Kubernetes) to run the load test but this time, it should
be done with the ClusterAutoscaler installed so that when your cluster runs out of
capacity for the Pods, it will scale the number of nodes to fit the new Pods. The goal
of this is to see a load test increase the node count.

Follow these guidelines to complete your activity:

1. We will use the Grafana dashboard to observe the cluster metrics, paying close
attention to the number of running Pods and the number of nodes.

2. Our HPA should be set up so that when our application receives more load,
we can scale the number of Pods to meet the demand.

3. Ensure that your ClusterAutoscaler has been successfully set up.

Note

To fulfill the three aforementioned requirements, you will need to have
successfully completed all the exercises in this chapter. We will be using the
resources created in those exercises.

4. Run a load test, as shown in step 2 of Exercise 15.02. You may choose a longer or
more intense test if you wish.

Autoscaling in Kubernetes | 581

By the end of this activity, you should be able to observe an increase in the number of
nodes by describing the AWS ASG like so:

Figure 15.32: Increase in the number of nodes observed
by describing the AWS scaling group

You should also be able to observe the same in your Grafana dashboard:

Figure 15.33: Increase in the number of nodes observed in the Grafana dashboard

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD. Make sure you delete the EKS cluster
by running the command terraform destroy.

Deleting Your Cluster Resources

This is the last chapter where we will use our EKS cluster. Hence, we recommend that
you delete your cluster resources using the following command:

terraform destroy

This should stop the billing for the EKS cluster that we created using Terraform.

https://packt.live/304PEoD

582 | Monitoring and Autoscaling in Kubernetes

Summary
Let's reflect a bit on how far we've come from Chapter 11, Build Your Own HA Cluster,
when we started to talk about running Kubernetes in a highly available manner.
We covered how to set up a production cluster that was secure in the cloud and
created using infrastructure as code tools such as Terraform, as well as secured
the workloads that it runs. We also looked at necessary modifications to our
applications in order to scale them well—both for the stateful and stateless
versions of the application.

Then, in this chapter, we looked at how we can extend the management of our
application runtimes using data specifically when introducing Prometheus, Grafana,
and the Kubernetes Metrics server. We then used that information to leverage the
HPA and the ClusterAutoscaler so that we can rest assured that our cluster is always
appropriately sized and ready to respond to spikes in demand automatically without
having to pay for hardware that is overprovisioned.

In the following series of chapters, we will explore some advanced concepts in
Kubernetes, starting with admission controllers in the next chapter.

Overview

In this chapter, we will learn about Kubernetes admission controllers
and use them to modify or validate incoming API requests. This chapter
describes the utility of Kubernetes admission controllers and how they offer
to extend the capabilities of your Kubernetes cluster. You will learn about
several built-in admission controllers and the difference between mutating
and validating controllers. By the end of this chapter, you will be able to
create your own custom admission controllers and apply this knowledge to
build a controller for your required scenario.

Kubernetes Admission

Controllers

16

586 | Kubernetes Admission Controllers

Introduction
In Chapter 4, How to Communicate with Kubernetes (API Server), we learned how
Kubernetes exposes its Application Programming Interface (API) to interact with
the Kubernetes platform. You also studied how to use kubectl to create and manage
various Kubernetes objects. The kubectl tool is simply a client to the Kubernetes API
server. Kubernetes master nodes host the API server through which anyone can
communicate with the cluster. The API server provides a way to communicate with
Kubernetes for not only external actors but also all internal components, such as the
kubelet running on a worker node.

The API server is the central access point to our cluster. If we want to make sure that
our organization's default set of best practices and policies are enforced, there is no
better place to check for and apply them than at the API server. Kubernetes provides
this exact capability via admission controllers.

Let's take a moment to understand why admission controllers are useful. Consider,
for example, that we have a policy of a standard set of labels in all the objects to assist
in the reporting of groups of objects per business unit. This might be important for
getting specific data, such as how many Pods are being executed by the integration
team. If we are managing and monitoring objects based on their labels, then any
objects without the required labels can hamper our management and monitoring
practices. Therefore, we would want to implement a policy that will prevent an object
from being created if these labels are not defined in the object specification. This
requirement can be easily implemented using admission controllers.

Note

Open Policy Agent is a good example of how webhooks can be used to
build an extensible platform to apply standards on the Kubernetes objects.
You can find more details about it at this link: https://www.openpolicyagent.
org/docs/latest/kubernetes-admission-control.

https://www.openpolicyagent.org/docs/latest/kubernetes-admission-control
https://www.openpolicyagent.org/docs/latest/kubernetes-admission-control

How Admission Controllers Work | 587

Admission controllers are a set of components that intercept all calls to the
Kubernetes API server and provide a way to make sure that any requests are meeting
the desired criteria. It is important to note that the controllers are invoked after
the API call is authenticated and authorized and before the objects are actioned
and stored in etcd. This provides a perfect opportunity to implement control and
governance, apply standards, and accept or reject the API requests to keep the cluster
in the desired shape. Let's take a look at how admission controllers work in the
Kubernetes cluster.

How Admission Controllers Work
Kubernetes provides a set of more than 25 admission controllers. A set of admission
controllers is enabled by default and the cluster administrator can pass flags to the
API server to control enabling/disabling the additional controllers (configuring the API
server in a production-grade cluster is outside the scope of this book). These can be
broadly divided into two types:

• Mutating admission controllers allow you to modify the request before it gets
applied to the Kubernetes platform. LimitRanger is one such example, which
applies the defaultRequests to the Pod if it is undefined by the Pod itself.

• Validating admission controllers validate the request and cannot change the
request object. If this controller rejects the request, it will not be actioned by
the Kubernetes platform. An example of this would be the NamespaceExists
controller, which rejects the request if the namespace referenced in the request
is not available.

Essentially, admission controllers are executed in two phases. In the first phase,
mutating admission controllers are executed, and, in the second phase, validating
admission controllers are executed.

Note

Depending on the situation, it might be a good idea to avoid using mutating
controllers because they change the state of the request, and the caller may
not be aware of the changes. Instead, you can use a validating controller to
reject an invalid request and let the caller fix the request.

588 | Kubernetes Admission Controllers

A high-level overview of admission controllers is illustrated in the following figure:

Figure 16.1: Stages of an API request for creating an object

When the Kubernetes API server receives an API call (which can be made via
kubectl or the kubelet running on other nodes), it passes the call through the
following phases:

1. Perform authentication and authorization of the call to make sure that the caller
is authenticated and RBAC policies are applied.

2. Run the payload through all of the existing mutating controllers. Mutating
controllers are those that can change the object sent by the client.

3. Check whether the object abides by the defined schema and whether all of the
fields are valid.

4. Run the payload through all of the existing validating controllers. These
controllers validate the final objects.

5. Store the objects in the etcd datastore.

You can see from Figure 16.1 that some admission controllers have something called
webhooks attached to them. This might not be true for all admission controllers.
We will learn more about webhooks in the later sections of this chapter.

Note that some of the controllers provide functionality both as mutating and
validating controllers. In fact, a few Kubernetes functions are implemented as
admission controllers. For example, when a Kubernetes namespace enters the
terminating state, the NamespaceLifecycle admission controller prevents
new objects from being created in the terminating namespace.

Note

We will only cover a few admission controllers in this chapter for brevity.
Please refer to this link for a complete list of the controllers that are
available: https://kubernetes.io/docs/reference/access-authn-authz/admission-
controllers/#what-does-each-admission-controller-do.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do

Creating Controllers with Custom Logic | 589

Let's confirm that our Minikube setup is configured to run admission controllers. Run
the following command to start Minikube with all of the required plugins enabled:

minikube stop

minikube start --extra-config=apiserver.enable-admission-plugins="LimitRan
ger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,Defau
ltStorageClass,MutatingAdmissionWebhook,ValidatingAdmissionWebhook"

You should see a response like the following screenshot:

Figure 16.2: Starting up Minikube with all of the required plugins
to run admission controllers

Now that we have had an overview of the built-in admission controllers, let's take a
look at how we can make an admission controller using our own custom logic.

Creating Controllers with Custom Logic
As mentioned earlier, Kubernetes provides a list of controllers with predefined
functionality. These controllers are baked into the Kubernetes server binary.
However, what happens if you need to have your own policy or standard to
check against, and none of the admission controllers fit your requirements?

To address such a requirement, Kubernetes provides something called admission
webhooks. There are two types of admission webhooks, which we will study in the
following sections.

The Mutating Admission Webhook

The mutating admission webhook is a type of mutating admission controller that
doesn't have any logic of its own. Instead, it allows you to define a URL that will
be called by the Kubernetes API server. This URL is the address to our webhook.
Functionally, a webhook is an HTTPS server that accepts requests, processes them,
and then responds back.

590 | Kubernetes Admission Controllers

If multiple URLs are defined, they are processed in a chain, that is, the output of the
first webhook becomes the input for the second webhook.

The Kubernetes API server sends a payload (the AdmissionReview object) to the
webhook URL with the request being processed. You can modify the request as per
your requirement (for example, by adding a custom annotation) and send back a
modified request. The Kubernetes API server will use the modified object in the
next stages of creating the resource.

The execution flow will be as follows:

1. The Kubernetes API receives a request for creating an object. For example,
let's say you want to create a Pod that is defined as follows:

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-pod

spec:

 containers:

 - name: configmap-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "sleep 5"]

2. Kubernetes calls a webhook, defined as MutatingAdmissionWebHook,
and passes the object definition to it. In this case, it's the Pod specification.

3. The webhook (which is the custom code written by you) receives the object and
modifies it as per the custom rules. Let's say, for example, it adds the custom
annotation, podModified="true". After modification, the object will look
like this:

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-pod

 annotations:

 podModified: "true"

spec:

 containers:

 - name: configmap-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "sleep 5"]

Creating Controllers with Custom Logic | 591

4. The webhook returns the modified object.

5. Kubernetes will treat the modified object as if it was the original request and
move on.

The flow mentioned earlier can be visualized as follows. Note that the flow is
simplified so that you can understand the major stages:

Figure 16.3: Process flow for the mutating admission webhook

The Validating Admission Webhook

The second type of webhook is the validating admission webhook. This hook, similar
to a mutating admission webhook, doesn't have any logic of its own. Following the
same pattern, it allows us to define a URL, which ultimately provides the logic that
decides to accept or reject this call.

The main difference is that a validating webhook cannot modify the request and
can only allow or reject a request. If this webhook rejects the request, Kubernetes
will send an error back to the caller; otherwise, it will proceed to execute the
request further.

592 | Kubernetes Admission Controllers

How a Webhook Works
Webhooks are deployed as Pods in the Kubernetes cluster, and the Kubernetes API
server calls them over SSL using the AdmissionReview object. This object defines
the AdmissionRequest and AdmissionResponse objects. The webhook reads the
request payload from the AdmissionRequest object and provides the success flag and
optional changes in the AdmissionResponse object.

The following is a top-level definition of the AdmissionReview object. Note that
AdmissionRequest and AdmissionResponse are both part of the AdmissionReview
object. The following is an excerpt from the definition of the AdmissionReview object
in the Kubernetes source code:

// AdmissionReview describes an admission review request/response.

type AdmissionReview struct {

 metav1.TypeMeta `json:",inline"`

 // Request describes the attributes for the admission request.

 // +optional

 Request *AdmissionRequest `json:"request,omitempty"
 protobuf:"bytes,1,opt,name=request"`
 // Response describes the attributes for the admission response.

 // +optional

 Response *AdmissionResponse `json:"response,omitempty"
protobuf:"bytes,2,opt,name=response"`
}

Note

This snippet is an extract from the Kubernetes source code. You can view
more details of the AdmissionReview objects at this link: https://github.com/
kubernetes/api/blob/release-1.16/admission/v1beta1/types.go.

The same AdmissionReview object is used for both mutating and validating admission
webhooks. A mutating webhook calculates the changes required to meet the
custom requirements that you have coded in the webhook. These changes (defined
as a patch) are passed in the patch field, along with a patchType field in the
AdmissionResponse object. The API server then applies that patch to the original
object and the resultant object is persisted in the API server. To validate the webhook,
these two fields are kept empty.

https://github.com/kubernetes/api/blob/release-1.16/admission/v1beta1/types.go
https://github.com/kubernetes/api/blob/release-1.16/admission/v1beta1/types.go

How a Webhook Works | 593

A validating admission webhook would simply set a flag to accept or reject a request,
while a mutating admission webhook would set a flag whether or not the request was
successfully modified as per the request.

First, let's take a closer look at how we can manually patch an object, which will help
you to build a webhook that can patch an object.

You can manually patch an object using the kubectl patch command. As an
example, let's say that you want to add a field to the .metadata.annotation
section in an object. To do that, the command would look like this:

kubectl patch configmap simple-configmap -n webhooks -p '{"metadata":
{"annotations": {"new":"annotation"} } }'

Note the double space before and after the field that we want to add (shown in
the preceding command as {"new":"annotation"}). Let's implement this
in an exercise where we will also learn how this command can be used with a
JSON payload.

Exercise 16.01: Modifying a ConfigMap Object through a Patch

In this exercise, we will patch a ConfigMap using kubectl. We will add an annotation
to the ConfigMap object. This annotation can later be used to group objects, similar
to the use case that we mentioned in the Introduction section. Therefore, if multiple
teams are using a cluster, we would want to track which teams are using which
resources. Let's begin the exercise:

1. Create a namespace with the name webhooks:

kubectl create ns webhooks

You should see the following response:

namespace/webhooks created

2. Next, create a ConfigMap using the following command:

kubectl create configmap simple-configmap --from-literal=url=google.com
-n webhooks

You will see the following response:

configmap/simple-configmap created

594 | Kubernetes Admission Controllers

3. Check the contents of the ConfigMap using the following command:

kubectl get configmap simple-configmap -o yaml -n webhooks

You should see the following response:

Figure 16.4: Getting the contents of the ConfigMap in YAML format

4. Now, let's patch the ConfigMap with an annotation. The annotation we want to
add is teamname with the value of kubeteam:

kubectl patch configmap simple-configmap -n webhooks -p '{"metadata":
{"annotations": {"teamname":"kubeteam"} } }'

You will get the following response:

configmap/simple-configmap patched

In Chapter 6, Labels and Annotations, we learned that annotations are stored as
key-value pairs. Therefore, a key can have only a value, and if a value already
exists for the key (in this case, teamname), then the value will be overwritten by
the new value. Therefore, ensure your webhook logic excludes the objects that
already have the desired configuration.

5. Now, let's apply another patch using detailed patch instructions using JSON
format to provide the required field:

kubectl patch configmap simple-configmap -n webhooks --type='json'
-p='[{"op": "add", "path": "/metadata/annotations/custompatched",
"value": "true"}]'

How a Webhook Works | 595

Note that there are three components of the patch: op (for operations such as
add), path (for the location of the fields to patch), and value (which is the new
value). You should see the following response:

configmap/simple-configmap patched

This is another way to apply the patch. You can see the preceding command,
which is instructing Kubernetes to add a new annotation with the key as
custompatched and the value as true.

6. Now, let's see whether the patch has been applied. Use the following command:

kubectl get configmap simple-configmap -n webhooks -o yaml

You should see the following output:

Figure 16.5: Checking the modified annotations on our ConfigMap

As you can see from the annotations field under metadata, both
annotations have been applied to our ConfigMap. The platform team
now knows who owns this ConfigMap object.

596 | Kubernetes Admission Controllers

Guidelines for Building a Mutating Admission WebHook

We now know all the parts of a working mutating admission webhook. Remember
that the webhook is just a simple HTTPS server, and you can write it in your language
of choice. Webhooks are deployed in the cluster as Pods. The Kubernetes API server
will call these Pods over SSL on port 443 to mutate or validate the objects.

The pseudocode for building a webhook Pod will look like this:

1. A simple HTTPS server (the webhook) is set up in a Pod to accept POST calls.
Note that the call must be over SSL.

2. Kubernetes will send the AdmissionReview object to the webhook through an
HTTPS POST call.

3. The webhook code will process the AdmissionRequest object to get the details of
the object in the request.

4. The webhook code will optionally patch the object and set the response flag to
indicate success or failure.

5. The webhook code will populate the AdmissionResponse section in the
AdmissionReview object with the updated request.

6. The webhook will respond to the POST call (received in step 2) with the
AdmissionReview object.

7. The Kubernetes API server will assess the response and, based on the flag,
accept or reject the client request.

In the code for the webhook, we will specify the path and required modifications
using JSON. Keep in mind from the previous exercise that, while patching, our patch
object definition will contain the following:

• op specifies operations such as add and replace.

• path specifies the location of the field we are trying to modify. Refer to the
output of the command in Figure 16.5 and note that different fields are located in
different places. For example, the name is inside the metadata field, so the path
for this will be /metadata/name.

• value specifies the value of the field.

How a Webhook Works | 597

A simple mutating webhook written in Go should look like the following:

mutatingcontroller.go

20 func MutateCustomAnnotation(admissionRequest
 *v1beta1.AdmissionRequest) (*v1beta1.AdmissionResponse,
 error){
21
22 // Parse the Pod object.
23 raw := admissionRequest.Object.Raw
24 pod := corev1.Pod{}
25 if _, _, err := deserializer.Decode(raw, nil, &pod); err !=
 nil{
26 return nil, errors.New("unable to parse pod")
27 }
28
29 //create annotation to add
30 annotations := map[string]string{"podModified" : "true"}
31
32 //prepare the patch to be applied to the object
33 var patch []patchOperation
34 patch = append(patch, patchOperation{
35 Op: "add",
36 Path: "/metadata/annotations",
37 Value: annotations,
38 })
39
40 //convert patch into bytes
41 patchBytes, err := json.Marshal(patch)
42 if err != nil {
43 return nil, errors.New("unable to parse the patch")
44 }
45
46 //create the response with patch bytes
47 var admissionResponse *v1beta1.AdmissionResponse
48 admissionResponse = &v1beta1.AdmissionResponse {
49 Allowed: true,
50 Patch: patchBytes,
51 PatchType: func() *v1beta1.PatchType {
52 pt := v1beta1.PatchTypeJSONPatch
53 return &pt
54 }(),
55 }
56
57 //return the response
58 return admissionResponse, nil
59
60 }

The complete code for this example can be found at https://packt.live/2GFRCot.

As you can see in the preceding code, the three main parts are the
AdmissionRequest object, the patch, and the AdmissionResponse
object with the patched information.

https://packt.live/2GFRCot

598 | Kubernetes Admission Controllers

So far, in this chapter, we have learned what the admission webhook is and how it
interacts with the Kubernetes API server. We have also demonstrated that one way
to change the requested objects is by using a patch. Now, let's apply what we have
learned until now and deploy a webhook in our Kubernetes cluster.

Remember that all communications between the API server and the webhook
are over SSL. SSL is a protocol that is used for secure communication over a
network. To do this, we need to create public and private keys, as you will see
in the following exercise.

Note that we have not yet built the code that goes into the webhook. First, let's
demonstrate how to deploy the Pods (using Deployment) for a webhook using a
pre-built container, and then we will go on to build the code that goes into the
Pod to get the webhook up and running.

Exercise 16.02: Deploying a Webhook

In this exercise, we'll deploy a simple pre-built webhook server to Kubernetes.
Remember that a webhook is just an HTTPS server, and that is exactly what we
are going to create. When Kubernetes has to call the webhook endpoint over SSL,
we will need to create a certificate for our call. Once we create our certificates
for SSL communication, we will use the Kubernetes Deployment object to deploy
our webhook:

1. Create a Certificate Authority (CA) for a self-signed certificate. This CA will be
later used to create trust between the Kubernetes and our webhook server for
the HTTPS call:

openssl req -nodes -new -x509 -keyout controller_ca.key -out
controller_ca.crt -subj "/CN=Mutating Admission Controller Webhook
CA"

This should give you the following response:

Figure 16.6: Generating a self-signed certificate

How a Webhook Works | 599

Note

You can learn more about self-signed certificates at this link:
https://aboutssl.org/what-is-self-sign-certificate/.

2. Create the private key for the SSL call:

openssl genrsa -out tls.key 2048

You should see the following response:

Figure 16.7: Creating the private key for the SSL call

3. Now sign the server certificate with the CA:

openssl req -new -key tls.key -subj "/CN=webhook-server.webhooks.svc"
\
 | openssl x509 -req -CA controller_ca.crt -CAkey controller_
ca.key -CAcreateserial -out tls.crt

Note that the name of the service in this command is the service that is going
to expose our webhook within the cluster so that the API server can access it.
We will revisit this name in step 7. You should see the following response:

Signature ok

subject=/CN=webhook-server.webhooks.svc

Getting CA Private Key

4. Now we have created a certificate that our server can use. Next, we will just
create a Kubernetes Secret to load the private key and certificate to our
webhook server:

kubectl -n webhooks create secret tls webhook-server-tls \

 --cert "tls.crt" \

 --key "tls.key"

https://aboutssl.org/what-is-self-sign-certificate/

600 | Kubernetes Admission Controllers

You should see the following response:

secret/webhook-server-tls created

5. Our webhook will run as a Pod, which we will create using a Deployment.
To do that, first, create a file named mutating-server.yaml with the
following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webhook-server

 labels:

 app: webhook-server

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webhook-server

 template:

 metadata:

 labels:

 app: webhook-server

 spec:

 containers:

 - name: server

 image: packtworkshops/the-kubernetes-
 workshop:mutating-webhook
 imagePullPolicy: Always

 ports:

 - containerPort: 8443

 name: webhook-api

 volumeMounts:

 - name: webhook-tls-certs

 mountPath: /etc/secrets/tls

 readOnly: true

 volumes:

 - name: webhook-tls-certs

 secret:

 secretName: webhook-server-tls

How a Webhook Works | 601

Note that we are linking to the premade image for the server that we
have provided.

6. Create a Deployment using the YAML file that we created in the previous step:

kubectl create -f mutating-server.yaml -n webhooks

You should see the following response:

deployment.apps/webhook-server created

7. Once the server is created, we need to create a Kubernetes Service. Note
that the Service is accessible through webhook-server.webhooks.
svc. This string, which we used in step 3 while creating the certificate, is
based on the fields defined in the following specification, in the format of
<SERVICENAME>.<NAMESPACENAME>.svc.

Create a file, named mutating-serversvc.yaml, to define a Service with
the following specification:

apiVersion: v1

kind: Service

metadata:

 labels:

 app: webhook-server

 name: webhook-server

 namespace: webhooks

spec:

 ports:

 - port: 443

 protocol: TCP

 targetPort: 8443

 selector:

 app: webhook-server

 sessionAffinity: None

 type: ClusterIP

8. Using the definition from the previous step, create the Service using the
following command:

kubectl create -f mutating-serversvc.yaml -n webhooks

You should see the following response:

service/webhook-server created

602 | Kubernetes Admission Controllers

In this exercise, we have deployed a pre-built webhook and configured certificates
such that our webhook is ready to accept calls from the Kubernetes API server.

Configuring the Webhook to Work with Kubernetes

At this stage, we have created and deployed the webhook using a Deployment. Now,
we need to register the webhook with Kubernetes so that Kubernetes knows about it.
The way to do this is by creating a MutatingWebHookConfiguration object.

Note

You can find more details about MutatingConfigurationWebhook at
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-
controllers/.

The following snippet shows an example of what the configuration object for
MutatingWebhookConfiguration would look like:

apiVersion: admissionregistration.k8s.io/v1beta1

kind: MutatingWebhookConfiguration

metadata:

 name: pod-annotation-webhook

webhooks:

- name: webhook-server.webhooks.svc

 clientConfig:

 service:

 name: webhook-server

 namespace: webhooks

 path: "/mutate"

 caBundle: "LS0…" #The caBundle is truncated for brevity

 rules:

 - operations: ["CREATE"]

 apiGroups: [""]

 apiVersions: ["v1"]

 resources: ["pods"]

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

How a Webhook Works | 603

Here are a few notable definitions from the preceding object:

1. The clientConfig.service section defines the location of the mutating
webhook (which we deployed in Exercise 16.02, Deploying a Webhook).

2. The caBundle section contains the certificate through which SSL trust will be
established. This is the certificate, encoded in Base64 format. We will explain
how to encode it in the next section.

3. The rules section defines what operations need to be intercepted. Here,
we are instructing Kubernetes to intercept any calls to create a new Pod.

How to Encode a Certificate in Base64 Format

As pointed out earlier, when the Kubernetes API server calls the webhook, the
call is encrypted over SSL, and we need to provide the SSL trust certificate in the
webhook definition. This can be seen in the caBundle field in the definition of
MutatingWebhookConfiguration shown in the previous section. The data in
this field is Base64-encoded, as you learned in Chapter 10, ConfigMaps and Secrets.
The following commands can be used to encode a certificate in Base64 format.

First, convert the generated file into Base64 format using the following command:

openssl base64 -in controller_ca.crt -out controller_ca-base64.crt

Since we need to convert the generated CA bundle into the Base64 format and put it
in the YAML file (as mentioned earlier), we need to remove the newline
(\n) characters. The following commands could be used to do this:

cat controller_ca-base64.crt | tr -d '\n' > onelinecert.pem

Both of these commands do not show any response in the terminal upon successful
execution. At this stage, you will have the CA bundle inside the onelinecert.pem
file, which you can copy to create your YAML definitions.

604 | Kubernetes Admission Controllers

Activity 16.01: Creating a Mutating Webhook That Adds an Annotation to a Pod

In this activity, we are using the knowledge we have acquired in this and earlier
chapters to create a mutating webhook that adds a custom annotation to a Pod.
There can be many use cases for such a webhook. For example, you might want
to record whether the container image is coming from the previously approved
repository or not, for future reporting. Extending this further, you can also schedule
Pods from different repositories on different nodes.

The high-level steps for completing this activity are as follows:

1. Create a new namespace named webhooks. If it exists already, delete the
existing namespace and then create it again.

2. Generate the self-signed CA certificate.

3. Generate a private/public key pair for SSL and sign it with the CA certificate.

4. Create a secret that holds the private/public key pair generated in the
previous step.

5. Write the webhook code to add a custom annotation in the Pod.

6. Package the webhook server code as a Docker container.

7. Push the Docker container to a public repository of your choice.

Note

If you have any difficulty building your own webhook, you can use the code
available at this link as a reference: https://packt.live/2R1vJlk.

If you want to avoid building and packaging a webhook, we have provided
a pre-built container so that you can use it directly in your Deployment.
You can use this image from Docker Hub: packtworkshops/the-
kubernetes-workshop:webhook.

Using this image allows you to skip steps 5 to 7.

8. Create a Deployment that deploys the webhook server.

9. Expose the webhooks Deployment as a Kubernetes Service.

https://packt.live/2R1vJlk

Validating a Webhook | 605

10. Create a Base64-encoded version of the CA certificate.

11. Create a MutatingWebHookConfiguration object so that Kubernetes can
intercept the API call and call our webhook.

At this stage, our webhook has been created. Now, to test whether our webhook is
working, create a simple Pod with no annotations.

Once the Pod is created, make sure that the annotation is added to the Pod by
describing it. Here is a truncated version of the expected output. Note that the
annotation here is supposed to be added by our webhook:

Figure 16.8: Expected output of Activity 16.01

Note

The solution to this activity can be found on page 799.

Validating a Webhook
We have learned that the mutating webhook essentially allows the modification of
Kubernetes objects. The other kind of webhook is called a validating webhook. As the
name suggests, this webhook does not allow any change in the Kubernetes objects;
instead, it works as a gatekeeper to our cluster. It allows us to write code that can
validate any Kubernetes object being requested and allow or reject the request based
on the conditions that we specify.

606 | Kubernetes Admission Controllers

Let's understand how this can be helpful using an example. Let's assume that our
Kubernetes cluster is used by many teams, and we want to know which Pods are
associated with which teams. One solution is to ask all the teams to add a label on
their Pod (for example, a label with the key as teamName and the name of the team
as the value). As you can guess, it is not a standard Kubernetes feature to enforce a
set of labels. In this case, we would need to create our own logic to disallow Pods that
do not have these labels.

One way to achieve this is to write a validating webhook that looks for this label in any
requests for Pods and reject the creation of the requested Pods if this label does not
exist. You are going to do exactly this in Activity 16.02, Creating a Validating Webhook
that Checks for a Label in a Pod later in the chapter. For now, let's take a look at what
the code for a validating webhook will look like.

Coding a Simple Validating WebHook

Let's take a look at an excerpt from the code for a simple validating webhook:

func ValidateTeamAnnotation(admissionRequest
 *v1beta1.AdmissionRequest) (*v1beta1.AdmissionResponse, error){

 // Get the AdmissionReview Object

 raw := admissionRequest.Object.Raw

 pod := corev1.Pod{}

 // Parse the Pod object.

 if _, _, err := deserializer.Decode(raw, nil, &pod);
 err != nil {
 return nil, errors.New("unable to parse pod")

 }

 //Get all the Labels of the Pod

 podLabels := pod.ObjectMeta.GetLabels()

 //Logic to check if label exists

 //check if the teamName label is available, if not
 generate an error.
 if podLabels == nil || podLabels[teamNameLabel] == "" {

 return nil, errors.New("teamName label not found")

 }

 //Populate the Allowed flag

 //if the teamName label exists, return the response with

Validating a Webhook | 607

 //Allowed flag set to true.

 var admissionResponse *v1beta1.AdmissionResponse

 admissionResponse = &v1beta1.AdmissionResponse {

 Allowed: true,

 }

 //Return the response with Allowed set to true

 return admissionResponse, nil

}

const (

 //This is the name of the label that is expected to be
 part of the pods to allow them to be created.
 teamNameLabel = `teamName`

)

The three main parts that you can observe in this snippet are the AdmissionRequest
object, the logic to check whether the label exists, and creating the
AdmissionResponse object with the Allowed flag.

Now that we understand all the different components required for a validating
webhook, let's build one in the following activity.

Activity 16.02: Creating a Validating Webhook That Checks for a Label in a Pod

In this activity, we will use the knowledge that we have acquired in this and earlier
chapters to write a validating webhook that verifies whether a label is present in the
requested Pod.

The required steps are as follows:

1. Create a new namespace named webhooks. If it exists already, delete the
existing namespace and then create it again.

2. Generate the self-signed CA certificate.

3. Generate a private/public key pair for SSL and sign it with the CA certificate.

4. Create a secret that holds the private/public key pair generated in the
previous step.

608 | Kubernetes Admission Controllers

Note

Even if you have the certificates and secrets from the previous activity, we
recommend that you discard them and start afresh to avoid any conflicts.

5. Write the webhook code to check whether a label with the key teamName is
present. If it is not present, reject the request.

6. Package the webhook code as a Docker container.

7. Push the Docker container to a public repository of your choice (quay.io allows
you to create a free public repository).

Note

If you have any difficulty in building your own webhook, you can use the
code available at this link as a reference: https://packt.live/2FbL7Jv.

If you want to avoid building and packaging a webhook, we have provided
a pre-built container so that you can use it directly in your Deployment.
You can use this image from Docker Hub: packtworkshops/the-
kubernetes-workshop:webhook.

Using this image allows you to skip steps 5 to 7.

8. Create a Deployment that deploys the webhook server.

9. Expose the webhooks Deployment as a Kubernetes service.

10. Create a Base64-encoded version of the CA certificate.

11. Create ValidtingWebhookConfiguration so that Kubernetes can
intercept the API call and call our webhook.

12. Create a simple Pod with no labels and verify that it is being rejected.

13. Create a simple Pod with the desired labels and verify that it is being created.

14. Once the Pod is created, make sure that the label is part of the
Pod specifications.

https://packt.live/2FbL7Jv

Validating a Webhook | 609

You can test your validating webhook by trying to create a Pod without the
teamName label. It should get rejected with the following message:

Figure 16.9: Expected output of the Activity 16.02

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Controlling the Effect of a Webhook on Selected Namespaces

When you define any webhook (mutating or validating), you can control which
namespaces will be affected by the webhook by defining the namespaceSelector
parameter. Note that this is only applicable to objects that are namespace-scoped.
For cluster-scoped objects, such as persistent volumes, this parameter will make no
difference, and the webhook will be applied.

Note

Not all admission controllers (mutating or validating) can be restricted to
a namespace.

Just like many Kubernetes objects, namespaces can also have labels. We will use this
property of namespaces to apply a webhook on specific namespaces, as you will see
in the following exercise.

https://packt.live/304PEoD

610 | Kubernetes Admission Controllers

Exercise 16.03: Creating a Validating Webhook with the Namespace Selector

Defined

In this exercise, we will define a validating webhook that enforces a custom rule to
be applied to Pods created in a webhooks namespace. The rule is that the Pod must
define a label called teamName. Since the rule is applicable to Pods created in the
webhooks-demo namespace, all other namespaces can create Pods without the
label defined.

Note

Before running this exercise, make sure that you have completed Activity
16.02, Creating a Validating Webhook that Checks for a Label in a Pod as
we are reusing the objects created there. You can refer to the solution in the
Appendix if you are facing any issues with the activity.

1. Verify that the validating webhook we created in Activity 16.02, Creating a
Validating Webhook that Checks for a Label in a Pod, still exists:

kubectl get ValidatingWebHookConfiguration -n webhooks

You will see the following response:

NAME CREATED AT

pod-label-verify-webhook 201908-23T13:59:30Z

2. Now, delete the preexisting validating webhook defined in Activity 16.02,
Creating a Validating Webhook that Checks for a Label in a Pod:

kubectl delete ValidatingWebHookConfiguration pod-label-verify-webhook
-n webhooks

Note

The ValidatingWebHookConfiguration is a cluster scoped
object, and specifying the -n flag is optional for this command.

You will get the following response:

Figure 16.10: Deleting the existing validating webhook

Validating a Webhook | 611

3. Delete the webhooks namespace:

kubectl delete ns webhooks

You will get the following response:

namespace "webhooks" deleted

4. Create the webhooks namespace:

kubectl create ns webhooks

You will get the following response:

namespace/webhooks created

Now we should have a clean slate to continue with this exercise.

5. Create a new CA bundle and a private/public key pair to be used in this webhook.
Generate a self-signed certificate using this command:

openssl req -nodes -new -x509 -keyout controller_ca.key -out
controller_ca.crt -subj "/CN=Mutating Admission Controller Webhook
CA"

You will get an output similar to the following:

Figure 16.11: Generating a self-signed certificate

Note

Even if you have created the CA and keys in the previous activity, you will
need to recreate them for this exercise to work properly.

6. Generate a private/public key pair and sign it with the CA certificate using the
following two commands, one after the other:

openssl genrsa -out tls.key 2048

openssl req -new -key tls.key -subj "/CN=webhook-server.webhooks.svc"
\
 | openssl x509 -req -CA controller_ca.crt -Cakey controller_
ca.key -Cacreateserial -out tls.crt

612 | Kubernetes Admission Controllers

You will get an output that is similar to the following response:

Figure 16.12: Signing a private/public key pair with our certificate

7. Create a secret that holds the private/public key pair:

kubectl -n webhooks create secret tls webhook-server-tls \

--cert "tls.crt" \

--key "tls.key"

You should get the following response:

secret/webhook-server-tls created

8. Next, we need to deploy the webhook in the webhooks namespace. Create a
file named validating-server.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webhook-server

 labels:

 app: webhook-server

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webhook-server

 template:

 metadata:

 labels:

 app: webhook-server

 spec:

 containers:

 - name: server

 image: packtworkshops/the-kubernetes-workshop:webhook

 imagePullPolicy: Always

Validating a Webhook | 613

 ports:

 - containerPort: 8443

 name: webhook-api

 volumeMounts:

 - name: webhook-tls-certs

 mountPath: /etc/secrets/tls

 readOnly: true

 volumes:

 - name: webhook-tls-certs

 secret:

 secretName: webhook-server-tls

Note

You can use the same webhook image created in Activity 16.02, Creating
a Validating Webhook That Checks for a Label in a Pod. In this reference
YAML, we are using the image that we have provided in our repository.

9. Deploy the webhook server by using the definition from the previous step:

kubectl create -f validating-server.yaml -n webhooks

You should see the following response:

deployment.apps/webhook-server created

10. You might need to wait a bit and check whether the webhook Pods have been
created. Keep checking the status of the Pods:

kubectl get pods -n webhooks -w

You should see the following response:

Figure 16.13: Checking whether our webhook is online

Note that the -w flag continuously watches the Pods. You can end the watch
when all of the Pods are ready.

614 | Kubernetes Admission Controllers

11. Now, we have to expose the deployed webhook server via the Kubernetes
service. Create a file named validating-serversvc.yaml with the
following content:

apiVersion: v1

kind: Service

metadata:

 labels:

 app: webhook-server

 name: webhook-server

 namespace: webhooks

spec:

 ports:

 - port: 443

 protocol: TCP

 targetPort: 8443

 selector:

 app: webhook-server

 sessionAffinity: None

 type: ClusterIP

Note that the webhook service has to be running on port 443, as this is the
standard for TLS communication.

12. Use the definition from the previous step to create the service using the
following command:

kubectl create -f validating-serversvc.yaml -n webhooks

You will see the following output:

service/webhook-server created

13. Create a Base64-encoded version of the CA certificate. Use the following
commands, one after the other:

openssl x509 -inform PEM -in controller_ca.crt > controller_ca.crt.
pem

openssl base64 -in controller_ca.crt.pem -out controller_ca-base64.
crt.pem

Validating a Webhook | 615

The first command is to convert the certificate into a PEM format. And the
second one is to convert the PEM certificate into Base64. These commands
show no response. You can inspect the file using the following command:

cat controller_ca-base64.crt.pem

The file contents should be something like this:

Figure 16.14: Contents of the Base64-encoded CA certificate

Please note that the TLS certificates you generate will not look exactly like what is
shown here.

14. Use the following two commands to clean up the blank lines from our CA
certificate and add the contents to a new file:

cat controller_ca-base64.crt.pem | tr -d '\n' > onelinecert.pem

cat onelinecert.pem

616 | Kubernetes Admission Controllers

The first command shows no response, and the second one prints out the
contents of onlinecert.pem. You should see the following response:

Figure 16.15: Base64-encoded CA certificate with the line breaks removed

Now we have the Base64-encoded certificate with no blank lines. For the next
step, we will copy the value that you get in this output, being careful not to
copy the $ (which would be %, in the case of Zsh) at the end of the value. Paste
this value in place of CA_BASE64_PEM (a placeholder for caBundle) in
validation-config-namespace-scoped.yaml, which will be created in
the next step.

15. Create a file, named validation-config-namespace-scoped.yaml,
using the following ValidatingWebHookConfiguration specification to
configure the Kubernetes API server to call our webhook:

apiVersion: admissionregistration.k8s.io/v1beta1

kind: ValidatingWebhookConfiguration

metadata:

 name: pod-label-verify-webhook

webhooks:

 - name: webhook-server.webhooks.svc

 namespaceSelector:

 matchExpressions:

 - key: applyValidation

 operator: In

 values: ["true","yes", "1"]

 clientConfig:

 service:

 name: webhook-server

 namespace: webhooks

Validating a Webhook | 617

 path: "/validate"

 caBundle: "CA_BASE64_PEM" #Retain the quotes when you
 copy the caBundle here. Please read the note below on
 how to add specific values here.

 rules:

 - operations: ["CREATE"]

 apiGroups: [""]

 apiVersions: ["v1"]

 resources: ["pods"]

 scope: "Namespaced"

Note

The CA_BASE64_PEM placeholder will be replaced with the contents of
onelinecert.pem from the previous step. Be careful not to copy any
line breaks.

16. Create the webhook, as defined in the previous step. Make sure that you replace
the caBundle field with the certificates created in the earlier steps:

kubectl create -f validation-config-namespace-scoped.yaml

You should see the following response:

Figure 16.16: Creating the ValidatingWebhookConfiguration

17. Create a new namespace, called webhooks-demo, as follows:

kubectl create namespace webhooks-demo

You should see the following response:

namespace/webhooks-demo created

18. Apply the applyValidation=true label to the webhooks namespace,
as shown here:

kubectl label namespace webhooks applyValidation=true

You should see the following response:

namespace/webhooks labeled

618 | Kubernetes Admission Controllers

This label will match the selector defined in step 14 and make sure our validation
criteria (enforced by the webhook) applies to this namespace. Note that we
don't label the webhooks-demo namespace, so the validation will not apply
to this namespace.

19. Now define a Pod without the teamName label. Create a file named
target-validating-pod.yaml with the following content:

apiVersion: v1

kind: Pod

metadata:

 name: validating-pod-example

spec:

 containers:

 - name: validating-pod-example-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep
 5 ; done"]

20. Based on the definition from the previous step, create the Pod in the
webhooks namespace:

kubectl create -f target-validating-pod.yaml -n webhooks

The creation of the Pod should get rejected as follows:

Figure 16.17: Pod rejected due to the absence of the required label

Keep in mind that our webhook just checks the teamName label in the Pod.
The Pod creation is rejected as per our namespace selector in the definition
from step 14.

Validating a Webhook | 619

21. Now, try creating the same Pod in the webhooks-demo namespace to see
whether things go differently:

kubectl create -f target-validating-pod.yaml -n webhooks-demo

You should get this response:

pod/validating-pod-example created

We were able to successfully create the Pod in the webhooks-demo
namespace, but we were not able to do so in the webhooks namespace.

22. Let's describe the Pod to get more details:

kubectl describe pod validating-pod-example -n webhooks-demo

You should see a response similar to this:

Figure 16.18: Checking the specification of our Pod

As you can see, this Pod does not have any labels, and yet we were able to create
it. This is because our validating webhook is not watching the
webhooks-demo namespace.

In this exercise, you have learned how a webhook can be configured to make changes
at the namespace level. This could be useful to test functionality and provide different
functionality to different teams that might own different namespaces.

620 | Kubernetes Admission Controllers

Summary
In this chapter, we learned that admission controllers provide a way to enforce the
mutation and validation of objects during create, update, and delete operations.
It is an easy way to extend the Kubernetes platform to adhere to the standards of
your organization. They can be used to apply the best practices and policies onto the
Kubernetes cluster.

Next, we learned what mutating and validating webhooks are, how to configure
them, and how to deploy them on the Kubernetes platform. Webhooks provide a
simple way to extend Kubernetes and help you to adapt to the requirements of a
particular enterprise.

In the previous series of chapters, starting from Chapter 11, Build Your Own HA
Cluster, to Chapter 15, Monitoring and Autoscaling in Kubernetes, you learned how to
set up your highly-available cluster on AWS and run stateless, as well as stateful,
applications. In the next few chapters, you will learn many advanced skills that will
help you go beyond just running applications, and enable you to leverage many of the
powerful administration features offered by Kubernetes and maintain the health of
your cluster.

Specifically, in the next chapter, you will learn about the Kubernetes scheduler. This
is a component that decides the nodes on which a Pod will be scheduled. You will
also learn how to configure the scheduler to adhere to your needs and how you can
control Pod placement on a node.

Overview

This chapter focuses on scheduling, which is the process by which
Kubernetes selects a node for running a Pod. In this chapter, we will take
a closer look at this process and the Kubernetes Scheduler, which is the
default Kubernetes component responsible for this process.

By the end of this chapter, you will be able to use different ways to control
the behavior of the Kubernetes Scheduler to suit the requirements of an
application. The chapter will equip you to be able to choose appropriate Pod
scheduling methods to control which nodes you want to run your Pods on
based on your business needs. You will learn about the different ways to
control the scheduling of Pods on the Kubernetes cluster.

Advanced Scheduling in

Kubernetes

17

624 | Advanced Scheduling in Kubernetes

Introduction
We have seen that we package our applications as containers and deploy them as
a Pod in Kubernetes, which is the minimal unit of Deployment. With the help of
the advanced scheduling capabilities provided by Kubernetes, we can optimize the
deployment of these Pods with respect to our hardware infrastructure to meet our
needs and get the most out of the available resources.

Kubernetes clusters generally have more than a few nodes (or machines or hosts)
where the Pod can be executed. Consider that you are managing a few of the
machines and you have been assigned to execute an application on these machines.
What would you do to decide which machine is the best fit for the given application?
Until now in this workshop, whenever you wanted to run a Pod on a Kubernetes
cluster, have you mentioned which node(s) the Pod should run on?

That's right – we don't need to; Kubernetes comes with a smart component that finds
the best node to run your Pod. This component is the Kubernetes Scheduler. In this
chapter, we will look a bit more deeply into how the Kubernetes Scheduler works, and
how to adapt it to better control our cluster to suit different needs.

The Kubernetes Scheduler
As mentioned in the introduction, a typical cluster has several nodes. When you
create a Pod, Kubernetes has to choose a node and assign the Pod to it. This process
is known as Pod scheduling.

The Kubernetes component that is responsible for deciding which node a Pod should
be assigned to for execution is called a scheduler. Kubernetes comes with a default
scheduler that suffices for most use cases. For example, the default Kubernetes
Scheduler spreads the load evenly in the cluster.

Now, consider a scenario in which two different Pods are expected to communicate
with each other very often. As a system architect, you may want them to be on the
same node to reduce latency and free up some internal networking bandwidth.
The Scheduler does not know the relationship between different types of Pods,
but Kubernetes provides ways to inform the Scheduler about this relationship and
influence the scheduling behavior so that these two different Pods can be hosted on
the same node. But first, let's take a closer look at the Pod scheduling process.

The Pod Scheduling Process | 625

The Pod Scheduling Process
The scheduler works in a three-step process: filtering, scoring, and assigning. Let's
take a look at what happens during the execution of each of these steps. An overview
of the process is described in the following diagram:

Figure 17.1: An overview of how the Kubernetes Scheduler selects a suitable node

Filtering

Filtering is a process in which the Kubernetes Scheduler runs a series of checks
or filters to see which nodes are not suitable to run the target Pod. An example of
a filter is to see if the node has enough CPU and memory to host the Pod, or if the
storage volume requested by the Pod can be mounted on the host. If the cluster has
no node that's suitable to meet the requirements of the Pod, then the Pod is deemed
un-schedulable and is not executed on the cluster.

626 | Advanced Scheduling in Kubernetes

Scoring

Once the Kubernetes Scheduler has a list of feasible nodes, the second step is to
score the nodes and find the best node(s) to host the target Pod. The node is passed
through several priority functions and assigned a priority score. Each function assigns
a score between 0 and 10, where 0 is the lowest and 10 is the highest.

To understand priority functions, let's take SelectorSpreadPriority as
an example. This priority function uses label selectors to find the Pods that are
associated together. Let's say, for example, that a bunch of Pods is created by
the same Deployment. As the name SpreadPriority suggests, this function tries to
spread the Pods across different nodes so that in case of a node failure, we will still
have replicas running on other nodes. Under this priority function, the Kubernetes
Scheduler selects the nodes that have the fewest Pods running using the same label
selectors as the requested Pod. These nodes will be assigned the highest score and
vice versa.

Another example of a priority function is LeastRequestedPriority. This tries
to spread the workload on the nodes that have the most resources available. The
scheduler gets the nodes that have the lowest amount of memory and CPU allocated
to existing Pods. These nodes are assigned the highest scores. In other words, this
priority function will assign a higher score for a larger amount of free resources.

Note

There are far too many priority functions to cover within the limited scope
of this chapter. The full list of priority functions can be found at the following
link: https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/#scoring.

Assigning

Lastly, the Scheduler informs the API server about the node that has been selected
based on the highest score. If there are multiple nodes with the same score, the
Scheduler picks a random node and effectively applies a tiebreaker.

The default Kubernetes Scheduler runs as a Pod in the kube-system namespace.
You can see it running by listing all the Pods in the kube-system namespace:

kubectl get pods -n kube-system

You should see the following list of Pods:

https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/#scoring

The Pod Scheduling Process | 627

Figure 17.2: Listing Pods in the kube-system namespace

In our Minikube environment, the Kubernetes Scheduler Pod is named
kube-scheduler-minikube, as you can see in this screenshot.

Timeline of Pod Scheduling

Let's dig into the timeline of the Pod scheduling process. When you request a Pod
to be created, different Kubernetes components get invoked to assign the Pod to
the right node. There are three steps involved, from requesting a Pod to assigning a
node. The following diagram gives an overview of this process, and we will elaborate
and break down the process into more detailed steps after the diagram:

Figure 17.3: Timeline of the Pod scheduling process

628 | Advanced Scheduling in Kubernetes

Step 1: When a request is raised for creating and running a Pod, for instance, through
a kubectl command or by a Kubernetes Deployment, the API server responds to
this request. It updates the Kubernetes internal database (etcd) with a Pod pending
entry to be executed. Note that at this stage, there is no guarantee that Pod will
be scheduled.

Step 2: The Kubernetes Scheduler constantly watches the Kubernetes data store
through the API server. As soon as a Pod creation request is available (or a Pod is in
the pending state), the Scheduler tries to schedule it. It is important to note that the
Scheduler is not responsible for running the Pod. It simply calculates the best node
for hosting the Pod and informs the Kubernetes API server, which then stores this
information in etcd. In this step, the Pod is assigned to the optimal node, and the
association is stored in etcd.

Step 3: The Kubernetes agent (kubelet) constantly watches the Kubernetes data store
through the API server. As soon as a new Pod is assigned to a node, it tries to execute
the Pod on the node. When the Pod is successfully up and running, it is marked as
running in etcd through the API server, and now the process is complete.

Now that we have an idea of the scheduling process, let's see how we can tweak it to
suit our needs in the following topic.

Managing the Kubernetes Scheduler
Kubernetes provides many parameters and objects through which we can manage
the behavior of the Kubernetes Scheduler. We will look into the following ways of
managing the scheduling process:

• Node affinity and anti-affinity

• Pod affinity and anti-affinity

• Pod priority and preemption

• Taints and tolerations

Node Affinity and Anti-Affinity

Using node affinity rules, a Kubernetes cluster administrator can control the
placement of Pods on specific sets of nodes. Node affinity or anti-affinity allows you
to constrain which nodes a Pod can run on based on the labels of the nodes.

Managing the Kubernetes Scheduler | 629

Imagine that you are an administrator of the shared Kubernetes cluster in a bank.
Multiple teams are running their applications on the same cluster. Your organization's
security group has identified nodes that can run data-sensitive applications and
would like you to make sure that no other applications run on those nodes. Node
affinity or anti-affinity rules provide a solution to this requirement to only associate
specific Pods to a set of nodes.

Node affinity rules are defined through two components. First, you assign a label to
a set of nodes. The second part is to configure the Pods to associate them only with
the nodes with certain labels. Another way to think about this is that the Pod defines
where it should be placed, and the Scheduler matches the labels in this definition
with the node labels.

There are two types of node affinity/anti-affinity rules:

• Required rules are hard rules. If these rules are not met,
the Pod cannot be scheduled on a node. It is defined as the
requiredDuringSchedulingIgnoredDuringExecution section in the
Pod specification. Please see Exercise 17.01, Running a Pod with Node Affinity as an
example of this.

• Preferred rules are soft rules. The Scheduler tries to enforce preferred
rules whenever possible, but it goes ahead to ignore them when the rules
cannot be enforced, that is, the Pod would be rendered unschedulable
if these rules were followed as rigidly. Preferred rules are defined as the
preferredDuringSchedulingIgnoredDuringExecution section
in the Pod specification.

Preferred rules have weights associated with each criterion. The Scheduler will create
a score based on these weights to schedule a Pod at the right node. The value of the
weight field ranges from 1 to 100. The Scheduler calculates the priority score for all
the suitable nodes to find the optimal one. Note that the score can be impacted by
other priority functions, such as LeastRequestedPriority.

If you define a weight that is too low (compared to the other weights), then the overall
score will be most affected by other priority functions, and our preferred rule may
have little effect on the scheduling process. If you have multiple rules defined, then
you can alter the weights of the rules that are the most important to you.

Affinity rules are defined in the Pod specification. Based on the labels of our desired/
undesired nodes, we would provide the first part of the selection criteria in the Pod
spec. It consists of the set of labels and, optionally, their values.

630 | Advanced Scheduling in Kubernetes

The other part of the criteria is to provide the way we want to match the labels.
We define these matching criteria as the operator in the affinity definition.
This operator can have the following values:

• The In operator instructs the Scheduler to schedule the Pods on the nodes that
match the label and one of the specified values.

• The NotIn operator instructs the Scheduler to not schedule the Pods on the
nodes that do not match the label and any of the specified values. This is a
negative operator and denotes the anti-affinity configuration.

• The Exists operator instructs the Scheduler to schedule the Pods on the nodes
that match the label. The value of the label does not matter in this case. Thus,
this operator is satisfied even if the specified label exists and the value of the
label does not match.

• The DoesNotExist operator instructs the Scheduler to not schedule
the Pods on the nodes that do not match the label. The value of the label
does not matter in this case. This is a negative operator and denotes the
anti-affinity configuration.

Note that affinity and anti-affinity rules are defined based on the labels on the nodes.
If the labels on a node are changed, it is possible that a node affinity rule may no
longer be applied. In this case, the Pods that are running will continue to run on the
node. If a Pod is restarted, or if it dies and a new Pod is created, Kubernetes considers
this a new Pod. In this case, if the node labels have been modified, the Scheduler
may not put the Pod on the same node. This is something that you would want to be
mindful of when you modify node labels. Let's implement these rules for a Pod in the
following exercise.

Exercise 17.01: Running a Pod with Node Affinity

In this exercise, we will configure a Pod to be scheduled on the node available in our
Minikube environment. We will also see, if the labels do not match, the Pod will be
in the Pending state. Think of this state in which the scheduler is unable to find the
right node to assign to the Pod:

1. Create a new namespace called schedulerdemo using the
following command:

kubectl create ns schedulerdemo

You should see the following response:

namespace/schedulerdemo created

Managing the Kubernetes Scheduler | 631

2. Now we need to create a Pod with node affinity defined. Create a file named
pod-with-node-affinity.yaml with the following specification:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-node-affinity

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: data-center

 operator: In

 values:

 - sydney

 containers:

 - name: pod-with-node-affinity-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep
 5 ; done"]

Note that in the Pod specification, we have added the
new affinity section. This rule is configured as
requiredDuringSchedulingIgnoredDuringExecution. This means
if the node with a matching label does not exist, this Pod will not get scheduled.
Also note that as per the In operator, the expressions mentioned here are to be
matched with the node labels. In this example, a matching node would have the
label data-center=sydney.

3. Try to create this Pod and see if it gets scheduled and executed:

kubectl create -f pod-with-node-affinity.yaml -n schedulerdemo

You should see the following response:

pod/pod-with-node-affinity created

Note that the response you see here does not necessarily imply that the Pod has
successfully been executed on a node. Let's check that in the following step.

632 | Advanced Scheduling in Kubernetes

4. Check the status of the Pod using this command:

kubectl get pods -n schedulerdemo

You will see the following response:

NAME READY STATUS RESTARTS AGE

pod-with-node-affinity 0/1 Pending 0 10s

From this output, you can see that the Pod is in the Pending state and it is not
being executed.

5. Check the events to see why the Pod is not being executed:

kubectl get events -n schedulerdemo

You will see the following response:

Figure 17.4: Getting the list of events

You can see that Kubernetes is saying that there is no node to match the selector
for this Pod.

6. Let's delete the Pod before proceeding further:

kubectl delete pod pod-with-node-affinity -n schedulerdemo

You should see the following response:

pod "pod-with-node-affinity" deleted

7. Now, let's see what nodes are available in our cluster:

kubectl get nodes

You will see the following response:

NAME STATUS ROLES AGE VERSION

minikube Ready master 105d v1.14.3

Since we are using Minikube, there is only one node available called minikube.

8. Check the label for the minikube node. Use the describe command as
shown here:

kubectl describe node minikube

Managing the Kubernetes Scheduler | 633

You should see the following response:

Figure 17.5: Describing the minikube node

As you can see, the label that we want, data-center=sydney, does not exist.

9. Now, let's apply the desired label to our node using this command:

kubectl label node minikube data-center=sydney

You will see the following response indicating that the node was labeled:

node/minikube labeled

10. Verify whether the label is applied to the node using the describe command:

kubectl describe node minikube

You should see the following response:

Figure 17.6: Checking the label on the minikube node

As you can see in this image, our label has now been applied.

634 | Advanced Scheduling in Kubernetes

11. Now try to run the Pod again and see if it can be executed:

kubectl create -f pod-with-node-affinity.yaml -n schedulerdemo

You should see the following response:

pod/pod-with-node-affinity created

12. Now, let's check whether the Pod is successfully running:

kubectl get pods -n schedulerdemo

You should see the following response:

NAME READY STATUS RESTARTS AGE

pod-with-node-affinity 1/1 Running 0 5m22s

Thus, our Pod is successfully running.

13. Let's check out how Pod scheduling is displayed in events:

kubectl get events -n schedulerdemo

You will get the following response:

Figure 17.7: Checking out scheduling events

As you can see in the preceding output, the Pod has been
successfully scheduled.

Pod Affinity and Anti-Affinity | 635

14. Now, let's do some housekeeping to avoid conflicts with further exercises and
activities. Delete the Pod using this command:

kubectl delete pod pod-with-node-affinity -n schedulerdemo

You should see the following response:

pod "pod-with-node-affinity" deleted

15. Remove the label from the node using the following command:

kubectl label node minikube data-center-

Note that the syntax for deleting the label from the Pod has an additional
hyphen (–) after the label name. You should see the following response:

node/minikube labeled

In this exercise, we have seen how node affinity works by labeling a node and then
scheduling a Pod on the labeled node. We have also seen how Kubernetes events can
be used to see the status of Pod scheduling.

The data-center=sydney label that we used in this exercise also hints at an
interesting use case. We can use node affinity and anti-affinity rules to target not just
a specific Pod, but also specific server racks or data centers. We would simply assign
specific labels to all nodes in a specific server rack, data center, availability zone, and
so on. Then, we can simply pick and choose the desired targets for our Pods.

Pod Affinity and Anti-Affinity
Pod affinity and Pod anti-affinity allow your Pods to check what other Pods are
running on a given node before they are scheduled on that node. Note that other
Pods in this context do not mean a new copy of the same Pod, but Pods related to
different workloads.

Pod affinity allows you to control on which node your Pod is eligible to be scheduled
based on the labels of the other Pods that are already running on that node. The idea
is to cater to the need to place two different types of containers relative to each other
at the same place or to keep them apart.

636 | Advanced Scheduling in Kubernetes

Consider that your application has two components: a frontend part (for example,
a GUI) and a backend (for example, an API). Let's assume that you want to run them
on the same host because the communications between frontend and backend Pods
would be faster if they are hosted on the same node. By default, on a multi-node
cluster (not Minikube), the Scheduler will schedule such Pods on different nodes. Pod
affinity provides a way to control the scheduling of Pods relative to each other so that
we can ensure the optimal performance of our application.

There are two components that are required to define Pod affinity. The first
component defines how the scheduler will relate the target Pod (in our previous
example, the frontend Pod) to the already running Pods (the backend Pod). This is
done through labels on the Pod. In the Pod affinity rules, we mention which labels of
the other Pods should be used to relate to the new Pod. Label selectors have similar
operators, as described in the Node Affinity and Anti-Affinity section, for matching the
labels of the Pods.

The second component describes where you want to run the target Pods. Just as we
have seen in the previous exercise, we can use Pod affinity rules to schedule a Pod on
the same node as the other Pod (in our example, we are assuming that the backend
Pod is the other Pod that is already running), any node on the same rack as the other
Pod, any node on the same data center as the other Pod, and so on. This component
defines the set of nodes where the Pods can be allocated. To achieve this, we label
our group of nodes and define this label as topologyKey in the Pod specification.
For example, if we use the hostname as the value for topologyKey, the Pods will be
placed on the same node.

If we label our nodes with the rack name on which they are hosted and define the
rack name as topologyKey, then the candidate Pods will be scheduled for one of
the nodes with the same rack name label.

Similar to the node affinity rules defined in the previous section, there
are hard and soft Pod affinity rules as well. Hard rules are defined with
requiredDuringSchedulingIgnoredDuringExecution while soft rules
are defined with preferredDuringSchedulingIgnoredDuringExecution.
It is possible to have multiple combinations of hard and soft rules in the Pod
affinity configuration.

Pod Affinity and Anti-Affinity | 637

Exercise 17.02: Running Pods with Pod Affinity

In this exercise, we will see how Pod affinity can help the Scheduler to see the
relationships between different Pods and assign them to suitable nodes. We will place
Pods using the preferred option. In a later part of this exercise, we will configure
the Pod anti-affinity using the required option and see that that Pod will not be
scheduled until all the criteria are met. We will use the same example of frontend
and backend Pods that we mentioned earlier:

1. We need to create and run the backend Pod first. Create a file named
pod-with-pod-affinity-first.yaml with the following contents:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-pod-affinity

 labels:

 application-name: banking-app

spec:

 containers:

 - name: pod-with-node-pod-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo 'this is
 backend pod'; sleep 5 ; done"]

This Pod is a simple Pod with just a loop printing a message. Notice that we have
assigned a label to the Pod so that it can be related to the frontend pod.

2. Let's create the Pod defined in the previous step:

kubectl create -f pod-with-pod-affinity-first.yaml -n schedulerdemo

You should see the following response:

pod/pod-with-pod-affinity created

3. Now, let's see if the Pod has been successfully created:

kubectl get pods -n schedulerdemo

You should see a response like this:

NAME READY STATUS RESTARTS AGE

pod-with-pod-affinity 1/1 Running 0 22s

638 | Advanced Scheduling in Kubernetes

4. Now, let's check the labels on the minikube node:

kubectl describe node minikube

You should see the following response:

Figure 17.8: Describing the minikube node

Since we want to run both the Pods on the same host, we can use the
kubernetes.io/hostname label of the node.

5. Now, let's define the second Pod. Create a file named pod-with-pod-
affinity-second.yaml with the following contents:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-pod-affinity-fe

 labels:

 application-name: banking-app

spec:

 affinity:

 podAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 100

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: application-name

 operator: In

 values:

 - banking-app

 topologyKey: kubernetes.io/hostname

Pod Affinity and Anti-Affinity | 639

 containers:

 - name: pod-with-node-pod-container-fe

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo 'this is
 frontend pod'; sleep 5 ; done"]

Consider this Pod as the frontend application. Notice that we have defined
a preferredDuringSchedulingIgnoredDuringExecution rule
in the podAffinity section. We have also defined the labels and the
topologyKey for the Pods and the nodes.

6. Let's create the Pod defined in the previous step:

kubectl create -f pod-with-pod-affinity-second.yaml -n schedulerdemo

You should see the following response:

pod/pod-with-pod-affinity-fe created

7. Verify the status of the Pods using the get command:

kubectl get pods -n schedulerdemo

You should see the following response:

NAME READY STATUS RESTARTS AGE

pod-with-pod-affinity 1/1 Running 0 7m33s

pod-with-pod-affinity-fe 1/1 Running 0 21s

As you can see, the pod-with-pod-affinity-fe Pod is running. This is not
much different than the normal Pod placement. This is because we have only
one node in the Minikube environment and we have defined the Pod affinity
using preferredDuringSchedulingIgnoredDuringExecution, which
is the soft variation of the matching criteria.

The next steps of this exercise will talk about anti-affinity using
requiredDuringSchedulingIgnoredDuringExecution or
the hard variation of the matching criteria, and you will see that the
Pod does not reach the Running state.

8. First, let's delete the pod-with-pod-affinity-fe Pod:

kubectl delete pod pod-with-pod-affinity-fe -n schedulerdemo

You should see the following response:

pod "pod-with-pod-affinity-fe" deleted

640 | Advanced Scheduling in Kubernetes

9. Confirm that the Pod has been deleted by listing all the Pods:

kubectl get pods -n schedulerdemo

You should see the following response:

NAME READY STATUS RESTARTS AGE

pod-with-pod-affinity 1/1 Running 0 10m

10. Now create another Pod definition with the following contents and save it as
pod-with-pod-anti-affinity-second.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-pod-anti-affinity-fe

 labels:

 application-name: backing-app

spec:

 affinity:

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: application-name

 operator: In

 values:

 - banking-app

 topologyKey: kubernetes.io/hostname

 containers:

 - name: pod-with-node-pod-anti-container-fe

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo 'this is
 frontend pod'; sleep 5 ; done"]

As you can see, the configuration is for podAntiAffinity and it uses the
requiredDuringSchedulingIgnoredDuringExecution option, which
is the hard variation of Pod affinity rules. Here, the Scheduler will not schedule
any Pod if the condition is not met. We are using the In operator so that our
Pod will not run on the same host as any Pod with the parameters defined in
the labelSelector component of the configuration.

Pod Affinity and Anti-Affinity | 641

11. Try creating the Pod with the preceding specification:

kubectl create -f pod-with-pod-anti-affinity-second.yaml -n
schedulerdemo

You should see the following response:

pod/pod-with-pod-anti-affinity-fe created

12. Now, check the status of this Pod:

kubectl get pods -n schedulerdemo

You should see the following response:

NAME READY STATUS RESTARTS AGE

pod-with-pod-affinity 1/1 Running 0 14m

pod-with-pod-anti-affinity-fe 1/1 Pending 0 3s

From this output, you can see the Pod is in the Pending state.

13. You can verify that the Pod is not being scheduled because of Pod anti-affinity by
checking events:

kubectl get events -n schedulerdemo

You should see the following response:

Figure 17.9: Checking out the event for failed scheduling

In this exercise, we have seen how Pod affinity can help place two different Pods
on the same node. We have also seen how Pod anti-affinity options can help us
schedule the Pods on different sets of hosts.

642 | Advanced Scheduling in Kubernetes

Pod Priority
Kubernetes allows you to associate a priority with a Pod. If there are resource
constraints, if a new Pod with high priority is requested to be scheduled, the
Kubernetes scheduler may evict the Pods with lower priority in order to make
room for the new high-priority Pod.

Consider an example where you are a cluster administrator and you run both critical
and non-critical workloads in the cluster. An example is a Kubernetes cluster for a
bank. In this case, you would have a payment service as well as the bank's website.
You may decide that processing payments are of higher importance than running
the website. By configuring Pod priority, you can prevent lower-priority workloads
from impacting critical workloads in your cluster, especially in cases where the cluster
starts to reach its resource capacity. This technique of evicting lower-priority Pods to
schedule more critical Pods could be faster than adding additional nodes and would
help you better manage traffic spikes on the cluster.

The way we associate a priority with a Pod is to define an object known as
PriorityClass. This object holds the priority, which is defined as a number
between 1 and 1 billion. The higher the number, the higher the priority. Once we
have defined our priority classes, we assign a priority to a Pod by associating a
PriorityClass with the Pod. By default, if there is no priority class associated
with the Pod, the Pod either gets assigned the default priority class if it is available,
or it gets assigned the priority value of 0.

You can get the list of priority classes similarly to any other objects:

kubectl get priorityclasses

You should see a response like this:

NAME VALUE GLOBAL-DEFAULT AGE

system-cluster-critical 2000000000 false 9d

system-node-critical 2000001000 false 9d

Note that in Minikube, there are two priority classes predefined in the environment.
Let's learn more about the system-cluster-critical class. Issue the following
command to get the details about it:

kubectl get pc system-cluster-critical -o yaml

Pod Priority | 643

You should see the following response:

Figure 17.10: Describing the system-cluster-critical PriorityClass

The output here mentions that this class is reserved for the Pods that are
absolutely critical for the cluster. etcd is one such Pod. Let's see if this priority
class is associated with it.

Issue the following command to get details about the etcd Pod running in Minikube:

kubectl get pod etcd-minikube -n kube-system -o yaml

You should see the following response:

Figure 17.11: Getting information about the etcd-minikube Pod

You can see from this output that the Pod has been associated with the
system-cluster-critical priority.

In the following exercise, we will add a default priority class and a higher-priority class
to better understand the behavior of the Kubernetes scheduler.

644 | Advanced Scheduling in Kubernetes

It is important to understand that Pod priority works in coordination with other rules,
such as Pod affinity. If the Scheduler determines that a high-priority Pod cannot be
scheduled even if lower-priority Pods are evicted, it will not evict lower-priority Pods.

Similarly, if high-priority and low-priority Pods are waiting to be scheduled and the
scheduler determines that high-priority Pods cannot be scheduled due to affinity or
anti-affinity rules, the scheduler will schedule the suitable low-priority Pods.

Exercise 17.03: Pod Priority and Preemption

In this exercise, we shall define two priority classes: default (low priority) and high
priority. We will then create 10 Pods with default priority and allocate some CPU
and memory to each Pod. After this, we will check how much capacity is being used
from our local cluster. We will then create 10 more Pods with high priority and
allocate resources to them. We will see that the Pods with the default priority will be
terminated and the higher-priority Pods will be scheduled on the cluster. We will then
reduce the number of high-priority Pods from 10 to 5 and then see that some of the
low-priority Pods are being scheduled again. This is because reducing the number of
high-priority Pods should free up some resources:

1. First, let's create the definition for the default priority class. Create a file named
priority-class-default.yaml with the following contents:

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

 name: default-priority

value: 1

globalDefault: true

description: "Default Priority class."

Note that we have marked this priority class as default by setting the value of
globalDefault as true. Also, the priority number, 1, is very low.

2. Create this priority class using the following command:

kubectl create -f priority-class-default.yaml

You should see the following response:

priorityclass.scheduling.k8s.io/default-priority

Note that we have not mentioned the namespace as this object is not a
namespace-level object. A priority class is a cluster scope object in Kubernetes.

Pod Priority | 645

3. Let's check whether our priority class has been created:

kubectl get priorityclasses

You should see the following list:

NAME VALUE GLOBAL-DEFAULT AGE

default-priority 1 true 5m46s

system-cluster-critical 2000000000 false 105d

system-node-critical 2000001000 false 105d

In this output, you can see the priority class that we just created under
the name default-priority, and it is the global default as you can see
in the GLOBAL-DEFAULT column. Now create another priority class with
higher priority.

4. Create a file named priority-class-highest.yaml with the
following contents:

apiVersion: scheduling.k8s.io/v1

kind: PriorityClass

metadata:

 name: highest-priority

value: 100000

globalDefault: false

description: "This priority class should be used for pods with
 the highest of priority."

Note the very high value of the value field in this object.

5. Use the definition from the previous step to create a Pod priority class using the
following command:

kubectl create -f priority-class-highest.yaml

You should see the following response:

priorityclass.scheduling.k8s.io/highest-priority created

646 | Advanced Scheduling in Kubernetes

6. Now let's create a definition for a Deployment with 10 Pods and a default
priority. Create a file named pod-with-default-priority.yaml
using the following contents to define our Deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: pod-default-priority-deployment

spec:

 replicas: 10

 selector:

 matchLabels:

 app: priority-test

 template:

 metadata:

 labels:

 app: priority-test

 spec:

 containers:

 - name: pod-default-priority-deployment-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo 'this is
 backend pod'; sleep 5 ; done"]
 priorityClassName: default-priority

7. Let's create the Deployment that we defined in the previous step:

kubectl create -f pod-with-default-priority.yaml -n schedulerdemo

You should see this response:

deployment.apps/pod-default-priority-deployment created

8. Now, increase the memory and CPU allocated to each of them to 128 MiB and
1/10 of the CPU by using the following commands:

kubectl set resources deployment/pod-default-priority-deployment
--limits=cpu=100m,memory=128Mi -n schedulerdemo

Pod Priority | 647

You should see the following response:

deployment.extensions/pod-default-priority-deployment resource
requirements updated

Note

You may need to adjust this resource allocation as per the resources
available on your computer. You can start with 1/10 CPU and verify the
resources as mentioned in step 10.

9. Verify that the Pods are running using the following command:

kubectl get pods -n schedulerdemo

You should see the following list of Pods:

Figure 17.12: Getting the list of Pods

648 | Advanced Scheduling in Kubernetes

10. Check the resource usage in our cluster. Note that we have only one node,
and thus we can easily see the values by issuing the describe command:

kubectl describe node minikube

The following screenshot is truncated for a better presentation. Find the
Allocated resources section in your output:

Figure 17.13: Checking the resource utilization on the minikube node

Note that CPU usage is at 77% and memory at 64% for the minikube host.
Please note that the resource utilization is dependent on the hardware of your
computer and the resources allocated to Minikube. If your CPU is too powerful
or if you have a huge amount of memory (or even if you have a slower CPU
and less memory), you may see resource utilization values vastly different from
what we see here. Please adjust the CPU and memory resources as mentioned in
step 8 so that we get similar resource utilization as we see here. This will enable
you to see a similar result to the one we have demonstrated in the following
steps of this exercise.

11. Now let's schedule Pods with high priority. Create 10 Pods using the Kubernetes
Deployment object. For this, create a file named pod-with-high-priority.
yaml with the following contents:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: pod-highest-priority-deployment

Pod Priority | 649

spec:

 replicas: 10

 selector:

 matchLabels:

 app: priority-test

 template:

 metadata:

 labels:

 app: priority-test

 spec:

 containers:

 - name: pod-highest-priority-deployment-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo 'this is
 backend pod'; sleep 5 ; done"]
 priorityClassName: highest-priority

Note that priorityClassName has been set to the highest-priority
class in the preceding specification.

12. Now create the Deployment that we created in the previous step:

kubectl create -f pod-with-high-priority.yaml -n schedulerdemo

You should get the following output:

deployment.apps/pod-with-highest-priority-deployment created

13. Allocate a similar amount of CPU and memory to these Pods as you did for the
Pods with default priority:

kubectl set resources deployment/pod-highest-priority-deployment
--limits=cpu=100m,memory=128Mi -n schedulerdemo

You should see the following response:

deployment.apps/pod-highest-priority-deployment resource requirements
updated

650 | Advanced Scheduling in Kubernetes

14. After a minute or so, run the following command to see which Pods are running:

kubectl get pods -n schedulerdemo

You should see a response similar to this:

Figure 17.14: Getting the list of Pods

You can see that most of our high-priority Pods are in the Running state and
the Pods with low-priority Pods are moved to the Pending state. This tells us
the Kubernetes Scheduler has actually terminated the lower-priority Pods, and it
is now waiting for the resources to be available to schedule them again.

15. Try changing the number of high-priority Pods from 10 to 5 and see if
additional low-priority Pods can be scheduled. Change the number of
replicas using this command:

kubectl scale deployment/pod-highest-priority-deployment --replicas=5
-n schedulerdemo

You should see the following response:

deployment.extensions/pod-highest-priority-deployment scaled

Taints and Tolerations | 651

16. Verify that high-priority Pods are reduced from 10 to 5 using the
following command:

kubectl get pods -n schedulerdemo

Figure 17.15: Getting the list of Pods

As you can see in this screenshot, some more low-priority Pods changed from
the Pending state to the Running state. Thus, we can see that the Scheduler is
working to make optimal use of the available resources based on the priority
of workloads.

In this exercise, we have used the Pod priority rules and seen how the
Kubernetes Scheduler may choose to terminate the Pods with a lower
priority if there are requests for a Pod with a higher priority to be fulfilled.

Taints and Tolerations
Previously, we have seen how Pods can be configured to control which node they run
on. Now we will see how nodes can control which Pods can run on them using taints
and tolerations.

A taint prevents the scheduling of a pod unless that Pod has a matching toleration for
the Pod. Think of taint as an attribute of a node and a toleration is an attribute of a
Pod. The Pod will get scheduled on the node only if the Pod's toleration matches the
node's taint. The taints on a node tell the scheduler to check which Pods tolerate the
taint and run only those Pods that match their toleration with the node's taint.

652 | Advanced Scheduling in Kubernetes

A taint definition contains the key, value, and effect. The key and value will match
the Pod toleration definition in the Pod specification, while the effect instructs the
scheduler what should be done once the node's taint matches the Pod's toleration.

The following diagram provides an overview of how the process of controlling
scheduling based on taints and tolerations works. Notice that a Pod with toleration
can also be scheduled on a node with no taint.

Figure 17.16: Overview of how taints and tolerations are used to influence scheduling

Taints and Tolerations | 653

When we define a taint, we also need to specify the behavior of the taint. This can be
specified by the following values:

• NoSchedule provides the ability to reject the scheduling of new Pods on
the node. Existing Pods that were scheduled before the taint was defined will
continue to run on the node.

• NoExecute taint provides the ability to resist new Pods that do not have a
toleration that matches the taint. It further checks whether all the existing Pods
running on the node match this taint, and removes the ones that don't.

• PreferNoSchedule instructs the scheduler to avoid scheduling Pods that
do not tolerate the taint on the node. This is a soft rule, where the scheduler
will try to find the right node but it will still schedule the Pods on the node if
it cannot find any other node that is appropriate as per the defined taint and
toleration rules.

In order to apply a taint to a node, we can use the kubectl taint command
as follows:

kubectl taint nodes <NODE_NAME> <TAINT>:<TAINT_TYPE>

There can be many reasons why you would want certain Pods (applications) not to be
run on specific nodes. An example use case could be the requirement of specialized
hardware, such as a GPU for machine learning applications. Another case could be
when a license restriction for software on the Pod dictates that it needs to run on
specific nodes. For example, out of 10 worker nodes in your cluster, only 2 nodes are
allowed to run particular software. Using the taints and tolerations combination, you
can help the scheduler to schedule Pods on the right node.

654 | Advanced Scheduling in Kubernetes

Exercise 17.04: Taints and Tolerations

In this exercise, we will see how taints and tolerations can allow us to schedule Pods
on the nodes we desire. We will define a taint and try to schedule a Pod on the node.
We then showcase the NoExecute functionality in which a Pod can be removed
from a node if that taint on the node changes:

1. Get the list of nodes using the following command:

kubectl get nodes

You should see the following list of nodes:

NAME STATUS ROLES AGE VERSION

minikube Ready master 44h v1.14.3

Recall that in our Minikube environment, we have only one node.

2. Create a taint for the minikube node using the following command:

kubectl taint nodes minikube app=banking:NoSchedule

You should see the following response:

node/minikube tainted

3. Verify that the node has been tainted correctly. You can use the describe
command to see what taints are applied to the node:

kubectl describe node minikube

You should see the following response:

Figure 17.17: Checking the taints on the minikube node

Taints and Tolerations | 655

4. Now we need to create a Pod with toleration defined as per the taint.
Create a file named pod-toleration-noschedule.yaml with the
following contents:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-node-toleration-noschedule

spec:

 tolerations:

 - key: "app"

 operator: "Equal"

 value: "banking"

 effect: "NoSchedule"

 containers:

 - name: pod-with-node-toleration-noschedule-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep
 5 ; done"]

Notice that the toleration value is the same as the taint defined in step 1, that is,
app=banking. The effect attribute controls the type of toleration behavior.
Here, we have defined effect as NoSchedule.

5. Let's create the Pod as per the preceding specification:

kubectl create -f pod-toleration-noschedule.yaml -n schedulerdemo

This should give the following response:

pod/pod-with-node-toleration-noschedule created

6. Verify that the Pod is running using the following command:

kubectl get pods -n schedulerdemo

You should see the following response:

Figure 17.18: Getting the list of Pods

656 | Advanced Scheduling in Kubernetes

7. Now let's define a different Pod with a toleration that does not match the taint
on the node. Create a file named pod-toleration-noschedule2.yaml
with the following contents:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-node-toleration-noschedule2

spec:

 tolerations:

 - key: "app"

 operator: "Equal"

 value: "hr"

 effect: "NoSchedule"

 containers:

 - name: pod-with-node-toleration-noschedule-container2

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep
 5 ; done"]

Notice that here we have the toleration set to app=hr. We need a Pod with
the same taint to match this toleration. Since we have tainted our node with
app=banking, this Pod should not be scheduled by the scheduler. Let's try this
in the following steps.

8. Create the Pod using the definition from the previous step:

kubectl create -f pod-toleration-noschedule2.yaml -n schedulerdemo

This should give the following response:

pod/pod-with-node-toleration-noschedule2 created

9. Check the status of the Pod using the following command:

kubectl get pods -n schedulerdemo

You should see this response:

Figure 17.19: Getting the list of Pods

You can see that Pod is in the Pending state and not in the Running state.

Taints and Tolerations | 657

10. In the remaining part of this exercise, we shall see how the NoExecute effect
instructs the scheduler to even remove Pods after they have been scheduled to
the node. Before that, we need to do some cleanup. Delete both Pods using the
following command:

kubectl delete pod pod-with-node-toleration-noschedule pod-with-node-
toleration-noschedule2 -n schedulerdemo

You should see the following response:

pod "pod-with-node-toleration-noschedule" deleted

pod "pod-with-node-toleration-noschedule2" deleted

11. Let's remove the taint from the node using the following command:

kubectl taint nodes minikube app:NoSchedule-

Note the hyphen (-) at the end of the command, which tells Kubernetes to
remove this label. You should see the following response:

node/minikube untainted

Our node is in the state where there is no taint defined. Now, we want to run a
Pod first with the toleration as app=banking and allocate the Pod. Once the
Pod is in the Running state, we will remove the taint from the node and see
whether the Pod has been removed.

12. Now, taint the node again with the NoExecute type as follows:

kubectl taint nodes minikube app=banking:NoExecute

You should see the following response:

node/minikube tainted

13. Now, we need to define a Pod with matching toleration. Create a file called
pod-toleration-noexecute.yaml with the following contents:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-node-toleration-noexecute

spec:

 tolerations:

 - key: "app"

 operator: "Equal"

 value: "banking"

658 | Advanced Scheduling in Kubernetes

 effect: "NoExecute"

 containers:

 - name: pod-with-node-toleration-noexecute-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep
 5 ; done"]

Note that the tolerations section defines the label as app=banking and
the effect as NoExecute.

14. Create the Pod that we defined in the previous step using the
following command:

kubectl create -f pod-toleration-noexecute.yaml -n schedulerdemo

You should see the following response:

pod/pod-with-node-toleration-noexecute created

15. Verify that the Pod is in the Running state using the following command:

kubectl get pods -n schedulerdemo

You should see the following response:

Figure 17.20: Getting the list of Pods

16. Now remove the taint from the node using this command:

kubectl taint nodes minikube app:NoExecute-

Note the hyphen (-) at the end of this command, which tells Kubernetes to
remove the taint. You will see the following response:

node/minikube untainted

As mentioned earlier, Pods with tolerations can be attached to nodes with no
taints. After you remove the taint, the Pod will still be executed. Note that we
have not deleted the Pod and it is still running.

17. Now, if we add a new taint with NoExecute to the node, the Pod should be
removed from it. To see this in action, add a new taint that is different than the
Pod toleration:

kubectl taint nodes minikube app=hr:NoExecute

Using a Custom Kubernetes Scheduler | 659

As you can see, we have added the app=hr taint to the Pod. You should see the
following response:

node/minikube tainted

18. Now, let's check the status of the Pod:

kubectl get pods -n schedulerdemo

You will see the following response:

Figure 17.21: Checking the status of our Pod

The Pod will either be removed or go into the Terminating (marked for
removal) state. After a few seconds, Kubernetes will remove the Pod.

In this exercise, you have seen how we can configure taints on nodes so that
they accept only specific Pods. You have also configured the taint to affect the
running Pods.

Using a Custom Kubernetes Scheduler
Building your own fully featured scheduler is out of the scope of this workshop.
However, it is important to understand that the Kubernetes platform allows you to
write your own scheduler if your use case requires it, although it is not recommended
to use a custom scheduler unless you have a very specialized use case.

A custom scheduler runs as a normal Pod. You can specify in the definition of
the Pod running your application to use the custom scheduler. You can add a
schedulerName field in the Pod specification with the name of the custom
scheduler as shown in this sample definition:

apiVersion: v1

kind: Pod

metadata:

 name: pod-with-custom-scheduler

spec:

 containers:

 - name: mutating-pod-example-container

 image: k8s.gcr.io/busybox

 command: ["/bin/sh", "-c", "while :; do echo '.'; sleep 5 ;
 done"]
 schedulerName: "custom-scheduler"

660 | Advanced Scheduling in Kubernetes

For this configuration to work, it is assumed that a custom scheduler called
custom-scheduler is available in the cluster.

Activity 17.01: Configuring a Kubernetes Scheduler to Schedule Pods

Consider you are the administrator of a Kubernetes cluster and you have the
following scenario:

1. There is an API Pod that provides the current currency conversion rate.

2. There is a GUI Pod that displays the conversion rate on a website.

3. There is a Pod that provides services for stock exchanges to get the real-time
currency conversion rate.

You have been tasked to make sure that the API and GUI Pods run on the same node.
You have also been asked to give higher priority to the real-time currency converter
Pod if the traffic spikes. In this activity, you will control the behavior of the Kubernetes
Scheduler to complete the activity.

Each of the Pods in this activity should have 0.1 CPU and 100 MiB of memory
allocated to it. Note that we have named the Pods API, GUI, and real-time to make
things easier. The Pods in this activity are expected to be just printing expressions
on the console. You can use the k8s.gcr.io/busybox image for all of them.

Note

Before starting this activity, make sure that the nodes are not tainted from
the previous exercises. To see how to remove a taint, please see step 15 of
Exercise 17.01, Running a Pod with Node Affinity in this chapter.

Here are some guidelines for the activity:

1. Create a namespace called scheduleractivity.

2. Create the Pod priority for the API Pods.

3. Deploy and make sure that the API and GUI Pods are using Pod affinity to be on
the same node. The GUI Pod should define the affinity to be on the same node
as the API pod.

4. Scale the replicas of the API and GUI Pod to two each.

Using a Custom Kubernetes Scheduler | 661

5. Create a Pod priority for the real-time currency converter Pod. Make sure that
the API Pod priority, defined earlier, is less than the real-time Pod but greater
than 0.

6. Deploy and run the real-time currency converter Pod with one replica.

7. Make sure that all Pods are in the Running state.

8. Now, increase the number of replicas for the real-time currency converter Pod
from 1 to 10.

9. See whether the real-time currency converter Pods are being started and
whether the GUI Pods are being evicted. If not, keep on increasing the real-time
Pods by a factor of 5.

10. Depending on your resources and the number of Pods, the scheduler may start
evicting API Pods.

11. Reduce the number of replicas of the real-time Pod from 10 to 1 and see that the
API and GUI Pods are scheduled back on the cluster.

Once you have completed the activity, two Pods each of the API and GUI Pods are
expected to be in the Running state, along with one real-time Pod as shown in the
following screenshot:

Figure 17.22: Expected output of Activity 17.01

Note that your output will vary as per your system resources, and hence, you may not
see exactly what you see in this screenshot.

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

https://packt.live/304PEoD

662 | Advanced Scheduling in Kubernetes

Summary
The Kubernetes Scheduler is a powerful software that abstracts the work of selecting
the appropriate node for a Pod on a cluster. The Scheduler watches for unscheduled
Pods and attempts to find suitable nodes for them. Once it finds a suitable node for a
Pod, it updates etcd (via the API server) that the Pod has been bound to the node.

The scheduler has matured with every release of Kubernetes. The default behavior
of the scheduler is sufficient for a variety of workloads, although you have also seen
many ways to customize the way that the Scheduler associates resources with Pods.
You have seen how node affinity can help you schedule Pods on your desired nodes.
Pod affinity can help you schedule a Pod relative to another Pod, and it is a good tool
for applications where multiple modules are targeted to be placed next to each other.
Taints and tolerations can also help you assign specific workloads to specific nodes.
You have also seen that Pod priority can help you schedule the workloads as per the
total resources available in the cluster.

In the next chapter, we will upgrade a Kubernetes cluster with no downtime. If you
have configured custom scheduling in your cluster using any of the techniques shown
in this chapter, you may need to plan your upgrade accordingly. Since the upgrade
will take down one worker node at a time, it may be possible that some of your Pods
may become non-schedulable because of your configuration, and that may not be an
acceptable solution.

Overview

In this chapter, we will discuss how to upgrade your cluster without
downtime. We will first understand the need to keep your Kubernetes
cluster up to date. Then, we will understand basic application deployment
strategies that can help zero-downtime upgrades of the Kubernetes cluster.
We will then put these strategies into action by performing an upgrade on a
Kubernetes cluster with no downtime for your application.

Upgrading Your Cluster

without Downtime

18

666 | Upgrading Your Cluster without Downtime

Introduction
We learned how to set up a multi-node Kubernetes platform on AWS using kops in
Chapter 11, Build Your Own HA Cluster. In this chapter, you will learn about upgrading
the Kubernetes platform to a new version. We will walk you through hands-on
examples of the steps that are required to upgrade the Kubernetes platform. These
exercises will also equip you with the skills required to maintain a Kubernetes cluster.

Different organizations set up and maintain their Kubernetes clusters in different
ways. You saw in Chapter 12, Your Application and HA, that there are numerous ways
to set up a cluster. We will present a simple technique to upgrade your cluster and,
depending on the cluster you are dealing with, the exact techniques and steps that
you will need to take for upgrading may be different, although the basic principles
and precautions that we will mention here will be applicable regardless of how you go
about upgrading your cluster.

The Need to Upgrade Your Kubernetes Cluster
Building up your business application and putting it out in the world is only half
the game. Making your application usable by customers in a secure, scalable, and
consistent way is the other half and the one that you have to keep working on. To be
able to execute this other half well, you need a rock-solid platform.

In today's highly competitive environment, delivery of the latest features to customers
in a timely manner is important to give your business an edge. This platform has to
not only be dependable but also provide new and updated features to keep up with
the demands of running modern applications. Kubernetes is a fast-moving platform
and is well suited for such a dynamic environment. The pace of development and
advancement of Kubernetes is evidenced by the number of commits in the official
Kubernetes GitHub repository. Let's take a look at the following screenshot:

The Need to Upgrade Your Kubernetes Cluster | 667

Figure 18.1: Daily commits to the Kubernetes project during the period August 25–31, 2019

The orange bar graph represents the commits per week and, as you can see, they are
averaging over 100 per week. The green line graph underneath shows the commits
for the week of August 25 through August 31. That's more than 50 commits just on
a Tuesday.

By now, it's clear that Kubernetes is advancing at a fast pace, but you may still be
unsure about whether you need to update the version of Kubernetes on your cluster.
The following are some of the reasons why it is important to keep the platform up
to date:

• New features: The Kubernetes community is continuously adding new features
to satisfy the needs of modern applications. Your software team may come up
with a new software component that may be dependent on a newer Kubernetes
feature. Thus, sticking to an older version of Kubernetes will hold back the
development of your software.

668 | Upgrading Your Cluster without Downtime

• Security patches: There are many moving parts in the Kubernetes platform. It
has not only the Kubernetes binaries that need to be patched but also lots of
Linux features, such as iptables and cgroups. If there are vulnerabilities in any
of the components used by Kubernetes, you may need to patch the underlying
component, such as the OS itself. Having a consistent way to upgrade is
extremely important in keeping the Kubernetes ecosystem as secure as possible.

For example, there was a vulnerability in versions 1.0–1.12 of the Kubernetes
API server that resulted in the API server possibly consuming lots of
resources due to an invalid YAML or JSON payload. You can find more details
about this vulnerability at this link: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-11253

• Better handling of existing features: The Kubernetes team not only adds
new features but also keeps on improving existing features for stability and
performance. These improvements may be useful for your existing applications
or your automation scripts. So, keeping your platform updated is a good idea
from this perspective, too.

Kubernetes Components – Refresher
By now, you are already aware of the basic components of the Kubernetes platform.
Just as a refresher, let's revisit the major components:

• The API server is responsible for exposing RESTful Kubernetes APIs and is
stateless. All users on your cluster, Kubernetes master components, kubectl
clients, worker nodes, and maybe even your application all need to interact with
the API server.

• A key-value store (the etcd server) stores the objects and provides a persistent
backend to the API server.

• The scheduler and controller manager act to attain the state of the cluster and
objects stored in etcd.

• kubelet is a program that runs on every worker node and behaves like an agent
to perform the work as directed by Kubernetes master components.

When we update the platform, as you will see in the later sections, we are going to
utilize these components and upgrade them as separate modules.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11253
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11253

The Upgrade Process | 669

A Word of Caution

Kubernetes versions are marked as A.B.C and follow the semantic versioning
concepts. A is the major version, B is the minor version, and C is the patch release.
As per the Kubernetes documentation, "in highly available (HA) clusters, the newest and
oldest kube-apiserver instances must be within one minor version.'

The following is the safest approach when planning your upgrade:

• Always upgrade to the latest patched release of your current minor version first.
For example, if you are on 1.14.X, first upgrade to the latest available version
for the 1.14.X release train. This will make sure that the platform has all the
available fixes applied for the version of your cluster. The latest patch may have
bug fixes, which might provide you with a smoother path toward the next minor
version, which, in our example, would be 1.15.X.

• Upgrade to the next minor version. Avoid jumping over multiple minor versions,
even if this is possible, as generally, API compatibility is within one minor release.
During the upgrade, the Kubernetes platform will be running two different
versions of an API because we upgrade one node at a time. For example, it is
better to go from 1.14 to 1.15, and not to 1.16.

Another important thing to consider is to see whether the newer version needs some
updated libraries from the underlying Linux OS. Although, in general, patch releases
don't require any underlying component upgrades, keeping the underlying OS up to
date should also be on top of your list to provide a safe and consistent environment
for the Kubernetes platform.

The Upgrade Process
In this section, you will see the steps required to upgrade the Kubernetes
platform. Note that upgrading the underlying OS is not covered here. To meet the
requirement of zero-downtime upgrades, you must have an HA Kubernetes cluster
with a minimum of three masters and etcd servers, which enables frictionless
upgrades. The process will take one node out of the three and upgrade it. The
upgraded component then will rejoin the cluster, and then we take the second node
and apply the upgrade process to it. Since, at any given time, at least two of the
servers are kept available, the cluster will remain available during the upgrade.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

670 | Upgrading Your Cluster without Downtime

Some Considerations for kops

We have guided you through the creation of an HA Kubernetes cluster in Chapter 11,
Build Your Own HA Cluster. Hence, in this chapter, we will walk you through upgrading
the same cluster.

As mentioned in that chapter, there are various ways of deploying and managing a
Kubernetes cluster. We have opted for kops, which has built-in tools for upgrading
Kubernetes components. We will be leveraging them in this chapter.

The versioning of kops is set to be analogous to the minor version of Kubernetes it
implements. For example, kops version 1.14.x implements Kubernetes version
1.14.x. For more details on this, please refer to this link: https://kops.sigs.k8s.io/
welcome/releases/.

Note

In the HA cluster we created in Chapter 11, Build Your Own HA Cluster, we
deployed three master nodes, which host all the Kubernetes master plane
components, including the etcd.

An overview of the Upgrade Process

The entire upgrade process can be diagrammatically summarized as follows:

Figure 18.2: The recommended upgrade process

Let's take a quick look at each step before we move on to the implementation:

1. Read the release notes

These will indicate any special considerations that might be necessary during an
upgrade. The release notes for each version are available on GitHub at this link:
https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG.

https://kops.sigs.k8s.io/welcome/releases/
https://kops.sigs.k8s.io/welcome/releases/
https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG

The Upgrade Process | 671

2. Back up the etcd datastore

As you have learned earlier, etcd stores the entire state of the cluster. A backup
of etcd would allow you to restore the state of your datastore, if needed.

3. Back up the nodes as an optional failsafe

This may come in handy if the upgrade process does not go as planned and you
want to revert to a previous state. Cloud vendors (such as AWS, GCP, Azure, and
others) enable you to take a snapshot of the hosts. If you are running in a private
data center and using hypervisors for your machines, your hypervisor provider
(for example, VMware) may provide tools to take snapshots of the nodes. Taking
snapshots is beyond the scope of this book, but nonetheless, it is a useful step
before you start upgrading your Kubernetes platform.

4. Upgrade the etcd if required

The more recent versions of the tools used to deploy and manage a Kubernetes
cluster (such as kops in our case) usually take care of this automatically. Even so,
this is an important consideration, especially if you are not using any tools such
as kops.

Check and verify whether the new version of Kubernetes needs a different
version of the etcd store. This is not always necessary, but may be required
depending on your version. For example, Kubernetes version 1.13 needs etcd
v3, while prior versions work with etcd v2.

You will know whether you need to upgrade etcd from reading the release
notes (step 1). For example, when the earlier version of etcd was phased out
in version 1.13, it was explicitly mentioned in the release notes: https://github.
com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.13.md#urgent-
upgrade-notes.

5. Upgrade the master components

Log in to the bastion host and upgrade the version of kops based on the
desired version of Kubernetes. This compatibility matrix should be a useful
guide: https://kops.sigs.k8s.io/welcome/releases/#compatibility-matrix.

Run the upgrade on the first master node, verify that it is updated correctly,
and then repeat the same steps for all other master nodes.

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.13.md#urgent-upgrade-notes
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.13.md#urgent-upgrade-notes
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.13.md#urgent-upgrade-notes
https://kops.sigs.k8s.io/welcome/releases/#compatibility-matrix

672 | Upgrading Your Cluster without Downtime

6. Upgrade the worker node groups

As you have seen in Chapter 11, Build Your Own HA Cluster, kops allows you to
manage the nodes using instance groups, which is tied to the autoscaling group,
in the case of AWS. Run the upgrade on the first instance group of worker nodes.
To verify that the nodes were successfully upgraded, you need to check that the
nodes are upgraded to the desired version of Kubernetes and whether pods are
scheduled on the upgraded nodes. Repeat the same steps for all other instance
groups of worker nodes.

7. Verify that the upgrade process succeeded

Check whether all the nodes are upgraded and all your applications are running
as intended.

The Importance of Automation

As you have seen from this overview, there are several steps required to upgrade the
cluster. Given the number of releases and patches, you may need to do this often.
Since the process is well documented, it is highly recommended that you consider
using an automation tool, such as Ansible or Puppet, to automate this whole process.
All the preceding steps can be fully automated, and you have a repeatable way to
upgrade your cluster. Automation, however, will not be covered in this chapter as this
is beyond the scope of this book.

Backing up the etcd Datastore

etcd stores the state of the entire cluster. So, taking a snapshot of etcd allows us to
restore the entire cluster to the state when the snapshot was taken. This may come in
handy if you want to revert the cluster to a previous state.

Note

Before you begin with any exercises, make sure that the cluster is set up
and available as per the instructions in Chapter 11, Build Your Own HA
Cluster, and that you can access the nodes from your computer via SSH. It
is also recommended that you take snapshots of the nodes before starting
the upgrade process. This is especially beneficial because in this chapter,
you will upgrade the cluster two times – once during the exercises and once
during the activity.

The Upgrade Process | 673

Now, before we move on to the first exercise, we need to understand a bit more
about etcd. The way that it works is that it runs as a pod on your cluster in the
kube-system namespace (as you have seen in Chapter 2, An Overview of Kubernetes)
and exposes an API, which is used to write data to it. Whenever the Kubernetes API
server wants to persist any data to etcd, it will use etcd's API to access it.

For backing up etcd, we will also need to access its API and use a built-in function to
save a snapshot. For that, we will use a command-line client called etcdctl, which is
already present in the etcd pod. Detailed coverage of this tool and the etcd API is not
necessary for our purposes and so we are not including it in this book. You can learn
more about it at this link: https://github.com/etcd-io/etcd/tree/master/etcdctl.

Now, let's see how we can use etcdctl to back up etcd in the following exercise.

Exercise 18.01: Taking a Snapshot of the etcd Datastore

In this exercise, we will see how to take a snapshot of the etcd store. As mentioned
in the previous section, a manual upgrade of etcd may not be required, depending
on your upgrade path. However, backing up etcd is essential. For this, and all the
following exercises and activities, use the same machine (your laptop or desktop)
that you used to perform Exercise 11.01, Setting Up Our Kubernetes Cluster:

1. We have used kops to install the cluster. Kops uses two different etcd clusters –
one for events generated by Kubernetes components, and the second one for
everything else. You can see these pods by issuing the following command:

kubectl get pods -n kube-system | grep etcd-manager

This should get the details of the etcd pods. You should see an output similar to
the following:

Figure 18.3: Getting the list of etcd-manager pods

2. By default, kops' etcd-manager function creates backups every 15 minutes.
The location of the backups is the same S3 storage used by the kops tool. In
Exercise 11.01, you configured the S3 bucket to store kops' state. Let's query the
bucket to see whether a backup is available there:

aws s3api list-objects --bucket $BUCKET_NAME | grep backups/etcd/main

https://github.com/etcd-io/etcd/tree/master/etcdctl

674 | Upgrading Your Cluster without Downtime

You should see a response similar to this:

Figure 18.4: Getting a list of available backups

You can see that the backups are taken automatically every 15 minutes and
timestamps of the backups are marked. We will use the Key of the latest backup,
highlighted in the preceding screenshot, in the next step.

3. The next step is to get the backup from the S3 bucket. We can use AWS CLI
commands to get the backup that we need:

aws s3api get-object --bucket $BUCKET_NAME --key "myfirstcluster.k8s.
local/backups/etcd/main/2020-06-14T02:06:33Z-000001/etcd.backup.
gz' etcd-backup-$(date +%Y-%m-%d_%H:%M:%S_%Z).db

Note that this command contains the name of the bucket, the Key of the file
from the previous step, and the filename that we want to use while saving the
file. Use the Key that you get for your instance in the output of the previous
step. You should see a response similar to this:

Figure 18.5: Saving the etcd backup from our S3 bucket

The Upgrade Process | 675

Note that we have used the date command to generate the filename. This is a
very common technique used by system administrators to make sure that any
files are not overwritten.

Note

If you want to recover your etcd instance using this backup, you can find
the recovery instructions at this link: https://kops.sigs.k8s.io/operations/etcd_
backup_restore_encryption/.

4. Verify that the backup file is created:

ls -lrt

You should see the following response:

Figure 18.6: Confirming the saved etcd backup

You should be able to see the snapshot that we created in the response.

In this exercise, you have seen how to generate a backup of the etcd datastore. This
backup is the state of Kubernetes and could be useful not only if your upgrade is hit
by any issues, but also to restore the cluster for any other reason, such as Disaster
Recovery (DR) scenarios.

Draining a Node and Making It Non-Schedulable

Before we start to upgrade any nodes (master or worker), we need to make sure that
no pods (including the pods for the master components) are running on this node.
This is an important step to prepare any node to be upgraded. Furthermore, the
node needs to be marked as unschedulable. An unschedulable node is a flag for the
scheduler to not schedule any pods in this node.

We can use the drain command to mark the node as un-schedulable and to evict all
the pods. The drain command will not delete any DaemonSet pods unless we tell
the flag to do so. One of the reasons for this behavior is that DaemonSet pods cannot
be scheduled on any other nodes.

https://kops.sigs.k8s.io/operations/etcd_backup_restore_encryption/
https://kops.sigs.k8s.io/operations/etcd_backup_restore_encryption/

676 | Upgrading Your Cluster without Downtime

Note that the drain command waits for the graceful termination of the pods and it
is highly recommended to wait for all the pods to terminate gracefully in production
environments. Let's see this in action in the following exercise.

Exercise 18.02: Draining All the Pods from the Nodes

In this exercise, we will remove all the pods running on a node. Once all the pods
are removed, we will change the node back to schedulable so that it can accept new
workloads. This is when the node has been upgraded and ready to take new pods:

1. Get a list of all the nodes:

kubectl get nodes

You should see a response similar to this:

Figure 18.7: Getting a list of nodes

In this example, we have two worker nodes and three master nodes.

2. Create a new namespace called upgrade-demo:

kubectl create ns upgrade-demo

You should see the following response:

namespace/upgrade-demo created

3. Run a bunch of pods to simulate a workload. Create a file named multiple-
pods.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: sleep

spec:

 replicas: 4

 selector:

 matchLabels:

 app.kubernetes.io/name: sleep

The Upgrade Process | 677

 template:

 metadata:

 labels:

 app.kubernetes.io/name: sleep

 spec:

 containers:

 - name: sleep

 image: k8s.gcr.io/busybox

 command: ["/bin/sh', "-c', "while :; do echo 'this is
 backend pod'; sleep 5 ; done']
 imagePullPolicy: IfNotPresent

The deployment will create four replicas of the pods.

4. Now, use the config to create the deployment:

kubectl create -f multiple-pod.yaml -n upgrade-demo

You should see this response:

deployment.apps/sleep created

5. Verify that they are running on the worker pods:

kubectl get pods -n upgrade-demo -o wide

Your output should look like this:

Figure 18.8: Verifying whether the pods are running on the worker nodes

Note that the pods are distributed among both worker nodes by the default
scheduler behavior.

6. Use the drain command to evict all the pods from any of the nodes.
This command will also mark the node as unschedulable:

kubectl drain kube-group-1-mdlr --ignore-daemonsets

678 | Upgrading Your Cluster without Downtime

Use the name of your node that you obtain from the output of the previous step.
Note that we have passed a flag to ignore the daemon sets. You should see the
following response:

Figure 18.9: Draining a node

If we don't set the --ignore-daemonsets flag and there are some
DaemonSet pods on the node, drain will not proceed without this flag. We
recommend using this flag because your cluster may be running some essential
pods as a DaemonSet –for example, a Fluentd pod that collects logs from all
other pods on the node and sends them to the central logging server. You may
want this log collection pod to be available until the very last minute.

7. Verify that all the pods are drained from this node. To do that, get a list of
the pods:

kubectl get pods -n upgrade-demo -o wide

You should see the following response:

Figure 18.10: Checking whether the pods have been moved away from the drained node

In the preceding screenshot, you can see that all the pods are running on the
other node. We only had two worker nodes in our cluster, and so all the pods
were scheduled on the lone schedulable node. If we had several available worker
nodes, the pods would have been distributed among them by the scheduler.

8. Let's describe our drained node and make a few important observations:

kubectl describe node kube-group-1-mdlr

Use the name of the node that you drained in step 6. This will give a pretty long
output, but there are two sections worth observing:

The Upgrade Process | 679

Figure 18.11: Checking taints and the unschedulable status of our drained node

The preceding screenshot shows that our node is marked as unschedulable.
Next, find the section like the following in your output:

Figure 18.12: Examining the non-terminated pods on the drained node

This shows that the only non-terminated pods running on our system have
names starting with kube-proxy and weave-net. The first pod implements
kube-proxy, which is the component that manages pod and service network
rules on nodes. The second pod is weave-net, which implements virtual
networking for our cluster (note that your networking provider depends on
the type of network you have selected). Since we added a flag to exclude
DaemonSets in step 6, these pods, which are managed by a DaemonSet,
are still running.

9. Once you drain the pod in step 6, you will be able to upgrade the node. Even
though upgrading is not part of this exercise, we just want to make the node
schedulable again. For that, use the following command:

kubectl uncordon kube-group-1-mdlr

You should see a response similar to this:

node/kube-group-1-mdlr uncordoned

10. Verify that the node is schedulable again. Check the Taints section in the
following output:

kubectl describe node kube-group-1-mdlr

680 | Upgrading Your Cluster without Downtime

You should see a response similar to the following:

Figure 18.13: Checking the taints and unschedulable statuses of our uncordoned node

The preceding screenshot shows that the node is now schedulable, and the taint
that we observed in step 8 has been removed.

In this exercise, you have seen how to remove all the pods from the node and mark
the node as unschedulable. This will make sure that no new pod will be scheduled
in this node and we can work on upgrading this node. We also learned how to
make the node schedulable again so that we can continue using it after completing
the upgrade.

Upgrading Kubernetes Master Components
When you are running Kubernetes in any capacity that is important for your
organization, you will be running the platform in an HA configuration. To achieve that,
the typical configuration is at least three replicas of master components, running
on three different nodes. This allows you to upgrade single nodes from one minor
version to the next, one by one, while still maintaining API compatibility when an
upgraded node rejoins the cluster because Kubernetes provides compatibility across
one minor version. This means the master components can be on different versions
when you are upgrading each node at a time. The following table provides a logical
flow of the versions. Let's assume you are upgrading from version 1.14 to 1.15:

Upgrading Kubernetes Master Components | 681

Figure 18.14: Upgrade plan for three master nodes

In the following exercise, we will proceed with upgrading the Kubernetes
master components.

Exercise 18.03: Upgrading Kubernetes Master Components

In this exercise, you will upgrade all the master components on the Kubernetes
master nodes. This exercise assumes that you are still logged in to the bastion host of
your cluster.

In this exercise, we are demonstrating the process on a smaller number of nodes for
the sake of simplicity, but the process of upgrading a large number of nodes would
be the same. However, for a seamless upgrade, three master nodes are a minimum,
and your applications should be HA and running on at least two worker nodes:

1. Run the kops validator to validate the existing cluster:

kops validate cluster

682 | Upgrading Your Cluster without Downtime

You should see a response similar to the following:

Figure 18.15: Validating our kops cluster

This is a truncated version of the output. It shows the major infrastructure
components of your cluster.

2. List all the nodes in your cluster:

kubectl get nodes

You should see a response similar to this:

Figure 18.16: Getting a list of the nodes

Notice that we have three master nodes and all of them are on version 1.15.7.

Upgrading Kubernetes Master Components | 683

Note

In this exercise, we are showcasing the upgrade from Kubernetes version
1.15.7 to 1.15.10. You can apply the same steps to upgrade to the version
of Kubernetes supported by kops at the time when you perform this
exercise. Just remember our earlier advice of upgrading to the latest patch
version first (which is what we are doing here).

3. Use the kops upgrade cluster command to see what update is available:

kops upgrade cluster ${NAME}

Note that this command will not directly run the update, but it will give you the
latest update version possible. The NAME environment variable holds the name
of your cluster. You should see an output similar to the following:

Figure 18.17: Checking the available cluster version

You can see from the preceding screenshot that the OLD version is 1.15.7,
which is our current version, and an update is available to the NEW version of
1.15.10, which is our target version.

684 | Upgrading Your Cluster without Downtime

4. Once you verify the changes from the command in step 4, run the same
command with a --yes flag. This will mark the desired state of the cluster
in the kops state store:

kops upgrade cluster --yes

You should see an output similar to the following:

Figure 18.18: Upgrading the kops cluster configuration

This output indicates that the desired version of the Kubernetes cluster is
recorded in the updated kops configuration. In the next step, we will ask kops to
update the cloud or cluster resources to match the new specifications – that is,
Kubernetes version 1.15.10.

5. Now, let's run the following command so that kops updates the cluster to match
the updated kops configuration:

kops update cluster ${NAME} --yes

Upgrading Kubernetes Master Components | 685

This will give a long output that will end in a similar way to the
following screenshot:

Figure 18.19: Updating our cluster infrastructure as per
the requirements of our cluster upgrade

This has updated the cluster infrastructure to match the updated kops
configuration. Next, we need to perform an upgrade of the Kubernetes
master components running on this infrastructure.

6. If you are running several instances of your master/worker nodes on different
instance groups, then you can control which instance group is receiving the
updates. For that, let's get the name of our instance group first. Use the
following command to get the names:

kops get instancegroups

You should see a response as follows:

Figure 18.20: Getting a list of the instance groups

686 | Upgrading Your Cluster without Downtime

7. In this step, kops will update the Kubernetes cluster to match the kops
specifications. Let's upgrade the first master node to the new version using a
rolling update:

kops rolling-update cluster ${NAME} --instance-group master-
australia-southeast1-a --yes

Note that this command will only apply changes if you specify the --yes flag.
This command may take time based on your node configuration. Be patient and
watch the logs to see whether there are any errors. After some time, you should
see a successful message similar to the one in the following screenshot:

Figure 18.21: Applying a rolling update to our first instance group

8. Verify that the node is upgraded to the target version, which is 1.15.10, in
our case:

kubectl get nodes

This should give a response similar to the following:

Figure 18.22: Checking whether the master components on the node have been upgraded

You can see that the first master node is on the 1.15.10 version.

9. Verify that the pods are running on the newly upgraded node:

kubectl describe node master-australia-southeast1-a-q2pw

Upgrading Kubernetes Master Components | 687

Use the name of the node that you upgraded in the previous steps. This will give
a long output. Look for the Non-terminated Pod section, as shown in the
following screenshot:

Figure 18.23: Checking whether our upgraded node is running pods

Note

Repeat steps 7 to 9 for all additional master nodes, using the appropriate
names of the corresponding instance groups while updating and verifying.

10. Verify that kops has successfully updated the master nodes:

kops rolling-update cluster ${NAME}

You should see the following output:

Figure 18.24: Checking whether all the master nodes have been upgraded

As mentioned earlier, this is a dry run, and the output shows which nodes
require an update. Since all of them show STATUS as Ready, we know that they
have been updated. By contrast, you can see that nodes (the worker nodes)
return NeedsUpdate, since we have not updated them yet.

688 | Upgrading Your Cluster without Downtime

11. Verify that all the master nodes have been upgraded to the desired version:

kubectl get nodes

You should see a response similar to the following:

Figure 18.25: Checking the version of Kubernetes on all the master nodes

As you can see, all the master nodes are running version 1.15.10, which is the
desired version.

In this exercise, you have seen how to upgrade the master nodes of the Kubernetes
cluster without any downtime for users. One node update at a time will make sure
that enough master servers are available (a minimum of three are required for this to
work) and the users and the cluster are not getting impacted during the update.

Note

When you apply a rolling update to an instance group, kops will roll out the
update through the nodes within the instance group by taking only one node
offline at a time. On top of that, in this exercise, we applied a rolling update
to only one instance group at a time. Eventually, what you should achieve is
a situation where only one node from your cluster is taken offline at a time.
Remember this if you choose to automate this process.

Upgrading Kubernetes Worker Nodes
Although Kubernetes supports compatibility between master (API server) and worker
nodes (kubelet) within one minor version, it is highly recommended that you upgrade
the master and worker nodes in one go. Using kops, upgrading worker nodes is
similar to upgrading master nodes. Due to the backward compatibility within one
minor version, the worker nodes may still work if they are not version-matched by the
master nodes, but it is strongly discouraged to run different versions of Kubernetes
on worker and master nodes since this may create problems for the cluster.

Upgrading Kubernetes Worker Nodes | 689

However, the following considerations are of extreme importance if you want to keep
your application online during the upgrade:

• Make sure that your applications are configured to be highly available. This
means that you should have at least two pods, each on different nodes, for each
of your applications. If this is not the case, your applications may experience
downtime once you evict the pods from the nodes.

• If you are running stateful components, make sure that the state of these
components is backed up, or that your applications are designed to be able to
withstand partial unavailability of the stateful components.

For example, let's say that you are running a database with a single master
node and multiple read replicas. Once the node that is running the master
replica of your database evicts the database pod, if your applications are not
correctly configured to handle this scenario, they will suffer a downtime. This has
nothing to do with the upgrade of the Kubernetes cluster, but it is important to
understand how your applications behave during an upgrade and to ensure that
they are properly configured to be fault-tolerant.

Now that we have understood the requirements to ensure the uptime of your
application, let's see how we can upgrade the worker nodes in the following exercise.

Exercise 18.04: Upgrading the Worker Nodes

In this exercise, we will upgrade all the worker nodes of the Kubernetes cluster.
Worker nodes are the host of your applications:

1. Get the list of instance groups for your worker nodes:

kops get instancegroups

You should see a response similar to the following:

Figure 18.26: Getting a list of the instance groups

690 | Upgrading Your Cluster without Downtime

From this image, we can see that the name of the instance group for our worker
nodes is nodes.

2. Verify that the nodes are ready:

kubectl get nodes

You should see a response similar to this:

Figure 18.27: Checking node status

If we had multiple instance groups, we would be upgrading each instance group
one by one. However, our task here is simple since we have just one – that
is, nodes.

3. Run the kops rolling update for the nodes instance group without the --yes
flag. This will provide you with a summary of what will be updated with the kops
rolling-update command:

kops rolling-update cluster ${NAME} --node-interval 3m --instance-
group nodes --post-drain-delay 3m --logtostderr --v 9

Note that we have changed the verbosity value in the preceding command to get
more detailed logs.

Let's break down this command:

– The node-interval flag sets the minimum delay between different
node restarts.

– The instance-group flag states which instance group the rolling update
should be applied to.

– The post-drain-delay flag sets the delay after draining the node before it
can be restarted. Remember from earlier in this chapter that the drain operation
will wait for the graceful termination of pods. This delay will be applied after that.

Upgrading Kubernetes Worker Nodes | 691

The node-interval and post-drain-delay flags provide an option to
control the rate of change in the cluster. The value of these options partially
depends on the type of application you are running. For example, if you are
running a log agent DaemonSet on the nodes, you may want to give enough
time for the pod to flush the content to a central logging server.

Note

We did not use these delays when we performed a rolling update in the
previous case since in that case, the instance groups each had just one
node in them. Here, we have three nodes in this instance group.

– The logtosterr flag outputs all the logs to the stderr stream so that we can
see them in our terminal output.

– The v flag sets the verbosity of the logs that we will see.

This command will show the following output:

Figure 18.28: Performing a dry run of the rolling update

4. Now, run the upgrade. Use the same command as the previous step with the
addition of the --yes flag. This tells kops to perform the upgrade:

kops rolling-update cluster ${NAME} --node-interval 3m --instance-
group nodes --post-drain-delay 3m --logtostderr --v 9 --yes

Kops will drain a node, wait for the post drain delay time, and then upgrade
and restart the node. This will be repeated for each node, one by one. You will
see a long log in the terminal, and this process may take up to half an hour to
complete. In your terminal, you should start seeing the logs, as follows:

Figure 18.29: Starting the rolling update process

692 | Upgrading Your Cluster without Downtime

After a while, you will see that the cluster upgrade is finished with a success
message, as shown:

Figure 18.30: Rolling update completion message

Keen readers will notice, in Figure 18.29, that in the author's logs, the cluster
upgrade started at around 3:05 and finished, as can be seen in Figure 18.29, at
around 3:25. The total time is around 20 minutes for three nodes. We had set
a delay of 3 minutes for each node after stopping it and 3 minutes for each
node after draining all the pods. So, the waiting time for each node adds up to 6
minutes. With three nodes in the instance group, the total wait time is 6 × 3 = 18
minutes.

5. Verify that the worker nodes are updated to the target version – that is,
1.15.10:

kubectl get nodes

You should see the following response:

Figure 18.31: Checking the version of Kubernetes on worker nodes

6. Verify that the pods are in a running state:

kubectl get pods -n upgrade-demo

You should see all pods with STATUS set to Running, as in this screenshot:

Figure 18.32: Checking the status of our pods

Upgrading Kubernetes Worker Nodes | 693

In this exercise, you have seen how easy it is to upgrade the worker nodes through
kops. However, we do not recommend upgrading all worker nodes in one go
for production clusters and strongly recommend creating instance groups for
worker nodes. The following are some strategies that can be used for production-
grade clusters:

• Don't keep all of your worker nodes in a single instance group. Create multiple
instance groups for different sets of worker nodes. By default, kops creates only
one instance group, but you can change this behavior to create many instance
groups for worker nodes. We recommend having different worker instance
groups for infrastructure components (such as monitoring and logging), ingress,
critical applications, non-critical applications, and static applications. This will
help you apply the upgrade to less critical parts of your cluster first. This strategy
would help limit any issues in the upgrade process, keeping them to a minimum
while isolating the affected nodes from the rest of the cluster.

• If you are running the cluster in the cloud, you can provision new nodes on
demand. Thus, it may be a good idea to create a sister instance group for
upgrades. This new instance group should be running the upgraded version of
Kubernetes. Now, cordon and drain all the pods from the old instance group.
The Kubernetes scheduler will see that the new nodes are available and will
automatically move all your pods to the new nodes. Once this is complete,
you can just delete the old instance group and your upgrade is complete.

This strategy needs a bit of planning, especially if you are running stateful
applications on the cluster. This strategy also assumes that you are able to
provision new nodes on demand, since creating a sister instance group may
require temporary additional hardware, which may be a challenge for an
on-premises data center.

Notice that these are advanced strategies and are beyond the scope of this book.
However, you can find more information about it at https://kops.sigs.k8s.io/tutorial/
working-with-instancegroups/.

Now that you have seen all the steps required to upgrade your cluster, you can bring
it all together in the following activity.

https://kops.sigs.k8s.io/tutorial/working-with-instancegroups/
https://kops.sigs.k8s.io/tutorial/working-with-instancegroups/

694 | Upgrading Your Cluster without Downtime

Activity 18.01: Upgrading the Kubernetes Platform from Version 1.15.7 to

1.15.10

In this activity, you will upgrade the Kubernetes platform from version 1.15.7 to
version 1.15.10. Here, we will bring together everything that we have learned in
this chapter. These guidelines should help you to complete the activity:

Note

In this activity, we are showcasing the upgrade from Kubernetes version
1.15.7 to 1.15.10. You can apply the same steps to upgrade to the
version of Kubernetes supported by kops at the time when you perform
this activity.

1. Using Exercise 11.01, Setting Up Our Kubernetes Cluster, set up a fresh cluster
running Kubernetes version 1.15.7. If you are using the cloud to spin up
machines, you can take a snapshot of the machines (your cloud vendor may
charge you for this) before the upgrade to quickly rerun the upgrade again.

2. Upgrade kops to the version you want to upgrade on the master or bastion
node. For this activity, we need to have version 1.15.

3. Upgrade one of the master nodes to Kubernetes version 1.15.10.

4. Verify that the master node is back in service and in the Ready state.

5. Similarly, upgrade all the other master nodes.

6. Verify that all the master nodes are upgraded to the desired version, as in the
following screenshot:

Figure 18.33: Upgraded version of Kubernetes on master nodes

7. Now, upgrade the worker nodes.

8. Verify that the pods are running successfully on the newly upgraded nodes.
Finally, you should be able to verify that your pods are running on the new node,
as follows:

Summary | 695

Figure 18.34: Pods running on upgraded worker nodes

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Summary
In this chapter, you have learned that keeping your Kubernetes platform up to date
is very important when it comes to providing a secure and reliable foundation for
running your applications. In this fast-moving digital world, many businesses rely
on critical applications and keeping them available, even though upgrading the
underlying platform is important.

You have seen that a no-downtime upgrade of the platform is possible if you have set
up the cluster in a high availability configuration to start with. However, the platform
does not guarantee the availability of your applications unless you have designed and
deployed your application in a fault-tolerant manner. One factor is to make sure that
you have multiple instances of your application running and that the application is
designed to handle the termination of these instances gracefully.

With that taken into account, we have seen the important considerations for
upgrading your cluster in a way that the platform itself does not cause downtime
for your application. We looked at the upgrade process for the master nodes as well
as worker nodes separately. The key takeaway from this chapter is the principles
underlined at various instances that you can apply for different kinds of Kubernetes
clusters managed by different tools.

As mentioned at the beginning of the chapter, keeping your platform up to date
is important to keep up with the latest developments in DevOps and enable your
application development team to continue delivering new features to your end
customers. With the skills acquired from this chapter, you should be able to handle
the upgrade of your platform without causing disruption to your customers.

In the next chapter, we will discuss how to extend your Kubernetes platform with
custom resources. Custom resources allow you to offer a Kubernetes native API
experience for your own projects.

https://packt.live/304PEoD

Overview

In this chapter, we will show how you can use Custom Resource
Definitions (CRDs) to extend Kubernetes and add new functionality
to your Kubernetes cluster. You will also learn how to define, configure,
and implement a complete CRD. We will also describe various example
scenarios where CRDs can be very helpful. By the end of this chapter, you
will be able to define and configure a CRD and a Custom Resource (CR).
You will also learn how to deploy a basic custom controller to implement the
required functionality of the CR in your cluster.

Custom Resource Definitions

in Kubernetes

19

698 | Custom Resource Definitions in Kubernetes

Introduction
In previous chapters, we learned about different Kubernetes objects, such as Pods,
Deployments, and ConfigMaps. These objects are defined and managed by the
Kubernetes API (that is, for these objects, the API server manages their creation
and destruction, among other operations). However, you may want to extend the
functions provided by Kubernetes to provide a feature that is not shipped with
standard Kubernetes, and that cannot be enabled by the built-in objects provided
by Kubernetes.

To build these functionalities on top of Kubernetes, we use Custom Resources (CRs).
Custom Resource Definitions (CRDs) allow us to add a capability through which
users can add custom objects to the Kubernetes server and use those CRs like any
other native Kubernetes object. A CRD helps us to introduce our custom objects to
the Kubernetes system. Once our CRD is created, it can be used like any other object
in the Kubernetes server. Not only that, but we can also use the Kubernetes API,
Role-Based Access Control (RBAC) policies, and other Kubernetes features for the
CRs we have introduced.

When you define a CRD, it is stored in the Kubernetes configuration database (etcd).
Think of CRDs as the definition of the structure of your custom object. Once a CRD
is defined, Kubernetes creates objects that abide by the definition of the CRD. We
call these objects CRs. If we were to compare this to the analogy of programming
languages, CRD is the class and the CR is the instance of the class. In short, a CRD
defines the schema of a custom object and a CR defines the desired state of an
object that you would like to achieve.

CRs are implemented via a custom controller. We will take a closer look at custom
controllers in the first topic of this chapter.

What Is a Custom Controller? | 699

What Is a Custom Controller?
CRDs and CRs help you define the desired state for your CRs. There is a need for
a component that makes sure that the state of the Kubernetes system matches
the desired state as defined by the CR. As you have seen in earlier chapters, the
Kubernetes components that do this are called controllers. Kubernetes comes up
with many of these controllers whose job is to make sure that the desired state
(for example, the number of replicas of Pods defined in a Deployment) is equal to
the value defined in the Deployment object. In summary, a controller is a component
that watches the state of resources through the Kubernetes API server and attempts
to match the current state with the desired state.

The built-in controllers that are included in a standard setup of Kubernetes are
meant to work with built-in objects such as Deployments. For our CRDs and
their CRs, we need to write our own custom controllers.

The Relationship between a CRD, a CR, and a Controller

The CRD provides a way to define a CR, and custom controllers provide the logic to
act on the CR objects. The following diagram summarizes the CRD, CR, and controller:

Figure 19.1: How CRD, CR, and controllers are tied together

700 | Custom Resource Definitions in Kubernetes

As illustrated in the preceding diagram, we have a CRD, a custom controller, and the
CR object that defines the desired state as per the CRD. There are three things to
note here:

• The CRD is the schema that defines how the object will look. Every resource
has a defined schema that tells the Kubernetes engine what to expect in a
definition. Core objects such as PodSpec have schemas that are baked into
the Kubernetes project.

Note

You can find the source code for PodSpec at this link: https://github.com/
kubernetes/kubernetes/blob/master/pkg/apis/core/types.go#L2627

• The CR object, which is created based on the schema (the CRD), defines the
desired state of the resource.

• The custom controller is the application that provides the functionality to bring
the current state to the desired state.

Remember, the CRD is a way through which Kubernetes allows us to define the
schema or definition for our CRs declaratively. Once our CRD (the schema) is
registered with the Kubernetes server, a CR (the object) is defined as per our CRD.

Standard Kubernetes API Resources
Let's list all the resources and APIs that are available in the Kubernetes cluster.
Recall that everything we have used is defined as an API resource, and an API is a
gateway through which we communicate with the Kubernetes server to work with
that resource.

Get a list of all the current Kubernetes resources by using the following command:

kubectl api-resources

https://github.com/kubernetes/kubernetes/blob/master/pkg/apis/core/types.go#L2627
https://github.com/kubernetes/kubernetes/blob/master/pkg/apis/core/types.go#L2627

Standard Kubernetes API Resources | 701

You should see the following response:

Figure 19.2: Standard Kubernetes API resources

In the preceding screenshot, you can see that the resources defined in Kubernetes
have an APIGroup property, which defines what internal API is responsible for
managing this resource. The Kind column lists the name of the resources. As we
have seen earlier in this topic, for standard Kubernetes objects such as Pods, the
schema or definition of a Pod object is built into Kubernetes. When you define a Pod
specification to run a Pod, this could be said to be analogous to a CR.

702 | Custom Resource Definitions in Kubernetes

For every resource, there is some code that can take action against the resource. This
is defined as a group of APIs (APIGroup). Note that multiple API groups can exist; for
example, a stable version and an experimental version. Issue the following command
to see what API versions are available in your Kubernetes cluster:

kubectl api-versions

You should see the following response:

Figure 19.3: Various API groups and their versions

Why We Need Custom Resources? | 703

In the preceding screenshot, note that the apps API group has multiple versions
available. Each of these versions may have a different set of features that is not
available in other groups.

Why We Need Custom Resources?
As stated earlier, CRs provide a way through which we can extend the Kubernetes
platform to provide functionalities that are specific to certain use cases. Here are a
few use cases where you will encounter the use of CRs.

Example Use Case 1

Consider a use case in which you want to automate the provisioning of a business
application or a database onto the Kubernetes cluster automatically. Abstracting
away the technical details, such as configuring and deploying the application, allows
teams to manage them without having an in-depth knowledge of Kubernetes. For
example, you can create a CR to abstract the creation of a database. Thus, users can
create a database Pod by just defining the name and size of the database in a CRD,
and the controller will provision the rest.

Example Use Case 2

Consider a scenario where you have self-serving teams. Your Kubernetes platform
is used by multiple teams and you would like the teams to provision namespaces
and other resources by themselves. In this case, you want teams to define the total
CPU and memory they need for the workloads, as well as default limits for a Pod.
You can create a CRD and teams can create a CR with the namespace name and
other parameters. Your custom controllers would create the resources they need
and associate the correct RBAC policies for each team. You can also add additional
functionality, such as a team being restricted to three environments. The controller
can also generate audit events and record all the activities.

Example Use Case 3

Let's say you are an administrator of a development Kubernetes cluster where
developers come and test their application. The problem you are facing is that the
developers left the Pods running and have moved on to new projects. This may create
a resource issue for your cluster.

704 | Custom Resource Definitions in Kubernetes

In this chapter, we will build a CRD and a custom controller around this
scenario. A solution that we can implement is to delete the Pod after a
certain amount of time has passed following their creation. Let's call this time
podLiveForThisMinutes. A further requirement is to have a configurable way of
defining podLiveForThisMinutes for each namespace, as different teams may
have different priorities and requirements.

We can define a time limit per namespace and that would provide the flexibility
to apply controls on different namespaces. To implement the requirements
defined in this example use case, we will define a CRD that allows two
fields – a namespace name and the amount of time to allow the Pods to run
(podLiveForThisMinutes). In the rest of this chapter, we will build a CRD
and a controller that will allow us to achieve the functionality mentioned here.

Note

There are other (better) ways to implement the preceding scenario. In the
real world, a Kubernetes Deployment object would recreate the Pod if the
Pod had been created using the Deployment resource. We have chosen
this scenario to keep the example simple and easy to implement.

How Our Custom Resources Are Defined
To come up with a solution for Example Use Case 3 in the previous section, we have
decided that our CRD will define two fields, as mentioned in the preceding example.
To accomplish this, our CR object will look as follows.

apiVersion: "controllers.kube.book.au/v1"

kind: PodLifecycleConfig

metadata:

 name: demo-pod-lifecycle

spec:

 namespaceName: crddemo

 podLiveForThisMinutes: 1

The preceding specification defines our target object. As you can see, it looks just like
normal Kubernetes objects, but the specifications (the spec section) are defined as
per our requirements. Let's dig a bit deeper into the details.

How Our Custom Resources Are Defined | 705

apiVersion

This is the field required by Kubernetes to group objects. Note that we put the version
(v1) as part of the group key. This grouping technique helps us keep multiple versions
of our object. Consider whether you want to add a new property without affecting
existing users. You can just create a new group with v2, and an object definition
with both versions — v1 and v2 — can exist at the same time. Because they are
separated, it allows different versions of different groups to evolve at a different rate.

This approach also helps if we want to test new features. Say we want to add a
new field to the same object. Then, we could just change the API version and add
the new field. Thus, we can keep the stable version separate from the new,
experimental version.

kind

This field mentions a specific type of object in a group defined by apiVersion.
Think of kind as the name of the CR object, such as Pod.

Note

Do not confuse this with the name of the object that you create using this
specification, which is defined in the metadata section.

Through this, we can have multiple objects under one API group. Imagine you are
about to create an awesome functionality that would require multiple different types
of objects to be created. You can have multiple objects using the Kind field under the
same API group.

spec

This field defines the information needed to define the specification of the object.
The specification contains information that defines the desired state of our resource.
All the fields that describe the characteristics of our resource go inside the spec
section. For our use case, the spec section contains the two fields that we need
for our CR – podLiveForThisMinutes and namespaceName.

706 | Custom Resource Definitions in Kubernetes

namespaceName and podLiveForThisMinutes

These are the custom fields that we want to define. namespaceName will contain
the name of the target namespace, and podLiveForThisMinutes will contain the
time (in minutes) that we want the Pod to be active for.

The Definition of a CRD

In the previous section, we showed the different components of a CR. However,
before we define our CR, we need to define a schema, which governs how the CR
would be defined. In the following exercise, you will define the schema or the CRD
for the resource mentioned in the How Our Custom Resources Are Defined section.

Consider this example CRD, which we will use in the following exercise. Let's
understand the important bits of the CRD by observing the following definition:

pod-normaliser-crd.yaml

1 apiVersion: apiextensions.k8s.io/v1beta1

2 kind: CustomResourceDefinition

3 metadata:

4 name: podlifecycleconfigs.controllers.kube.book.au

5 spec:

6 group: controllers.kube.book.au

7 version: v1

8 scope: Namespaced

9 names:

10 kind: PodLifecycleConfig

11 plural: podlifecycleconfigs

12 singular: podlifecycleconfig

13 #1.15 preserveUnknownFields: false

14 validation:

15 openAPIV3Schema:

16 type: object

17 properties:

18 spec:

19 type: object

20 properties:

21 namespaceName:

22 type: string

23 podLiveForThisMinutes:

24 type: integer

How Our Custom Resources Are Defined | 707

Now, let's look at various components of this CRD:

• apiVersion and kind: These are the API and the resource for the CRD itself
and are provided by Kubernetes for the CRD definition.

• group and version: Think of an API group as a set of objects that are logically
related to one another. These two fields define the API group and the version
of our CR, which will then be translated into the apiVersion field of our CR,
defined earlier in the previous section.

• kind: This field defines the kind of our CR, defined earlier in the How Our
Custom Resources Are Defined section.

• metadata/name: The name must match the spec fields, and the format is a
combination of two fields – that is, <plural>.<group>.

• scope: This field defines whether the CR will be namespace-scoped or cluster-
scoped. By default, the CR is cluster-scoped. We have defined it as namespace-
scoped here.

• plurals: These are plural names to be used in the Kubernetes API server URL.

• openAPIV3Schema: This is the schema that is defined based on the OpenAPI
v3 standards. It refers to the actual fields/schema of our CR. A schema is
something that defines what fields are available in our CR, the names of the
fields, and the data types for them. It basically defines the structure of the spec
field in our CR. We have used the namespaceName and podLiveForMinutes
fields in our CR. You can see this in step 2 of the following exercise.

It is interesting to know that the component of the API server that serves the CRs is
called apiextensions-apiserver. When kubectl requests reach the API server,
it first checks whether the resource is a standard Kubernetes resource, such as a Pod
or a Deployment. If the resource is not a standard resource, then apiextensions-
apiserver is invoked.

708 | Custom Resource Definitions in Kubernetes

Exercise 19.01: Defining a CRD

In this exercise, we will define a CRD, and in the next exercise, we will create a CR for
the defined CRD. The definition of the CRD is stored in the Kubernetes etcd server.
Remember that the CRD and CR are just definitions, and until you deploy a controller
that is associated with your CRs, there is no functionality attached to the CRD/CR. By
defining a CRD, you are registering a new type of object with the Kubernetes cluster.
After you define the CRD, it will be accessible via the normal Kubernetes API and you
can access it via Kubectl:

1. Create a new namespace called crddemo:

kubectl create ns crddemo

This should give the following response:

namespace/crddemo created

2. Now, we need to define a CRD. Create a file named pod-normaliser-crd.
yaml using the following content:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: podlifecycleconfigs.controllers.kube.book.au

spec:

 group: controllers.kube.book.au

 version: v1

 scope: Namespaced

 names:

 kind: PodLifecycleConfig

 plural: podlifecycleconfigs

 singular: podlifecycleconfig

 #1.15 preserveUnknownFields: false

 validation:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 namespaceName:

 type: string

How Our Custom Resources Are Defined | 709

 podLiveForThisMinutes:

 type: integer

3. Using the definition from the previous step, create the CRD using the
following command:

kubectl create -f pod-normaliser-crd.yaml -n crddemo

You should see the following response:

Figure 19.4: Creating our CRD

4. Verify that the CR is registered with Kubernetes using the following command:

kubectl api-resources | grep podlifecycleconfig

You should see the following list of resources:

Figure 19.5: Verifying whether the CR has been registered with Kubernetes

5. Verify that the API is available in the Kubernetes API server by using the
following command:

kubectl api-versions | grep controller

You should see the following response:

controllers.kube.book.au/v1

In this exercise, we have defined a CRD, and now, Kubernetes will be able to know
what our CR should look like.

Now, in the following exercise, let's create a resource object as per the CRD we
defined. This exercise will be an extension of the previous exercise. However, we have
separated them because CRD objects can exist on their own; you don't have to have
a CR paired with a CRD. It may be the case that a CRD is provided by some third-party
software vendor, and you are only required to create the CR. For example, a database
controller provided by a vendor may already have a CRD and the controller. To use
the functionality, you just need to define the CR.

Let's proceed to make a CR out of our CRD in the following exercise.

710 | Custom Resource Definitions in Kubernetes

Exercise 19.02: Defining a CR Using a CRD

In this exercise, we will create a CR as per the CRD defined in the previous exercise.
The CR will be stored in the etcd datastore as a normal Kubernetes object, and it is
served by the Kubernetes API server – that is, when you try to access it via Kubectl,
it will be handled by the Kubernetes API server:

Note

You will only be able to perform this exercise after successfully completing
the previous exercise in this chapter.

1. First, make sure that there is no CR for the podlifecycleconfigs type.
Use the following command to check:

kubectl get podlifecycleconfigs -n crddemo

If there is no CR, you should see the following response:

No resources found.

If there is a resource defined, you can delete it using the following command:

kubectl delete podlifecycleconfig <RESOURCE_NAME> -n crddemo

2. Now, we have to create a CR. Create a file named pod-normaliser.yaml
using the following content:

apiVersion: "controllers.kube.book.au/v1"

kind: PodLifecycleConfig

metadata:

 name: demo-pod-lifecycle

 # namespace: "crddemo"

spec:

 namespaceName: crddemo

 podLiveForThisMinutes: 1

How Our Custom Resources Are Defined | 711

3. Issue the following command to create the resource from the file created in the
previous step:

kubectl create -f pod-normaliser.yaml -n crddemo

You should see the following response:

Figure 19.6: Creating our CR

4. Verify that it is registered by Kubernetes by using the following command:

kubectl get podlifecycleconfigs -n crddemo

You should see the following response:

NAME AGE

demo-pod-lifecycle 48s

Note that we are using normal kubectl commands now. This is a pretty awesome way
to extend the Kubernetes platform.

We have defined our own CRD and have created a CR against it. The next step is to
add the required functionality for our CR.

Writing the Custom Controller

Now that we have a CR in our cluster, we will proceed to write some code that acts
upon it to achieve the purpose of the scenario we set out in the Why We Need Custom
Resources section.

Note

We will not teach the actual programming for writing the Go code for our
controller since that is beyond the scope of this book. However, we will
provide you with the programming logic required for Example Use Case 3.

712 | Custom Resource Definitions in Kubernetes

Let's imagine that our custom controller code is running as a Pod. What would it need
to do to respond to a CR?

1. First, the controller has to be aware that a new CR has been defined/removed in
the cluster to get the desired state.

2. Second, the code needs a way to interact with the Kubernetes API server to
request the current state and then ask for the desired state. In our case, our
controller has to be aware of all the pods in a namespace and the time when the
Pods have been created. The code can then ask Kubernetes to delete the Pods if
the allowed time is up for them, as per the CRD. Please refer to the Example Use
Case 3 section to refresh your memory on what our controller would be doing.

The logic for our code can be visualized using the following diagram:

Figure 19.7: Flowchart describing the logic for a custom controller

How Our Custom Resources Are Defined | 713

If we were to describe the logic as simple pseudocode, it would be as follows:

1. Fetch all the new CRs that have been created for our custom CRD from the
Kubernetes API server.

2. Register callbacks in case CRs are added or deleted. The callbacks would be
triggered each time a new CR is added or deleted in our Kubernetes cluster.

3. If the CR is added to the cluster, the callback will create a sub-routine that
continuously fetches the list of Pods in the namespace defined by the CR. If the
Pod has been running for more than the time specified, it will be terminated.
Otherwise, it will sleep for a few seconds.

4. If the CR is deleted, the callback will stop the sub-routine.

The Components of the Custom Controller

As mentioned earlier, explaining in detail how custom controllers are built is beyond
the scope of this book, and we have provided a fully working custom controller to suit
the needs of Example Use Case 3. Our focus is to make sure that you can build and
execute the controller to understand its behavior and that you are comfortable with
all the components involved.

Custom controllers are components that provide functionality against a CR. To
provide this, a custom controller would need to understand what a CR is meant for
and its different parameters, or the structural schema. To make our controller aware
of the schema, we provide the details about our schema to the controller through a
code file.

714 | Custom Resource Definitions in Kubernetes

Here is an excerpt of the code for the controller that we have provided:

types.go

12 type PodLifecycleConfig struct {
13
14 // TypeMeta is the metadata for the resource, like kind and
 apiversion
15 meta_v1.TypeMeta `json:",inline"`
16
17 // ObjectMeta contains the metadata for the particular
 object like labels
18 meta_v1.ObjectMeta `json:"metadata,omitempty"`
19
20 Spec PodLifecycleConfigSpec `json:"spec"`
21 }
22
23 type PodLifecycleConfigSpec struct{
24 NamespaceName string `json:"namespaceName"`
25 PodLiveForMinutes int `json:"podLiveForThisMinutes"`
26 }
...
32 type PodLifecycleConfigList struct {
33 meta_v1.TypeMeta `json:",inline"`
34 meta_v1.ListMeta `json:"metadata"`
35
36 Items []PodLifecycleConfig `json:"items"`
37 }

You can find the complete code at this link: https://packt.live/3jXky9G.

As you can see, we have defined the PodLifecycleConfig structure as per our
example of the CR provided in the How Our Custom Resources Are Defined section. It is
repeated here for easier reference:

apiVersion: "controllers.kube.book.au/v1"

kind: PodLifecycleConfig

metadata:

 name: demo-pod-lifecycle

 # namespace: "crddemo"

spec:

 namespaceName: crddemo

 podLiveForThisMinutes: 1

https://packt.live/3jXky9G

How Our Custom Resources Are Defined | 715

Note that in types.go, we have defined objects that can hold the full definition of
this example spec. Also, notice in types.go that namespaceName is defined as
string and podLiveForThisMinuets is defined as int. This is because we
are using strings and integers for these fields, as you can see in the CR.

The next important function of the controller is to listen to events from the
Kubernetes system that are related to the CR. We are using the Kubernetes Go client
library to connect to the Kubernetes API server. This library makes it easier to connect
to the Kubernetes API server (for example, for authentication) and have predefined
request and response types to communicate with the Kubernetes API server.

Note

You can find more details about the Kubernetes Go client library at this link:
https://github.com/kubernetes/client-go.

However, you are free to use any other library or any other programming language to
communicate with the API server over HTTPS.

You can see how we have implemented it by checking the code at this link:
https://packt.live/3ieFtVm. First, we need to connect to the Kubernetes cluster.
This code is running inside a Pod in the cluster, and it will need to connect to the
Kubernetes API server. We need to give sufficient rights to our Pod to connect to the
master server, which will be covered in the activity later in this chapter. We will use
RBAC policies to achieve this. Please refer to Chapter 13, Runtime and Network Security
in Kubernetes, to get a refresher on how Kubernetes implements RBAC functionality.

Once we are connected, we use the SharedInformerFactory object to listen to
Kubernetes events for the controller. Think of the event as a way for us to be notified
by Kubernetes when a new CR is created or deleted. SharedInformerFactory is
a way provided by the Kubernetes Go client library to listen to events generated by
the Kubernetes API server. A detailed explanation of SharedInformerFactory is
beyond the scope of this book.

https://github.com/kubernetes/client-go
https://packt.live/3ieFtVm

716 | Custom Resource Definitions in Kubernetes

The following snippet is an excerpt from our Go code to create
SharedInformerFactory:

main.go

40 // create the kubernetes client configuration
41 config, err := clientcmd.BuildConfigFromFlags("", "")
42 if err != nil {
43 log.Fatal(err)
44 }
45
46 // create the kubernetes client
47 podlifecyelconfgiclient, err := clientset.NewForConfig(config)
48
49
50 // create the shared informer factory and use the client
 to connect to kubernetes
51 podlifecycleconfigfactory :=
 informers.NewSharedInformerFactoryWithOptions
 (podlifecyelconfgiclient, Second*30,
52 informers.WithNamespace(os.Getenv(NAMESPACE_TO_WATCH)))

You can find the complete code at this link: https://packt.live/3lXe3FM.

Once we have connected to the Kubernetes API server, we need to register to be
notified whether our CR has been created or deleted. The following code performs
this action:

main.go

62 // fetch the informer for the PodLifecycleConfig
63 podlifecycleconfiginformer :=
 podlifecycleconfigfactory.Controllers().V1().
 PodLifecycleConfigs().Informer()
64
65 // register with the informer for the events
66 podlifecycleconfiginformer.AddEventHandler(
...
69 //define what to do in case if a new custom resource is created
70 AddFunc: func(obj interface{}) {
...
83 // start the subroutine to check and kill the pods for this namespace
84 go checkAndRemovePodsPeriodically(signal, podclientset, x)
85 },
86
87 //define what to do in case if a custom resource is removed
88 DeleteFunc: func(obj interface{}) {

You can find the complete code at this link: https://packt.live/2ZjtQoy.

https://packt.live/3lXe3FM
https://packt.live/2ZjtQoy

How Our Custom Resources Are Defined | 717

Note that the preceding code is an extract from the full code, and the snippet here
is modified slightly for better presentation in this book. This code is registering
callbacks to the Kubernetes server. Notice that we have registered for AddFunc and
DeleteFunc. These will be called once the CR has been created or deleted, and we
can write custom logic against that. You can see that for AddFunc, a Go subroutine
is being called. For every new CR, we have a separate subroutine to keep on watching
for the Pods created in the namespace. Also, note that AddFunc will print out A
Custom Resource has been Added to the logs. You may also have noticed
that in DeleteFunc, we have closed the signal channel, which will flag the Go
subroutine to stop itself.

Activity 19.01: CRD and Custom Controller in Action

In this activity, we will build and deploy custom controllers, CRs, and CRDs. Note
that the coding required for building the custom controller is beyond the scope of
this book and a ready-made code is provided in the code repository to facilitate the
Deployment of a working controller.

We will create a new CRD that can take two fields – a podLiveForThisMinutes
field, which defines the time (in minutes) for a Pod to be allowed to run before it is
killed, and the namespaceName field, which defines which namespace these rules
will be applied to.

We will create a new CR as per the CRD. Also, we will create a new Kubernetes role
that allows this new CRD to be queried from the Kubernetes API server. We will then
show you how to associate the newly created role with the ServiceAccount named
default, which is the default ServiceAccount that a Pod will use when we run it in
the namespace named default.

Generally, we build a custom controller that provides logic against the CRD we
created. We will just use the code packaged as a container and deploy it as a Pod.
The controller will be deployed as a normal Pod.

At the end of the activity, to test our controller, you will create a simple Pod and verify
whether our custom controller can delete the Pod.

718 | Custom Resource Definitions in Kubernetes

Activity Guidelines:

1. Delete the existing crddemo namespace and create a new one with the
same name.

2. Get the code and the Dockerfile for creating the controller using the
following command:

git clone https://github.com/PacktWorkshops/Kubernetes-Workshop.git

cd Chapter19/Activity19.01/controller

3. Create a CRD with the following fields.

The metadata should contain the following:

name: podlifecycleconfigs.controllers.kube.book.au

The OpenAPIV3Schema section should contain the following
properties settings:

openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 namespaceName:

 type: string

 podLiveForThisMinutes:

 type: integer

4. Create a CR that allows Pods to live for 1 minute in the crddemo namespace.

5. Create a Role that allows the following permissions for the specified
API resources:

rules:

- apiGroups: ["controllers.kube.book.au"]

 resources: ["podlifecycleconfigs"]

 verbs: ["get", "list", "watch"]

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "watch", "list", "delete"]

How Our Custom Resources Are Defined | 719

6. Using a RoleBinding object, associate this new Role with the default
ServiceAccount in the crddemo namespace.

7. Build and deploy the controller Pod using the Dockerfile provided in step 2.

8. Create a Pod that runs for a long time using the k8s.gcr.io/busybox image
in the crddemo namespace.

Watch the Pod created in the previous step and observe whether it is being
terminated by our controller. The expected result is that the Pod should be
created, and then it should be automatically terminated after about a minute,
as in the following screenshot:

Figure 19.8: The expected output of Activity 19.01

Note

The solution to this activity can be found at the following address:
https://packt.live/304PEoD.

Adding Data to Our Custom Resource

In the previous activity, you created a CRD and CR. We mentioned earlier that once we
define our CR, we can query them using standard kubectl commands. For example, if
you would like to see how many CRs of the PodLifecycleConfig type have been
defined, you can use the following command:

kubectl get PodLifecycleConfig -n crddemo

You will see the following response

NAME AGE

demo-pod-lifecycle 8h

https://packt.live/304PEoD

720 | Custom Resource Definitions in Kubernetes

Note that it only shows the name and age of the object. However, if you issue a
command for a native Kubernetes object, you will see a lot more columns. Let's try
that for Deployments:

kubectl get deployment -n crddemo

You should see a response similar to this:

NAME READY UP-TO-DATE AVAILABLE AGE

crd-server 1/1 1 1 166m

Notice the additional columns that Kubernetes has added, which provide way more
information about the objects.

What if we want to add more columns so that the output of the preceding command
shows more details for our CRs? You are in luck, as Kubernetes provides a way to add
additional information columns for the CRs. This is useful for displaying the critical
values of each type of custom object. This can be done using additional data defined
in the CRD. Let's see how we can do that in the following exercise.

Exercise 19.03: Adding Custom Information to the CR List Command

In this exercise, you will learn how to add custom information to the CR list obtained
by means of the kubectl get command:

Note

You will only be able to perform this exercise after successfully completing
Activity 19.01, CRD and Custom Controller in Action.

1. Let's define another CRD with additional columns. Create a file named
pod-normaliser-crd-adv.yaml with the following content:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: podlifecycleconfigsadv.controllers.kube.book.au

spec:

 group: controllers.kube.book.au

 version: v1

 scope: Namespaced

 names:

 kind: PodLifecycleConfigAdv

How Our Custom Resources Are Defined | 721

 plural: podlifecycleconfigsadv

 singular: podlifecycleconfigadv

 #1.15 preserveUnknownFields: false

 validation:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 namespaceName:

 type: string

 podLiveForThisMinutes:

 type: integer

 additionalPrinterColumns:

 - name: NamespaceName

 type: string

 description: The name of the namespace this CRD is applied
 to.
 JSONPath: .spec.namespaceName

 - name: PodLiveForMinutes

 type: integer

 description: Allowed number of minutes for the Pod to
 survive
 JSONPath: .spec.podLiveForThisMinutes

 - name: Age

 type: date

 JSONPath: .metadata.creationTimestamp

Notice how we have a new section named additionalPrinterColumns.
As the name suggests, this defines additional information for your resource.
The two important fields of the additionalPrinterColumns sections
are as follows:

– name: This defines the name of the column to be printed.

– JSONPath: This defines the location of the field. Through this path,
the information is fetched from the resources and is displayed in the
corresponding column.

722 | Custom Resource Definitions in Kubernetes

2. Now, let's create this new CRD using the following command:

kubectl create -f pod-normaliser-crd-adv.yaml -n crddemo

You will see the following output:

Figure 19.9: Creating our modified CRD

3. Once we have created the CRD, let's create the object for the CRD. Create a file
named pod-normaliser-adv.yaml with the following content:

apiVersion: "controllers.kube.book.au/v1"

kind: PodLifecycleConfigAdv

metadata:

 name: demo-pod-lifecycle-adv

 # namespace: "crddemo"

spec:

 namespaceName: crddemo

 podLiveForThisMinutes: 20

Now, the fields in the spec section should be visible in the list obtained by the
kubectl get command, similar to native Kubernetes objects.

4. Let's create the CR defined in the previous step using the following command:

kubectl create -f pod-normaliser-adv.yaml -n crddemo

This should give the following response:

Figure 19.10: Creating our CR

Summary | 723

5. Now, let's issue the kubectl get command to see whether additional fields
are displayed:

kubectl get PodLifecycleConfigAdv -n crddemo

You should see the following information displayed for our object:

NAME NAMESPACENAME PODLIVEFORMINUTES AGE

demo-pod-lifecycle-adv crddemo 20 27m

You can see that the additional fields are displayed and we now have more
information about our CRs.

In this exercise, you have seen that we can associate additional data for our CR while
querying it via the Kubernetes API server. We can define the field names and the path
for the data for the fields. This resource-specific information becomes important
when you have many resources of the same type, and it is also useful for the
operations team to better understand the resources defined.

Summary
In this chapter, you learned about custom controllers. As per the Kubernetes glossary,
a controller implements a control loop to watch the state of the cluster through the
API server and makes changes in an attempt to move the current state toward the
desired state.

Controllers can not only watch and manage user-defined CRs, but they can also act on
resources such as Deployments or services, which are typically part of the Kubernetes
controller manager. Controllers provide a way to write your own code to suit your
business needs.

CRDs are the central mechanism used in the Kubernetes system to extend its
capability. CRDs provide a native way to implement custom logic for the Kubernetes
API server that satisfies your business requirements.

You have learned about how CRDs and controllers help provide an extension
mechanism for the Kubernetes platform. You have also seen the process through
which you can configure and deploy custom controllers on the Kubernetes platform.

724 | Custom Resource Definitions in Kubernetes

As we come to the end of our journey, let's reflect on what we have achieved. We
started with the basic concepts of Kubernetes, how it is architected, and how to
interact with it. We were introduced to Kubectl, the command-line tool to interact
with Kubernetes, and then later, we saw how the Kubernetes API server works and
how to communicate with it using curl commands.

The first two chapters established the fundamentals of containerization and
Kubernetes. Thereafter, we learned the basics of kubectl – the Kubernetes command
center. In Chapter 04, How to Communicate with Kubernetes (API Server), we looked at
how kubectl and other HTTP clients communicate with the Kubernetes API server.
We consolidated our learning by creating a Deployment at the end of the chapter.

From Chapter 5, Pods, through to Chapter 10, ConfigMaps and Secrets, we dug into
concepts that are critical to understanding the platform and to start designing
applications to run on Kubernetes. Concepts such as Pods, Deployments,
Services, and PersistentVolumes enable us to use the platform to write
fault-tolerant applications.

In the next series of chapters, stretching from Chapter 11, Build Your Own HA Cluster,
to Chapter 15, Monitoring and Autoscaling in Kubernetes, we learned about installing
and running Kubernetes on a cloud platform. This covered the installation of the
Kubernetes platform in high availability (HA) configuration and how to manage
network security in the platform. In this part of the book, you also looked at stateful
components and how applications can use these features of the platform. Lastly, this
section talked about monitoring your cluster and setting up autoscaling.

Finally, in this last part, starting from Chapter 16, Kubernetes Admission Controllers, we
began learning about advanced concepts such as how you can apply custom policies
using admission controllers. You have also been introduced to the Kubernetes
scheduler, a component that decides where your application will be running in the
cluster. You learned how to change the default behavior of the scheduler. You have
also seen how CRDs provide a way to extend Kubernetes, which can be useful not
only to build custom enhancements but also as a way for third-party providers
to add functionality to Kubernetes.

This book serves as a good launchpad to get started with Kubernetes. You are
now equipped to design and build systems on top of Kubernetes that can bring
cloud-native experience to your organization. Although this is the end of this book,
it is only the beginning of your journey as a Kubernetes professional.

Index

A
aboutssl: 599
admin-user: 439,

441-442, 444
aliases: 115, 119
alpine: 15-16
amazon: 57, 141,

426-428, 431, 451,
454, 456, 463, 467,
483, 502, 525

amazonaws:
473-474, 480

amazonec: 432
ampersand: 174
ansible: 13, 429, 672
apache: 343
apiserver: 63, 144,

168, 589
appconfig:

400-401, 409
appversion: 532-533
apt-get: 114, 359-360
auppost: 394
aws-auth: 467
aws-ebs: 382-383
aws-secret: 577-578

B
bashrc: 115
bootstrap: 65, 546
busybox: 169, 310,

312-313, 395-397,
400, 405, 409,
590, 618, 631,
637, 639-640, 646,
649, 655-656,
658-660, 677, 719

C
cabundle: 602-603,

616-617
calico: 49, 502
cgi-bin: 668
chardevice: 354
clientcmd: 716
client-go: 715
cloudflare: 411
clusterip: 79, 322,

330-334, 336-341,
345, 470, 479,
601, 614

cmdline: 37
cronjob: 168-170
cronjobs: 4
cvename: 668

D
daemon: 41, 678
daemonset: 309-311,

502-503, 675,
678-679, 691

daemonsets: 84,
92, 157, 277-278,
309-311, 317, 679

darwin: 60
darwin-amd: 59
debian: 508
decipher: 500
docker: 1-2, 4-15,

17-24, 26-41, 44,
49-53, 56, 65, 68,
70, 72, 94-97,
99-101, 104, 108,
128, 212, 343,
355, 404, 413-414,
425, 505-506,

508-509, 522, 565,
569-570, 604, 608

dockerd: 41
dockerfile: 13, 15, 17,

26, 50, 508, 718-719
dockerhub: 21
domain: 341-342, 422
dynamodb: 516

E
emptydir: 350-353,

355-357,
362-363, 369

encryption: 411,
486, 675

envfrom: 395-396, 405
ephemeral: 317,

516-517, 526
errnorows: 523

F
firstpod: 211
first-pod: 204-210, 226
fluentd: 678
fsgroup: 506-508
fstype: 382

G
gatekeeper: 605
gateway: 113, 136,

464, 700
gitcommit: 120
gitversion: 120
goarch: 16
golang: 36, 522
googleapis: 60, 552
goversion: 120

grafana: 545-547,
549-561, 571-572,
580-582

grafana-: 553-554

H
handlefunc: 16, 523
haproxy: 453
hashicorp: 403, 454
healthz: 160
heapster: 548
hindsight: 2
httpget: 230
hyperkit: 7, 24, 57, 62
hyper-v: 57
hypervisor: 5-6,

57, 62, 671

I
ieftvm: 715
iopspergb: 382
ipaddress: 9
ipblock: 501
iproute: 28
iptables: 70, 90, 668

J
jenkins: 477
jeopardize: 487
jira-issue: 270-271
jsonpath: 166, 444,

535, 553-554,
570, 721

jswthb: 522

K
-kvwfr: 102
kerberos: 429
kops-aptjv: 434
kubeadm: 56, 428
kubeconfig: 63, 116,

150, 173, 187-188,
464, 466-467

kubectl: 57-58, 60-64,
73-77, 79-81, 87-92,
95, 97-105, 108,
111-133, 135-138,
140, 143-154, 156,
158-161, 163-167,
169-170, 172-175,
178-179, 181,
184-185, 187-193,
196-197, 199, 202,
204, 206-211, 213,
215, 217-219, 221,
223-226, 232, 234,
236, 238, 240, 248,
250-260, 262-268,
271-273, 282-284,
286-294, 300,
302-307, 313-315,
325-327, 329,
332-339, 356-358,
361-362, 364-365,
367-368, 378-382,
392-396, 398-406,
408, 410-412, 414,
430, 440, 442,
444, 467, 470-474,
479, 494, 497-499,
502-504, 508, 510,
525-528, 535, 540,
550-551, 553-554,
557, 566, 568,

570-571, 578, 586,
588, 593-595,
599, 601, 610-614,
617-619, 626, 628,
630-635, 637-651,
653-659, 668, 673,
676-679, 682, 686,
688, 690, 692,
700, 702, 707-711,
719-720, 722-724

kubelet: 63-64, 68-72,
94, 96-97, 102-103,
138, 422, 586, 588,
628, 668, 688

kubelets: 423
kubenet: 425
kube-proxy: 70,

72, 90, 679
kubeserve:

125-131, 147
kubespray: 56, 429
kubeteam: 594

L
--label: 260
--limits: 646, 649
--link: 52, 104
lbwohj: 52
linearly: 517
linux-amd: 59
listmeta: 714
local-pv: 378-379
logtosterr: 691
longstrs: 36
lrwxrwxrwx: 30-32

M
manifold: 477
microsoft: 131,

426, 429, 530
milli-cpus: 218
minikube: 55-60,

62-66, 68-70, 75,
77-78, 82, 84, 88,
95-97, 99-103,
105, 108, 112, 117,
136-137, 142-145,
168-170, 173,
186-188, 210-211,
328, 334-335,
339-340, 377, 384,
393, 494, 589,
627, 630, 632-633,
635-636, 638-639,
642-643, 648,
654, 657-659

minikube-: 58
minimal: 390, 624
minimize: 468
minsize: 447
mongodb: 51-52
mountpath: 350-353,

356, 363, 376, 380,
400, 409, 600, 613

mysql-: 519, 526

N
--name: 37, 39, 52,

326, 435, 438, 447
-nodes: 411, 598, 611
namedgroup: 159
namespaced: 164,

617, 706, 708, 720

namespaces: 5,
23-25, 27, 32, 41,
44, 53, 116, 119,
122-123, 139-140,
149, 151, 153-155,
157, 176-178, 180,
183, 194-196, 202,
206-209, 329, 369,
393, 444, 504,
526-527, 609-610,
619, 703-704

name-value: 394
netshoot: 28-30
newline: 603
nginx-: 471, 566
nicolaka: 28
nindent: 533
nodeip: 323
nodejs: 270
nodename: 94,

103, 211
node-name: 156
nodeport: 79, 81-83,

104-105, 322-329,
331, 341, 345, 468

noexecute: 653-654,
657-658

noexecute-: 658
non-ha: 470
notready: 97, 99

O
objectmeta: 606, 714
observable: 548
onfailure: 170,

231, 312-313
online: 18, 29, 46, 81,

84, 95, 99-101, 103,
107, 446-447, 468,

482, 495, 516, 524,
540, 564, 613, 689

onlinecert: 616
openapi: 707
openapiv: 706-708,

718, 721
openssl: 411, 598-599,

603, 611, 614
openstack: 428-429
oracle:429

P
plugin: 138, 140, 490
plugins: 138, 141,

144-145, 185,
187, 589

podlabels: 606
podman: 7
pod-name: 146-147,

154, 192, 203, 225
podspec: 73, 700
pod-to-pod: 77
privatekey: 187
prometheus:

545-552, 556-558,
560-561, 582

protobuf: 592
pullpolicy: 532-533
pvc-local: 379-381
python: 15

R
redis-back: 120, 122
replicaset: 278-296,

300, 308, 310-312,
317, 548

respawned: 108

restful: 113, 135-136,
146, 199, 668

restfulapi: 146
roleref: 441, 493, 496
rooter: 509
root-level: 506
routing: 49, 77,

83, 320-321
runasany: 506-507
runasuser: 506-508
runnable: 17

S
sandbox: 65
schema: 147, 151,

588, 698, 700-701,
706-708, 713,
718, 721

schemas: 700
scheme: 229, 519
selinux: 506-507
semantic: 533, 669
semantics: 68
service-l: 471, 566
sidebar: 556, 559
sidecar: 348, 358, 362
s-infra: 246
skandyla: 570
spikes: 582, 642, 660
spinning: 516
splits: 420
spoofing: 487
sprawl: 530
sshing: 334, 339
ssh-keygen: 407-408
stderr: 43, 691
stdout: 43
strconv: 522
struct: 592, 714

subcommand: 127
subdomain: 245
subnets: 425, 464
subpath: 351
sub-path: 351
subroutine: 716-717
subscriber: 67
subset: 241, 245
superset: 341
symlink: 354
syntactic: 444
sysops: 131
systemctl: 68, 96, 102
systemd: 42, 68-69
systems: 57, 245,

417, 429, 449, 480,
516, 518, 724

T
targetport: 79, 81,

104, 322-323,
325-327, 330,
332-333, 337-338,
341, 601, 614

tcpsocket: 230
telemetry: 478
terraform: 427, 451,

454-457, 459-465,
468, 480-483,
495, 524-525, 527,
529, 541, 546,
550, 566, 568,
578-579, 581-582

test-k: 246
test-role: 492-493
test-sa: 493-496,

498-499
test-tls: 412-413
testvendor: 415

tiebreaker: 626
tomcat: 14
topologies: 453
topology: 422,

425, 428, 511
toyaml: 533
typemeta: 592, 714

U
urandom: 434
url-path: 178
user-agent: 151

V
vm-based: 42
vmware: 671
volumemode:

371-372, 374-375
vsphere: 429

W
weave-net: 679
webhooks: 586,

588-589, 592-596,
599, 601-602,
604, 607-608,
610-614, 616-620

webserver: 19, 227

	Cover
	FM
	Copyright
	Preface
	Table of Contents
	Chapter 1: Introduction to Kubernetes and Containers
	Introduction
	The Evolution of Software Development
	Virtual Machines versus Containers
	Docker Basics
	What's behind docker run?
	Dockerfiles and Docker Images
	Exercise 1.01: Creating a Docker Image and Uploading It to Docker Hub
	Exercise 1.02: Running Your First Application in Docker

	The Essence of Linux Container Technology
	Namespace
	Exercise 1.03: Joining a Container to the Network Namespace of Another Container
	Cgroups
	Containerization: The Mindset Change
	Several Applications in One Container
	One Application in One Container
	A Comparison of These Approaches

	The Need for Container Orchestration
	Container Interactions
	Network and Storage
	Resource Management and Scheduling
	Failover and Recovery
	Scalability
	Service Exposure
	Delivery Pipeline
	Orchestrator: Putting All the Things Together

	Welcome to the Kubernetes World
	Activity 1.01: Creating a Simple Page Count Application

	Summary

	Chapter 2: An Overview of Kubernetes
	Introduction
	Setting up Kubernetes
	An Overview of Minikube
	Exercise 2.01: Getting Started with Minikube and Kubernetes Clusters

	Kubernetes Components Overview
	etcd
	API Server
	Scheduler
	Controller Manager
	Where Is the kubelet?
	kube-proxy

	Kubernetes Architecture
	Container Network Interface

	Migrating Containerized Application to Kubernetes
	Pod Specification
	Applying a YAML Manifest
	Exercise 2.02: Running a Pod in Kubernetes
	Service Specification
	Exercise 2.03: Accessing a Pod via a Service
	Services and Pods

	Delivering Kubernetes-Native Applications
	Exercise 2.04: Scaling a Kubernetes Application

	Pod Life Cycle and Kubernetes Components
	Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle
	Activity 2.01: Running the Pageview App in Kubernetes
	A Glimpse into the Advantages of Kubernetes for Multi-Node Clusters

	Summary

	Chapter 3: kubectl – Kubernetes Command Center
	Introduction
	How kubectl Communicates with Kubernetes
	Setting up Environments with Autocompletion and Shortcuts
	Exercise 3.01: Setting up Autocompletion
	Setting up the kubeconfig Configuration File

	Common kubectl Commands
	Frequently Used kubectl Commands to Create, Manage, and Delete Kubernetes Objects
	Walkthrough of Some Simple kubectl Commands
	Some Useful Flags for the get Command

	Populating Deployments in Kubernetes
	Exercise 3.02: Creating a Deployment
	Exercise 3.03: Updating a Deployment
	Exercise 3.04: Deleting a Deployment
	Activity 3.01: Editing a Live Deployment for a Real-Life Application

	Summary

	Chapter 4: How to Communicate with Kubernetes (API Server)
	Introduction
	The Kubernetes API Server
	Kubernetes HTTP Request Flow
	Authentication
	Authorization
	Admission Control
	Exercise 4.01: Starting Minikube with a Custom Set of Modules
	Validation

	The Kubernetes API
	Tracing kubectl HTTP Requests
	API Resource Type

	Scope of API Resources
	Namespace-Scoped Resources
	Cluster-Scoped Resources

	API Groups
	Core Group
	Named Group
	System-Wide

	API Versions
	Exercise 4.02: Getting Information about API Resources
	How to Enable/Disable API Resources, Groups, or Versions
	Exercise 4.03: Enabling and Disabling API Groups and Versions on a Minikube Cluster

	Interacting with Clusters Using the Kubernetes API
	Accessing the Kubernetes API Server Using kubectl as a Proxy
	Creating Objects Using curl
	Exercise 4.04: Creating and Verifying a Deployment Using kubectl proxy and curl

	Direct Access to the Kubernetes API Using Authentication Credentials
	Method 1: Using Client Certificate Authentication
	Method 2: Using a ServiceAccount Bearer Token
	Activity 4.01: Creating a Deployment Using a ServiceAccount Identity

	Summary

	Chapter 5: Pods
	Introduction
	Pod Configuration
	Exercise 5.01: Creating a Pod with a Single Container
	Name
	Namespace
	Exercise 5.02: Creating a Pod in a Different Namespace by Specifying the Namespace in the CLI
	Exercise 5.03: Creating a Pod in a Different Namespace by Specifying the Namespace in the Pod Configuration YAML file
	Exercise 5.04: Changing the Namespace for All Subsequent kubectl Commands
	Node
	Status
	Containers
	Exercise 5.05: Using CLI Commands to Create a Pod Running a Container
	Exercise 5.06: Creating a Pod Running a Container That Exposes a Port
	Exercise 5.07: Creating a Pod Running a Container with Resource Requirements
	Exercise 5.08: Creating a Pod with Resource Requests That Can't Be Met by Any of the Nodes
	Exercise 5.09: Creating a Pod with Multiple Containers Running inside It

	Life Cycle of a Pod
	Phases of a Pod

	Probes/Health Checks
	Types of Probes
	Liveness Probe
	Readiness Probe

	Configuration of Probes
	Implementation of Probes
	Command Probe
	HTTP Request Probe
	TCP Socket Probe
	Restart Policy

	Exercise 5.10: Creating a Pod Running a Container with a Liveness Probe and No Restart Policy
	Exercise 5.11: Creating a Pod Running a Container with a Liveness Probe and a Restart Policy
	Exercise 5.12: Creating a Pod Running a Container with a Readiness Probe
	Best Practices While Using Probes
	Activity 5.01: Deploying an Application in a Pod

	Summary

	Chapter 6: Labels and Annotations
	Introduction
	Labels
	Constraints for Labels
	Label Keys
	Label Values

	Why Do We Need Labels?
	Organizing Pods by Organization/Team/Project
	Running Selective Pods on Specific Nodes

	Exercise 6.01: Creating a Pod with Labels
	Exercise 6.02: Adding Labels to a Running Pod
	Exercise 6.03: Modifying And/Or Deleting Existing Labels for a Running Pod
	Selecting Kubernetes Objects Using Label Selectors
	Equality-Based Selectors

	Exercise 6.04: Selecting Pods Using Equality-Based Label Selectors
	Set-Based Selectors

	Exercise 6.05: Selecting Pods Using Set-Based Label Selectors
	Exercise 6.06: Selecting Pods Using a Mix of Label Selectors

	Annotations
	Constraints for Annotations
	Annotation Keys
	Annotation Values

	Use Case for Annotations
	Exercise 6.07: Adding Annotations to Help with Application Debugging
	Working with Annotations
	Activity 6.01: Creating Pods with Labels/Annotations and Grouping Them as per Given Criteria

	Summary

	Chapter 7: Kubernetes Controllers
	Introduction
	ReplicaSets
	ReplicaSet Configuration
	Replicas
	Pod Template
	Pod Selector

	Exercise 7.01: Creating a Simple ReplicaSet with nginx Containers
	Labels on the ReplicaSet
	Selectors for the ReplicaSet
	Replicas
	Pods Status
	Pods Template
	Events

	Exercise 7.02: Deleting Pods Managed by a ReplicaSet
	Exercise 7.03: Creating a ReplicaSet Given That a Matching Pod Already Exists
	Exercise 7.04: Scaling a ReplicaSet after It Is Created

	Deployment
	Deployment Configuration
	Strategy

	Exercise 7.05: Creating a Simple Deployment with Nginx Containers
	Labels and Annotations on the Deployment
	Selectors for the Deployment
	Replicas

	Rolling Back a Deployment
	Exercise 7.06: Rolling Back a Deployment

	StatefulSets
	StatefulSet Configuration
	Use Cases for StatefulSets

	DaemonSets
	Use Cases for DaemonSets
	DaemonSet Configuration

	Jobs
	Job Configuration
	A Use Case for Jobs in Machine Learning

	Exercise 7.07: Creating a Simple Job That Finishes in Finite Time
	Activity 7.01: Creating a Deployment Running an Application

	Summary

	Chapter 8: Service Discovery
	Introduction
	Service
	Service Configuration
	Types of Services
	NodePort Service
	Exercise 8.01: Creating a Simple NodePort Service with Nginx Containers
	ClusterIP Service
	Service Configuration

	Exercise 8.02: Creating a Simple ClusterIP Service with Nginx Containers
	Choosing a Custom IP Address for the Service

	Exercise 8.03: Creating a ClusterIP Service with a Custom IP
	LoadBalancer Service
	ExternalName Service

	Ingress
	Activity 8.01: Creating a Service to Expose the Application Running on a Pod

	Summary

	Chapter 9: Storing and Reading Data on Disk
	Introduction
	Volumes
	How to Use Volumes
	Defining Volumes
	Mounting Volumes
	Types of Volumes
	emptyDir
	hostPath

	Exercise 9.01: Creating a Pod with an emptyDir Volume
	Exercise 9.02: Creating a Pod with an emptyDir Volume Shared by Three Containers

	Persistent Volumes
	PersistentVolume Configuration
	storageClassName
	capacity
	volumeMode
	accessModes
	persistentVolumeReclaimPolicy

	PV Status
	PersistentVolumeClaim Configuration
	storageClassName
	resources
	volumeMode
	accessMode
	selectors

	How to Use Persistent Volumes
	Step 1 – Provisioning the Volume
	Step 2 – Binding the Volume to a Claim
	Step 3 – Using the Claim

	Exercise 9.03: Creating a Pod That Uses PersistentVolume for Storage

	Dynamic Provisioning
	Activity 9.01: Creating a Pod That Uses a Dynamically Provisioned PersistentVolume

	Summary

	Chapter 10: ConfigMaps and Secrets
	Introduction
	What Is a ConfigMap?
	Exercise 10.01: Creating a ConfigMap from Literal Values and Mounting It on a Pod Using Environment Variables
	Defining a ConfigMap from a File and Loading It onto a Pod
	Exercise 10.02: Creating a ConfigMap from a File
	Exercise 10.03: Creating a ConfigMap from a Folder

	What Is a Secret?
	Secret versus ConfigMap
	Exercise 10.04: Defining a Secret from Literal Values and Loading the Values onto the Pod as an Environment Variable
	Exercise 10.05: Defining a Secret from a File and Loading the Values onto the Pod as a File
	Exercise 10.06: Creating a TLS Secret
	Exercise 10.07: Creating a docker-registry Secret
	Activity 10.01: Using a ConfigMap and Secret to Promote an Application through Different Stages

	Summary

	Chapter 11: Build Your Own HA Cluster
	Introduction
	How the Components of Kubernetes Work Together to Achieve High Availability
	etcd
	Networking and DNS
	Nodes' and Master Servers' Locations and Resources
	Container Network Interface and Cluster DNS
	Container Runtime Interfaces
	Container Storage Interfaces

	Building a High-Availability Focused Kubernetes Cluster
	Self-Managed versus Vendor-Managed Kubernetes Solutions
	kops
	Other Commonly Used Tools
	Authentication and Identity in Kubernetes
	Exercise 11.01: Setting up Our Kubernetes Cluster
	Kubernetes Service Accounts
	Exercise 11.02: Deploying an Application on Our HA Cluster
	Activity 11.01: Testing the Resilience of a Highly Available Cluster
	Deleting Our Cluster

	Summary

	Chapter 12: Your Application and HA
	Introduction
	An Overview of Infrastructure Life Cycle Management
	Terraform
	Exercise 12.01: Creating an S3 Bucket with Terraform
	Exercise 12.02: Creating a Cluster with EKS Using Terraform

	Kubernetes Ingress
	Highly Available Applications Running on Top of Kubernetes
	Exercise 12.03: Deploying a Multi-Replica Non-HA Application in Kubernetes

	Working with Stateful Applications
	The CI/CD Pipeline
	Exercise 12.04: Deploying an Application with State Management
	Activity 12.01: Expanding the State Management of Our Application

	Summary

	Chapter 13: Runtime and Network Security in Kubernetes
	Introduction
	Threat Modeling
	The 4Cs of Cloud Native Security

	Cluster Security
	Kubernetes RBAC
	Role
	RoleBinding
	ClusterRole
	ClusterRoleBinding
	Some Important Notes about RBAC Policies
	ServiceAccount
	Exercise 13.01: Creating a Kubernetes RBAC ClusterRole

	NetworkPolicies
	Exercise 13.02: Creating a NetworkPolicy

	PodSecurityPolicy
	Exercise 13.03: Creating and Testing a PodSecurityPolicy
	Activity 13.01: Securing Our App

	Summary

	Chapter 14: Running Stateful Components in Kubernetes
	Introduction
	Stateful Apps
	Understanding StatefulSets
	Deployments versus StatefulSets

	Further Refactoring Our Application
	Exercise 14.01: Deploying a Counter App with a MySQL Backend
	Exercise 14.02: Testing the Resilience of StatefulSet Data in PersistentVolumes

	Helm
	Exercise 14.03: Chart-ifying Our Redis-Based Counter Application
	Activity 14.01: Chart-ifying Our StatefulSet Deployment

	Summary

	Chapter 15: Monitoring and Autoscaling in Kubernetes
	Introduction
	Kubernetes Monitoring
	Kubernetes Metrics API/Metrics Server
	Prometheus
	Grafana
	Monitoring Your Applications
	Exercise 15.01: Setting up the Metrics Server and Observing Kubernetes Objects

	Autoscaling in Kubernetes
	HorizontalPodAutoscaler
	Exercise 15.02: Scaling Workloads in Kubernetes
	ClusterAutoscaler
	Exercise 15.03: Configuring the ClusterAutoscaler
	Activity 15.01: Autoscaling Our Cluster Using ClusterAutoscaler
	Deleting Your Cluster Resources

	Summary

	Chapter 16: Kubernetes Admission Controllers
	Introduction
	How Admission Controllers Work
	Creating Controllers with Custom Logic
	The Mutating Admission Webhook
	The Validating Admission Webhook

	How a Webhook Works
	Exercise 16.01: Modifying a ConfigMap Object through a Patch
	Guidelines for Building a Mutating Admission WebHook
	Exercise 16.02: Deploying a Webhook
	Configuring the Webhook to Work with Kubernetes
	How to Encode a Certificate in Base64 Format
	Activity 16.01: Creating a Mutating Webhook That Adds an Annotation to a Pod

	Validating a Webhook
	Coding a Simple Validating WebHook
	Activity 16.02: Creating a Validating Webhook That Checks for a Label in a Pod
	Controlling the Effect of a Webhook on Selected Namespaces
	Exercise 16.03: Creating a Validating Webhook with the Namespace Selector Defined

	Summary

	Chapter 17: Advanced Scheduling in Kubernetes
	Introduction
	The Kubernetes Scheduler
	The Pod Scheduling Process
	Filtering
	Scoring
	Assigning
	Timeline of Pod Scheduling

	Managing the Kubernetes Scheduler
	Node Affinity and Anti-Affinity
	Exercise 17.01: Running a Pod with Node Affinity

	Pod Affinity and Anti-Affinity
	Exercise 17.02: Running Pods with Pod Affinity

	Pod Priority
	Exercise 17.03: Pod Priority and Preemption

	Taints and Tolerations
	Exercise 17.04: Taints and Tolerations

	Using a Custom Kubernetes Scheduler
	Activity 17.01: Configuring a Kubernetes Scheduler to Schedule Pods

	Summary

	Chapter 18: Upgrading Your Cluster without Downtime
	Introduction
	The Need to Upgrade Your Kubernetes Cluster
	Kubernetes Components – Refresher
	A Word of Caution

	The Upgrade Process
	Some Considerations for kops
	An overview of the Upgrade Process
	The Importance of Automation
	Backing up the etcd Datastore
	Exercise 18.01: Taking a Snapshot of the etcd Datastore
	Draining a Node and Making It Non-Schedulable
	Exercise 18.02: Draining All the Pods from the Nodes

	Upgrading Kubernetes Master Components
	Exercise 18.03: Upgrading Kubernetes Master Components

	Upgrading Kubernetes Worker Nodes
	Exercise 18.04: Upgrading the Worker Nodes
	Activity 18.01: Upgrading the Kubernetes Platform from Version 1.15.7 to 1.15.10

	Summary

	Chapter 19: Custom Resource Definitions in Kubernetes
	Introduction
	What Is a Custom Controller?
	The Relationship between a CRD, a CR, and a Controller

	Standard Kubernetes API Resources
	Why We Need Custom Resources?
	Example Use Case 1
	Example Use Case 2
	Example Use Case 3

	How Our Custom Resources Are Defined
	apiVersion
	kind
	spec
	namespaceName and podLiveForThisMinutes
	The Definition of a CRD
	Exercise 19.01: Defining a CRD
	Exercise 19.02: Defining a CR Using a CRD
	Writing the Custom Controller
	The Components of the Custom Controller

	Activity 19.01: CRD and Custom Controller in Action
	Adding Data to Our Custom Resource
	Exercise 19.03: Adding Custom Information to the CR List Command

	Summary

	Index

