
Google Cloud
for DevOps Engineers
A practical guide to SRE and achieving Google's
Professional Cloud DevOps Engineer certification

Sandeep Madamanchi

G
oogle Cloud

for D
evO

ps Engineers
Sandeep M

adam
anchi

DevOps is a set of practices that help remove barriers between developers and system administrators,
and is implemented by Google through site reliability engineering (SRE).

With the help of this book, you'll explore the evolution of DevOps and SRE, before delving into SRE
technical practices such as Service Level Agreement (SLA), Service Level Objective (SLO), Service Level
Indicator (SLI), and error budgets that are critical to building reliable software faster and balancing new
feature deployment with system reliability. You'll then explore SRE cultural practices such as incident
management and being on-call, and learn about the building blocks that form SRE teams. The second
part of the book focuses on Google Cloud services to implement DevOps via continuous integration and
continuous delivery (CI/CD). You'll learn how to add source code via Cloud Source Repositories, build
code to create deployment artifacts via Cloud Build, and push to Container Registry. Moving on, you'll
learn about the need for container orchestration via Kubernetes, comprehend Kubernetes essentials,
apply them via Google Kubernetes Engine (GKE), and secure a GKE cluster. Finally, you'll explore using
Google Cloud Operations to monitor, alert, debug, trace, and profi le deployed applications.

By the end of this SRE book, you'll be well versed in the key concepts assessed on the Professional
Cloud DevOps Engineer certifi cation, having proved your knowledge with mock tests.

Google Cloud
for DevOps Engineers

Things you will learn:

• Categorize user journeys and explore
diff erent ways to measure SLIs

• Explore the four golden signals for
monitoring a user-facing system

• Understand psychological safety along
with other SRE cultural practices

• Create containers with build triggers
and manual invocations

• Delve into Kubernetes workloads and
potential deployment strategies

• Secure GKE clusters via private clusters,
Binary Authorization, and shielded
GKE nodes

• Get to grips with monitoring, Metrics
Explorer, uptime checks, and alerting

• Discover how logs are ingested via the
Cloud Logging API

Google Cloud for
DevOps Engineers

A practical guide to SRE and achieving Google's
Professional Cloud DevOps Engineer certification

Sandeep Madamanchi

BIRMINGHAM—MUMBAI

Google Cloud for DevOps Engineers
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Vijin Boricha
Senior Editor: Rahul D'souza
Content Development Editor: Nihar Kapadia
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil D'mello
Proofreader: Safis Editing
Indexer: Vinayak Purushotham
Production Designer: Nilesh Mohite

First published: July 2021
Production reference: 3280621

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-801-9
www.packt.com

To my wonderful daughter – Adwita. As I see you grow every day,
you motivate me to learn and inspire me to be a better person.

Thank You!!

Contributors

About the author
Sandeep Madamanchi works at a company called Variant that re-engineers trucking
through technology, acting as the Head of Cloud Infrastructure and Data Engineering. He
is a continuous learner, focused on building highly resilient, secure, and self-healing cloud
infrastructure. He advocates SRE and its practices to achieve reliability and operational
stability. His vision is to provide infrastructure as a service to core engineering, analytics,
and ML specialized teams through DevOps, DataOps, and MLOps practices.

Prior to Variant, he was Director of R&D at Manhattan Associates; a leader in supply
chain software and worked there for over 14 years. He holds certifications across AWS and
GCP; which includes the Professional Cloud DevOps Engineer Certification.

I want to thank my family, friends, and mentors. A big shout out to the
Packt team (Neil, Nihar, Rahul, Riyan) led by Vijin Boricha for their
professionalism, and to the technical reviewers for their constructive

feedback. A big "thank you" to my best friend – Mridula, who kickstarted
my cloud journey. Finally, I would like to express my gratitude to my

parents (both of whom are educators) and to my grandparents for their
support during my learning phase.

About the reviewers
Richard Rose has worked in IT for over 20 years and holds many industry certifications.
He is the author of Hands-On Serverless Computing with Google Cloud. As someone who
works with the cloud every day, Rich is a strong proponent of cloud certifications. For
him, gaining expertise in an area is not the end of the journey. It is the start of realizing
your potential.

In his spare time, he enjoys spending time with his family and playing the guitar.
Recently, he has updated his blog to include his development-side projects and general
computing tips.

I would like to acknowledge the time, support, and energy of Dawn, Bailey,
Elliot, Noah, and Amelia. Without your assistance, it would be impossible

to achieve the possible.

Vaibhav Chopra has extensive experience in the fields of DevOps, SRE, Cloud Infra, and
NFV. He currently works as a senior engineering manager for Orange, and prior to that,
he worked with Ericsson, Amdocs, and Netcracker over a period of 11 years.

He is an open source enthusiast and is passionate about the latest technologies, as well as
being a multi-cloud expert and a seasoned blogger.

LFN has awarded him for his contribution in open source projects and he has participated
as a trainer and speaker at multiple conferences. In his current role, he drives the team in
relation to various CNCF projects, largely revolving around container security, resiliency,
and benchmarking, to build a production-grade hybrid cloud (GCP Anthos and
Openstack) solution.

I would like to thank 3 ladies, my mother Anu, my wife, Swati, my
daughter, Saanvika, who have supported me to contribute extra time

towards this and to my friends, who continuously motivate and inspire me
to learn new things.

Bruno S. Brasil is a cloud engineer who has always used Linux and then started working
in on-premises environments, participating in the modernization and migration to cloud
solutions. After working with several cloud providers, he chose Google Cloud as his
focus of expertise. Since then, he has worked on projects of this type as a consultant and
engineer, for several types of businesses, ranging from digital banks and marketplaces
to start-ups. He has always focused on implementing best practices in the development
of infrastructure as code, disseminating the DevOps culture and implementing SRE
strategies. He is enthusiastic about the open source community and believes that this is
the most important path in terms of the growth of new professionals.

I would like to thank my family and friends who have always supported me
since I chose to follow the path of technology. It was difficult to begin with,
but the fact that I am here today is because of the support I have received

from them. I would also like to thank the open source community, everyone
who shares their experiences, solutions, and time, for organizing events of
all kinds. This is essential to making knowledge accessible and democratic.

Table of Contents
Preface

Section 1: Site Reliability Engineering – A
Prescriptive Way to Implement DevOps

1
DevOps, SRE, and Google Cloud Services for CI/CD

Understanding DevOps, its
evolution, and life cycle 4
Revisiting DevOps evolution 4
DevOps life cycle 6
Key pillars of DevOps 8

SRE's evolution; technical and
cultural practices 9
The evolution of SRE 9
Understanding SRE 10
SRE's approach toward DevOps' key
pillars 11
Introducing SRE's key concepts 12
SRE's technical practices 15
SRE's cultural practices 21

Cloud-native approach to
implementing DevOps using
Google Cloud 24
Focus on microservices 24
Cloud-native development 25
Continuous integration in GCP 26
Continuous delivery/deployment in GCP 28
Continuous monitoring/operations on
GCP 30
Bringing it all together – building
blocks for a CI/CD pipeline in GCP 32

Summary 33
Points to remember 33
Further reading 34
Practice test 34
Answers 36

ii Table of Contents

2
SRE Technical Practices – Deep Dive

Defining SLAs 38
Key jargon 38
Blueprint for a well-defined SLA 39
SLIs drive SLOs, which inform SLAs 40

Defining reliability expectations
via SLOs 41
SLOs drive business decisions 41
Setting SLOs – the guidelines 42

Exploring SLIs 47
Categorizing user journeys 47
SLI equation 53
Sources to measure SLIs 53
SLI best practices (Google-
recommended) 57

Understanding error budgets 58
Error budget policy and the need for
executive buy-in 59

Making a service reliable 62
Summarizing error budgets 64

Eliminating toil through
automation 65
Illustrating the impact of
SLAs, SLOs, and error budgets
relative to SLI 66
Scenario 1 – New service features
introduced; features are reliable; SLO
is met 66
Scenario 2 – New features introduced;
features are not reliable; SLO is not met 68

Summary 69
Points to remember 70
Further reading 70
Practice test 71
Answers 73

3
Understanding Monitoring and Alerting to Target Reliability

Understanding monitoring 76
Monitoring as a feedback loop 77
Monitoring misconceptions to avoid 80
Monitoring sources 81
Monitoring strategies 83
Monitoring types 83
The golden signals 85

Alerting 86
Alerting strategy – key attributes 87
Alerting strategy – potential approaches 88
Handling service with low traffic 92
Steps to establish an SLO alerting policy 93

Alerting system – desirable
characteristics 94

Time series 94
Time series structure 95
Time series cardinality 97
Time series data – metric types 97

Summary 98
Points to remember 98
Further reading 99
Practice test 99
Answers 102

Table of Contents iii

4
Building SRE Teams and Applying Cultural Practices

Building SRE teams 104
Staffing SRE engineers (SREs) 104
SRE team implementations –
procedure and strategy 105
SRE engagement model 109

Incident management 112
Incident life cycle 113
Elements of effective incident
management 114

Being on call 120
Paging versus non-paging events 120
Single-site versus multi-site production
teams 121
Recommended practices while being

on call 122

Psychological safety 123
Factors to overcome in order to foster
psychological safety 124

Sharing vision and knowledge
and fostering collaboration 125
Unified vision 125
Communication and collaboration 126

Summary 127
Points to remember 127
Further reading 128
Practice test 128
Answers 131

Section 2: Google Cloud Services to
Implement DevOps via CI/CD

5
Managing Source Code Using Cloud Source Repositories

Technical requirements 136
Introducing the key features 137
Creating a repository via Google Cloud
Console 138
Creating a repository via the CLI 140
Adding files to a repository in CSR 141

One-way sync from GitHub/
Bitbucket to CSR 142
Common operations in CSR 148
Browsing repositories 148

Performing a universal code search 151
Detecting security keys 152
Assigning access controls 153

Hands-on lab – integrating with
Cloud Functions 154
Adding code to an existing repository
through the Cloud Shell Editor 154
Pushing code from the Cloud Shell
Editor (local repository) into CSR 155
Creating a cloud function and
deploying code from the repository
in CSR 156

iv Table of Contents

Summary 157
Further reading 158

Practice test 158
Answers 160

6
Building Code Using Cloud Build, and Pushing to Container
Registry

Technical requirements 162
Key terminology (prerequisites) 162
Understanding the need for
automation 164
Building and creating container
images – Cloud Build 166
Cloud Build essentials 166
Building code using Cloud Build 169
Storing and viewing build logs 172
Managing access controls 174
Cloud Build best practices – optimizing
builds 176

Managing build artifacts –
Container Registry 179
Container Registry – key concepts 180

Hands-on lab – building,
creating, pushing, and
deploying a container to Cloud
Run using Cloud Build triggers 190
Creating an empty repository in Source
Repositories 191
Creating a Cloud Build trigger 191
Adding code and pushing it to the
master branch 193
Code walk-through 194
Viewing the results 195

Summary 197
Points to remember 197
Further reading 199
Practice test 199
Answers 201

7
Understanding Kubernetes Essentials to Deploy
Containerized Applications

Technical requirements 204
Kubernetes – a quick
introduction 205
Container orchestration 205
Kubernetes features 206

Kubernetes cluster anatomy 207
Master components – Kubernetes
control plane 208

Node components 210
Using kubectl 213

Kubernetes objects 213
Pod 214
Deployment 218
StatefulSets 220
DaemonSets 221
Service 222

Table of Contents v

Scheduling and interacting with
Pods 227
Summarizing master plane
interactions on Pod creation 227
Critical factors to consider while
scheduling Pods 229

Kubernetes deployment
strategies 235
Recreate strategy 235

Rolling update strategy 236
Blue/Green strategy 240
Canary deployment 242

Summary 243
Points to remember 244
Further reading 245
Practice test 245
Answers 249

8
Understanding GKE Essentials to Deploy Containerized
Applications

Technical requirements 252
Google Kubernetes Engine
(GKE) – introduction 252
Creating a GKE cluster 254
GKE cluster – deploying and exposing
an application 258
GKE Console 258

GKE – core features 269
GKE node pools 269
GKE cluster configuration 272

AutoScaling in GKE 277
Networking in GKE 281
Storage options for GKE 285
Cloud Operations for GKE 286

GKE Autopilot – hands-on lab 290
Summary 295
Points to remember 295
Further reading 297
Practice test 297
Answers 300

9
Securing the Cluster Using GKE Security Constructs

Technical requirements 302
Essential security patterns in
Kubernetes 302
Authentication 302
Authorization 305
Control plane security 311
Pod security 313

Hardening cluster security in
GKE 319
GKE private clusters 320
Container-optimized OS 323
Shielded GKE nodes 324
Network Policies – restricting traffic
among pods 325
Workload Identity 328

vi Table of Contents

Points to remember 330
Further reading 331

Practice test 332
Answers 334

10
Exploring GCP Cloud Operations

Cloud Monitoring 337
Workspaces 337
Dashboards 341
Metrics explorer 344
Uptime checks 347
Alerting 349
Monitoring agent 351
Cloud Monitoring access controls 352

Cloud Logging 353
Audit Logs 354
Logs ingestion, routing, and exporting 358
Summarizing log characteristics across
log buckets 361
Logs Explorer UI 362
Logs-based metrics 365
Network-based log types 368
Logging agent 369

Cloud Debugger 371
Setting up Cloud Debugger 371

Using Cloud Debugger 372
Access control for Cloud Debugger 377

Cloud Trace 378
Trace Overview 379
Trace List 380
Analysis Reports 381

Cloud Profiler 381
Access control for Cloud Profiler 383

Binding SRE and Cloud
Operations 384
SLO monitoring 384
Hands-on lab – tracking service
reliability using SLO monitoring 386

Summary 395
Points to remember 395
Further reading 397
Practice test 397
Answers 403

Appendix
Getting Ready for Professional Cloud DevOps Engineer
Certification

Cloud Deployment Manager 406
Cloud Tasks 407
Spinnaker 408

Table of Contents vii

Mock Exam 1

Test Duration: 2 hours 411
Total Number of Questions: 50 411

Answers 423

Mock Exam 2

Test Duration: 2 hours 425
Total Number of Questions: 50 425

Answers 436
Why subscribe? 439

Other Books You May Enjoy

Index

Preface
This book is a comprehensive guide to Site Reliability Engineering (SRE) fundamentals,
Google's approach to DevOps. In addition, the book dives into critical services from
Google Cloud to implement Contiuous Integration/Continous Deployment (CI/
CD) with a focus on containerized deployments via Kubernetes. The book also serves
as preparation material for the Professional Cloud DevOps Engineer certification from
Google Cloud with chapter-based tests and mock tests included.

Who this book is for
This book is ideal for cloud system administrators and network engineers interested in
resolving cloud-based operational issues. IT professionals looking to enhance their careers
in administering Google Cloud services will benefit. Users who want to learn about
applying SRE principles and are focused on implementing DevOps in Google Cloud
Platform (GCP) will also benefit. Basic knowledge of cloud computing and GCP services,
an understanding of CI/CD, and hands-on experience with Unix/Linux infrastructure
are recommended. Those interested in passing the Professional Cloud DevOps Engineer
certification will find this book useful.

The Professional Cloud DevOps Engineer certification is advanced in nature. To better
prepare for this certification, it is recommended to either prepare for or be certified in
the Associate Cloud Engineer certification or Professional Cloud Architect certification.
Though these certifications are not prerequisites for the Professional Cloud DevOps
Engineer certification, they help to better prepare and be acquainted with services on GCP.

x Preface

What this book covers
Chapter 1, DevOps, SRE, and Google Cloud Services for CI/CD, covers DevOps, which is
a set of practices that builds, tests, and releases code in a repeatable and iterative manner.
These practices are aimed to break down the metaphoric wall between development and
operation teams. SRE is a prescriptive way from Google to implement DevOps that aligns
incentives between the development and operations teams to build and maintain reliable
systems. In addition, Google recommends a cloud-native development paradigm where
complex systems are decomposed into multiple services using microservices architecture.

This chapter will cover topics that include the DevOps life cycle, the evolution of SRE,
an introduction to key technical and cultural SRE practices, and the benefits of using a
cloud-native development paradigm. The chapter will also introduce services on GCP to
implement cloud-native development and apply SRE concepts.

Chapter 2, SRE Technical Practices – Deep Dive, covers reliability, which is the most critical
feature of a service and should be aligned with business objectives. SRE prescribes specific
technical practices to measure characteristics that define and track reliability. These technical
practices include the Service-Level Agreement (SLA), Service-Level Objective (SLO),
Service-Level Indicator (SLI), error budgets, and eliminating toil through automation.

This chapter goes in depth into SRE technical practices. This chapter will cover topics
that include the blueprint for a well-defined SLA, defining reliability expectations via
SLOs, understanding reliability targets and their implications, categorizing user journeys,
sources to measure SLIs, exploring ways to make a service reliable by tracking error
budgets, and eliminating toil through automation. The chapter concludes by walking
through two scenarios where the impact of SLAs, SLOs, and error budgets are illustrated
relative to the SLI being measured.

Chapter 3, Understanding Monitoring and Alerting to Target Reliability, discusses how the
key to implementing SRE technical practices is to ensure that SLAs, SLOs, and SLIs are
never violated. This makes it feasible to balance new feature releases and still maintain
system reliability since the error budget is not exhausted. Monitoring, alerting, and time
series are fundamental concepts to track SRE technical practices.

This chapter goes in depth into monitoring, alerting, and time series. This chapter will
cover topics that include monitoring sources, monitoring types, monitoring strategies,
the golden signals that are recommended to be measured and monitored, potential
approaches and key attributes to define an alerting strategy, and the structure and
cardinality of time series.

Preface xi

Chapter 4, Building SRE Teams and Applying Cultural Practices, covers how for a long
time, Google considered SRE as their secret sauce to achieving system reliability while
maintaining a balance with new feature release velocity. Google achieved this by applying
a prescribed set of cultural practices such as incident management, being on call, and
psychological safety. SRE cultural practices are required to implement SRE technical
practices and are strongly recommended by Google for organizations that would like to
start their SRE journey. In addition, Google has put forward aspects that are critical to
building SRE teams along with an engagement model.

This chapter goes in depth into building SRE teams, which includes topics around
different implementations of SRE teams, details around staffing SRE engineers, and
insights into the SRE engagement model. This chapter will also cover topics on SRE
cultural practices that include facets of effective incident management, factors to consider
while being on call, and factors to overcome to foster psychological safety. The chapter
concludes with a cultural practice that is aimed to reduce organizational silos by sharing
vision and knowledge and by fostering collaboration.

Chapter 5, Managing Source Code Using Cloud Source Repositories, looks at how source
code management is the first step in a CI flow. Code is stored in a source code repository
such as GitHub or Bitbucket so that developers can continuously make code changes
and the modified code is integrated into the repository. Cloud Source Repositories (CSR)
is a service from Google Cloud that provides source code management through private
Git repositories.

This chapter goes in depth into CSR. This chapter will cover topics that include key
features of CSR, steps to create and access the repository, how to perform one-way
sync from GitHub/Bitbucket to CSR, and common operations in CSR such as browsing
repositories, performing universal code search, and detecting security keys. The chapter
concludes with a hands-on lab that illustrates how code can be deployed in Cloud
Functions by pulling code hosted from CSR.

Chapter 6, Building Code Using Cloud Build, and Pushing to Container Registry, looks at
how once code is checked into a source code management system such as CSR, the next
logical step in a CI flow is to build code, create artifacts, and push to a registry that can
store the generated artifacts. Cloud Build is a service from Google Cloud that can build
the source code whereas Container Registry is the destination where the created build
artifacts are stored.

xii Preface

This chapter goes in depth into Cloud Build and Container Registry. This chapter will
cover topics that include understanding the need for automation, processes to build
and create container images, key essentials of Cloud Build, strategies to optimize the
build speed, key essentials of Container Registry, the structure of Container Registry,
and Container Analysis. The chapter concludes with a hands-on lab to build, create,
push, and deploy a container to Cloud Run using Cloud Build triggers. This hands-on
lab also illustrates a way to build a CI/CD pipeline as it includes both CI and automated
deployment of containers to Cloud Run, a GCP compute option that runs containers.

Chapter 7, Understanding Kubernetes Essentials to Deploy Containerized Applications,
covers Kubernetes, or K8s, which is an open source container orchestration system that
can run containerized applications but requires significant effort in terms of setting up
and ongoing maintenance. Kubernetes originated as an internal cluster management tool
from Google; Google donated it to the Cloud Native Computing Foundation (CNCF) as
an open source project in 2014.

This chapter goes in depth into K8s. This chapter will cover topics that include key features
of K8s, elaboration of cluster anatomy, which includes components of the master control
plane, node components, key Kubernetes objects such as Pods, Deployments, StatefulSets,
DaemonSet, Job, CronJob, and Services, and critical factors that need to be considered
while scheduling Pods. The chapter concludes with a deep dive into possible deployment
strategies in Kubernetes, which includes Recreate, Rolling Update, Blue/Green, and Canary.

Chapter 8, Understanding GKE Essentials to Deploy Containerized Applications, covers
Google Kubernetes Engine (GKE), which is a managed version of K8s; that is, an open
source container orchestration system to automate application deployment, scaling, and
cluster management. GKE requies less effort in terms of cluster creation and ongoing
maintenance.

This chapter goes in depth into GKE. This chapter will cover topics that include GKE
core features such as GKE node pools, GKE cluster configurations, GKE autoscaling,
networking in GKE, which includes Pod and service networking, GKE storage options, and
Cloud Operations for GKE. There are two hands-on labs in this chapter. The first hands-on
lab is placed at the start of the chapter and illustrates cluster creation using Standard mode,
deploying workloads, and exposing the Pod as a service. The chapter concludes with
another hands-on lab like the first one but with the cluster creation mode as Autopilot.

Chapter 9, Securing the Cluster Using GKE Security Constructs, covers how securing a
Kubernetes cluster is a critical part of deployment. Native Kubernetes provide some
essential security features that focus on how a request being sent to the cluster is
authenticated and authorized. It is also important to understand how the master plane
components are secured along with the Pods running the applications. Additionally, GKE
provides security features that are fundamental to harden a cluster's security.

Preface xiii

This chapter goes in depth into GKE security features. This chapter will cover topics that
include essential security patterns in Kubernetes, control plane security, and Pod security.
This chapter concludes by discussing various GKE-specific security features such as GKE
private clusters, container-optimized OS, shielded GKE nodes, restricting traffic among
Pods using a network policy, deploying time security services via binary authorizations,
and using a workload identity to access GCP services from applications running inside
the GKE cluster.

Chapter 10, Exploring GCP Cloud Operations, looks at how once an application is
deployed, the next critical phase of the DevOps life cycle is continuous monitoring as it
provides a feedback loop to ensure the reliability of a service or a system. As previously
discussed in Chapter 2, SRE Technical Practices – Deep Dive, SRE prescribes specific
technical tools or practices that help in measuring characteristics that define and
track reliability, such as SLAs, SLOs, SLIs, and error budgets. SRE prescribes the use of
observability to track technical practices. Observability on GCP is established through
Cloud Operations.

This chapter goes in depth into Cloud Operations. This chapter will cover topics that
include Cloud Monitoring essentials such as workspaces, dashboards, Metrics Explorer,
uptime checks, configuring alerting, and the need for a monitoring agent and access
controls specific to Cloud Monitoring. The chapter will also cover topics that include
Cloud Logging essentials such as audit logs with their classification, summarizing log
characteristics across log buckets, logs-based metrics, access controls specific to Cloud
Logging, network-based log types, and the use of logging agents. This chapter concludes
by discussing various essentials tied to Cloud Debugger, Cloud Trace, and Cloud Profiler.

To get the most out of this book
It is recommended that you have prior knowledge on topics that include Docker, an
introduction to native Kubernetes, a working knowledge of Git, getting hands on with
key services on Google Cloud such as Cloud Operations, compute services, and hands-on
usage of Google Cloud SDK or Cloud Shell. Additionally, hands-on knowledge of a
programming language of choice such as Python, Java, or Node.js will be very useful.
The code samples in this book are, however, written in Python.

xiv Preface

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Irrespective of whether you are working toward the Professional Cloud DevOps Engineer
certification, it is recommended to attempt the mock exam after completing all the chapters.
This will be a good way to assess the learnings absorbed from the content of the book.

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839218019_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "You can use the my-first-csr repository."

A block of code is set as follows:

steps:

- name: 'gcr.io/cloud-builders/docker'

 args: ['build', '-t', 'gcr.io/$PROJECT_ID/builder-myimage',
'.']

- name: 'gcr.io/cloud-builders/docker'

 args: ['push', 'gcr.io/$PROJECT_ID/builder-myimage']

- name: 'gcr.io/cloud-builders/gcloud'

https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers
https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781839218019_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839218019_ColorImages.pdf

Preface xv

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

 name: my-vpa

Any command-line input or output is written as follows:

gcloud builds submit --config <build-config-file> <source-code-
path>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Navigate to Source Repositories within GCP and select the Get Started option."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

xvi Preface

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

The core focus of this section is Site Reliability Engineering (SRE). The section starts with
the evolution of DevOps and its life cycle and introduces SRE as a prescriptive way to
implement DevOps. The emphasis is on defining the reliability of a service and ways to
measure it. In this section, SRE technical practices such as Service-Level Agreement (SLA),
Service-Level Objective (SLO), Service-Level Indicator (SLI), error budget, and eliminating
toil are introduced and are further elaborated. Fundamentals and critical concepts around
monitoring, alerting, and time series are also explored to track SRE technical practices.
However, SRE technical practices cannot be implemented within an organization without
bringing cultural change. Google prescribes a set of SRE cultural practices such as incident
management, being on call, psychological safety, and the need to foster collaboration.
This section also explores the aspects critical to building SRE teams and provides insights
into the SRE engagement model. It's important to note that the start of the section
introduces services in Google Cloud to implement DevOps through the principles of SRE;
however, the details of those services are explored in the next section.

Section 1:
Site Reliability

Engineering – A
Prescriptive Way to
Implement DevOps

This part of the book comprises the following chapters:

• Chapter 1, DevOps, SRE, and Google Cloud Services for CI/CD

• Chapter 2, SRE Technical Practices – Deep Dive

• Chapter 3, Understanding Monitoring and Alerting to Target Reliability

• Chapter 4, Building SRE Teams and Applying Cultural Practices

1
DevOps, SRE, and

Google Cloud
Services for CI/CD

DevOps is a mindset change that tries to balance release velocity with system reliability. It
aims to increase an organization's ability to continuously deliver reliable applications and
services at a high velocity when compared to traditional software development processes.

A common misconception about DevOps is that it is a technology. Instead, DevOps is a
set of supporting practices (such as, build, test, and deployment) that combines software
development and IT operations. These practices establish a culture that breaks down the
metaphorical wall between developers (who aim to push new features to production) and
system administrators or operators (who aim to keep the code running in production).

4 DevOps, SRE, and Google Cloud Services for CI/CD

Site Reliability Engineering (SRE) is Google's approach to align incentives between
development and operations that are key to building and maintaining reliable engineering
systems. SRE is a prescriptive way to implement DevOps practices and principles.
Through these practices, the aim is to increase overall observability and reduce the level
of incidents. The introduction of a Continuous Integration/Continuous Delivery (CI/
CD) pipeline enables a robust feedback loop in support of key SRE definitions such as toil,
observability, and incident management.

CI/CD is a key DevOps practice that helps to achieve this mindset change. CI/CD
requires a strong emphasis on automation to build reliable software faster (in terms of
delivering/deploying to production). Software delivery of this type requires agility, which
is often achieved by breaking down existing components.

A cloud-native development paradigm is one where complex systems are decomposed
into multiple services (such as microservices architecture). Each service can be
independently tested and deployed into an isolated runtime. Google Cloud Platform
(GCP) has well-defined services to implement cloud-native development and apply SRE
concepts to achieve the goal of building reliable software faster.

In this chapter, we're going to cover the following main topics:

• DevOps 101 – evolution and life cycle

• SRE 101 – evolution; technical and cultural practices

• GCP's cloud-native approach to implementing DevOps

Understanding DevOps, its evolution, and life
cycle
This section focuses on the evolution of DevOps and lists phases or critical practices that
form the DevOps life cycle.

Revisiting DevOps evolution
Let's take a step back and think about how DevOps has evolved. Agile software
development methodology refers to a set of practices based on iterative development
where requirements and solutions are built through collaboration between cross-functional
teams and end users. DevOps can be perceived as a logical extension of Agile. Some might
even consider DevOps as an offspring of Agile. This is because DevOps starts where Agile
logically stops. Let's explore what this means in detail.

Understanding DevOps, its evolution, and life cycle 5

Agile was introduced as a holistic approach for end-to-end software delivery. Its core
principles are defined in the Agile Manifesto (https://agilemanifesto.org/),
with specific emphasis on interaction with processes and tools, improving collaboration,
incremental and iterative development, and flexibility in response to changes to a fixed
plan. The initial Agile teams primarily had developers, but it quickly extended to product
management, customers, and quality assurance. If we factor in the impact of the increased
focus on iterative testing and user acceptance testing, the result is a new capacity to deliver
software faster to production.

However, Agile methodology creates a new problem that has resulted in a need for a new
evolution. Once software is delivered to production, the operations team are primarily
focused on system stability and upkeep. At the same time, development teams continue to
add new features to a delivered software to meet customers' dynamic needs and to keep up
with the competition.

Operators were always cautious for the fear of introducing issues. Developers always insist
on pushing changes since these were tested in their local setup, and developers always
thought that it is the responsibility of the operators to ensure that the changes work in
production. But from an operator's standpoint, they have little or no understanding of the
code base. Similarly, developers have little or no understanding of the operational practices.
So essentially, developers were focused on shipping new features faster and operators were
focused on stability. This forced developers to move slower in pushing the new features out
to production. This misalignment often caused tensions within an organization.

Patrick Debois, an IT consultant who was working on a large data center migration
project in 2007, experienced similar challenges when trying to collaborate with developers
and operators. He coined the term DevOps and later continued this movement with
Andrew Shafer. They considered DevOps as an extension of Agile. In fact, when it came to
naming their first Google group for DevOps, they called it Agile System Administration.

The DevOps movement enabled better communication between software development
and IT operations and effectively led to improved software with continuity being the core
theme across operating a stable environment, consistent delivery, improved collaboration,
and enhanced operational practices with a focus on innovation. This led to the evolution
of the DevOps life cycle, which is detailed in the upcoming sub-section.

https://agilemanifesto.org/

6 DevOps, SRE, and Google Cloud Services for CI/CD

DevOps life cycle
DevOps constitutes phases or practices that in their entirety form the DevOps life cycle.
In this section, we'll look at these phases in detail, as shown in the following diagram:

Figure 1.1 – Phases of the DevOps life cycle

There are six primary phases in a DevOps life cycle. They are as follows:

• Plan and build

• Continuous integration

• Continuous delivery

• Continuous deployment

• Continuous monitoring and operations

• Continuous feedback

The keyword here is continuous. If code is developed continuously, it will be followed
with a need to continuously test, provide feedback, deploy, monitor, and operate. These
phases will be introduced in the following sections.

Phase 1 – plan and build
In the planning phase, the core focus is to understand the vision and convert it into
a detailed plan. The plan can be split into phases, otherwise known as epics (in Agile
terminology). Each phase or epic can be scoped to achieve a specific set of functionalities,
which could be further groomed as one or multiple user stories. This requires a lot of
communication and collaboration between various stakeholders.

Understanding DevOps, its evolution, and life cycle 7

In the build phase, code is written in the language of choice and appropriate build
artifacts are created. Code is maintained in a source code repository such as GitHub,
Bitbucket, and others.

Phase 2 – continuous integration
CI is a software development practice where developers frequently integrate their code
changes to the main branch of a shared repository. This is done, preferably, several times
in a day, leading to several integrations.

Important note
Code change is considered the fundamental unit of software development. Since
development is incremental in nature, developers keep changing their code.

Ideally, each integration is triggered by an automated build that also initiates automated
unit tests, to detect any issues as quickly as possible. This avoids integration hell, or in
other words, ensures that the application is not broken by introducing a code change or
delta into the main branch.

Phase 3 – continuous delivery
Continuous delivery is a software development practice to build software such that
a set of code changes can be delivered or released to production at any time. It can be
considered an extension of CI and its core focus is on automating the release process to
enable hands-free or single-click deployments.

The core purpose is to ensure that the code base is releasable and there is no regression
break. It's possible that the newly added code might not necessarily work. The frequency
to deliver code to production is very specific to the organization and could be daily,
weekly, bi-weekly, and so on.

Phase 4 – continuous deployment
Continuous deployment is a software development practice where the core focus is to
release automated deployments to production without the user's intervention. It aims to
minimize the time elapsed between developers writing new line(s) of code and this new
code being used by live users in production.

8 DevOps, SRE, and Google Cloud Services for CI/CD

At its core, continuous deployment incorporates robust testing frameworks and encourages
code deployment in a testing/staging environment post the continuous delivery phase.
Automated tests can be run as part of the pipeline in the test/stage environment. In the
event of no issues, the code can be deployed to production in an automated fashion. This
removes the need for a formal release day and establishes a feedback loop to ensure that
added features are useful to the end users.

Phase 5 – continuous monitoring and operation
Continuous monitoring is a practice that uses analytical information to identify issues
with the application or its underlying infrastructure. Monitoring can be classified into two
types: server monitoring and application monitoring.

Continuous operations is a practice where the core focus is to mitigate, reduce, or
eliminate the impact of planned downtime, such as scheduled maintenance, or in the case
of unplanned downtime, such as an incident.

Phase 6 – continuous feedback
Continuous feedback is a practice where the core focus is to collect feedback that
improves the applica/service. A common misconception is that continuous feedback
happens only as the last phase of the DevOps cycle.

Feedback loops are present at every phase of the DevOps pipeline such that feedback is
conveyed if a build fails due to a specific code check-in, a unit/integration test or functional
test fails in a testing deployment, or an issue is found by the customer in production.

GitOps is one of the approaches to implement continuous feedback where a version
control system has the capabilities to manage operational workflows, such as Kubernetes
deployment. A failure at any point in the workflow can be tracked directly in the source
control and that creates a direct feedback loop.

Key pillars of DevOps
DevOps can be categorized into five key pillars or areas:

• Reduce organizational silos: Bridge the gap between teams by encouraging them to
work together toward a shared company vision. This reduces friction between teams
and increases communication and collaboration.

SRE's evolution; technical and cultural practices 9

• Accept failure as normal: In the continuous aspect of DevOps, failure is considered
an opportunity to continuously improve. Systems/services are bound to fail,
especially when more features are added to improve the service. Learning from
failures mitigates reoccurrence. Fostering failure as the normal culture will make
team members more forthcoming.

• Implement gradual change: Implementing gradual change falls in line with the
continuous aspect of DevOps. Small, gradual changes are not only easier to review
but in the event of an incident in production, it is easier to roll back and reduce the
impact of the incident by going back to a last known working state.

• Leverage tooling and automation: Automation is key to implement the continuous
aspect of CI/CD pipelines, which are critical to DevOps. It is important to identify
manual work and automate it in a way that eventually increases speed and adds
consistency to everyday processes.

• Measure everything: Measuring is a critical gauge for success. Monitoring is one
way to measure and observe that helps to get important feedback to continuously
improve the system.

This completes our introduction to DevOps where we discussed its evolution, life cycle
phases, and key pillars. At the end of the day, DevOps is a set of practices. The next section
introduces site reliability engineering, or SRE, which is essentially Google's practical
approach to implementing DevOps key pillars.

SRE's evolution; technical and cultural
practices
This section tracks back the evolution of SRE, defines SRE, discusses how SRE relates to
DevOps by elaborating DevOps key pillars, details critical jargon, and introduces SRE's
cultural practices.

The evolution of SRE
In the early 2000s, Google was building massive, complex systems to run their search and
other critical services. Their main challenge was to reliably run their services. At the time,
many companies historically had system administrators deploying software components
as a service. The use of system administrators, otherwise known as the sysadmin approach,
essentially focused on running the service by responding to events or updates as they
occur. This means that if the service grew in traffic or complexity, there would be a
corresponding increase in events and updates.

10 DevOps, SRE, and Google Cloud Services for CI/CD

The sysadmin approach has its pitfalls, and these are represented by two categories of cost:

• Direct costs: Running a service with a team of system administrators included
manual intervention. Manual intervention at scale is a major downside to change
management and event handling. However, this manual approach was adopted by
multiple organizations because there wasn't a recognized alternative

• Indirect costs: System administrators and developers widely differed in terms of
their skills, the vocabulary used to describe situations, and incentives. Development
teams always want to launch new features and their incentive is to drive adoption.
System administrators or ops teams want to ensure that the service is running
reliably and often with a thought process of don't change something that is working.

Google did not want to pursue a manual approach because at their scale and traffic, any
increase in demand would make it impractical to scale. The desire to regularly push more
features to their users would ultimately cause conflict between developers and operators.
Google wanted to reduce this conflict and remove the confusion with respect to desired
outcomes. With this knowledge, Google considered an alternative approach. This new
approach is what became known as SRE.

Understanding SRE
SRE is what happens when you ask a software engineer to design an

operations team.
(Betsy Beyer, Chris Jones, Jennifer Petoff, & Niall Murphy, Site Reliability Engineering,
O'REILLY)

The preceding is a quote from Ben Treynor Sloss, who in 2003 started the first SRE team
at Google with seven software engineers. Ben himself was a software engineer up until
that point, and joined Google as the site reliability Tsar in 2003, led the development
and operations of Google's production software infrastructure, network, and user-facing
services, and is currently the VP of engineering at Google. At that point in 2003, neither
Ben nor Google had any formal definition for SRE.

SRE is a software engineering approach to IT operations. SRE is an intrinsic part of
Google's culture. It's the key to running their massively complex systems and services at
scale. At its core, the goal of SRE is to end the age-old battle between development and
operations. This section introduces SRE's thought process and the upcoming chapters on
SRE give deeper insights into how SRE achieves its goal.

SRE's evolution; technical and cultural practices 11

A primary difference in Google's approach to building the SRE practice or team is the
composition of the SRE team. A typical SRE team consists of 50-60% Google software
engineers. The other 40-50% are personnel who have software engineering skills but in
addition, also have skills related to UNIX/Linux system internals and networking expertise.
The team composition forced two behavioral patterns that propelled the team forward:

• Team members were quickly bored of performing tasks or responding to
events manually.

• Team members had the capability to write software and provide an engineering
solution to avoid repetitive manual work even if the solution is complicated.

In simple terminology, SRE practices evolved when a team of software engineers ran a
service reliably in production and automated systems by using engineering practices. This
raises some critical questions. How is SRE different from DevOps? Which is better? This
will be covered in the upcoming sub-sections.

From Google's viewpoint, DevOps is a philosophy rather than a development
methodology. It aims to close the gap between software development and software
operations. DevOps' key pillars clarify what needs to be done to achieve collaboration,
cohesiveness, flexibility, reliability, and consistency.

SRE's approach toward DevOps' key pillars
DevOps doesn't put forward a clear path or mechanism for how it needs to be done.
Google's SRE approach is a concrete or prescriptive way to solve problems that the DevOps
philosophy addresses. Google describes the relationship between SRE and DevOps using
an analogy:

If you think of DevOps like an interface in a programming language,
class SRE implements DevOps.

(Google Cloud, SRE vs. DevOps: competing standards or close friends?, https://
cloud.google.com/blog/products/gcp/sre-vs-devops-competing-
standards-or-close-friends)

Let's look at how SRE implements DevOps and approaches the DevOps key pillars:

• Reduces organizational silos: SRE reduces organizational silos by sharing ownership
between developers and operators. Both teams are involved in the product/service
life cycle from the start. Together they define Service-Level Objectives (SLOs),
Service-Level Indicators (SLIs), and error budgets and share the responsibility to
determine the reliability, work priority, and release cadence of new features. This
promotes a shared vision and improves communication and collaboration.

https://cloud.google.com/blog/products/gcp/sre-vs-devops-competing-standards-or-close-friends
https://cloud.google.com/blog/products/gcp/sre-vs-devops-competing-standards-or-close-friends
https://cloud.google.com/blog/products/gcp/sre-vs-devops-competing-standards-or-close-friends

12 DevOps, SRE, and Google Cloud Services for CI/CD

• Accepts failure as normal: SRE accepts failure as normal by conducting blameless
postmortems, which includes detailed analysis without any reference to a person.
Blameless postmortems help to understand the reasons for failure, identifying
preventive actions, and ensuring that a failure for the same reason doesn't re-occur.
The goal is to identify the root cause and process but not to focus on individuals.
This helps to promote psychological safety. In most cases, failure is the result of
a missing SLO or targets and incidents are tracked using specific indicators as a
function of time or SLI.

• Implements gradual change: SRE implements gradual changes by limited canary
rollouts and eventually reduces the cost of failures. Canary rollouts refer to the
process of rolling out changes to a small percentage of users in production before
making them generally available. This ensures that the impact is limited to a small
set of users and gives us the opportunity to capture feedback on the new rollouts.

• Leverages tooling and automation: SRE leverages tooling and automation to
reduce toil or the amount of manual repetitive work, and it eventually promotes
speed and consistency. Automation is a force multiplier. However, this can create a
lot of resistance to change. SRE recommends handling this resistance to change by
understanding the psychology of change.

• Measures everything: SRE promotes data-driven decision making, encourages goal
setting by measuring and monitoring critical factors tied to the health and reliability
of the system. SRE also measures the amount of manual, repetitive work spent.
Measuring everything is key for setting up SLOs and Service-Level Agreements
(SLAs) and reducing toil.

This wraps up our introduction to SRE's approach to DevOps key pillars; we referred
to jargon such as SLI, SLO, SLA, error budget, toil, and canary rollouts. These will be
introduced in the next sub-section.

Introducing SRE's key concepts
SRE implements the DevOps philosophy via several key concepts, such as SLI, SLO, SLA,
error budget, and toil.

Becoming familiar with SLI, SLO, and SLA
Before diving into the definitions of SRE terminology – specifically SLI, SLO, and SLA –
this sub-section attempts to introduce this terminology through a relatable example.

SRE's evolution; technical and cultural practices 13

Let's consider that you are a paid consumer for a video streaming service. As a paid
consumer, you will have certain expectations from the service. A key aspect of that
expectation is that the service needs to be available. This means when you try to access the
website of the video streaming service via any permissible means, such as mobile device or
desktop, the website needs to be accessible and the service should always work.

If you frequently encounter issues while accessing the service, either because the service
is experiencing high traffic or the service provider is adding new features, or for any
other reason, you will not be a happy consumer. Now, it is possible that some users can
access this service at a moment in time but some users are unable to access it at the same
moment in time. Those users who are able to access it are happy users and users who are
unable to access it are sad users.

Availability
The first and most critical feature that a service should provide is availability.
Service availability can also be referred to as its uptime. Availability is the
ability of an application or service to run when needed. If a system is not
running, then the system will fail.

Let's assume that you are a happy user. You can access the service. You can create a
profile, browse titles, filter titles, watch reviews for specific titles, add videos to your
watchlist, play videos, or add reviews to viewed videos. Each of these actions performed
by you as a user can be categorized as a user journey. For each user journey, you will have
certain expectations:

• If you try to browse titles under a specific category, say comedy, you would expect
that the service loads the titles without any delay.

• If you select a title that you would like to watch, you would expect to watch the
video without any buffering.

• If you would like to watch a livestream, you would expect the stream contents to be
as fresh as possible.

Let's explore the first expectation. When you as a user tries to browse titles under comedy,
how fast is fast enough?

14 DevOps, SRE, and Google Cloud Services for CI/CD

Some users might expect to display the results within 1 second, and some might expect it
in 200 ms and some others in 500 ms. So, the expectation needs to be quantifiable and for
it to be quantifiable, it needs to be measurable. The expectation should be set to a value
where most of the users will be happy. It should also be measured for a specific duration
(say 5 minutes) and should be met over a period (say 30 days). It should not be a one-time
event. If the expectation is not met over a period users expect, the service provider takes
on some accountability and addresses the users' concerns either by issuing a refund or
adding extra service credits.

For a service to be reliable, the service needs to have key characteristics based on
expectations from user journeys. In this example, the key characteristics that the user
expects are latency, throughput, and freshness.

Reliability
Reliability is the ability of an application or service to perform a specific
function within a specific time without failures. If a system cannot perform its
intended function, then the system will fail.

So, to summarize the example of a video streaming service, as a user you will expect
the following:

• The service is available.

• The service is reliable.

Now, let's introduce SRE terminology with respect to the preceding example before going
into their formal definitions:

• Expecting the service to be available or expecting the service to meet a specific
amount of latency, throughput, or freshness, or any other characteristic that is
critical to the user journey, is known as SLI.

• Expecting the service to be available or reliable for a certain target level over a
specific period is SLO.

• Expecting the service to meet a pre-defined customer expectation, the failure of
which results in a refund or credits, is SLA.

Let's move on from this general understanding of these concepts and explore how Google
views them by introducing SRE's technical practices.

SRE's evolution; technical and cultural practices 15

SRE's technical practices
SRE specifically prescribes the usage of specific technical tools or practices that will help to
define, measure, and track service characteristics such as availability and reliability. These
are referred to as SRE technical practices and specifically refer to SLIs, SLOs, SLAs, error
budget, and toil. These are introduced in the following sections with significant insights.

Service-Level Indicator (SLI)
Google SRE has the following definition for SLI:

SLI is a carefully defined quantitative measure of some aspect of the level of
service that is provided.

(Betsy Beyer, Chris Jones, Jennifer Petoff, & Niall Murphy, Site Reliability Engineering,
O'REILLY)

Most services consider latency or throughput as key aspects of a service based on related
user journeys. SLI is a specific measurement of these aspects where raw data is aggregated
or collected over a measurement window and represented as a rate, average, or percentile

Let's now look at the characteristics of SLIs:

• It is a direct measurement of a service performance or behavior.

• Refers to measurable metrics over time.

• Can be aggregated and turned to rate, average, or percentile.

• Used to determine the level of availability. SRE considers availability as the
prerequisite to success.

SLI can be represented as a formula:

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 100

For systems serving requests over HTTPS, validity is often determined by request
parameters such as hostname or requested path to scope the SLI to a particular set of
serving tasks, or response handlers. For data processing systems, validity is usually
determined by the selection of inputs to scope the SLI to a subset of data. Good events
refer to the expectations from the service or system.

Let's look at some examples of SLIs:

• Request latency: The time taken to return a response for a request should be less
than 100 ms.

16 DevOps, SRE, and Google Cloud Services for CI/CD

• Failure rate: The ratio of unsuccessful requests to all received requests should be
greater than 99%.

• Availability: Refers to the uptime check on whether a service is available or not at a
particular point in time.

Service-Level Objective (SLO)
Google SRE uses the following definition for SLO:

Service level objectives (SLOs) specify a target level for the reliability of your
service.

(Betsy Beyer, Chris Jones, Jennifer Petoff, & Niall Murphy, Site Reliability Engineering,
O'REILLY)

Customers have specific expectations from a service and these expectations are
characterized by specific indicators or SLIs that are tailored per the user journey. SLOs are
a way to measure customer happiness and their expectations by ensuring that the SLIs are
consistently met and are potentially reported before the customer notices an issue.

Let's now look at the characteristics of SLOs:

• Identifies whether a service is reliable enough.

• Directly tied to SLIs. SLOs are in fact measured by using SLIs.

• Can either be a single target or a range of values for the collection of SLIs.

• If the SLI refers to metrics over time, which details the health of a service, then
SLOs are agreed-upon bounds on how often the SLIs must be met.

Let's see how they are represented as a formula:

𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 target OR 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑏𝑏𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏

SLO can best be represented either as a specific target value or as a range of values for
an SLI for a specific aspect of a service, such as latency or throughput, representing the
acceptable lower bound and possible upper bound that is valid over a specific period.
Given that SLIs are used to measure SLOs, SLIs should be within the target or between the
range of acceptable values

Let's look at some examples of SLOs:

• Request latency: 99.99% of all requests should be served under 100 ms over a
period of 1 month or 99.9% of all requests should be served between 75 ms and 125
ms for a period of 1 month.

SRE's evolution; technical and cultural practices 17

• Failure rate: 99.9% of all requests should have a failure rate of 99% over 1 year.

• Availability: The application should be usable for 99.95% of the time over 24 hours.

Service-Level Agreement (SLA)
Google SRE uses the following definition for SLAs:

SLA is an explicit or implicit contract with your users that includes
consequences of meeting (or missing) the SLOs they contain.

(Betsy Beyer, Chris Jones, Jennifer Petoff, & Niall Murphy, Site Reliability Engineering,
O'REILLY)

An SLA is an external-facing agreement that is provided to the consumer of a service. The
agreement clearly lays out the minimum expectations that the consumer can expect from
the service and calls out the consequences that the service provider needs to face if found
in violation. The consequences are generally applied in terms of refund or additional
credits to the service consumer.

Let's now look at the characteristics of SLAs:

• SLAs are based on SLOs.

• Signifies the business factor that binds the customer and service provider.

• Represents the consequences of what happens when availability or customer
expectation fails.

• Are more lenient than SLOs to trigger early alarms as these are the minimum
expectations that the service should meet.

SLAs' priority in comparison to SLOs can be represented as follows:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Let's look at some examples of SLAs:

• Latency: 99% of all requests per day should be served under 150 ms; otherwise, 10%
of the daily subscription fee will be refunded.

• Availability: The service should be available with an uptime commitment of 99.9%
in a 30-day period; else 4 hours of extra credit will be added to the user account.

18 DevOps, SRE, and Google Cloud Services for CI/CD

Error budgets
Google SRE defines error budgets as follows:

A quantitative measurement shared between the product and the SRE
teams to balance innovation and stability.

(Betsy Beyer, Chris Jones, Jennifer Petoff, & Niall Murphy, Site Reliability Engineering,
O'REILLY)

While a service needs to be reliable, it should also be mindful that if new features are not
added to the service, then users might not continue to use it. A 100% reliable service will
imply that the service will not have any downtime. This means that it will be increasingly
difficult to add innovation via new features that could potentially attract new customers
and lead to an increase in revenue. Getting to 100% reliability is expensive and complex.
Instead, it's recommended to find the unique value for service reliability where customers
feel that the service is reliable enough.

Unreliable systems can quickly erode users' confidence. So, it's critical to reduce the
chance of system failure. SRE aims to balance the risk of unavailability with the goals of
rapid innovation and efficient service operations so that users' overall happiness – with
features, service, and performance – is optimized.

The error budget is basically the inverse of availability, and it tells us how unreliable our
service is allowed to be. If your SLO says that 99.9% of requests should be successful in a
given quarter, your error budget allows 0.1% of requests to fail. This unavailability can be
generated because of bad pushes by the product teams, planned maintenance, hardware
failures, and so on:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 100% − 𝑆𝑆𝑆𝑆𝑆𝑆

Important note
The relationship between the error budget and actual allowed downtime for a
service is as follows:

If SLO = 99.5%, then error budget = 0.5% = 0.005

Allowed downtime per month = 0.005 * 30 days/month * 24 hours/day * 60
minutes/hour = 216 minutes/month

SRE's evolution; technical and cultural practices 19

The following table represents the allowed downtime for a specific time period to
achieve a certain level of availability. For downtime information calculation for a
specific availability level (other than the following mentioned), refer to https://
availability.sre.xyz/:

There are advantages to defining the error budget:

• Release new features while keeping an eye on system reliability.

• Roll out infrastructure updates.

• Plan for inevitable failures in networks and other similar events.

Despite planning error budgets, there are times when a system can overshoot it. In such
cases, there are a few things that occur:

• Release of new features is temporarily halted.

• Increased focus on dev, system, and performance testing.

Toil
Google SRE defines toil as follows:

Toil is the kind of work tied to running a production service that tends to
be manual, repetitive, automatable, tactical, devoid of enduring value and

that scales linearly as a service grows.
(Betsy Beyer, Chris Jones, Jennifer Petoff, & Niall Murphy, Site Reliability Engineering,
O'REILLY)

Here are the characteristics of toil:

• Manual: Act of manually initiating a script that automates a task.

• Repetitive: Tasks that are repeated multiple times.

https://availability.sre.xyz/
https://availability.sre.xyz/

20 DevOps, SRE, and Google Cloud Services for CI/CD

• Automatable: Human executing a task instead of a machine, especially if a machine
can execute with the same effectiveness.

• Tactical: Reactive tasks originating out of an interruption (such as pager alerts),
rather than strategy-driven proactive tasks, are considered toil.

• No enduring value: Tasks that do not change the effective state of the service
after execution.

• Linear growth: Tasks that grow linearly with an increase in traffic or service demand.

Toil is generally confused with overhead. Overhead is not the same as toil. Overhead
is referred to as administrative work that is not tied to running a service, but toil refers
to repetitive work that can be reduced by automation. Automation helps to lower
burnout, increase team morale, increase engineering standards, improve technical skills,
standardize processes, and reduce human error. Examples of tasks that represent overhead
and not toil are email, commuting, expense reports, and meetings.

Canary rollouts
SRE prescribes implementing gradual change by using canary rollouts, where the concept
is to introduce a change to a small portion of users to detect any imminent danger.

To elaborate, when there is a large service that needs to be sustained, it's preferable to
employ a production change with unknown impact to a small portion to identify any
potential issue. If any issues are found, the change can be reversed, and the impact or cost
is much less than if the change was rolled out to the whole service.

The following two factors should be considered when selecting the canary population:

• The size of the canary population should be small enough that it can be quickly
rolled back in case an issue arises.

• The size of the canary population should be large enough that it is a representative
subset of the total population.

This concludes a high-level overview of important SRE technical practices. The next
section details SRE cultural practices that are key to embrace SRE across an organization
and are also critical to efficiently handle change management.

SRE's evolution; technical and cultural practices 21

SRE's cultural practices
Defining SLIs, SLOs, and SLAs for a service, using error budgets to balance velocity (the
rate at which changes are delivered to production) and reliability, identifying toil, and
using automation to eliminate toil forms SRE's technical practices. In addition to these
technical practices, it is important to understand and build certain cultural practices
that eventually support the technical practices. Cultural practices are equally important
to reduce silos within IT teams, as they can reduce the incompatible practices used by
individuals within the team. The first cultural practice that will be discussed is the need
for a unifying vision.

Need for a unifying vision
Every company needs a vision and a team's vision needs to align with the company's
vision. The company's vision is a combination of core values, the purpose, the mission,
strategies, and goals:

• Core values: Values refer to a team member's commitment to personal/
organizational goals. It also reflects on how members operate within a team by
building trust and psychological safety. This creates a culture where the team is open
to learning and willing to take risks.

• Purpose: A team's purpose refers to the core reason that the team exists in the first
place. Every team should have a purpose in the larger context of the organization.

• Mission: A team's mission refers to a well-articulated, clear, compelling, and
unified goal.

• Strategy: A team's strategy refers to a plan on how the team will realize its mission.

• Goals: A team's goal gives more detailed and specific insights into what the team
wants to achieve. Google recommends the use of Objectives and Key Results
(OKRs), which are a popular goal-setting tool in large companies.

Once a vision statement is established for the company and the team, the next cultural
practice is to ensure there is efficient collaboration and communication within the team
and across cross-functional teams. This will be discussed next.

22 DevOps, SRE, and Google Cloud Services for CI/CD

Collaboration and communication
Communication and collaboration are critical given the complexity of services and the
need for these services to be globally accessible. This also means that SRE teams should
be globally distributed to support services in an effective manner. Here are some SRE
prescriptive guidelines:

• Service-oriented meetings: SRE teams frequently review the state of the service
and identify opportunities to improve and increase awareness among stakeholders.
The meetings are mandatory for team members and typically last 30-60 minutes,
with a defined agenda such as discussing recent paging events, outages, any required
configuration changes.

• Balanced team composition: SRE teams are spread across multiple countries and
multiple time zones. This enables them to support a globally available system or
service. The SRE team composition typically includes a technical lead (to provide
technical guidance), a manager (who runs performance management), and a project
manager, who collaborate across time zones.

• Involvement throughout the service life cycle: SRE teams are actively involved
throughout the service life cycle across various stages such as architecture and
design, active development, limited availability, general availability, and depreciation.

• Establish rules of engagement: SRE teams should clearly describe what channels
should be used for what purpose and in what situations. This brings in a sense
of clarity. SRE teams should use a common set of tools for creating and
maintaining artifacts

• Encourage blameless postmortem: SRE encourages a blameless postmortem culture,
where the theme is to learn from failure and the focus is on identifying the root cause
of the issue rather than on individuals. A well-written postmortem report can act as
an effective tool for driving positive organizational changes since the suggestions or
improvements mentioned in the report can help to tune up existing processes

• Knowledge sharing: SRE teams prescribe knowledge sharing through specific
means such as encouraging cross-training, creation of a volunteer teaching network,
and sharing postmortems of incidents in a way that fosters collaboration and
knowledge sharing.

The preceding guidelines, such as knowledge sharing along with the goal to reduce paging
events or outages by creating a common set of tools, increase resistance among individuals
and team members. This might also create a sense of insecurity. The next cultural practice
elaborates on how to encourage psychological safety and reduce resistance to change.

SRE's evolution; technical and cultural practices 23

Encouraging psychological safety and reducing resistance to change
SRE prescribes automation as an essential cornerstone to apply engineering principles
and reduce manual work such as toil. Though eliminating toil through automation is a
technical practice, there will be huge resistance to performing automation. Some may resist
automation more than others. Individuals may feel as though their jobs are in jeopardy,
or they may disagree that certain tasks need not be automated. SRE prescribes a cultural
practice to reduce the resistance to change by building a psychologically safe environment.

In order to build a psychologically safe environment, it is first important to communicate
the importance of a specific change. For example, if the change is to automate this year's
job away, here are some reasons on how automation can add value:

• Provides consistency.

• Provides a platform that can be extended and applied to more systems.

• Common faults can be easily identified and resolved more quickly.

• Reduces cost by identifying problems as early in the life cycle as possible, rather
than finding them in production.

Once the reason for the change is clearly communicated, here are some additional
pointers that will help to build a psychologically safe environment:

• Involve team members in the change. Understand their concerns and empathize
as needed.

• Encourage critics to openly express their fears as this adds a sense of freedom to
team members to freely express their opinions.

• Set realistic expectations.

• Allow team members to adapt to new changes.

• Provide them with effective training opportunities and ensure that training is
engaging and rewarding.

This completes an introduction to key SRE cultural practices that are critical to
implementing SRE's technical practices. Subsequently, this also completes the section on
SRE where we introduced SRE, discussed its evolution, and elaborated on how SRE is a
prescriptive way to practically implement DevOps key pillars. The next section discusses
how to implement DevOps using Google Cloud services.

24 DevOps, SRE, and Google Cloud Services for CI/CD

Cloud-native approach to implementing
DevOps using Google Cloud
This section elaborates on how to implement DevOps using Google Cloud services with
a focus on a cloud-native approach – an approach that uses cloud computing at its core to
build highly available, scalable, and resilient applications.

Focus on microservices
A monolith application has a tightly coupled architecture and implements all possible
features in a single code base along with the database. Though monolith applications can
be designed with modular components, the components are still packaged at deployment
time and deployed together as a single unit. From a CI/CD standpoint, this will potentially
result in a single build pipeline. Fixing an issue or adding a new feature is an extremely
time-consuming process since the impact is on the entire application. This decreases the
release velocity and essentially is a nightmare for production support teams dealing with
service disruption.

In contrast, a microservice application is based on service-oriented architecture. A
microservice application divides a large program into several smaller, independent
services. This allows the components to be managed by smaller teams as the components
are more isolated in nature. The teams, as well as the service, can be independently scaled.
Microservices fundamentally support the concept of incremental code change. With
microservices, the individual components are deployable. Given that microservices are
feature-specific, in the event of an issue, fault detection and isolation are much easier and
hence service disruptions can be handled quickly and efficiently. This also makes it much
more suitable for CI/CD processes and works well with the theme of building reliable
software faster!

Exam tip
Google Cloud provides several compute services that facilitate the deployment
of microservices as containers. These include App Engine flexible environment,
Cloud Run, Google Compute Engine (GCE), and Google Kubernetes Engine
(GKE). From a Google Cloud DevOps exam perspective, the common theme
is to build containers and deploy containers using GKE. GKE will be a major
focus area and will be discussed in detail in the upcoming chapters.

Cloud-native approach to implementing DevOps using Google Cloud 25

Cloud-native development
Google promotes and recommends application development using the following
cloud-native principles:

• Use microservice architectural patterns: As discussed in the previous sub-section,
the essence is to build smaller independent services that could be managed
separately and be scaled granularly.

• Treat everything as code: This principle makes it easier to track, roll back code
if required, and see the version of change. This includes source code, test code,
automation code, and infrastructure as code.

• Build everything as containers: A container image can include software
dependencies needed by the application, specific language runtimes, and other
software libraries. Containers can be run anywhere, making it easier to develop and
deploy. This allows developers to focus on code and ops teams will spend less time
debugging and diagnosing differences in environments.

• Design for automation: Automated processes can repair, scale, and deploy systems
faster than humans. As a critical first step, a comprehensive CI/CD pipeline is
required that can automate the build, testing, and deployment process. In addition,
the services that are deployed as containers should be configured to scale up or
down based on outstanding traffic. Real-time monitoring and logging should be
used as a source for automation since they provide insights into potential issues
that could be mitigated by building proactive actions. The idea of automation can
also be extended to automate the entire infrastructure using techniques such as
Infrastructure as Code (IaC).

• Design components to be stateless wherever possible: Stateless components
are easy to scale up or down, repair a failed instance by graceful termination and
potential replacement, roll back to an older instance in case of issues, and make
load balancing a lot simpler since any instance can handle any request. Any need
to store persistent data should happen outside the container, such as storing files
using Cloud Storage, storing user sessions through Redis or Memcached, or using
persistent disks for block-level storage.

Google Cloud provides two approaches for cloud-native development – serverless and
Kubernetes. The choice comes down to focus on infrastructure versus business logic:

• Serverless (via Cloud Run, Cloud Functions, or App Engine): Allows us to focus on
the business logic of the application by providing a higher level of abstraction from
an infrastructure standpoint.

26 DevOps, SRE, and Google Cloud Services for CI/CD

• Kubernetes (via GKE): Provides higher granularity and control on how multiple
microservices can be deployed, how services can communicate with each other, and
how external clients can interact with these services.

Managed versus serverless service
Managed services allow operations related to updates, networking, patching,
high availability, automated backups, and redundancy to be managed by the
cloud provider. Managed services are not serverless as it is required to specify
a machine size and the service mandates to have a minimal number of VMs/
nodes. For example, it is required to define the machine size while creating a
cloud SQL instance, but updates and patches can be configured to be managed
by Google Cloud.

Serverless services are managed but do not require reserving a server upfront
or keeping it running. The focus is on the business logic of the application with
the possibility of running or executing code only when needed. Examples are
Cloud Run, Cloud Storage, Cloud Firestore, and Cloud Datastore.

Continuous integration in GCP
Continuous integration forms the CI of the CI/CD process and at its heart is the culture
of submitting smaller units of change frequently. Smaller changes minimize the risk, help
to resolve issues quickly, increase development velocity, and provide frequent feedback.
The following are the building blocks that make up the CI process:

• Make code changes: By using the IDE of choice and possible cloud-native plugins

• Manage source code: By using a single shared code repository

• Build and create artifacts: By using an automated build process

• Store artifacts: By storing artifacts such as container images in a repository for a
future deployment process

Google Cloud has an appropriate service for each of the building blocks that allows us to
build a GCP-native CI pipeline (refer to Figure 1.2). The following is a summary of these
services, which will be discussed in detail in upcoming chapters:

Cloud-native approach to implementing DevOps using Google Cloud 27

Figure 1.2 – CI in GCP

Let's look at these stages in detail.

Cloud Code
This is the GCP service to write, debug, and deploy cloud-native applications. Cloud Code
provides extensions to IDEs such as Visual Studio Code and the JetBrains suite of IDEs that
allows to rapidly iterate, debug, and run code on Kubernetes and Cloud Run. Key features
include the following:

• Speed up development and simplify local development

• Extend to production deployments on GKE or Cloud Run and allow debugging
deployed applications

• Deep integration with Cloud Source Repositories and Cloud Build

• Easy to add and configure Google Cloud APIs from built-in library manager

Cloud Source Repositories
This is the GCP service to manage source code. It provides Git version control to
support the collaborative development of any application or service. Key features include
the following:

• Fully managed private Git repository

• Provides one-way sync with Bitbucket and GitHub source repositories

• Integration with GCP services such as Cloud Build and Cloud Operations

• Includes universal code search within and across repositories

28 DevOps, SRE, and Google Cloud Services for CI/CD

Cloud Build
This is the GCP service to build and create artifacts based on commits made to source
code repositories such as GitHub, Bitbucket, or Google's Cloud Source Repositories. These
artifacts can be container or non-container artifacts. The GCP DevOps exam's primary
focus will be on container artifacts. Key features include the following:

• Fully serverless platform with no need to pre-provision servers or pay in advance
for additional capacity. Will scale up and down based on load

• Includes Google and community builder images with support for multiple
languages and tools

• Includes custom build steps and pre-created extensions to third-party apps that
enterprises can easily integrate into their build process

• Focus on security with vulnerability scanning and the ability to define policies that
can block the deployment of vulnerable images

Container/Artifact Registry
This is the GCP construct to store artifacts that include both container (Docker images)
and non-container artifacts (such as Java and Node.js packages). Key features include
the following:

• Seamless integration with Cloud Source Repositories and Cloud Build to upload
artifacts to Container/Artifact Registry.

• Ability to set up a secure private build artifact storage on Google Cloud with
granular access control.

• Create multiple regional repositories within a single Google Cloud project.

Continuous delivery/deployment in GCP
Continuous delivery/deployment forms the CD of the CI/CD process and at its heart
is the culture of continuously delivering production-ready code or deploying code to
production. This allows us to release software at high velocity without sacrificing quality.

GCP offers multiple services to deploy code, such as Compute Engine, App Engine,
Kubernetes Engine, Cloud Functions, and Cloud Run. The focus of this book will be on GKE
and Cloud Run. This is in alignment with the Google Cloud DevOps exam objectives.

The following figure summarizes the different stages of continuous delivery/deployment
from the viewpoint of appropriate GCP services:

Cloud-native approach to implementing DevOps using Google Cloud 29

Figure 1.3 – Continuous delivery/deployment in GCP

Let's look at the two container-based deployments in detail.

Google Kubernetes Engine (GKE)
This is the GCP service to deploy containers. GKE is Google Cloud's implementation of the
CNCF Kubernetes project. It's a managed environment for deploying, managing, and scaling
containerized applications using Google's infrastructure. Key features include the following:

• Automatically provisions and manages a cluster's master-related infrastructure and
abstracts away the need for a separate master node

• Automatic scaling of a cluster's node instance count

• Automatic upgrades of a cluster's node software

• Node auto-repair to maintain the node's health

• Native integration with Google's Cloud Operations for logging and monitoring

Cloud Run
This is a GCP-managed serverless platform that can deploy and run Docker containers.
These containers can be deployed in either Google-managed Kubernetes clusters or
on-premises workloads using Cloud Run for Anthos. Key features include the following:

• Abstracts away infrastructure management by automatically scaling up and down

• Only charges for exact resources consumed

30 DevOps, SRE, and Google Cloud Services for CI/CD

• Native GCP integration with Google Cloud services such as Cloud Code, Cloud
Source Repositories, Cloud Build, and Artifact Registry

• Supports event-based invocation via web requests with Google Cloud services such
as Cloud Scheduler, Cloud Tasks, and Cloud Pub/Sub

Continuous monitoring/operations on GCP
Continuous Monitoring/Operations forms the feedback loop of the CI/CD process and
at its heart is the culture of continuously monitoring or observing the performance of the
service/application.

GCP offers a suite of services that provide different aspects of Continuous Monitoring/
Operations, aptly named Cloud Operations (formerly known as Stackdriver). Cloud
Operations includes Cloud Monitoring, Cloud Logging, Error Reporting, and
Application Performance Management (APM). APM further includes Cloud Debugger,
Cloud Trace, and Cloud Profiler. Refer to the following diagram:

Figure 1.4 – Continuous monitoring/operations

Let's look at these operations- and monitoring-specific services in detail.

Cloud-native approach to implementing DevOps using Google Cloud 31

Cloud Monitoring
This is the GCP service that collects metrics, events, and metadata from Google Cloud
and other providers. Key features include the following:

• Provides out-of-the-box default dashboards for many GCP services

• Supports uptime monitoring and alerting to various types of channels

• Provides easy navigation to drill down from alerts to dashboards to logs and traces
to quickly identify the root cause

• Supports non-GCP environments with the use of agents

Cloud Logging
This is the GCP service that allows us to store, search, analyze, monitor, and alert on
logging data and events from Google Cloud and Amazon Web Services. Key features
include the following:

• A fully managed service that performs at scale with sub-second ingestion latency at
terabytes per second

• Analyzes log data across multi-cloud environment from a single place

• Ability to ingest application and system log data from thousands of VMs

• Ability to create metrics from streaming logs and analyze log data in real time
using BigQuery

Error Reporting
This is the GCP service that aggregates, counts, analyzes, and displays application errors
produced from running cloud services. Key features include the following:

• Dedicated view of error details that include a time chart, occurrences, affected user
count, first and last seen dates, and cleaned exception stack trace

• Lists out the top or new errors in a clear dashboard

• Constantly analyzes exceptions and aggregates them into meaningful groups

• Can translate the occurrence of an uncommon error into an alert for
immediate attention

32 DevOps, SRE, and Google Cloud Services for CI/CD

Application Performance Management
This is the GCP service that combines monitoring and troubleshooting capabilities of
Cloud Logging and Cloud Monitoring with Cloud Trace, Cloud Debugger, and Cloud
Profiler, to help reduce latency and cost and enable us to run applications more efficiently.
Key features include the following:

• A distributed tracing system (via Cloud Trace) that collects latency data from your
applications to identify performance bottleneck

• Inspects a production application by taking a snapshot of the application state in
real time, without stopping or slowing down (via Cloud Debugger), and provides
the ability to inject log messages as part of debugging

• Low-impact production profiling (via Cloud Profiler) using statistical techniques,
to present the call hierarchy and resource consumption of relevant function in an
interactive flame graph

Bringing it all together – building blocks for a CI/CD
pipeline in GCP
The following figure represents the building blocks that are required to build a CI/CD
pipeline in GCP:

Figure 1.5 – GCP building blocks representing the DevOps life cycle

Summary 33

In the preceding figure, the section for Continuous Feedback/Analysis represents the
GCP services that are used to analyze or store information obtained during Continuous
Monitoring/Operations either from an event-driven or compliance perspective. This
completes the section on an overview of Google Cloud services that can be used to
implement the key stages of the DevOps life cycle using a cloud-native approach with
emphasis on decomposing a complex system into microservices that can be independently
tested and deployed.

Summary
In this chapter, we learned about DevOps practices that break down the metaphorical wall
between developers (who constantly want to push features to production) and operators
(who want to run the service reliably).

We learned about the DevOps life cycle, key pillars of DevOps, how Google Cloud
implements DevOps through SRE, and Google's cloud-native approach to implementing
DevOps. We learned about SRE's technical and cultural practices and were introduced to
key GCP services that help to build the CI/CD pipeline. In the next chapter, we will take
an in-depth look at SRE's technical practices such as SLI, SLO, SLA, and error budget.

Points to remember
The following are some important points:

• If DevOps is a philosophy, SRE is a prescriptive way of achieving that philosophy:
class SRE implements DevOps.

• SRE balances the velocity of development features with the risk to reliability.

• SLA represents an external agreement and will result in consequences when violated.

• SLOs are a way to measure customer happiness and their expectations.

• SLIs are best expressed as a proportion of all successful events to valid events.

• Error budget is the inverse of availability and depicts how unreliable a service is
allowed to be.

• Toil is manual work tied to a production system but is not the same as overhead.

• The need for unifying vision, communication, and collaboration with an emphasis
on blameless postmortems and the need to encourage psychological safety and
reduce resistance to change are key SRE cultural practices.

34 DevOps, SRE, and Google Cloud Services for CI/CD

• Google emphasizes the use of microservices and cloud-native development for
application development.

• Serverless services are managed but managed services are necessarily not serverless.

Further reading
For more information on GCP's approach toward DevOps, read the following articles:

• DevOps: https://cloud.google.com/devops

• SRE: https://landing.google.com/sre/

• CI/CD on Google Cloud: https://cloud.google.com/docs/ci-cd

Practice test
Answer the following questions:

1. Which of the following represents a sequence of tasks that is central to user
experience and is crucial to service?

a) User story

b) User journey

c) Toil

d) Overhead

2. If the SLO for the uptime of a service is set to 99.95%, what is the possible SLA
target?

a) 99.99

b) 99.95

c) 99.96

d) 99.90

3. Which of the following accurately describes the equation for SLI?

a) Good events / Total events

b) Good events / Total events * 100

c) Good events / Valid events

d) Good events / Valid events * 100

https://cloud.google.com/devops
https://landing.google.com/sre/
https://cloud.google.com/docs/ci-cd

Practice test 35

4. Which of the following represents a carefully defined quantitative measure of some
aspect of the level of service?

a) SLO

b) SLI

c) SLA

d) Error budget

5. Select the option used to calculate the error budget.

a) (100 – SLO) * 100

b) 100 – SLI

c) 100 – SLO

d) (100 – SLI) * 100

6. Which set of Google services accurately depicts the continuous feedback loop?

a) Monitoring, Logging, Reporting

b) Bigtable, Cloud Storage, BigQuery

c) Monitoring, Logging, Tracing

d) BigQuery, Pub-Sub, Cloud Storage

7. In which of the following "continuous" processes are changes automatically
deployed to production without manual intervention?

a) Delivery

b) Deployment

c) Integration

d) Monitoring

8. Select the option that ranks the compute services from a service that requires the
most management needs with the highest customizability to a service with fewer
management needs and the lowest customizability.

a) Compute Engine, App Engine, GKE, Cloud Functions

b) Compute Engine, GKE, App Engine, Cloud Functions

c) Compute Engine, App Engine, Cloud Functions, GKE

d) Compute Engine, GKE, Cloud Functions, App Engine

36 DevOps, SRE, and Google Cloud Services for CI/CD

9. Awesome Incorporated is planning to move their on-premises CI pipeline to the
cloud. Which of the following services provides a private Git repository hosted
on GCP?

a) Cloud Source Repositories

b) Cloud GitHub

c) Cloud Bitbucket

d) Cloud Build

10. Your goal is to adopt SRE cultural practices in your organization. Select two options
that could help to achieve this goal.

a) Launch and iterate.

b) Enable daily culture meetings.

c) Ad hoc team composition.

d) Create and communicate a clear message.

Answers
1. (b) – User journey

2. (d) – 99.90

3. (d) - Good events / Valid events * 100

4. (b) - SLI

5. (c) – 100 – SLO

6. (d) – BigQuery, Pub-Sub, Cloud Storage

7. (b) – Deployment (forming continuous deployment)

8. (b) – Compute Engine, GKE, App Engine, Cloud Functions

9. (a) – Cloud Source Repositories

10. (a) and (d) – Launch and iterate. Create and communicate a clear message.

2
SRE Technical

Practices – Deep
Dive

Reliability is the most critical feature of a service or a system and should be aligned
with business objectives. This alignment should be tracked constantly, meaning that the
alignment needs measurement. Site reliability engineering (SRE) prescribes specific
technical tools or practices that will help in measuring characteristics that define and
track reliability. These tools are service-level agreements (SLAs), service-level objectives
(SLOs), service-level indicators (SLIs), and error budgets.

SLAs represent an external agreement with customers about the reliability of a service.
SLAs should have consequences if violated (that is, the service doesn't meet the reliability
expectations), and the consequences are often monetary in nature. To ensure SLAs are
never violated, it is important to set thresholds. Setting these thresholds ensures that an
incident is caught and potentially addressed before repeated occurrences of similar or the
same events breach the SLA. These thresholds are referred to as SLOs.

38 SRE Technical Practices – Deep Dive

SLOs are specific numerical targets to define reliability of a system, and SLOs are measured
using SLIs. SLIs are a quantitative measure of the level of service provided over a period. Error
budgets are calculated based on SLOs (that are based on SLIs) and essentially are the inverse
of availability, representing a quantifiable target as to how much a service can be unreliable.
All these tools or technical practices need to work in tandem, and each one is dependent on
the other. SRE uses these technical practices to maintain the balance between innovation and
system reliability and thus achieve the eventual goal—build reliable software faster.

Chapter 1, DevOps, SRE, and Google Cloud Services for CI/CD, introduced SRE technical
practices—SLAs, SLOs, SLIs, and error budgets. This chapter will deep dive into these
technical practices. In this chapter, we're going to cover the following main topics:

• Defining SLAs

• Defining reliability expectations via SLOs

• Exploring SLIs

• Understanding error budgets

• Eliminating toil through automation

• Illustrating the impact of SLAs, SLOs, and error budgets relative to SLI

Defining SLAs
An SLA is a promise made to a user of a service to indicate that the availability and
reliability of the service should meet a certain level of expectation. An SLA details a
certain level of performance or expectation from the service.

Key jargon
There are certain components that go into defining which agreements can be considered
as an SLA. These are referred to with specific jargon and are elaborated, as mentioned, in
the following sections.

Service provider and service consumer
The party that represents the service provider and service consumer can differ based on the
context and nature of the service. For a consumer-facing service such as video streaming
or web browsing, a service consumer refers to the end user consuming the service and a
service provider refers to the organization providing the service. On the other hand, for
an enterprise-grade service such as a human resource (HR) planning system, a service
consumer refers to the organization consuming the service and a service provider refers
to the organization providing the service.

Defining SLAs 39

Service performance or expectations
An organization or end user consuming a service will have certain expectations in
terms of service behavior, such as availability (or uptime), responsiveness, durability,
and throughput.

Agreement – implicit or explicit
An agreement or contract can be either implicit or explicit in nature. An example of an
implicit contract is a non-commercial service such as Google Search. Google has a goal
to provide a fluid search experience to all its users but hasn't signed an explicit agreement
with the end user. If Google misses its goal, then users will not have a good experience. A
repeat of such incidents will impact Google's reputation, as users might prefer to use an
alternate search engine.

An example of an explicit contract is a commercial service such as Netflix or a paid
enterprise-grade service such as Workday. In such scenarios, legal agreements are
written that include consequences in case the service expectations are not met. Common
consequences include financial implications or service credits.

This concludes an introduction to key jargon with respect to SLAs. The next subsection
elaborates on the blueprint for a well-defined SLA.

Blueprint for a well-defined SLA
Having a well-defined SLA is critical to its success. Here are some factors that could be
used as a blueprint for a well-defined SLA:

• Involve the right parties: SLAs are usually written by people who are not directly
tied to the implementation of the service and hence might result in promises that
are difficult to measure. SLAs should be set between business and product owners.
However, SRE recommends that before SLAs are set, product owners should work
with development and SRE teams to identify the expectation threshold that can
be delivered by the service. This ensures that product owners work closer with the
implementation teams and know what's acceptable and what's not realistic from a
service viewpoint.

• Expectations need to be measurable: Service expectations such as availability or
reliability characteristics in terms of stability, responsiveness, and durability should
be quantifiable and measurable. Service expectations should be monitored by
configuring monitoring systems and tracking specific metrics, and alerting should
be configured to trigger alerts in case the expectations are violated.

40 SRE Technical Practices – Deep Dive

• Avoid ambiguity: The jargon used while defining SLAs can sometimes be
ambiguous. For example, consider an SLA that promises a client-initiated incident
to be resolved within X hours from the time it's reported. If the client or customer
either provided the details long after the incident was first reported or never
provided the details at all, then it is possible that the service provider will not
be able to resolve the incident. In this situation, the SLA should clearly state the
stipulations that qualify for not meeting the SLA, and such scenarios should be
excluded. This provides a clearer approach.

SLIs drive SLOs, which inform SLAs
SLAs should focus on the minimum level of objectives a service should meet to keep
customers happy. However, SLAs are strictly external targets and should not be used as
internal targets by the implementation teams.

To ensure that SLAs are not violated, implementation teams should have target
objectives that reflect user's expectations from the service. The target objectives from
implementation teams are used as internal targets, and these are generally stricter than
the external targets that were potentially set by product teams. The internal targets are
referred to as SLOs and are used as a prioritization signal to balance release velocity and
system reliability. These internal targets need to be specifically measured and quantified
at a given point of time. The measurement should be done using specific indicators that
reflects users' expectations, and such indicators are referred to as SLIs.

To summarize, for a service to perform reliably, the following criteria needs to be met:

• A specific condition should be met—represented by an SLI.

• The condition should be met for a specific period within a specific target
range—represented by an SLO.

• If met, customers are happy, or else there will be consequences—represented by
an SLA.

Let's look at a hypothetical example. Consider a requirement where a user's request/
response time falls within a minimum time period. A latency metric can be used to
represent the user's expectation. A sample SLA in this scenario can state that every
customer will get a response within 1,000 milliseconds (ms). In this case, the SLO
for this SLA must be stricter and can be set at 800 ms.

This completes the section on SLAs. We looked at the key constructs of an SLA, factors
that could impact a well-defined SLA, and its impact on setting internal target objectives
or SLOs, using specific indicators or SLIs that impact customer satisfaction. The next
section transitions from an SLA to an SLO and its respective details.

Defining reliability expectations via SLOs 41

Defining reliability expectations via SLOs
Service consumers (users) need a service to be reliable, and the reliability of the service
can be captured by multiple characteristics such as availability, latency, freshness,
throughput, coverage, and so on. From a user's perspective, a service is reliable if it
meets their expectations. A critical goal of SRE is to measure everything in a quantitative
manner. So, to measure, there is a need to represent user expectations quantitatively.

SRE recommends a specific technical practice called a SLO to specify a target level
(numerical) to represent these expectations. Each service consumer can have a different
expectation. These expectations should be measurable, and for that they should be
quantifiable over a period. SLOs help to define a consistent level of user expectations
where the measured user expectation should be either within the target level or should be
within a range of values. In addition, SLOs are referred to as internal agreements and are
often stricter than SLAs promised to the end users. This ensures that any potential issues
are resolved before their repetitive occurrence results in violating the SLA.

SLOs are key to driving business decisions by providing a quantifiable way to balance
release cadence of service features versus service reliability. This emphasis will be covered
in the upcoming subsection.

SLOs drive business decisions
The need for revenue growth puts businesses under constant pressure to add new
features and attract new users to their service. So, product managers usually dictate the
requirement of these new features to development teams. Development teams build these
requirements and hand them over to the operations team to stabilize. Development teams
continue their focus on adding new features to a service rather than stabilizing existing
ones. Operations teams tend to get overloaded since they are constantly firefighting to
maintain the reliability of the existing service, in addition to rolling out new features.
So, the most important question is: If reliability is a feature of a system, then how can you
balance reliability along with the release of other features?

SLOs are the answer to how to maintain a balance between reliability and release velocity.
SLOs allow us to define target levels for a reliable service. These target levels should be
decided by all the stakeholders across an organization, including engineering teams
(development and operations) and the product team. The agreed-upon target levels should
reflect users' experiences while using the service. This allows monitoring systems to
identify existing problems before users register complaints. SLOs should be treated more
as a prioritization signal rather than an operational concern.

42 SRE Technical Practices – Deep Dive

SLOs should be used as a primary driver for decision making. SLOs represent a common
language for all reliability conversations that is based on actual metrics. This will allow a
business to decide when to release new features versus when to continue their focus on the
reliability of an existing service. It will also allow operations teams to have a streamlined
set of goals, preventing ad-hoc actions to run the service, and eventually avoiding
operational overload.

Operational overload is a term that describes the ongoing maintenance tasks that keep
systems and services running at optimal performance. If a team is constantly interrupted
by operations load and cannot make progress toward their key priorities, then the team is
in a state of operational overload.

The main reason for a team to be in a state of operational overload is a lack of consensus
on the level of reliability a service should support. This lack of consensus is apparent from
development teams' focus on adding new features to a service rather than stabilizing
existing ones.

SLOs must have strong backing from the executive team. In the case of missed SLO
targets, there should be well-documented consequences that prioritize engineering efforts
toward stabilizing the reliability of a service rather than working or releasing new features.
SLOs are key to removing organization silos and create a sense of shared responsibility
and ownership. SLOs drive incentives that organically invoke a thought process whereby
developers start to care about service reliability and operators start to care about pushing
new features out as quickly as possible. The recommended guidelines to set SLOs will be
detailed in the upcoming subsection.

Setting SLOs – the guidelines
The journey or process to identify the right SLOs for a service is very complex. There are
multiple aspects or guidelines that need to be considered. Each of these aspects is critical
to set or define an SLO for a service.

The happiness test
SLO targets are always driven by quantifiable and measurable user expectations called
SLIs. The happiness test is a good starting point to set SLO targets for a service. As per
the test, the service should have target SLOs that barely meet the availability and reliability
expectations of the users, as the following applies:

• If the service meets the target SLOs, then users are happy.

• If the service misses the target SLOs, then users are sad.

Defining reliability expectations via SLOs 43

A target SLO for an average response time is defined as a range between 600 and 800 ms.
If the average response time is less than 800 ms, then the service meets the target SLO,
and users are happy. If the average response time is greater than 800 ms (even though it is
less than stipulated in the SLA), then the service misses the target SLO and the users are
sad. The following diagram illustrates an example where an SLA with respect to average
response time for a request is set to 1,000 ms:

Figure 2.1 – Happy versus sad users based on target SLOs

100% reliability is the wrong target
Reliability is the most important feature of a service and reflects user happiness. However,
setting 100% as the SLO or reliability target is not a realistic and reasonable goal for the
following reasons:

• Unable to improve or add new features to the service: Maintaining customer
happiness is tricky. Customers always look forward to new feature sets but also
expect that the stability of the existing service will not be impacted. Adding new
features to a running service can have the potential to introduce some amount of
risk or unreliability. If SLO targets for a service are set to 100%, this implies that the
service is always reliable, resulting in zero downtime. As a result, the service cannot
tolerate any risk in terms of downtime, and inherently new features cannot be added
to the service. If new features are not added to the service, users will be unhappy
and will move to competitors that offers similar services with more feature sets.

44 SRE Technical Practices – Deep Dive

• Technologically unfeasible: Running a service includes multiple components and
dependencies. Some of these are internal, while some are external to the service.
Though these components can be made redundant to achieve high availability, the
dependencies result in complexities that would result in potential downtime. In
addition, external components impact the availability of a service—for example, a
mobile user cannot access a service if the mobile network provider has a dead zone
at that specific location.

• Exponentially expensive: For every additional nine of reliability, the cost increases
by 10 times. It's expensive to make a reliable system even more reliable. Being
reliable enough is the wiser option.

Understanding reliability targets and their implications
As 100% is the wrong reliability target, it is important to find the optimal reliability target
where the service is reliable enough for the user and there is an opportunity to update or
add new features to the service.

Another perspective with which to look at reliability targets for a service is the amount of
unreliability the service is willing to tolerate. Unreliability of the service is also referred to
as the downtime.

Let's consider some reliability targets, as follows:

• A reliability target of 99.9% (also known as three nines of reliability) over a 30-day
period will result in a maximum possible downtime of 42 minutes. This is enough
time for a monitoring system to detect the issue, and is also enough time for a
human to get involved and probably mitigate or resolve the issue.

• A reliability target of 99.99% (also known as four nines of reliability) over a 30-day
period will result in a maximum possible downtime of 4.2 minutes. This is enough
time for a monitoring system to detect the issue but is not enough time for a human
to get involved, but probably enough time for a system to self-heal a complete outage.

• A reliability target of 99.999% (also known as five nines of reliability) over a 30-day
period will result in a maximum possible downtime of 24 seconds. This extremely
short duration is not enough to detect an issue or even attempt to self-heal.

Defining reliability expectations via SLOs 45

The following table summarizes the possibility of detecting an issue and the possibility to
self-heal based on a reliability target over a 30-day period:

To summarize, a reliability target should be set to a level that is realistic where an issue
can be detected and addressed. An automated self-healing process is recommended over
a human involvement—for example, redirecting traffic to a new availability zone (AZ) in
case of an existing AZ failure.

Setting a reliability target too low means that issues could frequently occur, leading to
large duration of downtimes, and customers will be impacted regularly. Setting a reliability
target too high at 99.999% or even 100% means that the system cannot practically fail, and
that makes it difficult to add new features to the service or application.

Setting SLOs is an iterative process
Reliability is the most important feature of a service, and setting SLOs allow monitoring
systems to capture how the service is performing. When setting SLOs for the first time,
it's possible to set SLOs based on past performance, taking an assumption that users are
happy to start with. SLIs for these SLOs are based on existing monitoring systems and are
considered as an initial baseline that must be met. Such SLOs are known as achievable
SLOs, and any misses below the initial base line should result in directing engineering
efforts to focus on getting reliability back to the initial baseline.

46 SRE Technical Practices – Deep Dive

How to get started with setting achievable SLOs
Metrics to set achievable SLOs can either be taken from the load balancer
or backfilled from the logs. Both approaches give an insight into historical
performance.

If SLOs need to be set in the absence of historical data or if historical data does not
accurately reflect users' expectations, it is recommended to set an achievable target and
then refine the target to closely match users' expectations and business needs. Such SLOs
are known as aspirational SLOs. Monitoring systems will then use these metrics to track
these SLOs.

Once either achievable or aspirational SLOs are set, it's possible that new features are
introduced to the service, but the probability for a service to be unreliable also increases.
This can result in customers being unhappy even after meeting SLOs. This is an indication
that monitoring metrics need to be revisited. SLOs need to be iteratively set and
periodically re-evaluated. These metrics might have worked when originally set, but might
not anymore.

Here are a few possible scenarios that call for SLOs to be re-evaluated:

• New features were not considered in the metric calculation.

• Service usage is now extended from desktop to mobile.

• Service usage is now extended to multiple geographies.

How frequently should SLOs be revisited or re-evaluated?
It's recommended that SLOs be revisited or re-evaluated every 6 to 12 months
to ensure that defined SLOs continue to match business changes and users'
expectations.

In addition to periodically revisiting SLOs, there are scenarios where a different SLO—
more precisely, a tighter SLO—can be used when a spike in traffic is anticipated. For
example, during holiday shopping, many businesses expect a significant spike in traffic,
and in such scenarios, businesses can come up with a temporary strategy of tightening
the SLO from 99.9% to 99.99%. This means system reliability is prioritized over a need or
urge to release new features. The SLO targets are set back to their original value (in this
example, back to 99.9%) when normal traffic resumes.

This completes the section on SLOs, with a deep insight into the need for reliability,
setting reliability targets, and the way SLOs drive business decisions using SLIs. The next
subsection introduces why SLOs need SLIs and is also a precursor before exploring SLIs
in detail.

Exploring SLIs 47

SLOs need SLIs
SLOs are specific numerical targets to define the reliability of a system. SLOs are also used
as a prioritization signal to determine the balance between innovation and reliability. SLOs
also help to differentiate happy and unhappy users. But the striking question is: How do we
measure SLOs?

SLOs are measured using SLIs. These are defined as a quantifiable measure of service
reliability and specifically give an indication on how well a service is performing at a given
moment of time. Service consumers have certain expectations from a service and SLIs are
tied directly to those expectations. Examples of quantifiable SLIs are latency, throughput,
freshness, and correctness. SLIs are expressed as a percentage of good events across valid
events. SLOs are SLI targets aggregated over a period.

We'll get into more details about SLIs in the next section, Exploring SLIs. This includes
categorizing SLIs by types of user journeys and elaborating on the ways to measure SLIs.

Exploring SLIs
An SLI is a quantitative measure of the level of service provided with respect to some
aspect of service reliability. Aspects of a service are directly dependent on potential
user journeys, and each user journey can have a different set of SLIs. Once the SLIs are
identified per user journey, the next critical step is to determine how to measure the SLI.

This section describes the details around how to identify the right measuring indicators or
SLIs by categorizing user journeys, the equation to measure SLIs, and ways to measure SLIs.

Categorizing user journeys
The reliability of a service is based upon the user's perspective. If a service offers multiple
features, each feature will involve a set of user interactions or a sequence of tasks. This
sequence of tasks that is critical to the user's experience offered by the service is defined
as a user journey.

Here are some examples of user journeys when using a video streaming service:

• Browsing titles under a specific category—for example, fiction

• Viewing an existing title from a user library

• Purchasing an on-demand show or a live stream

• Viewing a live stream

48 SRE Technical Practices – Deep Dive

Each user journey can have a different expectation. These expectations can vary, from
the speed at which the service responds to a user's request to the speed at which data is
processed, to the freshness of the data displayed or to the durability at which data can
be stored.

There could be a myriad user journeys across multiple services. For simplicity, user
journeys can be classified into two popular categories, as follows:

• Request/response user journey

• Data processing/pipeline-based user journey

Each category defines specific characteristics. Each specific characteristic can represent
an SLI type that defines the reliability of the service. These are specified in the
following sections.

Request/response user journey
Availability, latency, and quality are the specific aspects or characteristics of SLIs that need
to be evaluated as part of a request/response user journey.

Availability
Availability is defined as the proportion of valid requests served successfully. It's critical
for a service to be available to meet user's expectations.

To convert an availability SLI definition into an implementation, a key choice that needs
to be made is: How to categorize requests served as successful?

To categorize requests served as successful, error codes can be used to reflect users'
experiences of the service—for example, searching a video title that doesn't exist should
not result in a 500 series error code. However, being unable to execute a search to check if
a video title is present or not, should result in a 500 series error code.

Latency
Latency is defined as the proportion of valid requests served faster than a threshold. It's
an important indication of reliability when serving user-interactive requests. The system
needs to respond within a timely fashion to consider it as interactive.

Latency for a given request is calculated as the time difference between when the
timer starts and when the timer stops. To convert a latency SLI definition into an
implementation, a key choice that need to be made is: How to determine a threshold
to classify responses as fast enough?

Exploring SLIs 49

To determine a threshold that classifies responses as fast enough, it's important to first
identify the different categories of user interactions and set thresholds accordingly per
category. There are three ways to bucketize user interactions, outlined as follows:

• Interactive—Refers to interactions where a user waits for the system to respond
after clicking an element. Can also be referred to as reads, and a typical threshold
is 1,000 ms.

• Write—Refers to user interactions that make a change to the underlying service.
A typical threshold is 1,500 ms.

• Background—Refers to user interactions that are asynchronous in nature. A typical
threshold is 5,000 ms.

Quality
Quality is defined as the proportion of valid requests served without degrading the
service. It's an important indication on how a service can fail gracefully when its
dependencies are unavailable.

To convert a quality SLI into an implementation, a key choice that needs to be made is:
How to categorize if responses are served with degraded quality? To categorize responses
served with degraded quality, consider a distributed system with multiple backend servers.
If the incoming request is served by all backend services, then the request is processed
without service degradations. However, if the incoming request is processed by all
backend servers except one, then it indicates responses with degraded quality.

If a request is processed with service degradation, the response should be marked as
degraded, or a counter should be used to increment the count of degraded responses.
As a result, a quality SLI can be expressed as a ratio of bad events to total events instead
of a ratio of good events to total events.

How to categorize a request as valid
To categorize a request as valid, different methodologies can be used. One
such method is to use HyperText Transfer Protocol (HTTP) response codes.
For example, 400 errors are client-side errors and should be discarded while
measuring the reliability of the service. 500 errors are server-side errors and
should be considered as failures from a service-reliability perspective.

50 SRE Technical Practices – Deep Dive

Data processing/pipeline-based user journey
Freshness, correctness, coverage, and throughput are the specific aspects or characteristics
of SLIs that need to be evaluated as part of a data processing/pipeline-based user journey.
This is also applicable for batch-based jobs.

Freshness
Freshness is defined as the proportion of valid data updated more recently than a
threshold. Freshness is an important indicator of reliability while processing a batch of
data, as it is possible that the output might become less relevant over a period of time. This
is primarily because new input data is generated, and if the data is not processed regularly
or rebuilt to continuously process in small increments, then the system output will not
effectively reflect the new input.

To convert a freshness SLI into an implementation, a key choice that needs be made is:
When to start and stop the timer to measure the freshness of data? To categorize that the
data processed is valid for SLI calculation, the correct source of input data or the right
data processing pipeline job must be considered. For example, to calculate the freshness of
weather-streaming content, data from a sports-streaming pipeline cannot be considered.
This level of decision making can be achieved by implementing code and a rule-
processing system to map the appropriate input source.

To determine when to start and stop times to measure the freshness of data, it is
important to include timestamps while generating and processing data. In the case of a
batch processing system, data is considered fresh if the next set of data is not processed
and generated. In other words, freshness is the time elapsed since the last time the batch
processing system completed.

In the case of an incremental streaming system, freshness refers to the age of the most
recent record that has been fully processed. Serving stale data is a common way to
degrade the response quality. Measuring stale data as degraded response quality is a useful
strategy. If no user accesses the stale data, no expectations around the freshness of the data
can have been missed. For this to be feasible, one option is to include a timestamp along
with generating data. This allows the serving infrastructure to check the timestamp and
accurately determine the freshness of the data.

Correctness
Correctness is defined as the proportion of valid data producing a correct output. It's an
important indication of reliability whereby processing a batch of data results in the correct
output. To convert a correctness SLI into an implementation of it, a key choice that needs
to be made is: How to determine if the output records are correct?

Exploring SLIs 51

To determine if the output records produced are correct, a common strategy is to use
golden input data, also known as a set of input data that consistently produces the same
output. This way, the produced output can be compared to the expected output from the
golden input data.

Proactive testing practices—both manual and automated—are strongly recommended
to determine correctness.

Coverage
Coverage is defined as the proportion of valid data processed successfully. It's an
important indication of reliability, whereby the user expects that data will be processed
and outputs will subsequently also be available.

To convert a coverage SLI into an implementation, the choice that needs to be made
is: How to determine that a specific piece of data was processed successfully? The logic to
determine if a specific piece of data was processed successfully should be built into the
service, and the service should also track the counts of success and failure.

The challenge comes when a certain set of records that were supposed to be processed are
skipped. The proportion of the records that are not skipped can be known by identifying
the total number of records that should be processed.

Throughput
Throughput is defined as the proportion of time where the data processing rate is faster
than a threshold. It's an important indicator of reliability of a data processing system,
whereby it accurately represents user happiness and operates continuously on streams
or small batches of data.

To convert a throughput SLI into an implementation, a key choice that needs to be
made is: What is the unit of measurement for data processing? The most common unit
of measurement for data processing is bytes per second (B/s).

It is not necessary that all sets of inputs have the same throughput rate. Some inputs
need to be processed faster and hence require higher throughput, while some inputs
are typically queued and can be processed later.

52 SRE Technical Practices – Deep Dive

SLIs recommended for a data storage-based user journey
Systems processing data can also be further classified into systems responsible
for only storing data. So, a data storage user-based journey is another possible
classification of a user journey where availability, durability, and end-to-end
latency are additional recommended SLIs. Availability refers to data that
could be accessed on demand from a storage system. Durability refers to the
proportions of records written that could be successfully read from a storage
system as and when required at that moment. End-to-end latency refers to the
time taken to process a data request, from ingestion to completion.

The following table summarizes specific characteristics to represent an SLI type, grouped
by the type of user journey:

Given that there is a wide choice of SLIs to select from, Google recommends the following
specific SLIs based on the type of systems:

• User-facing serving systems: Availability (Is it possible to respond to a request?),
latency (How long will it take to respond?), and throughput (How many requests can
be handled?)

• Storage systems: Latency (How long does it take to read or write data?), availability
(Can the data be accessed on demand?), and durability (Is the data still available
when there is a need?)

• Big data systems: Throughput (How much data can be processed?) and end-to-end
latency (What is the time duration for data to progress from ingestion to completion?)

Given that we have looked at various factors that impact on determining SLIs specific
to a user journey, the upcoming subsection will focus on the methodology and sources
to measure SLIs.

Exploring SLIs 53

SLI equation
An SLI equation is defined as the proportion of valid events that were good, as
illustrated here:

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 100

This equation has the following properties:

• SLIs are expressed as a percentage and fall between 0% and 100%. 100% refers to
everything working, and 0% refers to everything being broken.

• SLIs consistently translate to percentage reliability, SLOs, and error budgets, and are
also key inputs to alerting logic.

• SLIs allow us to build common tooling to reflect the reliability of a service or system.

• Valid events are determined as follows: for requests related to HTTP Secure
(HTTPS), valid events are determined based on request parameters or response
handlers. Request parameters can include hostname or request path. For requests
related to data processing systems, valid events refer to the selection of specific
inputs that scope to a subset of data.

This completes our summary of SLI equation and its associated properties. The next
subsection details various popular sources to measure SLIs.

Sources to measure SLIs
Identifying potential user journeys for a service is the first important step to identify
SLIs. Once SLIs to measure are identified, the next key step is to measure the SLIs so
that corresponding alerts can be put in place. The key question in this process is: How to
measure and where to measure?

There are five popular sources or ways to measure SLIs, outlined as follows:

• Server-side logs

• Application server

• Frontend infrastructure

• Synthetic clients

• Telemetry

54 SRE Technical Practices – Deep Dive

Server-side logs
Here are some details on how information from server-side logs can be used to
measure SLIs:

• Logs capture multiple request-response interactions over a long-running session.
Stored logs give an option to get insights into historical performance of the service.

• If starting out with setting SLOs (SLOs need SLIs), for a service, log data can be used
to analyze historical events, reconstruct user interactions, and retroactively backfill
the SLI information.

• Complex logic can be added to the code itself where good events are clearly
identified, and the information is captured in logs. (This requires significant
engineering efforts.)

Here are details of the limitations of using server-side logs to measure SLIs:

• If an SLI needs to be used to trigger an emergency response, the time between the
event occurrence and the event actually being measured should be minimal. Given
that logs need to be ingested and processed, capturing SLIs from logs will add
significant latency.

• Log-based SLIs cannot capture the requests that did not make it to the
application server.

Application server
Here are details on how information from the application server can be used to
measure SLIs:

• Metrics captured at the application server are known as application-level metrics.
These metrics are helpful in diagnosing issues with respect to the application.

• Application metrics can capture the performance of individual requests without
measurement latency. In addition, these events could be aggregated over time.

Here are details of the limitations of using the application server to measure SLIs:

• Application metrics cannot capture complex multi-request user journeys.

• Application-based SLIs cannot capture requests that do not make it to the
application server.

Exploring SLIs 55

What is a complex multi-request user journey?
A complex multi-request user journey will include a sequence of requests,
which is a core part of a user consuming a service such as searching a product,
adding a product to a shopping cart, and completing a purchase. Application
metrics cannot capture metrics for the user journey but can capture metrics
related to individual steps.

Frontend infrastructure
Here are details of how information from frontend infrastructure can be used to
measure SLIs:

• Frontend infrastructure refers to load balancers. This could be a vendor-based load
balancer (such as F5) or a cloud-provider based load balancer (such as Google Cloud
Load Balancer).

• Most of the distributed applications use a load balancer, and this is the first point of
interaction for a user's request before it is sent to the actual application. This makes
the load balancer the closest point to the user and fewer requests go unmeasured.

• Cloud providers typically capture multiple metrics for the incoming requests to the
load balancer out of the box. This information might be readily available, including
historical data too. If the capture of data was not configured for some reason, it can
be easily configured. Either way, information will be available without investing
engineering efforts (as compared to capturing metrics from application logs).

• Load balancers capture metrics related to requests that do not make it to the
application server.

Here are details of the limitations of using a frontend infrastructure to measure SLIs:

• Load balancers can either be stateful or stateless. If stateless, then the load
balancers cannot track user sessions and hence cannot be used to capture metrics
tied to user interactions.

• Given that load balancers typically act as a traffic cop, routing user requests to
application servers that are capable of handling the requests, load balancers do not
inherently have control over the response data returned by the application. Instead,
load balancers are dependent on the application to set the metadata accurately on
the response envelope.

• The dependency on the application to set the right metadata on the response
envelope is a conflict of interest because it is the same application that is generating
the metrics.

56 SRE Technical Practices – Deep Dive

Synthetic clients
Here are details of how information from synthetic clients can be used to measure SLIs:

• Synthetic clients provide synthetic monitoring, a monitoring technique that
monitors the application by emulating or simulating user interactions based
on a recorded set of transactions.

• Synthetic clients can emulate user interactions that constitute a user journey from
a point outside the infrastructure, and hence can verify the responses.

Here are details of the limitations of using synthetic clients to measure SLIs:

• Synthetic clients simulate a user's behavior, and hence it's an approximation.

• Synthetic clients need complex integration tests that could cover multiple edge
cases, thus resulting in a significant engineering effort.

• Synthetic clients need maintenance to add new user simulations if new user
behavior patterns emerge that were not previously accounted for.

Telemetry
Telemetry refers to remote monitoring from multiple data sources and is not restricted
to capture metrics related to application health, but can be extended to capture security
analytics such as suspicious user activity, unusual database activity, and so on. Here are
details of how information from telemetry can be used to measure SLIs:

• Instrumenting clients to implement telemetry metrics helps to measure the reliability
of third-party integration systems such as a content delivery network (CDN).

• OpenTelemetry is the most popular instrumentation mechanism to capture traces
and metrics. It replaces OpenTracing and OpenCensus, which were individually
focused on capturing tracing and metrics respectively.

What is OpenTelemetry?
OpenTelemetry is a unified standard for service instrumentation. It provides
a set of application programming interfaces (APIs)/libraries that are vendor-
agnostic and standardizes how to collect and send data to compatible backends.
OpenTelemetry is an open source project that is part of the Cloud Native
Computing Foundation (CNCF).

Exploring SLIs 57

Here are details of the limitations of using telemetry to measure SLIs:

• Ingesting metrics from different sources increases latency and will pose the same
issues encountered when capturing metrics from processing logs, thus this is not
a good fit for triggering emergency responses.

• If telemetry is implemented in-house, it requires a significant engineering effort.
However, there are vendors that provide the same capability, but there is a risk of
vendor lock-in.

This completes an elaboration of five different sources to measure SLIs. Given that each
source has its own limitations, there is no best source to measure SLIs. In most cases,
a combination of sources is always preferred. For example, if an organization is getting
started with their SRE practice, usage of server-side logs to backfill SLIs and frontend
infrastructure to readily use the metrics from the load balancer might be a good way to
start. It can later be extended to capturing metrics from the application server, but given it
doesn't support complex multi-request user journeys, an organization can later shift to the
use of telemetry or synthetic clients based on their need. The next subsection summarizes
a few SLI best practices as recommended by Google.

SLI best practices (Google-recommended)
It's a tedious task for an organization that would like to start on their SRE journey, and a
key aspect of this journey is to identify, define, and measure SLIs. Here is a list of Google-
recommended best practices:

• Prioritize user journeys: Select user journeys that reflect features offered by the
service and the user's affinity to those features.

• Prioritize user journeys from the selected list: The user journey to purchase or
watch a streaming event is more important than rating a video.

• Limit number of SLIs: Keep it to three to five SLIs per user journey. More SLIs will
make it complex to manage for the operators.

• Collect data via frontend infrastructure: Collecting at load balancer level is closer
to a user's experience and requires less engineering effort.

• Aggregate similar SLIs: Collect data over a period. Convert metric information
captured into rate, average, or percentile.

• Keep it simple: Complex metrics require significant engineering effort but might
also increase response time. If response time increases, then the metric will not be
suitable for emergency situations.

58 SRE Technical Practices – Deep Dive

This completes a comprehensive deep dive on SLIs, with a focus on categorizing user
journeys, identifying specific aspects that impact a user journey, various sources to
measure, and recommended best practices to define SLIs. To summarize, there are four
critical steps for choosing SLI, listed as follows:

1. Choose an SLI specification based on a suitable user journey.

2. Refine a specification into a detailed SLI implementation.

3. Walk through the user journey and identify implementation gaps.

4. Set aspirational SLO targets based on business needs.

The upcoming section focusses on error budgets, which are used to achieve reliability by
maintaining a balance with release velocity.

Understanding error budgets
Once SLOs are set based on SLIs specific to user journeys that define system availability
and reliability by quantifying users' expectations, it is important to understand
how unreliable the service is allowed to be. This acceptable level of unreliability or
unavailability is called an error budget.

The unavailability or unreliability of a service can be caused due to several reasons, such
as planned maintenance, hardware failure, network failures, bad fixes, and new issues
introduced while introducing new features.

Error budgets put a quantifiable target on the amount of unreliability that could be
tracked. They create a common incentive between development and operations teams.
This target is used to balance the urge to push new features (thereby adding innovation
to the service) against ensuring service reliability.

An error budget is basically the inverse of availability, and it tells us how unreliable your
service is allowed to be. If your SLO says that 99.9% of requests should be successful in a
given quarter, your error budget allows 0.1% of requests to fail. This unavailability can be
generated because of bad pushes by the product teams, planned maintenance, hardware
failures, and other issues:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 100% − 𝑆𝑆𝑆𝑆𝑆𝑆

Here's an example. If SLO says that 99.9% of requests should be successful in a given
quarter, then 0.1% is the error budget.

Let's calculate the error budget, as follows:

If SLO = 99.9%, then error budget = 0.1% = 0.001

Understanding error budgets 59

Allowed downtime per month = 0.001 * 30 days/month * 24 hours/day * 60 minutes/hour =
43.2 minutes/month

This introduces the concept of an error budget. The next subsection introduces the
concept of an error budget policy and details the need for executive buy-in with respect
to complying with the error budget policy.

Error budget policy and the need for executive buy-in
If reliability is the most important feature of a system, an error budget policy represents
how a business balances reliability against other features. Such a policy helps a business to
take appropriate actions when the reliability of the service is at stake. The key to defining an
error budget policy is to actually decide the SLO for the service. If the service is missing SLO
targets, which means the error budget policy is violated, then there should be consequences.
These consequences should be enforced by generating executive buy-in. Operations teams
should have an influence on the impact of the development team's practices by halting the
release of new features if the service is getting very close to exhausting the error budget or
has exceeded the error budget.

Error budgets can be thought of as funds that are meant to be spent across a given time
period. These funds can be spent on releasing new features, rolling out software updates,
or managing incidents. An error budget is basically the inverse of availability, and it tells
us how unreliable your service is allowed to be. If your SLO says that 99.9% of requests
should be successful in a given quarter, your error budget allows 0.1% of requests to fail.
This unavailability can be generated because of bad pushes by the product teams, planned
maintenance, hardware failures, and so on. The next subsection lists out the characteristics
of an effective error budget policy.

Characteristics of an effective error budget policy
An error budget policy should have the following characteristics:

• An overview of the service

• A list of intended goals

• A list of non-goals; also referred to as a potential requirement that has been
specifically excluded

• A list of DOs and DON'Ts based on whether a service performs above its SLO or
misses its SLO

• A list of consequences when a service misses its SLO

60 SRE Technical Practices – Deep Dive

• A detailed outage policy that defines the criteria to call out an incident and a need
for a follow-up to ensure the incident doesn't happen again

• A clearly laid-out escalation policy that identifies the decision maker in the event of
a disagreement

The preceding list of characteristics clearly calls out the fact that it is extremely necessary
to have well-documented SLOs to define an effective error budget policy. This will be
discussed in the next subsection.

Error budgets need well-documented SLOs
The key to defining an error budget is to actually to decide the SLOs for the service. SLOs
clearly differentiate between reliable services and unreliable services, thus extending
it to identify happy versus unhappy users. SLOs should be clearly defined without any
ambiguity and should be agreed by product owners, developers, SREs, and executives.

In addition to implementing an SLO and configuring a monitoring system to alert on the
SLO, the following characteristics are recommended for a well-documented SLO in terms
of metadata:

• The need for an SLO and thought process behind the specific SLO target

• A list of owners for SLOs

• The impact in case of SLO miss

• SLIs tied with the SLOs

• Any specific events that are included or excluded from the calculation

• Version control of the SLO documentation (this gives an insight into reasons for
changing SLOs as they get refined over a period)

The next subsection discusses multiple options to set error budgets.

Setting error budgets
Error budgets can be thought as funds that are meant to be spent across a given time
period. These funds can be spent on releasing new features or rolling out software updates
or managing incidents. But this raises several questions, such as the following:

• What is the right time to spend error budgets? At the start of the month or the end
of the month?

• What happens if the error budget gets exhausted and there is an emergency?

• What happens if the error budget is not exhausted? Can it be carried over?

Understanding error budgets 61

Different strategies can be used to determine the right time to spend error budgets within
a time period. Let's assume the time period is 28 days. There could be three potential
options, listed as follows:

• Option #1 is to spend a portion of the error budget at the start (of the 28 days)
to push new features or updates and use the remaining error budget for potential
reliability maintenance in the event of an incident.

• Option #2 is to spend an error budget to push new features or updates after elapsing
half of the time period (say, 14 days), since it gives an idea on how much error
budget was used in the first half for maintaining system reliability.

• Option #3 is to spend any remaining error budget toward the latter part of the time
period in pushing new features or updates to ensure focus is on system reliability
till then.

Any of the preceding options or a combination of the three can be used to define a
dynamic release process, and it all depends on what developers and operations team agree
upon based on current business needs and past performance. The dynamic release process
can be implemented by setting alerts based on error budget exhaustion rates.

If the error budget of a service is exhausted but the development team needs to push a
new feature as an exception scenario, SRE provisions this exception using silver bullets.

Envision silver bullets as tokens that could be given to the operations team to facilitate
an exception to release new features when having exceeded the error budget. These
tokens reside with a senior stakeholder and the development team needs to pitch the
need to use silver bullets to the stakeholder. A fixed number of such tokens are given to
the stakeholder and these are not carried over to the next time period. In addition to the
use of silver bullets, SRE also recommends the use of rainy-day funds whereby a certain
amount of the error budget is additionally provided to handle unexpected events.

Error budgets cannot be carried over to the next time period. So, in all practicality, the
goal is to spend the error budget by the end of the time period. Constantly exhausting
error budgets and repeated use of silver bullets should call for a review, where engineering
efforts should be invested in making the service more reliable by improving the service
code and by adding integration tests.

The use of dynamic release cadence, error budget exhaustion rates, silver bullets, and
rainy-day funds are advanced techniques prescribed by SRE to manage error budgets. This
completes the subsection on defining characteristics for an effective error budget policy,
listing out characteristics for well-documented SLOs and discussing options to set error
budgets. The next subsection details factors that are critical in ensuring that a service stays
reliable and does not exhaust the error budget.

62 SRE Technical Practices – Deep Dive

Making a service reliable
When a service exhausts its error budget or repeatedly comes close to exhausting the
same, engineering teams should focus on making a service reliable. This raises the next
obvious question: How can the engineering teams make a service more reliable to meet
users' expectations?

To get deeper insights into this, it's critical to consider the following key factors essential
to determine the potential impact on the service:

• Time to detect (TTD)—Defined as the difference in time from when the issue first
occurred to the time that the issue was first observed or reported. Example: If an
issue occurred at 10 a.m. but was reported or observed at 10:30 a.m., then the TTD
in this scenario is 30 minutes.

• Time to resolve (TTR)—Defined as the difference in time from when the issue
was first observed or reported to the time that the issues was resolved. Example: If
an issue was first observed or reported at 10:30 a.m. but was resolved at 10:45 a.m.,
then the TTR in this scenario is 15 minutes.

• Time to fail (TTF)—Defined as how frequently the service is expected to fail. TTF
is also known as Time Between Failures, or TBF.

• Impact %—Percentage of impact in terms of impacted users or impacted functional
areas.

• The expected impact is proportional to the following expression:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸 ≈
(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇) ∗ 𝑖𝑖𝐼𝐼𝐸𝐸𝐼𝐼𝐸𝐸𝐸𝐸 %

𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 100

Reliability can be improved by implementing the following options:

• Reducing detection time: Reduce TTD

• Reducing repair time: Reduce TTR

• Reduce impact %: Reduce the impacted users/functional areas

• Reduce frequency: Increasing TTF

• Operational improvement

Let's discuss each option in detail, next.

Understanding error budgets 63

Reduce detection time (TTD)
TTD can be reduced by the following approaches:

• Add automated alerting that alerts a user rather than the user manually detecting an
issue by noticing an abnormality from the metrics dashboard.

• Add monitoring to measure SLO compliance. This helps to know how quickly the
error budget is being consumed or whether the service is performing within its
target SLOs.

Reduce repair time (TTR)
TTR can be reduced by the following approaches:

• Develop a playbook that makes it easier to parse and collate server debug logs.
This will help the onsite engineers to quickly address the problem at hand. If a new
pattern was detected, then the playbook should be updated.

• Automate manual tasks such as increasing disk space to an acceptable percentage of
current disk space, draining zone or rerouting traffic.

• Collect relevant information for a specific scenario, which will save time for the
on-call team and will allow them to get a head start with their investigation.

Reduce impact %
Impact % can be reduced by the following approaches:

• Roll out a new feature to a limited number of users through a percentage-based rollout
within a given amount of time. This reduces the impact percentage to that specific user
group. The rollout percentage can be gradually increased from 0.1% of users to 1%,
then later to 10%, and eventually 100%. In this way, the releases are staggered.

• Engineer a service to run in a degraded mode during a failure, such as switching
to allow read-only actions and not writes, thus reducing the impact.

Reduce frequency
Frequency can be reduced by the following approaches:

• Run the service or application in multiple zones or regions. Direct the traffic away
from the zone or region that failed to an alternate working zone or region.

• Create a self-healing automated script that reduces the impact and frequency,
but also report the issue so that it can be addressed later.

64 SRE Technical Practices – Deep Dive

Operational improvements
Here are some options from an operational standpoint to make a service reliable:

• Increase availability by adding redundancy and thereby remove single points
of failure.

• Identify a common category between failures that can point to a specific region
or a specific set of customers who consume a majority of the error budget.

• Standardize the infrastructure or minimize the differences to achieve similar results
when testing a service against running it in production.

• Use design patterns that allow the service to be rolled back in case of an issue.

• Create alerts by tracking the error budget burndown rate.

• Use post-mortems to identify the issues at hand and create actionable items to fix
those issues.

This completes a complete deep dive into potential factors that needs to be considered and
feasible options that can be implemented to make a service reliable, thus not consuming
the error budget. The next subsection summarizes the section on error budgets.

Summarizing error budgets
Error budgets can be summarized by the following key pointers:

• Error budgets help development and SRE teams balance release velocity and
stability. Management buys into SLO and gives executive backing.

• Error budgets need SLOs, and SLOs need SLIs to monitor service reliability.

• The difference between the actual and targeted SLO is calculated to determine if it is
below the error budget, and if so, the release of new features is allowed.

• If not, engineering efforts should be focused on the reliability of the service.

• An error budget policy is an effective way to implement the concepts of an
error budget.

This completes the section on error budgets, with a deep dive into multiple aspects that
include how to define an effective error budget policy, how to set error budgets, the impact
of having an executive buy-in that helps to make a service reliable, and how to effectively
balance the release velocity of new features.

Eliminating toil through automation 65

Eliminating toil through automation
Toil was introduced in Chapter 1, DevOps, SRE, and Google Cloud Services for CI/CD, and
is defined as the work tied to a production service where the characteristic of that work is
manual, repetitive, automatable, tactical, lacks enduring value, and linearly grows with the
service. Toil is often confused with overhead, but overhead refers to administrative work
that includes email, commute, filing expense reports, and attending meetings. Toil can be
both good and bad—it really depends on the amount of toil.

Here are some of the positive sides of performing toil, but in very short and limited
amounts:

• Produces a sense of gratification or a sense of accomplishment

• Can act as a low-stress or low-risk activity

• Can be used to train new recruits, especially providing them a chance to learn by
being hands-on with the system to learn the inner workings

However, excessive toil can lead to the following problems or issues:

• Career stagnation: Solving production issues is gratifying, but solving the same issue
manually in a repetitive manner doesn't help from a career standpoint. This takes
away learning time and intent away from the SRE engineer, leading to stagnation.

• Burnout and boredom: Excessive toil leads to burnout and boredom. An SRE
engineer will be bored doing the same task every day. Sometimes, manual tasks
might also be tedious and laborious, leading to burnout.

• Low feature velocity: If the SRE team is engaged in lot of toil, then they will have
less time to work on releasing new features, thus leading to lower feature velocity
and reduced release cadence.

• Wrong precedence: If the SRE team engages in more toil than required, it's possible
that development teams will make SRE teams do further toil, especially on items
that need to be addressed truly by the development team instead to remove the root
cause. This will create confusion on the role of the SRE engineer.

All the aforementioned problems or issues can potentially lead to attrition, as SRE
engineers might not be happy with their everyday work and might look elsewhere for
better work and challenges. SRE recommends that toil should be bounded and that an
SRE engineer should not work more than 50% of their time on toil. Anything more than
50% blurs the line between an SRE engineer and a system administrator. SRE engineers
are recommended to spend the remaining 50% on supporting engineering teams in
achieving reliability goals for the service.

66 SRE Technical Practices – Deep Dive

Eliminating toil allows SRE engineers to add service features to improve the reliability and
performance of the service. In addition, focus can continue to remain on removing toil as
identified, thus clearing out a backlog of any manual repetitive work. SRE encourages the
use of engineering concepts to remove manual work. This also allows SRE engineers to
scale up and manage services better than a development or an operations team.

SRE recommends removing toil through automation. Automation provides consistency
and eliminates the occurrence of oversights and mistakes. Automation helps to perform
a task much faster than humans and can also be scheduled. Automation also ensures to
prevent a problem before reoccurring. Automation is usually done through code, and this
also provides a chance for SRE engineers to use engineering concepts to implement the
required logic.

This concludes the section on toil: its characteristics, the good and bad aspects, and the
advantages of using automation to eliminate toil. The next section illustrates how SLAs,
SLOs, and error budgets are impacted based on SLI performance.

Illustrating the impact of SLAs, SLOs, and error
budgets relative to SLI
In this section, we will go through two hands-on scenarios to illustrate how SLO targets
are met or missed based on SLI performance over time. SLOs performance will have direct
impact on SLAs and error budgets. Changes in the error budget will specifically dictate the
priority between the release of new features versus service reliability. For ease of explanation,
a 7-day period is taken as the measure of time (ideally, a 28-day period is preferred).

Scenario 1 – New service features introduced; features
are reliable; SLO is met
Here are the expectations for this scenario:

• Expected SLA—95%

• Expected SLO—98%

• Measured SLI—Service availability or uptime

• Measure duration—7 days

Illustrating the impact of SLAs, SLOs, and error budgets relative to SLI 67

Given that the anticipated SLO for service is 98%, here is how the allowed downtime
or error budget is calculated (you can use this downtime calculator for reference:
https://availability.sre.xyz):

• Error budget = 100% - SLO = 100% - 98% = 2%

• Allowed downtime for 7 days with 98% availability = 3.36 hours = 3.36 * 60 =
201.6 minutes

So, if total downtime across 7 days is less than 201.6 minutes, then the service is within
SLO compliance of 98%, else the service is out of SLO compliance.

Now, let's illustrate how the SLO is impacted based on SLI measurements. Assume that
new features are introduced for the service (across the 7-day period) and the features are
stable, with minimal issues.

The following table represents the SLI measurements of availability, respective downtime
based on SLI performance, and the reduction in error budget on a per-day basis:

The following screenshot represents the SLI performance for service uptime (top) and the
error budget burndown rate (bottom) based on the values from the preceding table:

Figure 2.2 – Illustration of SLI performance and error budget burndown rate

https://availability.sre.xyz

68 SRE Technical Practices – Deep Dive

Here are some critical observations:

• Remaining error budget = 84.95 minutes, which is less than 201.6 minutes. Hence,
the SLO is in compliance and the SLA is met.

• The SLO performance can be calculated based on the remaining error budget. Since
the remaining error budget is 84.95 minutes, then SLO performance is 99.25%.

• The introduction of new features did not unevenly or suddenly decrease the
error budget.

This completes a detailed illustration of a scenario where the SLO is met based on the SLI
performance over a 7-day period. The next scenario illustrates the opposite, where the
SLO is missed based on SLI performance.

Scenario 2 – New features introduced; features are not
reliable; SLO is not met
Here are the expectations for this scenario:

• Expected SLA—95%

• Expected SLO—98%

• Measured SLI—Service availability or uptime

• Measure duration—7 days

As calculated in Scenario 1, the allowed downtime for a 98% SLO is 201.6 minutes. So, the
SLO is out of compliance if downtime is greater than 201.6 minutes over a 7-day period.

Now, let's illustrate how the SLO is impacted based on SLI measurements. Assume that
new features are introduced for the service (across the 7-day period) but the introduced
features are not stable, causing major issues resulting in longer downtimes.

The following table represents the SLI measurements of availability, respective downtime
based on SLI performance, and the reduction in error budget on a per-day basis:

Summary 69

The following screenshot represents the SLI performance for service uptime (left-hand
side) and the error budget burndown rate (right-hand side) based on the values from the
preceding table:

Figure 2.3 – Illustration of SLI performance and error budget burndown rate

Here are some critical observations:

• Remaining error budget = 0 minutes on day 4. So, the SLO is not in compliance.

• Total downtime across 7-day period is 253.44 minutes.

• The corresponding SLO performance is approximately at 97.48, which is below 98%.

• The SLA is violated since the SLO is not in compliance. This will result in
consequences.

• The SRE team should not add new features after day 3 and instead focus on
system reliability.

This brings an end to a detailed rundown of Scenario 2. This completes our illustration
of how SLAs, SLOs, and error budgets are impacted based on SLI performance. This also
means we have reached the end of this chapter.

Summary
In this chapter, we discussed in detail the key SRE technical practices: SLAs, SLOs, SLIs,
error budgets, and eliminating toil. This included several critical concepts such as factors
that can be used for a well-defined SLA, providing guidelines to set SLOs, categorizing
user journeys, detailing sources to measure SLIs along with their limitations, elaborating
on error budgets, detailing out factors that can make a service reliable, understanding
toil's consequences, and elaborating on how automation is beneficial to eliminate toil.
These concepts allow us to achieve SRE's core principle, which is to maintain the balance
between innovation and system reliability and thus achieve the eventual goal: build reliable
software faster.

70 SRE Technical Practices – Deep Dive

In the next chapter, we will focus on concepts required to track SRE technical practices:
monitoring, alerting, and time series. These concepts will include monitoring as a
feedback loop, monitoring sources, monitoring strategies, monitoring types, alerting
strategies, desirable characteristics of an alerting system, time-series structures, time-
series cardinality, and metric types of time-series data.

Points to remember
Here are some important points to remember:

• 100% is an unrealistic reliability target.

• Log-based SLIs and ingesting telemetry adds latency.

• App metrics are not good for complex use journeys.

• SLOs must be set based on conversations with engineering and product teams.

• If there is no error budget left, the focus should be on reliability.

• TTD is the time taken to identify that an issue exists or is reported.

• TTR is the time taken to resolve an issue.

• To improve the reliability of a service, reduce TTD, reduce TTR, reduce impact %,
and increase TTF/TBF.

• SLIs should have a predictable relationship with user happiness and should be
aggregated over time.

• User expectations are strongly tied to past performance.

• Setting values for SLIs and SLOs should be an iterative process.

• Advanced techniques to manage error budgets are dynamic release cadence, setting
up error budget exhaustion rates, rainy-day funds, and the use of silver bullets.

• Identify repetitive tasks that contribute to toil and automate them.

Further reading
For more information on Google Cloud Platform's (GCP's) approach toward DevOps,
read the following articles:

• SRE: https://landing.google.com/sre/

• SRE fundamentals: https://cloud.google.com/blog/products/gcp/
sre-fundamentals-slis-slas-and-slos

https://landing.google.com/sre/
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos

Practice test 71

• SRE YouTube playlist: https://www.youtube.com/watch?v=uTEL8Ff1Zv
k&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj

Practice test
Answer the following questions:

1. Which from the following indicates work that is not tied to a production service?

a) Toil

b) Manual

c) Overhead

d) Automation

2. Which of the following represents an explicit or implicit contract with your users that
includes consequences of meeting or missing the SLOs?

a) SLI

b) SLO

c) SLA

d) Error budget

3. Which of the following combinations represent metrics that are typically tracked as
part of a request/response journey?

a) Availability, latency, and durability

b) Latency, coverage, throughput, and availability

c) Coverage, correctness, and quality

d) Availability, latency, and quality

4. Select an option that represents SRE recommendation in terms of the time that an
SRE engineer is allowed to spend on toil:

a) 25%-55%

b) 45%-60%

c) 50%-75%

d) 30%-50%

https://www.youtube.com/watch?v=uTEL8Ff1Zvk&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj
https://www.youtube.com/watch?v=uTEL8Ff1Zvk&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj

72 SRE Technical Practices – Deep Dive

5. Which of the following is the least realistic (preferred) option to target reliability for
a service as an SLO?

a) 99.9%

b) 99.99%

c) 99.999%

d) 100%

6. In terms of best practice, which option is correct with respect to the number of SLIs
recommended per user journey?

a) 2 to 3

b) No specific limit

c) 3 to 5

d) 5 to 7

7. An e-commerce web application is processing customer purchases through
requests and storing the sales transactions in a database. The goal is to ensure that
the forecasted sales numbers are based on the latest sales numbers. Which of the
following should be selected as SLIs for the e-commerce application (select two)?

a) Database—Availability.

b) Database—Durability.

c) Database—Freshness.

d) Web application—Availability.

e) Web application—Durability.

f) Both the database and web application should be available. Production apps
should have full availability.

8. Which out of the following represents a precise numerical target for system
availability?

a) SLA

b) SLO

c) SLI

d) Error budget

Answers 73

9. Which of the following represents a direct measurement of service behavior?

a) SLA

b) SLO

c) SLI

d) Error budget

10. Which of the following is the best suitable source to backfill an SLI?

a) Application server

b) Frontend infrastructure

c) Synthetic clients

d) None of the above

Answers
1. (c) Overhead.

2. (c) SLA.

3. (d) Availability, latency, and quality.

4. (d) 30%-50%. The recommended amount of toil should not exceed 50%.

5. (d) 100%.

6. (c) 3 to 5.

7. (a) and (d): Both the database and web application should be available as these are
production applications.

8. (b) SLO.

9. (c) SLI.

10. (d) None of the above. The exact answer is server-side logs.

3
Understanding

Monitoring and
Alerting to Target

Reliability
Reliability is the most critical feature of a service or a system. Site Reliability
Engineering (SRE) prescribes specific technical tools or practices that help measure
characteristics to define and track reliability, such as SLAs, SLOs, SLIs, and Error
Budgets. Chapter 2, SRE Technical Practices – Deep Dive, took a deep dive into these SRE
technical practices across multiple topics, including a blueprint for a well-defined SLA,
the need for SLOs to achieve SLAs, the guidelines for setting SLOs, the need for SLIs to
achieve SLOs, the different types of SLIs based on user journey categorization, different
sources to measure SLIs, the importance of error budgets, and how to set error budgets to
make a service reliable.

76 Understanding Monitoring and Alerting to Target Reliability

SLAs are external promises made to the customer, while SLOs are internal promises that
need to be met so that SLAs are not violated. This raises a raft of important questions:

• How to observe SLAs for a service so that user or customer expectations are met

• How to observe SLOs for SLAs so that the service is reliable, and SLAs are met

• How to observe SLIs for SLOs so that the service is reliable, and SLAs are met

The preceding questions are critical because it not only has an impact on a user's
expectations regarding the service, but also leads to an imbalance between development
velocity to deliver new features versus system reliability. This ultimately impacts the
promised SLAs, leading to financial or loyalty repercussions. So, in simple terms, the main
goal is to identify how to track SRE technical practices to target system reliability.

To track SRE technical practices, three fundamental concepts are required: Monitoring,
Alerting, and Time Series. Monitoring is the process of monitoring key indicators that
represent system reliability. Alerting is the process of alerting or reporting when the
key indicators monitored fall below an acceptable threshold or condition. Monitoring
and alerting are configured as a function of time. This means that the data needs to be
collected at successive, equally spaced points in time representing a sequence of discrete-
time data. This sequence of discrete-time data is also known as a time series.

In this chapter, we're going to explore the following topics and their role in relation to
target system reliability:

• Monitoring: Feedback loop, monitoring types, and golden signals?

• Alerting: Key attributes and approaches for an alerting strategy?

• Time series: Structure, cardinality, and metric types?

Understanding monitoring
Monitoring is defined by Google SRE as the action of collecting, processing, aggregating,
and displaying real-time quantitative data about a system, such as query counts and types,
error counts and types, processing times, and server lifetimes.

In simple terms, the essence of monitoring is to verify whether a service or an application
is behaving as expected. Customers expect a service to be reliable and delivering the
service to the customer is just the first step. But ensuring that the service is reliable should
be the desired goal. To achieve this goal, it is important to explore key data, otherwise
also known as metrics. Examples of some metrics can be tied to uptime, resource usage,
network utilization, and application performance.

Understanding monitoring 77

Monitoring is the means of exploring metric data and providing a holistic view of a
system's health, which is a reflection of its reliability. Apart from metric data, monitoring
can include data from text-based logging, event-based logging, and distributed tracing.
The next topic details how monitoring acts as a continuous feedback loop that is critical to
continuously improving system reliability by providing constant feedback.

Monitoring as a feedback loop
The ultimate goal is to build a reliable system. For a system to be reliable, the system needs
to be continuously observed, in terms of understanding the system's internal states based
on its external outputs. This process is known as observability.

Observability helps to identify performance bottlenecks or investigate why a request
failed. But for a system to be observable, it is important to collect and track several
sources of outputs related to the health of the application. These outputs give insights
into the application's health and identify any outstanding problems. This is referred to as
monitoring. So, monitoring provides inputs that help a system to be observable. In simple
terms, monitoring indicates when something is wrong, while observability helps to show why
something went wrong.

Once an application is deployed, there are four primary areas across which the application
needs to be inspected or otherwise monitored:

• Verify an application's performance against the application objectives and identify
any deviations in performance by raising relevant questions.

• Analyze data collected by the application over a period of time.

• Alert key personnel when key issues are identified through insights or data analysis.

• Debug the captured information to understand the root cause of an identified
problem.

These areas or categories provide a continuous feedback loop as part of monitoring the
system. This feedback helps to continuously improve the system by identifying issues,
analyzing the root cause, and resolving the same. Each of the four categories mentioned is
elaborated on in this chapter to provide further insights.

One of the key aspects of monitoring is to raise relevant questions pertaining to the health
of the system. This is covered as the next topic.

78 Understanding Monitoring and Alerting to Target Reliability

Raising relevant questions
It is important to raise relevant questions to monitor a system's health post-deployment.
These questions provide feedback on how the system is performing. Here are some questions
to define where monitoring the service/system can effectively provide a feedback loop:

• Is the size of the database growing faster than anticipated?

• Has the system slowed down after taking the latest software update of a specific
system component?

• Can the use of new techniques aid system performance (such as the use of
Memcached to improve caching performance)?

• What changes are required to ensure that the service/system can accept traffic from
a new geographic location?

• Are traffic patterns pointing to a potential hack of the service/system?

The key to answering the preceding questions is to analyze the data at hand. The next topic
introduces the possibilities as a result of data analysis.

Long-term trend analysis
Data analysis always leads to a set of trends or patterns. Monitoring these trends can lead
to one or more of the following possibilities:

• Point to an existing issue.

• Uncover a potential issue.

• Improve system performance to handle a sudden period of increased traffic.

• Influence experimentation of new system features to proactively avoid issues.

Data analysis is key to ensuring that a system is performing as expected and helps in
identifying any outstanding potential issues. Data analysis can be done manually by
humans or can be programmed to be done by a system. The intent to identify the root
cause once an incident has occurred is referred to as debugging and is introduced as the
next key topic in this discussion regarding feedback loops.

Debugging
Debugging allows ad hoc retrospective analysis to be conducted from the information
gathered through analyzing data. It helps to answer questions such as what are the other
events that happened around the same time when an event occurred.

Understanding monitoring 79

Any software service or system is bound to have unforeseen events or circumstances.
These events are triggered due to an outage or loss of data or monitoring failure or the
need for toil to perform a manual intervention. The active events are then responded to
by either automated systems or humans. However, the response is based on the analysis of
signal data that comes through the monitoring systems. These signals evaluate the impact
and escalate the situation as needed and help to formulate an initial response.

Debugging is also key to an effective post-mortem technique that includes updating
documentation as needed, performing root cause analysis, communicating the details
of the events across teams to foster knowledge sharing, and coming up with a list of
preventive actions.

The next topic in the discussion on feedback loops focuses on alerting. Alerting is
essential for notifying either before an event occurs or as soon as possible after an event
occurs.

Alerting
Alerting is a key follow-up to data analysis and informs the problem at hand. Real-time,
or near-real-time, alerting is critical in mitigating the problem and potentially also
identifying the root cause.

Alerting rules can be complex in reflecting a sophisticated business scenario and
notifications can be sent when these rules are violated. Common means of notification
include the following:

• An email (that indicates something happened)

• A page (that calls for immediate attention)

• A ticket (that triggers the need to address an issue sooner rather than later)

In Chapter 2, SRE Technical Practices – Deep Dive, we discussed the implications of setting
reliability targets. For example, if the reliability target is set to 4 9's of reliability (that is,
99.99%) then this translates to 4.38 minutes of downtime in a 30-day period. This is not
enough time for a human to be notified and then intervene. However, a system can be
notified and can potentially take steps to remediate the issue at hand. This is accomplished
through alerting.

80 Understanding Monitoring and Alerting to Target Reliability

These topics attempt to elaborate on why monitoring can be used as a feedback loop. This
is critical in SRE because the goal of SRE is to maintain a balance between releasing new
features and system reliability. Monitoring helps to identify issues in a timely manner
(as they occur), provide an alert (when they do occur), and provide data to debug. This is
key to understanding how an error budget is tracked over a period. More issues will lead
to a faster burn of the error budget and thereby it becomes more important to stabilize at
that point rather than release new features. However, if monitoring provides information
that indicates that the current system is stable, then there will be a significant error budget
remaining to prioritize new features over system stability.

Given that we have established monitoring as an essential element in providing
continuous feedback to achieve continuous improvement, it is also equally important to
understand the common misconceptions to avoid. This will be covered as the next topic.

Monitoring misconceptions to avoid
There are several common misconceptions when it comes to setting up monitoring for a
service or system. The following is a list of such misconceptions that should be avoided:

• Monitoring should be regarded as a specialized skill that requires a technical
understanding of the components involved and requires a functional understanding
of the application or even the domain. This skill needs to be cultivated within the
team that's responsible for maintaining the monitoring systems.

• There is no all-in-one tool to monitor a service or system. In many situations,
monitoring is achieved using a combination of tools or services. For example, the
latency of an API call can be monitored by tools such as Grafana, but the detailed
breakdown of the API calls across specific methods, including the time taken for a
database query, can be monitored using a tool such as Dynatrace.

• Monitoring shouldn't be limited to one viewpoint and instead cover multiple
viewpoints. The things that matter to the end consumer might be different to what
matters to the business, and may also differ from the viewpoint of the service provider.

• Monitoring is never limited to a single service. It could be extended to a set of
related or unrelated services. For example, it is required to monitor a caching
service as a service related to a web server. Similarly, it is important to monitor
directly unrelated services, such as the machine or cluster hosting the web server.

• Monitoring doesn't always have to be complex. There may be complex business
conditions that need to be checked with a combination of rules, but in many cases,
monitoring should follow the Keep it Simple Stupid (KISS) principle.

Understanding monitoring 81

• Establishing monitoring for a distributed system should focus on individual services
that make up the system and should not solely focus on the holistic operation. For
example, the latency of a request can be longer than expected. The focus should be
on the elements or underlying services that cumulatively contribute to the request
latency (which includes method calls and query responses).

• The phrase single pane of glass is often associated with effective monitoring, where
a pane of glass metaphorically refers to a management console that collects data
from multiple sources representing all possible services. But merely displaying
information from multiple sources doesn't provide a holistic view of the
relationships between the data or an idea of what could possibly go wrong. Instead,
a single pane of glass should deliver a logical grouping of multiple services into a
single workspace by establishing the correlation between monitoring signals.

Monitoring should not only focus on the symptoms, but also on their causes. Let's look at
some examples:

Essentially, the focus of monitoring should not be on collecting or displaying data, but
instead on establishing a relationship between what's broken and a potential reason for why
it's broken. There are multiple sources from which monitoring data can be collected or
captured. This will be discussed as the next topic.

Monitoring sources
Monitoring data is essential in monitoring systems. There are two common sources of
monitoring data. The first source is metrics:

• Metrics represent numerical measurements of resource usage or behavior that can
be observed and collected across the system over many data points at regular time
intervals. Typical time intervals for collecting metrics could be once per second,
once per minute, and so on.

82 Understanding Monitoring and Alerting to Target Reliability

• Metrics can be gathered from low-level metrics provided by the operating system.
In most cases, the low-level metrics are readily available as they are specific to a
resource, such as database instances, virtual machines, and disks.

• Metrics can also be gathered from higher-level types of data tied to a specific
component or application. In such cases, custom metrics should be created and
exposed through the process of instrumentation.

• Metrics are used as input to display less granular real-time data in dashboards or
trigger alerts for real-time notification.

The next source is logs:

• Logs represent granular information of data and are typically written in large volumes.

• Logs are not real time. Logs always have an inherent delay between when an event
occurs and when it is visible in logs.

• Logs are used to find the root cause of an issue as the key data required for analysis
is usually not present as a metric.

• Logs can be used to generate detailed non-time-sensitive reports using log
processing systems.

• Logs can be used to create metrics by running queries against a stream of logs using
batch processing systems.

Logging versus monitoring
Logging provides insights into the execution of an application. Logging can
capture event records and the minutest details, along with actionable errors
that could be converted into alerts. Logging essentially describes what could
have happened and provides data to investigate an issue.

Monitoring, on the other hand, provides capabilities to detect issues as
they happen, and alert as needed. In fact, monitoring requires logging as an
essential source of information. Also, the inverse is true, that logging requires
monitoring. This is because an application with fantastic logging but no
monitoring is not going to help the end user.

To summarize, both metrics and logs are popular choices as monitoring sources. They are
used in different situations and, in most cases, a combination of both sources is always
recommended. Metrics are a good source if there are internal or external components that
provide information about events and performance. Logs are best suited to track various
events that an application goes through. Metrics can also be created from logs. The next
topic discusses a few of the recommended monitoring strategies.

Understanding monitoring 83

Monitoring strategies
The following are some recommended strategies while choosing a monitoring system:

• Data should not be stale: The speed of data retrieval becomes critical when
querying vast amounts of data. If retrieval is slow, data will become stale and may be
misinterpreted, with actions potentially being taken on incorrect data.

• Dashboards should be configurable and include robust features: A monitoring
system should include interfaces that have the capabilities to display time series
data in different formats, such as heatmaps, histograms, counters, or a distribution.
Options to aggregate information using multiple options should be present as a
configurable feature.

• Alerts should be classified and suppressed if needed: Monitoring systems
should have the ability to set different severity levels. In addition, once an alert
has been notified, it is extremely useful if there is the ability to suppress the same
alert for a period that will avoid unnecessary noise that could possibly distract the
on-call engineer.

These recommended strategies are implemented across two types of monitoring. This
classification will be discussed as the next topic.

Monitoring types
Monitoring can be classified into the two most common types:

• Black box monitoring

• White box monitoring

Black box monitoring
Black box monitoring refers to monitoring the system based on testing externally visible
behavior based on the user's perspective. This kind of monitoring does not involve any
access to the technical details or build or configuration of the system. Monitoring is
strictly based on testing visible behavior that is a reflection of how an end consumer
would access the system. It is metaphorically referred to as a black box since the internals
of the system are not opaque and there is no control or visibility in terms of what's
happening inside the system. It is also referred to as server or hardware monitoring.

84 Understanding Monitoring and Alerting to Target Reliability

Black box monitoring is best used for paging incidents after the incident has occurred
or is ongoing. Black box monitoring is a representation of active problems and is
system-oriented, with a specific focus on system load and disk/memory/CPU utilization.
Additional examples include the monitoring of network switches and network devices,
such as load balancers and hypervisor level resource usage.

White box monitoring
White box monitoring is commonly referred to as application monitoring and is based on
the metrics collected and exposed by the internals of the system. For example, white box
monitoring can give insights into an application or endpoint performance by capturing the
total number of HTTP requests or the total number of errors or the average request latency
per request. In contrast, black box monitoring can only capture if the endpoint returned a
successful response. White box monitoring is both symptom-and cause-oriented and this
depends on how informative the internals of the system are. White box monitoring can
also provide insights into future problems, as information retrieved from one internal can
be the reason for an issue in another internal. White box monitoring collects information
from three critical components – metrics, logs, and traces, described as follows:

• Metrics: These are readily available or custom created metrics that represent the
state of the system in a measurable way and typically take the form of counters,
gauges, and distribution.

Metrics must be SMART:

a) S: Specific (such as automation results should be at least 99% versus high quality)

b) M: Measurable (such as results should be returned within 200 ms versus
fast enough)

c) A: Achievable (such as a service is 99.99% available versus 100% available)

d) R: Relevant (such as observing latency versus throughput for browsing
video titles)

e) T: Time Bound (such as service is 99.99% available over 30 days versus
over time)

• Logs: These represent a single thread of work at a single point in time. Logs reflect
the application's state and are user-created at the time of application development.
Logs can be structured or semi-structured, which typically includes a timestamp
and a message code. Log entries are written using client libraries such as log4j
and sl4j. Log processing is a reliable source of producing statistics and can also be
processed in real time to produce log-based metrics.

Understanding monitoring 85

• Traces: These are made up of spans. A span is the primary building block of a
distributed trace that represents a specific event or a user action in a distributed
system. A span represents the path of a request through one server. However, there
could be multiple spans at the same time, where one span can reference another
span. This allows multiple spans to be assembled into a common trace, which is
essentially a visualization of requests as it traverses through a distributed system.

Black box monitoring versus white box monitoring – which is more critical?
Both types of monitoring are equally critical, and each is recommended based
on the situation and the type of audience. Black box monitoring provides
information that the Ops team typically looks at, such as disk usage, memory
utilization, and CPU utilization, whereas white box monitoring provides
more details on the internals of the system, which could reflect the reason for
a metric produced by black box monitoring. For example, a black box metric
such as high CPU utilization will indicate that there is a problem, but a white
box metric such as active database connections or information on long-
running queries can indicate a potential problem that is bound to happen.

To summarize, the reliability of a system can be tracked by monitoring specific metrics.
However, there could potentially be multiple metrics that could be tracked and sometimes
can also lead to confusion while prioritizing these metrics. The next topic lists the most
important metrics to track as recommended by Google for a user-facing system. These
metrics are known as the golden signals.

The golden signals
System reliability is tracked by SLOs. SLOs require SLIs or specific metrics to monitor. The
types of metrics to monitor depend on the user journey tied to the service. It's strongly
recommended that every service/system should measure a definite and a finite set of SLIs.
So, if there is a situation where it is possible to define multiple metrics for a service, then it
is recommended to prioritize the metrics to measure and monitor.

Google proposes the use of four golden signals. Golden signals refer to the most
important metrics that should be measured for a user-facing system:

• Latency: This is an indicator of the time taken to serve a request and reflects user
experience. Latency can point to emerging issues. Example metrics include Page
load/transaction/query duration, Time until first response, and Time until complete
data duration.

86 Understanding Monitoring and Alerting to Target Reliability

• Traffic: This is an indicator of current system demand and is also the basis for
calculating infrastructure spend. Traffic is historically used for capacity planning.
Example metrics include # write/read ops, # transactions/retrievals/HTTP requests
per second, and # active requests/connections.

• Errors: This is an indicator of the rate of requests that are failing. It essentially
represents the rate of errors at an individual service and for the entire system.
Errors represent the rate of requests that fail explicitly or implicitly or by policy.
Example metrics include # 400/500 HTTP Codes and # exceptions/stack traces/
dropped connections.

• Saturation: This is an indicator of the overall capacity of the service. It essentially
represents how full the service is and reflects degrading performance. Saturation
can also indicate SLOs, resulting in the need to alert. Example metrics include
Disk/Memory quota, # memory/thread pool/cache/disk/CPU utilization, and the # of
available connections/users on the system.

This completes the section on monitoring, with the insights into desirable features of
a monitoring system that could essentially help in creating a feedback loop, potential
monitoring sources, types of monitoring, and Google's recommended golden signals,
which represent the four key metrics that should be measured for a user-facing system.
The next section will provide an overview of alerting and how information from the
monitoring system can be used as input.

Alerting
SLIs are quantitative measurements at a given point in time and SLOs use SLIs to reflect
the reliability of the system. SLIs are captured or represented in the form of metrics.
Monitoring systems monitor these metrics against a specific set of policies. These policies
represent the target SLOs over a period and are referred to as alerting rules.

Alerting is the process of processing the alerting rules, which track the SLOs and notify
or perform certain actions when the rules are violated. In other words, alerting allows the
conversion of SLOs into actionable alerts on significant events. Alerts can then be sent to
an external application or a ticketing system or a person.

Common scenarios for triggering alerts include (and are not limited to) the following:

• The service or system is down.

• SLOs or SLAs are not met.

• Immediate human intervention is required to change something.

Alerting 87

As discussed previously, SLOs represent an achievable target, and error budgets represent
the acceptable level of unreliability or unavailability. SRE strongly recommends the use
of alerts to track the burn rate of error budgets. If the error budget burn rate is too fast,
setting up alerts before the entire budget is exhausted can work as a warning signal,
allowing teams to shift their focus on system reliability rather than push risky features.

The core concept behind alerting is to track events. The events are processed through a
time series. Time series is defined as a series of event data points broken into successive
equally spaced windows of time. It is possible to configure the duration of each window
and the math applied to the member data points inside each window. Sometimes, it is
important to summarize events to prevent false positives and this can be done through
time series. Eventually, error rates can be continuously calculated, monitored against set
targets, and alerts can be triggered at the right time.

Alerting strategy – key attributes
The key to configuring alert(s) for a service or a system is to design an effective alerting
strategy. To measure the accuracy or effectiveness of a particular alerting strategy, the
following key attributes should be considered during the design.

Precision
From an effectiveness standpoint, alerts should be bucketized into relevant alerts and
irrelevant alerts. Precision is defined as the proportion of events detected that are
significant.

The following is a mathematical formula for calculating precision:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃 %) = 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐴𝐴𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃
𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐴𝐴𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃 + 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅 𝐴𝐴𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃 ∗ 100

In other words, if precision needs to be 100%, then the count of irrelevant alerts should be
0. Precision is a measure of exactness and is often adversely affected by false positives or
false alerts. This is a situation that could occur during a low-traffic period.

Recall
An alert needs to capture every significant event. This means that there should not be any
missed alerts. Recall is defined as the proportion of significant events detected.

88 Understanding Monitoring and Alerting to Target Reliability

The following is a mathematical formula for calculating recall:

𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑙𝑙𝑙𝑙 (𝑖𝑖𝑖𝑖 %) = 𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑎𝑎𝑖𝑖𝑅𝑅 𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴
𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑎𝑎𝑖𝑖𝑅𝑅 𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴 + 𝑀𝑀𝑖𝑖𝐴𝐴𝐴𝐴𝑅𝑅𝑀𝑀 𝐴𝐴𝑙𝑙𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴 ∗ 100

In other words, if recall needs to be 100%, then every significant event should result in an
alert and there should not be any missed alerts. Recall is a measure of completeness and is
often adversely affected by missed alerts.

Detection time
Detection time is defined as the time taken by a system to notice an alert condition. It is
also referred to as the time to detect. Long detection times can negatively impact the error
budget. So, it is critical to notify or raise an alert as soon as an issue occurs. However, raising
alerts too fast will result in false positives, which will eventually lead to poor precision.

Reset time
Reset time is defined as the length or duration of time the alerts are fired after an issue has
been resolved. Longer reset times will have an adverse impact because alerts will be fired
on repaired systems, leading to confusion.

This concludes an introduction to key attributes that are critical in defining an effective
alerting strategy. The next topic elaborates on a potential approach to define an effective
alerting strategy.

Alerting strategy – potential approaches
SRE recommends six different approaches to configure alerts on significant events. Each
of these approaches addresses a different problem. These approaches also offer a certain
level of balance across key attributes, such as precision, recall, detection time, and reset
time. Some of these approaches could solve multiple problems at the same time.

Approach # 1 – Target error rate >= Error budget (with a shorter
alert window)
In this approach, a shorter alert window or smaller window length is chosen (for example,
10 minutes). Smaller windows tend to yield faster alert detection and shorter reset times
but also tend to decrease precision because they tend toward false positives or false alerts.

Alerting 89

As per this approach, an alert should be triggered if the target error rate equals or exceeds
the error budget within the defined shorter alert window.

Consider an example with the following input parameters:

• The expected SLO is 99.9% over 30 days, resulting in 0.1% as the error budget.

• Alert window to examine: 10 minutes.

Accordingly, a potential alert definition would be the following:

If the SLO is 99.9% over 30 days, alert if the error rate over the last 10 minutes is >= 0.1%.

In approach # 1, a shorter time window results in alerts being fired more frequently, but
tends to decrease precision.

Approach # 2 – Target error rate >= Error budget (with a longer
alert window)
In this approach, a longer alert window or larger window length is chosen (for example,
36 hours). Larger windows tend to yield better precision, but will have longer reset and
detection times. This means that the portion of the error budget spent before the issue is
detected is also high.

As per this approach, an alert should be triggered if the target error rate equals or exceeds
the error budget within the defined larger time window.

Consider an example with the following input parameters:

• The expected SLO is 99.9% over 30 days: Resulting in 0.1% as the error budget

• Alert window to examine: 36 hours

Accordingly, a potential alert definition would be the following:

If the SLO is 99.9% over 30 days, alert if the error rate over the last 36 hours is >= 0.1%.

In approach # 2, a longer time window results in higher precision, but the alert will be
fired less frequently and may result in a higher detection time.

90 Understanding Monitoring and Alerting to Target Reliability

Approach # 3 – Adding a duration for better precision
In this approach, a duration parameter can be added to the alert criteria, so that the alert
won't fire unless the value remains above the threshold for that duration. The choice of
threshold also becomes significant as some of the alerts can go undetected if the threshold
is too high. For example, if the duration window is 10 minutes and the signal data was
up for 9 minutes but returned to normal before the 10th minute, the error budget will be
consumed, but alerts will go undetected or will not get fired. With the right selection of
duration parameter and threshold, this approach enables the error to be spotted quickly,
but treats the error as an anomaly until the duration is reached:

• The advantage is that the alert fired after a defined duration will generally
correspond to a significant event, and so will increase precision.

• The disadvantage is that the error will continue to happen for a larger window and,
as a result, will lead to a deteriorating recall.

A longer alert window or larger window length is recommended (for example, 36 hours).
Larger windows tend to yield better precision, but will have longer reset and detection times.

As per this approach, an alert should be triggered if the target error rate equals or exceeds
the error budget within the defined larger time window.

Consider an example with the following input parameters:

• The expected SLO is 99.9% over 30 days: Resulting in 0.1% as the error budget

• Alert window to examine: 36 hours

Accordingly, a potential alert definition would be as follows:

If the SLO is 99.9% over 30 days, alert if the error rate over the last 36 hours is >= 0.1%.

In approach # 3, a longer duration window also means that the portion of the error budget
spent before the issue is detected is high, but is highly likely to indicate to a significant event.

Approach # 4 – Alert regarding the burn rate
In this approach, alerts should be defined based on burn rate. Burn rate is defined as how
fast, relative to the SLO, the service consumes the error budget.

For example, with a 0.1% error budget over 30 days, if the error rate is constant at 0.1%
across the 30 days, then the budget is spent equally and 0 budget remains at the end of the
30th day. In this case, the burn rate is calculated as 1. But if the error rate is 0.2%, then the
time to exhaustion will be 15 days, and the burn rate will be 2.

Alerting 91

When alerting based on burn rate, the following are two possible alerting policies:

• Fast burn alert: An alert is fired because of a sudden large change in consumption
of the error budget. If not notified, then the error budget will exhaust quicker than
normal. For a fast burn alert, the lookback period should be shorter (say 1 to 2
hours), but the threshold for the rate of consumption for the alert should be much
higher (say 10x times) than the ideal baseline for the lookback period.

• Slow burn alert: An alert is not fired until a condition is continuously violated for
a long period. This kind of alert only consumes a small percentage of the error
budget when it occurs and is significantly less urgent than a fast burn alert. For
a slow burn alert, the lookback period should be longer (say 24 hours) but the
threshold is slightly higher (say 2x times) than the baseline for the lookback period.

So, as per approach # 4, alerts will be fired if the burn rate is greater than the desired burn
rate at any point in time. This approach provides better precision over a shorter time
window with good detection times.

Approach # 5 – Multiple burn rate alerts
The same alerting strategy doesn't need to always work for a service. This might depend
on factors such as the amount of traffic, the variable error budget, or peak and slow
periods. For example, during a holiday shopping season, it is common that the SLO for a
service will be higher than normal. This means a lower error budget during peak season
and this will revert to a slightly less strict error budget during off-peak seasons.

In this approach, instead of defining a single condition in an alerting policy, multiple
conditions can be defined to get better precession, recall, detection time, and reset time.
Each condition can have a different level of severity and a different notification channel to
notify the alert based on the nature of severity.

For example, an alerting policy can be defined with the following multiple conditions:

• Trigger an alert if 10% of the budget is consumed over a time duration of 3 days and
notify by creating a ticket.

• Trigger an alert if 5% of the budget is consumed over a time duration of 6 hours and
notify through a page.

• Trigger an alert if 2% of the budget is consumed over a time duration of 1 hour and
notify through a page.

In approach # 5, multiple conditions can be defined for a single alerting policy. Each
condition could result in a different action that could potentially represent the severity
level for the alert.

92 Understanding Monitoring and Alerting to Target Reliability

Approach # 6 – Multiple burn rate alerts across multiple windows
This is an extension of approach # 5, where the major difference is to use multiple
windows to check whether the error rate exceeds the error budget rather than a single
window for a single condition. This will ensure that the alert raised is always significant
and is actively burning the error budget when it gets notified.

This helps to create an alerting framework that is flexible and shows the direct impact
based on the severity of the incident. A flexible window emphasizes or confirms whether
the alert condition is active in the last specified duration. This helps to immediately
troubleshoot when alerted. The flip side is that such conditions also involve multiple
variables that might add to maintenance in the long term.

For example, an alerting policy can be defined with the following multiple conditions:

• Trigger an alert if 10% of the budget is consumed over a time duration of 3 days and is
currently being consumed over the last 6 hours. Notify by creating a ticket.

• Trigger an alert if 5% of the budget is consumed over a time duration of 6 hours and is
currently being consumed over the last 30 minutes. Notify through a page.

• Trigger an alert if 2% of the budget is consumed over a time duration of 1 hour and is
currently being consumed over the last 5 minutes. Notify through a page.

Approach # 6 is potentially an extension of approach # 5, where multiple conditions
can be defined for an alerting policy where each condition, if breached, can result in a
different action or notification. The difference is that approach # 6 emphasizes specifying
an alert window that could confirm that the fired alert is potentially active.

These approaches are well suited for many situations that could require an alerting strategy.
However, there could be a specific situation where the traffic received by the service is less or
low. The next topic discusses approaches on how to deal with such situations.

Handling service with low traffic
If a service receives a smaller amount of traffic, a single or a smaller number of failed
requests might result in a higher error rate, indicating a significant burn of the error
budget. SRE recommends a few options for handling a low-traffic service:

• Generating artificial traffic: This option provides more signals or requests to work
with. However, a significant amount of engineering effort is required to ensure that
the artificial traffic behavior matches real user behavior closely.

Alerting 93

• Combining services: This option recommends bucketizing similar low-request
services into a single group representing a single function. This will result in higher
precision and fewer false positives. However, careful consideration needs to be given
when combining the services into a single group. This is because the failure of an
individual service might not always result in the failure of the overall function and,
as a result, will not result in an alert for a significant event.

• Modifying clients: This option is used to deal with ephemeral failures, especially
if it is impractical to generate artificial traffic or combine services into a group.
The impact of a single failed request can be reduced by modifying the client and
implement exponential backoff. Additionally, fallback paths should be set up to
capture the request for eventual execution post-backoff.

• Lowering the SLO or increasing the window: This option is the simplest way to
handle low-traffic services. This will reduce the impact of a single failure on the
error budget. However, lowering the SLO is also a way to lower the expectations on
how the service should behave.

Given that we learned about topics specific to creating an effective alerting strategy, the
next logical step is to learn about steps required to establish an SLO altering policy.

Steps to establish an SLO alerting policy
The following is the sequence of steps to establish an SLO alert policy:

1. Select the SLO to monitor: Choose the suitable SLO for the service. It is
recommended to monitor only one SLO at a time.

2. Construct an appropriate condition: It is possible to have multiple conditions for
an alerting policy where the condition is different for a slow burn when compared
to a fast burn.

3. Identify the notification channel: Multiple notification channels can be selected at
the same time for an alerting policy.

4. Include documentation: It is recommended to include documentation about the
alert that might help to resolve the potential underlying issue.

5. Create an alerting policy: The policy should be created in the monitoring system of
choice, either through a configuration file or CLI, or through the console (based on
the features supported by the monitoring system).

This concludes establishing the blueprint for the SLO alerting policy. The next topic
introduces the desirable characteristics of an alerting system.

94 Understanding Monitoring and Alerting to Target Reliability

Alerting system – desirable characteristics
The alerting system should control the number of alerts that the on-call engineers receive.
The following is a shortlist of desirable characteristics that an alerting system should possess:

• Inhibit certain alerts when others are active.

• Remove or silence duplicate alerts from multiple sources that have the same
label sets.

• Fan-in or fan-out alerts based on their label sets when multiple alerts with similar
label sets fire.

This completes the section on alerting with insights into constructs that are required to
define an effective alerting policy that includes possible approaches and key attributes,
such as precision, recall, detection time, and reset time. The next section will provide an
overview of time series, their structure, cardinality, and metric types.

Time series
Time series data is the data that collectively represents how a system's behavior changes
over time. Essentially, applications relay a form of data that measures how things change
over time. Time is not only regarded as a variable being captured; time is the primary
focal point. Real-world examples of time series data include the following:

• Self-driving cars that continuously collect data to capture the ever-changing driving
conditions or environment

• Smart homes that capture events such as a change in temperature or motion

Metric versus events
Metrics are time series measurements gathered at regular intervals. Events are
time series measurements gathered at irregular time intervals.

The following are some characteristics that qualify data as time series data:

• Data that arrives is always recorded as a new entry.

• Data arrives in time order.

• Time is the primary axis.

Time series 95

Adding a time field to the dataset is not the same as time series data
Data related to a sensor is being collected in a non-time series database. If
the sensor collects a new set of data, then writing this data will overwrite the
previously stored data in the database with updated time. The database will
eventually return the latest reading, but will not be able to track the change of
data over a period of time. So, a non-time series database tracks changes to the
system as UPDATES, but a time series database tracks changes to the system
as INSERTS.

The next topic discusses the structure of time series.

Time series structure
Monitoring data is stored in time series. Each individual time series data has three pieces
of information (refer to Figure 3.1):

• Points: Refers to a series of (timestamp, value) pairs. The value is the measurement,
and the timestamp is the time at which the measurement was taken.

• Metric: Refers to the name of the metric type that indicates how to interpret the
data points. This also includes a combination of values for the metric labels.

• Monitored resource: Refers to the monitored resource that is the source of the time
series data, and one combination of values for the resource's label.

The following screenshot shows the structure of time series data:

Figure 3.1 – Structure of time series data

96 Understanding Monitoring and Alerting to Target Reliability

Let's look at an example:

The following screenshot shows an illustration of how time series data is represented for
metric types with sample values: storage.googleapis.com/api/request_count:

Figure 3.2 – Illustration of a GCP Cloud storage metric with sample values

The preceding screenshot represents the various events that were captured as part of
the metrics as they happened over time. For example, the following information can be
extracted from Figure 3.2:

• There are a total of eight registered events in bucket 1234 between 2:00 pm and
2:10 pm.

• This includes six successful events (three reads and three writes with different
timestamps) and three unsuccessful write attempts.

The next topic introduces the concept of cardinality with respect to time series data.

Time series 97

Time series cardinality
Each time series is associated with a specific pair of metric and monitored resource types,
but each pair can have many time series. The possible number of time series is determined
by the cardinality of the pair: the number of labels and the number of values each label
can take on.

For example, a time series metric is represented as a combination of two labels: zone and
color. There are two zones (east and west) and three colors for each zone (red, green, and
blue). So, the cardinality for this metric is six. The following is the potential time series data:

Request_by_zone_and_color{zone="east",color="red"}

Request_by_zone_and_color{zone="east",color="green"}

Request_by_zone_and_color{zone="east",color="blue"}

Request_by_zone_and_color{zone="west",color="red"}

Request_by_zone_and_color{zone="west",color="green"}

Request_by_zone_and_color{zone="west",color="blue"}

With metric cardinality, there are a couple key pointers to bear in mind:

• Metric cardinality is a critical factor with respect to performance. If the cardinality
is too high, this means that there is a lot of time series data, resulting in higher
query response times.

• For custom metrics, the maximum number of labels that can be defined in a metric
type is 10.

The next topic introduces the common metric types with respect to time series data.

Time series data – metric types
Each time series includes a metric type to represent its data points. The metric type
defines how to interpret the values relative to one another. The three most common types
of metric are as follows:

• Counter: A counter is a cumulative metric that represents a monotonically
increasing function whose value can only increase (but can never decrease) or be
reset to zero on restart; for example, a counter to represent the number of requests
served, tasks completed, or errors observed up to a particular point in time.

• Gauge: A gauge metric represents a single numerical value that can arbitrarily go up
and down. It is useful for monitoring things with upper bounds.

98 Understanding Monitoring and Alerting to Target Reliability

Examples of a gauge include the size of a collection or map or the number of
threads in a running state. Gauges are also typically used for measured values such
as temperatures or current memory usage, but also counts that can go up and down,
such as the number of concurrent requests.

• Distribution: A distribution metric is used to track the distribution of events
across configurable buckets; for example, measure the payload sizes of requests
hitting the server.

This completes the section on time series, where key concepts related to time series
structure, cardinality, and possible metric types were summarized. This also brings us to
the end of the chapter.

Summary
In this chapter, we discussed the concepts related to monitoring, alerting, and time series
that are critical in tracking SRE technical practices, such as the SLO and error budgets. We
also discussed the differences between black box monitoring and white box monitoring.
In addition, we examined the four golden signals as recommended by Google to be the
desired SLI metrics for a user-facing system.

In the next chapter, we will focus on the constructs required to build an SRE team and
apply cultural practices such as handling facets of incident management, being on-call,
avoiding psychological safety, promoting communication and collaboration, and
knowledge sharing.

Points to remember
The following are some important points to remember:

• Black box monitoring is based on testing externally visible behavior.

• White box monitoring is based on the metrics collected and exposed by the
internals of the system.

• Metrics must be specific, measurable, achievable, relevant, and time-bound.

• The four golden signals recommended for a user-facing system are latency, traffic,
errors, and saturation.

• Latency can point to emerging issues, and traffic is historically used for
capacity planning.

Further reading 99

• Errors represent the rate of requests that fail explicitly or implicitly or by policy.

• Saturation represents how full the service is and reflects degrading performance.

• Precision is defined as the proportion of events detected that are significant.

• Recall is defined as the proportion of significant events detected.

• Detection time is defined as the time taken by a system to notice an alert condition.

• Reset time is defined as the length or duration of time the alerts are fired after an
issue has been resolved.

• An individual time series data has three critical pieces of information – points,
metrics, and monitored resources.

Further reading
For more information on GCP's approach to DevOps, read the following articles:

• SRE: https://landing.google.com/sre/

• SRE Fundamentals: https://cloud.google.com/blog/products/gcp/
sre-fundamentals-slis-slas-and-slos

• SRE Youtube Playlist: https://www.youtube.com/watch?v=uTEL8Ff1Zv
k&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj

• Metrics, time series, and resources: https://cloud.google.com/
monitoring/api/v3/metrics

Practice test
Answer the following questions:

1. Select the monitoring option that works based on the metrics exposed by the
internals of the system.

a) Alert-based monitoring

b) White box monitoring

c) Log-based monitoring

d) Black box monitoring

https://landing.google.com/sre/
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos
https://www.youtube.com/watch?v=uTEL8Ff1Zvk&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj
https://www.youtube.com/watch?v=uTEL8Ff1Zvk&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj
https://cloud.google.com/monitoring/api/v3/metrics
https://cloud.google.com/monitoring/api/v3/metrics

100 Understanding Monitoring and Alerting to Target Reliability

2. Select the monitoring source that doesn't provide information in near-real time.

a) Logs

b) Metrics

c) Both

d) None of the above

3. From the perspective of a fast burn alerting policy, select the appropriate threshold
in relative comparison to the baseline for the defined lookback interval.

a) The threshold = the baseline.

b) The threshold is < the baseline.

c) The threshold is significantly higher than the baseline.

d) The threshold is slightly higher than the baseline.

4. Select the appropriate options for sending alerts

a) Email

b) Page

c) Text

d) All of the above

5. Select the monitoring that is best suited to paging incidents.

a) Alert-based monitoring

b) White box monitoring

c) Log-based monitoring

d) Black box monitoring

6. Which of the following is not part of Google's recommended golden signals?

a) Traffic

b) Throughput

c) Saturation

d) Errors

Practice test 101

7. Which of the following alerting policies recommends a longer lookback window?

a) Fast burn

b) Slow burn

c) Both

d) None

8. Which of the following represents the action of collecting, processing, aggregating,
and displaying real-time quantitative data relating to a system, such as query counts
and types, error counts and types, processing times, and server lifetimes?

a) Alerting

b) Monitoring

c) Debugging

d) Troubleshooting

9. Which of the following represents time series measurements gathered over irregular
time intervals?

a) Metrics

b) Events

c) Logs

d) Trace

10. Which of the following is not a suitable source of white box monitoring?

a) Metrics

b) Load balancer

c) Logs

d) Traces

102 Understanding Monitoring and Alerting to Target Reliability

Answers
1. (b) White box monitoring.

2. (a) Logs.

3. (c) The threshold is significantly higher than the baseline. The recommended level
is 10x.

4. (d) All of the above, including email, pages, and texts.

5. (d) Black box monitoring.

6. (b) Throughput. The four golden signals are latency, errors, traffic, and saturation

7. (b) Slow burn alert policy

8. (b) Monitoring

9. (b) Events. Events are time series measurements gathered at irregular time intervals.
Metrics are time series measurements gathered at regular time intervals.

10. (b) Load balancer. It is best suited as a source for black box monitoring. White
box monitoring collects information from three critical components: metrics,
logs, and traces.

4
Building SRE Teams

and Applying
Cultural Practices

The last three chapters introduced the fundamentals of Site Reliability Engineering
(SRE), traced its origins, laid out how SRE is different than DevOps, introduced SRE
jargon along with its key technical practices such as Service Level Agreements (SLAs),
Service Level Objectives (SLOs), Service Level Indicators (SLIs), and Error Budgets,
and focused on monitoring and alerting concepts to target reliability.

This chapter will focus on the fundamentals required to build SRE teams and apply
cultural practices such as handling facets of incident management, being on call,
achieving psychological safety, promoting communication, collaboration and knowledge
sharing. These fundamentals and cultural practices can be used as a blueprint for teams or
organizations that want to start their SRE journey.

104 Building SRE Teams and Applying Cultural Practices

In this chapter, we're going to cover the following main topics:

• Building SRE teams – Staffing, creating SRE teams, and engaging the team

• Incident management – Incident life cycle and constructs to handle the incident

• Being on call – Challenges to tackle, operational overload, and
effective troubleshooting

• Psychological safety and fostering collaboration – Factors to achieve
psychological safety, unified vision, communication, and collaboration and
knowledge sharing

Building SRE teams
Google defined the principles of SRE by applying the concepts of software engineering
to system operations. Google was implementing these principles even before the term
DevOps was coined. They developed best practices over a period of time and essentially
considered SRE as their secret sauce for efficient running of their products. With
the advent of Google Cloud Platform (GCP), Google became more vocal about the
SRE principles and their relevance for the success of their customers that deal with
maintaining, running, and operating distributed systems on GCP.

Given SRE is a prescriptive way of doing DevOps, more and more organizations (and
this also includes non-GCP customers) are currently tending toward implementing the
principles of SRE in a quest to find a balance between service reliability and development
velocity. Such organizations will face the following challenges:

• How do you staff an SRE team?

• How do you implement or run an SRE team?

• When and how often are SRE teams engaged during the life cycle of a service?

The following sub-sections answer these questions based on the best recommendations
from Google.

Staffing SRE engineers (SREs)
An SRE team consists of SRE engineers or SREs. At the outset, SREs also run operations.
It is hard to find seasoned SREs. However, one way to build an SRE team is
to hire system administrators who have worked on operations along with having
experience in scripting/coding. These personnel can be further trained with software
engineering skills.

Building SRE teams 105

The following is a list of recommended skills that personnel hired as SRE engineers or
SREs should possess or ultimately be trained on:

• Operations and software engineering: SREs should have experience of running a
production system and have an understanding of the software or application that
needs to be supported.

• Monitoring systems: SLOs are key to maintaining the reliability of a service and
SREs need to understand the functioning of monitoring systems in order to track
SLOs and their connected constructs such as SLIs and Error Budgets.

• Production automation: SREs can effectively scale operations by ensuring that the
same task is not performed manually and instead automation is put in place. This
requires an understanding of how to automate the process.

• System architecture: SREs can effectively scale an application or service, and this
requires a deep understanding of the system architecture.

• Troubleshooting: SREs are regularly required to be on call to solve problems
of different types and complexities. This requires an inquisitive and analytical
approach to solving the problems in hand.

• Culture of trust: SREs and developers share the ownership of a service through the
concept of Error Budgets. This requires SREs to build a trust with the development
team through effective communication.

• Incident management: Failures or issues are inevitable and one of the key functions
of SREs is to handle an incident. This requires the ability to technically troubleshoot
and establish a communication framework specific for managing incidents.

In addition to the recommended skills, SRE engineers or SREs should also possess certain
character traits such as resilience, assertiveness, and flexibility. These characteristics
will help them to deal with difficult situations and use reasoning in case of ambiguous
situations, and strike a balance between development velocity and reliability. The next topic
will deep-dive into the types of SRE team implementations.

SRE team implementations – procedure and strategy
There are six recommended SRE team implementations:

• Kitchen sink/everything SRE team

• Infrastructure SRE team

• Tools SRE team

• Product/application SRE team

106 Building SRE Teams and Applying Cultural Practices

• Embedded SRE team

• Consulting SRE team

Each implementation type suits a specific organization based upon the complexity of
services that the organization provides, the size of the organization, the number of kinds
of development teams in terms of varying scopes, and the organization's level of adoption
with respect to applying SRE principles. Some organizations can also implement more than
one type based on their needs. Let's look at the different team implementations in detail.

Kitchen sink/everything SRE team
The kitchen sink/everything SRE team is best suited for organizations that want to
start their SRE journey. In most cases, organizations prefer to start with a single SRE
team. The scope of such a team is unbounded. The kitchen sink/everything SRE team
is recommended for organizations that currently have a limited scope because there are
fewer applications, resulting in fewer user journeys.

Given that there is only a single SRE team, this type of team can act as a binding factor
between development teams and can also spot patterns across projects to provide effective
solutions in case of incidents. At the same time, identifying engineers for SRE teams
with the required skill sets can be quite challenging. In addition, with the possibility of
constantly changing scope, the kitchen sink team implementation can suffer from lack of
clarity in terms of well-defined team goals and can eventually lead to operational overload.

Infrastructure SRE team
The infrastructure SRE team is best suited for organizations that have multiple
development teams with varying scopes, complexities, and infrastructure requirements.
The core focus of an infrastructure team is on behind-the-scenes tasks that help the
development teams to get their job done easier and faster. An infrastructure SRE team is
less focused on customer-facing code and more on maintaining the shared services and
components related to stabilizing the infrastructure.

The main advantage of an infrastructure SRE team is to provide the same highly reliable
infrastructure to the development teams to simulate the behavior that could potentially
happen in a production environment. In addition, the infrastructure team also establishes
the structure to access such environments using the principles of least privilege and
adhering to the required compliance standards.

On the flip side, given that the infrastructure SRE team doesn't directly work with
customers and instead works with internal teams, there is always a tendency to over-
engineer while defining standards for the development teams. Additionally, their usage
behavior might also differ in comparison to the real world.

Building SRE teams 107

At times, there might be multiple infrastructure teams based on the size of the company
or its product lines. This could result in duplicate effort with respect to the manner in
which infrastructure will be provisioned. This is something that needs to be closely
monitored and can be potentially avoided through cross-infrastructure team meet-ups
and regular updates.

Tools SRE team
The tools SRE team is best suited for organizations with multiple development teams,
where the development teams need a standard way to build or implement software that
can measure, maintain, and improve the system reliability of a service, for example
implementing a common framework that could allow the development team to
implement custom metric instrumentation in their services, which could eventually help
to measure reliability of a service.

The tools SRE team aims to build highly specialized reliability-related tooling and
ultimately define production standards. One of the major disadvantages is to clearly
draw the line between a tools SRE team and an infrastructure SRE team, as they can
be perceived as being very similar because they are aimed at providing focused help
to development teams but at their core, their focus areas are different. The tools SRE
team focuses more on improving the reliability of the individual service whereas the
infrastructure SRE team focuses more on improving the reliability of the supporting
infrastructure that runs the service.

Product/application SRE team
The product/application SRE team is best suited for organizations that already have a
kitchen sink, infrastructure, or tools SRE team and in addition have a critical user-facing
application with multiple key services and high reliability needs for each service. The need
for multiple reliable services requires a dedicated set of SRE teams focused on the product.
This approach helps in setting out a clear charter for the team and also directly relates to
business priorities.

On the flip side, as the services or products grow, there will be a constant need to add
more SRE teams. This also increases the chance that there might be duplication of effort
among product/application SRE teams.

Embedded SRE team
The embedded SRE team is best suited for organizations where a dedicated SRE
team is required only for a specific time period or for an implementation focused on
specific functions. In this SRE setup, the SRE engineers are actually embedded with the
development team and this engagement is either scope bound, or time bound.

108 Building SRE Teams and Applying Cultural Practices

SRE engineers are hands-on on a day-to-day basis with respect to handling code and
the required configuration. An embedded SRE team can also effectively be used to drive
adoption with respect to the proposals or changes put forward by the infrastructure or
tools SRE team. The major advantage is to build SRE expertise for specific focus areas.
However, on the flip side, given each SRE team will work with a different development
team, there might be a lack of standard practices.

Consulting SRE team
The consulting SRE team is best suited for organizations where the complexity is
significant and the existing SRE teams cannot support the ever-increasing demands
of their customers. Consulting SRE teams are similar to embedded SRE teams but
are focused on the end customers and typically move away from changing any of the
customer code or configuration. They could, however, write code to build internal tools
for themselves or for their developer counterparts, similar to a tools SRE team.

Consulting SRE teams are a good fit if additional support is required on a temporary basis
for existing SRE teams but, on the flip side, the SREs might not have the required context
to make a balanced decision.

This completes the section on the various types of SRE team implementations. Essentially,
there is no specific SRE team implementation that is recommended. It's common for an
organization to implement a combination of these teams and the decision depends on
multiple factors such as the size of the organization, the maturity level of adopting SRE,
and their current focus.

To summarize, if the intent of an organization is to get started with SRE, then kitchen
sink implementation is probably the best place to start. If the size of the development
organization is small but they have a critical user-facing application, it is possible to move
from a kitchen sink implementation to a product/application SRE team implementation.

However, if there are many development teams with different infrastructure needs, then it
is possible to implement an infrastructure SRE team from a kitchen sink one. A tools SRE
team is best suited for organizations that try to include common frameworks to bring in
standardization in their software development process. A tools SRE team can complement
an infrastructure SRE team.

Embedded SRE teams are more laser-focused for a specific initiative where the
development and SRE team work together to reliably implement a service. This can be
seen in both small-sized and large-sized teams, based on the criticality of the initiative.
Finally, a consulting team is best suited for complex organizations that already have
implemented other possible SRE teams but still require a consulting team to support the
increasing needs of a rapidly expanding customer base.

Building SRE teams 109

The next topic will elaborate on how SRE engineers are engaged throughout the life cycle
of a service or an application.

SRE engagement model
The core principles of SRE are focused on maximizing development velocity while
maintaining reliability. As the service goes through its life cycle phases, SRE team(s) can
continuously contribute for the betterment of the service and these teams can be engaged
at different stages (described as follows) with varying capacities.

Architecture and design
Let's explore what this phase entails for SREs (SRE engineers):

• SREs' engagement level is very deep (and high) during this phase as SRE teams
can bring in their production expertise, offer various insights, and effectively can
co-design the service.

• SREs validate the design and architecture by probing the design choices and
validating any assumptions that were taken. This avoids any potential re-design.

• SREs put forward best practices during the design phase, such as resilience, by
identifying the single points of failure.

• SREs recommend the best infrastructure systems based on prior experience and
potential resource footprint in comparison with predicted load.

• SREs identify effective user journeys as part of the design process.

The next phase is active development.

Active development
Let's explore what this phase entails for SREs (SRE engineers):

• Once the design is in place, SREs (SRE engineers) can help development teams
ensure that the service is developed with production in mind. This includes capacity
planning, identifying load requirements, and adding resources for redundancy.

• SREs help to plan for spikes and overloads. One way to handle the same is to use
load balancers and also evaluate the capacity that they need to be configured.
Setting up load balancers early in the development environments is a good start
where the behavior can be initially assessed and hardened more during performance
testing that simulates a production setup.

110 Building SRE Teams and Applying Cultural Practices

• SREs think through the identified user journeys and work with development teams
(along with other stakeholders) to come up with approaches to meet their SLI and
SLO requirements.

• SREs engage to add observability that includes configuring monitoring, alerting,
and performance tuning. This helps in setting up the required infrastructure to
track SLIs and SLOs.

After development is complete, the service is made available to a limited number of users
in the following phase.

Limited availability
Let's explore what the limited availability phase entails for SREs (SRE engineers):

• Limited availability refers to the alpha (a release that is partially complete or still in
development) and beta (a release where service is available to limited users for the
first time post development) releases prior to general availability. During limited
availability, the number of users, potential use cases, complexity, and performance
requirements change significantly when compared to the development phase.

• SREs focus on measuring the performance based on the changing demands and
essentially evaluate reliability by defining SLOs.

• SREs involve development teams in establishing operational practices similar to
a real-time production environment. This helps to simulate the experience for
internal teams in terms of what to expect when in production.

• SREs establish incident response teams by assigning specialized roles, conducting
mock incident drills, and getting ready for a real-world scenario.

The next phase is general availability. This is the phase where the service has reached a
stable state and is available for use by a wider audience or by other services.

General availability
Let's explore what the general availability phase entails for SREs (SRE engineers):

• A service moves to general availability phase only if it passes the Production
Readiness Review (PRR). This is potentially the longest phase that SREs are
involved with and also own.

• SREs perform the majority of the operational work and own the incident response,
with some help from the development team.

Building SRE teams 111

• It is possible that development team members work with SREs on a rotational basis
so that the development team will have insights on operational load.

• SREs will focus on tracking the operational load and accompanying SLOs for the
service. This ensures that Error Budgets are not exhausted, and new features can be
rolled out.

When the current version of the service is going to be replaced, it enters the next phase,
called depreciation.

Depreciation
Let's explore what the depreciation phase entails for SREs (SRE engineers):

• This refers to the phase when a new version of the system will soon come into play
and replace the current version. So, new users or improved features are not added
anymore. The focus shifts to transitioning users from existing to new systems
through engineering means.

• SREs continue to support the existing system till end of life and work in parallel
with development team(s) on new services by circling back to the architecture and
design phase.

The last phase is the abandoned phase. This phase explains what happens to the service
once the depreciation phase has passed.

Abandoned
Let's explore what the abandoned phase entails for SREs (SRE engineers):

• Once the service end of life has been reached, the service is abandoned and SREs'
engagement with respect to the service ends. A service reaches end of life either if
the service is no longer supported by the development team or the service is not
required by customers anymore.

• Development teams resume operational support and SREs support service incidents
on a best-effort basis.

This completes the section on the SRE engagement model with the emphasis on how
SRE engineers have a significant impact across the life cycle of the service right from its
conceptualization to its end of life. The next section details a key SRE cultural practice
called incident management.

112 Building SRE Teams and Applying Cultural Practices

Incident management
Incident management is one of the key roles of an SRE engineer. An incident is defined
as an event that indicates the possibility of an issue with respect to a service or an
application. The nature of the issue can be minor in nature in the best case or, in contrast,
can be an outage in the worst case. An incident can be triggered by an alert that was set up
as part of monitoring the service or application.

An alert is an indication that SLO objectives with respect to the service are being
violated or are on track to be violated. Sometimes, and specifically for an external-facing
application, an incident can be triggered by an end user complaining via social media
platforms. Such incidents include an additional layer of retrospection on how or why the
current alerting system put in place failed to identify the incident.

Effective incident management is a critical SRE cultural practice that is key to limiting the
disruption caused by an incident and is critical to resuming normal business operations as
early as possible. There are two main parts to incident management:

• The technical troubleshooting aspect (where the emphasis is on either mitigating
the issue or resolving the issue)

• The effective communication aspect (where the emphasis is on ensuring the right
folks are involved in the right roles, and stakeholders with respect to the service
consumers are informed in a timely manner)

Organizations approach incident management in different ways but, if not approached
in the right manner, it will result in an unmanaged incident. The following are two main
characteristics of an unmanaged incident:

• Emphasis on the technical problem: An operational issue typically has a cascading
effect, especially in a complex system. So, it is common to miss the big picture while
attempting to solve the technical issue at hand from a single viewpoint.

• Poor communication: In an attempt to solve the incident at hand, it is possible
that not enough attention is given to the communication aspect. This will have both
internal and external implications. Internally, lack of communication will lead to
an inefficient use of resources. Sometimes it can also lead to ad hoc involvement,
where multiple people can work on the same problem that could also result in
multiple people making changes to the system at the same time (which is not ideal).
Externally, lack of communication will lead to frustrated customers, which will
result in a loss of trust toward the service or application provider.

The next set of topics in this section detail the concepts required to effectively implement
incident management, starting with the topic on the incident life cycle.

Incident management 113

Incident life cycle
Prior to coming up with an effective incident management strategy, it is important to
understand the life cycle of an incident. The following is a state diagram that provides
insights into the various states of an incident:

Figure 4.1 – Life cycle of an incident

To summarize, based on configured alerts or complaints from social media, an incident is
identified. The identified incident is validated to check whether it qualifies. If it qualifies,
incident mitigation is initiated. After incident mitigation, a root cause analysis is initiated
for the incident. The details of the incident are documented, a ticket is created, and after
that the incident will move to resolved status. The next topic goes into the important
concepts related to effective incident management.

114 Building SRE Teams and Applying Cultural Practices

Elements of effective incident management
A structured incident response comprising of multiple elements is critical for effective
incident management. These elements allow us to focus on core SRE cultural practices
such as communication, collaboration, learning, knowledge sharing, organized flow
of information, and effective customer notifications. This helps the team to deal with
different situations and respond as quickly as possible. A structured incident response
helps in reducing duplication of effort and creates visibility of any individual's activity
within the team.

The following are some of the critical elements for effective incident management.

Declaring an incident
In the case of an event leading to an incident, SREs or operators are often in a dilemma
when deciding when to declare that incident. If they wait for a longer duration to declare
an incident, then it might be too difficult to mitigate the negative impact that the incident
can cause to the end users. However, if they declare it too early, then there is a chance that
the incident can result in a false positive.

The following are some guidelines that play a critical role in deciding when to declare an
incident, starting with defining thresholds.

Defining thresholds
Every organization should define a clear set of thresholds in order to declare an event as
an incident. These thresholds can be defined by setting up alerts. A specific event can be
triggered by a single alert or a combination of alerts. An incident can also be triggered
based on the total number of active alerts or the duration of an active alert.

The next guideline to evaluate is assessing impact.

Assessing impact
Once guidelines are set, thresholds are defined and, as the alerts are fired, it is important
to assess the impact of an event. There are multiple aspects involved in assessing the
impact, such as the nature of the event, the impact to the end user, the eventual impact to
the business, any dependent stakeholders at risk, or any financial loss to the business.

The following is a reference template on how an incident can be classified based on
possible impact:

• Negligible: Little or no impact on product but might require follow-up action items

• Minor: Impact to internal users but external users might not notice

Incident management 115

• Major: Impact to external users with noticeable revenue loss but services are
still functioning

• Huge/disaster/detrimental: Outage severely impacting users and business with a
significant revenue loss

At a high level, the following questions can help to determine whether an event is an
incident. If the answer is yes to any of the following, an incident can be declared:

• Is the outage visible to users?

• Do SREs require the expertise of another team in order to evaluate the incident?

• Does the issue exist after an hour?

Once an event is identified as an incident and its severity level has been identified, SREs
or operators should formally declare the incident by issuing a statement that includes the
severity level, a list of services impacted, and a possible estimated time of recovery. The
summarizes the topic related to declaring an incident along with a few essential guidelines.
The next critical element to discuss related to effective incident management is separation
of responsibilities.

Separation of responsibilities
Once an incident has been declared, an incident response team should be formed whose
main task is to mitigate or to resolve the incident. The members of the incident response
team should have well-defined responsibilities. SRE prescribes a specific set of roles that
should be designated within the team. The prescribed roles are as follows:

• Incident Commander (IC)

• Communications Lead (CL)

• Operations Lead (OL)

• Primary/Secondary Responder

• Planning Lead (PL)

Each of the preceding roles should have a clear charter and autonomy and the same is
elaborated in the upcoming sub-sections, starting with the IC.

Incident Commander (IC)
The responsibilities of the IC are as follows:

• The IC leads the chain of command and designates specific roles to specific members
of the team. Every member of the incident response team reports to the IC.

116 Building SRE Teams and Applying Cultural Practices

• The IC is and should be aware of significant events during an incident response,
actively co-ordinate the response during an incident, decide priorities, and
delegate activities.

• The IC's core goal is to ensure the problem is mitigated and ultimately fixed.
However, the IC does not personally or individually fix the problem.

• The IC initiates the postmortem report after an incident is mitigated or resolved.

• Based on the size of the team, the IC can also assume the role of the CL.

The next topic details the responsibilities of the CL.

Communications Lead (CL)
The responsibilities of the CL are as follows:

• The CL is the public face of the incident response and leads the communication
with the outside world, provides timely updates, and also takes questions related to
the incident.

• The CL acts as a shield and avoids direct communication between the customer/
client and other members of the incident response team.

• The CL maintains the live incident state document, which is used later
for postmortem.

The next topic details the responsibilities of the OL.

Operations Lead (OL)
The responsibilities of an OL are as follows:

• The OL develops and executes the incident response plan, thereby being responsible
for the technical and tactical work.

• The OL is responsible for the operations team, which comprises Primary and
(optionally) Secondary Responders.

• The OL is always in contact with the IC and the CL. If required, the OL requests
additional resources either for the operations teams or subject matter experts based
on the specific nature of the incident.

The next topic details the responsibilities of the Primary/Secondary Responder.

Incident management 117

Primary/Secondary Responder
The responsibilities of a Primary/Secondary Responder are as follows:

• Primary and (optionally) Secondary Responders are members of the operations
team and report to the OL. Their main goal is to execute the OL's technical response
plan for the incident.

• The Secondary Responder is there to help the Primary Responder or can be
designated a particular task or function based on the OL.

The next topic details the responsibilities of the PL.

Planning Lead (PL)
The responsibilities of the PL are as follows:

• The PL works with the operations team and tracks system changes and arranges
hand-offs as necessary.

• The PL arranges hand-offs between teams and also reports bugs to keep track of
long-term changes.

Figure 4.2 illustrates how the above mentioned roles can be structured:

Figure 4.2 - Illustrating Incident Management Roles

118 Building SRE Teams and Applying Cultural Practices

Having well-defined roles allows SRE engineers to have a specific area of focus and also
prevents outside ad hoc intervention. It is critical to establish a communication post,
which could be a physical location such as a meeting room or a communication channel
such as Slack. In addition, implementing a clear real-time hand-off either at the end of a
shift or the day is highly recommended to ensure the incident is handed off explicitly to
another incident commander.

Summarizing the principles of incident response
The core principles include the need to maintain a clear chain of command,
designate well-defined roles, maintain a live incident state document, ensure
timely communication to the impacted parties about the incident state,
perform a live hand-off to avoid operational overload, prepare a postmortem
report to determine the root cause, update playbooks as needed, and plan to
perform Disaster Recovery (DR) exercises as often as possible.

The next critical element to discuss related to effective incident management is
recommended best practices.

Recommended best practices
The following is a summary of best practices that are recommended during the incident
management process:

• Develop and document procedures.

• Prioritize damage and restore service.

• Trust team members in specified roles.

• If overwhelmed, ask for help.

• Consider response alternatives.

• Practice procedure routinely.

• Rotate roles among team members.

In the next topic, we will see how we can restore the service after an incident occurs and
prevent such incidents from happening in the future.

Incident management 119

Restoring service and avoiding recurrence
Once an incident has been declared, the focus of the incident response team should be to
troubleshoot the incident. This could be initiated by thinking through the various steps
involved in the functioning of the service and stepping through the inner details. The
incident can be caused either by internal or external factors. Both kinds of factors should
be examined.

While examining internal factors, the focus should be on analyzing any recent code or
configuration changes in the area of impact. In most scenarios, a code or configuration
change can be reverted, which would eventually restore the service. But there will be
situations where multiple code or configuration changes cannot be reverted from a
deployment standpoint and the only way to move forward is to provide a code-level fix
in order to revert the changes. In contrast to internal factors, examining or dealing with
external factors is more complicated, as in most cases there is little control over them.

Irrespective of the nature of the issue, the primary goal is to find ways to resolve or
mitigate the issue. Once the issue is mitigated or resolved, a postmortem should be
conducted, with the intention to identify the root cause. The process should happen in a
blameless fashion with the sole intention to find ways that could prevent the incident from
re-occurrence in the future.

The postmortem process should result in a postmortem report that essentially outlines the
events of the incident and consists of details with respect to the nature of the impact, the
possible root cause, the triggering event, the metrics that help in identifying the event, and
a list of action items. In addition, the postmortem report should provide clarity that can
help in future mitigation and can be used as use case scenarios (after the incident). This
further helps to promote learning among teams.

This completes an in-depth section on incident management. We started the section
by trying to outline the life cycle of an incident (Figure 4.1) and then elaborated on
key constructs of effective incident management, charted the life cycle of an incident,
detailed the possible roles and their respective responsibilities and recommended a set
of best practices.

Essentially, it is important to differentiate when to call out an incident, identify the
impacted parties (internal or external users), assess the level of impact, have predefined
roles if an incident is called, and attempt to stick to the charter. This avoids ambiguity in
communication and collaboration. This also allows you to focus on the key goal, which is
to mitigate the issue and restore the service at the earliest. It is also critical to investigate,
identify, and address the root cause to avoid re-occurrence.

The next section focuses on the process of being on call (another SRE cultural practice)
and the critical factors that need to be considered.

120 Building SRE Teams and Applying Cultural Practices

Being on call
On call duty refers to specific operational activities performed to support the reliable
running of a service or application both during working and non-working hours. On call
duty is one of the critical responsibilities for an SRE and is also important from a service
standpoint to keep the service available and reliable. SRE teams (as previously defined) are
different from regular operational teams as the goal is to emphasize the use of engineering
techniques to solve operational problems and to prevent their occurrence at scale. It is
typically common to engage the product/application SRE team during on call. In the case
of specialized services, embedded SRE teams are engaged for on call duty.

When an incident occurs, the response time from initiating the incident management
process to resolving or mitigating the issue is key to meeting the desired SLO, which in
turn will meet the promised SLA. There are multiple factors that need to be considered
while implementing the on call process. The following are three such considerations:

• Paging versus non-paging events

• Primary versus secondary on call rotation

• Single-site versus multi-site production teams

The next topic discusses paging versus non-paging events, one of the key factors in
implementing the on call process.

Paging versus non-paging events
Paging events refers to higher-priority alerts that require immediate attention or
remediation, especially in the case of a user-facing application. Examples of paging events
could be scenarios where the service health check fails, or a database tied to the service is
unable to accept any more connections.

Non-paging events refer to lower-priority alerts that might not point to a service failure
but point to issues that need to be addressed before they snowball into a bigger incident.
Example of non-paging events include a sudden spike in traffic due to a new feature
release in a specific region or a lower-priority ticket raised by a self-healing process when
disk usage went up to 80% but then was mitigated automatically by an automated process
that increased the disk space by an extra 10%. This allows enough time for the on call
engineer to investigate the root cause on the disk usage spike in the first place.

Being on call 121

Paging events are always the top priority for the SRE team. The first step in such a scenario
is to validate whether the event is an incident and take appropriate steps to initiate the
incident management process. In addition, SRE teams also vet non-production paging
events and handle those events during their business hours based on operational load. It
is important to differentiate between paging and non-paging events. This differentiation
needs to be factored while configuring alerting rules, or else it will lead to alert fatigue.
Alert fatigue creates a tendency among team members to ignore important alerts.

The next topic discusses primary versus secondary on call rotation, one of the key factors in
implementing the on call process.

Primary versus secondary on call rotation
There could be multiple SRE teams that are on call at a given time. Given that the key
responsibility of the on call SRE team is to reliably run the service by tackling both paging
and non-paging events that include handling alerts, tickets, and operational duties, it is
often common to divide the SRE teams into primary and secondary teams.

This division into primary and secondary teams essentially helps to distribute duties and
organize priorities. The distribution of duties between the teams can differ from the way
an organization implements SRE. One implementation is to deploy the secondary team
as a fall-through for the pages that the primary on call teams cannot get to, potentially
because the primary on call team is actively engaged. Essentially, the secondary team
is used as a contingency to the primary team in situations where there are more paging
events than the primary team can handle at that moment. Another implementation is to
assign the primary on call team to always work on paging events while the secondary on
call team can work on non-paging production activities.

The next topic discusses single-site versus multi-site production teams, one of the key
factors in implementing the on call process.

Single-site versus multi-site production teams
A single-site production team refers to one or more SRE teams supporting operations
from a single location. Though it's easy for the teams to communicate and exchange
information, the challenge is that specific teams have to be engaged during night shifts,
which could be detrimental in the long term from a health standpoint.

A multi-site production team refers to one or more SRE teams supporting operations from
multiple locations. The typical approach is to ensure the locations are in geographically
different regions with a follow-the sun rotation model that allows the teams to completely
avoid night shifts.

122 Building SRE Teams and Applying Cultural Practices

The follow-the-sun rotational model is a common term used to represent a service and
support methodology where a user-facing application is supported by multiple teams that
are spread across the world to provide 24/7 support rather than forcing a single support
team at a specific location to work overtime till the issue is resolved. In the case of this
model, if an outstanding issue is not resolved beyond the shift time of a specific team,
then the issue will be transitioned to the team that will handle the next shift, along with
the detailed analysis and steps taken by the prior team. The downsides of a multi-site
production team include communication challenges and co-ordination overhead.

The next topic discusses the recommended practices while being on call.

Recommended practices while being on call
The following are some SRE recommended practices while being on call:

• Dealing while being on call is all about the approach. While the thinking needs to
be rational and focused, there is a risk that the actions can be intuitive and heuristic.
Such a risk should be avoided.

• Intuitive actions can often be wrong and are less supported by data. Intuition can
lead the on call SREs (SRE engineers) to pursue a line of reasoning that is incorrect
from the start and could potentially waste time.

• A heuristic approach creates a tendency where on call SREs can take an approach
based on assumptions and previous occurrences, but the approach might not be
optimal or rational in nature.

• The most important facets while being on call are to have a clear escalation path, a
well-defined incident management procedure, and a blameless postmortem culture,
and to strike a balance between operational overload and operational underload.

• Develop a culture of effective troubleshooting by trying to fundamentally
understand how a system is built, designed, and supposed to work. Such expertise
can be gained by investigating when a system doesn't work. In addition, there
should be a constant focus on asking questions, with constructs such as what, where,
why, and how that could potentially lead to the next set of connected questions or
answers and eventually help to troubleshoot an issue.

• Avoid common pitfalls such as focusing on symptoms that aren't relevant, a lack
of understanding about the impact of a misconfiguration, and attempting to map a
problem to other problems in the past by drawing correlations or using assumptions
that are inaccurate.

Psychological safety 123

Operational overload versus operational underload
Operational overload is a state that is caused by a misconfigured monitoring
system or incorrect choice of alerting rules, leading to fatigue and stress. This
typically leads to an increase in ticket count, pages, and ongoing operational
support. Handling high-priority tickets and pages leads to tense situations,
causing stress, and could also restrict a Site Reliability Engineer's ability to
continue working on their engineering engagements. Such situations can be
eased by temporarily loaning an experienced SRE to an overloaded team as
dedicated help, providing breathing space to teams to allow them to address
issues or allow the team member to focus on engineering projects.

Operational underload is a state where a Site Reliability Engineer is not
involved with a production system for a long period of time. This could create
significant knowledge gaps and a lack of confidence while suddenly dealing
with a production issue. This can be avoided if SRE teams are sized such that
every engineer is on call at least once or twice in a quarter.

This completes the section on the process related to being on call, factors that could have
an impact while implementing the process, and recommended best practices. The next
section focuses on the cultural SRE practices of psychological safety and factors to achieve
the same.

Psychological safety
One of the key pillars of SRE is to accept failure as normal. This implies that failures are
imminent, but the key is to learn from the failures and ensure that the same mistake is
not repeated the next time. As a result, SRE promotes open communication within teams
and between members of the team and its leaders to ensure that a failure is evaluated
objectively from a process standpoint and not from an individual standpoint. The
core idea is to provide a sense of psychological safety, which is extremely important to
implement the practice of Blameless Postmortems.

SRE defines psychological safety as the belief that a manager or an individual contributor
will not be singled out, humiliated, ridiculed or punished for the following:

• Committing a mistake that could result in a potential incident or a problem

• Bringing up a concern related to a decision with respect to design, implementation,
or process that could later have adverse impacts

• Asking questions for further clarifications that could help the individual or multiple
members of the team to effectively implement or collaborate

124 Building SRE Teams and Applying Cultural Practices

• Coming up with newer ideas that could foster innovation for further improvement
of a process or service

Disadvantages of low psychological safety
A workplace or a team with low psychological safety will eventually suppress
learning and innovation. Team members will be apprehensive about clarifying
or speaking out or initiating a conversation. It creates a sense of self-doubt and
impacts the exchanging of ideas that could lead to innovation.

Psychological safety is also important in incident management. In the following topic,
we will discuss some factors to ensure psychological safety.

Factors to overcome in order to foster
psychological safety
A thought process of blamelessness promotes psychological safety, and the following two
factors should be overcome to avoid blame in the first place:

• Hindsight bias: Refers to a know-it-all attitude that something will eventually fail
even though it was not obvious at that point of time. As a result, there is a tendency
to blame the person leading the effort that the required actions were not taken to
foresee the issue and avoid the failure.

• Discomfort discharge: Refers to a tendency where people blame to discharge
discomfort. This leads to a tendency where team members tend to conceal
information, facts, or not communicate because of a fear of punishment or
consequences that could negatively impact the individual or the team.

To conclude, psychological safety is critical to allow team members to have the freedom
to take or make decisions based on the best possible information available at that point
in time. In addition, and more often than not, innovation always includes a need to take
risks, which also means there is a chance of failure. In either case, if something goes
wrong, the focus needs to be on the process leading to the failure but not on the people
involved during the incident. This allows for an objective analysis and provides freedom
for the team to express their thoughts without hesitation, leading to open communication
and continuous improvement.

Sharing vision and knowledge and fostering collaboration 125

Head, heart, and feet model
The head, heart, and feet model is a way to promote psychological safety from
the fear of adopting a change. The head represents the rational, where the
emphasis must be on why the change is happening and should include the
strategic mission and vision. The heart represents the emotional, where the
emphasis should be on how change can bring in a positive impact. The feet
represent the behavioral, where the emphasis should be on the knowledge,
skills, and resources that should be provided to implement change successfully.

The next section deep-dives into another set of SRE cultural practices that promotes
sharing vision and knowledge and fostering collaboration.

Sharing vision and knowledge
and fostering collaboration
One of the key pillars of SRE is to reduce organizational silos, and this can be achieved by
creating a unified vision, sharing knowledge, and fostering collaboration.

Unified vision
Organizations have a vision statement that serves as a guide for the work they do or
represent. A team's vision should be in line with the organization's vision and typically
this vision will have the following constructs:

• Core values: Helps teams to build trust and psychological safety, creates a
willingness to take risks and be open to learn.

• Purpose: Refers to the specific intent for the existence of the team.

• Mission: Points to a clear and compelling goal that the team strives to achieve.

• Strategy: Refers to the path to realize or achieve team's mission; this includes the
process to identify relevant resources, capabilities, threats, and opportunities.

• Goals: Refers to a defined set of team's objectives. SRE recommends the use of
OKRs to set ambitious goals with a drive to accomplish more than possible; OKRs
refer to objective and key results, a collaborative goal-setting framework that is
used by individuals and teams to aim for ambitious goals and measure results
during the process.

126 Building SRE Teams and Applying Cultural Practices

OKRs can enable teams to focus on big bets and accomplish more than the team thought
was possible, even if they don't fully attain their intended goal. This is accomplished by
clearly defining an objective and also classifying key results quantitatively to ensure that
the objective is achieved. The objective of setting OKRs is to set a minimum of those
defined key results (if not all). OKRs can encourage people to try new things, prioritize
work, and learn from both successes and failures. While the team may not reach every
OKR, it gives them something to strive for together, driving toward a unified vision.

Communication and collaboration
Communication and collaboration between teams is critical to implementing SRE. This
could include the communication between multiple SRE teams within the organization
or communication between SRE teams and their respective product/development
team. This leads to identifying common approaches to solve problems that might have
common elements, remove ambiguity, and provides the possibility to solve more complex
challenges. The following are some options proposed by the SRE team.

Service-oriented meetings
Let's understand what these meetings are for:

• These are mandatory meetings that are meant to review the state of service and
increase awareness among all possible stakeholders.

• The recommended duration is about 30-60 minutes and should be driven by a
designated lead with a clearly defined agenda.

Next, we will discuss team composition.

Effective team composition
Let's see how effective team composition is achieved:

• SRE recommends that every SRE team should have an effective team composition –
specifically on certain roles such as Technical Lead, Manager, and Project Manager.

• A Technical Lead sets the technical direction of the team. A manager runs the
team's performance management and is the first point of contact for the team. A
Project Manager comments on design documentation.

Another approach for communication and collaboration is knowledge sharing.

Summary 127

Knowledge sharing
Here's what this approach entails:

• Cross-training, an employee-to-employee network, and job shadowing are the most
recommended options.

• Cross-training allows you to increase competencies of a team member by training
in other competencies, thus encouraging employees to constantly learn and grow.

• An employee-to-employee network encourages employees to share their knowledge
and learning by driving information sessions internally.

• Job shadowing refers to on-the-job training by observing and potentially helping
personnel in their area of expertise.

This completes the final section on a key SRE cultural practice that focuses on sharing a
unified vision and knowledge, and fostering communication and collaboration. This also
brings us to the end of this chapter.

Summary
In this chapter, we discussed the key elements that are required to build an SRE team.
In addition, we discussed key cultural practices that help to implement the technical
practices. This concludes the first section of the book focussed on SRE (Chapters 1-4). The
next set of chapters (Chapters 5-10) will focus on the core Google Cloud services required
to implement DevOps, starting with Chapter 5, Managing Source Code using Cloud
Source Repositories.

Points to remember
The following are some important points to remember:

• IC: In charge of the incident response, designates responsibilities and optionally
takes on roles that were not designated, such as CL.

• OL: Deals with resolving or handling the incident – technical and tactical; executes
the action plan by working with a Primary and Secondary Responder.

• CL: The public face of incident response; responsible for communicating to all the
stakeholders.

• PL: Tracks system changes, identifies long-term changes by filing bugs, and arranges
hand-offs.

128 Building SRE Teams and Applying Cultural Practices

• Command post: Refers to a meeting room or Slack channel where
communication happens.

• Live incident state document: Maintained by the CL about the incident and updates,
and is later used for the postmortem.

• An incident or outage should be called if specific expertise is needed, if the outage is
visible, or if the issue is not resolved after an hour or so of effort.

• Factors to overcome in order to foster psychological safety: hindsight bias and
discomfort discharge.

• A team's vision is everything about what drives its work and includes the core
values, purpose, mission, strategy, and goals.

• A team's mission is a clear and compelling goal that it wants to achieve.

Further reading
For more information on GCP's approach toward DevOps, read the following articles:

• SRE: https://landing.google.com/sre/

• SRE fundamentals: https://cloud.google.com/blog/products/gcp/
sre-fundamentals-slis-slas-and-slos

• SRE YouTube playlist: https://www.youtube.com/watch?v=uTEL8Ff1Zv
k&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj

Practice test
Answer the following questions:

1. As per the SRE engagement model, during which phase do SREs define SLOs?

a) Architecture and design

b) Active development

c) Limited availability

d) General availability

https://landing.google.com/sre/
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos
https://cloud.google.com/blog/products/gcp/sre-fundamentals-slis-slas-and-slos
https://www.youtube.com/watch?v=uTEL8Ff1Zvk&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj
https://www.youtube.com/watch?v=uTEL8Ff1Zvk&list=PLIivdWyY5sqJrKl7D2u-gmis8h9K66qoj

Practice test 129

2. Who out of the following is responsible for initiating a postmortem report after
an incident?

a) Incident Commander (IC)

b) Communications Lead (CL)

c) Operations Lead (OL)

d) Planning Lead (PL)

3. As per the SRE engagement model, during which phase is SREs' engagement
deepest or highest?

a) Architecture and design

b) Active development

c) Limited availability

d) General availability

4. As per the SRE engagement model, during which phase do SREs start preparing the
service for production?

a) Architecture and design

b) Active development

c) Limited availability

d) General availability

5. Who out of the following is in charge of responding to an outage or an incident?

a) Incident Commander (IC)

b) Communications Lead (CL)

c) Operations Lead (OL)

d) Planning Lead (PL)

6. Who out of the following is in charge of executing the technical response for an
outage or an incident?

a) Incident Commander (IC)

b) Communications Lead (CL)

c) Operations Lead (OL)

d) Primary Responder (PR)

130 Building SRE Teams and Applying Cultural Practices

7. Select the incident severity classification that has the following characteristics: the
outage is visible to the user with a noticeable revenue loss but no lasting damage.

a) Negligible

b) Minor

c) Major

d) Detrimental

8. Who out of the following is in charge of managing the immediate, detailed technical
and tactical work of the incident response?

a) Incident Commander (IC)

b) Communications Lead (CL)

c) Operations Lead (OL)

d) Planning Lead (PL)

9. Who out of the following is in charge of coordinating the efforts of the response
team to address an active outage or incident?

a) Incident Commander (IC)

b) Communications Lead (CL)

c) Operations Lead (OL)

d) Planning Lead (PL)

10. Select the incident severity classification that has the following characteristics:
little or no impact on production but might require low-priority follow-up
actionable items.

a) Negligible

b) Minor

c) Major

d) Detrimental

Answers 131

Answers
1. (c) Limited availability

2. (a) Incident Commander

3. (a) Architecture and design

4. (b) Active development

5. (a) Incident Commander

6. (d) Primary Responder

7. (c) Major; because of revenue loss but no lasting damage

8. (c) Operations Lead

9. (a) Incident Commander

10. (a) Negligible

The core focus of this section is to deep dive into Google Cloud services that are critical
to manage source code using Cloud Source Repositories, build code and create build
artifacts, push artifacts to a registry, deploy the artifacts as containerized applications,
orchestrate these applications in a cluster through managed compute services, secure
the clusters, and finally, implement observability on the deployed applications through
a suite of services focused on operations.

The section introduces key features around each of the core services along with
hands-on labs as needed. All the labs throughout the section are connected, to provide
a holistic understanding. The section concludes with SLO monitoring, a feature in Cloud
Operations that allows tracking SRE technical practices for an application deployed to
Google Kubernetes Engine (GKE).

Section 2:
Google Cloud

Services to
Implement

DevOps via CI/CD

This section comprises the following chapters:

• Chapter 5, Managing Source Code Using Cloud Source Repositories

• Chapter 6, Building Code Using Cloud Build, and Pushing to Container Registry

• Chapter 7, Understanding Kubernetes Essentials to Deploy Containerized
Applications

• Chapter 8, Understanding GKE Essentials to Deploy Containerized Applications

• Chapter 9, Securing the Cluster Using GKE Security Constructs

• Chapter 10, Exploring GCP Cloud Operations

5
Managing Source
Code Using Cloud

Source Repositories
The first section of this book (consisting of four chapters) focused on exploring the
concepts of Site Reliability Engineering (SRE) in depth. This included SRE technical
practices, understanding monitoring and alerting to target reliability, and insights into
building SRE teams by applying SRE cultural practices.

This second section of the book explores GCP's constructs in depth to implement
a CI/CD pipeline with a focus on the following core areas:

• Managing source code using Cloud Source Repositories

• Building and creating container images using Cloud Build

• Pushing container images and artifacts using Container Registry

• Orchestrating containers and deploying workloads using Google Kubernetes Engine

136 Managing Source Code Using Cloud Source Repositories

Source code management is the first step in a Continuous Integration (CI) flow. Code
is stored in a source code repository; a common repository that stores code and allows
developers to make code changes (if required in isolation) and merge changes from
multiple contributors into a single common stream. The most common examples of
a source code repository include GitHub and Bitbucket. Cloud Source Repositories
(CSR) is a service from Google Cloud that provides the functionality of source code
management through private Git repositories and easily integrates to several Google
Cloud services such as Cloud Build, Cloud Monitoring, and Cloud Logging.

In this chapter, we're going to cover the following main topics:

• Key features: Managed private Git repository, one-way sync with external
repositories, universal code search, and native integration with other Google Cloud
Platform (GCP) services.

• First steps: Create a first repository via the console or the Command-Line
Interface (CLI) and add files to the repository.

• One-way sync from GitHub/Bitbucket to CSR: Option to add a repository by
connecting to an external repository and perform near real-time one-way sync.

• Common operations: Browse repositories, browse files, perform universal code
search, detect security keys, and assign the right access controls.

• Hands-on lab: Step-by-step instructions to integrate CSR with Cloud Functions.

Technical requirements
There are four main technical requirements:

• A valid GCP account to get hands-on with GCP services: https://cloud.
google.com/free.

• Install Google Cloud SDK: https://cloud.google.com/sdk/docs/
quickstart.

• Install Git: https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git.

• Alternatively, it is possible to skip the previous two and instead install Cloud Shell,
which includes Google Cloud SDK as well as Git: https://cloud.google.
com/shell.

https://cloud.google.com/free
https://cloud.google.com/free
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://cloud.google.com/shell
https://cloud.google.com/shell

Introducing the key features 137

Introducing the key features
CSR is a service from Google Cloud to manage source code. CSR provides Git version
control and supports the collaborative development of any application or service. Key
features include the following:

• Fully managed private Git repository: This feature implies that there is no need to
manage the infrastructure required to host the source code repository. Developers
can instead focus on building, testing, deploying, and debugging code.

• Provides one-way sync with GitHub and Bitbucket: In situations where developers
use either GitHub or Bitbucket as their primary cloud source repository, enabling
integration with other GCP services such as App Engine, Cloud Functions, Cloud
Monitoring, and Cloud Logging is not as straight forward in comparison to using
GCP's CSR. For example, it easy to deploy code to a serverless service in GCP
such as Cloud Functions from CSR directly then GitHub or Bitbucket instead. In
addition, the one-way sync feature performs a one-way mirror, essentially making a
near real-time copy of a repository from GitHub or Bitbucket into GCP's CSR. This
facilitates the ease of native integration with GCP services.

• Includes universal code search: This feature allows you to perform a code search
within the code source repository or across repositories. Search can also be scoped
to a specific project or repository or even a specific directory.

• Integration with GCP services: This feature allows native integration with multiple
GCP services such as Cloud Build, Cloud Operations, Cloud Functions, and Cloud
Run. For example, the logs related to operations against CSR are automatically
sent to Cloud Logging. The user, however, requires relevant Identity Access
Management (IAM) roles to access Cloud Logging in order to view logs related
to CSR.

Identity Access Management (IAM)
IAM is a framework of roles and policies to ensure users and applications
have the required access to resources specifically recommended within the
principles of least privilege.

Each of the previously mentioned features will be discussed in detail later in this chapter.
The upcoming section details the step-by-step process involved to create and access a
repository in CSR.

138 Managing Source Code Using Cloud Source Repositories

First steps – creating and accessing a
repository in CSR
One of the first steps to perform while working with CSR is to actually create a repository
and add files to it. Given that CSR is a managed repository, the user need not manage the
space required to host the repository or the computational power required to maintain or
run operations against the repository.

In this section, we will see how we can create a repository in CSR from Google Cloud
Console and the command line. In addition, we'll learn how to add files to a branch in
an empty repository and then merge to the master. Let's get started.

Creating a repository via Google Cloud Console
The following is a step-by-step process to create our first repository in CSR through
Google Cloud Console:

1. Enable the CSR API (Figure 5.1) by navigating to the Library sub-section under the
APIs & Services section:

Figure 5.1 – Enabling the CSR API

Introducing the key features 139

2. Navigate to Source Repositories within GCP and select the Get Started option.
The system will display a prompt (Figure 5.2) and provide an option to create
a repository. However, if a repository already exists in CSR, skip to step 3 and
use the Add a Repository option instead:

Figure 5.2 – Option to create your first repository

3. The system will prompt to add a repository by providing two options (Figure 5.3) –
to either create a new repository or connect to an external repository. In this case,
select the option to create a new repository:

Figure 5.3 – Option to create a new repository

140 Managing Source Code Using Cloud Source Repositories

4. Create a repository by entering a repository name. Additionally, select a project
under which the repository should be created (Figure 5.4):

Figure 5.4 – Creating a new repository

This will create a new repository from the console. However, there will be situations where
it is required to create a repository through scripts and that means through the command
line. This is specifically recommended when automation is at the forefront and the goal is
to eliminate toil. The upcoming topic details how to create a repository via the CLI.

Creating a repository via the CLI
To create a cloud source repository via the command line or CLI, execute the following
commands. It is required to either install Google Cloud SDK or use Google Cloud Shell:

Enable the Cloud Source Repository API

gcloud services enable sourcerepo.googleapis.com

Create a repository

gcloud source repos create my-first-csr --project $GOOGLE_
CLOUD_PROJECT ops-2021

Introducing the key features 141

The preceding steps will create a new repository from the CLI. Essentially, the new
repository created in CSR from either the console or the CLI will be an empty repository.
The next topic will detail how to add files to a repository in CSR.

Adding files to a repository in CSR
Once a repository is created, developers can create a branch and make their changes inside
that branch. These changes can then be merged into the master once confirmed. This is a
multi-step process (as detailed in the following procedure) that could be executed from
the user's terminal window with Google Cloud SDK installed or via Google Cloud Shell
from the user's choice of browser:

1. Clone the repository to a local Git repository:

gcloud source repos clone my-first-csr --project=$GOOGLE_
CLOUD_PROJECT

2. Switch to the new local Git repository:

cd my-first-csr

3. Create a new branch:

git checkout -b my-first-csr-branch

4. Add a file to the new branch:

touch hello.txt

git add hello.txt

5. Commit changes of the new file to the branch:

git commit -m "My first commit!!"

6. Push changes to the branch:

git push --set-upstream origin my-first-csr-branch

7. Create a master branch (as this is the first check into master):

 git checkout -b master

8. Merge the branch to master:

 git push --set-upstream origin master

142 Managing Source Code Using Cloud Source Repositories

This completes this section and you can now create an empty repository and sub-
sequently add files to a working branch and then check into the master. However,
there will be situations where the user can work with either an existing repository
in GCP's CSR or external source repositories in GitHub/Bitbucket. Either way, the
process to clone an existing repository is the same. In addition, CSR allows one-
way sync from external repositories such as GitHub/Bitbucket. All these details
will be covered in the next section.

One-way sync from GitHub/Bitbucket to CSR
CSR provides an option to add a repository by connecting to an external repository and
perform near real-time one-way sync. Currently, GitHub and Bitbucket are the only
supported external source repositories.

The following is the step-by-step process to create a repository in CSR by connecting to an
external GitHub repository (similar steps will apply to a Bitbucket-based repository):

1. Navigate to Source Repositories in Google Cloud Console and select the Add
Repository option.

2. Select the option to connect to an external repository (Figure 5.5):

Figure 5.5 – Option to connect to an external repository

One-way sync from GitHub/Bitbucket to CSR 143

3. Select an appropriate project and an external Git provider (GitHub in this case) and
authorize the selected GCP project to store third-party authentication credentials in
order to enable connected repository services (Figure 5.6):

Figure 5.6 – Connecting to GitHub

144 Managing Source Code Using Cloud Source Repositories

4. Enter your GitHub credentials and authorize GCP to access the provided GitHub
account (Figure 5.7):

Figure 5.7 – Authorizing GCP to access GitHub

One-way sync from GitHub/Bitbucket to CSR 145

5. Once authorized, select the GitHub repo that needs to be synced with CSR and then
select the Connect selected repository action (Figure 5.8):

Figure 5.8 – Connecting GCR to the selected GitHub repository

146 Managing Source Code Using Cloud Source Repositories

6. The following prompt (Figure 5.9) will be displayed once the connection is
established between the GitHub repo and GCP's CSR. The first-time sync might
take some time, but subsequent syncs are near real-time:

Figure 5.9 – Confirmation that one-way sync is established with GitHub

7. The contents of the GitHub repo will eventually sync up with CSR and that also
includes the commit history and any other available metadata (Figure 5.10):

Figure 5.10 – Contents of the newly added GitHub repository

8. If the user adds a new file to the GitHub repo, then a near real-time one-way sync
will be performed by CSR. The commit along with the recent changes will reflect in
CSR against the relevant project. Figure 5.11 highlights the new commit history:

One-way sync from GitHub/Bitbucket to CSR 147

Figure 5.11 – Updating the commit history post a near real-time one-way sync

9. If there is a need to perform forced sync from an external repository to CSR or
disconnect the external repository from CSR, navigate to the repository settings
in GCP to find the appropriate options (Figure 5.12):

Figure 5.12 – Repository settings to force a sync or disconnect from GitHub

This completes the detailed step-by-step process of establishing one-way sync with
external repositories such as GitHub/Bitbucket. The next section dives into some common
operations that a user can perform in CSR, such as browsing repositories and files and
performing universal code search.

148 Managing Source Code Using Cloud Source Repositories

Common operations in CSR
This section details the common operations that could be performed in CSR. The options
include the following:

• Browse repositories.

• Browse files.

• Perform a universal code search.

• Detect security keys.

• Assign access controls.

Let's go through them in detail starting with the browsing repositories option.

Browsing repositories
There are two specific views to browse repositories. These views are represented across
two tabs:

• All repositories

• My source

All repositories
CSR shows a consolidated view of all available repositories across projects that the current
user has access to. The combination of repository name and project ID forms a
unique tuple.

The user can also mark repositories of choice (typically the most important or most
constantly used) with a star. All starred repositories will show up under the My source
tab to provide quick access to specific repositories (Figure 5.13):

Figure 5.13 – List of repositories listed under All repositories

Common operations in CSR 149

Users can perform three specific operations against any repository displayed under the
All repositories tab (refer to the green square box in Figure 5.13, in the following order):

• Settings: This option allows the user to edit settings.

• Clone: This option provides details required to clone the repository.

• Permissions: This option allows you to control access to a repository either at the
level of a user or a group or service account.

The user can access a repository by selecting a repository of choice from the list view or
they can pick one from the tree view (via the drop-down control for All repositories).

My source
The repositories that are starred in the All repositories section are listed to provide quick
access to a user-selected subset. Additionally, recently viewed repositories (that may or
may not be starred) are also listed and can be accessed with a click (Figure 5.14):

Figure 5.14 – Contents of My source displaying starred and recently viewed repositories

This concludes the details on how a user can browse through the repositories in CSR. The
next topic focuses on browsing files within a specific repository.

150 Managing Source Code Using Cloud Source Repositories

Browsing files
Once a user selects a repository to browse, the default view switches to the master branch.
The user can view the list of files through a tree-like structure (on the left-hand side) and
selecting any file will display the contents of the file (on the right-hand side). The user can
also edit a file by using the Edit code in Cloud Shell option. At this point, the file will be
opened in the Cloud Shell Editor (Figure 5.15) using the credentials associated with the
project. The authentication happens automatically with no additional login:

Figure 5.15 – Options to view/edit file contents

The user can also switch to an existing branch by selecting the branch of choice
(Figure 5.16). In addition, the user can view files by a specific tag or commit:

Figure 5.16 – Options to switch branch or browse files by tag or commit

If a user wants to view historical changes for a specific file, then they can view the change
information either through the Blame panel (on the top right-hand side) or through the
History sub-section (Figure 5.17):

Common operations in CSR 151

Figure 5.17 – Historical change information for a specific file in CSR

This concludes the details on how a user can browse through files within a specific
repository. The next topic focuses on how a user can perform a universal code search
within a repository or across repositories in CSR.

Performing a universal code search
CSR provides the ability to search code snippets or files through the search box located on
the CSR console. The user can search by typing text (preferably within double quotes) or
by using regular expressions.

The scope of the search can be set to one of four possible levels (Figure 5.18):

• Everything: Search across all repositories that the user has access to.

• This project: Search across all repositories in the current project.

• This repository: Search across the current repository.

• This directory: Search across the current directory:

Figure 5.18 – Possible scopes to perform universal code search

152 Managing Source Code Using Cloud Source Repositories

The next topic covers the possible ways to perform a code search based on different filter
criteria and their respective syntaxes.

Search filters
The following table lists some search filters that can be used to search for code:

This concludes the details on how a user can perform a universal code search. The next
topic focuses on a specific feature in CSR that can specifically enforce a policy to detect
security keys when a user attempts to make a code commit.

Detecting security keys
CSR provides options to detect whether security keys are stored in a repository. If this
feature is enabled, CSR will enforce this check when a user is trying to push code into the
repository either to a branch or master. If the contents of the file include a security key,
then the code will not be pushed, and the user will be notified.

Currently, CSR can be set up to check for the following types of security keys:

• Service account credentials in JSON format

• PEM-encoded private keys

Common operations in CSR 153

The following commands will provide the ability to enable, disable, or override security
key detection:

To enable security key detection

gcloud source project-configs update --enable-pushblock

To disable security key detection

gcloud source project-configs update --disable-pushblock

To override security key detection at a commit level

git push -o nokeycheck

This concludes the details on how security keys can be detected during a code commit.
The next topic focuses on the required access controls to perform operations in CSR.

Assigning access controls
Access to repositories can be assigned at either the project level or the repository level.
If a user is assigned a specific role at the project level, then that role will be applied to the
user for all repositories in that project. However, if a user is assigned a specific role for
a specific repository, then it only applies to that repository.

The following table summarizes the critical IAM roles required to access or perform
actions on CSR:

The next topic provides information on how cross-account project access can be set up.

Cross-account project access
If a user is part of project A but needs to access a specific repository in project B, then the
user should be given the Source Repository Reader/Writer/Admin role, depending on the
intended scope of the user from project A against a specific repository in project B. This
can be achieved through the Permissions section under the repository settings.

154 Managing Source Code Using Cloud Source Repositories

This concludes the details on access controls specific to CSR. This also brings us to the end
of a major section focused on common operations that users can perform in CSR. The
upcoming section is a hands-on lab where a cloud function is deployed using the code
hosted in a cloud source repository.

Hands-on lab – integrating with Cloud
Functions
The objective of this hands-on lab is to demonstrate the integration between a GCP
compute service such as Cloud Functions with CSR. The intent is to illustrate how code
can be deployed in Cloud Functions by pulling the code hosted from CSR. The following
is a summary of the steps at a high level:

1. Add code to an existing repository through the Cloud Shell Editor.

2. Push code from the Cloud Shell Editor (local repository) into CSR.

3. Create a cloud function and deploy code from the repository in CSR.

Adding code to an existing repository through the
Cloud Shell Editor
This sub-section specifically focuses on adding code to an existing repository. Developers
typically use their favorite editors to make code changes. The following shows the usage of
GCP's Cloud Shell Editor, an online development environment that supports cloud-native
development through the Cloud Code plugin along with language support for Go, Java,
.NET, Python, and Node.js:

1. Navigate to Source Repositories in the GCP console.

2. Navigate to the repository of choice where you want to add code. You can use the
my-first-csr repository that was previously created.

3. Select the Edit in Cloud Shell action. This opens the code in the Cloud Shell
Editor and also clones the code from CSR into a local repository under the Cloud
Shell console.

4. Add a new code file called main.py. Copy the contents of this file from https://
github.com/PacktPublishing/Google-Cloud-Platform-for-
DevOps-Engineers/blob/main/cloud-build/main.py.

5. Save the code file.

https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/blob/main/cloud-build/
https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/blob/main/cloud-build/
https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/blob/main/cloud-build/

Hands-on lab – integrating with Cloud Functions 155

Once the code is edited and added, the next step is to push the code into CSR. This will be
covered as the next topic.

Pushing code from the Cloud Shell Editor (local
repository) into CSR
This sub-section specifically focuses on pushing code from a local repository of the
Cloud Shell Editor into CSR. A terminal can be opened within Cloud Shell to provide
command-line instructions. A command-line approach to push code is elaborated on
in the following procedure:

1. Switch to the console window in the Cloud Shell Editor.

2. Perform Git operations to add the new file and commit the changes:

Add new code file to the repository

git add main.py

Commit the changes to the repository

git commit -m "Adding main.py"

3. Push the local repository created in the Cloud Shell Editor with the new changes
into the repository hosted in CSR. Indicate the appropriate project (after /p) and
the destination repository in CSR (after /r):

Add local repository in Cloud Shell Editor as remote

git remote add google \

https://source.developers.google.com/p/gcp-devops-2021/r/
my-first-csr

The above will create a remote repository with changes
from the local repository

Push code to Cloud Source Repositories

git push --all google

The above git push command will push the changes in the
remote repository with specific project and repository
name to google cloud source repositories

4. Navigate to the target repository (for example, my-first-csr) in CSR to view the
newly added Python file, main.py.

156 Managing Source Code Using Cloud Source Repositories

Once the code is pushed to CSR from the remote branch, the code will be available in the
master and is now ready to be deployed into any compute option of choice. The next topic
illustrates the steps involved to download source code from CSR and deploy it into GCP's
serverless compute option: Cloud Functions.

Creating a cloud function and deploying code from the
repository in CSR
This sub-section specifically illustrates how CSR can integrate with other GCP compute
options such as Cloud Functions:

1. Navigate to Cloud Functions in the GCP console.

2. Select the option to create a function (if a function is created for the very first time
in a project, then this action will enable the Cloud Functions API).

3. Enter a function name of your choice and select a region, trigger type, and
authentication mode. Save the options and continue. The following are examples:

a) Function name: my-first-csr

b) Region: us-central1

c) Trigger type: HTTP

d) Authentication: Allow unauthenticated invocations

4. Set the runtime as Python 3.8 and the source code option as
Cloud Source Repository.

5. Enter details related to the repository from which the code needs to be deployed
and select the Deploy action (Figure 5.19):

a) Entry point: Should be the name of the function that needs to be invoked by
Cloud Functions. In this example, enter hello_world as the value.

b) Repository: Should be the name of the repository in CSR where the source code
is present. In this example, enter my-first-csr as the value.

c) Branch name: Should be the branch where the code is present. In this example,
enter master as the value.

d) Directory with source code: Should be the directory path where the function
mentioned as the entry point exists. In this example, enter / as the value:

Summary 157

Figure 5.19 – Configuring the cloud source repository as the source code option

6. The function will be successfully deployed (Figure 5.20). The function can be tested
either using the Test Function option under Actions in the list page or through the
trigger URL specified under the Details section of the cloud function:

Figure 5.20 – Cloud function successfully deployed

This completes a detailed lab where the user makes a code change using GCP's Cloud
Shell Editor, pushes to a repository using GCP's CSR, and deploys code to one of GCP's
compute options such as Cloud Functions.

Summary
In this chapter, we discussed the service from Google Cloud to manage source code
and provide Git version control to support collaborative development. This is the first
key building block in the process of establishing a CI/CD process. In addition, we
discussed various operations that can be performed in CSR along with a hands-on lab
demonstrating native integration of CSR with Cloud Functions. The next chapter will
focus on the services from Google Cloud required to build code, create image artifacts,
and manage artifacts. These services include Cloud Build and Container Registry.

158 Managing Source Code Using Cloud Source Repositories

Points to remember
The following are some important points to remember:

• CSR is a fully managed private Git repository.

• CSR provides one-way sync with GitHub and Bitbucket.

• CSR provides a feature for universal code search and the search can be set either for
a specific project, a specific repository, a specific directory, or everything.

• CSR can be set up to detect security keys. The currently supported types are service
account credentials in JSON format and PEM-encoded private keys.

• CSR provides a feature to override security key detection at a commit level.

• Source Repository Reader/Writer/Admin are the supported access controls.

Further reading
For more information on GCP's Cloud Source Repositories, refer to the following:

• Cloud Source Repositories: https://cloud.google.com/
source-repositories

Practice test
Answer the following questions:

1. Select the command that can be used to create a new repository in CSR called
my-first-csr through the CLI:

a) gcloud create source repos my-first-csr

b) gcloud source repos create my-first-csr

c) gcloud create source repos my-first-csr

d) gcloud source repo create my-first-csr

2. Which of the following options allows one-way sync with CSR?

a) GitHub

b) Bitbucket

c) None of the above

d) Options a and b

https://cloud.google.com/source-repositories
https://cloud.google.com/source-repositories

Practice test 159

3. Select the frequency of one-way sync from supported repository types to CSR:

a) Every 5 minutes

b) Configurable

c) Real-time

d) Near real-time

4. Which of the following is not a supported search filter in CSR?

a) Search file contents

b) Search by language

c) Search by function

d) Search by including terms

5. If the Detect Security Keys CSR feature is enabled, then when will CSR enforce this
check?

a) When a file is created

b) git add

c) git push

d) git commit

6. Select the command to override security key detection at a commit level:

a) git push -o keycheck

b) git push -o nokeycheck

c) git push -o anykeycheck

d) git push -o nonekeycheck

7. Select two commands to enable and disable security key detection:

a) gcloud source project-configs update --enable-codeblock

b) gcloud source project-configs update --enable-pushblock

c) gcloud source project-configs update --disable-codeblock

d) gcloud source project-configs update --disable-pushblock

160 Managing Source Code Using Cloud Source Repositories

8. Which out of the following is not a valid access control with respect to CSR?

a) Source Repository Reader

b) Source Repository Writer

c) Source Repository Editor

d) Source Repository Admin

9. Which out of the following access controls can update a repository but cannot
create one?

a) Source Repository Reader

b) Source Repository Writer

c) Source Repository Editor

d) Source Repository Admin

10. Which out of the following access controls can update repository configurations?

a) Source Repository Reader

b) Source Repository Writer

c) Source Repository Editor

d) Source Repository Admin

Answers
1. (b) – gcloud source repos create "my-first-csr"

2. (d) – Options a and b

3. (d) – Near real-time

4. (d) – Search by including terms

5. (d) – git commit

6. (b) – git push -o nokeycheck

7. (b) – gcloud source project-configs update --enable-
pushblock and (d) – gcloud source project-configs update
--disable-pushblock

8. (c) – Source Repository Editor

9. (b) – Source Repository Writer

10. (d) – Source Repository Admin

6
Building Code

Using Cloud Build,
and Pushing to

Container Registry
The last chapter focused on managing source code using Cloud Source Repositories
(CSR). CSR provides a fully managed private Git repository, provides one-way sync
with GitHub and Bitbucket, and integrates with GCP services. This is the first step in
the Continuous Integration (CI) flow.

This chapter will focus on the constructs required to build code, create image artifacts using
Cloud Build and manage artifacts using GCP's Container Registry. This forms the crux of
the CI workflow as the code is continuously built, artifacts are continuously created and
stored in the registry, and application code is continuously deployed as containers.
In this chapter, we're going to cover the following main topics:

• Key terminology – Quick insights into the terminology around Docker and
containers

• Understanding the need for automation – Understanding the need for automation
by exploring the Docker life cycle

162 Building Code Using Cloud Build, and Pushing to Container Registry

• Building and creating container images – Cloud Build essentials such as cloud
builders and build configuration files, building code, storing and viewing build logs,
managing access controls, and best practices to optimize the build speed

• Managing container artifacts – CSR essentials to push and pull images,
manage access controls, configure authentication methods, and CI/CD
integrations with CSR

• Hands-on lab – Step-by-step instructions to deploy an application to Cloud Run
when a code change is pushed to the master branch

Technical requirements
There are three main technical requirements:

• A valid Google Cloud Platform (GCP) account to go hands-on with GCP services:
https://cloud.google.com/free.

• Install Google Cloud SDK: https://cloud.google.com/sdk/docs/
quickstart.

• Install Git: https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git.

Key terminology (prerequisites)
There are several key terminologies that are important to understand while trying to build,
deploy, and maintain a distributed application that runs on containers. The following is a
quick insight into some of those critical terminologies when dealing with containers:

• Operating system – An Operating System (OS) is system software that is critical
to control a computer's hardware and software requirements across multiple
applications, such as memory, CPU, storage, and so on. The OS coordinates tasks
to ensure each application gets what it needs to run successfully. The OS consists
of a kernel and software. The kernel is responsible for interacting with the hardware
and the software is responsible for running the UI, drivers, file managers, compilers,
and so on.

• Virtualization – Virtualization is the act of doing more with less by creating
a virtual or software-based version of compute, storage, a network, and so on.
It allows you to run multiple applications on the same physical hardware. Each
application and its associated OS can run on a separate, completely isolated,
software-based machine called a virtual machine or VM.

https://cloud.google.com/free
https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Key terminology (prerequisites) 163

• Hypervisor – A hypervisor is software that creates and runs VMs, and essentially
implements the concept of virtualization. A hypervisor allows one host computer to
support multiple guest VMs by virtually sharing resources such as memory, storage,
processing, and so on, and is responsible for giving every VM the required resources
for peak performance.

• Container – A container is a unit of software that packages code and all its
dependencies, which include libraries and configuration files. This enables
applications to run quickly and reliably across computing environments. Containers
use low-level OS constructs that allow you to specify unique system users,
hostnames, IP addresses, filesystem segments, RAM, and CPU quotas.

• Docker – Docker is an open source platform for developing, building, deploying,
and managing containerized applications. Docker uses OS-level virtualization to
deploy or deliver software in packages called containers, providing the flexibility to
run anywhere. Docker can also run any flavor of OS if the underlying OS kernel is
Linux. As an example, containers can run different flavors of the Linux OS, such as
Debian, CentOS, Fedora, and so on.

• Docker daemon – The Docker daemon represents the server that runs one or
more containers. It is the service that runs the host OS. Additionally, the CLI
represents the client, and the combination with the Docker daemon forms a
client-server architecture.

• Dockerfile – A Dockerfile is a text document that contains a series or list of
commands that can be executed from a command line in order to potentially
assemble an image. A Dockerfile is the input for Docker to build images. The
process automates the execution of a series of instructions or commands.

• Docker layers – A Docker layer represents an intermediate image that is created
by executing each instruction in a Dockerfile. The link between the instruction
and the intermediate image is stored in the build cache. A Docker container is
essentially an image that has a readable/writable Docker layer built on top of
multiple read-only images.

• Docker images – A Docker image consists of multiple Docker layers that are used
to execute code in one or more containers. Essentially, a Docker image represents
a plan that needs to be executed or, in other words, deployed.

The next section illustrates the Docker life cycle and emphasizes one of the key Site
Reliability Engineering (SRE) objectives, which is to eliminate toil by investing in
automation.

164 Building Code Using Cloud Build, and Pushing to Container Registry

Understanding the need for automation
Once code is checked into a source code repository, the next step in a CI process is to
build code and create artifacts as per the requirements to run the application. Once the
artifacts are created, the artifacts are further stored in a repository and are later used by
the Continuous Deployment/Delivery (CD) process to run the application. Given that
the running theme in this book is to work with containers, Docker forms a key role as the
OS-level virtualization platform to deploy applications in containers.

Following is an illustration of the Docker life cycle that highlights the multiple steps involved
in creating container images to actually deploy containers that run the actual application:

1. The developer hosts code in a source code repository. The code can be changed
during the development or enhancement process.

2. The source code repository can be set up to have trigger points, such as raising a
pull request or merging code into a specific branch. The trigger points can be tied
to initiate the code build process.

3. The code build process will look for a Dockerfile, which is essentially a set of
instructions to create an application along with its dependencies.

4. A Dockerfile is used to create the build artifact – the container image, using
docker build.

5. The created image can be pushed to an artifact repository to store container images,
such as Docker Hub or GCP's Container Registry, and so on.

6. The application is created by downloading the container image from the repository
into a compute environment and subsequently building a container, which
essentially is a package that contains code, libraries, and dependencies.

If the preceding steps are converted into actual commands, then it will look like the
following snippet:

#Build code using the Dockerfile

docker build -t <image-name> .

#Tag the locally created image with the destination repository

docker tag <image-name> <host-name>/<project-id>/<image-name>

#Push the tagged image to the choice of repository

docker push <host-name>/<project-id>/<image-name>

Understanding the need for automation 165

Note that hostname refers to the location where image is
stored. 'gcr.io' refers that by default the images are stored
in Cloud Storage; specifically US location

#To deploy the application, pull the image from the repository
as a pre-requisite

docker pull <host-name>/<project-id>/<image-name>

#To deploy or run the application

docker run –name <container-name> <host-name>/<project-
id>/<image-name>

The steps mentioned as part of the Docker workflow are steps that need to be executed
and in sequence. If there is a code fix or an incremental code change, then the steps need
to be repeated in order to build, push, and deploy the code. This forms a repetitive or
even an infinite loop, causing a lot of pain and suffering for developers. This is because the
more manual steps there are, the greater the chance of human error. This qualifies as toil,
since the steps are manual, repetitive in nature, devoid of any value, and can be automated.

Given that SRE's objective is to eliminate toil through automation, this forms a feasible
approach to eliminate the infinite loop of pain and suffering. In addition, the preceding
steps need to be executed in an environment that would need special attention or setup.
For example, Docker will need to be set up to execute the preceding commands. In
addition, the machine needs to have enough computing power and storage requirements
to run the preceding steps in a repeated fashion. The machine also needs to be scaled if
there are multiple parallel builds that are initiated at once.

GCP offers a service called Cloud Build, an automation engine that plays a key part in the
CI/CD workflow. Cloud Build can import the source code, build in a managed workspace,
and create artifacts such as Docker images, Java packages, binaries, and so on. Cloud Build
can practically combine the steps to build, tag, and push a container image into a single
configuration file. The container artifacts created by Cloud Build can be pushed and stored
in another GCP service called Container Registry. The container image can be pulled
from Container Registry at the time of container deployment. CloudBuild is capable of
automating all these steps into a declarative syntax; also known as the build configuration
file, which can be effectively run as many times as needed.

The upcoming sections will go into the details of the following:

• Cloud Build as the GCP service to build and create container images

• Container Registry as the GCP service to manage container artifacts

166 Building Code Using Cloud Build, and Pushing to Container Registry

Building and creating container
images – Cloud Build
Cloud Build is a service to build and create artifacts based on the commits made to
source code repositories. The artifacts produced by Cloud Build can either be container
or non-container artifacts. Cloud Build can integrate with GCP's CSR as well as popular
external repositories such as GitHub and Bitbucket. Key features of Cloud Build include
the following:

• Serverless platform: Cloud Build removes the need to pre-provision servers or pay
in advance for computing power or storage required to build the code and produce
artifacts. Based on the number of commits being made in parallel, scaling up or
scaling down is an inherent process and doesn't require manual intervention.

• Access to builder images: Cloud Build provides cloud builders, which are pre-baked
ready-to-use container images with support for multiple common languages and
tools installed. For example, Docker Cloud Builders run the Docker tool.

• The ability to add custom build steps: Cloud Build requires a build config file
where the list of steps can be explicitly specified by the user. The user can also
specify the order of execution and include any dependencies as needed.

• A focus on security: Cloud Build supports vulnerability scanning and provides the
ability to define policies that can block the deployment of vulnerable images.

The foundation for these Cloud Build features is based upon certain key elements that will
be discussed in the upcoming sub-sections.

Cloud Build essentials
There are two key essential concepts with respect to Cloud Build, cloud builders and the
build configuration.

Cloud builders
Cloud builders are container images that run the build process. The build process
within a cloud builder is essentially a set of pre-defined build steps. In addition, a cloud
builder can also include custom build steps. Cloud builder images are packaged with
common languages and tools. Cloud Build can be used to run specific commands inside
the builder containers within the context of cloud builders. Cloud builders can either be
Google-managed, community-contributed, or public Docker Hub images.

Building and creating container images – Cloud Build 167

Google-managed builders
Google provides managed pre-built images that can be used to execute one or more
build steps. These pre-built images are in Google's Container Registry. Popular examples
include docker builder (to perform docker build, docker tag, and docker push
commands), gcloud builder (to perform the docker run command to deploy against
a Google service such as Cloud Run), gke-deploy builder (to deploy in a GKE cluster),
and so on. The complete list of Google-managed builders can be found at https://
github.com/GoogleCloudPlatform/cloud-builders.

Community-contributed builders
Community-contributed builders are open source builders and are managed by the
Cloud Build developer community. These are not pre-built images and, instead, only
source code is made available by the developer community. Individual adaptations should
build the source code and create an image. Popular examples include Helm (to manage
the Kubernetes package), Packer (to automate the creation of images), and so on. The
complete list of community-contributed builders can be found at https://github.
com/GoogleCloudPlatform/cloud-builders-community.

Public Docker Hub builders
Public Docker Hub builders refers to publicly available Docker images that can be used
to execute a set of build tasks. From a thought process standpoint, these builders are very
similar to Google-managed builders but the images are not stored in Google Container
Registry and are instead stored in Docker Hub. The complete list of public Docker Hub
builders can be found at https://hub.docker.com/search?q=&type=image.

The build configuration
The build configuration is a configuration file that encapsulates the steps to perform
build-related tasks. A build configuration file can be written in JSON or YAML format.
The configuration steps specifically make use of cloud builders, which are either pre-built
images (Google-managed or public Docker images) or images built by code maintained by
the developer community, and essentially represent templated steps that could be reused
with an option to pass explicit arguments. These templated steps can be used to fetch
dependencies, perform unit and integration tests, and create artifacts using build tools
such as Docker, Gradle, Maven, Bazel, and Gulp. An example of a build config file can
contain instructions to build, package, and push Docker images to a container registry
of choice. The structure of such a file will be detailed in the next sub-section.

https://github.com/GoogleCloudPlatform/cloud-builders
https://github.com/GoogleCloudPlatform/cloud-builders
https://github.com/GoogleCloudPlatform/cloud-builders-community
https://github.com/GoogleCloudPlatform/cloud-builders-community
https://hub.docker.com/search?q=&type=image

168 Building Code Using Cloud Build, and Pushing to Container Registry

Structure
A build config file consists of various fields or options. The most important of them is
the build step (refer to Figure 6.1). There could be one or more build steps defined to
reflect tasks required for the build process. Each build step essentially executes a Docker
container and provides the flexibility to include multiple options:

• Name: Specifies a cloud builder that is a container image running common tools.

• args: Takes a list of arguments and passes it to the builder as input. If the builder
used in the build step has an entry point, args will be used as arguments to that
entry point; otherwise, the first element in args will be used as the entry point,
and the remainder will be used as arguments.

• Env: Takes a list of environment variables in the form of a key-value pair.

• dir: Used to set a specific working directory. Optionally, artifacts produced by one
step can be passed as input to the next step by persisting the artifacts in a specific
directory. The directory path can either be a relative path (relative to the default
working directory, which is /workspace) or a specific absolute path.

• id: Used to set a unique identifier for a build step.

• waitFor: Used if a specific build step is required to run prior. If not specified, then
all prior steps need to be completed prior to the current build step.

• entrypoint: Used to override the default entry point provided by the cloud builder.

• secretEnv: Allows you to define a list of environment variables encrypted by
Cloud KMS.

• volumes: Represents a Docker container volume that is mounted into build steps to
persist artifacts across build steps.

• timeout: To specify the amount of time that a build can run. The default value is 10
minutes and the maximum allowed is 24 hours. Time should be specified in seconds.

Figure 6.1 shows the skeleton structure of a build configuration file that could consist of
one or more build steps:

Building and creating container images – Cloud Build 169

Figure 6.1 – Build steps in a build configuration file

Apart from the options that form the build steps of a build configuration file, additional
possible options along with their details can be found at https://cloud.google.
com/cloud-build/docs/build-config.

Building code using Cloud Build
The combination of cloud builders and build configuration files forms the core of Cloud
Build. When Cloud Build is initiated, the following steps happen in the background:

1. The application code, Dockerfile, and other assets in a given directory are compressed.

2. The compressed code is then uploaded to a Cloud Storage bucket, which is either
the default bucket created by Cloud Build on a per-project basis or a user-supplied
Cloud Storage bucket.

3. A build is initiated with the uploaded files as input and the output of the build is a
container image that is tagged with the provided image name.

4. The container image is then pushed to Container Registry or a destination registry
of choice.

There are multiple approaches to invoke the build process via Cloud Build manual
invocation and automatic builds using triggers.

https://cloud.google.com/cloud-build/docs/build-config
https://cloud.google.com/cloud-build/docs/build-config

170 Building Code Using Cloud Build, and Pushing to Container Registry

Cloud Build – manual invocation via the gcloud CLI
There are two ways to initiate a build manually through Cloud Build using the gcloud
command-line tool, which essentially uses the Cloud Build API:

• Using a Dockerfile

• Using Cloud Build – build configuration file

The upcoming sub-sections go into the details of the preceding two ways to initiate a build
through Cloud Build.

Cloud Build – a manual build using a Dockerfile
The Dockerfile should contain all the information required to build a Docker image
using Cloud Build. The following command will initiate the build process manually. This
command should be run from the directory that contains the application code, Dockerfile,
and any other required assets:

Format to invoke the build manually using Dockerfile

gcloud builds submit --tag <host-name>/<project-id>/<image-
name> <app-code-directory-path>

#Example (. Indicates current directory)

gcloud builds submit –tag gcr.io/gcp-devops-2021/manual-
dockerfile-image .

Once the build is complete, the build ID will be displayed on the terminal or shell from
where the build command was invoked. The build ID can be used to filter through the
builds displayed in the Cloud Build console and is subsequently useful to view the build
logs. Additionally, the newly created image will be pushed to Container Registry as per
the preceding example.

Cloud Build – a manual build using a build configuration file
Another approach to initiate a manual build through Cloud Build is to use a build
configuration file. The build configuration file uses cloud builders, which essentially
are critical to minimize the manual steps in a templated specification file.

Building and creating container images – Cloud Build 171

The following is an example build configuration file that uses docker cloud builder
to build code and push an image to Container Registry. The name of the container
image used here is builder-myimage and the name of the configuration file is
cloudbuild.yaml:

steps:

- name: 'gcr.io/cloud-builders/docker'

 args: ['build', '-t', 'gcr.io/$PROJECT_ID/builder-myimage',
'.']

- name: 'gcr.io/cloud-builders/docker'

 args: ['push', 'gcr.io/$PROJECT_ID/builder-myimage']

- name: 'gcr.io/cloud-builders/gcloud'

The following command will initiate the Cloud Build process by using the build
configuration file (which is cloudbuild.yaml in this case) as the input, along with the
path to the source code:

Format to invoke the build manually using the build
configuration file

gcloud builds submit --config <build-config-file> <source-code-
path>

#Example 1 (Source code is located in the current directory)

gcloud builds submit --config cloudbuild.yaml .

#Example 2 (Source code is located in a cloud storage bucket)

gcloud builds submit --config cloudbuild.yaml gs://my-cloud-
build-examples/cloud-build-manual.tar.gz

Cloud Build – automatic build using triggers
The manual invocation of Cloud Build does not fit into the CI/CD workflow as it adds
toil. The preferred approach is to automatically build code whenever a qualified event is
detected. Cloud Build facilitates this feature by using the option of triggers.

172 Building Code Using Cloud Build, and Pushing to Container Registry

The user can create a trigger that could be invoked on one of the following qualifying events:

• Push to a branch.

• Push a new tag.

• A pull request (GitHub app only).

The trigger continuously monitors for the configured event against the configured
repository. If the event occurs, the trigger initiates the build process using either
the Dockerfile or Cloud Build configuration file (as configured on the trigger) and
subsequently, the build process will result in build artifacts. A step-by-step hands-on
lab is illustrated toward the end of this chapter.

Dockerfile versus cloudbuild.yaml
A Dockerfile allows you to build and compose a Docker container image using
the docker build command. A Dockerfile also allows you to incorporate
build steps using bash commands; they could include commands specific to
Google Cloud; after specifying the installation of Google Cloud SDK as one of
the steps.

On the contrary to using a Dockerfile, Cloudbuild.yaml also allows you
to build and compose a Docker container image and to utilize Google-managed
or community-managed builders that come with pre-built images and offer
more customization. The choice between the two comes to intent, choice of
cloud platform, and ease of customization.

This concludes the sub-section on how a build can be initiated through Cloud Build. The
next sub-section focuses on details related to storing and viewing build logs.

Storing and viewing build logs
Cloud Build creates a log trail for actions performed as part of a build process. This
log information is stored in Cloud Logging. Additionally, Cloud Build stores the log
information in a Cloud Storage bucket. In fact, a default Cloud Storage bucket is created
on a per-project basis, once the Cloud Build API is enabled. The bucket is named in the
format <project-id_cloudbuild>. The logs related to every build are compressed
and stored in the storage bucket.

Building and creating container images – Cloud Build 173

So, the default option to store the Cloud Build logs is both in Cloud Logging as well
as a Cloud Storage bucket. However, it is possible to choose either of the two options
specifically in the build configuration file by using the logging field:

• If set to CLOUD_LOGGING_ONLY, then logs are written only to Cloud Logging.

• If set to GCS_ONLY, then logs are written only to the Cloud Storage bucket. The
default bucket will be used unless a Cloud Storage bucket is explicitly specified
using the logsBucket option.

It's possible that the user will go with an option other than the default options either due
to cost constraints or it's possible that logs are ingested to another logging framework with
the Cloud Storage bucket being the source.

The following is a code snippet that demonstrates the usage of the logging option as part of
the build configuration file:

steps:

- name: 'gcr.io/cloud-builders/docker'

 args: ['build', '-t', 'gcr.io/myproject/myimage', '.']

options:

 logging: GCS_ONLY

logsBucket: 'gs://mylogsbucket'

Logs can be viewed using the Cloud Logging console. If logs need to be viewed at an
individual build level, it is preferred to view the logs from the Cloud Build console. The
information in the Cloud Build console will be derived from the Cloud Storage bucket
(either the default or the explicit bucket). In order to view the logs, the user should either
have the Storage Object Viewer role or the Project Viewer role.

To view the build logs, follow these steps:

1. Navigate to Cloud Build in the GCP Console (by default, the user will be taken to
the Build History page).

2. Select a build to view its respective logs (builds that succeeded will be in green, and
in red otherwise).

174 Building Code Using Cloud Build, and Pushing to Container Registry

3. The user can view the build log per build step. In addition, execution details and the
storage locations of any relevant build artifacts are also displayed. Optionally, the
source of the cloud logs is also shown (refer to Figure 6.2):

Figure 6.2 – Build log from Cloud Build

If a need arises to delete the build logs, then logs cannot be deleted from a Google-created
log bucket. However, logs can be deleted from a user-created log bucket or by deleting the
user-created bucket itself that contains one or more build logs. This requires the user to
have access to Cloud Storage to delete a file – through Cloud Storage; specifically, the role
Storage Admin or Storage Object Admin (depending upon whether the intention is to
delete the entire user-created bucket or the specific build log file respectively).

Managing access controls
A build can be triggered either by a user or by an application. As per Google's
recommended practices, if an application needs access to a service, then it can be possible
through a service account. So, to be precise, access control to Cloud Build can either be
managed via end user IAM roles or through a Cloud Build service account.

Building and creating container images – Cloud Build 175

End user IAM roles
Cloud Build has a set of predefined IAM roles that can provide granular access and
can also align to a specific job role. This prevents unwanted access and allows you to
implement the principle of least privilege.

The following table summarizes the critical IAM roles required to access or perform
actions on Cloud Build:

Cloud Build service accounts
Google recommends using a service account (SA) when a task needs to be performed by
an application or on behalf of a user. A service account is a special kind of account that is
used by an application or a VM to make authorized API calls but not by an individual. The
regular practice in such scenarios is to create a SA and assign the necessary permissions to
the SA so that the application with that SA can perform the necessary actions.

Cloud Build instead creates a specific Cloud Build SA for a project when the Cloud Build
API is enabled on the project. The Cloud Build SA has a minimal number of permissions
assigned to it, for example, Cloud Storage. If you want to use other services, the SA needs
to be updated to reflect the desired permissions.

The set of pre-assigned permissions for the Cloud Build SA will essentially allow Cloud
Build to perform the following actions on behalf of the user:

• Create, list, get, or cancel builds.

• Create, patch, delete, or run a build trigger.

• Pull source code from CSR.

• Store images in and get images from Container Registry.

• Store artifacts in and get artifacts from Cloud Storage.

• Store artifacts in and get artifacts from Artifact Registry.

176 Building Code Using Cloud Build, and Pushing to Container Registry

• Create build logs in Cloud Logging.

• Store build logs in a user-created logs bucket.

• Push build updates to Pub/Sub.

• Get project information and list projects.

This concludes the topic on managing access controls, giving insights into the required
IAM roles. The upcoming topic focuses on best practices while executing the build
process, which could essentially reduce the build execution time.

Cloud Build best practices – optimizing builds
Decreasing the build time helps in optimizing the build process. Given that the focus is on
handling containers, there are two common strategies to increase the build speed:

• Building Leaner Containers: As a part of this strategy, the size of a container can
be reduced if files related to build-time dependencies and any intermediate files are
not included in the container image.

• Cached Docker images: As a part of this strategy, a cached image can be specified
via the --cache-from argument and can be used for subsequent builds as the
starting point. The cached image will be retrieved from a registry. A cached Docker
image is only supported for Docker builds and is not supported by cloud builders.

In addition to a generic strategy of building leaner containers to optimize the build
speed, Cloud Build specifically prescribes the following best practices, which can
additionally be used:

• Kaniko cache

• Cloud Storage for caching directories

• Custom VM sizes

• Ignoring unwanted files

The following are the details of the above-mentioned best practices.

Kaniko cache
Kaniko cache is based on the open source tool Kaniko and is also a feature of Cloud Build
where intermediate container image layers are directly written to Google's Container
Registry without an explicit push step.

Building and creating container images – Cloud Build 177

To enable Kaniko cache, as part of the build configuration file cloudbuild.yaml, the
following is a code snippet that could incorporate it:

steps:

- name: 'gcr.io/kaniko-project/executor:latest'

 args:

 - --destination=gcr.io/$PROJECT_ID/image

 - --cache=true

 - --cache-ttl=XXh

The following are recommendations that should be taken into consideration while
implementing Kaniko cache through the kaniko-project cloud builder:

• Use kaniko-project/executor instead of cloud-builders/docker.

• The destination flag should refer to the target container image.

• The cache flag should be set to true.

• The cache-ttl flag should be set to the required cache expiration time.

Alternatively, Kaniko cache can be enabled via the gcloud CLI by running the command
as shown in the following snippet:

gcloud config set builds/use_kaniko True

Kaniko cache speeds up the build execution time by storing and indexing the intermediate
layers within a Container Registry and eventually saves build execution time since it can
be used by subsequent builds.

Cloud Storage for caching directories
Conceptually, this is like a cached Docker image. The results of a previous build can be
reused by copying from a Cloud Storage bucket and the new results can also be written
back to the Cloud Storage bucket. This concept is not restricted only to Docker builds but
can also be extended to any builder supported by Cloud Build.

Additionally, Cloud Build uses a default working directory named /workspace, which
is available to all steps in the build process. The results of one step can be passed on to the
next step by persisting it in the default working directory. The working directory can also
be explicitly set using the dir field as part of the build step.

178 Building Code Using Cloud Build, and Pushing to Container Registry

The following is a sample snippet of a build configuration file where Cloud Storage is used
for caching directories:

steps:

- name: gcr.io/cloud-builders/gsutil

 args: ['cp','gs://mybucket/results.zip','previous_results.
zip']

 dir: 'my-cloud-build/examples'

operations that use previous_results.zip and produce new_
results.zip

- name: gcr.io/cloud-builders/gsutil

 args: ['cp','new_results.zip','gs://mybucket/results.zip']

 dir: 'my-cloud-build/examples'

The preceding example also shows the usage of a specific working directory, my-cloud-
build/examples, as specified under the dir field as part of the build steps. Like
Kaniko cache, cloud storage can be used to optimize build speeds by using the results
from a previous build.

Custom VM sizes
Cloud builds are executed against a managed VM of a standard size. However, Cloud
Build provides an option to increase the speed of a build by using a higher CPU
VM, which essentially speeds up the build process. This is done by specifying the
--machine-type argument. Cloud Build specifically provides a choice of 8 cores or 32
cores across two families of VMs. Specific choices are as follows:

• N1_HIGHCPU_8

• N1_HIGHCPU_32

• E2_HIGHCPU_8

• E2_HIGHCPU_32

The following is the CLI command to specify a machine type while initiating the Cloud
Build process:

gcloud builds submit --config=cloudbuild.yaml \

 --machine-type=N1_HIGHCPU_8

Managing build artifacts – Container Registry 179

Ignoring unwanted files
Cloud Build uploads the code directory to a Cloud Storage location. The upload process
can be made quicker by ignoring files that are not relevant to the build process. These files
might include third-party dependencies, compiled code, binaries, or JAR files used for
local development. In addition, documentation and code samples are not required for the
build process. These files can be specified as part of the gcloudignore file to optimize
the upload time.

This completes our deep dive into Cloud Build and its key constructs, which include
cloud builders and the build configuration, options available to initiate a build process,
automating the available options using triggers, viewing build results with information
stored in Cloud Storage, defining access controls, and prescribing recommended practices
to optimize builds.

The next section focuses on the concepts of artifact management and the usage of
Container Registry to manage build artifacts while working with containers.

Managing build artifacts – Container Registry
Source code management is the first step in the CI process. This is followed by building
the code. Code can be built based on various trigger points; either against a development
branch or when a PR is merged into the master branch. The code build process can result
in one or more artifacts. Based on the nature of the code being built, the resultant artifacts
can either be binaries, packages, container images, or a combination. These artifacts
are stored in a registry and then deployed into a computing environment and form the
CD process. In between the CI and CD process, there is an intermediate process where
the build artifacts are stored and then subsequently deployed. This is known as artifact
management.

Artifact management acts as a single source of truth and a critical integration point
between CI and CD. Many artifact management systems provide versioning, the ability
to scan for vulnerabilities, provide consistent configuration, and accommodate unified
access control.

Given that the theme of this book is working with containers, the critical build artifacts
in this case will be the container images. Images are typically stored in a central registry.
The most common container registry is Docker Hub, which stores public Docker images.
However, when working within an enterprise, it is generally a requirement to secure
access to the container images produced by building code that is specific to the enterprise.
In such scenarios, a private registry is preferred over a public registry, since a private
registry can offer role-based access controls to provide more security and governance.

180 Building Code Using Cloud Build, and Pushing to Container Registry

Container Registry is GCP's private container image registry service, which supports
Docker Image Manifest V2 and OCI image formats including Docker. The Container
Registry service can be accessed through secure HTTPS endpoints and allows users to
push or pull images from any possible compute option.

Artifact Registry
Artifact Registry is a managed service offering from GCP that is similar to
Container Registry but also provides options to store non-container artifacts
such as Java packages, Node.js modules, and so on. It is currently not part of
the GCP DevOps Professional exam.

Container Registry – key concepts
Container Registry is one of Google's approaches to artifact management. Like any
other service, it has certain key constructs and concepts. The following sub-sections
dive into those details.

Enabling/disabling Container Registry
The Container Registry service can be enabled or disabled using the GCP Console via the
APIs & Services section. Additionally, the service can be enabled or disabled through the
CLI using the following command:

To enable container registry

gcloud services enable containerregistry.googleapis.com

To disable container registry

gcloud services disable containerregistry.googleapis.com

Container Registry service accounts
Like Cloud Build, when Container Registry is enabled, a Google-managed SA will get
created that is specific to your current project. This SA allows Container Registry to
access critical GCP services such as Pub/Sub and Cloud Storage within the project.
Google makes this possible by assigning the Container Registry Service Agent role to
the Container Registry SA.

Managing build artifacts – Container Registry 181

The structure of Container Registry
There could be one or more registries in a Container Registry service. Each registry is
identified by the hostname, project ID, and image (tag or image digest). The following
are the two possible formats:

• HOSTNAME / PROJECT_ID / IMAGE:TAG

• HOSTNAME / PROJECT_ID / IMAGE@IMAGE-DIGEST

In the preceding code, we have the following:

• HOSTNAME: Refers to the location where the image is stored. Images are stored in
a Cloud Storage bucket. If the hostname is gcr.io, then by default the images are
stored in the United States. Additionally, the user can specify specific hosts such as
us.gcr.io, eu.gcr.io, or asia.gcr.io, where each host is tied to a specific
geographic region where the images are hosted.

• PROJECT_ID: Refers to the specific GCP project ID.

• IMAGE: Refers to the image name. Registries in Container Registry are listed by
image name. A single registry can hold different versions of an image. Adding either
:TAG or @IMAGE-DIGEST helps to differentiate between images with the same
image name. If neither is specified, then the image is tagged as latest.

Examples:

The following are examples of a registry for a specific image where the version of the
image is differentiated by either adding a tag or image digest:

Add image tag:

gcr.io/PROJECT-ID/my-image:tag1

Add image digest:

gcr.io/PROJECT-ID/my-image@sha256:4d11e24ba8a615cc85a535daa17
b47d3c0219f7eeb2b8208896704ad7f88ae2d

This completes the topic that details the structure of Container Registry, an understanding
that is critical to upload or download container images to/from Container Registry. This
will be detailed in upcoming topics.

182 Building Code Using Cloud Build, and Pushing to Container Registry

Uploading images to Container Registry
The build process, on completion, will produce container images as artifacts. These
artifacts are generally created in the local directory where the build process was run. These
local Docker images need to be uploaded to a private registry such as Container Registry.
The process of uploading an image to Container Registry is also synonymous with
pushing images to Container Registry.

To break it down, there are two main steps that push images to Container Registry:

1. Tag the local image with the registry name (as shown in the following snippet):

docker tag SOURCE_IMAGE HOSTNAME/PROJECT_ID/IMAGE

#Example

docker tag my-local-image gcr.io/gcpdevops-2021/my-gcr-
image

2. Push the tagged image to Container Registry (as shown in the following snippet):

docker push HOSTNAME/PROJECT-ID/IMAGE

#Example

docker push gcr.io/gcpdevops-2021/my-gcr-image

A container image can be pushed to a new registry or an existing registry:

• If pushed to a new registry, that is, a registry with a new hostname, then Container
Registry will create a multi-regional storage bucket.

• If pushed to an existing registry, then a new version of the image is created either
with an image tag or image digest. If neither is present, then the image is tagged
as latest.

Specifying the location of Container Registry
The location of Container Registry can be specified under the hostname. If
gcr.io is used, then the default location is United States. If a specific location
needs to be used, then the host can be specified as eu.gcr.io.

The newly created image can be listed using the following gcloud CLI command:

gcloud container images list –repository=HOSTNAME/PROJECT-ID

#Example

gcloud container images list –repository=gcr.io/gcpdevops-2021

Managing build artifacts – Container Registry 183

This concludes the topic on uploading or pushing a container image to GCP's
Container Registry. Now the newly pushed image can be deployed by any application by
downloading the image from Container Registry. This will be covered as the next topic.

Downloading images from Container Registry
The CD process feeds on the output of the CI process, which essentially is stored in
a registry such as Container Registry in the form of an OCI image. So, for the CD process
to progress, the Docker image needs to be downloaded from Container Registry. The
process of downloading an image from Container Registry is synonymous with pulling
images from Container Registry.

An image can be pulled from Container Registry either using the image tag or image
digest. If neither is specified, then the image with a tag of latest will be downloaded
(as shown in the following snippet):

Pull based on Image Tag

docker pull HOSTNAME/PROJECT-ID/IMAGE:TAG

Pull based on Image-Digest

docker pull HOSTNAME/PROJECT-ID/IMAGE@IMAGE_DIGEST

Pull without Image Tag or Image-Digest

docker pull HOSTNAME/PROJECT-ID/IMAGE

This completes the topic on downloading images from Container Registry. To either
upload or download images to or from Container Registry, it is critical that the user or
application trying to perform those actions has the necessary access controls. This will be
covered as the next topic.

Container Registry access controls
Container Registry is a repository for container images. The images are physically stored
in a Cloud Storage bucket. So, in order to push or pull images from Container Registry,
the user or SA should be granted the following roles:

184 Building Code Using Cloud Build, and Pushing to Container Registry

If an application is deployed using GCP's available compute options, such as Compute
Engine, App Engine, or GKE, then each of these services will have default service
accounts with a pre-defined set of roles. However, the use of default service accounts
is not recommended as this practice does not follow the principle of least privilege.
Alternatively, it is also possible that the compute options could use a custom SA with the
minimum set of required permissions. Either way, it is important to understand the scope
of these service accounts and their impact during the CD process. This will be discussed
in detail in the next topic.

Continuous Delivery/Deployment integrations via Container Registry
As mentioned previously, artifact management is the bridge between CI and CD. GCP
has multiple compute options where code or an application can be deployed as part of
the CD process. Each of GCP's compute options has a way to interact and integrate with
Container Registry, which are detailed in the following sub-sections.

Compute Engine
The Compute Engine service uses either a SA or access scopes to identify the identity
and provide API access to other services. The following is a summary of the possibilities
or potential changes to successfully push or pull an image originating from a Compute
Engine instance:

• The default Compute Engine SA or the default access scope provides read-only
access to storage and service management. This allows you to download or pull
images from Container Registry within the same project.

• To push images, either the read-write storage access scope should be used, or
the default Compute Engine SA should be configured with the Storage Object
Admin role.

• If the VM instance is using a SA other than the default Compute Engine SA or
if the VM instance is in a project different from Container Registry, then the SA
should be given the appropriate permissions to access the storage bucket used
by Container Registry.

Managing build artifacts – Container Registry 185

Google Kubernetes Engine
A Google Kubernetes Engine (GKE) cluster is essentially a collection of Google
Compute Engine VMs that represents a node pool. This also means that GKE uses the
SA configured on the VM instance. So, eventually, GKE's access to Container Registry
is based on the access granted to the VM's SA. So, refer to the previous sub-section on
Compute Engine for the possibilities or potential changes to successfully push or pull an
image originating from a compute instance within GKE.

App Engine flexible
App Engine flexible supports the deployment of Docker containers. The default SA tied
with App Engine flexible has the required permissions to push and pull images from
Container Registry, provided both are present in the same project.

If App Engine is in a different project than Container Registry or if App Engine is using
a different SA than the default App Engine SA, then the SA tied to App Engine should be
given the appropriate permissions to access the storage bucket used by Container Registry.

This completes the topic on how GCP compute options can integrate with Container
Registry. Outside the compute options provided by GCP, there are several use cases where
CD systems use a compute option that is not native to GCP.

The next topic discusses the details of how third-party clients can access artifacts in GCP's
Container Registry.

Container Registry authentication methods
There are compute options outside Google Cloud that could potentially deploy an
application by pulling container images from Google Cloud's Container Registry. Such
compute options are referred to as third-party clients. A Red Hat Enterprise Linux
(RHEL) cluster is an example of a third-party client that is a compute option from Red
Hat and can download a container image from Container Registry.

186 Building Code Using Cloud Build, and Pushing to Container Registry

Apart from ensuring that the third-party client has the required access control to pull
or push images, it is mandatory for third-party clients to authenticate with Container
Registry prior to initiating an attempt to push or pull images. The following are the
possible authentication methods that third-party clients can use to authenticate with
Container Registry:

• gcloud credential helper

• Standalone credential helper

The details on how third-party clients can authenticate with Container Registry are
elaborated on in the upcoming sub-sections.

gcloud credential helper
This is the recommended authentication method and mandates the installation of
Google's Cloud SDK or the usage of GCP's Cloud Shell. This method essentially uses the
gcloud tool to configure authentication. The following are the required steps to use this
authentication method:

1. Log into gcloud as the IAM user that will run the Docker commands:

To configure authentication with IAM user credentials:

gcloud auth login

2. If the intent is to log into gcloud as a SA, then run the following Docker command.
This uses a JSON key file that contains the information about the SA and retrieves
an access token that is valid for 60 minutes:

To configure authentication with service account
credentials:

gcloud auth activate-service-account <service-account-
name> --key-file=<key-file-name>

3. Configure Docker with the following command, which allows Docker to
authenticate with Container Registry:

gcloud auth configure-docker

The next sub-section details an alternative approach to how the Docker standalone
credential helper can be used as an authorization method for third-party clients to interact
with GCP's Container Registry.

Managing build artifacts – Container Registry 187

Standalone credential helper
docker-credential-gcr is GCP Container Registry's standalone credential helper.
This authentication method is used when Google Cloud SDK is not installed or GCP Cloud
Shell is not used but Docker needs to be configured to authenticate with GCP Container
Registry. This credential helper implements the Docker Credential Store API and enables
more advanced authentication schemes for using GCP Container Registry. It allows you
to fetch credentials from application default credentials and is also capable of generating
credentials without an explicit login operation. More details about docker-credential-
gcr can be found at https://github.com/GoogleCloudPlatform/docker-
credential-gcr.

The following are the required steps to use the standalone credential helper as the
authentication method:

1. Log on to the machine as the user that will run the Docker commands.

2. Download docker-credential-gcr from GitHub releases:
(https://github.com/GoogleCloudPlatform/docker-credential-
gcr/releases).

3. Configure Docker with the following command. Internally, the credential helper
will use a SA that is supplied in a JSON key file:

docker-credential-gcr configure-docker

Container Analysis
Container Analysis is a construct of Container Registry and even Artifact Registry.
The purpose of this construct is to analyze the image that is being pushed into GCP
Container Registry for any vulnerabilities that might be a security concern. The resulting
metadata from vulnerability scanning is stored and is made available through an API for
consumption. This metadata is later used in the authorization process.

There are two specific APIs through which Container Analysis provides metadata storage
and vulnerability scanning:

• Container Analysis API: Enables metadata storage. Metadata storage includes
information about vulnerability or build information, also referred to as note.

• Container Scanning API: Enables vulnerability scanning across the project. The
process comprises scanning and continuous analysis to find malicious activity or
potential compromises leading to system failure.

https://github.com/GoogleCloudPlatform/docker-credential-gcr
https://github.com/GoogleCloudPlatform/docker-credential-gcr
https://github.com/GoogleCloudPlatform/docker-credential-gcr/releases
https://github.com/GoogleCloudPlatform/docker-credential-gcr/releases

188 Building Code Using Cloud Build, and Pushing to Container Registry

The following are the steps involved in configuring Container Analysis as part of
Container Registry:

1. Enable the Container Analysis API: Navigate to APIs & Services, search for
Container Analysis API, and select the Enable option.

2. Enable the Container Scanning API: Navigate to APIs & Services, search for
Container Scanning API, and select the Enable option. In addition, also
search for On-Demand Scanning API and enable it.

3. Navigate to Container Registry and under Settings, verify that Vulnerability
Scanning is enabled. If enabled, the Settings screen will be similar to Figure 6.3.
If not, enable it:

Figure 6.3 – Vulnerability scanning enabled in Container Registry

Managing build artifacts – Container Registry 189

4. Now when an image is pushed to Container Registry, container analysis and
vulnerability scanning will be performed automatically. The results will be displayed
under the Images section of Container Registry. Figure 6.4 represents the
summary of the container analysis:

Figure 6.4 – Summary of container analysis on a newly created image

5. The details of all the vulnerabilities scanned and the categorization of them can be
found by clicking on the summary. Figure 6.5 represents the detailed report:

Figure 6.5 – Details of vulnerability scanning through Container Analysis

190 Building Code Using Cloud Build, and Pushing to Container Registry

This completes multiple sub-sections related to how GCP's compute options, as well
as other third-party CD systems, can integrate with GCP Container Registry. This also
concludes the deep dive into several of the key factors related to Container Registry.

The next section is a hands-on lab that tries to combine multiple concepts learned across
sections of this chapter.

Hands-on lab – building, creating, pushing,
and deploying a container to Cloud Run using
Cloud Build triggers
The goal of this hands-on lab is to provide a step-by-step illustration of how code can be
automatically built, pushed, and deployed to a compute option called Cloud Run.

Cloud Run
Cloud Run is GCP's managed serverless compute option, which deploys
containers and abstracts away the infrastructure management. Cloud Run can
scale up or down from zero based on traffic and charges on a pay-per-use model.

The hands-on lab implements concepts across Cloud Build and Container Registry. The
following is a high-level breakdown of the steps involved. Each of the steps is further
elaborated into multiple sub-steps:

1. Creating an empty repository in Source Repositories

2. Creating a Cloud Build trigger

3. Adding code and pushing it to the master branch

4. Code walk-through to build, create, push, and deploy the container image

5. Viewing the build results in Cloud Build, Container Registry, and Cloud Run

Let's take a look at these steps in detail.

Hands-on lab – building, creating, pushing, and deploying a container to Cloud Run using Cloud Build triggers 191

Creating an empty repository in Source Repositories
The following are the steps required to create an empty repository in GCP's Source
Repositories:

1. Navigate to Source Repositories in the GCP Console.

2. Create a new repository by using the Add repository option under the All
repositories tab. Select an appropriate project and name the repository as per
your choice (for example, my-cloud-build-trigger).

Creating a Cloud Build trigger
The following are the steps required to create a Cloud Build trigger against a specific
repository, which will be invoked on a specific repository event (refer to Figure 6.6):

1. Navigate to the Triggers section under Cloud Build in the GCP console.

2. Select the Create Trigger option.

3. Enter an appropriate name for the trigger, for example, build-on-push-to-
master.

4. Enter an appropriate description.

5. Select a choice of event. Available options are Push to a branch, Push new tag,
or Pull request. In this specific example, select the Push to a branch option.

6. Select a source repository. In this specific example, select the newly created
repository, that is, my-cloud-build-trigger.

7. Select a choice of branch. It can be * or a specific branch. In this specific example,
enter the option as ^master$.

8. Select the source for the build configuration. It can either be a Cloud Build
configuration file or a Dockerfile. In this specific example, select the Cloud
Build configuration file option and accordingly provide the file location
(as /cloudbuild.yaml).

192 Building Code Using Cloud Build, and Pushing to Container Registry

9. Create the Cloud Build trigger (refer to Figure 6.6):

Figure 6.6 – Steps to illustrate the creation of the Cloud Build trigger

Hands-on lab – building, creating, pushing, and deploying a container to Cloud Run using Cloud Build triggers 193

Adding code and pushing it to the master branch
We have created a repository and set up a trigger against the repository. The trigger will
build code when the code is pushed to the master branch. The next step is to add code to
the repository and push it to the master branch. The following steps illustrate this:

1. Clone the empty repository to a local Git repository:

gcloud source repos clone my-cloud-build-trigger
--project=$GOOGLE_CLOUD_PROJECT

#$GOOGLE_CLOUD_PROJECT is an environment variable that
refers to the current project

2. Switch to the new local Git repository:

cd my-cloud-build-trigger

3. Create a remote branch:

git checkout -b feature/build-trigger

4. Copy the my-cloud-build-trigger folder from https://github.com/
PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/
tree/main/my-cloud-build-trigger.

5. Add files, commit the changes, and push to the remote branch:

git add *

git commit -m "Adding files!"

git push --set-upstream origin feature/build-trigger

6. Checkout to the master branch and fix the upstream:

git checkout -b master

git branch --unset-upstream

7. Merge the remote branch with the master branch:

git push –set-upstream origin git push -u master

https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/tree/main/my-cloud-build-trigger
https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/tree/main/my-cloud-build-trigger
https://github.com/PacktPublishing/Google-Cloud-Platform-for-DevOps-Engineers/tree/main/my-cloud-build-trigger

194 Building Code Using Cloud Build, and Pushing to Container Registry

Code walk-through
As soon as the code is pushed to the master branch in the previous step, the configured
trigger will come into effect and will eventually build the code, create a container image,
push the container image to Container Registry, and eventually provide the feasibility of
the container image being deployed.

The my-cloud-build-trigger repository consists of three types of files:

• The application code
• Dockerfile
• The build configuration file

The application code
The application code represents the core code that runs the application. In this specific
case, the code is under app/main.py, is written in Python, and creates a web application
using the FastAPI framework. The following is the code snippet:

app = FastAPI()

@app.get("/")

def read_root():

 return {"Hello": "World"}

Dockerfile
The Dockerfile represents the instructions required to build the application code using a
base image and subsequently create a container image. The following is the code snippet:

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.7

COPY ./app /app

EXPOSE 8080

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port",
"8080"]

The build configuration file
The build configuration file represents the configuration to initiate the build process.
In addition, it can include steps to push the container image to Container Registry and
subsequently deploy it. The following is the code snippet:

steps:

- name: 'gcr.io/cloud-builders/docker'

Hands-on lab – building, creating, pushing, and deploying a container to Cloud Run using Cloud Build triggers 195

 args: ['build', '-t', 'gcr.io/$PROJECT_ID/cloud-build-
trigger', '.']

- name: 'gcr.io/cloud-builders/docker'

 args: ['push', 'gcr.io/$PROJECT_ID/cloud-build-trigger']

- name: 'gcr.io/cloud-builders/gcloud'

 args: ['run', 'deploy', 'cbt-cloud-run', '--image', 'gcr.
io/$PROJECT_ID/cloud-build-trigger', '--region', 'us-central1',
'--platform', 'managed', '--allow-unauthenticated']

In this specific example, the configuration file has three specific steps:

1. Build the code using Docker Cloud Builder. The code is picked up from the
specified directory. In this case, it is the current directory.

2. The code built in the first step creates a container image that is local to the cloud
builder. The image is then tagged and pushed to Container Registry using the
Docker Cloud Builder. The container image is pushed against a specific repository.

3. The image pushed in step 2 is used in this step to deploy to Google's Cloud Run.

Viewing the results
After the code is pushed to the master branch, the configured trigger will initiate the build
process. To view the build results, navigate to the History section of Cloud Build in the
GCP console and find the build result for the specific source repository (refer to Figure 6.7):

Figure 6.7 – Summary of the build history specific to the Cloud Build trigger

196 Building Code Using Cloud Build, and Pushing to Container Registry

To view the details of the build, click on the specific build. The details will show reference
to steps that include the execution of the Dockerfile and the creation of a container image
that is pushed to Container Registry (refer to Figure 6.8):

Figure 6.8 – Log to build a container image and push to Container Registry

The newly created container can be found under Container Registry (refer to Figure 6.9):

Figure 6.9 – Viewing the container image in Container Registry

The end of the build log will show the deployment of the container image to Cloud Run.
This will also include the newly created service URL to access the application (refer to
Figure 6.10):

Figure 6.10 – Log to deploy the container to Cloud Run

Summary 197

Navigate to the highlighted service URL to view the deployed application in Cloud Run
(refer to Figure 6.11):

Figure 6.11 – Container image deployed in Cloud Run

This completes the hands-on lab where we deployed an application automatically to Cloud
Run whenever a developer made a code change and pushed the code to the master branch.
This illustrates an automatic CI/CD process that is built using GCP's native constructs
such as Cloud Build and Container Registry.

Summary
In this chapter, we discussed two key services that are central to building a CI/CD
workflow in Google. These are Cloud Build and Container Registry. Cloud Build is
critical to build application code and output container images as build artifacts. Container
Registry manages these build artifacts using the concepts of artifact management. The
chapter went into in-depth details with respect to each of the services' key constructs and
concluded with a hands-on lab where users can automatically deploy code to Cloud Run
when a code change is detected by a configured trigger.

Google strongly recommends deploying applications using containers specifically against
GKE, which is a key container deployment option apart from App Engine flexible and
Cloud Run. The key concepts of GKE will be discussed in the next three chapters, which
include understanding the core features of native Kubernetes, learning about GKE-specific
features, and topics specific to hardening a GKE cluster.

Points to remember
The following are some important points to remember:

• Cloud Build can import source code from Google Cloud Storage, CSR, GitHub, or
Bitbucket.

• Cloud builders are container images that run the build process.

198 Building Code Using Cloud Build, and Pushing to Container Registry

• Google-managed builders are pre-built images that can be used to execute one or
more build steps.

• Community-contributed builders are open source builders but not pre-built images
and only source code is made available.

• The build configuration is a configuration file that encapsulates the steps to perform
build-related tasks, written in yaml or json format.

• Manual invocation and automatic builds using triggers are the two main options to
invoke the build process via Cloud Build.

• Cloud Build related logs are stored in Cloud Storage and Cloud Logging.

• Cloud Build Editor provides full control of Cloud Build resources.

• Cloud Build creates a specific Cloud Build SA (with minimal permissions assigned)
for a project when the Cloud Build API is enabled on a project.

• Two common strategies to increase build speed are building leaner containers and
using cached Docker images.

• Kaniko cache is a feature of Cloud Build where intermediate container image layers
are directly written to Google's Container Registry.

• Cloud Build provides an option to increase the speed of the build by using a higher
CPU VM.

• Unwanted files during the Cloud Build process can be ignored using the
gcloudignore file.

• Container Registry is GCP's private container image registry service, which
supports Docker Image Manifest V2 and OCI image formats.

• If gcr.io is used, then the default location is considered as United States.

• Storage Admin provides the ability to push and pull images from the Cloud Storage
bucket associated with Container Registry.

• The gcloud credential helper and standalone credential helper are possible
authentication methods that third-party clients can use to authenticate with
Container Registry.

• Container Analysis is a service that provides vulnerability scanning and metadata
storage for software artifacts.

• The Container Analysis API enables metadata storage and the Container Scanning
API enables vulnerability scanning.

Further reading 199

Further reading
For more information on Cloud Build and Container Registry, read the following articles:

• Cloud Build: https://cloud.google.com/cloud-build

• Container Registry: https://cloud.google.com/container-registry

Practice test
Answer the following questions:

1. Select all possible options that Cloud Build can import source code from (multiple):

a) GitHub and Bitbucket

b) Google Cloud Storage

c) CSR

d) None of the above

2. Cloud Build requires a build configuration file. Select the option that represents this:

a) cloudbuild.json, cloudbuild.xml

b) build.json, build.yaml

c) cloudbuild.json, cloudbuild.yaml

d) build.json, build.xml

3. Select the command that will configure Cloud Build to store an image in Container
Registry during the build process:

a) The push command

b) The docker put command

c) The put command

d) The docker push command

4. Which of the following options can be used to store container images?

a) Container Analysis

b) Cloud Build

c) Container Registry

d) CSR

https://cloud.google.com/cloud-build
https://cloud.google.com/container-registry

200 Building Code Using Cloud Build, and Pushing to Container Registry

5. Select the option that stores trusted metadata used later in the authorization process:

a) Container Registry

b) Container Analysis

c) Container Scanning

d) Container Artifactory

6. Select the option that represents an intermediate image that is created by executing
each instruction in a Dockerfile:

a) Docker image

b) Dockerfile

c) Docker layer

d) Docker daemon

7. Select the option that allows you to run multiple applications on the same
physical hardware:

a) OS

b) Virtualization

c) Hypervisor

d) All of the above

8. Select all options that are applicable to Cloud Build:

a) Managed service

b) Serverless

c) Both (a) and (b)

d) None of the above

9. Which of the following is not a valid option that a user can provide in a build step
(select one):

a) name

b) args

c) env

d) uniqueid

Answers 201

10. The build configuration file can be configured to store Cloud Build logs. Select the
appropriate option to store logs:

a) Cloud Storage

b) Cloud Logging

c) Both (a) and (b)

d) None of the above

Answers
1. (a) – (b) and (c).

2. (c) – cloudbuild.json, cloudbuild.yaml.

3. (d) – The docker push command.

4. (c) – Container Registry.

5. (b) – Container Analysis.

6. (c) – Docker layer.

7. (b) - Virtualization.

8. (c) – Managed service and Serverless. Every serverless service is a managed service.

9. (d) – uniqueid. The right option is id.

10. (c) – Cloud Storage and Cloud Logging.

7
Understanding

Kubernetes
Essentials to Deploy

Containerized
Applications

The last two chapters (Chapter 5, Managing Source Code Using Cloud Source Repositories,
and Chapter 6, Building Code Using Cloud Build, and Pushing to Container Registry)
focused on Google Cloud services to manage source code via cloud source repositories,
build code via Cloud Build, and create image artifacts using Container Registry. Given
that the focus of this book is to deploy containerized applications, the next three
chapters (from Chapter 7, Understanding Kubernetes Essentials to Deploy Containerized
Applications, through to Chapter 9, Securing the Cluster Using GKE Security Constructs)
are centered around essential concepts related to deploying containerized applications
through Kubernetes, easy cluster management through Google Kubernetes Engine
(GKE), and a rundown of key security features in GKE that are essential for hardening
the Kubernetes cluster.

204 Understanding Kubernetes Essentials to Deploy Containerized Applications

Kubernetes, or K8s, is an open source container orchestration system that can run
containerized applications. Kubernetes originated as an internal cluster management
tool from Google that it donated to Cloud Native Computing Foundation (CNCF) as
an open source project in 2014. This specific chapter will focus on Kubernetes essentials
that are required for containerized deployments. This includes understanding the
cluster anatomy, and getting acquainted with Kubernetes objects, specifically related to
workloads, deployment strategies, and constraints around scheduling applications. Google
open sourced Kubernetes and donated it to CNCF. This specific chapter doesn't deep dive
into setting up a Kubernetes cluster. It takes a significant effort and manual intervention
to run the open source version of Kubernetes.
Google offers a managed version of Kubernetes called Google Kubernetes Engine,
otherwise known as GKE. Essentially, the fundamentals of Kubernetes apply to GKE as
well. However, GKE makes it easy to set up a Kubernetes cluster and includes additional
capabilities that facilitate cluster management. The next chapter focuses on GKE core
features and includes steps to create a cluster. However, this chapter essentially focuses and
elaborates on the fundamentals of Kubernetes, which is also the core of GKE and helps to
make the transition to GKE much easier.
This chapter introduces Kubernetes as the container orchestration of choice and provides
details on the following topics:

• Kubernetes: A quick introduction
• Kubernetes Cluster Anatomy: Deep dives into the constructs that form a

Kubernetes cluster along with the components that form the master control plane
• Kubernetes Objects: Provides a high-level overview of critical Kubernetes objects

used to deploy workloads
• Scheduling and interacting with Pods: Details the constraints evaluated and

interactions involved while scheduling applications on Kubernetes
• Kubernetes deployment strategies: Details potential deployment strategies, from

the option that essentially recreates applications, via deployment options that ensure
zero downtime, to the option that enables the shifting of a specific amount of traffic
to the new application

Technical requirements
There are four main technical requirements:

• A valid Google Cloud Platform (GCP) account to go hands-on with GCP services:
https://cloud.google.com/free.

• Install Google Cloud SDK: https://cloud.google.com/sdk/docs/
quickstart.

https://cloud.google.com/free
https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart

Kubernetes – a quick introduction 205

• Install Git: https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git.

• Install Docker: https://docs.docker.com/get-docker/.

Kubernetes – a quick introduction
A container is a unit of software that packages code and its dependencies, such as libraries
and configuration files. When compared to running applications on physical or virtual
machines, a container enables applications to run faster and reliably across computing
environments. Containers make it easier to build applications that use microservice
design patterns. They are critical to the concept of continuous development, integration,
and deployment as incremental changes can be made against a container image and can
be quickly deployed to a compute environment of choice (that supports process isolation).

Given that containers are lean and easy to deploy, an organization might end up deploying
its applications as several containers. This poses challenges as some of the applications
might need to interact with one another. Additionally, the life cycle of the application
should also be monitored and managed. For example, if an application goes down due to
resource constraints, then another instance of the application should be made available.
Similarly, if there is a sudden spike in traffic, the application should horizontally scale up
and when traffic returns to normal, the application should subsequently scale down.

Scaling actions (up or down) should be provisioned automatically rather than manually.
This creates a need for container orchestration and will be discussed as the next topic.

Container orchestration
Container orchestration is about managing the life cycle of containers, specifically in
large dynamic environments. Container orchestration can control and automate tasks
such as provisioning, deployment, maintaining redundancy, ensuring availability, and
handling changing traffic by scaling up or down as needed.

In addition, container orchestration can also handle the following scenarios:

• Move containers from one host node to the other in case the host node dies.

• Set eviction policies if a container is consuming more resources than expected.

• Provision access to persistent storage volumes in case a container restarts.

• Secure interactions between containers by storing keys/secrets.

• Monitor the health of the containers.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/get-docker/

206 Understanding Kubernetes Essentials to Deploy Containerized Applications

Kubernetes traces its lineage from Borg – an internal Google project that is essentially
a cluster manager that runs large-scale containerized workloads to support core Google
services such as Google Search. Kubernetes was the next-generation cluster manager after
Borg. The most popular concepts in Kubernetes came from Borg, such as Pods, services,
labels, and ip-per-pod.

Alternative container orchestration options
Docker Swarm, Apache Mesos, OpenShift, and suchlike are a few alternatives
for container orchestration outside Kubernetes. Docker Swarm is easy to
get started and set up the cluster, but has limited features specific to scaling.
Mesos is a cluster manager that is best suited to large systems and designed
with maximum redundancy. It is complex in nature (in terms of features and
configuration) and recommended for workloads such as Hadoop and Kafka,
but is not suitable for mid- or small-scale systems.

The upcoming section summarizes the main features of Kubernetes.

Kubernetes features
The following are some of the key features in Kubernetes:

• Declarative configuration: Kubernetes administers the infrastructure declaratively,
in other words, Kubernetes monitors the current state and takes the required action
to ensure that the current state matches the desired state.

• Automation: Kubernetes' implementation of declarative configuration inherently
supports automation. In addition, Kubernetes allows a wide range of user
preferences and configurations. As a result, Kubernetes can automatically scale
in and scale out containerized applications based on a myriad of conditions, with
resource utilization or resource limits being a few of them.

• Stateful and stateless: Kubernetes supports both stateful and stateless applications.
In the case of stateful applications, a user's state can be stored persistently. In
addition, both batch jobs and daemon tasks are also supported.

• Container management: Kubernetes supports the features of infrastructure as
service, such as logging, monitoring, and load balancing.

The next section outlines the structure of a Kubernetes deployment and deep dives into its
key components and their capabilities.

Kubernetes cluster anatomy 207

Kubernetes cluster anatomy
A Kubernetes cluster is a collection of machines with compute power. These machines
could be actual physical computers or could even be virtual machines (VMs).

In reference to cloud deployments, a Kubernetes cluster will be a collection of VMs. Each
VM is termed a node. The nodes in a cluster are categorized as either master or worker
nodes. Worker nodes run applications that are deployed in containers. The master node
runs the control plane components that are responsible for coordinating tasks across the
worker nodes.

Throughout this chapter, and for ease of reference, the node running the control plane
components will be referred to as the master, and worker nodes will be referred to as nodes.

The master has the following responsibilities:

• It tracks information across all nodes in a cluster, such as applications or containers
that a node is running.

• It schedules applications on nodes by identifying nodes based on requirements
(such as resource, affinity, or Anti-Affinity constraints).

• It ensures that a desired number of instances are always running as per the
deployment specifications and orchestrates all operations within the cluster.

Figure 7.1 shows an illustration of a Kubernetes cluster that includes both master and
nodes. These are comprised of machines with compute power:

Figure 7.1 – Outline of a Kubernetes cluster

208 Understanding Kubernetes Essentials to Deploy Containerized Applications

The master performs its responsibilities using a set of key components that form the
Kubernetes Control Plane and will be detailed in the upcoming topic.

Master components – Kubernetes control plane
The Kubernetes control plane consists of components that make decisions with regard to
operations within the cluster and respond to cluster-specific events. Events can include,
but are not limited to, scaling up the number of instances with respect to the application if
the average CPU utilization exceeds a specific configured threshold.

The following are the key components of the Kubernetes control plane:

• kube-apiserver: A frontend to Kubernetes for cluster interactions

• etcd: Distributed key-value stores for cluster-specific information

• kube-scheduler: Responsible for distributing workloads across nodes

• kube-controller-manager: Tracks whether a node or application is down

• cloud-controller-manager: Embeds cloud-specific control logic

Figure 7.2 shows an illustration of the components that run on the master and form the
Kubernetes control plane:

Figure 7.2 – Kubernetes control plane on the master node

Kubernetes cluster anatomy 209

The control plane components can be run on any machine in the cluster, but it is
recommended to run on the same machine and avoid any user-specific containers. It's also
possible to have multiple control planes when building a highly available cluster. Each of
the key components is introduced in the upcoming sub-section.

kube-apiserver
kube-apiserver is the component of the control plane that exposes the Kubernetes API.
This is the only component in the control plane that an end user or an external system/
Service can interact with. This component exposes the Kubernetes API through multiple
pathways (such as HTTP, gRPC, and kubectl). All other components of the control
plane can be viewed as clients to kube-apiserver. Additionally, kube-apiserver
is also responsible for authentication, authorization, and managing admission control.

Authentication, authorization, and admission control
From a cluster standpoint, authentication is about who can interact with the
cluster (this could be a user or service account); authorization is about what
specific operations are permitted and admission control represents a set of
plugins that could limit requests to create, delete, modify, or connect to a proxy.
ResourceQuota is an example of an admission controller where a namespace
can be restricted to only use up to a certain capacity of memory and CPU.

Any query or change to the cluster is handled by kube-apiserver. It is also designed
to horizontally scale by deploying instances to handle incoming requests to the cluster.

etcd
etcd is the database for a Kubernetes cluster. etcd is a distributed key-value store used
by Kubernetes to store information that is required to manage the cluster, such as cluster
configuration data. This includes nodes, Pods, configs, secrets, accounts, roles, and
bindings. When a get request is made to the cluster, the information is retrieved from
etcd. Any create, update, or delete request made to the cluster is complete only
if the change is reflected in etcd.

210 Understanding Kubernetes Essentials to Deploy Containerized Applications

kube-scheduler
kube-scheduler is responsible for scheduling applications (encapsulated in Pod objects)
or jobs onto nodes. It chooses a suitable node where the application can be deployed (but
doesn't launch the application). To schedule an application, kube-scheduler considers
multiple factors, such as the resource requirements of an application, node availability,
affinity, and Anti-Affinity specifications. Affinity and Anti-Affinity specifications represent
policy definitions that allow certain applications to be deployed against specific nodes or
prevent deployment against specific nodes.

kube-controller-manager
kube-controller-manager monitors the state of the cluster through kube-apiserver
and ensures that the current state of the cluster matches the desired state. kube-
controller-manager is responsible for the actual running of the cluster, and
accomplishes this by using several controller functions. As an example, a node controller
monitors and responds when a node is offline. Other examples include the replication
controller, namespace controller, and endpoints controller.

cloud-controller-manager
cloud-controller-manager includes controller functions that allow Kubernetes to be
integrated with services from a cloud provider. The controller functions are responsible
for handling constructs such as networking, load balancers, and storage volumes that are
specific to the cloud provider.

The master receives a request to perform a specific operation and the components in the
control plane schedule, plan, and manage the operations to be performed on the nodes.
Kubernetes doesn't natively consist of out-of-the-box integration (say with Google or
AWS). The operations on the nodes are carried out by a set of components that form the
node control plane and will be detailed in the upcoming sub-section.

Node components
Nodes receive instructions from the master, specifically, the kube-apiserver.
Nodes are responsible for running applications deployed in containers and establish
communication between services across the cluster. The nodes perform these
responsibilities by using a set of key components. These components are as follows:

• kubelet: An agent for Kubernetes that listens to instructions from kube-apiserver
and runs containers as per the Pod specification provided

• kube-proxy: A network proxy that enables communication between services

• container runtime: Software that is responsible for running containers

Kubernetes cluster anatomy 211

Figure 7.3 shows an illustration of components that form the node control plane:

Figure 7.3 – Components of the node control plane

Node components run on each worker node in the cluster and provide the Kubernetes
runtime environment. Each of the key components for a worker node is introduced in
the upcoming topic.

kubelet
kubelet is an agent that runs on each node. When an action needs to be performed on
a node, the kube-apiserver connects with the node through kubelet, the node's
agent. kubelet listens for instructions and deploys or deletes containers when told to.
kubelet doesn't manage containers that are not created by Kubernetes.

kube-proxy
kube-proxy is a network proxy that enables communication between services in the
cluster based on network rules. The network rules allow communication with Pods from
within or external to the cluster. kube-proxy runs on each node in the cluster.

container runtime engine
container runtime engine is the software that enables applications to be run in containers
on the cluster. For example, the container runtime allows the DNS service and networking
to run as containers. This includes the master plane components. Kubernetes supports
multiple container runtimes, such as Docker, containerd, and CRI-O.

212 Understanding Kubernetes Essentials to Deploy Containerized Applications

Kubernetes deprecating Docker as a container runtime engine
Based on the release notes for Kubernetes v1.20, dockershim will be
deprecated and cannot be used from v1.22. dockershim is a module in
kubelet and a temporary solution proposed by the Kubernetes community
to use Docker as a container runtime. Due to the maintenance burden,
dockershim will be deprecated and the Kubernetes community will only
maintain the Kubernetes Container Runtime Interface (CRI). containerd
and CRI-O are examples of a CRI-compliant runtime.

This completes a deep dive into Kubernetes cluster anatomy that specifically consists of
components from the master control plane and components from the node control plane.
Communication within the master control plane is driven by the kube-api server,
which sends instructions to the kubelet on the respective nodes. kubelet executes the
instructions sent by the kube-api server. Figure 7.4 shows an illustration of the entire
cluster anatomy:

Figure 7.4 – Kubernetes cluster anatomy

Kubernetes objects 213

It is important to understand that any interaction against a Kubernetes object, such as
create, modify, or delete, can only be performed through the Kubernetes API. These
operations on the object can also be performed through the CLI using the kubectl
command. The next topic details the usage of the kubectl command.

Using kubectl
kubectl is a utility for controlling or executing operations in a Kubernetes cluster.
kubectl is typically used by administrators. kubectl enables an action to be
performed, such as get or delete, against a specific object type with a specific object
name along with supported request parameters. kubectl communicates with kube-
apiserver on the master and converts commands issued by the CLI into API calls.
kubectl can be used to create Kubernetes objects, view existing objects, delete objects,
and view/export configurations. The syntax structure of kubectl is as follows:

#kubectl syntax

kubectl [command] [type] [name] [flags]

#Example – Command to get specification of a specific pod
called 'my-pod' in yaml format

kubectl get pod my-pod -o=yaml

The first step involved in using the kubectl command is to configure the credentials of
the cluster, such as the cluster name and its location. kubectl stores this configuration
in a file called config and stores the file in a hidden folder called .kube in the home
directory. The current configuration can be retrieved by using the view command:

Get current config

kubectl config view

The actions on the cluster are executed using Kubernetes objects. Each object has a
specific purpose and functionality. There are many such objects in Kubernetes. The
upcoming section introduces the concept of Kubernetes objects and details the most
frequently used objects.

Kubernetes objects
A Kubernetes object is a persistent entity and represents a record of intent. An object can
be defined using the YAML configuration. It will have two main fields – spec and status.
The object spec represents the specification, and the object state represents the desired
state. Once the object is created, the Kubernetes system will ensure that the object exists
as per the specified declarative configuration.

214 Understanding Kubernetes Essentials to Deploy Containerized Applications

Kubernetes supports multiple object types. Each object type is meant for a specific
purpose. The following are some critical Kubernetes objects that will be used throughout
this chapter. This is not an exhaustive list:

• Pods – The smallest atomic unit in Kubernetes

• Deployment – Provides declarative updates for Pods and ReplicaSets

• StatefulSet – Manages stateful applications and guarantees ordering

• DaemonSet – Runs a copy of the Pod on each node

• Job – Creates one or more Pods and will continue to retry execution until a specified
number of them terminate successfully

• CronJob – A job that occurs on a schedule represented by a cron expression

• Services – Exposes applications running one or more Pods

Deployment, ReplicaSet, StatefulSet, DaemonSet, Jobs, and CronJobs are specifically
categorized as Workload Resources. All these workload resources run one or more
Pods. This chapter details the abovementioned Kubernetes objects in the upcoming
sub-sections. Please note that the information provided is not exhaustive from the aspect
of an object's functionality, but provides an in-depth review of the object's purpose.

Pod
Pod is a Kubernetes object and is the smallest deployable compute unit in a Kubernetes
cluster. Application code exists in container images. Container images are run using
containers and containers run inside a Pod. A Pod resides inside a node.

A Pod can contain one or more containers. A Pod provides a specification on how to
run the containers. The containers in a Pod share filesystem, namespace, and network
resources. A Pod also has a set of ports or port ranges assigned. All containers in the
Pod have the same IP address, but with different ports. The containers within the Pod
can communicate by using the port number on localhost. The following is a declarative
specification for a Pod that runs an nginx container:

apiVersion: v1

kind: Pod

metadata:

 name: my-nginx

spec:

Kubernetes objects 215

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

containerPort:80

The following is an equivalent imperative command to create a similar Pod:

kubectl run my-nginx –image=nginx

What is CrashLoopBackOff?
There are certain situations where a Pod attempts to start, crashes, starts again,
and then crashes again; essentially, a condition reported by a Pod where a
container in a Pod has failed to start after repeated attempts.

On the Kubernetes platform, Pods are the atomic units and run one or more containers.
A Pod consists of multiple containers if they form a single cohesive unit of Service. The
sidecar pattern is a common implementation of a Pod with multiple containers. These
are popularly used in ETL-specific use cases. For example, logs of the hello-world
container need to be analyzed in real time. logs-analyzer is a specialized application
that is meant to analyze logs. If each of these containers is in their respective Pods as
pod-hello-world and pod-logs-analyzer, the logs-analyzer container can
get the logs of the hello-world container through a GET request. Refer to Figure 7.5:

Figure 7.5 – Communication between containers in different Pods

216 Understanding Kubernetes Essentials to Deploy Containerized Applications

However, there will be minimal network latency since both the containers are in separate
Pods. If both containers are part of the same Pod, pod-hello-world-etl forming a
sidecar pattern, then the Pod will consist of two containers – logs-analyzer acting as
the sidecar container that will analyze logs from another container, hello-world. Then,
these containers can communicate on localhost because they are on the same network
interface, providing real-time communication. Refer to Figure 7.6:

Figure 7.6 – Communication between containers in a sidecar pattern

Using a single Pod with multiple containers allows the application to run as a single
unit and reduces network latency as the containers communicate on the same network
interface. The following is a declarative specification of a Pod that runs multiple containers
with the specific example as illustrated in Figure 7.6:

apiVersion: v1

kind: Pod

metadata:

 name: pod-hello-world-etl

spec:

 containers:

 - name: hello-world

 image: hello-world

 ports:

 - containerPort:8059

 - name: logs-analyzer

 image: custom-logs-analyzer:0.0.1

 ports:

 - containerPort:8058

Kubernetes objects 217

Job and CronJob
Job and CronJob are workload resources. A job represents a task to execute a
Pod. A job is completed if the task is executed successfully or, in other words,
a Pod runs successfully to completion for a specified number of times. If a job
is deleted, then Pods tied to the jobs are also deleted. If a job is suspended,
then active Pods are deleted. Multiple jobs can be run in parallel. CronJob is
a workload resource and is essentially a job that is set with a schedule through a
cron expression.

Figure 7.7 brings together the examples related to a single container Pod, my-nginx, and
the multiple container Pod, pod-hello-world-etl, and illustrates how these Pods
can be potentially connected within a node:

Figure 7.7 – Pod connectivity within a node

Pods are ephemeral in nature, and so is the storage associated with Pods. Hence, Pods
are better suited for stateless applications. However, Pods can also be used for stateful
applications, but in such cases, Pods should be attached to persistent storage or volumes.
Pods are also meant to run a single instance of the application. Multiple instances of Pods
should be used to scale horizontally. This is referred to as replication. So, Pods cannot
scale by themselves.

218 Understanding Kubernetes Essentials to Deploy Containerized Applications

Liveness, readiness, and start up probes
A liveness probe is used to check whether the application is running as
expected and if not, the container is restarted. A readiness probe is used to
check whether an application is up but also ready to accept traffic. A start up
probe indicates when a container application has started. If a start up probe is
configured, then this will disable the liveness and readiness checks until the
start up probe succeeds. For more detailed information, refer to https://
kubernetes.io/docs/tasks/configure-pod-container/
configure-liveness-readiness-startup-probes/.

Kubernetes uses specific workload resources to create and manage multiple Pods. The
most common ones are Deployment, StatefulSet, and DaemonSet, and these will be
detailed in the upcoming sub-sections.

Deployment
A Deployment is a Kubernetes object that provides declarative updates for Pods and
ReplicaSets. A Deployment is part of the Kubernetes API group called apps.

API groups
API groups are a way to extend the Kubernetes API. All supported API
requests or future requests are placed in a specific group for easy categorization
and this includes versioning. The most common group is the core group, also
known as the legacy group. The core group is specified with apiVersion as
v1. Pods fall under the core group. A Deployment falls under the apps group
and is referred to with apiVersion as apps/v1.

A Deployment provides a declarative way to manage a set of Pods that are replicas. The
deployment specification consists of a Pod template, Pod specification, and the desired
number of Pod replicas. The cluster will have controllers that constantly monitor and
work to maintain the desired state, and create, modify, or remove the replica Pods
accordingly. Deployment controllers identify Pod replicas based on the matching label
selector. The following is a declarative specification of a deployment that wraps three
replicas of nginx Pods:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-deploy

 labels:

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Kubernetes objects 219

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app:nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx

 ports:

 - containerPort: 80

The following is a set of equivalent imperative commands to create a similar deployment:

kubectl create deployment my-deploy --image=nginx

kubectl scale –replicas=3 deployments/my-deploy

Deployments support autoscaling using the concept of HorizontalPodAutoscaler (HPA),
based on metrics such as CPU utilization. The following is the command to implement
HPA. HPA will be discussed in detail as part of Chapter 8, Understanding GKE Essentials
to Deploy Containerized Applications. This focuses on GKE:

kubectl autoscale deployment my-deploy --cpu-percent=80 --min=5
--max=10

A deployment can be updated using the rolling update strategy. For example, if the image
version is updated, then a new ReplicaSet is created. A rolling update will ensure that
the deployment will move the Pods from the old ReplicaSet to the new ReplicaSet in a
phased-out manner to ensure 0% downtime. If an error occurs while performing a rolling
update, the new ReplicaSet will never reach Ready status and the old ReplicaSet will not
terminate, thereby enabling 0% downtime. Deployments and Pods are connected by
labels. Each Pod is given a label. The deployment has a label selector. So, any updates to
the deployments are rolled out to the Pods with matching labels.

220 Understanding Kubernetes Essentials to Deploy Containerized Applications

A Deployment is well-suited for a stateless application, where a request will be served in
a similar manner by either of the replica Pods. However, there is another Deployment
resource that is stateful in nature and is called StatefulSets. This will be covered as the
next topic.

StatefulSets
StatefulSets are a workload resource and a Kubernetes workload API object that is used
to manage stateful applications, specifically, when an application requires its own unique
network identifier and stable persistent storage. StatefulSets assign a unique identifier
to Pods. StatefulSets can scale a set of Pods, but each replica is unique and has its own
state. This means that each replica also has its own persistent volume. If the name of the
StatefulSet is sample, then the Pod's name will be sample-0. If there are three replicas,
then additional Pods called sample-1 and sample-2 will be created. This is completely
different from deployment, where all Pods share the same volume.

The following is a declarative specification of a StatefulSet with three replicas:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: sample

spec:

 selector:

 matchLabels:

 app: nginx

 serviceName: nginx

 replicas: 3

 updateStrategy:

 type: RollingUpdate

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: ...

Kubernetes objects 221

 ports:

 - containerPort: 80

 volumeMounts:

 - name: nginx-stateful-volume

 mountPath: ...

 volumeClaimTemplates:

 - metadata:

 name: nginx-stateful-volume

 annotations:

 ...

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

If the StatefulSet is scaled down, then the last Pod in the StatefulSet will be removed (in
other words, in reverse order). In the preceding example, if the replica count is reduced to
two from three, then the sample-2 Pod will be deleted. The StatefulSet supports rolling
updates if there is any change. An old version of the Pod for a specific replica will be
replaced when the new version of the Pod on that specific replica is back up. For example,
sample-0 will be replaced with a new version of sample-0. The next topic provides an
overview of DaemonSets.

DaemonSets
DaemonSets is a workload resource that ensures that a copy of the Pod runs on every
node or a certain subset of nodes in the cluster. Essentially, the controller for the
DaemonSet creates a Pod when a node is created and deletes the Pod when the node is
deleted. kube-proxy is a DaemonSet because a copy of it runs on each node in the
cluster as part of the node control plane. Additional examples include the following:

• Running a log collector daemon on every node or a certain subset of nodes

• Running a cluster storage daemon on every node or a certain subset of nodes

• Running a node monitoring daemon on every node or a certain subset of nodes

222 Understanding Kubernetes Essentials to Deploy Containerized Applications

To elaborate further, in the case of a log collection daemon, logs are exported from each
node using a log collector such as fluentd. This can be done by a fluentd Pod and
should be run on every node in the cluster. The following is a declarative specification of a
log collection DaemonSet:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: log-collector-daemon

 labels:

 app: daemon

spec:

 selector:

 matchLabels:

 app:log-collector

 template:

 metadata:

 labels:

 app: log-collector

 spec:

 containers:

 - name: fluentd

 image: quay.io/fluent/fluentd-kubernetes-daemonset

 ports:

 - containerPort: 9200

Like Deployments, the DaemonSet also supports rolling updates. So, if the DaemonSet
is updated, then a new Pod is created and when the new Pod is up, the current Pod will
be deleted.

The next topic discusses a Kubernetes object called Service. This is essential for
establishing communication with an application from within the cluster and from
outside the cluster.

Service
As previously mentioned, Pods are ephemeral in nature. Pods' IP addresses are not
long-lived and can keep changing. This poses a challenge if an API request needs to be
sent to the Pod's container using its IP address.

Kubernetes objects 223

Kubernetes provides a stable abstraction point for a set of Pods called a Service. Every
Service has a fixed IP address that doesn't change, and this gets registered with the
cluster's built-in DNS. A Service identifies associated Pods using label selectors.

In addition, when a Service object is created, Kubernetes creates another object called
EndPoint. The EndPoint object will maintain the list of all IPs for the Pods that match the
label selector and is constantly updated as Pods are deleted and created. The Service object
gets the current set of active Pods from the EndPoint object.

Figure 7.8 illustrates the interaction between the Service object, endpoint object, and the
associated Pods based on the matching label selector:

Figure 7.8 – Service object interaction based on a matching label selector

The following is a declarative specification that exposes a Service for a set of Pods. This
allows the Pod to be accessed using the Service, since the Service is not ephemeral in
nature and will have a fixed IP address:

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 selector:

 app: nginx

224 Understanding Kubernetes Essentials to Deploy Containerized Applications

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

The following is an equivalent imperative command that can expose Pods as a Service:

#Syntax

kubectl create <cluster-type> NAME [--tcp=port:targetPort]

kubectl create service clusterip nginx --tcp=80:80

There are four types of Service, and each Service type exposes Pods differently:

• ClusterIP

• NodePort

• LoadBalancer

• ExternalName

The preceding specification represents a Service of the ClusterIP type as that's the default
Service type. This will be introduced as the next topic.

ClusterIP
ClusterIP is the default Service type. Each Service gets an IP that can only be accessed
by other services within the cluster. This is essentially an internal IP, and hence the
application inside the Pods cannot be accessed by public traffic or by an external Service
that resides outside the cluster. The default Service type, if not specified, is ClusterIP. The
preceding declarative specification is an example of a ClusterIP Service.

NodePort
NodePort is a Service type where the Service gets an internal IP that can be accessed by
other services within the cluster. In addition, the NodePort Service gets a cluster-wide
port. This port can be accessed by a Service that resides outside the cluster only if the
request is sent to Node's IP address along with the cluster-wide port. Any traffic sent
to the cluster-wide port will be redirected to the Pods associated with the Service. The
following is a declarative specification that exposes a node port Service for a set of Pods:

apiVersion: v1

kind: Service

metadata:

Kubernetes objects 225

 name: my-service

spec:

 type: NodePort

 selector:

 app: nginx

 ports:

 - protocol: TCP

 nodePort: 30200

 port: 80

 targetPort: 8080

LoadBalancer
LoadBalancer is a Service type where the Service gets an internal IP that can be accessed
by other services within the cluster. In addition, the Service also gets an external IP
address that allows the application to receive traffic from a Service that resides outside
the cluster. This is facilitated by the public cloud load balancer attached to the Service.
The following is a declarative specification that exposes a load balancer Service for a set
of Pods:

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 type: LoadBalancer

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

226 Understanding Kubernetes Essentials to Deploy Containerized Applications

ExternalName
ExternalName is a Service type where the Service uses DNS names instead of label
selectors. So, a request from an internal client goes to the internal DNS and then gets
redirected to an external name. The following is a declarative specification for a Service
of the ExternalName type:

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 type: ExternalName

 externalName: hello.com

Hence, a request from an internal client will go to my-service.default.svc.
cluster.local, and then the request gets redirected to hello.com.

This completes an overview of the most common Service types in Kubernetes. One of
the factors to consider while using services is to map services to Pods, otherwise known
as Service resolution. Kubernetes has an add-on feature called kube-dns. kube-dns
is a DNS server that is essentially a directory mapping of IP addresses against easy-to-
remember names along with a record type:

The kube-dns server watches the API server for the creation of a new Service. When
a new server is created, the kube-dns server creates a set of DNS records. Kubernetes
is configured to use the kube-dns server's IP to resolve DNS names for Pods. Pods can
resolve their Service IP by querying the kube-dns server using the Service name, the
Pod's namespace, and the default cluster domain:

• If the Pod and Service are on the same namespace, then the Pod can resolve the
Service IP by querying the kube-dns server using the Service name directly.

• If the Pod and Service are not on the same namespace, then the Pod can resolve
the Service IP by querying the kube-dns server using the Service and the
Service namespace.

• A Pod in any other namespace can resolve the IP address of the Service by using
the fully qualified domain name, foo.bar.svc.cluster.local.

kube-dns maintains the following types of DNS record for Pods and services:

• Every Service defined in the cluster is assigned a DNS A record.

• Every named Pod in the cluster is assigned a DNS SRV record.

Scheduling and interacting with Pods 227

The following table represents kube-dns records where the hostname is foo and the
namespace is bar:

This concludes a high-level overview of specific Kubernetes objects, and this should
provide a good basis for discussing GKE in the next chapter. There are several other
objects, such as job, CronJob, volumes, and persistent volumes, but a deep dive on
those will be beyond the scope of the book.

The next topic details several concepts with respect to scheduling and interacting
with Pods.

Scheduling and interacting with Pods
A Pod is the smallest unit of deployment in a Kubernetes cluster that runs containerized
applications. The kube-scheduler master control plane component is responsible for
finding a suitable node for the Pod and includes interactions with other components of the
control plane. In addition, kube-scheduler needs to consider multiple configuration
options, such as NodeSelector, NodeAffinity, and PodAffinity, to find the right node for
the Pod. This section details the interactions that happen during a Pod creation and details
the factors that need to be considered while scheduling Pods.

Summarizing master plane interactions on Pod
creation
A Pod is a workload that needs to be deployed in a Kubernetes cluster. A Pod needs to run
on a node and will host an application. A Pod can be in various phases. The following is a
summary of valid Pod phases:

• Pending: A Pod is accepted by the Kubernetes cluster, but is waiting to be scheduled.

• Running: A Pod is tied to a node and the container in the Pod is running.

• Succeeded or Completed: All containers in a Pod have terminated successfully and
will not be restarted.

228 Understanding Kubernetes Essentials to Deploy Containerized Applications

• Failed: All containers in the Pod have terminated and at least one container exited
with a non-zero status or failure.

• Unknown: The state of the Pod cannot be obtained due to a communication error
between the node where the Pod should be running.

Right from the time a request is received to create a Pod to the time the Pod is created,
there is a series of interactions between the components of the master plane that will
create the Pod on the worker node. The sequence of interactions is listed as follows.
This reflects a scenario where a Pod is being created. The sequence of steps for other
interactions, such as list or delete, or even other workloads, such as job or deployment,
follow the same pattern:

1. kube-apiserver receives a request to create a Pod. The request can come from a
kubectl command or a direct API interaction.

2. kube-apiserver authenticates and authorizes the incoming request.

3. Upon successful validation, kube-apiserver creates a Pod object but will not
assign the newly created Pod object to any node.

4. kube-apiserver will update the information about the newly created Pod object
against the etcd database and sends a response to the original request for Pod
creation that a Pod has been created.

5. kube-scheduler continuously monitors and realizes that there is a new Pod
object but with no node assigned.

6. kube-controller identifies the right node to put the Pod and communicates
this back to kube-apiserver.

7. kube-apiserver updates the node for the Pod object against the etcd database.

8. kube-apiserver passes instructions to kubelet on the node (worker) to
physically create the Pod object.

9. kubelet creates the Pod on the node and instructs the container runtime engine
to deploy the application image.

10. kubelet updates the status back to kube-apiserver and kube-apiserver
updates the etcd database.

This summarizes the interactions between master plane components when a request
is sent to the Kubernetes cluster through kubectl or the Kubernetes client. The next
sub-section focuses on critical factors that should be considered while scheduling Pods
against the node.

Scheduling and interacting with Pods 229

Critical factors to consider while scheduling Pods
There are multiple factors that kube-scheduler considers when scheduling a Pod
against a node. One such common factor is resource requests and maximum limits. A
Pod optionally allows the specification of CPU/memory requests and sets the respective
maximum limits on a container basis. These requests and limits at container level are
summed up for a Pod and are used by kube-scheduler to determine the appropriate
node for the Pod. kube-scheduler schedules a Pod on the node where the Pod's
requests and limits are within the node's available capacity.

A Pod provides additional properties that exercise more control in forcing kube-
scheduler to schedule Pods only if certain conditions are met. A node also provides
properties that are considered during scheduling. The following are such properties:

• NodeSelector: Schedules a Pod against the node with matching label values

• NodeAffinity: Schedules a Pod against the node with matching flexible
conditions; also considers Anti-Affinity conditions to avoid scheduling a Pod
against specific node(s)

• Inter-pod affinity and Anti-Affinity: Schedules a Pod on nodes with Pods having
matching attributes; also considers Anti-Affinity conditions that avoid scheduling
Pods against specific node(s) that have Pods with specific attributes

• NodeName: Schedules a Pod against a very specific node

• Taints and Tolerations: Avoids scheduling Pods on nodes that are tainted, but can
make an exception if tolerations are defined on the Pod

The upcoming sub-sections will detail the aforementioned attributes.

Node Selector
nodeSelector is a Pod attribute that forces kube-scheduler to schedule a Pod only
against a node with a matching label and corresponding value for the label.

For example, consider a cluster where nodes in the cluster belong to different CPU
platforms. The nodes are labeled with a label selector and an appropriate value indicating
the CPU platform of the node. If there is a need to run a Pod on a node with a specific
CPU platform, then the Pod attribute, nodeSelector, can be used. kube-scheduler
will find a node that matches the nodeSelector specification on the Pod against the
matching label on the node. If no such node is found, then the Pod will not be scheduled.

230 Understanding Kubernetes Essentials to Deploy Containerized Applications

Figure 7.9 shows the use of nodeSelector in a Pod and its matching relevance to a
node specification:

Figure 7.9 – Specifying a nodeSelector on a Pod that matches a node

In the preceding example, kube-scheduler will schedule the Pod on a node where the
node label is cpuPlatform and the corresponding value is Skylake.

Node Affinity and Anti-Affinity
Node Affinity and Anti-Affinity are a set of preferences (very similar to the node
selector) where a Pod can be scheduled against a node based on matching labels. However,
the affinity and Anti-Affinity preferences are more flexible. A matching expression with a
potential range of values can be specified, unlike nodeSelector, where only an exact
value for a label match can be specified. These preferences are only considered during
scheduling and are ignored during execution. This means that once a Pod is scheduled on
a node, the Pod continues to run on the node even though the node labels have changed.

In addition, the Node Affinity and Anti-Affinity preferences can be set against two
properties that serve as a hard or soft constraint. These two properties are as follows:

• requiredDuringSchedulingIgnoredDuringExecution: This is a hard limit where a
Pod is scheduled only if the criterion is met.

• preferredDuringSchedulingIgnoredDuringExecution: This is a soft limit where
the scheduler tries to deploy the Pod on the node that matches the specified
criterion. The Pod is still deployed on a node even if a match is not found.

Scheduling and interacting with Pods 231

The following is a Pod specification involving the use of nodeAffinity. The Pod
specification indicates that the Pod should not be scheduled on nodes with a specific
CPU platform:

apiVersion: v1

kind: Pod

metadata:

 name: pod-node-anti-affinity

spec:

 containers:

 - name: my-pod

 image: nginx

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: cpuPlatform

 operator: Not In

 values:

 - Skylake

 - Broadwell

In the preceding example, kube-scheduler will not schedule the Pod on nodes where
the CPU platform is either Skylake or Broadwell.

Inter-pod affinity and Anti-Affinity
This is an extension of Node Affinity with the same fundamentals. This specification
allows the scheduling of Pods to nodes based on the labels on the Pods that are already
running on the nodes. Similarly, Anti-Affinity will ensure that a Pod is not scheduled
on a node if there are other Pods of specific labels running on a node.

The rules for Pod affinity and Anti-Affinity can be illustrated as follows:

• pod-affinity: Pod P should be scheduled on Node N only if Node N has other Pods
running with matching rule A.

• pod-anti-affinity: Pod P should not be scheduled on Node N if Node N has other
Pods running with matching rule B.

232 Understanding Kubernetes Essentials to Deploy Containerized Applications

Figure 7.10 shows a Pod specification with Pod affinity and Anti-Affinity definitions:

Figure 7.10 – Pod definition with inter-pod and anti-pod affinity

In the preceding example, kube-scheduler will schedule Pods on nodes where other
Pods that are already running on the node have matching labels that reflect app as either
webserver or elasticserver. On the other hand, kube-scheduler will not
attempt to schedule Pods on nodes where other Pods that are already running on the
nodes have matching labels that reflect app as a database. In short, this Pod specification
tries to schedule Pods on nodes that don't run database applications.

Node name
nodeName is an attribute that can be specified in a Pod definition file and is also the
simplest way to specify constraints regarding node selection. The biggest limitation
of this kind of specification is that it is an all-or-nothing proposition.

Scheduling and interacting with Pods 233

For example, if the node is available for scheduling, then the Pod can be scheduled on that
specific node. However, if the node is not available, then the Pod doesn't have a choice of
any other node. A Pod cannot be scheduled until the node can take further workloads. In
addition, nodes can be ephemeral, specifically, when the nodes are VMs. So, specifying a
node name might not be a good design to start with, and hence this method is the least
preferred. The following is a Pod specification with the nodeName attribute:

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: nginx

 image: nginx

 nodeName: node01

In the preceding example, kube-scheduler will attempt to schedule Pods on nodes
where the node name is node01.

Taints and tolerations
Node Affinity and Pod affinity are properties of a Pod for finding a set of nodes. Taint is
a property of a node that can repel one or more Pods. A node is tainted with a specific
effect, based on a defined combination of a key, operator, and optionally, a value attribute.
Possible indications that a node may be tainted are as follows:

• NoSchedule: Indicates that no more Pods can be scheduled on this node

• NoExecute: Indicates that no more Pods can run on this node and existing ones
should be terminated

• PreferNoSchedule: Indicates a soft limit that no more Pods can be scheduled on
this node

Tolerations is a feature that allows Pods to be scheduled on nodes with matching taints.
So, tolerations are a way to counter the impact of a taint.

234 Understanding Kubernetes Essentials to Deploy Containerized Applications

The following is the CLI command to taint a node:

Taint a node

kubectl taint nodes node01 sky=blue:NoSchedule

The following is a Pod specification that defines toleration against the tainted node, which
makes the Pod still eligible to be scheduled against the node:

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: nginx

 image: nginx

 tolerations:

 - key: "sky"

 value: "blue"

 operator: "Equal"

 effect: "NoSchedule"

This is a two-part example for tainting a node:

• The CLI command taints node01 by specifying not to schedule Pods with a
matching label key-value pair as sky=blue.

• However, the Pod specification defines a toleration for node01.

So, the Pod can be potentially scheduled on node01 by kube-scheduler. This
completes the deep dive into critical factors that need to be considered while scheduling
Pods on nodes.

In a Kubernetes deployment, application changes in terms of new features or bug fixes are
reflected by deploying updated container images. There are several strategies to enforce
a change in deployment or apply a new deployment. These will be discussed in the
upcoming section.

Kubernetes deployment strategies 235

Kubernetes deployment strategies
If a change is required to horizontally scale an application by increasing the number of
replicas or if a change is required to the application by updating the container image,
then a change is required to the deployment specification in Kubernetes. This will lead to
automatic updates, either resulting in deploying additional Pods to scale horizontally or
deploying a new Pod with the updated image and replace the current running Pod.

Changes to deployment can either happen by applying an updated deployment spec or
by editing an existing deployment or specifically updating the image on the deployment.
All of these can be done through the kubectl commands. However, the strategy used
to perform the deployment makes an immense difference in terms of how end users of
the application are impacted. There are four specific deployment strategies. Each of these
strategies offers a different use case. These are mentioned as follows and will be illustrated
in detail in the upcoming sub-sections:

• Recreate

• Rolling update

• Blue/Green

• Canary

The first deployment strategy that will be detailed will be the Recreate strategy.

Recreate strategy
The Recreate strategy is a basic strategy and is also the most straightforward compared to
other strategies. Essentially, the current running Pods are all destroyed or brought down
first and then the desired number of Pods are brought up against a new ReplicaSet.

The following is an example snippet that illustrates a Recreate update:

[...]

kind: deployment

spec:

 replicas: 4

 strategy:

 type: Recreate

[...]

236 Understanding Kubernetes Essentials to Deploy Containerized Applications

Based on the preceding example snippet, Kubernetes will first bring down all four running
Pods on the current ReplicaSet. Following that, Kubernetes will create a new ReplicaSet
and will start four new Pods. Refer to Figure 7.11:

Figure 7.11 – Illustrating the 'Recreate' strategy in Kubernetes deployment

The Recreate strategy results in downtime as the application will remain unavailable for
a brief period. This will result in disruptions and is therefore not a suggested strategy for
applications that have a live user base. However, this strategy is used in scenarios where
old and new versions of the application should or can never serve user traffic at the exact
same time.

This completes the Recreate strategy. The clear downside is unavoidable downtime. This
downside can be handled by another deployment strategy, called the rolling update
strategy, and will be covered in the next sub-section.

Rolling update strategy
The Rolling update strategy enables the incremental deployment of applications with
zero downtime. The current running Pod instances are gradually updated with a new Pod
instance until all of them are replaced. The application stays available at all times. The
rolling update strategy is the default deployment strategy in Kubernetes. However, this
strategy doesn't exercise control in terms of specifying or having control over the amount
of traffic directed to the new Pod instances versus old Pod instances.

The deployment also gets updated over time, and the process is time-consuming and
gradual. There are specific fields that control the rolling update strategy, and these are
detailed as follows, starting with Max unavailable.

Kubernetes deployment strategies 237

Max unavailable
.spec.strategy.rollingUpdate.maxUnavailable is an optional field and
refers to the maximum number of Pods that can be unavailable during the deployment
process. This can be specified as an absolute number, or as a percentage of the desired
Pods. If the field is not explicitly specified, then the default value is 25%. In addition, the
default value is always considered if the value is explicitly specified as 0.

Let's consider an example. If the desired set of Pods is 5, and maxUnavailable is 2, this
means that at any point in time, the total number of minimum Pods running across the
old and new versions should be 3.

The next sub-section will cover Max surge. This indicates the maximum number of Pods
that can exist at any time across current and new replica sets.

Max surge
.spec.strategy.rollingUpdate.maxSurge is an optional field and refers to the
maximum number of Pods that can be created in addition to the desired number of Pods
during the deployment process. This can be specified as an absolute number or a percentage
of the desired Pods. If the field is not explicitly specified, then the default value is 25%. In
addition, the default value is always considered if the value is explicitly specified as 0.

Let's consider an example. If the desired set of Pods is 5 and the maximum surge is 3,
this means that the deployment process can get started by rolling out three new Pods and
ensure that the total number of running Pods doesn't exceed 8 (desired Pods + maximum
surge). If the maximum surge is specified in terms of a percentage and the value is set
to 20%, then the total number of running Pods across old and new deployment will not
exceed 6 (desired Pods + 10% of desired Pods).

The next sub-section will cover Min Ready. This indicates the minimum time that the
container should run for, indicating the Pod to be ready.

Min ready
.spec.minReadySeconds is an optional field and refers to the minimum number
of seconds that a newly created Pod should be in the ready state where containers are
running without any failures or crashes. The default value, if not specified, is 0 and
indicates that the Pod is ready as soon as it is created. However, if a value of 10 seconds is
specified, for example, then the Pod needs to be in the ready state for 10 seconds without
any containers failing in order to consider the Pod as available.

The next sub-section will cover Progress Deadline; the minimum wait time before
concluding that a deployment is not progressing.

238 Understanding Kubernetes Essentials to Deploy Containerized Applications

Progress deadline
.spec.progressDeadlineSeconds is an optional field and refers to the waiting
period before a deployment reports that it has failed to progress. The default value, if not
explicitly specified, is 600 (in seconds). If explicitly specified, then this value needs to be
greater than .spec.minReadySeconds.

During a rolling update strategy, a new ReplicaSet is always created. New Pods are created
in the new ReplicaSet and currently running Pods are gradually removed from the old
ReplicaSet. The following is an example snippet that illustrates a rolling update strategy and
includes the key fields that impact the way the rolling update will be performed internally:

[...]

kind: deployment

spec:

 replicas: 8

 minReadySeconds: 5

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 4

 maxUnavailable: 50%

[...]

Based on the preceding example snippet, the following are the specific values that will be
used to illustrate the example:

• Desired number of Pods = 8 Pods.

• Maximum surge = 4. At any point, the total number of running Pods across old and
new running Pods cannot exceed 12.

• Maximum unavailable = 50% of desired = 4. At any point, there should be a
minimum of 4 running Pods across old and new replica sets.

Kubernetes will create a new ReplicaSet and will launch 4 new Pods. Kubernetes will
then wait for 5 seconds once the Pods have been created to consider whether the Pods are
available. So, at this moment, the total number of Pods across old and new replica sets is
12, which is the maximum value allowed. This is illustrated in Figure 7.12:

Kubernetes deployment strategies 239

Figure 7.12 – Rolling update; creating Pods up to the maximum surge in a new ReplicaSet

Now, given that the minimum number of running Pods is four in this example, across the
old and new replica sets, Kubernetes can potentially kill all eight of the old replica sets
since it will still leave four in the new ReplicaSet. So, the core values are still not violated.
This is illustrated in Figure 7.13:

Figure 7.13 – Rolling update; removing Pods up to the maximum unavailable in the current ReplicaSet

Now, Kubernetes will launch four more new Pods in the new ReplicaSet and will reach the
desired number of Pods as well. This is illustrated in Figure 7.14. This completes the rolling
update, where the specified limits were met throughout the process:

Figure 7.14 – Rolling update; creating new Pods up to the desired number in a new ReplicaSet

The rolling update strategy ensures zero downtime, but the downside is that there is no
control in terms of the time taken for the deployment to complete, or no control in terms of
the traffic going across old and new versions. The next strategy solves this specific downside.

240 Understanding Kubernetes Essentials to Deploy Containerized Applications

Blue/Green strategy
In the case of the Blue/Green strategy, there will be two versions of the deployment
running. That means that there are two replica sets, one ReplicaSet per deployment.
However, each ReplicaSet will have a different set of labels that differentiate the Pods.
Traffic to the Pods is sent through a Service. The Service will initially have labels that send
traffic to the first deployment or ReplicaSet. The second deployment will also be running,
but traffic will not be served. When the Service is patched, and the labels are updated on
the Service, matching the labels of Pods on the second deployment, then traffic will be
diverted to the second deployment without any downtime.

The following is an example of two running deployments in the Kubernetes cluster. In
this example, the name of the deployment is demo-app. Both deployments are running
the same application, but different versions of the application image. The difference in the
deployment is also reflected by the Pod label selector, where the current version of the
deployment has a label selector with the version as blue, whereas the new deployment has
a label selector with the version as green.

The example is illustrated in Figure 7.15. The Service initially points to the deployment
where the version is blue. This is because the label selector on the Service has the version
as blue and matches the label selectors on the Pods in the current deployment. Hence, the
incoming traffic to the Service is only handled by Pods in the blue deployment. The Pods
in the green deployment are running, but they are not serving any incoming traffic:

Figure 7.15 – Blue/Green deployment; traffic served only by the blue version

Kubernetes deployment strategies 241

Figure 7.16 shows a snippet that reflects an update to the Service spec, where the Service
label selector is updated to reflect the new version as green from blue:

Figure 7.16 – Updating the Service specification to switch to a new deployment version

Figure 7.17 reflects how the traffic is served after the Service label selector is updated. In
this case, incoming traffic will now be served by the Pods in the green deployment, as the
Pod label selectors match those of the Service. The Pods in the blue deployment will no
longer serve incoming traffic, although the Pods can continue to run:

Figure 7.17 – Blue/Green deployment; traffic served only by the green version

Rolling out the deployment is as simple as updating the labels on the Service to point back
to Pods matching the blue deployment.

242 Understanding Kubernetes Essentials to Deploy Containerized Applications

Blue/Green deployment is alternatively known as red/black deployment, or A/B
deployment. Although Blue/Green deployment provides control over the specific
deployment against which traffic can be sent or rolled back, the downside is that double
the number of applications are always running, thereby increasing infrastructure costs
significantly. Also, it's an all-or-nothing scenario where a bug or issue in the application
related to the updated deployment impacts all users of the application. This downside is
solved by using the next deployment strategy, canary deployment.

Canary deployment
Canary deployment provides more control in terms of how much traffic can be sent to
the new deployment. This ensures that a change in the application only impacts a subset
of the users. If the change is not as desired, then it also impacts only a small percentage
of total active users, thereby controlling customers' perceptions. Canary deployment is
increasingly used in a continuous deployment process as it's a slow change where new
features can be constantly added to active users, but in a controlled fashion.

Figure 7.18 illustrates a canary deployment where only 10% of the traffic is sent to the
new deployment (version=green), whereas the remaining 90% is going to the current
deployment (version=blue):

Figure 7.18 – Canary deployment; traffic sent to both versions based on the weighted percentage

Summary 243

Canary deployment is a true and reliable reflection of the continuous deployment
model since a change to the application can flow through the CI/CD pipeline and can be
deployed to production. In addition, deployment can also be targeted at just a specific
set of users or a user base. This ensures that the new features are tested by live users (like
beta users), but also ensures that a break in the new feature doesn't negatively impact the
entire user base. Canary deployment is popularly implemented in the real world by using
a resource such as Istio. Istio can split and route traffic between two versions based on
predefined weights. As the new version becomes more stable, the traffic can gradually be
shifted to the new deployment by changing the weighted percentage.

This completes a detailed illustration of the possible deployment strategies in Kubernetes.
This also concludes a chapter that primarily focused on understanding the essential
Kubernetes constructs for containerized deployments.

Summary
In this chapter, we discussed Kubernetes workloads in detail and considered Kubernetes
as an option for deploying containerized applications. We learned about Kubernetes
cluster anatomy, with a specific focus on understanding the key components that form
the master control plane and the node control plane. In addition, we focused on learning
key Kubernetes objects that are critical to deploying applications in the cluster, along
with possible deployment strategies. Finally, we deep dived into how the master plane
components interact while performing an action against an object such as Pod and
discussed various factors involved in scheduling Pods onto Kubernetes nodes.

The next chapter focuses on the managed version of Kubernetes, called GKE, or GKE.
The fundamental constructs of Kubernetes studied in this chapter, such as cluster
anatomy or Kubernetes objects, are essentially the same for GKE. However, GKE makes
cluster creation a lot easier and, in addition, GKE provides additional features for cluster
management. Topics specifc to GKE, such as node pools, cluster configuration choices
and autoscaling will also be detailed.

244 Understanding Kubernetes Essentials to Deploy Containerized Applications

Points to remember
The following are some important points to remember:

• A node in a Kubernetes cluster is categorized as a master or worker node. The
master node runs the control plane components.

• The key components of the Kubernetes control plane are kube-apiserver,
etcd, kube-scheduler, kube-controller-manager, and cloud-
controller-manager.

• It is recommended to run the control plane components on the same node and
avoid any user-specific containers on that node.

• A highly available cluster can have multiple control planes.

• kube-apiserver handles any queries or changes to the cluster and can be
horizontally scaled.

• etcd is a distributed key-value store used by Kubernetes to store cluster
configuration data.

• kube-scheduler chooses a suitable node where an application can be deployed.

• kube-controller-manager runs several controller functions to ensure that the
current state of the cluster matches the desired state.

• cloud-controller-manager includes controller functions that allow
Kubernetes to integrate with services from a cloud provider.

• Key components of the worker node include kubelet (a Kubernetes agent that
listens to instructions from kube-apiserver and runs containers as per the Pod
specification), kube-proxy (a network proxy to enable communication between
services), and container runtime (software responsible for running containers).

• Deployment, ReplicaSet, StatefulSet, DaemonSet, Jobs, and CronJobs are
categorized as workload resources, and each run one or more Pods.

• A Pod is the smallest deployable unit in a Kubernetes cluster and can contain one or
more containers that share filesystem, namespace, and network resources.

• Deployment provides a declarative way to manage a set of Pods that are replicas.

• StatefulSets manage stateful applications and can scale a set of Pods, but each replica
is unique and has its own state.

• DaemonSets ensure that a copy of the Pod runs on every node or a certain subset of
nodes in the cluster.

Further reading 245

• The EndPoint object will maintain a list of all IPs for the Pods that match the label
selector and is constantly updated as Pods are deleted and created.

• ExternalName is a Service type where the Service uses DNS names instead of
label selectors.

• Critical factors to consider while scheduling Pods are NodeSelector, NodeAffinity,
inter-pod affinity and Anti-Affinity, taints and tolerations, and NodeName.

• Possible Kubernetes deployment strategies are Recreate, Rolling update, Blue/Green,
and Canary.

Further reading
For more information on GCP's approach to DevOps, read the following article:

• Kubernetes: https://kubernetes.io/docs/home/

Practice test
Answer the following questions:

1. A user changes the image of a container running in a Pod against a deployment in
a Kubernetes cluster. A user updates the deployment specification. Select the option
that describes the accurate behavior:

a) The container image of the Pod tied to the deployment will get instantly updated
and the running Pods will use the new container image.

b) A new ReplicaSet will be created with the new image running inside a new Pod
and will run in parallel with the older ReplicaSet with the older image.

c) The current running Pod will stop instantly, and a new Pod will be created with
the new image. There will be some downtime.

d) A new ReplicaSet will be created with the new image running inside a new Pod
and will gradually replace Pods from the old ReplicaSet.

2. Select the smallest unit of deployment in Kubernetes:

a) Deployment

b) Container

c) Pod

d) ReplicaSet

https://kubernetes.io/docs/home/

246 Understanding Kubernetes Essentials to Deploy Containerized Applications

3. Select the object and the basis on which a Service object directs traffic:

a) The Service object sends traffic to Deployments based on metadata.

b) The Service object sends traffic to Pods based on label selectors.

c) The Service object sends traffic to containers based on label selectors.

d) The Service object sends traffic to Pods based on using the same name for the
Pod and Service.

4. A Pod is in a ready state, but performing some actions internally when started, and
is thereby unable to serve incoming traffic. Traffic from a Service is failing. Select
the option that could be a potential solution:

a) Configure a start up probe.

b) Configure a liveness probe.

c) Configure a readiness probe.

d) None of the above.

5. There is a need to deploy multiple applications in a GKE cluster that could scale
independently based on demand. Some of these applications are memory-intensive,
some are I/O-intensive, and some are CPU-intensive. Select the option that
represents the most appropriate cluster design:

a) Select the majority category that applications fall under and create a cluster with
either a CPU-intensive machine type, or memory-intensive or I/O-intensive.

b) Create a cluster where the nodes have the maximum possible CPU and memory.

c) Create a cluster with multiple node pools. Each node pool can be used to run a
specific type of application with specific CPU, RAM, or I/O requirements.

d) (b) and (c).

6. Which specific deployment option allows the testing of a new version of the
application in production with a small percentage of actual traffic?

a) Percentage deployment

b) Rolling update

c) Canary deployment

d) Blue/Green deployment

Practice test 247

7. Select the appropriate Service type where a Service gets an internal IP address:

a) ClusterIP

b) NodePort

c) LoadBalancer

d) All of the above

8. Which of the following deployment options enables running the last successful
deployment on standby so that it could be used if the latest deployment has an
issue? (Select all applicable options)

a) Rolling update

b) A/B deployment

c) Canary deployment

d) Red/black deployment

9. Which of the following controllers allows multiple development teams to
use the same cluster, but with specific controls on the consumption of CPU
and memory?

a) Authorization controller

b) kube-controller-manager

c) ResourceQuota admission controller

d) cloud-controller-manager

10. What is the function of a DaemonSet?

a) It runs a specific Pod on every node in the cluster.

b) It runs multiple copies of the specific Pod on every node in the cluster.

c) It runs a specific Pod on every node in the cluster or a subset of selected nodes
in the cluster.

d) It runs multiple copies of the Pod on every node in the cluster or a subset of
selected nodes in the cluster.

248 Understanding Kubernetes Essentials to Deploy Containerized Applications

11. There is a specific requirement where Container C1 should be terminated if the
memory or CPU currently utilized is three times more than the specified request
limits. Select all possible options that match the specified requirements and should
be added to the Pod spec:

a) Requests: CPU=1000m, Memory=500Mi

 Limits: CPU=3000m, Memory=1250Mi

b) Limits: CPU=3000m, Memory=1500Mi

 Requests: CPU=1000m, Memory=500Mi

c) Requests: CPU=750m, Memory=1000Mi

 Limits: CPU=2250m, Memory=3000Mi

d) Limits: CPU=1200m, Memory=500Mi

 Requests: CPU=3600m, Memory=1500Mi

12. A StatefulSet called log-collector consists of three replicas. Assume
the Pods are labeled as log-collector-0, log-collector-1, and
log-collector-2. The replica count is now scaled down to two replicas.
Which of the following Pods will be deleted?

a) The first Pod that was created in sequence will be deleted (log-collector-0).

b) A random Pod will be deleted.

c) The last Pod that was created will be deleted (log-collector-2).

d) It's not possible to scale down a StatefulSet.

13. Select the option that depicts the reason for a CrashLoopBackOff error:

a) Containers are terminated when an update is made to the Pod.

b) A container in a Pod failed to start successfully following repeated attempts.

c) Containers are terminated when an update is made to the deployment.

d) None of the above.

14. Select the option that depicts the state where all containers in a Pod have terminated
successfully and will not be restarted:

a) Unknown

b) Pending

c) Completed

d) Failed

Answers 249

15. Select the appropriate Service type where a Service gets a cluster-wide port:

a) ClusterIP

b) NodePort

c) LoadBalancer

d) All of the above

Answers
1. (d) – A new ReplicaSet will be created with the new image running inside a new

Pod and will gradually replace Pods from the old ReplicaSet.

2. (c) – Pod.

3. (b) – The Service object sends traffic to Pods based on label selectors.

4. (c) – Configure a readiness probe.

5. (c) – Create a cluster with multiple node pools.

6. (c) – Canary deployment.

7. (d) – All of the above.

8. (b) and (d) – A/B and Red/Black is the same as Blue/Green.

9. (b) – ResourceQuota is an example of an admission controller where a namespace
can be restricted to only use up to a certain capacity of memory and CPU. Each
development team can work exclusively in its own namespace.

10. (c) – It runs a specific Pod on every node in the cluster or a subset of selected nodes
in the cluster.

11. (b) and (c).

12. (c) – The last Pod that was created will be deleted (log-collector-2).

13. (b) – A container in a Pod failed to start successfully following repeated attempts.

14. (c) – Completed.

15. (b) – NodePort.

8
Understanding GKE

Essentials to Deploy
Containerized

Applications
Kubernetes or K8s is an open source container orchestration system for automating the
application deployment, scaling, and management of a cluster running containerized
applications. The previous chapter introduced K8s fundamentals, including cluster
anatomy, master plane components, Kubernetes objects (such as Pods and Services),
workloads such as Deployments, StatefulSets, DaemonSets, and so on, and deep-dived
into deployment strategies. However, setting up an open source Kubernetes cluster
involves a lot of work at the infrastructure level and will also take a lot of time to set up.
This also includes post-maintenance activities such as updating, upgrading, or repairing
the cluster. GCP provides a compute offering that provides a managed Kubernetes or K8s
environment called Google Kubernetes Engine (GKE).

252 Understanding GKE Essentials to Deploy Containerized Applications

The chapter introduces Google Kubernetes Engine as the managed Kubernetes option in
GCP and uses the concepts introduced in Chapter 7, Understanding Kubernetes Essentials to
Deploy Containerized Applications, to create a managed GKE cluster, deploy a containerized
application into the cluster, and expose the application to be accessible from external
clients. The chapter later details key GKE features, including the following topics:

• Google Kubernetes Engine (GKE) – introduction

• GKE – core features

• GKE Autopilot – hands-on lab

Technical requirements
There are four main technical requirements:

• A valid Google Cloud Platform (GCP) account to go hands-on with GCP services:
https://cloud.google.com/free

• Install Google Cloud SDK: https://cloud.google.com/sdk/
docs/quickstart

• Install Git: https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

• Install Docker: https://docs.docker.com/get-docker/

Google Kubernetes Engine (GKE) – introduction
GKE is managed K8s and abstracts away the need to manage the master plane
components from a user's standpoint. Creating a GKE cluster is much easier than creating
a K8s cluster. This is because GKE cluster creation removes the need to manually create
nodes, configure nodes and certificates, and establish network communication between
the nodes. GKE also offers options to autoscale and manage auto-upgrades of the cluster's
node software.

The following are the key features of a GKE cluster. These features differentiate GKE from
open source Kubernetes or K8s:

• Fully managed and abstracts away the need for a user to provide underlying
resources.

• Uses a container-optimized OS, an OS that is maintained by Google and is built to
scale quickly with minimal resource requirements.

https://cloud.google.com/free
https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/get-docker/

Google Kubernetes Engine (GKE) – introduction 253

• Supports auto-upgrade and provides options to either get the latest available
features or a more stable version without manual intervention.

• Provides the ability to auto-repair nodes by continuously monitoring the status of
the nodes. If unhealthy, the nodes are gracefully drained and recreated.

• Automatically scales the cluster by adding more nodes as needed.

In addition to the preceding list, here are some additional key features that are available in
K8s but need to be added and explicitly maintained as add-ons. These come as standard
with GKE, thus making GKE a more viable and preferred option when compared to K8s:

• Load balancer – GKE provides a HTTP(S) load balancer.

• DNS – GKE implements service discovery and provides a managed DNS.

• Logging, monitoring, and dashboard – GKE provides these features built in due to
its integration with Google Cloud operations.

Until recently, GKE offered only one mode of operation called Standard (also referred
to as default). The Standard mode allows users to select the configurations needed to run
workloads such as the node's machine type. This mode also allows you to select security
configuration features, provides the ability to group nodes that run similar workloads,
provides options to configure networking, and so on. Essentially, creating a cluster
through GKE Standard mode is much easier than in open source K8s, but there is still
a learning curve.

GKE recently introduced a new mode of operation called Autopilot. Autopilot has many
of the configurations pre-selected and essentially creates a production-grade cluster that
is hardened from a security standpoint. There are a few options to configure but, most
importantly, the nodes are provisioned only when workloads are deployed. Autopilot
mode will be discussed in detail later in this chapter through a hands-on lab.

Important note
The current chapter focuses on Standard mode unless explicitly specified. This
will help you to understand the available options while creating a GKE cluster
and provides insights into GKE features. Later in this chapter, the Autopilot
mode will be elaborated on, calling out the key differences between the
Standard and Autopilot modes, along with a hands-on lab.

254 Understanding GKE Essentials to Deploy Containerized Applications

GKE provides seamless integration with multiple service offerings from GCP. GKE
provides options to automate deployment by building code stored in a source code
repository using Cloud Build, which results in private container images that could be stored
in Google's Container Registry. In addition, access to the cluster and the ability to configure
GKE cluster options can be controlled via Google's Identity and Access Management
(IAM). GKE integrates with GCP's network offerings as a GKE cluster is created as part of
Google's Virtual Private Cloud or VPC. GCP provides insights into a GKE cluster and its
resources as GKE integrates with Google's Cloud operations, a suite of tools from Google
aimed at providing integrated services related to monitoring and logging.

We will start by creating a GKE cluster through a step-by-step process. This will provide
an insight into the possible configuration options. Once the cluster is created, the user
will be able to deploy an application through the concept of a Deployment and expose
the application through the concept of a Service. The application runs inside a container
wrapped by a Pod. The Deployment specification will manage the Pod. The Pod is then
exposed using the concept of a Service. The concepts of Pods, Deployments, and services
are K8s fundamentals that were discussed in Chapter 7, Understanding Kubernetes
Essentials to Deploy Containerized Applications, and these concepts will be put into action
on an actual GKE cluster.

Creating a GKE cluster
There are multiple ways to create a GKE cluster – the Cloud Console, CLI, or REST.
To create a cluster, the user or the service account should have one of the following
pre-defined roles: Kubernetes Engine Admin or Kubernetes Engine Cluster Admin.

The following is a step-by-step process to create a GKE cluster from the Google Cloud
Console. The mode of operation will be Standard in this specific example:

1. Navigate to the GCP Console and select the compute service – Kubernetes Engine.

2. Select the option to create a cluster and choose the Standard mode.

3. Enter the name for the cluster as my-first-cluster.

Google Kubernetes Engine (GKE) – introduction 255

4. Leave the default selections for the rest of the options. Refer to Figure 8.1:

Figure 8.1 – Creating a GKE Cluster from the GCP Console

5. Select the option to CREATE the cluster. This will initiate the cluster
creation process.

256 Understanding GKE Essentials to Deploy Containerized Applications

6. The newly created cluster will be displayed on the cluster home page. Refer to
Figure 8.2:

Figure 8.2 – The GKE cluster list page displays the newly created cluster

The newly created cluster used the default options. Nothing really was changed during
the cluster creation except for the cluster name. The following are some important points
to know when a GKE cluster is created with default options. Each of the default options
mentioned in the following list can be explicitly changed during cluster creation:

• The default Location type of the cluster is Zonal. Location type refers to the cluster
based on availability requirements. The options are Zonal and Regional.

• The default Control plane zone is us-central1-c. This indicates the zone where
the control plane components are created.

• The default Node Location is us-central1-c. This indicates where the nodes are
created. Multiple locations within a region can be selected to form a cluster where
the location type is a multi-zonal cluster.

• The default Control plane version is Release channel. Control plane version
provides options to signify the cluster version. The cluster version is indicative of
the preferred feature set in terms of stability.

• The default size of the cluster is 3, indicating the number of worker nodes. The
cluster, by default, only has 1 node pool. It's important to note that the cluster size
doesn't include the master node count. Customers only pay for the worker nodes.
The master node and the associated master plane components are entirely managed
by GKE.

• The default node pool is named default-pool. A node pool is a collection
of VMs.

Google Kubernetes Engine (GKE) – introduction 257

• The default node pool consists of 3 nodes and the machine type for the node is
e2-medium (2 vCPU, 4 GB memory).

• The default Maintenance Window is anytime. This implies that GKE maintenance
can run at any time on the cluster. This is not the preferred option when running
production workloads.

• The default cluster type based on networking is Public cluster and the default VPC
network is default. This indicates how clients can reach the control plane and how
applications in the cluster communicate with each other and with the control plane.

• Advanced networking options such as VPC-native traffic routing and HTTP
Load Balancing are enabled by default. These options are discussed in detail in
the sub-section Networking in GKE, later in this chapter

• Maximum pods per node defaults to 110.

• The security feature Shielded GKE Node is enabled. This feature provides strong
cryptographic identity for nodes joining a cluster and is discussed in detail as part
of Chapter 9, Securing the Cluster Using GKE Security Constructs.

• Cloud operations for GKE are enabled and are set to System, workload logging and
monitoring. This feature aggregates logs, events, and metrics for both infrastructure
and application-level workloads.

A cluster can also be created from the Command-Line Interface (CLI). The following
is the CLI command to create a cluster with default options. The default options used in
the CLI are the same as the default options used while creating a cluster from the console
as described previously. One significant difference, however, is that it is mandatory to
explicitly specify a zone while executing through the CLI. However, the zone is auto-filled
in the UI unless modified:

Create a GKE cluster with default options

gcloud container clusters create my-first-cli-cluster --zone
us-central1-c

This CLI command can be run from the terminal window of your local machine, which
has Google Cloud SDK installed and configured. Alternatively, the CLI command can also
be executed using Google Cloud Shell, activated through the Google Cloud Console.

Given that a GKE cluster is created, the next step is to deploy an application onto the GKE
cluster and expose the application to an external client. This is discussed as the next topic.

258 Understanding GKE Essentials to Deploy Containerized Applications

GKE cluster – deploying and exposing an application
In Chapter 6, Building code using Cloud Build, and Pushing to Container Registry, we
created a container image, and the container image was deployed using Cloud Run. In
this chapter and in this sub-section, we will reuse this image and deploy it to the newly
created GKE cluster by creating appropriate workloads. Once the application is deployed,
the application will be exposed via a Service so that the application can be reached via an
external client such as a web browser.

Important note
For continuity from an example standpoint, we will be using the container
image created in Chapter 6, Building code using Cloud Build, and Pushing to
Container Registry – gcr.io/gcp-devops-2021/cloud-build-
trigger. It's recommended to use an appropriate container image of your
choice that you have access to. For example, if you followed the step-by-step
instructions in Chapter 6, Building code using Cloud Build, and Pushing to
Container Registry, and ended up creating a container image in your project,
you can reuse the same image in this chapter.

We will deploy the application and expose the application in two different ways:

• GKE Console

• The CLI approach via Cloud Shell

It's important to note that a cluster is typically deployed in most cases through the
command line. However, we will first explore the GKE Console approach as this will give
us insights into the available configuration options. This is covered as the next topic.

GKE Console
The first step is to deploy the application to the GKE cluster through the GKE Console.

Deploying an application to the GKE cluster
The following is the step-by-step process to deploy an application through the
GKE Console:

1. Navigate to the Clusters page in the Kubernetes Engine section of the
GCP Console.

2. Select the cluster that was previously created – my-first-cluster.

Google Kubernetes Engine (GKE) – introduction 259

3. On the left-hand pane, select the section Workloads. From a GKE perspective,
workloads refer to Deployments, StatefulSets, DaemonSets, Jobs, and CronJobs.
There are no workloads at this moment and the current state will be as shown in
Figure 8.3:

Figure 8.3 – The Workloads section of a newly created cluster

4. Create a workload by selecting the DEPLOY option. This action allows you to create
a Deployment object in a two-step process.

5. The first step to create a Deployment is to define the containers required for
the Deployment. Select the container image created in Chapter 6, Building code
using Cloud Build, and Pushing to Container Registry. For this example, select the
container image gcr.io/gcp-devops-2021/cloud-build-trigger.
Refer to Figure 8.4. Optionally, add environment variables for the container and
click on Done:

Figure 8.4 – Selecting container image while defining a container for Deployment

260 Understanding GKE Essentials to Deploy Containerized Applications

6. Optionally, multiple containers can be added to the Pod by using the ADD
CONTAINER option. Refer to Figure 8.5:

Figure 8.5 – The option to add multiple containers to a Deployment

7. The second step in creating a Deployment is to configure the Deployment. This
includes specifying the application name, namespace, labels, and the cluster to
which the application should be deployed. For this specific example, set Application
name as hello-world, Namespace as default, Labels with Key as app and
Value as hello-world, and select the cluster called my-first-cluster. Refer
to Figure 8.6:

Google Kubernetes Engine (GKE) – introduction 261

Figure 8.6 – Configuring a Deployment by specifying the required attributes

262 Understanding GKE Essentials to Deploy Containerized Applications

8. Before selecting the DEPLOY option, the configuration YAML can be viewed by
selecting the VIEW YAML option as shown in Figure 8.6. By default, the number of
replicas is defined as 3. This can optionally be changed to the desired replica count.

9. Initiate the deployment creation process by selecting the DEPLOY option.

10. The newly created Deployment – hello-world – will be displayed as follows. This
Deployment created three replicas with the same image. Refer to Figure 8.7:

Figure 8.7 – Details of the newly created Deployment

It is important to note that the newly created Deployment – hello-world – cannot be
accessed from external clients (such as a web browser or through a ping command) as
the Deployment is not exposed as a Service. However, the application can still be tested by
using the port-forward option. The CLI commands required to execute this option
are shown in the following snippet. These commands can be executed through Google
Cloud Shell:

Connect to the cluster – 'my-first-cluster'

gcloud container clusters get-credentials my-first-cluster
--zone us-central1-c --project gcp-devops-2021

Google Kubernetes Engine (GKE) – introduction 263

Find the list of pods for the deployment hello-world

kubectl get pods

For a specific pod, create a port-forward option to access
the application running inside the pod

kubectl port-forward hello-world-6755d97c-dlq7m 10080:8080

Once the preceding port-forward command is executed, traffic coming on
127.0.0.1:10080 will be forwarded to port 8080. Port 8080 is the container port
related to the hello-world Deployment. Refer to Figure 8.8:

Figure 8.8 – Forwarding traffic to a container inside a Pod

To test whether traffic is getting forwarded, open another Cloud Shell window and run
the curl command as shown. This will do a REST call invocation against the application
running inside the container of a Pod. Refer to Figure 8.9:

Figure 8.9 – Result of accessing the application in a Pod through port-forwarding

Alternatively, you can also use the web preview option on port 10080 in Cloud Shell
to view the application. Given that the application is now deployed and is working as
expected, the next step is to expose the application as a Service.

264 Understanding GKE Essentials to Deploy Containerized Applications

Exposing the application as a Service
The following is a step-by-step process to expose the application as a Service through the
GCP Console:

1. Navigate to the Clusters page in the Kubernetes Engine section of the GCP Console.

2. Select the cluster that was previously created – my-first-cluster.

3. Select the Deployment that was previously created – hello-world.

4. Under the Actions menu on the deployment details page, select the EXPOSE
option. This will open a pop-up window where Port, Target port, Protocol,
and Service type need to be selected.

5. Enter Port as 80 (this represents the port where the Service will be listening
for incoming traffic), Target port as 8080 (this is the port the container will be
listening on), Protocol as TCP, and Service type as Load balancer. Select
the EXPOSE option. Refer to Figure 8.10:

Figure 8.10 – Specifying port mapping to expose a Pod as a Service of type Load balancer

Google Kubernetes Engine (GKE) – introduction 265

6. Once the Pod is exposed, a Service will be created as shown in the following
screenshot. Given the Service is of type LoadBalancer, the Service will have an
external endpoint. Refer to Figure 8.11:

Figure 8.11 – The LoadBalancer Service created by exposing the Pod

7. Select the external endpoint. This will open the application in the browser as
shown in the following screenshot. This essentially is the output of deploying the
application to the GKE cluster. The output is the same as the output in Chapter 6,
Building code using Cloud Build, and Pushing to Container Registry, when the same
container image was deployed to Cloud Run. Refer to Figure 8.12:

Figure 8.12 – Output of accessing the application through the load balancer Service

266 Understanding GKE Essentials to Deploy Containerized Applications

This completes the topic on deploying an application to the GKE cluster and exposing the
application via a load balancer Service through the GKE Console. The next sub-section
essentially works on a similar example but provides insights on how the same thing can be
done through Cloud Shell using the CLI approach.

The CLI approach via Cloud Shell
In this sub-section, we will deploy an application and expose the application as a load
balancer Service through the CLI using Cloud Shell. We will use the same cluster as
was previously created – my-first-cluster. It is also recommended to use the
container image created as part of the exercise in Chapter 6, Building code using Cloud
Build, and Pushing to Container Registry. For this example, the container image gcr.io/
gcp-devops-2021/cloud-build-trigger will be used.

Deploying an application to the GKE cluster
The following is the step-by-step process to deploy an application via Cloud Shell:

1. Open Cloud Shell and connect to the cluster using the following CLI command:

Connect to the cluster

gcloud container clusters get-credentials my-first-
cluster --zone us-central1-c --project gcp-devops-2021

2. Create a new file called hello-world-cli.yaml with contents as follows. This
file essentially creates a Deployment that has the container and respective image to
be deployed. The replica count is also specified and in this case, is 1:

apiVersion: "apps/v1"

kind: "Deployment"

metadata:

 name: "hello-world-cli"

 namespace: "default"

 labels:

 app: "hello-world-cli"

spec:

 replicas: 1

 selector:

 matchLabels:

 app: "hello-world-cli"

 template:

Google Kubernetes Engine (GKE) – introduction 267

 metadata:

 labels:

 app: "hello-world-cli"

 spec:

 containers:

 - name: "cloud-build-trigger-sha256-1"

 image: "gcr.io/gcp-devops-2021/cloud-build-
trigger:latest"

3. Create the Deployment by running the following command:

kubectl apply -f hello-world-cli.yaml

Once the Deployment is created, the Deployment and its respective Pod can be queried as
follows through the CLI. Please note that this Deployment will create only one Pod. Refer
to Figure 8.13:

Figure 8.13 – Querying the Deployment through the CLI

The deployed application cannot be accessed through an external client. However, the
port-forward approach explained in the previous sub-section can be exactly applied in
this context as well. Given that the application is now deployed, the next step is to expose
the application as a Service.

Exposing the application as a Service
The following is the step-by-step process to expose the application as a Service through
Cloud Shell:

1. Create a new file called hello-world-cli-service.yaml with a definition
as follows. This will create a load balancer Service that will expose a Pod with
matching label selectors:

apiVersion: v1

kind: Service

metadata:

268 Understanding GKE Essentials to Deploy Containerized Applications

 name: hello-world-cli-service

spec:

 type: LoadBalancer

 selector:

 app: hello-world-cli

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

2. Create the load balancer Service by running the following command:

kubectl apply -f hello-world-cli-service.yaml

3. Once the Service is created, a load balancer will be created with an external
endpoint. As per the Service definition, the Service will listen to traffic on port 80
and will forward the traffic to the container on port 8080. The external endpoint of
the Service can be found out by querying the Service as follows. Refer to Figure 8.14:

Figure 8.14 – Query the load balancer Service to fetch the external endpoint

4. Access the external endpoint through a browser window. The output will be the
same as the output from Chapter 6, Building code using Cloud Build, and Pushing to
Container Registry, or the output from the application deployed in GKE through the
console. This is because we are using the same image. Refer to Figure 8.15:

Figure 8.15 – Viewing the output of the load balancer Service via an external endpoint

GKE – core features 269

This concludes this section, which introduced GKE and took a deep dive into the
step-by-step process to create a GKE cluster, deploy an application to the cluster, and
expose the deployed application as a Service to be accessed by external clients. Essentially,
the output of this approach is the same as the output from the console approach. The goal
is to understand the process of creating a cluster, deploying workloads, and exposing the
workloads through a Service via the CLI.

The concepts used while creating the cluster or deploying the application are the same
concepts that form the fundamentals of K8s (learned about in Chapter 7, Understanding
Kubernetes Essentials to Deploy Containerized Applications). However, the cluster creation
is much simpler in nature since the maintenance of the master plane components is
completely abstracted and is not the responsibility of the user. The upcoming section
focuses on core GKE features and possible cluster types, and provides an introduction to
integration with networking and cloud operations in GKE.

GKE – core features
This section covers the following topics. These topics will provide a considerable amount
of information, which is required to build a good understanding and working knowledge
of GKE. Most of these GKE concepts are an extension of topics learned about in the
Kubernetes section. The topics that will be covered are as follows:

• GKE node pools

• GKE cluster types

• Autoscaling in GKE

• Networking in GKE

• Cloud operations for GKE

The first of the GKE constructs that will be detailed in the upcoming sub-section is GKE
node pools.

GKE node pools
Nodes (that is, worker nodes) in a Kubernetes cluster deploy workloads. The nature of
workloads deployed across all nodes might not be the same. Some workloads might be
CPU-intensive, others might be memory-intensive, and some might need a minimum
version of the CPU platform. Workloads can also be fault-tolerant batch jobs or might
need a specific type of storage such as SSD.

270 Understanding GKE Essentials to Deploy Containerized Applications

A node pool represents a group of nodes in a GKE cluster that have the same
configuration in terms of a specific CPU family, minimum CPU platform, preemptible
VMs, or a specific storage requirement. A node pool is defined using a nodeConfig
specification. All matching nodes that match the nodeConfig specification will be
labeled using a node label where the key is cloud.google.com/gke-nodepool and
the value is the name of the node pool.

The following is an example of a nodeConfig specification with a specific machine type,
OAuth scopes, and a disk type:

nodeConfig: {

 machineType: "n2-highmem-32",

 oauthScopes: [

 "https://www.googleapis.com/auth/compute",

 "https://www.googleapis.com/auth/logging.write",

 "https://www.googleapis.com/auth/monitoring"

],

 diskType: "pd-ssd"

 }

A cluster is always created with a default node pool with a specific number of nodes and a
specific machine type (along with other attributes). Additional custom node pools can be
added based on their respective nodeConfig and workload requirements.

The following are some of the key characteristics of a node pool:

• A new node pool, by default, runs the latest stable Kubernetes version.

• The Kubernetes version on existing node pools can either be configured for auto-
upgrade or can be manually upgraded.

• A node pool can be individually resized, upgraded, or deleted without impacting
other node pools. Any change to the node pool impacts all nodes within the pool.

The following are a few CLI commands that can perform actions on a node pool. These
commands can be executed on the cluster that was previously created in this chapter –
my-first-cluster.

The following CLI command creates a node pool with a specific machine type:

gcloud container node-pools create my-high-mem-pool --machine-
type=n1-highmem-8 --cluster=my-first-cluster --num-nodes=2 –
zone=us-central1-c

GKE – core features 271

The created node pool will be reflected on the GKE Console against the cluster (refer to
Figure 8.16):

Figure 8.16 – New custom node pool – my-high-mem-pool created

The following are other CLI commands to resize a node pool, upgrade to a specific
version, or delete a node pool:

Resize node pool

gcloud container clusters resize my-first-cluster --node-
pool=my-high-mem-pool --num-nodes=1 –zone=us-central1-c

Upgrading node pool to specific cluster version

gcloud container clusters upgrade my-first-cluster --cluster-
version="1.17.17-gke.3000" --node-pool=my-high-mem-cluster
--zone=us-central1-c

Delete a node pool

gcloud container node-pools delete my-high-mem-pool
--cluster=my-first-cluster --zone=us-central1-c

Node pools in a regional or multi-zonal cluster are replicated to multiple zones.
Additionally, the workload can be deployed to a specific node pool by explicitly specifying
the node pool name using a nodeSelector or by finding a node pool that satisfies the
resource requests as defined for the workload.

If the node pool name is explicitly specified using the nodeSelector attribute, then
kube-scheduler will deploy workloads to the specified node. Otherwise, kube-
scheduler will find the node pool that meets the intended resource request for
the workload.

This completes the overview of GKE node pools. The next topic deep-dives into the
various cluster configurations available in GKE.

272 Understanding GKE Essentials to Deploy Containerized Applications

GKE cluster configuration
GKE offers multiple cluster configuration choices based on cluster availability type, cluster
version, network isolation, and Kubernetes features. Each of these configuration choices is
discussed in the following sub-sections.

Cluster availability type
GKE allows you to create a cluster based on the availability requirements of the workloads.
There are two types of cluster configuration based on availability types – zonal clusters
(single-zone or multi-zonal) and regional clusters. These are discussed in the
following sub-sections.

Zonal clusters
A zonal cluster will have a single control plane running in a single zone. The nodes (that
is, worker nodes) can run either in a single zone or run across multiple zones. If the
nodes run in the same zone as the control plane, then it represents a single-zone cluster.
However, if nodes run across multiple zones, then it represents a multi-zonal cluster.
Note that GKE allows up to 50 clusters per zone.

A multi-zonal cluster will only have a single replica of the control plane. The choice
between a single zone or multi-zonal cluster is based on the level of availability required
for an application. Specific to a multi-zonal cluster and in the event of a cluster upgrade or
a zone outage, the workloads running on the nodes will continue to run, but a new node
or workload cannot be configured till the cluster control plane is available.

The following are CLI commands to create a zonal cluster (single zone and multi zonal):

#Syntax

gcloud containers clusters create CLUSTER_NAME \

 --zone COMPUTE_ZONE \

 --node-locations COMPUTE_ZONE, COMPUTE_ZONE, [..]

#Single Zone Cluster

gcloud containers clusters create single-zone-cluster \

 --zone us-central1-a

#Multi Zonal Cluster

gcloud containers clusters create single-zone-cluster \

 --zone us-central1-a \

 --node-locations us-central1-a,us-central1-b, us-central1-c

GKE – core features 273

The input parameter specific to the zone refers to the location of the control plane. The
node locations refer to the locations of the worker node(s) and are not required for a
single zone cluster as it will be the same as the master control plane.

This completes a brief overview of GKE zonal clusters. The next topic will provide an
overview of GKE regional clusters.

Regional clusters
A regional cluster provides high availability both in terms of worker nodes as well as the
control plane. A regional cluster has multiple replicas of the control plane running across
multiple zones in a region. The worker nodes are also replicated across multiple zones and
the worker nodes run in conjunction in the same zone as the control plane. A regional
cluster cannot be converted into a zonal cluster.

The following is the CLI command to create a regional cluster:

#Syntax

gcloud containers clusters create CLUSTER_NAME \

 --region COMPUTE_REGION \

 --node-locations COMPUTE_ZONE, COMPUTE_ZONE, [..]

#Regional Cluster

gcloud containers clusters create single-zone-cluster \

 --region us-central1 \

 --node-locations us-central1-a,us-central1-b, us-central1-c

The input parameter specific to region refers to the location of the control plane. The
node locations refer to the locations of the worker node. This is required for a multi-zone
cluster as node locations could be in multiple zones.

This completes a brief overview of GKE cluster configuration based on cluster availability
type. The next topic will provide an overview of GKE cluster configuration based on
cluster version.

Cluster versions
GKE allows you to choose the cluster version. The cluster version can be a very specific
version, the current default version, or can be based on a release channel, which is a
combination of features based on early availability and stability. These cluster version
configurations are discussed in the following sub-sections.

274 Understanding GKE Essentials to Deploy Containerized Applications

Specific versions
A GKE cluster can be created by specifying a specific version. This information can
be provided as part of the Static Version selection while creating the cluster from the
console. The user will be provided with a choice of cluster versions and can select an
available version.

Release channels
Open source Kubernetes or K8s has a constant stream of releases. These could be required
for the following purpose:

• To fix known issues

• To add new features

• To address any security risks/concerns

Kubernetes users who run applications on a Kubernetes cluster will prefer to exercise
control in terms of how frequently the releases should be applied or the rate at which new
features should be adopted. Google provides this choice to customers using the concept of
a release channel.

Each of the release channels provides generally available (GA) features but the maturity
of the features in terms of their original release date will vary from one channel to another.
In addition, Google can also add the latest GKE-specific features depending on the type of
release channel. This ensures that a specific feature or fix has potentially gone through the
grind and is vetted in terms of its correctness and consistency over a period.

GKE provides three release channels:

• Rapid: This release channel includes the latest Kubernetes and GKE features when
compared to other release channels, but the features are still several weeks old after
their respective open source GA release.

• Regular: This is the default release channel, which includes Kubernetes and
GKE-specific features that are reasonably new but are more stable in nature. The
features are at least 2-3 months old after their release in the rapid channel and
several months old from their open source GA release.

• Stable: This is the most stable of the release channels since the features added to
this channel are added at least 2-3 months after being added to the regular channel.
Essentially, the features are thoroughly validated and tested to provide the
utmost stability.

GKE – core features 275

The following is the CLI command to enroll a cluster in a release channel:

#Syntax

gcloud containers clusters create CLUSTER_NAME \

 --zone COMPUTE_ZONE \

 --release-channel CHANNEL \

 ADDITIONAL_FLAGS

Release Channel Example

gcloud containers clusters create my-cluster \

 --zone us-central1-a \

 --release-channel rapid

To summarize, new Kubernetes versions and GKE features are promoted from the rapid
to the regular to the stable channel, providing users with the choice to use newer features
over stable features. GKE handles the availability of versions and the upgrade cadence
once a cluster is added to the release channel. Each of the release channels continues to
receive critical security updates.

The default version
If a specific version or a release channel is not specified, then GKE creates a cluster with
the current default version. GKE selects a default version based on usage and real-world
performance. GKE is responsible for changing the default version on a regular basis.
Historically, new versions of Kubernetes are released every 3 months.

This completes a brief overview of GKE cluster configuration based on cluster version.
The next topic will provide an overview of GKE cluster configuration based on network
isolation choices.

Network isolation choices
There are two specific choices related to network isolation – a public cluster or a private
cluster. A public cluster is the default configuration. However, this does not enforce
network isolation and the cluster is accessible from any public endpoint. This makes the
cluster vulnerable from a security standpoint. The drawbacks of configuring a public cluster
can be handled through a private cluster, which is introduced in the following sub-sections.

276 Understanding GKE Essentials to Deploy Containerized Applications

Private clusters
GKE provides an option to create a private cluster where the nodes only have internal
IP addresses. This means that the nodes and the pods running on the nodes are isolated
from the internet and inherently will not have inbound or outbound connectivity to the
public internet.

A private cluster will have a control plane that includes a private endpoint, in addition
to a public endpoint. Access to the public endpoint can be controlled through multiple
options. In addition, the control plane will run on a VM that is in a VPC network in a
Google-owned project. The details surrounding private clusters will be discussed in depth
as part of Chapter 9, Securing the Cluster Using GKE Security Constructs.

Kubernetes features – alpha clusters
New features in Kubernetes are rolled out to GKE as part of the release channel in
most cases. The release channel includes choices of rapid, regular, and stable. However,
alpha features are only available in special GKE alpha clusters. This is discussed in the
following sub-sections.

Alpha clusters
Alpha clusters are a specific feature of GKE that is designed for adopting new features that
are not production-ready or generally available as open source. GKE creates alpha clusters
as short-lived clusters and they are automatically deleted after 30 days.

The following is the CLI command to create an alpha cluster:

#Syntax

gcloud container clusters create cluster-name \

 --enable-kubernetes-alpha \

 [--zone compute-zone] \

 [--cluster-version version]

#Alpha Cluster Example

gcloud container clusters create my-cluster \

 --enable-kubernetes-alpha \

 --region us-central1

These clusters do not receive security updates, cannot be auto-upgraded or auto-
repaired, and are not covered by any GKE-specific SLAs. Hence, alpha clusters are never
recommended for production workloads.

GKE – core features 277

This completes a brief overview of GKE cluster configuration based on network isolation
choices. This also concludes the sub-section on GKE cluster configuration in general. The
next topic details possible autoscaling options in GKE.

AutoScaling in GKE
There are three potential options to perform autoscaling in GKE. Each of these options is
suitable for specific needs and situations:

• Cluster autoscaler: A scaling option to resize a node pool in a GKE cluster

• Horizontal Pod Autoscaler (HPA): An option that indicates when application
instances should be autoscaled based on their current utilization

• Vertical Pod Autoscaler (VPA): An option that suggests recommended resources
for a Pod based on the current utilization

The upcoming topics detail the preceding autoscaling mechanisms, starting with the
cluster autoscaler.

The cluster autoscaler
The cluster autoscaler is a scaling mechanism to automatically resize a node pool in a
GKE cluster. The scaling is based on the demands of workloads deployed within the node
pool. This allows you to implement the core concept of cloud computing, called elasticity,
and removes the need to over-provision or under-provision nodes.

The cluster autoscaler works on a per-node pool basis and is based on resource requests
(defined as part of the Pod specification) rather than the actual resource utilization. When
a new Pod needs to be deployed, the Kubernetes scheduler works out of the Pod resource
requests and attempts to find a node to deploy the Pod. If there is no node that matches
the Pod resource requirement in terms of available capacity, then the Pod goes into a
pending state until any of the existing pods are terminated or a new node is added.

The cluster autoscaler keeps track of the pods that are in the pending state and
subsequently tries to scale up the number of nodes. Similarly, the cluster autoscaler
also scales down the number of nodes if the nodes are under-utilized. A minimum or
maximum number of nodes can be defined for the cluster autoscaler, which allows it to
operate within the specified limits.

278 Understanding GKE Essentials to Deploy Containerized Applications

When a cluster is scaled down, there is a possibility that new workloads might have to
wait till new nodes are added. This could cause a potential disruption. GKE profile types
provide a choice of options to choose between balanced and aggressive scale-down:

• Balanced: The default profile option, which is not aggressive in nature.

• Optimize-utilization: Scaling down is more aggressive and removes underutilized
nodes faster.

The following are some CLI commands related to the cluster autoscaler:

Create cluster with autoscaler limits

gcloud container clusters create my-autoscaler-cluster \

 --zone us-central1-b \

 --num-nodes 3 --enable-autoscaling --min-nodes 1 --max-nodes
5

Update autoscaling profile to optimize-utilization

gcloud beta container clusters update my-autoscaler-cluster \

 -autoscaling-profile optimize-utilization

The following are some limitations that need to be considered when using the
cluster autoscaler:

• There is a graceful termination of 10 minutes for rescheduling pods on to a different
node before forcibly terminating the original node.

• The node pool scaling limits are determined by zone availability. If a cluster has 3
nodes (with min_nodes = 1 and max_nodes = 5) across 4 zones, then if 1 of the
zones fails, the size of the cluster can vary from 4-20 nodes per cluster to 3-15 nodes
per cluster.

This concludes the overview of the cluster autoscaler. The next topic focuses on the
Horizontal Pod Autoscaler (HPA).

The Horizontal Pod Autoscaler
The HPA is a Kubernetes controller object that automatically scales the number of pods
in a replication controller, Deployment, ReplicaSet, or StatefulSet based on the observed
CPU or memory utilization. The HPA indicates the Deployment or StatefulSet against
which scaling needs to happen. The HPA doesn't apply to DaemonSets.

GKE – core features 279

To implement the HPA, the following factors need to be considered:

• One HPA object needs to be defined per Deployment or StatefulSet.

• The attribute --horizontal-pod-autoscaler-sync-period allows you to
implement the HPA as a control loop. The default value is 15 seconds per period.

• kube-controller-manager (on a per-period basis) obtains metrics from the
resource manager API or the custom metrics API and compares them against the
metrics specified in each HPA definition.

The following are few key parameters that can define the HPA configuration:

• --horizontal-pod-autoscaler-initial-readiness-delay: A
configurable window to ensure that a Pod is transitioned to the ready state.

• --horizontal-pod-autoscaler-cpu-initialization-period:
A configurable window to set the CPU initialization period, once the Pod is
transitioned to the ready state. The default is 5 minutes.

• --horizontal-pod-autoscaler-downscale-stabilization:
A configurable window that autoscaler needs to wait before initiating a
downscale operation after the current one is completed. The default is 5 minutes.
This prevents thrashing.

The following is the sample definition of an HPA object based on CPU utilization:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: nginx

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: my-nginx

 minReplicas: 1

 maxReplicas: 5

 targetCPUUtilizationPercentage: 75

In the preceding example, kube-controller-manager will scale up the Deployment
based on the HPA object specification, to a maximum of 5 instances if the target CPU
utilization exceeds 75%. This concludes the overview of the HPA. The next topic focuses
on the Vertical Pod Autoscaler (VPA).

280 Understanding GKE Essentials to Deploy Containerized Applications

The Vertical Pod Autoscaler (VPA)
The cluster autoscaler functions based on the workload's CPU and memory request
limits. If these limits are not defined appropriately, then there is always a chance of over-
provisioning or under-provisioning as the reference values will not be accurate.

The VPA is a Kubernetes resource that recommends values for CPU and memory
requests/limits. Additionally, the VPA can automatically update workloads if the
updateMode attribute is set to On on the VPA. This will potentially evict the existing
Pod as a change is required to the pod's resource requests and will result in a new Pod
with the updated recommendations.

This ensures that the cluster nodes are optimally utilized and potentially removes the need
to run benchmark tests to determine the correct values for CPU and memory requests.
VPA communicates with the cluster autoscaler to perform the appropriate operations on
the nodes tied to the node pools.

The following is a sample definition of a VPA object:

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

 name: my-vpa

spec:

 targetRef:

 apiVersion: "apps/v1"

 kind: Deployment

 name: my-nginx

 updatePolicy:

 updateMode: "On"

The kind attribute in the preceding snippet indicates that the Kubernetes resource is a
VPA object. The updateMode attribute indicates that the recommendations suggested by
the VPA are automatically applied against the running workloads.

The following are some CLI commands specific to the VPA:

To view recommendations of VPA is updateMode was set to Off

kubectl get vpa my-vpa --output yaml

To disable VPA

gcloud container clusters update my-cluster --no-enable-
vertical-pod-autoscaling

GKE – core features 281

If an HPA object is configured to evaluate metrics for CPU or memory, it's recommended
that HPA should not be used with VPA.

Multi-dimensional Pod autoscaling (MPA)
This is a new autoscaling option that is currently in pre-GA. As per this option,
it is possible to configure autoscaling to horizontally scale based on CPU and
vertically scale based on memory at the same time. MPA is supported for
clusters that are 1.19.4-gke.1700 or later.

This concludes the section on autoscaling in GKE where multiple mechanisms were
detailed out. The next section focuses on networking constructs with respect to GKE. This
will cover details about Pod networking, Service networking, and will deep dive into the
usage of GKE load balancers to expose services for external consumption.

Networking in GKE
Applications are deployed in Kubernetes as containers. Pods run containers. The desired
state of the pods is controlled by Deployments and the applications are exposed for both
internal and external networking through Services. The deployed pods run in GKE on
nodes. Nodes in GKE are represented by virtual machines or VMs. These nodes are
deployed in a Virtual Private Cloud (VPC).

A VPC defines a virtual network topology that closely resembles a traditional network. It
is a logically isolated network and provides connectivity between deployed resources. A
VPC also provides complete control in terms of launching resources, selecting a range of
RFC 1918 addressing, the creation of subnets, and so on.

A VPC on GCP has a pre-allocated IP subnet, for every GCP region. When a GKE cluster
is deployed within the VPC, a specific region or zone can be selected. Since GKE nodes
are made up of Compute Engine VMs and these VMs need an IP address, the range of IP
addresses is allocated from the IP subnet pre-allocated to the region. A VPC on GCP is
considered a global resource since a single Google Cloud VPC can span multiple regions
without communicating across the public internet. It is not required to have a connection
in every region.

GCP provides the option of configuring alias IP ranges. This allows VMs to have an
additional secondary IP address. As a result, a VM can have multiple services running
with a separate IP address. These secondary IP addresses are routable within the VPC
without the need to configure additional routes.

282 Understanding GKE Essentials to Deploy Containerized Applications

A GKE cluster might need to run cluster-wide services. GCP recommends deploying a
GKE cluster as a VPC-native cluster. A VPC-native cluster uses three unique subnet IP
address ranges:

• A primary IP address range of subnet for node IP addresses

• A secondary IP address range for all Pod IP addresses

• An additional secondary IP address range for all Service IP addresses

GKE provides flexibility where the number of nodes in a cluster and the maximum
number of pods per node are configurable. The next topic details how pods are assigned
IP addresses when pods are deployed in a GKE cluster.

Pod networking
When a Pod is scheduled on a node, Kubernetes creates a network namespace for the Pod
on the node's Linux kernel and connects the node's physical network interface to the Pod
with a virtual network interface, thus allowing communication among pods within the
same node.

Kubernetes assigns an IP address (the Pod's IP) to the virtual network interface in the
Pod's network namespace from a range of addresses reserved for Pods on the node. This
address range is a subset of the IP address range assigned to the cluster for Pods, which
can be configured when creating a cluster.

GKE automatically configures VPC to recognize this range of IP addresses as an authorized
secondary subnet of IP addresses. As a result, the pod's traffic is permitted to pass the anti-
spoofing filters on the network. Also, because each node maintains a separate IP address
base for its pods, the nodes don't need to perform network address translation on the
pod's IP address. The next topic details Service networking, specifically, how services can
effectively receive traffic from external sources via the use of GKE load balancers.

Service networking
A Service is a Kubernetes resource that creates a dynamic collection of IP addresses called
endpoints. These IP addresses belong to the Pod that matches the Service label selector.
Kubernetes creates a Service by assigning a static virtual IP address and this IP address is
assigned from the pool of IP addresses reserved for services by the cluster.

Out of the available Service types, the LoadBalancer Service type is implemented in
GKE using GCP's Network Load Balancer (NLB). The NLB supports TCP and UDP
traffic. GCP creates a network load balancer when a Service of type LoadBalancer is
created within the GKE cluster. GCP will subsequently assign a static LoadBalancer
IP address that is accessible from outside the cluster and the project.

GKE – core features 283

For traffic sent to the GCP NLB, Figure 8.17 depicts the interactions between the NLB
and the nodes within the GKE cluster. These interactions are listed as follows in a
step-by-step manner:

Figure 8.17 – Interactions between the NLB and a GKE cluster within a VPC

Step-by-step interactions:

1. NLB will pick a random node in the cluster and forwards the traffic (say Node 2 as
per Figure 8.17)

2. The Service might be tied to multiple pods spread across the cluster nodes. The
kube-proxy Service on the node receives the client request and will select a Pod
matching the Service at random. The selected Pod can be on the same node or a
different node.

3. If the selected Pod is on a different node (say Pod 8), then the client request will be
sent to the other node (Node 4) from the original node (Node 2). The response goes
back to the original node (Node 2) that received the request and subsequently goes
back to the client.

The preceding process provides a way to access services from an external client and
maintains an even balance with respect to Pod usage. However, there is a possibility that
within the Kubernetes cluster, a response might have to go through multiple nodes as the
request was directed from one node to the other, resulting in a double hop.

284 Understanding GKE Essentials to Deploy Containerized Applications

To avoid double hop, Kubernetes natively provides an option called
externalTrafficPolicy. If set to local, kube-proxy will pick a Pod on the local node
(either Pod 3 or Pod 4) and will not forward the client request to another node. However,
this creates an imbalance and users must choose between better balance versus low-latency
communication. GKE solves this by using the concept of container-native load balancing.

Container-native load balancing
The essence of container-native load balancing is that instead of directing traffic to nodes,
traffic will be sent to pods directly, avoiding an additional hop. The connection is made
directly between the load balancer and the pods. GKE accomplishes this by leveraging
GCP HTTP(S) Load Balancing and the use of a data model called a Network Endpoint
Group (NEG). GKE needs to run in VPC-native mode to use the container-native load
balancing feature.

A NEG is a set of network endpoints representing IP to port pairs. So instead of load
balancing traffic using node IPs, the combination of Pod IPs and a port is used as a tuple.
This information is maintained in the NEG. Figure 8.18 depicts the interactions between
GKE container-native load balancing and pods in GKE nodes through an NEG. As per
Figure 8.18, a request to the container-native load balancer is forwarded to the NEG. The
NEG then chooses the specific Pod based on the request, and directly forwards the traffic
to the node associated with the Pod in a single hop, thus avoiding the double hop:

Figure 8.18 – Solving the double hop problem using container-native load balancing

GKE – core features 285

Apart from establishing a direct connection to the Pod, container-native load balancing
allows direct visibility of Pods, leading to the possibility of accurate health checks. The
source IP address is preserved thus giving insights into the roundtrip time between the
client and the load balancer.

This concludes a high-level overview of networking constructs specific to GKE. The next
section summarizes the storage options available for containerized applications deployed
in GKE.

Storage options for GKE
Kubernetes offers storage abstractions in the form of Volumes and Persistent Volumes.
These are used as storage options providing file system capacity that is directly accessible
by applications running in a Kubernetes cluster. Persistent Volumes exist beyond the life of
a container and can further be used as durable file storage or as a database backing store.

In GKE, Compute Engine persistent disks are used as persistent volumes. GKE also provides
various managed backing stores such as Cloud SQL, Cloud Datastore, and so on, which
removes the need to run a database as an application inside the GKE cluster, connecting
applications in a GKE cluster to a managed datastore instead. For example, a frontend
application in a GKE Cluster can be connected to Cloud SQL rather than the frontend
application connecting to another application running a MySQL server. To be more specific,
the frontend application can connect to Cloud SQL for database needs through a Cloud SQL
proxy. This can be run inside the frontend application's Pod as a side-car container.

This abstracts away infrastructure requirements and reduces maintenance, allowing you
to focus on the application. GCP offers managed services across relational, non-relational,
and caching services that applications running in a GKE cluster can connect to.

In addition to applications that might require a backend data store, there could be
applications running in a GKE cluster that might need object storage. Google Cloud
Storage (GCS) is an object storage Service. Object-based storage refers to the storage
of an ordered group of bytes where the structure and semantics of those bytes are not
important. It can be used for a variety of applications, such as the following:

• Serving images for a website

• Streaming music, videos, and media hosting

• Constructing data lakes for analytics and machine learning workloads

Applications within the GKE cluster can access Cloud Storage using Cloud Storage APIs. This
concludes the summary of the storage options available in GCP for applications deployed in
GKE. The next section summarizes details on cloud operations from a GKE perspective.

286 Understanding GKE Essentials to Deploy Containerized Applications

Cloud Operations for GKE
Google Kubernetes Engine (GKE) provides native integration with Google's Cloud
operations – a suite of tools that allows you to monitor workloads, collect application
logs, capture metrics and provide alerting or notification options on key metrics. Cloud
operations and the respective suite of services are elaborated on in detail as part of
Chapter 10, Exploring GCP Cloud Operations.

Cloud Operations for GKE is enabled by default at the time of cluster creation. However,
it is possible to configure if the user chooses to disable Cloud Monitoring or Cloud
Logging as part of the GKE cluster configuration. Cloud Operations for GKE monitors
GKE clusters and provides a tailored, out-of-the-box dashboard that includes the
following capabilities:

• Viewing cluster resources categorized by infrastructure, workloads, or services

• Inspecting namespaces, nodes, workloads, services, pods, and containers

• Viewing application logs for pods and containers

• Viewing key metrics related to clusters, such as CPU utilization, memory utilization,
and so on

Logging and monitoring are two critical aspects of reliably running a Service or
application in a GKE cluster. These will be covered as part of upcoming topics from the
aspect of Cloud Operations for GKE.

Logging for GKE
GKE deploys applications and orchestrates multiple actions or events within a cluster.
This results in a variety of logs such as application logs, system logs, event logs, and so on.
Logging provides visibility of various actions that happen and is also considered a passive
form of monitoring.

There are two options to view logs for a GKE cluster:

• Kubernetes Native Logging

• GKE Cloud Logging

GKE – core features 287

Kubernetes Native Logging
Kubernetes supports native logging to standard output and standard error. In Kubernetes,
the container engine can be used to redirect stdin/out and standard error streams from the
containers to a logging driver. This driver is configured to write these container logs in
JSON format and store them in the /var/log directory at the node level. This includes
logs from containers and logs from node control plane components such as kubelet and
kube-proxy. These logs can be retrieved using the kubectl logs command.

The kubectl logs command can be used to retrieve logs for a Pod or a specific
container within a Pod. The command also provides options to retrieve logs for a specific
period or you can retrieve a portion of logs using the tail option. A few of such
examples are provided as follows:

Stdout container logs; pod has a single container

kubectl logs <pod-name>

Stdout container logs; pod has multiple containers

kubectl logs <pod-name> -c <container-name>

Stdout container logs – most recent 50 lines

kubectl logs --tail=50 <pod-name>

Stdout most recent container logs in the last 1 hour

kubectl logs --since=1h <pod-name>

Stream pod logs

kubectl logs -f <pod-name>

Kubernetes native logging can lead to node saturation as the log files continue to grow in
the node's storage directory. GKE solves this to an extent by running the Linux log rotate
utility to clean up the log files. Any log files older than a day or more than 100 MB will be
automatically compressed and copied into an archive file.

GKE only stores the five most recently archived log files on the nodes and will delete the
previous archived log files. Though this ensures that the node doesn't saturate in terms of
disk space, it still poses a problem if older application logs need to be analyzed or researched.

288 Understanding GKE Essentials to Deploy Containerized Applications

By default, open source Kubernetes or K8s will delete logs related to a container either
when a container is deleted or when a Pod tied to the container is deleted. GKE resolves
problems related to node saturation and provides the ability to analyze logs related
to deleted pods/containers by streaming the logs to Cloud Logging, as part of Cloud
Operations. Application logs, system logs, and log events can be streamed to Cloud
Logging, which will be discussed as part of upcoming topics.

GKE Cloud Logging
Open source Kubernetes or K8s doesn't provide a log storage solution for cluster-level
logging. GKE handles this by streaming log events to Cloud Logging. Cloud Logging is
a centralized log management utility and a fully managed Service. Cloud Logging can
automatically scale and can ingest terabytes of log data per second.

GKE streams to Cloud Logging by using FluentD logging agents. A FluentD agent is
implemented as a DaemonSet because it needs to run on every node in the cluster.

Logging agents are pre-installed on each node as a DaemonSet and are pre-configured to
push log data to Cloud Logging. FluentD collects container logs and system logs from
the node. FluentD aggregates the logs, appends additional metadata, and pushes them to
Cloud Logging.

Figure 8.19 illustrates the interactions of logs being sent from GKE to Cloud Logging
using the FluentD DaemonSet Pod on each node in the cluster:

Figure 8.19 – FluentD agent capturing logs and sending to Cloud Logging

GKE – core features 289

Event logs are also streamed to Cloud Logging. Event logs refers to logs from operations
that take place on the cluster such as the creation/deletion of a Pod, scaling of
deployments, and so on. Events are stored as API objects on the Kubernetes master or
control plane. GKE uses an event exporter in the cluster master to capture the events and
automatically pushes them to Cloud Logging.

Cloud Logging provides the ability to capture metrics from streaming logs and create
alerting policies as needed. Cluster actions such as autoscaling can be configured based
on custom metrics. By default, GKE-specific logs related to a cluster are available in Cloud
Logging for 30 days. For longer retention, Cloud Logging offers options to export logs to
Cloud Storage or Big Query using the concept of log sinks. Chapter 10, Exploring GCP
Cloud Operations, elaborates on topics related to Cloud Logging in depth.

Monitoring for GKE
Monitoring provides insights into how an application or Service functions based on key
internal metrics related to a GKE cluster. In addition, monitoring also provides insights
from a user's perspective based on the user's interaction with the Service. The previous
chapters on site reliability engineering (Chapter 1, DevOps, SRE, and Google Cloud
Services for CI/CD, to Chapter 4, Building SRE Teams and Applying Cultural Practices),
clearly call out Service reliability as one of the key aspects. Monitoring is the fundamental
input to ensure that a Service runs reliably.

Monitoring provides data that is critical to make decisions about applications. This data
can be used further to resolve an ongoing incident and perform a blameless postmortem,
and you can use it further to improve an existing test suite and provide inputs to the
product and development team for any further improvements or fine-tuning.

Cloud Monitoring is Google's managed solution that provides a solution to monitor
the state of services using key parameters such as latency, throughput, and so on, and
identify performance bottlenecks. From a GKE perspective, monitoring can be divided
into two domains:

• Cluster-Level Monitoring: This includes monitoring cluster-level components such
as nodes and components from the master control plane such as kube-apiserver,
etcd, and other infrastructure elements.

• Pod-Level Monitoring: This includes monitoring resources using container-
specific metrics, tracking deployment-specific system metrics, tracking instances,
monitoring uptime checks, and monitoring application-specific metrics designed by
the application's developer(s).

290 Understanding GKE Essentials to Deploy Containerized Applications

Kubernetes uses the concept of labels to group or track resources. The same concept
can be extended, and resources can be filtered in Cloud Monitoring using labels. Cloud
Monitoring provides ways to track all relevant metrics and put them on a customized
dashboard, thus giving visibility of a GKE cluster. Figure 8.20 shows the built-in GKE
Dashboard from Cloud Monitoring (with options displayed in collapsed mode). The
GKE dashboard summarizes information about clusters, namespaces, nodes, workloads,
Kubernetes services, Pods, and Containers:

Figure 8.20 – Built-in GKE Dashboard from Cloud Monitoring

This completes the topic on Cloud Operations for GKE and concludes the section on GKE
where many key concepts and core features were discussed in detail. The next section
elaborates on the latest operation mode in GKE, called Autopilot.

GKE Autopilot – hands-on lab
GKE Autopilot or Autopilot is one of the two modes of operation supported by GKE.
The other mode being the standard mode (which was elaborated on at the start of this
chapter). Autopilot removes the need to perform do-it-yourself (DIY) actions during
cluster creation and instead creates a cluster with the industry-standard recommendations
regarding networking and security. In addition, Autopilot removes the need to configure
node pools or estimate the size of the cluster upfront. Nodes are automatically provisioned
based on the types of deployed workloads and the user is essentially charged for the
running workloads.

GKE Autopilot – hands-on lab 291

Autopilot is not only managed but is also a serverless K8s offering from GKE. Autopilot,
however, does not offer all cluster configuration choices offered by the standard mode. The
following table represents the configuration choices offered by Autopilot in comparison to
the standard mode:

The following is a step-by-step guide to creating a GKE cluster in Autopilot mode:

1. Navigate to the GCP Console and select the compute Service – Kubernetes Engine.

2. Select the option to create a cluster and choose Autopilot mode. Refer to
Figure 8.21:

Figure 8.21 – Select Autopilot mode during cluster creation

292 Understanding GKE Essentials to Deploy Containerized Applications

3. Enter the name for the cluster as my-autopilot-cluster. Leave the default
selections for the rest of the options and select the CREATE action. Refer to
Figure 8.22:

Figure 8.22 – Creating a cluster in Autopilot mode

GKE Autopilot – hands-on lab 293

4. This will initiate the cluster creation process but in Autopilot mode. Once the cluster
is created, the cluster will be listed on the cluster list page as shown in Figure 8.23:

Figure 8.23 – New cluster created in Autopilot mode

Here are some observations from the newly created Autopilot cluster. These observations
differentiate the Autopilot cluster from a Standard mode cluster:

• An autopilot cluster is created without pre-assigning any nodes upfront.

• An autopilot cluster is always created as a regional cluster.

• The release channel for an autopilot cluster is the Regular channel.

• Node auto-provisioning and vertical Pod autoscaling are enabled by default.

• Advanced networking options such as intranode visibility, NodeLocal DNSCache,
and HTTP load balancing are enabled by default.

• Security options such as Workload Identity and shielded GKE nodes are enabled by
default. These security options are discussed in Chapter 9, Securing the Cluster Using
GKE Security Constructs.

294 Understanding GKE Essentials to Deploy Containerized Applications

Once a cluster is created in Autopilot mode, workloads can be deployed to the Autopilot
cluster in the exact same way that workloads were previously deployed to a cluster in
Standard mode. Figure 8.24 refers to a Deployment created on the Autopilot cluster:

Figure 8.24 – Deployment details in an Autopilot cluster

The resources required to run the workloads are allocated to the Autopilot cluster. Figure
8.25 displays the cluster list page with resources allocated to my-autopilot-cluster.
In this specific case, 0.5 vCPUs and 2 GB memory are allocated to run a single Pod. So, the
user is only charged for this workload:

Figure 8.25 – Resource allocation for the Autopilot cluster after deploying a workload

This completes the hands-on lab related to GKE Autopilot. This lab provides insights
into the Autopilot configuration and how resources are allocated to the cluster after the
deployment of workloads. This also brings us to the end of the chapter.

Summary 295

Summary
Given that open source Kubernetes or K8s involves a lot of setup and upkeep, we
deep-dived into Google Kubernetes Engine or GKE, a GCP compute Service that runs
containerized applications. The Kubernetes concepts learned in Chapter 7, Understanding
Kubernetes Essentials to Deploy Containerized Applications, apply to GKE. We additionally
explored GKE core features such as GKE node pools, GKE cluster configurations,
autoscaling, and GKE's ability to integrate with other GCP services across networking and
operations. The next chapter focuses on security-specific features related to the Google
Kubernetes Engine, with the goal of hardening a cluster's security.

Points to remember
The following are some important points to remember:

• GKE is fully managed, uses a container-optimized OS, and supports autoscaling, the
auto-repair of nodes, and auto-upgrades.

• GKE supports two modes of operations – Standard and Autopilot.

• GKE Standard mode supports VPC-native traffic routing and HTTP load balancing
as default options.

• Cloud operations for GKE are enabled as a default setting.

• A private Kubernetes engine cluster cannot be accessed publicly.

• A node pool represents a group of nodes with the same configuration.

• By default, a new node pool runs the latest Kubernetes version and can be
configured for auto-upgrade or can be manually upgraded.

• Node pools in a regional or multi-zonal cluster are replicated to multiple zones.

• A multi-zonal cluster will only have a single replica of the control plane.

• A regional cluster has multiple replicas of the control plane running across multiple
zones in a region.

• A release channel is used to fix known issues or add new features or address any
security risks or concerns.

• GKE creates a cluster with the default version if a specific version or release channel
is not specified.

• Alpha features are only available in special GKE alpha clusters and are not available
as part of release channels.

296 Understanding GKE Essentials to Deploy Containerized Applications

• Options to autoscale in GKE include the cluster autoscaler, HPA, VPA, and MPA
(pre-GA).

• The cluster autoscaler automatically resizes a node pool in a GKE cluster.

• The HPA indicates when application instances should be scaled based on the
current utilization.

• The HPA is not supported for DaemonSets.

• The VPA suggests recommended resources for a Pod based on the current utilization.

• The VPA can automatically update workloads if the updateMode attribute is set
to On.

• MPA allows you to horizontally scale based on CPU and vertically scale based on
memory at the same time. This is a pre-GA feature.

• Autoscaler provides two profile options to scale down: balanced and
optimize-utilization.

• Kubernetes' native option to avoid double hop is to set
externalTrafficPolicy to local.

• GKE avoids double hop using GCP HTTP(S) Load Balancer and an NEG.

• An NEG is a set of network endpoints representing IP to port pairs.

• GKE runs Linux's log rotate utility to clean up log files. Any log files older than
a day or more than 100 MB will be automatically compressed and copied into an
archive file.

• GKE only stores the five most recently archived log files on the nodes and will delete
the previously archived log files.

• GKE streams to Cloud Logging by using FluentD logging agents.

• Event logs refers to logs from operations that take place on a cluster.

• Events are stored as API objects on the cluster master. GKE uses an event exporter
to push events to Cloud Logging.

• GKE cluster-specific logs are available in Cloud Logging for 30 days.

• For longer retention, Cloud Logging can export logs using log sinks.

• GKE Autopilot mode supports cluster configurations where the availability type is
Regional, the version is Release Channel, network isolation is Private or Public, and
Kubernetes features are Production.

Further reading 297

Further reading
For more information on GCP's approach to DevOps, read the following articles:

• Kubernetes: https://kubernetes.io/docs/home/

• Google Kubernetes Engine: https://cloud.google.com/kubernetes-
engine

Practice test
Answer the following questions:

1. How do you create control plane components in GKE?

a) Create worker nodes and then create control plane components on the
worker nodes.

b) A GKE cluster does not mandate the creation of control plane components.

c) Create control plane components on a node group called master and the worker
nodes are placed in a node group called worker.

d) The control plane components are automatically created and managed by GKE
on behalf of the user.

2. Pod p1 has three containers – c1, c2, and c3. The user wants to view the logs of
container c2. Select the option that represents the appropriate CLI command to
view the logs:

a) kubectl logs -p p1 -c c2

b) kubectl logs p1 -c c2

c) kubectl logs pod=p1 container=c2

d) kubectl logs p1 container=c2

3. The company Alpha is about to launch a stateless web application to offer a new
e-commerce Service. The web application will have steady traffic with occasional
peaks, especially when special offers are announced for customers. Select the option
that depicts an appropriate cluster design in this case:

a) Deploy a standard cluster and use a Deployment with the HPA.

b) Deploy a cluster with autoscaling and use a Deployment with the HPA.

c) Deploy a standard cluster and use a Deployment with the VPA.

d) Deploy a cluster with autoscaling and use a Deployment with the VPA.

https://kubernetes.io/docs/home/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine

298 Understanding GKE Essentials to Deploy Containerized Applications

4. Choose the cluster configuration that could withstand it if there was a loss of a
GCP zone:

a) Create a regional cluster.

b) Create a Redis cluster that can cache the resource information of the zone where
cluster resources are hosted.

c) Create two clusters in separate zones and create a load balancer between them.

d) None of the above.

5. Select the Google Cloud Service where private GKE clusters can use Docker
images from?

a) Cloud Source Repositories

b) Container Registry

c) Cloud Build

d) All of the above

6. Select the allowed maximum clusters per zone:

a) 25

b) 50

c) 100

d) Unlimited

7. Select the command to get authentication credentials to interact with a cluster
named my-cluster:

a) gcloud containers clusters get-credentials my-cluster

b) gcloud container clusters get-credentials my-cluster

c) gcloud container cluster get-credentials my-cluster

d) gcloud containers cluster get-credentials my-cluster

8. Select the command that can retrieve pods in a cluster:

a) gcloud get pods

b) kubectl list pods

c) gcloud list pods

d) kubectl get pods

Practice test 299

9. The company Real World decides to use a third-party monitoring solution to
monitor an application deployed in a GKE cluster. Select the best approach to
deploy the third-party monitoring solution:

a) It is not possible to use a third-party monitoring solution in GKE.
b) Download the monitoring solution for Cloud Marketplace.
c) Deploy the monitoring solution in a Pod as a DaemonSet.
d) Deploy the monitoring solution in a Pod as a ReplicaSet.

10. A VPC on Google Cloud is a:

a) Zonal resource
b) Global resource
c) Regional resource
d) Multi-Regional resource

11. An application called my-app in GKE needs access to a managed MySQL database.
Select the most appropriate option:

a) Run MySQL as an application in the cluster. The my-app application will connect
with the MySQL application through the ClusterIP Service.
b) Use Cloud SQL to run MySQL database. Run the Cloud SQL proxy as a side-car
container insider the application's Pod.
c) Run MySQL as an application in the cluster. The my-app application will connect
with the MySQL application through the LoadBalancer Service.
d) Use Cloud SQL for running MySQL Database. Run the Cloud SQL proxy as a
ClusterIP Service.

12. Google Network Load Balancing distributes the following traffic:

a) TCP
b) UDP
c) TCP or UDP
d) None of the above

13. From an availability-type point of view, a cluster created in Autopilot mode is:

a) Zonal
b) Multi-zonal
c) Regional
d) Zonal and regional

300 Understanding GKE Essentials to Deploy Containerized Applications

14. Select the option that is not a supported release channel in GKE:

a) Regular

b) Alpha

c) Rapid

d) Stable

15. Select the possible cluster configurations based on network isolation:

a) Standard and Private

b) Standard and Public

c) Standard and Default

d) Private and Public

Answers
1. (d) – The control plane components such as the kube-api server, scheduler, and

so on form the cluster master and are set up and managed by GKE.

2. (b) – kubectl logs p1 -c c2

3. (b) – Deploy a cluster with autoscaling and use Deployment with HPA.

4. (a) – Create a regional cluster as the workload is spread across multiple zones in
one region.

5. (b) – Container Registry

6. (b) – 50

7. (b) - gcloud container clusters get-credentials my-cluster

8. (d) - kubectl get pods

9. (c) - Deploy the monitoring solution in a Pod as a DaemonSet.

10. (b) – Global resource

11. (c)

12. (c) – TCP or UDP

13. (c) – Regional

14. (b) – Alpha

15. (d) – Private and Public

9
Securing the Cluster

Using GKE Security
Constructs

Kubernetes, or K8s, is an open source container orchestration system that runs
containerized applications but requires significant effort to set up and maintain. Google
Kubernetes Engine (GKE) is an enhanced version of K8s that is managed in nature,
abstracts the master plane components from the user, provides the ability to auto-upgrade,
and supports features such as DNS, logging, and monitoring dashboards as built-ins
rather than maintaining them as external plugins. Kubernetes has a lot of critical concepts,
jargon, and objects. The last two chapters (Chapter 7, Understanding Kubernetes Essentials
to Deploy Containerized Applications, and Chapter 8, Understanding GKE Essentials to
Deploy Containerized Applications) focused on native Kubernetes features such as cluster
anatomy, elaborated on key Kubernetes objects, and discussed how applications are
scheduled on a cluster. In addition, the focus was extended to learning about specific GKE
features such as node pools, cluster configurations, options to auto scale workloads, and
understand how GKE interacts with other GCP services.

This chapter specifically focuses on understanding the basic security constructs
in Kubernetes, their application, and then specific GKE security features that are
fundamental to hardening a cluster's security. The key here is to secure the applications
running inside the cluster using GKE-specific features.

302 Securing the Cluster Using GKE Security Constructs

This chapter will cover the following topics:

• Essential security patterns in Kubernetes: This section deep dives into
fundamental security constructs in native Kubernetes, such as authentication,
authorization, securing the control plane, and Pod security. We will also look at
each of the security constructs with respect to their GKE implementations.

• Hardening cluster security: This section deep dives into GKE-specific security
features that provide options for securing applications running inside the GKE
cluster. This includes features such as private cluster, binary authorization,
container-optimized OS, and more.

Technical requirements
There are two main technical requirements for this chapter:

• A valid Google Cloud Platform (GCP) account to go hands-on with GCP services:
https://cloud.google.com/free

• Install Google Cloud SDK: https://cloud.google.com/sdk/docs/
quickstart

Essential security patterns in Kubernetes
A Kubernetes cluster can run multiple types of workloads. This includes stateful
applications, stateless applications, jobs, and DaemonSets. However, it is critical to
secure these workloads from potential security attacks. Native Kubernetes provides some
essential security constructs that focus on the fundamentals, including a request being
sent to the cluster and how the request is authenticated and authorized. Additionally, it
is important to understand how the master plane components are secured and how the
pods running the applications can also be secured. We will cover these from a native
Kubernetes standpoint, but their implementation in GKE will also be discussed. The first
such security construct we will deep dive into is authentication.

Authentication
Authentication is the process of determining the identity of the user. It essentially
confirms that the user is who they say they are and eventually provides access to eligible
resources once authentication is successful.

https://cloud.google.com/free
https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart

Essential security patterns in Kubernetes 303

Kubernetes supports two categories of authentication or user:

• User accounts

• Kubernetes service accounts

Let's look at these in more detail.

User accounts
By default, Kubernetes does not have any objects that can support normal user accounts.
Hence, these can never be created through an API call. Normal or regular users in
Kubernetes are created in any of the following ways:

• By an admin distributing private keys

• With a file that contains a list of usernames and their associated passwords

• Through external identity service providers

In the case of GKE, normal user accounts can be provisioned by Cloud IAM users. These
user accounts are referred to as members. Members can also be defined as part of a G
Suite domain or a Cloud Identity domain. It is also possible to add members or users to
Cloud IAM by linking to an existing active directory through Google Cloud Directory
Sync. In addition to Cloud IAM users, GCP service accounts are also considered
members, like users. These are different from Kubernetes service accounts.

GCP service accounts are managed by Google Cloud IAM and specifically used if GCP
resources need to have identities that are tied to an application or a virtual machine,
instead of a human being. In contrast, Kubernetes service accounts provide an identity to
a process running inside a pod and provides access to the cluster.

Kubernetes service accounts
Kubernetes service accounts are users that are managed by the Kubernetes API. This
means that unlike regular user accounts, the service accounts can be created and managed
through API calls. In fact, every namespace in Kubernetes has a default Kubernetes
service account. These are automatically created by the API server. The service account
admission controller associates the created service accounts with the running pods. In fact,
service accounts are stored as secrets and are mounted onto pods when they're created.
These secrets are used by processes running inside the pod for in-cluster access to the
API server.

304 Securing the Cluster Using GKE Security Constructs

In addition, Kubernetes service accounts are used to create identities for long-running
jobs where there is a need to talk to the Kubernetes API, such as running a Jenkins server.
You can use the following CLI command to create a Kubernetes service account:

Create kubernetes service account

kubectl create serviceaccount jenkins

The preceding command creates a serviceaccount object, generates a token for the
service account, and creates a secret object to store the token. The secret bearing the token
can be retrieved using the following CLI command:

Get the definition of the service account

kubectl get serviceaccounts jenkins -o yaml

The preceding command will result in the following output:

apiVersion: v1

kind: ServiceAccount

metadata:

 # ...

secrets:

- name: jenkins-token-78abcd

The secret that's displayed under the secrets section will contain the public Certificate
Authority (CA – an entity that issues digital certificates) of the API server, the specific
namespace, and a signed JSON Web Token (JWT). The signed JWT can be used as the
bearer account to authenticate the provided service account. This service account can
eventually be used either for in-cluster communication or even to authenticate from
outside the cluster, as in the case of a Jenkins server.

Every request to Kubernetes needs to be authenticated before it can serve requests. The
incoming request is handled by the kube-api server by listening on port 443 using
HTTPS. Authentication can be done in various ways. GKE supports the following
authentication methods:

• OpenID Connect tokens

• x509 client certs

• Basic authentication using static passwords

Essential security patterns in Kubernetes 305

OpenID Connect is a layer on top of the OAuth 2.0 protocol and allows clients to verify
the identity of an end user by querying the authorization server. x509 client certificates
and static passwords present a wider surface of attack than OpenID. In GKE, both x509
and static password authentication is disabled by default, specifically in clusters created
with Kubernetes 1.12 and later. This helps improve the default security posture as the area
of impact in the event of an attack is significantly reduced or lowered.

This completes this topic on authentication in Kubernetes. The next topic will cover
authorization in Kubernetes.

Authorization
Authorization is the process of determining whether a user has permission to access
a specific resource or perform a specific function. In Kubernetes, a user must be
authenticated or logged in and authorized to access or use specific resources. It's generally
recommended to enforce the principle of least privilege as a security best practice, as this
ensures that a user only has the required level of access to the resource based on the access
requirements.

Specific to GKE, a user authenticating via Cloud Identity can be authorized using two
approaches. In fact, GKE recommends using both approaches to authorize access to a
specific resource:

• Cloud Identity and Access Management (IAM)

• Kubernetes Role-Based Access Control (RBAC)

Cloud IAM is the access control system for managing GCP resources. Google Account,
service account, and Google Group are entities that have an identity in Cloud IAM.
Cloud IAM allows users to perform operations at the project level (such as listing all GKE
clusters in the project) or at the cluster level (such as viewing the cluster) but specifically
outside the cluster. This includes adding specific GKE security configuration options to an
existing cluster or even to a new cluster. However, Kubernetes RBAC provides access to
inside the cluster, even specifically at the namespace level. RBAC allows you to fine-tune
rules to provide granular access to resources within the cluster.

To summarize, Cloud IAM defines who can view or change the configuration of a GKE
cluster, while Kubernetes RBAC defines who can view or change Kubernetes objects inside
the specific GKE cluster. GKE integrates Cloud IAM and Kubernetes RBAC to authorize
users to perform actions on resources if they have the required permissions. Now, let's
look at both authorization methods, starting with GKE authorization via Cloud IAM.

306 Securing the Cluster Using GKE Security Constructs

GKE authorization via Cloud IAM

There are three main elements that comprise Cloud IAM access controls. They are
as follows:

• Who: This refers to authentication; specifically, the identity of the member making
the request.

• What: This refers to authorization; specifically, the set of permissions that are
required to authorize the request. Permissions cannot be directly assigned to
members; instead, a set of permissions comprises a role that is assigned to members.

• Which: This refers to the resources that the request is authenticated and authorized
to access. In the case of GKE, this refers to GKE resources such as the clusters or
objects inside the cluster.

GKE provides several predefined Cloud IAM roles that provide granular access to
Kubernetes engine resources. The following table summarizes the critical pre-defined
IAM roles required to authorize or perform actions on GKE:

Essential security patterns in Kubernetes 307

You can always use custom roles with the minimum required set of permissions. This is
specifically true in situations where the GKE pre-defined roles are too permissive or do
not fit the use case at hand to meet the principle of least privilege.

Next, we will look at Kubernetes RBAC.

Kubernetes RBAC
Kubernetes RBAC is an authorization mechanism that can limit access to specific
resources based on roles that have been assigned to individual users. RBAC is a native
Kubernetes security feature that provides options to manage user account permissions.
Kubernetes RBAC can be used as an added supplement to Cloud IAM. If Cloud IAM can
define roles to operate on clusters and API objects within the cluster, then RBAC can be
used to define granular access to specific API objects inside the cluster.

There are three main elements to Kubernetes RBAC. These are as follows:

• Subjects: This refers to a set of users or processes (including Kubernetes service
accounts) that can make requests to the Kubernetes API.

• Resources: This refers to a set of Kubernetes API objects, such as Pod, Deployment,
Service, and so on.

• Verbs: This refers to a set of operations that can be performed on resources such as
get, list, create, watch, describe, and so on.

The preceding elements are connected by two RBAC API objects:

• Roles: Connects API resources and verbs

• RoleBindings: Connects Roles to subjects

Roles and RoleBindings can be applied at either the cluster level or at the namespace level.
These will be discussed in the upcoming subsections, starting with Roles.

Roles
Roles connect API resources and verbs. There are two types of roles in RBAC. RBAC
Roles are defined at the namespace level, while RBAC ClusterRole are defined at the
cluster level. We'll look at these in the following sub-sections, starting with RBAC Roles.

308 Securing the Cluster Using GKE Security Constructs

RBAC Roles

The following is an RBAC Role that's been defined for a specific namespace:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: viewer

 namespace: production

rules:

apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

The definition represents a role of viewer that connects the resource pod with specific
verbs, get and list, in the production namespace. Only one namespace can
be defined per role. For core groups, the apiGroups section is optional. However,
apiGroups should be specified for groups other than core groups. In addition, it is also
possible to define a granular role where a specific resource name is also specified.

Multiple rules can be added to a role. Rules are additive in nature. An RBAC Role doesn't
support deny rules. The following is an extension of the earlier RBAC Role, which now
includes multiple rules and specifies a resource name:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: viewer

 namespace: production

rules:

apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list"]

apiGroups: [""]

resources: ["ConfigMap"]

resourceNames: ["prodEnvironmentVariables"]

verbs: ["get", "list"]

Essential security patterns in Kubernetes 309

In the preceding specification, the viewer RBAC Role can now perform get and list
actions on Pods and ConfigMap. However, the operations on ConfigMap are strictly
restricted to a specific ConfigMap named prodEnvironmentVariables.

This completes this sub-section on RBAC Role, one of the two possible RBAC roles. The
other – RBAC ClusterRole – will be detailed in the following sub-section.

RBAC ClusterRole
RBAC ClusterRole grants permissions at the cluster level, so you don't need to define a
specific namespace. The rest of the elements and their usage is the same as RBAC Role.

Namespace Scope versus Cluster Scope
There are specific resources that are scoped at the namespace level and others
that are scoped at the cluster level. Pods, Deployments, Services, Secrets,
ConfigMaps, PersistentVolumeClaim, Roles, and RoleBindings are namespace
scoped. Nodes, PersistentVolume, CertificateSigningRequests, Namespaces,
ClusterRoles, and ClusterRoleBindings are cluster scoped.

The following is the definition of an RBAC ClusterRole, where the intent is to define
a role that can perform list, get, create, and delete operations against nodes in
the cluster:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: node-administrator

rules:

apiGroups: [""]

 resources: ["nodes"]

 verbs: ["get", "list", "create", "delete"]

This completes this sub-section on Roles. The following sub-section explains how roles
and users are tied through the RoleBindings Kubernetes API object.

RoleBindings
RoleBindings connect the subject to a role through a Kubernetes API object. There are
two types of RoleBindings in RBAC. RBAC RoleBindings are defined at the namespace
level, while RBAC ClusterRoleBindings are defined at the cluster level. Both will be
discussed in the following sub-sections.

310 Securing the Cluster Using GKE Security Constructs

RBAC RoleBindings

The following is the definition of an RBAC RoleBinding that's been defined for a specific
namespace that connects users to RBAC Roles:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: viewer-rolebinding

 namespace: production

subjects:

- kind: User

 name: joe@organization.com

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: viewer

 apiGroup: rbac.authorization.k8s.io

The preceding RBAC RoleBinding has been defined for a production namespace and
connects the elements defined under subjects to elements defined under roleRef. To
be specific, the RBAC RoleBinding connects the user joe@organization.com to the
viewer RBAC Role.

It's important to note that kind under the subject section can be of the User, Group, or
ServiceAccount type. These values, from a GKE perspective, can either be from a Cloud
IAM User, Cloud IAM service account, or a Kubernetes service account.

RBAC ClusterRoleBindings
RBAC ClusterRoleBindings bind subjects to RBAC ClusterRoles at the cluster level and
are not restricted at the namespace level. You can only bind resources that are cluster
scoped, not namespace scoped.

The following is the definition of RBAC ClusterRoleBindings, where the intent is to
bind a specific admin user to the RBAC ClusterRole, called node-administrator,
to perform operations against GKE nodes:

Essential security patterns in Kubernetes 311

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: node-administrator-clusterrolebinding

subjects:

- kind: User

 name: theadmin@organization.com

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: node-administrator

 apiGroup: rbac.authorization.k8s.io

This completes this sub-section on RoleBindings, where both kinds of RoleBindings
were explained. Overall, this also concludes the sub-section on Kubernetes RBAC and
authorization in Kubernetes in particular. The upcoming sub-section discusses another
key Kubernetes security construct – control plane security – which focuses on securing
master control plane components.

Control plane security
As per GCP's shared responsibility model, GKE's master control plane components such
as API server, etcd database, controller manager, and so on are all managed by Google.
So, Google is responsible for securing the control plane, while the end user is responsible
for securing nodes, containers, and pods.

Every GKE cluster has its own root CA. This CA represents an entity that issues a trusted
certificate. This trusted certificate is used to secure the connection between machines.
The root keys for a CA are managed by an internal service from Google. Communication
between the master and the nodes in a cluster is secured based on the shared root of trust
provided by the certificates issued by the CA. By default, GKE uses a separate per-cluster
CA to provide certificates for the etcd databases within a cluster. Since separate CAs
are used for each separate cluster, a compromised CA in one cluster cannot be used to
compromise another cluster.

312 Securing the Cluster Using GKE Security Constructs

The Kubernetes API server and kubelet use secured network communication protocols
such as TLS and SSH. They do this by using the certificates issued by the cluster root CA.
When a new node is created in the cluster, the node is injected with a shared secret at the
time of its creation. This secret is then used by its kubelet to submit certificate signing
requests to the cluster root CA. This allows kubelet to get client certificates when the
node is created, and new certificates when they need to be renewed or rotated. kubelet
uses these client certificates to communicate securely with the API server.

You must periodically rotate the certificates or credentials to limit the impact of a
breach. But sometimes, it might be difficult to strike a balance in terms of how often
the credentials should be rotated. This is because the cluster API server will remain
unavailable for a short period of time. Note that the credentials that are used by the API
server and the clients can be rotated except for the etcd certificates, since these are
managed by Google.

The following is the step-by-step process you should follow to rotate credentials:

1. The rotation process starts by creating a new IP address for the cluster master, along
with its existing IP address.

2. kube-apiserver will not be available during the rotation process, but existing
pods will continue to run.

3. New credentials are issued to the control plane as the result of a new IP address.

4. Once GKE has reconfigured the masters, the nodes are automatically updated by
GKE to use the new IP and credentials. In addition, the node version is also updated
to the closest supported version.

5. Each API client must be updated with the new address. Rotation must be completed
for the cluster master to start serving with the new IP address and new credentials
and to remove the old IP address and old credentials.

6. The master node will stop serving the old IP address.

7. If the rotation process is started but not completed within 7 days, then GKE will
automatically complete the rotation.

Pods run on nodes and by default, pods can access the metadata of the nodes they are
running on. This includes node secrets, which are used for node configuration. So, if a pod
is compromised, the node secret also gets compromised, thus negatively impacting the
entire cluster. The following steps should be taken to prevent such a compromised event
and to protect cluster metadata:

Essential security patterns in Kubernetes 313

• The service account tied to the nodes should not include the compute.
instance.get permission. This blocks Compute Engine API calls to
those nodes.

• The legacy Compute Engine API endpoint should be disabled (versions 0.1 and
v1-beta-1) as these endpoints support metadata being queried directly.

• Use a workload identity to access Google Cloud services from applications running
within GKE. This prevents pods from accessing the Compute Engine
metadata server.

This completes this sub-section on how master control plane components are secured in
GKE. Next, we'll look at how to secure pods running in a cluster by looking at pod security.

Pod security
One or more containers run inside a pod. By default, these containers can be deployed
with privileged elevation. These are also known as privileged containers. Privileged
containers have the root capabilities of a host machine and can access resources that can
otherwise not be accessed by ordinary containers. The following are a few use cases for
privileged containers:

• Running a Docker daemon inside a Docker container

• Requiring direct hardware access to the container

• Automating CI/CD tasks on an open source automation server, such as Jenkins

Running privileged containers is convenient but undesirable from a security perspective
as it allows critical access to host resources. This privilege can be a disadvantage if it's
exploited by cybercriminals. The attackers will have root access, which means they can
identify and exploit software vulnerabilities and possible misconfigurations, such as
containers with no authentication or minimum strength credentials. It is essentially a
playground for coin miners to use this privilege for unauthorized needs.

There are two potential ways to define restrictions on what containers in a pod can do.
They are as follows:

• Pod security context

• Pod security policy

Let's look at these options in more detail.

314 Securing the Cluster Using GKE Security Constructs

Pod Security Context

The security settings for a pod can be specified using the securityContext field in the
pod specification. This applies to all the containers inside the pod and enforces the use
of specific security measures. They can define whether privileged containers can run and
whether the code in the container can be escalated to root privileges.

A security context can be defined both at the pod level and the container level. The
container-level security context takes precedence over the pod-level security context. The
following is an extract from the pod manifest YAML for securityContext:

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 securityContext:

 runAsUser: 3000

 containers:

 - name: nginx

 image: nginx

 securityContext:

 runAsUser: 1000

 allowPrivilegeEscalation: false

 - name: hello

 image: hello-world

The preceding specification represents a pod with two containers: nginx and hello.
The securityContext definition on the pod specifies that processes inside containers
run with a user ID of 3000. It is important to specify a non-zero number as 0 in Linux as
this represents a privileged user's user ID. Not specifying 0 takes away the root privilege
of the code running inside the container. securityContext on the pod applies
to all the containers inside the pod, unless each individual container has an optional
securityContext defined. In that case, securityContext on the container takes
precedence. So, in the preceding example, the hello container will run the process inside
its container while using 3000 as the user ID, whereas the nginx container will run the
process while using 1000 as the user ID.

Essential security patterns in Kubernetes 315

Using allowPrivilegeEscalation on a Container
There are various ways we can use this field. One such scenario is that this field
can be explicitly used where securityContext is not defined at the pod
level but privilege escalation needs to be avoided at a specific container level.

Security contexts allow you to exercise control over the use of host namespaces,
networking, filesystems, and volume types. A security context can be used to control
additional security settings:

• Provide specific capabilities: If you don't want to give root capabilities, specific
capabilities can also be specified at the container level. In the following example,
NET_ADMIN allows you to perform network-related operations, such as modifying
routing tables, enabling multicasting, and so on. SYS_TIME allows you to set the
system clock:

. . .

spec:

 containers:

 - name: security-context-example

 image: gcr.io/demo/security-context-example

 securityContext:

 capabilities:

 add: ["NET_ADMIN", "SYS_TIME"]

• Enable seccomp: Blocks code that's running in containers from making
system calls.

• Enable AppArmor: Restricts individual program actions using security profiles.

The downside of configuring securityContext for each pod and, sometimes, at each
container level is that it involves a lot of effort, especially when hundreds of pods are
involved in a cluster. This can be solved by using Pod Security Policies.

Pod Security Policies
A Pod Security Policy is a cluster-level resource that manages access for creating and
updating pods, based on defined policies. A policy is a set of conditions that need to be
met. A pod security policy makes it easier to define and manage security configurations
separately. This allows you to apply security restrictions to multiple pods, without having
to specify and manage those details in individual pod definitions.

316 Securing the Cluster Using GKE Security Constructs

Pod security Policies can enforce the following:

• Disable privileged containers: This can be disabled and can be optionally applied
against a specific namespace and specific service account.

• Enable read-only filesystems: Containers such as web applications
potentially write to a database and not necessarily to a filesystem. So, in such
cases, readOnlyRootFilesystem can be set to true.

• Enforce non-root users: This can be enforced to not allow applications to run as
root. You can do this by setting the MustRunAsNonRoot flag to true.

• Prevent hostpath volumes: This can be prevented by using hostpath for specific
directories and not the entire filesystem.

There are two elements you need in order to define a Pod Security Policy:

• PodSecurityPolicy object: The PodSecurityPolicy object represents a set of
restrictions, requirements, and defaults that are defined similar to a security context
inside a pod. This object also specifies all the security conditions that need to be met
for a pod to be admitted into a cluster. These rules are specifically applied when a
pod is created or updated.

• PodSecurityPolicy controller: The PodSecurityPolicy controller is an
admission controller. The admission controller validates and modifies requests
against one or more Pod Security Policies. The controller essentially determines
whether a pod can be created or modified.

Creating a PodSecurityPolicy object
If you need to create a PodSecurityPolicy object where privileged containers cannot
be run in a specific namespace and by a specific service account, then you should follow
these steps:

1. Define a PodSecurityPolicy Kubernetes object using the pod-security-
policy.yaml file. The following is an example specification:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: my-pod-security-policy

spec:

 privileged: false #Prevents creation of privileged Pods

 runAsUser:

 rule: RunAsAny #Indicates any valid values to be used

Essential security patterns in Kubernetes 317

Create the PodSecurityPolicy resource using the following CLI command:
Create pod security policy

kubectl apply -f pod-security-policy.yaml

2. To authorize the specific PodSecurityPolicy, define a ClusterRole with the
resource set to podsecuritypolicies and against the specific policy's resource
name. An example ClusterRole specification for my-cluster-role.yaml is
as follows:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: my-cluster-role

rules:

- apiGroups:

 - policy

 resources:

 - podsecuritypolicies

 verbs:

 - use

 resourceNames:

 - my-pod-security-policy

3. Create your ClusterRole using the following CLI command:

Create ClusterRole

kubectl apply -f my-cluster-role.yaml

4. To authorize the created ClusterRole against a specific subject (which could be a
service account) and, optionally, in a specific namespace, define a RoleBinding.
An example specification for my-role-binding.yaml is as follows, where a
RoleBinding is being applied to a specific service account:

Bind the ClusterRole to the desired set of service
accounts

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: my-role-binding

318 Securing the Cluster Using GKE Security Constructs

 namespace: my-namespace

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: my-cluster-role

subjects:

 - kind: ServiceAccount

 name: sa@example.com

 namespace: my-namespace

5. Create your RoleBinding using the following CLI command:

Create RoleBinding

kubectl apply -f my-role-binding.yaml

6. Enable the PodSecurityPolicy controller either at the time of cluster creation
or while you're updating an existing cluster. The following are the CLI commands
for both options:

To enable at the time of cluster creation

gcloud beta container clusters create <cluster-name>
--enable-pod-security-policy

To enable on an existing cluster

gcloud beta container clusters update <cluster-name>
--enable-pod-security-policy

7. If you ever need to disable the PodSecurityPolicy controller, use the following
CLI command:

To disable PodSecurityPolicy controller

gcloud beta container clusters update <cluster-name>
--no-enable-pod-security-policy

In GKE, the PodSecurityPolicy controller is disabled by default or is not enabled at
the time of cluster creation. So, it needs to be explicitly enabled. However, the controller
should only be enabled once all the relevant PodSecurityPolicy objects have been
defined, along with their authorization requirements. If there are multiple pod security
policies, then these are evaluated alphabetically.

Hardening cluster security in GKE 319

This concludes this section, which discussed the essential security concepts in the control
plane (authentication), worker nodes, and deployments (authorization). This section
also drew references to GKE and how these concepts are also implemented in GKE. The
upcoming section focuses on specific GKE recommendations around hardening cluster
security to ensure the applications running inside the cluster are secure. GKE offers
certain features to support these recommendations, all of which will be outlined in detail.

Hardening cluster security in GKE
Securing the Kubernetes cluster should be your topmost priority when it comes to
securing applications running inside your cluster. GKE supports many such features
to harden the cluster. For example, the GKE control plane is patched and upgraded
automatically as part of the shared responsibility model. In addition, node auto-upgrades
are also enabled for a newly created GKE cluster.

The following are some key additional GKE features that can be used to secure and harden
clusters. Some of these features are enabled by default while you're creating a GKE cluster:

• GKE supports a cluster type called Private Cluster, which provides options to
restrict access to control planes and nodes. This needs to be specified at the time
of cluster creation.

• GKE supports container-optimized OS images. It is a container-optimized OS that
has been custom-built, optimized, and hardened specifically for running containers.

• GKE supports shielded GKE nodes as they help increase cluster security using
verifiable node identities and integrity. This feature can be enabled on cluster
creation or can be updated for an existing cluster.

• GKE allows you to enforce the use of Network Policies on a new or existing cluster.
A network policy can restrict pod-to-pod communication within a cluster, thus
reducing your footprint in the event of a security incident.

• GKE recommends using binary authorization, a process that ensures supply chain
software security. Here, you have the option to exercise control so that only trusted
images in the cluster are deployed.

• GKE can authenticate with other Google services and APIs through Workload
Identity. This is the recommended way of doing things, instead of using the
service account keys at the node level.

320 Securing the Cluster Using GKE Security Constructs

• GKE provides an additional layer of protection for sensitive data such as secrets by
integrating with Google Secret Manager. Secret Manager is a GCP service that's
used to secure API keys, passwords, certificates, and other sensitive data. GKE also
supports the use of third-party secret managers such as HashiCorp Vault.

Each of the preceding GKE features will be covered in their respective sections. We will
start with GKE private clusters.

GKE private clusters
GKE private clusters are one of the possible cluster configurations in GKE, especially
when it comes to network isolation. This cluster configuration isolates node connectivity
to the public internet. This includes both inbound traffic to the cluster and outbound
traffic from the cluster. This is because the nodes inside the cluster will not have a public-
facing IP address and will only have an internal IP address.

If nodes require outbound internet access, then a managed Network Address Translation
(NAT) gateway can be used. Cloud NAT is GCP's managed NAT gateway. For inbound
internet access, external clients can reach applications inside the cluster through services.
The service type can either be of the NodePort or LoadBalancer type. If the service is
of the LoadBalancer type, GCP's HTTP(S) load balancer can be used and will provide
an external IP address to allow inbound traffic into the cluster. The key to GKE private
clusters is the functionality of their control planes, since this is the main differentiating
factor compared to a non-private cluster. We will look at this next.

Control plane in private clusters
In GKE, kube-apiserver is managed by the control plane. Google runs the control
plane on a VM that is in a VPC network in a Google-owned project. In the case of a
private cluster, the master control plane sitting on a Google-owned VPC network connects
to your cluster's VPC network through VPC network peering. The traffic between the
nodes and the control plane is routed through an internal IP address.

You can access the control plane through endpoints. In general, there are two types
of endpoints:

• Public endpoint: This represents the external IP address of the control plane.
Commands via the kubectl tool go through the public endpoint.

• Private endpoint: This represents the internal IP address in the control plane's VPC
network. This is very specific to private clusters. The nodes in the private cluster
communicate with the components in the control plane through internal
IP addresses.

Hardening cluster security in GKE 321

To summarize, a public cluster control plane has an internet-facing endpoint,
while a private cluster control plane can be accessed both through private and
public endpoints. In addition, a private cluster can only be created in a VPC-native
mode (refer to Chapter 8, Understanding GKE Essentials for Deploying Contain-
erized Applications). The level of access to a private cluster via endpoints can be
controlled through one of the following three configurations:

• Public endpoint access disabled

• Public endpoint access enabled; authorized networks enabled for limited access

• Public endpoint access enabled; authorized networks disabled

Each of the preceding configurations will be discussed in detail in the upcoming
sub-sections, starting with Public endpoint access disabled.

Public endpoint access disabled
This configuration represents a private GKE cluster with no access to a public endpoint.
This is very secure as there is no access to the control plane via public internet. The cluster
can only be accessed from the subnet and a secondary range used for pods. A VM in the
same region can be added by updating the master authorized networks with the private IP
of the VM in CIDR format.

If the cluster needs to be accessed from outside, then connect to the GKE private
cluster's VPC network through Cloud VPN or Cloud Interconnect. The connection gets
established through internal IP addresses. The list of internal IP addresses that can access
the control plane can also be limited by using master-authorized-networks. This
does not include public IP addresses as access to public endpoints is disabled.

Use the following CLI command if you need to create a private GKE cluster where you
don't want client access to the public endpoint:

For Standard Clusters

gcloud container clusters create my-private-cluster \

 --create-subnetwork name=my-subnet \

 --enable-master-authorized-networks \

 --enable-ip-alias \

 --enable-private-nodes \

 --enable-private-endpoint \

 --master-ipv4-cidr 172.20.4.32/28

322 Securing the Cluster Using GKE Security Constructs

The key flags in the preceding CLI command are as follows:
• --enable-master-authorized-networks: Access to the cluster control

plane is restricted to the list of internal IP addresses. Cannot include external IP
addresses.

• --enable-private-nodes: This indicates that the cluster nodes do not have
external IP addresses.

• --enable-private-endpoint: This indicates that the cluster is only managed
by the private IP address of the master API endpoint.

The next sub-section focuses on a configuration where public endpoint access is enabled
but access is restricted.

Public endpoint access enabled; authorized networks enabled for
limited access
This configuration represents a private GKE cluster configuration where there is restricted
access to the control plane from both internal and external IP addresses. The specific set of
internal and external IP addresses can be specified as part of the authorized networks. So,
a machine with an external IP address can only communicate with a GKE Private Cluster
if that IP address is included in the authorized networks.

Use the following CLI command if you need to create a private GKE cluster where there is
limited access to a public endpoint:

For Standard Clusters

gcloud container clusters create my-private-cluster-1 \

 --create-subnetwork name=my-subnet-1 \

 --enable-master-authorized-networks \

 --enable-ip-alias \

 --enable-private-nodes \

 --master-ipv4-cidr 172.20.8.0/28

Note that most of these flags are the same as they were in the previous sub-section,
except for the omission of the --enable-private-endpoint flag. Omitting this
flag implies that the cluster control plane can be reached both by private and public
endpoints, but access is restricted only to the allowed IP address as part of the master
authorized networks.

The next sub-section focuses on a configuration where public endpoint access is enabled
and access is not restricted.

Hardening cluster security in GKE 323

Public endpoint access enabled; authorized networks disabled

This is the default configuration option while creating a private GKE cluster. Essentially,
the cluster will have access to the control plane from any IP address. This is the least
restrictive option.

Use the following CLI command if you need to create a private GKE cluster where you
wish there to be unrestricted access to the public endpoint:

For Standard Clusters

gcloud container clusters create my-private-cluster-2 \

 --create-subnetwork name=my-subnet-2 \

 --no-enable-master-authorized-networks \

 --enable-ip-alias \

 --enable-private-nodes \

 --master-ipv4-cidr 172.20.10.32/28

Note that most of these flags are the same as the ones in the configuration where public
endpoint access is enabled but master authorized networks are not enabled. As a result,
there are no restricts in terms of the IP addresses that can access the control plane of the
private GKE cluster either via a private endpoint or a public endpoint.

This completes this sub-section on private clusters, where nodes in the cluster can
potentially be isolated or restricted from the public internet. The next topic shifts focus
to container-optimized OS, which essentially protects the application by hardening the
images that are used in containers with key security features. This feature is available
in GKE.

Container-optimized OS
Container-optimized OS (also known as a cos_containerd image) is a Linux-
based kernel that is custom-built from Google and is based on Chromium OS. It can
continuously scan vulnerabilities at the kernel level or against any package of the OS. It
can patch and update any package in case of a vulnerability. It is optimized and hardened
specifically for running containers in production. The following are some of its
key features:

• Minimal OS footprint: Doesn't include packages that are not required, thereby
reducing the OS attack surface.

• Immutable root system and verified boot: The root filesystem is always mounted
as read-only. This prevents attackers from making changes on the filesystem.
Checksum is also computed at build time and verified by the kernel on each boot.

324 Securing the Cluster Using GKE Security Constructs

• Support for stateless configuration: The root filesystem can be customized to allow
writes against a specific directory, such as /etc/. This is useful as you can allow
write configuration at runtime, such as adding users to the filesystem. However,
these changes are not persisted across reboots.

• Security-hardened kernel: Supports features such as seccomp and AppArmor to
enforce fine-grained security policies.

• Automatic updates: Supports automatic updates for new security features or
security patches for running GCE VMs.

• Firewall: By default, container-optimized OS doesn't allow any incoming traffic
except SSH on port 22.

Container-optimized OS ensures that the base image that's used to containerize the
applications is secure and has a minimal footprint, but it is also important that these
containers run on nodes that are equally secured or shielded. We will cover this in the
next topic.

Shielded GKE nodes
Shielded GKE nodes is a GKE feature that increases cluster security by providing strong,
verifiable node identity and integrity. These nodes are based on Compute Engine
Shielded VMs.

Shielded VMs
Shielded VMs is a GCP feature where VM instances are ensured they won't
be compromised at the boot or kernel level. GCP makes this possible by using
secure boot and virtual Trusted Platform Modules (vTPMs). Shielded VMs
enforce and verify the digital signature of all the components at the time of
boot process and halt the boot process on failure.

The shielded GKE nodes feature prevents the attacker from impersonating nodes in a
cluster in the event of a pod vulnerability being exploited. If the shielded GKE nodes
feature is enabled, the GKE control plane will cryptographically verify the following and
limit the ability of the attacker to impersonate a node in the cluster:

• Every node in the GKE cluster is a GCE VM running in a Google data center.

• Every node is part of the cluster-provisioned managed instance group.

• kubelet authenticates with the node with a cluster-provisioned certificate.

Hardening cluster security in GKE 325

You can use the following CLI commands to enable shielded GKE nodes in a
new/existing cluster, to verify whether shielded GKE nodes are enabled, and
to disable shielded GKE nodes:
Enable Shielded GKE nodes on new cluster

gcloud container clusters create <cluster-name> --enable-
shielded-nodes

Enable Shielded GKE nodes on existing cluster

gcloud container clusters update <cluster-name> --enable-
shielded-nodes

Verify that Shielded GKE nodes are enabled (check for enabled
under shieldedNodes as true)

gcloud container clusters describe <cluster-name>

Disable Shielded GKE nodes (This will recreate the control
plane and nodes thus leading to downtime)

gcloud container clusters update <cluster-name> --no-enable-
shielded-nodes

There is no extra cost in running shielded GKE nodes. However, they produce more logs
than regular nodes, thus leading to an overall increase in costs with respect to Cloud
Logging. The next topic explains another GKE security feature where the surface area of
the attack is reduced in case of a security threat, by restricting the traffic among pods in
a cluster.

Network Policies – restricting traffic among pods
All the pods within a Kubernetes cluster can communicate with each other. However,
Kubernetes provides an option for when the traffic between pods needs to be controlled at
the IP address or port level. This thought process is strongly recommended to ensure that
the entire cluster is not compromised, and that the surface area is controlled in case of a
security attack. Kubernetes Network Policies helps you restrict traffic among pods within
the cluster.

Network Policies in Kubernetes allow you to specify how a pod can communicate with
various network entities based on pods with matching label selectors, namespaces with
matching label selectors, or specific IP addresses with port combinations (including the
ability to specify exception IP addresses). This can be defined for either ingress or egress
traffic flowing in both directions.

326 Securing the Cluster Using GKE Security Constructs

GKE provides options to enforce the use of a network policy when a cluster is created,
like so:

Enforce network policy for a new GKE cluster

gcloud container clusters create <cluster-name> --enable-
network-policy

Optionally, we can enforce this on an existing cluster by using the following
CLI commands:

Enable add-on to enforce network policy on existing cluster

gcloud container clusters update <cluster-name> --update-
addons=NetworkPolicy=ENABLED

Enforce network policy after enabling add-on for existing
cluster. This will recreate the cluster node pools

gcloud container clusters update <cluster-name> --enable-
network-policy

A sample network policy can be found at https://kubernetes.io/docs/
concepts/services-networking/network-policies/.

In addition to specifying a pinpointed policy, Kubernetes allows you to define default
network policies. The following are some of the supported default policies:

• Default deny all ingress traffic

• Default deny all egress traffic

• Default deny all ingress and all egress traffic

• Default allow all ingress traffic

• Default allow all egress traffic

If a specific network policy or a default policy is not defined, then the cluster will allow
both ingress and egress traffic to and from pods.

The next topic details another key GKE feature known as Binary Authorization, which can
exercise control to ensure only trusted images are deployed to the GKE cluster.

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Hardening cluster security in GKE 327

Binary Authorization
Binary Authorization is a deploy-time security service provided by Google. It ensures
that only trusted containers are deployed in the GKE cluster using deployment policies.
The goal of the policy is to determine which images to allow and which to exempt. To
accomplish this goal, Binary Authorization integrates with Container Analysis – a GCP
service that scans container images stored in a Container Registry for vulnerabilities. In
addition, Container Analysis also stores trusted metadata that's used in the
authorization process.

Binary Authorization policies are security-oriented and comprise one or more rules. Rules
are constraints that need to pass before the images can be deployed to the GKE cluster.
An attested image is one that has been verified or guaranteed by an attestor. The most
common rule that is used is the need for a digitally signed attestation to verify whether
the image has been attested. When a container image is built through Cloud Build, the
image's digest is digitally signed by a signer, which creates an attestation. At the time of
deployment, Binary Authorization enforces the use of an attestor to verify the attestation.
Binary Authorization only allows attested images to be deployed to the cluster. Any
unauthorized images that do not match the Binary Authorization policy are rejected.
Additionally, a Denied by Attestor error can also be returned if no attestations are found
that were valid and were signed by a key trusted by the attestor. To overcome the Denied
by Attestor error, create an attestation and submit it to Binary Authorization.

The following are some common use cases that include attestations:

• Build verification: To verify whether the container image was built by a specific
build system or from a specific continuous integration (CI) pipeline.

• Vulnerability scanning: To verify whether the CI-built container image has been
scanned for vulnerabilities by Container Analysis and the findings have been
defined at an acceptable level.

Configuring Binary Authorization is a multi-step process. The following is a high-level
summary of the steps involved:

1. Enabled the required APIs. This includes APIs for GKE, Container Analysis, and
Binary Authorization.

2. Create a GKE cluster with binary authorization enabled.

3. Set up a note. This is a piece of metadata in Container Analysis storage that is
associated with an attestor.

328 Securing the Cluster Using GKE Security Constructs

4. Set up cryptographic keys using PKIX keys, to securely verify the identity of
attestors; only enforce verified parties to authorize a container image. Public-Key
Infrastructure (PKIX) keys refer to public key certificates defined in the
X.509 standard.

5. Create an attestor; that is, a person or process that attests to the authenticity of
the image.

6. Create a Binary Authorization policy. The default policy is to allow all images. The
other option includes denying all images or denying images from a specific attestor.

7. Optionally, images can be configured so that they're exempt from the binary
authorization policy.

As we mentioned previously, Binary Authorization can deny images from being deployed
if the policy conditions are violated or not met. However, you can specify the break-glass
flag as an annotation in the pod deployment, which allows pod creation even if the images
violate the policy. The break-glass annotation flag is also logged and can be identified
by incident response teams through audit logs while they're reviewing or debugging the
deployments. The following is a snippet of a pod specification that includes the break-
glass flag annotation:

apiVersion: v1

kind: Pod

metadata:

 name: my-break-glass-pod

 annotations:

 alpha.image-policy.k8s.io/break-glass: "true"

This concludes this topic on Binary Authorization. The next topic details another key GKE
security feature that allows Google Cloud IAM service accounts to be used as Kubernetes
service accounts through Workload Identity, thus providing more secure access to GCP
services from applications running inside the GKE cluster.

Workload Identity
GKE clusters can run applications that might need access to Google-specific APIs, such as
compute APIs, storage APIs, database APIs, and more. GKE recommends using Workload
Identity to access GCP services from applications running within GKE. Workload Identity
allows you to use a Kubernetes service account as a Google service account. This allows
each application to have distinct identities and fine-grained authorization.

Hardening cluster security in GKE 329

Workload Identity uses the concept of a cluster workload identity pool, which allows
Google Cloud IAM to trust and understand Kubernetes service account credentials.
The cluster's workload identity pool will be set to PROJECT_ID.svc.id.goog and is
automatically created at the project level. In such a scenario, Cloud IAM will authenticate
the Kubernetes service account with the following member name:

serviceAccount:PROJECT_ID.svc.id.goog[K8S_NAMESPACE/KSA_NAME]

PROJECT_ID.svc.id.good - workload identity pool on the
cluster

KSA_NAME Kubernetes - service account making the request

K8S_NAMESPACE Kubernetes - namespace with Kube SA is defined

The preceding member's name is unique due to the cluster's Workload Identity pool,
service account name, and Kubernetes namespace. So, multiple service accounts with the
matching three tuples will map to the same member name.

Enabling Workload Identity
Follow these steps to enable Workload Identity on a GKE cluster:

1. Navigate to APIs & Services under the GCP console. Then, search for the IAM
service account Credentials API and enable it.

2. Create a new cluster with Workload Identity enabled via the following
CLI command:

Create cluster with workload identity enabled

gcloud container clusters create <CLUSTER_NAME> \

 --workload-pool=<PROJECT_ID>.svc.id.goog

3. Update an existing cluster with Workload Identity enabled via the following
CLI command:

Update existing cluster with workload identity enabled

gcloud container clusters update <CLUSTER_NAME> \

 --workload-pool=<PROJECT_ID>.svc.id.goog

This concludes this section on Workload Identity, as well as this major section on the key
GKE security features that are recommended by Google to harden cluster security.

330 Securing the Cluster Using GKE Security Constructs

Summary
In this chapter, we discussed some fundamental security concepts from a native
Kubernetes or K8s standpoint. Each of these concepts was extended as we looked at
their equivalent usage or implementation in GKE. Later, we did a deep dive into certain
GKE-specific security features that are critical to hardening cluster security. This included
using node auto upgrades to ensure that the nodes are running the latest version of
Kubernetes, or using Google's container-optimized OS instead of a general-purpose
Linux distribution system. We also looked at using private clusters, where access to the
cluster master can be restricted for enhanced security or can be controlled so that it's
only accessed from authorized networks. We also looked at Binary Authorization, which
ensures that only trusted images can be deployed to the cluster, and Workload Identity,
which allows us to use a Cloud IAM service account as a Kubernetes service account, thus
providing more flexibility in terms of which applications in the GKE cluster can easily
interact with other GCP services, such as Cloud Storage, Secret Management, and more.

In the next chapter, we'll look at services that are tied to Cloud Operations, along with a
specific feature that was introduced in Google Cloud to track the reliability of services:
Service Monitoring. This specific feature/option links the SRE technical practices (SLIs,
SLOs, and error budget) to the features that are available in Google Cloud Operations so
that we can monitor services and alert others about their reliability.

Points to remember
The following are some important points to remember:

• GCP service accounts are used if GCP resources must have an identity that is tied to
an application or a virtual machine.

• Kubernetes service accounts are users that are managed by the Kubernetes API.

• Cloud IAM defines who can view or change the configuration of a GKE cluster and
Kubernetes RBAC defines who can view or change Kubernetes objects inside the
specific GKE cluster.

• Workload Identity is used to access Google Cloud services from applications
running within GKE. This prevents pods from accessing the Compute Engine
metadata server.

• In RBAC, a Role connects API resources and verbs. An RBAC Role is cluster-wide
scoped, while an RBAC ClusterRole is namespace scoped.

• In RBAC, RoleBindings connect Roles to subjects. A RoleBinding is cluster-wide
scoped, while a ClusterRoleBinding is namespace scoped.

Further reading 331

• Every GKE cluster has its own root CA.

• Pod Security Context and Pod Security Policy are two ways we can define
restrictions regarding what the containers inside a pod can do.

• A GKE Private Cluster allows you to restrict access to control planes and nodes.

• The break-glass flag is used in deployments as an annotation; it allows pod creation,
even if the images violate a policy.

• enable-private-nodes: The nodes do not have external IP addresses.

• enable-private-endpoint: The cluster is managed by the private IP address
of the master endpoint.

• enable-master-authorized-networks: Access to the cluster's public
endpoint is restricted to a specific set of source IP addresses.

• Container Analysis is a service that provides vulnerability scanning and metadata
storage for software artifacts.

• Container Analysis stores trusted metadata that's used in the authorization process.

• Binary Authorization allows or blocks images from being deployed to GKE based
on a policy you've configured.

• A container-optimized OS or cos_containerd image is a Linux-based kernel
that can continuously scan for vulnerabilities at the kernel level.

• Shielded GKE nodes increase cluster security by using verifiable node identity and
integrality. This can be enabled using the --enable-shielded-nodes option.

• You can restrict traffic among pods with Network Policies.

• You can configure a secret manager that has been integrated with GKE clusters.

• You can use admission controllers to enforce a Pod Security Policy.

• In terms of Workload Identity, you can use K8's service account and namespace as a
GCP service account to authenticate GCP APIs.

Further reading
For more information on GCP's approach to DevOps, read the following articles:

• Kubernetes: https://kubernetes.io/docs/home/

• Google Kubernetes Engine: https://cloud.google.com/
kubernetes-engine

https://kubernetes.io/docs/home/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine

332 Securing the Cluster Using GKE Security Constructs

Practice test
Answer the following questions:

1. Network Policies are used to restrict traffic among which of the following?

a) Deployments

b) Containers

c) Pods

d) Container images

2. Select the RBAC option that connects a user and a role:

a) UserRoleBinding

b) RoleBindings

c) Roles

d) RoleUserBinding

3. In a private cluster, which Google service can download a Docker image?

a) Cloud Build

b) Cloud Source Repository

c) Elastic Container Registry

d) Container Registry

4. What will happen if the process of rotating credentials started but never completed?

a) GKE will not complete the cluster rotation.

b) GKE will pause the cluster rotation.

c) GKE will complete the cluster rotation in 7 days.

d) GKE will instantly complete the cluster rotation.

5. Which of the following possible policies will disable privileged containers?

a) Network Policy

b) Pod Security Policy

c) Network Security Policy

d) Pod Policy

Practice test 333

6. Select the GKE Role that allows you to manage clusters, including creating, deleting,
getting, listing, or updating clusters. No access is given to cluster resources or
API objects:

a) GKE Admin

b) GKE Cluster Admin

c) GKE Developer

d) GKE Cluster Developer

7. With regards to a Pod Security Policy (PSP), select the order of operations:

a) Enable PSP Controller, Create PSP, Define Authorization Requirements

b) Create PSP, Enable PSP Controller, Define Authorization Requirements

c) Create PSP, Define Authorization Requirements, Enable PSP Controller

d) Enable PSP Controller, Define Authorization Requirements, Create PSP

8. If a specific network policy or a default policy is not defined, then which of the
following is true?

a) Deny all ingress and all egress traffic.

b) Allow all ingress and all egress traffic.

c) Deny all ingress and allow all egress traffic.

d) Allow all ingress and deny all egress traffic.

9. Select the option that enforces a deploy time policy to GKE:

a) Cloud IAM Policies

b) AppArmor

c) Cloud Armor

d) Binary Authorization

10. The service account admission controller associates the created service accounts with
the running pods. How are the service accounts stored and accessed?

a) Stored as plain text and accessed as environment variables at runtime

b) Stored as a Kubernetes secret and accessed through the key management service

c) Stored as a Kubernetes secret and accessed as an environment variable at runtime

d) Stored as plain text and accessed through the key management service

334 Securing the Cluster Using GKE Security Constructs

Answers
1. (c): Pods

2. (b): RoleBindings

3. (d): Container Registry

4. (c): GKE will complete the cluster rotation in 7 days.

5. (b): Pod Security Policy

6. (b): GKE Cluster Admin

7. (c): Create PSP, Define Authorization Requirements, Enable PSP Controller

8. (b): Allow all ingress and all egress traffic.

9. (d): Binary Authorization

10. (c): Stored as a Kubernetes secret and accessed as an environment variable
at runtime

10
Exploring GCP

Cloud Operations
Reliability is the most critical feature of a service or a system. Site Reliability Engineering
(SRE) prescribes specific technical tools or practices that help in measuring characteristics
that define and track reliability, such as SLAs, SLOs, SLIs, and error budgets.

In Chapter 2, SRE Technical Practices – Deep Dive, we discussed the key constructs of SLAs
in detail, the need for SLOs to achieve SLAs, the guidelines for setting SLOs, and the need
for SLIs to achieve SLOs. In addition, we learned about the different types of SLIs based
on user journey categorization, different sources to measure SLIs, the importance of error
budgets, and the ways to set error budgets to make a service reliable.

This raises a series of fundamental questions:

• How can we observe SLIs for a service so that the SLOs are not violated?

• How can we track whether our error budgets are getting exhausted?

• How can we maintain harmony between the key SRE technical tools?

336 Exploring GCP Cloud Operations

SRE's answer to the preceding questions is observability. Observability on Google Cloud
Platform (GCP) is established through operations. From Google's point of view, Cloud
Operations is about monitoring, troubleshooting, and improving application performance
in the Google Cloud environment. The key objectives of Cloud Operations are as follows:

• Gather logs, metrics, and traces from any source.

• Query the captured metrics and analyze traces.

• Visualize information on built-in or customizable dashboards.

• Establish performance and reliability indicators.

• Trigger alerts and report errors in situations where reliability indicators are not met,
or issues are encountered.

Google achieves key objectives of operations through a collection of services called Cloud
Operations. Cloud Operations is a suite of GCP services that includes Cloud Monitoring,
Cloud Logging, Error Reporting, and Application Performance Management (APM).
Furthermore, APM includes Cloud Debugger, Cloud Trace, and Cloud Profiler. This
chapter will explore services tied to Cloud Operations. Post that, we will focus on a
specific feature that was introduced in Google Cloud to track the reliability of services
through Service Monitoring. This specific feature/option links the SRE technical practices
(SLIs, SLOs, and Error Budget) to features available in Google Cloud Operations that
monitor the service and tell us about its reliability.

In this chapter, we're going to cover the following main topics:

• Cloud Monitoring: Workspaces, dashboards, Metrics explorer, uptime checks,
and alerting.

• Cloud Logging: Audit Logs, Logs Ingestion, Logs Explorer, and Logs-Based Metrics.

• Cloud Debugger: Setting up, Usage, Debug Logpoints, and Debug Snapshots.

• Cloud Trace: Trace Overview, Trace List, and Analysis Reports.

• Cloud Profiler: Profile Types.

• Binding SRE and Cloud Operations: We will measure service reliability using
Cloud Operations by linking them to SRE technical practices via a hands-on lab.

Cloud Monitoring 337

Cloud Monitoring
Cloud Monitoring is a GCP service that collects metrics, events, and metadata from
multi-cloud and hybrid infrastructures in real time. Cloud Monitoring helps us understand
how well our resources are performing and if there is something wrong that requires
immediate attention. Cloud Monitoring is a medium through which SRE best practices
can be implemented and to ensure that applications are meeting their set SLAs. Cloud
Monitoring consists of out-of-the-box dashboards. These can be used to visualize insights
into key factors that impact SLIs and SLOs such as latency, throughput, and more. Cloud
Monitoring is also critical for incident management as alerts can be generated from key
metrics, and these alerts can be sent as notifications to configured notification channels.

This section on Cloud Monitoring deep dives into several key areas/properties, such as
workspaces, dashboards, Metrics explorer, uptime checks, alerting, access controls, and
the Monitoring agent. We will start with workspaces.

Workspaces
Google Workspace is a centralized hub that's used to organize and display monitoring
information about GCP and AWS resources. Workspace provides a centralized view and acts
as a single point of entry to resource dashboards, uptime checks, groups, incidents, events,
and charts. Google describes this centralized view as a single pane of glass (please refer to the
following screenshot). The actions that can be performed against a workspace include the
ability to view content, which is controlled by Identity and Access Management (IAM):

Figure 10.1 – Overview of a Cloud Monitoring workspace

338 Exploring GCP Cloud Operations

The following is some key terminology we need to know about before we elaborate on the
relationship between workspaces and projects:

• Host project: This refers to the project where Workspace is created.

• Monitored project: This refers to the GCP projects or AWS accounts that the
workspace can monitor.

• AWS connector project: This refers to the GCP project that connects the monitored
AWS account to the workspace.

The upcoming subsection provides insights into the relationship between Workspace
and Project.

Workspace/project relationship
The following are some key pointers with respect to a workspace/project relationship:

• A workspace is always created inside a project. This is known as the host project.

• A workspace is part of a single host project and is named after the host project.

• A workspace can monitor resources from multiple monitored projects
simultaneously. This could include about 200 GCP projects/AWS accounts.

• A workspace can access other monitored projects' metric data, but the actual data
lives in monitored projects.

• A monitored project can only be associated with a single workspace, and a
monitored project can be moved from one workspace to another.

• Multiple workspaces can be merged into a single workspace.

• There is no charge associated with creating a workspace. However, charges with
respect to logging and ingesting metric data is charged to the billing account
associated with the monitored projects.

Tip – how to connect an AWS account to a workspace
A GCP connector project is required. This can be an existing project, or an
empty project (preferred) created for this purpose. GCP connector project
needs to be under the same parent organization as the workspace. A billing
account should be tied to the connector project and this account will be
charged to monitor the resources under the AWS account.

The following section discusses potential strategies for creating a workspace.

Cloud Monitoring 339

Workspace creation – strategies
In a real-time scenario, it is possible to have multiple projects where the projects are
either differentiated by customers or differentiated by environment types such as
development, test, staging, and production. Given that a workspace can monitor resources
from multiple projects, the strategy/approach that's taken to create the workspace
becomes critical. There are multiple strategies we can follow to create a workspace, as
detailed in the following sections.

A single workspace for all monitored projects
Information about all monitored project resources is available from within a single
workspace. The following diagram represents a single workspace that monitors an
application, app, that's been deployed across multiple projects, such as app-dev,
app-test, and app-prod. These have been categorized by environment type. This
approach has its own pros and cons.

The pro is that the workspace provides a single pane of glass for all the resources tied to
the application across multiple projects representing multiple environment types. The con
is that a non-production user can access resources from a production project, and this
might not be acceptable in most cases. This approach is not suitable for organizations that
have strict isolation between production and non-production environments:

Figure 10.2 – A single workspace for all related projects

340 Exploring GCP Cloud Operations

Workspace per group of monitored projects
A workspace will monitor a specific group of projects. There could be more than one
workspace monitoring the available projects. The following diagram is an alternative
workspace creation strategy compared to the one shown in the preceding diagram.
Specifically, the following diagram represents two workspaces where one workspace
monitors the non-production projects and the second workspace monitors the production
project. Access controls to that specific group can be controlled by the host project of the
individual workspace. This allows us to differentiate between users across environment
types, such as production versus non-production or even across customers:

Figure 10.3 – Workspace per group of monitored projects

Single workspace per monitored project
Essentially, every project that needs to be monitored is hosted by a workspace within the
same project. This can be seen in the following diagram. This means that the source and
the host project will be the same. This approach provides the most granular control in
terms of providing monitoring access to the project resources. However, this might also
only provide a slice of information if an application is spread across multiple projects:

Figure 10.4 – Single workspace per monitored project

Cloud Monitoring 341

Important note – Workspace management
One or more GCP project(s) or AWS account(s) can either be added or
removed from the workspace. In addition, all projects within a selected
workspace can be merged into the current workspace, but the configuration
will be deleted in the selected workspace. These actions are performed through
the settings page of Cloud Monitoring. A workspace can only be deleted if the
workspace host project is deleted.

This concludes this subsection on workspace creation strategies. The preferred strategy
depends on the organizational need. Workspace basic operations include creating a
workspace, adding project(s) to a workspace, moving projects between workspaces, and
merging workspaces. Detailed instructions on how to create a workspace can be found
at https://cloud.google.com/monitoring/workspaces/create. The
upcoming subsection discusses IAM roles, which are used to determine who has access to
monitor the resources inside the monitoring workspace.

Workspace IAM roles
The following are the IAM roles that can be applied to a workspace project so that we can
view monitoring data or perform actions on the workspace:

• Monitoring Viewer: Read-only access to view metrics inside a workspace.

• Monitoring Editor: Monitoring Viewer, plus the ability to edit a workspace, create
alerts, and have write access to Monitoring Console and Monitoring API.

• Monitoring Admin: Monitoring Editor, plus the ability to manage IAM roles for
the workspace.

• Monitoring Metric Writer: A service account role that's given to applications
instead of humans. This allows an application to write data to a workspace but does
not provide read access.

This concludes our quick insight into workspaces and their concepts, such as workspace
creation strategies. Next, we will look at dashboards.

Dashboards
Dashboards provide a graphical representation of key signal data, called metrics, in a
manner that is suitable for end users or the operations team. It's recommended that a single
dashboard displays metrics depicting a specific viewpoint (for example, serverless resources
with a specific label) or for a specific resource (for example, persistent disks, snapshots, and
so on). There are two types of dashboards: predefined dashboards and custom dashboards.

https://cloud.google.com/monitoring/workspaces/create

342 Exploring GCP Cloud Operations

The following screenshot is of the Dashboards Overview page in Cloud Monitoring.
This page displays the list of available dashboards, categorized by dashboard types, and
provides quick links to the most recently used dashboards:

Figure 10.5 – Cloud Monitoring – Dashboards Overview

Cloud Monitoring supports both predefined dashboards and custom dashboards. The
upcoming subsection provides an overview of the different types of dashboards and steps
for how to create a custom dashboard.

Predefined dashboards
Cloud Monitoring provides a set of predefined dashboards that are grouped by a specific
GCP resource such as firewalls or GKE Clusters. These dashboards are categorized by
Type. This is set to Google Cloud Platform, which is maintained by Google Cloud. They
do not require any explicit setup or effort to configure.

However, predefined dashboards are not customizable. These dashboards are organized in
a specific manner with a set of predefined filters from the context of the dashboard. Users
cannot change the contents of the view or add a new filter criterion. Users can only use the
predefined filters to control the data being displayed.

Cloud Monitoring 343

Custom dashboards
Users or operation teams can create a custom dashboard that displays specific content
of interest. These dashboards are categorized by Type set to Custom. Content is added
by configuring one or more widgets. There are multiple types of widgets. Dashboards
can either be created from Google Cloud Console or via the Cloud Monitoring API. In
addition, the Cloud Monitoring API allows you to import a dashboard configuration
from GitHub and modify it as needed.

Custom dashboards represent information about a metric using a chart. This chart
displays raw signal information from a metric that's aligned across a configurable time
window. Each chart is of a specific widget type. Cloud Monitoring supports multiple
widget types such as Line, Stacked area, Stacked bar, Heatmap, Gauge, Scorecard, and
Textboxes. Let's take a brief look at the different types of widgets:

• Line charts, stacked area charts, and stacked bar charts are best utilized to display
time series data. Each of these widget types can be configured so that they're
displayed in Color/X-Ray/Stats/Outlier mode, along with an optional legend, using
the display view options.

• Heatmap charts are used to represent metrics with a distribution value.

• Gauges display the most recent measurement in terms of a number. This is
represented by a thick line around the gauge. This is visually categorized across
good, warning, and danger zones.

• Scorecards are similar to gauges as they display the recent measurement in terms
of a number, but they can be visually depicted using a different view other than a
gauge, such as a spark line, spark bar, icon, or value.

• Textboxes allow us to add any custom information, such as quick notes or links,
concerning the relevant resources.

The upcoming subsection will show you how to create a custom dashboard.

Creating a custom dashboard
Follow these steps to create a custom dashboard from the GCP console:

1. Navigate to Cloud Monitoring | Dashboards and select the Create Dashboard
option. Name the dashboard VM Instance – Mean CPU Utilization.

2. Select a chart type or widget. This will open Metrics explorer on the left-hand pane
and will add the chart to the dashboard.

344 Exploring GCP Cloud Operations

3. Select the options to choose a resource type, metric type, and grouping criteria.
Then, Save the dashboard to add the chart type.

4. Redo the preceding steps to add multiple charts to the same dashboard.

The following screenshot shows a custom dashboard depicting the mean CPU utilization
for all the VM instances, along with seven possible widget types:

Figure 10.6 – Custom dashboard with seven possible widget types

This concludes this section on Cloud Monitoring dashboards. The next section focuses on
using Metrics explorer as an option to explore predefined and user-created metrics.

Metrics explorer
Metrics is one of the critical sources for monitoring data. Metrics represents numerical
measurements of resource usage or behavior that can be observed and collected across the
system over many data points at regular time intervals. There are about 1,000 pre-created
metrics in GCP. This includes CPU utilization, network traffic, and more. However,
some granular metrics such as memory usage can be collected using an optional
Monitoring agent. Additionally, custom metrics can be created either through the built-in
Monitoring API or through OpenCensus – an open source library used to create metrics.
It is always recommended to check if a default or pre-created metric exists before creating
a custom metric.

Cloud Monitoring 345

Metrics explorer provides options for exploring existing metrics (either predefined
or user-created), using metrics to build charts, adding charts to an existing or new
dashboard, sharing charts via a URL, or retrieving chart configuration data in JSON
format. Metrics explorer is an interface that provides a DIY approach to building charts as
you can select a metric of your choice.

The following screenshot shows the Metrics explorer section, which charts the CPU
Utilization metric for a VM Instance, grouped by system state. The left-hand side displays
the configuration region, while the right-hand side depicts the chart for the selected
metric. The configuration region has two tabs:

• Metric: This tab is used to select the metric and explore it.

• View Options: This tab is used to change the chart's display characteristics:

Figure 10.7 – Cloud Monitoring – Metrics explorer

The following section discusses the available options for configuring a metric using
Metrics explorer.

346 Exploring GCP Cloud Operations

Understanding metric configuration via Metrics explorer
To configure a metric for a monitored resource, we can use the following options.

Resource type and Metric option can be selected in either of the following ways:

• Standard Mode: Select a specific metric type or browse the available metric types
based on a specific GCP resource.

• Direct Filter Mode: Manually enter a metric type and resource type in a text box.

The Filter option can be used to filter out the results based on the filter criterion. The filter
criterion can be defined using the available operators or regular expressions. There are two
possible filter types:

• By Resource Label: The available filter fields are specific to the selected resource
type (for example, the VM Instance resource type will have project_id,
instance_id, and zone as the available filter options).

• By Metric Label: Refers to project-wide user-created labels.

The Group By option can be used to group time series data by resource type and metric
label. This creates new time series data based on the combination of group by values.

The Aggregator option can be used to describe how to aggregate data points across
multiple time series. Common options include min, max, sum, count, and standard
deviation. By default, the aggregation results in a single line by applying the aggregator
across all the time series. If Group By labels are selected, the aggregation results in a time
series for each combination of matching labels.

The Period option can be used to determine the time interval for which aggregation takes
place. The default selection is 1 minute.

The Aligner option can be used to bring the data points in each individual time series into
equal periods of time.

Additional options include the following:

• Secondary Aggregator: Used in charts with multiple metrics

• Legend Template: For better readability

Cloud Monitoring 347

Multiple View Options can be used to plot metrics, and these are distinguished by the
available chart modes, which are as follows:

• Color mode: This is the default mode where graph lines are shown in color.

• X-Ray mode: Shows graph lines in a translucent gray color but with brightness in
the case of overlapping bands.

• Stats mode: Shows common statistical values such as the 5th percentile, 95th
percentile, average, median, and more.

• Outlier mode: Allows you to choose a number of time series to display, along with
the option to rank time series by ordering them from the top or bottom.

Additionally, each chart mode supports the ability to specify a specific threshold and
allows you to compare past time series data. In addition, it is possible to apply a log scale
to the y axis for better separation between larger values in datasets where some values are
much larger than the others.

Tip – Monitoring Query Language (MQL) – Advanced option
to create charts
Cloud Monitoring supports MQL, an advanced option for creating a chart
with a text-based interface and an expressive query language that can execute
complex queries against time series data. Potential use cases include the ability
to select a random sample of time series or compute the ratio of requests,
resulting in a particular class of response codes.

This completes this section on Metrics explorer, which allows users to explore predefined
and custom metrics. These can potentially be used to create charts. The options related
to configuring a metric were also discussed in detail. The upcoming section focuses on
uptime checks – an option for validating whether a service is functioning.

Uptime checks
Uptime check is a Cloud Monitoring feature where periodic requests are sent to monitor
a resource to check if the resource is indeed up. Uptime checks can check the uptime of
GCP VMs, App Engine services, website URLs, and AWS Load Balancer. Uptime checks
are also a way to track the Error Budget of services. Uptime checks essentially test the
availability of an external facing service within a specific timeout interval and ensure that
the Error Budget of the service is not burnt unnecessarily. It is possible to initiate these
tests from one or more GCP geographic regions, and a minimum of three active locations
must be selected as geographic regions. Alternatively, selecting the Global option will
initiate tests from all available locations.

348 Exploring GCP Cloud Operations

The frequency at which uptime checks are performed can be configured and defaults to
1 minute. Uptime checks support multiple protocol options, such as HTTP, HTTPS, and
TCP, and can be defined for the following resource types:

• URL: Required to specify a hostname and path.
• App Engine Service: Required to specify a service and path.
• Instance: Required to specify a path for a single instance (GCP or EC2) or a

predefined group. This group needs to be explicitly configured.
• Elastic Load Balancer: Required to specify a path for AWS ELB.

The configuration to create an uptime check includes options to perform response
validation. These options include the following:

• Provide response timeout: This is the time it takes for the request to complete.
Must be between 1 and 60 seconds. The default is 10 seconds.

• Enable response content: This option allows you to select a response content
match type with specific operators that contain or do not contain specific text or
matches on regex.

• Log Check Failures: This option will save all the logs related to uptime checks
failing to Cloud Logging.

In addition, alerts and notifications can be configured in situations when the uptime
check fails for the selected duration. It is mandatory that the alert policy already exists and
that the notification channel has been pre-created. The following screenshot shows the
summary configuration of an uptime check where the target resource type is a URL:

Figure 10.8 – Uptime checking a URL as the target resource type

Cloud Monitoring 349

The URL being used in the preceding screenshot is the URL of the LoadBalancer service,
hello-world-service, that was created as part of Chapter 8, Understanding GKE
Essentials to Deploy Containerized Applications. A configured uptime check can result in a
failure. The upcoming subsection lists the potential reasons for uptime check failures.

Potential reasons for uptime check failures
The following are some potential reasons for uptime checks failing:

• Connection errors: The hostname/service not found or responding, or the specified
port is not open or valid.

• 40x Client Errors: Includes 403 (Forbidden Service), 404 (Incorrect Path), and
408 (port number is incorrect or service is not running).

• Firewall rules are not configured: If the resource being monitored by an uptime
check is not publicly available, then a firewall rule needs to be configured to allow
incoming traffic from uptime check servers.

Tip – How to identify an uptime check against service logs
Look for two specific fields in the logs: Ip field and User-agent. Ip field contains
one or more addresses that are used by the uptime check server. User-agent
will include some text stating GoogleStackdriverMonitoring-
UptimeChecks.

This concludes our detailed overview of uptime checks. The next topic deep dives
into alerting – a Cloud Monitoring option that's key for Incident Management.
Alerting provides options for reporting on monitored metrics and providing
notifications appropriately.

Alerting
Alerting is the process of processing the alerting rules, which track the SLOs and notify or
perform certain actions when the rules are violated. Chapter 3, Understanding Monitoring
and Alerting to Target Reliability, deep dived into alerting, described how alerting allows
us to convert SLOs into actionable alerts, discussed key alerting attributes, and elaborated
on alerting strategies. The alerting UI in Cloud Monitoring hosts information with respect
to incidents currently being fired, incidents being acknowledged, active alerting policies
that have been configured, details of open and closed incidents, and all the incidents
tied to the events. In addition, alerting allows us to create an alert policy and configure
notification channels.

350 Exploring GCP Cloud Operations

Configuring an alert policy
The steps involved in configuring an alert policy are very similar to the ones for creating
a chart using Metrics explorer. Essentially, an alert needs to be created against a metric.
Configuring an alert includes adding a metric condition through Metrics explorer and
setting a metric threshold condition.

A metric threshold condition will define the specific value. If the specific metric value
falls above or below the threshold value (based on how the policy is defined), an alert will
be triggered, and we will be notified through the configured notification channels. If the
policy is defined through the console, then the policy trigger field is used, while if the
policy is defined through the API, then the combiner field is used.

Alternatively, to define an alert policy based on a metric threshold condition, you can
define an alert policy based on a metric absence condition. A metric absence condition
is defined as a condition where time series data doesn't exist for a metric for a specific
duration of time.

Important note – The alignment period is a lookback interval
The alignment period is a lookback interval from a particular point in time. For
example, if the alignment period is 5 minutes, then at 1:00 P.M., the alignment
period contains the samples received between 12:55 P.M. and 1:00 P.M. At 1:01
P.M., the alignment period slides 1 minute and contains the samples received
between 12:56 P.M. and 1:01 P.M.

The next section describes the available notification channels that are used to send
information that's specific to firing alerts.

Configuring notification channels
If an alerting policy violates the specified condition, then an incident gets created with
an Open status. Information about the incident can be sent to one or more notification
channels. On receipt of the notification, the operations team can acknowledge the incident
through the console. This changes the status of the incident to Acknowledged. This is an
indication that the event is being inspected. The incident eventually goes to Closed status
if either the conditions are no longer being violated, or no data is received for the specific
incident over the course of the next 7 days.

The supported notification channels are as follows:

• Mobile Devices: Mobile devices should be registered via the incidents section of the
Cloud Console Mobile App.

• PagerDuty Services: Requires a service key to authenticate and authorize.

Cloud Monitoring 351

• PagerDuty Sync: Requires a subdomain tied to pagerduty.com and the
respective API key to authenticate and authorize.

• Slack: Prompts the user to authenticate and authorize to a Slack channel through a
custom URL, and then prompts the user to provide the Slack channel's name.

• Webhooks: Requires the endpoint URL, along with optional usage of HTTP
Basic Auth.

• Email: Requires an email address to receive notifications when a new incident
is created.

• SMS: Requires a phone number to receive notifications.

• Cloud Pub/Sub: Must specify a topic name for where the notification should be
sent to. The topic should exist upfront.

Tip – Additional configuration to enable alert notifications to cloud
Pub/Sub
When the first Pub/Sub channel is created to configure alert notifications, Cloud
Monitoring will create a service account via the monitoring notification service
agent, specifically in the project where the channel was created. This service
account will be structured as service-[PROJECT_NUMBER]@gcp-sa-
monitoring-notification.iam.gserviceaccount.com. The
pubsub.publisher role should be added to the preceding service account
to configure alert notifications via Cloud Pub/Sub.

This concludes this section on alerting, where we looked at configuring an alerting policy
and notification channels. The next section introduces the Cloud Monitoring agent.

Monitoring agent
Cloud Monitoring provides a lot of metrics out of the box, without any additional
configuration, such as CPU utilization, network traffic, and more. However, more
granular metrics such as memory usage, network traffic, and so on can be collected from
unmanaged VMs or from third-party applications using an optional Monitoring agent.
The Monitoring agent is based on the collectd daemon (daemon refers to a program
that runs in the background) to collect system statistics from various sources, including
operating systems, applications, logs, and external devices.

352 Exploring GCP Cloud Operations

The Monitoring agent can be installed on unmanaged GCE VMs or AWS EC2 VMs. Other
Google compute services, such as App Engine, Cloud Run, and Cloud Functions, have
built-in support for monitoring and do not require you to explicitly install the Monitoring
agent. GKE also has built-in support for monitoring and can be enabled for new or existing
clusters via Cloud Operations for GKE, an integrated monitoring and logging solution.

Conceptually, you must follow this process to install/configure a Monitoring agent on
unmanaged VMs:

• Add the agent's package repository via a provided script that detects the Linux
distribution being run on the VM and configures the repository accordingly.

• Install the Monitoring agent using the stackdriver-agent agent for the
latest version or by using stackdriver-agent-version-number for a very
specific version.

• Restart the agent for the installed agent to come into effect.

The step-by-step process of installing a Logging agent on a single VM/GCE VM/AWS
EC2 instance can be found at https://cloud.google.com/monitoring/agent/
installation. This completes our brief overview of the Monitoring agent. The next
subsection mentions the possible access controls with respect to Cloud Monitoring.

Cloud Monitoring access controls
The following table summarizes the critical IAM roles required to access or perform
actions on Cloud Monitoring:

Groups – A collection of resources that is defined as a Monitoring Group

https://cloud.google.com/monitoring/agent/installation
https://cloud.google.com/monitoring/agent/installation

Cloud Logging 353

Note
Cloud Monitoring allows you to create a monitoring group. This is a convenient
way to view the list of GCP resources, events, incidents, and visualizations as
key metrics from a centralized place. A monitoring group is created by defining
one or more criteria either against the name, resource type, tag, security group,
cloud project, or region. If multiple criteria are specified, then an OR/AND
operator can be specified.

This concludes our deep dive into Cloud Monitoring and its respective constructs, such
as Workspace, dashboards, Metrics explorer, uptime checks, alerting policies, and access
controls. The next section elaborates on another GCP construct that's part of Cloud
Operations and focuses on logging; that is, Cloud Logging.

Cloud Logging
A log is defined as a record of a status or event. Logging essentially describes what
happened and provides data so that we can investigate an issue. It is critical to be able
to read and parse logs across a distributed infrastructure involving multiple services
and products. Cloud Logging is a GCP service that allows you to store, search, analyze,
monitor, and alert others about logging data and events from Google Cloud and AWS,
third-party applications, or custom application code. The information in the log entry is
structured as a payload. This payload consists of information related to a timestamp, a
resource that the log entry applies to, and a log name. The maximum size of a log entry is
256 KB. Each log entry indicates the source of the resource, labels, namespaces, and status
codes. Cloud Logging is also the source of input for other Cloud Operations services, such
as Cloud Debug and Cloud Error Reporting.

The following are the key features of Cloud Logging:

• Audit Logs: Logs are captured and categorized as Admin Activity, Data Access,
System Event, and Access Transparency Logs, with each category having a default
retention period.

• Logs Ingestion: Logs can be ingested from many sources, including GCP services
and on-premises or external cloud providers, by using the Cloud Logging API or
through logging agents.

• Logs Explorer: Logs can be searched for and analyzed through a guided filter
configuration or flexible query language, resulting in effective visualization. Results
can also be saved in JSON format.

354 Exploring GCP Cloud Operations

• Logs-based Metrics: Metrics can be created from log data and can be added to
charts/dashboards using the Metrics explorer.

• Logs Alerting: Alerts can be created based on the occurrence of log events and
based on the created logs-based metrics.

• Logs Retention: Logs can be retained for a custom retention period based on user-
defined criteria.

• Logs Export: Logs can be exported to Cloud Storage for archival, BigQuery for
advanced analytics, Pub/Sub for event-based processing using GCP services, user-
defined cloud logging sinks, or to initiate external third-party integrations so that
you can export using services such as Splunk.

Cloud Logging features will be discussed in detailed in the upcoming subsections, starting
with Audit Logs.

Audit Logs
Cloud Audit Logs is a fundamental source for finding out about certain parts of a
project (who did what, where, and when?). Cloud Audit Logs maintains logs for each
project (including folder- and organization-level information). Cloud Audit Logs can be
categorized into various categories. Let's take a look.

Admin activity logs
Admin activity logs are specific to any administrative actions that modify the
configuration or metadata of resources. Examples for admin activity logs include, but not
are limited to, the following:

• Setting or changing permissions of a cloud storage bucket

• Assigning /unassigning IAM roles

• Changing any properties of a resource, such as tags/labels

• Creating/deleting resources for GCE, GKE, or Cloud Storage

The following screenshot shows the admin activity logs for when a GCE VM or bucket
was created. The easiest way to access these activity logs is from the Activity tab on the
GCP console home page. This pulls a live feed of the admin activity logs but does not
include data access logs by default:

Cloud Logging 355

Figure 10.9 – Admin activity logs

The next subsection provides an overview of an audit log category specific to data access.

Data access logs
Data access logs are useful for reading the configuration or metadata of resources. This
also includes user-level API calls, which read or write resource data. Data access audit
logs need to be enabled explicitly (except for Big Query), and this can be controlled by
specifying the services whose audit logs should be captured. In addition, data access
logs tied to actions performed by a specific set of users or groups can be exempted, thus
providing granular control. Data access logs can be further classified into three subtypes:

• Admin read: Read attempts on service metadata or configuration data. An example
of this is listing the available buckets or listing the nodes within a cluster.

• Data read: Read attempts of data within a service. An example of this includes
listing the objects within a bucket.

• Data write: Write attempts of data to a service. An example of this includes creating
an object within a bucket.

356 Exploring GCP Cloud Operations

The following is a screenshot of granular data access being configured for an individual
GCP service from IAM – the Audit Logs UI:

Figure 10.10 – Configuring IAM Audit Logs for a service

The preceding screenshot also shows the option to configure Exempted Users. This option
allows you to exempt audit logs from being generated for certain users, as configured. Data
access logs can be viewed either through the Activity tab of the GCP home page, where
Activity Type is Data Access, or through the Logs Explorer UI (discussed later). The next
subsection provides an overview of an audit log category specific to system events.

System event logs
System event logs are used when changes have been made to resources by Google systems
or services. They are not specific to user actions on the resources. Examples of system
event logs include, but are not limited to, the following:

• Automatically restarting or resetting Compute Engine

• System maintenance operations, such as migration events, which are performed by
Compute Engine to migrate applications to a different host

The next subsection provides an overview on an audit log category specific to
access transparency.

Cloud Logging 357

Access transparency logs
Access transparency logs are used by Google personnel when they're accessing a user's/
customer's content. This situation typically arises when Google's support team is working
on a customer issue (such as a specific service not working as expected or an outage) and,
as a result, needs to access the customer's project. This category of logs is critical if you wish
to follow legal and regulatory obligations. In addition, you can trace events to look back on
the actions that have been performed by Google support personnel. Access transparency
logs can be enabled by contacting Google support and are available for customer support
levels, excluding individual accounts. An example of access transparency logs could be the
logs that are accessed by the support personnel while trying to resolve a support issue for a
VM instance.

Policy denied logs
Policy denied logs are logs that are captured when access is denied by a Google Cloud
service to either a user or service account. Policy denied logs can be excluded from
ingestion into Cloud Logging through Logs Exclusions.

This completes this section on audit logs, where we provided an overview of the various
subcategories. Before proceeding to the next section, take a look at the following table,
which lists the IAM roles specific to accessing logs:

The next section will explain how logs are ingested into Cloud Logging from
multiple sources.

358 Exploring GCP Cloud Operations

Logs ingestion, routing, and exporting
Cloud Logging supports logs ingestion from multiple sources, such as audit logs,
service logs, application logs, syslogs, and platform logs. These logs are sent to the Cloud
Logging API. The Cloud Logging API forwards the incoming log entries to a component
called Logs Router. Logs Router is fundamentally responsible for routing logs to their
respective destinations.

These destinations can be grouped into four possible categories. Logs Router will check
the incoming logs against existing rules to determine whether to ingest (store), export, or
exclude them, and will route the logs to one of the four destination categories.

These destination categories are as follows:

• _Required log bucket: This is the primary destination for admin activity, system
event, and access transparency logs. There are no charges associated with these logs
and this bucket cannot be modified or deleted.

• _Default log bucket: This is the primary destination for data access, policy denied,
and user-specific logs. There are charges associated with these logs. The bucket
cannot be deleted but the _Default log sink can be disabled.

• User-managed log sinks: A user-managed log sink is an object that holds the
filter criteria and a destination. The destination could either be Cloud Storage,
Cloud Logging, BigQuery, Pub/Sub, or Splunk. The user-managed log sink is the
destination for incoming logs from the Cloud Logging API that satisfy the filter
criteria defined against the sink. These are also known as Inclusion Filters. This
applies to logs that fall under the _Required log bucket and the _Default
log bucket. The process of writing logs to user-managed log sinks can also be
characterized as Log Exports (if the intent is to export for external processing) or
Log Retention (if the intent is to export to retain logs for a longer period from a
compliance perspective).

• Exclusions: Exclusions are governed by log exclusion filters. They only apply to
entries that qualify for the _Default log bucket. In other words, logs that qualify
for the _Required log bucket can never be excluded. If any of the log exclusion
filters match with entries that qualify for the _Default log bucket, then the
entries will be excluded and never be saved.

Cloud Logging 359

Tip – What are log buckets?
Log buckets are a form of object storage in Google Cloud projects that are
used by Cloud Logging to store and organize logs data. All logs generated
in the project are stored in these logs' buckets. Cloud Logging automatically
creates two buckets in each project: _Required and _Default. _
Required represents an audit bucket, which has a 400-day retention period,
while _Default represents the everything else bucket, which has a 30-day
retention period. In addition, a user can create custom logging buckets, also
known as user-managed log sinks.

The log bucket per project can be viewed via the Logs Storage UI in Cloud
Logging. Additional actions such as creating a user-defined log bucket and
a usage alert can also be initiated from the Logs Storage UI.

The following diagram illustrates how logs are ingested from multiple sources via the
Cloud Logging API and, subsequently, routed by Logs Router to possible destinations:

Figure 10.11 – Illustrating logs ingesting and logs routing

360 Exploring GCP Cloud Operations

There are three steps we must follow to export logs:

1. Create a sink.

2. Create a filter that represents the criteria to identify logs to export.

3. Create a destination – Cloud Storage Bucket, BigQuery, or Pub/Sub topics.

IAM roles to Create/Modify/View a Sink
The Owner or Logging/Logs Configuration Writer role is required to create
or modify a sink. The Viewer or Logging/Logs Viewer role is required to view
existing sinks. The Project Editor role does not have access to create/edit sinks.

To summarize, logs can originate from multiple sources, such as on-premises, Google
Cloud, or a third-party cloud service. These logs are injected into Cloud Logging through
the Cloud Logging API, which are then sent to Logs Router. Logs Router, which is based
on configured filters, will route the logs to logged sinks (the _Required or _Default
log bucket). Additionally, a copy of the logs can be sent to user-managed sinks based on
the configured filter criteria, where the destination can either be Cloud Storage, BigQuery,
or Pub/Sub. Log export can be used for multiple purposes, such as long-term retention
for compliance reasons (using Cloud Storage), Big Data analysis (using BigQuery), or
to stream to other applications (using Pub/Sub). If these logs are sent to the Pub/Sub
messaging service, then they can be exported outside Google Cloud to third-party tools
such as Splunk, Elastic Stack, or SumoLogic. It is important to note that configured log
sinks for export will only capture new logs, since the export was created but does not
capture the previous logs or backfill.

How to export logs across folders/organizations
Logs can be exported from all projects inside a specific folder or organization.
This can currently only be done through the command line using the gcloud
logging sink's create command. Apart from the sink's name, destination,
and log filter, the command should include the --include-children
flag and either the --folder or --organization attribute, along with
its respective values.

This completes this subsection on logs ingestion, routing, and exporting. The following
subsection summarizes log characteristics across log buckets in the form of a table for
ease of understanding.

Cloud Logging 361

Summarizing log characteristics across log buckets
Each log type is destined to a specific Cloud Logging bucket. In addition, every log type
has specific characteristics in terms of the minimum IAM roles required to access the logs,
the default retention period, and the ability to configure a custom retention period. The
following table details the respective information:

All other logs
This refers to either user logs generated by applications through a Logging agent
or platform logs generated by GCP services or VPC Flow Logs or Firewall Logs.

In addition to the preceding table, it is important to note the following:

• System event logs are system initiated, whereas admin activity, data access, and
access transparency logs are user initiated.

• Admin activity and system event logs record the changes in the configuration
of resources, whereas data access logs record the changes that were made inside
the record.

• Admin activity, system event, and access transparency logs are always enabled.

This completes our overview on logs ingestion. The next topic focuses on the Logs
Explorer UI, through which users can explore ingested logs.

362 Exploring GCP Cloud Operations

Logs Explorer UI
Logs Explorer UI is the centralized way to view logs that have been ingested into Cloud
Logging via the Cloud Logging API, and ultimately routed via Cloud Router to either
Cloud Logging buckets or user-managed sinks. The UI allows us to filter logs by writing
advanced search queries, visualize the time series data by configuring time windows, and
perform critical actions to create log-based metrics or create users. The UI consists of
multiple options and sections, as shown in the following screenshot:

Figure 10.12 – Logs Explorer UI

To filter Cloud Audit Logs through the Logs Explorer UI, select the following options for
the Log Name field:

• Admin Activity: cloudaudit.googleapis.com%2Factivity

• Data Access: cloudaudit.googleapis.com%2Fdata_access

• System Event: cloudaudit.googleapis.com%2Fsystem_event

Let's take a look at some key important information with respect to navigating the options
in the Logs Explorer UI.

Cloud Logging 363

Query builder
This section constructs queries to filter logs. Queries can be expressed in query builder
language by choosing an appropriate combination of field and value, as shown in the
following screenshot. The user can provide input in two ways:

• By choosing options from the available drop-down menus with respect to Resource,
Log Name, and Severity. This is the basic query interface.

• By choosing fields from the Log Fields section, starting by either selecting the
Resource type or the Severity type. This is the advanced query interface:

Figure 10.13 – Query builder section under Logs Explorer

Query results
This section displays the results that match the filter criteria defined within query builder.
If there is a match, the results are displayed in one or more rows. Each row represents a log
entry, as shown here:

Figure 10.14 – Query results section

364 Exploring GCP Cloud Operations

Log entries
Each query result that's returned is a log entry that's displayed with a timestamp and
summary text information. When expanded, the log entry displays further details in a
JSON payload format. The JSON payload has multiple fields and can be elaborated on
using the Expand nested fields option. Additionally, the user can copy the payload to a
clipboard or share the specific payload by copying the shareable link, as shown here:

Figure 10.15 – Viewing the JSON payload for a log entry

Payload-specific actions
There are multiple options that perform actions on a specific payload on a specific field,
as shown in the following screenshot. These are as follows:

• Show matching entries: Adds the selected key-value pair from the JSON payload
to the existing filter criteria and shows matching entries within the configured
time window.

• Hide matching entries: Adds the selected key-value pair from the JSON payload to
the existing filter criteria in a negation form and removes the matching entries from
user display, within the configured time window.

• Add field to summary line: Adds the selected key to the summary section:

Figure 10.16 – Possible payload-specific actions for a specific field

Cloud Logging 365

Page layout
This option allows users to configure the page layout and optionally include Log Fields
and/or a Histogram. Query builder and Query results are mandatory sections and
cannot be excluded:

Figure 10.17 – Options under the PAGE LAYOUT section

Actions (to perform on a query filter)
Actions allows user to operate on the potential results from the query filter definition. This
includes Create Metrics, Download Logs, and Create Sinks:

Figure 10.18 – Possible actions you can perform on a query filter

This completes this section on Logs Explorer and all the possible UI options for filtering
and analyzing logs. The next section provides an overview of logs-based metrics.

Logs-based metrics
Logs-based metrics are Cloud Monitoring metrics that are created based on the content of
the log entries. They can be extracted from both included and excluded logs. As matching
log entries are found, the information that's tied to the metrics is built over time. This forms
the required time series data that is critical to metrics. Logs-based metrics are used in
creating Cloud Monitoring charts and can also be added to Cloud Monitoring dashboards.

366 Exploring GCP Cloud Operations

Important note
To use logs-based metrics, a Google Cloud project is required with billing
enabled. In addition, logs-based metrics are recorded for matching log entries,
once the metric has been created. Metrics are not backfilled for log entries that
are already in Cloud Logging.

Logs-based metrics can be classified as either of the following:

• System (logs-based) metrics

• User-defined (logs-based) metrics

Both of these logs-based metrics will be covered in the upcoming subsections.

System (logs-based) metrics
System (logs-based) metrics are out-of-the-box, predefined metrics from Google and
are very specific to the current project. These metrics record the number of events that
occur within a specific period. A list of available system (logs-based) metrics can be found
under the Logs-based Metrics UI in the Logging section of Cloud Operations. Examples
include the following:

• byte_count: Represents the total number of received bytes in log entries

• excluded_byte_count: Represents the total number of excluded bytes from
log entries

The user can create an alert from a predefined metric or view the details of the metric,
along with its current values, in Metrics explorer:

Figure 10.19 – System (logs-based) metrics and their qualifying actions

The next section provides an overview of user-defined metrics.

Cloud Logging 367

User-defined (logs-based) metrics
User-defined (logs-based) metrics, as the name suggests, are defined by the user and are
specific to the project where the user configures these metrics. These metrics can either of
the Counter or Distribution type:

• Counter: Counts the number of log entries that match on a query

• Distribution: Accumulates numeric data from log entries that match on a query

Users can create a user-defined metric either from Logs-based Metrics UI via the Create
Metric action or the Logs Explorer UI via the actions menu above the query results. Once
the user initiates these actions, they get to choose the type of metric in the Metric Editor
panel; that is, Counter or Distribution.

In addition, the user will have to configure fields such as the metric's name, description,
and any optional labels and units. For a Counter, the units should be left blank. For a
Distribution, the units should be s, ms, and so on:

Figure 10.20 – Creating a logs-based metric

More details on creating a distribution metric can be found at https://cloud.
google.com/logging/docs/logs-based-metrics/distribution-
metrics.

https://cloud.google.com/logging/docs/logs-based-metrics/distribution-metrics
https://cloud.google.com/logging/docs/logs-based-metrics/distribution-metrics
https://cloud.google.com/logging/docs/logs-based-metrics/distribution-metrics

368 Exploring GCP Cloud Operations

Access control for logs-based metrics
The following table displays the critical IAM roles required, along with their minimal
permissions (in accordance with the principle of least privilege), to access or perform
actions related to logs-based metrics:

The following section will conclude this section on Cloud Logging by exploring the
available network-based log types on Google Cloud.

Network-based log types
There are two network-based log types that primarily capture logs related to network
interactions. These are as follows:

• VPC Flow Logs

• Firewall logs

Let's look at them in detail.

VPC Flow Logs
VPC Flow Logs capture real-time network activity (incoming/outgoing) against VPC
resources on an enabled subnet. Flow logs capture activity specific to the TCP/UDP
protocols and are enabled at a VPC subnet level. Flow logs generate a large amount of
chargeable log files, but they don't capture 100% of traffic; instead, traffic is sampled at 1
out of 10 packets and cannot be adjusted. Flow logs are used for Network Monitoring –
to understand traffic growth from a forecasting capacity and for forensics – to evaluate
network traffic (in/out) in terms of traffic source. Flow logs can be exported for analysis
using BigQuery. In the case of a Shared VPC – where multiple service projects connect to
a common VPC – flow logs flow into the host project, not the service projects.

Cloud Logging 369

Firewall logs
Firewall logs capture the effects of a specific firewall rule in terms of the traffic that's
allowed or denied by that firewall rule. Similar to VPC Flow Logs, firewall logs capture
TCP/UDP traffic only and are used for auditing, verifying, and analyzing the effect of the
configured rules. Firewall logs can be configured for an individual firewall rule. Firewall
rules are applied for the entire VPC and cannot be applied at a specific subnet level like
flow logs. Firewall logs attempt to capture every firewall connection attempt on a best
effort basis. Firewall logs can also be exported to BigQuery for further analysis.

Every VPC has a set of hidden implied pre-configured rules, with the lowest priority being
65535. Firewall rules can have a priority between 0 and 65535 (0 implies highest, while
65535 implies lowest). These are as follows:

• deny all ingress: By default, this denies all incoming traffic to the VPC.

• allow all egress: By default, this allows all outgoing traffic from the VPC.

However, firewall logs cannot be enabled for the hidden rules. So, to capture the incoming
traffic that is being denied or the outgoing traffic that is being allowed, it is recommended
to explicitly configure a firewall rule for the denied/allowed traffic with an appropriate
priority and enable firewall logs on that rule.

This completes this subsection on network-based log types, where we introduced VPC
Flow Logs and firewall logs.

Logging agent
The Logging agent is optional and is used to capture additional VM logs, such as
Operating System (OS) logs (such as Linux syslogs or Windows Event Viewer logs) and
logs from third-party applications. The Logging agent is based on fluentd – an open
source log or data collector. The Logging agent can be installed on unmanaged GCE VMs
or AWS EC2 VMs. Other Google Compute services such as App Engine, Cloud Run, and
Cloud Functions have built-in support for logging and do not require you to explicitly
install the Logging agent. GKE also has built-in support for logging and can be enabled
for new or existing clusters by Cloud Operations for GKE, an integrated monitoring and
logging solution.

370 Exploring GCP Cloud Operations

To configure the Logging agent, you must configure an additional configuration file, but
a single configuration file acts as a catch all for capturing multiple types of logs, including
OS logs and third-party application logs such as Apache, MySQL, Nginx, RabbitMQ, and
so on. However, there are scenarios where the configuration file of the agent needs to be
modified so that we can modify the logs. These are as follows:

• When reformatting log fields, either the order or combine multiple fields into one

• When removing any Personally Identifiable Information (PII) or sensitive data

• When modifying records with fluentd plugins such as filter_record_
transformer, a plugin for adding/modifying/deleting fields from logs before
they're sent to Cloud Logging

Conceptually, the following is the process of installing/configuring an agent on a GCE VM:

1. Add the agent's package repository via a provided script that detects the Linux
distribution being run on the VM and configures the repository accordingly.

2. Install the Logging agent and install the google-fluentd-catch-all-
config agent for unstructured logging and the google-fluentd-catch-
all-config-structured agent for structured logging.

3. Restart the agent for the installed agents to come into effect.

The step-by-step process of installing a Logging agent on a single VM/GCE VM/AWS EC2
instance can be found at https://cloud.google.com/logging/docs/agent/
installation.

This completes our high-level overview of logging agents. Subsequently, this also
completes the section on Cloud Logging, where we looked at features such as audit log
types, logs ingestion, the Logs Explorer UI, logs-based metrics, and access controls. The
next section deep dives into Cloud Debugger, a GCP construct from Cloud Operations
that can potentially inspect a production application by taking a snapshot of it, without
stopping or slowing down.

https://cloud.google.com/logging/docs/agent/installation
https://cloud.google.com/logging/docs/agent/installation

Cloud Debugger 371

Cloud Debugger
Cloud Debugger allows us to inspect the state of a running application in real time. Cloud
Debugger doesn't require the application to be stopped during this process and doesn't
slow it down, either. Users can capture the call stack and variables at any location in the
source code. This essentially allows the user to analyze the application state, especially in
complex situations, without adding any additional log statements.

In addition, Cloud Debugger can be used for production environments and is not limited
to development or test environments. When Cloud Debugger captures the application
state, it adds request latency that is less than 10 ms, which, practically, is not noticeable
by users.

Cloud Debugger is supported on applications running in GCP such as App Engine,
Compute Engineer, GKE, Cloud Run, and so on, as well as those written in a number of
languages, including Java, Python, Go, Node.js, Ruby, PHP, and .NET. Cloud Debugger
needs access to the application code and supports reading the code from App Engine,
Google Cloud source repositories, or third-party repositories such as GitHub, Bitbucket,
and so on.

Setting up Cloud Debugger
Enabling/setting up Cloud Debugger involves the following fundamental steps:

1. Enable the Cloud Debugger API as a one-time setup per project.

2. Provide appropriate access so that the GCP service where Cloud Debugger will run
has permission to upload telemetry data or call Cloud Debugger.

3. App Engine and Cloud Run must already be configured for Cloud Debugger.

4. A service account with the Cloud Debugger Agent role is required for applications
running in Compute Engine, GKW, or external systems.

5. If the application is running inside a Compute Engine VM or cluster nodes with
a default service account, then the following access scopes should be added to
the VMs or cluster nodes: https://www.googleapis.com/auth/cloud-
platform and https://www.googleapis.com/auth/cloud_debugger.

6. Select the source code location. If there is no access to the source code, a debug
snapshot can be taken that captures the call stack and local variables.

https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/cloud_debugger

372 Exploring GCP Cloud Operations

7. If there is access to the source code, then App Engine standard will select the source
code automatically. App Engine flex, GCE, GKE, and Cloud Run can automatically
select the source code based on the configuration file in the application root folder;
that is, source-context.json.

8. Alternatively, select a source code location from the possible options, including
local files, Cloud Source Repositories, GitHub, Bitbucket, and GitLab.

9. To enable Cloud Debugger from application code, you must follow a set of
instructions that are specific to the language that the application has been written
in. The following is an example snippet:

try:

 import googleclouddebugger

 googleclouddebugger.enable()

except ImportError:

 pass

Now that we've set up Cloud Debugger, let's learn how to use it.

Using Cloud Debugger
Using Cloud Debugger involves learning about the functionality of debug snapshots,
debug logpoints, and accessing the logs panel.

Debug snapshots
Snapshots capture local variables and the call stack at a specific location in the
application's source code. The fundamental step prior to taking a snapshot is to set
up a breakpoint. It takes about 40 seconds for a breakpoint to come into effect. Cloud
Debugger breakpoints do not stop code execution. A non-intrusive snapshot is taken
when the flow of execution passes the debug point. Additional conditions can be added so
that a snapshot is only taken if a data condition passes. The captured snapshot will contain
details of the local variables and the state of the call stack.

Cloud Debugger 373

In the following screenshot, the breakpoint was set to line 39 against a specific file. The
breakpoint has a qualifying condition, and a snapshot is taken if its condition is met. The
details of the variables are displayed in the Variables section:

Figure 10.21 – Taking a debug snapshot in Cloud Debugger

Optionally, expressions can also be included while configuring a snapshot. Expressions
can be used as special variables to evaluate values when a snapshot is taken. These are
especially useful in scenarios where the values being captured by the expressions are not
usually captured by local variables.

374 Exploring GCP Cloud Operations

In the following screenshot, we can see that multiple expressions are defined while
configuring a snapshot and are captured while taking a snapshot:

Figure 10.22 – Defining expressions while configuring a snapshot

The following are some key pointers related to snapshots:

• A snapshot is taken only once. To capture another snapshot of the application data
for the same location in the code, the user needs to manually retake the snapshot
through the camera icon in the snapshot panel.

• A snapshot location can be manually removed by clicking the x icon on the breakpoint.

• Cloud Debugger generates a new URL for every snapshot that's been taken. It is
valid for 30 days from the time it was taken. This URL can be shared with other
members of the project.

The next subsection provides an overview of debug logpoints and how they can be
injected into a running application.

Cloud Debugger 375

Debug logpoints
It's a common practice to add log messages when you're trying to solve complex problems.
In such scenarios, developers often provide code changes to production that essentially
include additional log statements that help with analysis. If the problem is complex, this
process needs to be repeated multiple times, which means the production code needs to
go through multiple changes to include log statements. Cloud Debugger steps away from
the traditional approach to debugging an application and instead provides a dynamic way
to add log messages using debug logpoints.

Debug logpoints can inject logs into a running application without stopping, editing,
or restarting. A logpoint is added at a location of choice, as per the developer's wishes.
When that particular portion of code is executed, Cloud Debugger logs a message, and
the log message is sent to the appropriate service that is hosting the application. So, if the
application is hosted in App Engine, then the log message can be found in the logs tied to
App Engine.

In the following screenshot, a logpoint has been added with a condition, with the message
log level set to Info. The concept of specifying a condition along with a logpoint is called
a logpoint condition. This is an expression in the application language that must evaluate
to true for the logpoint to be logged. Logpoint conditions are evaluated each time that
specific line is executed, if the logpoint is valid:

Figure 10.23 – Adding a debug logpoint via Cloud Debugger

376 Exploring GCP Cloud Operations

The following are some key pointers related to logpoints:

• A logpoint can be created even if direct access to the source code is not available.
A logpoint can be created by specifying the name of the file, the line number to
create the logpoint, the log level, an optional condition, and an appropriate message,
as shown here:

Figure 10.24 – Configuring a logpoint without access to the source code

• Logpoints becomes inactive after 24 hours and post that, messages with respect to
those logpoints will not be evaluated or logged.

• Logpoints are automatically deleted after 30 days from the time of creation.
Optionally, users can manually delete logpoints at will.

The next subsection illustrates the usage and options available in the Logs panel.

Cloud Debugger 377

Logs panel
Cloud Debugger includes an in-page Logs panel that displays the running logs of the
current application being inspected. This allows the developer to view logs next to the
respective code. Users can use the logs panel to perform search variations, including text-
based search, and can filter by either log level, request, or file. The results are highlighted
in the context or are shown in the logs viewer:

Figure 10.25 – Logs panel for viewing logs while debugging in Cloud Debugger

The upcoming subsection provides an overview of the access control that's required for
Cloud Debugger.

Access control for Cloud Debugger
The following table displays the critical IAM roles required, along with their minimal
permissions (in accordance with the principle of least privilege), to access or perform
actions related to Cloud Debugger:

378 Exploring GCP Cloud Operations

Tip – How to hide sensitive data while using debugging
Cloud Debugger has a feature in Pre-GA where sensitive data can be hidden
through a configuration file. This configuration file consists of a list of rules
that are either expressed as blacklist or blacklist_exception
(to specify an inverse pattern). If the criteria match, then data is hidden and is
reported by the debugger as blocked by admin. This feature is currently
only supported for applications written in Java.

This completes this section on Cloud Debugger, where we learned how to set up Cloud
Debugger, utilize debug logpoints to add log messages, and create snapshots to capture the
call stack and its local values. We looked at the options that are available in the Logs panel
and looked at the required access controls we can use to perform actions related to Cloud
Debugger. In the next section, we will look at Cloud Trace, another GCP service that is
part of Cloud Operations. Cloud Trace represents a distributed tracing system that collects
latency data from applications to identify bottlenecks.

Cloud Trace
A trace is a collection of spans. A span is an object that wraps latency-specific metrics
and other contextual information around a unit of work in an application. Cloud Trace
is a distributed tracing system that captures latency data from an application, tracks the
request's propagation, retrieves real-time performance insights, and displays the results
in Google Cloud Console. This latency information can be either for a single request
or can be aggregated for the entire application. This information helps us identify
performance bottlenecks.

Additionally, Cloud Trace can automatically analyze application traces that might reflect
recent changes to the application's performance, identify degradations from latency
reports, capture traces from containers, and create alerts as needed.

Cloud Trace's language-specific SDKs are available for Java, Node.js, Ruby, and Go. These
SDKs can analyze projects running on VMs. It is not necessary for these VMs to only
be running on Google Cloud. Apart from the SDK, the Trace API can be used to submit
and retrieve trace data from any source. A Zipkin collector is available, which allows
Zipkin tracers to submit data to Cloud Trace. Additionally, Cloud Trace can generate trace
information using OpenCensus or OpenTelemetry instrumentation. Cloud Trace consists
of three main sections: Trace Overview, Trace List, and Analysis Reports. Let's look at
them in detail.

Cloud Trace 379

Trace Overview
The Trace Overview page provides a summary of latency data that's spread across various
informational panes:

• Insights: Displays a list of performance insights, if applicable

• Recent Traces: Highlights the most recent traces for a project

• Frequent URIs: Displays a list of URIs along with their average latency for the most
frequent requests to the application in the last 7 days

• Frequent RPCs: Displays a list of RPCs along with their average latency for the
most frequent RPC calls made in the last 7 days

• Chargeable trace spans: Summarizes the number of trace spans that have been
created and received by Cloud Trace for the current and previous months:

Figure 10.26 –Chargeable trace spans from the Trace Overview page

The next subsection provides an overview of the Trace List window, which can be used to
examine traces in detail.

380 Exploring GCP Cloud Operations

Trace List
The Trace List window allows users to find, filter, and examine individual traces in detail.
These traces are displayed in a heatmap, and a specific section of the heatmap can be
selected if you wish to view these traces within that specific slice of the window:

Figure 10.27 – List of all the traces filtered by the POST method in the last 30 days

Clicking on the individual trace (represented by a circle) provides details about the trace.
It is represented by a waterfall graph:

Figure 10.28 – Waterfall graph of an individual trace

Cloud Profiler 381

The next subsection provides an overview of trace analysis reports with respect to
request latency.

Analysis Reports
Analysis Reports shows an overall view of the latency for all the requests or a subset of
requests with respect to the application. These reports are categorized either as daily
reports or custom analysis reports.

Daily reports
Cloud Trace creates a daily report automatically for the top three endpoints. Cloud Trace
compares the previous days' performance with the performance from the same day of the
previous week. The content of the report cannot be controlled by the user.

Custom analysis reports
The user can create a custom analysis report, where the content of the report can be
controlled from the aspect of which traces can be included. The report can include latency
data either in histogram format or table format, with links to sample traces. The report can
optionally include a bottleneck pane that lists Remote Procedure Calls (RPCs), which are
significant contributors to latency.

Condition to auto-generate or manually create a trace report
For the daily report to auto-generate or for a user to create a custom report
within a specific time range, it is mandatory that at least 100 traces are available
in that time period. Otherwise, a trace report will not be generated.

This completes this section on Cloud Trace, a GCP construct for representing a
distributed tracing system, collecting latency data from applications, and identifying
performance bottlenecks. The next section focuses on Cloud Profiler, a service that is part
of Cloud Operations. Cloud Profiler is a low-impact production profiling system that
presents call hierarchy and resource consumption through an interactive flame graph.

Cloud Profiler
Cloud Profiler provides low-impact continuous profiling to help users understand the
performance of a production system. It provides insights into information such as CPU
usage, memory consumption, and so on. Cloud Profiler allows developers to analyze
applications running either in Google Cloud, other cloud providers, or on-premises.

382 Exploring GCP Cloud Operations

Cloud Profiler uses statistical techniques and extremely low-impact instrumentation to
provide a complete picture of an application's performance, without slowing it down.
Cloud Profiler runs across all production application instances, presents a call hierarchy,
and explains the resource consumption of the relevant function in an interactive flame
graph. This information is critical for developers to understand which paths consume the
most resources and illustrates the different ways in which the code is actually called. The
supported programming languages include Java, Go, Node.js, and Python.

Cloud Profiler supports the following types of profiles:

• CPU time: The time the CPU spent executing a block of code. This doesn't include
the time the CPU was waiting or processing instructions for something else.

• Heap: Heap or heap usage is the amount of memory that's allocated to the
program's heap when the profile is collected.

• Allocated heap: Allocated heap or heap allocation is the total amount of memory
that was allocated in the program's heap, including memory that has been freed and
is no longer in use.

• Contention: Contention provides information about the threads that are stuck and
the ones waiting for other threads. Understanding contention behavior is critical to
designing code and provides information for performance tuning.

• Threads: Information related to threads gives insights into the threads that are
created but never actually used. This forms the basis for identifying leaked threads,
where the number of threads keeps increasing.

• Wall time: Wall time is the time it takes to run a block of code, including its wait
time. The wall time for a block of code can never be less than the CPU time.

The following screenshot summarizes the supported profile types by language:

Figure 10.29 – Supported profile types by language

Cloud Profiler 383

The following screenshot shows the Profiler interface, which depicts a sample interactive
flame graph for the CPU time profile type. The profile data is retained for 30 days and the
profile information can be downloaded for long-term storage:

Figure 10.30 – Interactive flame graph with the profile type set to CPU time

The upcoming subsection explains the access controls that are required to perform actions
with respect to Cloud Profiler.

Access control for Cloud Profiler
The following table displays the critical IAM roles required, along with their minimal
permissions (in accordance with the principle of least privilege), to access or perform
actions related to Cloud Profiler:

This completes this section on Cloud Profiler, where we looked at the supported profile
types and learned how to use an interactive flame graph.

384 Exploring GCP Cloud Operations

Binding SRE and Cloud Operations
Chapter 2, SRE Technical Practices – Deep Dive, introduced SRE technical practices
such as SLAs, SLOs, SLIs, and Error Budgets. To summarize, this chapter established a
relationship between these practices and tied them directly to the reliability of the service.
To ensure that a service meets its SLAs, the service needs to be reliable. SRE recommends
using SLOs to measure the reliability of the service. SLOs require SLIs to evaluate the
service's reliability. If these SLIs are not met, then the SLOs will miss their targets. This
will eventually burn the Error Budget, which is a measure that calculates the acceptable
level of unavailability or unreliability. Chapter 3, Understanding Monitoring and Alerting to
Target Reliability, introduced concepts related to monitoring, alerting, logging, and tracing
and established how these are critical to tracking the reliability of the service. However,
both these chapters were conceptual in nature.

This chapter's focus is Cloud Operations. So far, we've described how Google Cloud
captures monitoring metrics, logging information, and traces and allows us to debug
applications or services. Additionally, Cloud Operations has an option called SLO
monitoring. This option allows you to define and track the SLO of a service. This option
currently supports three service types for auto-ingestion: Anthos Service Mesh, Istio on
GKE, and App Engine. However, this option also supports user-defined microservices.
The next subsection deep dives into SLO monitoring.

SLO monitoring
Given that SLOs are measured using SLIs and SLOs are defined as quantifiable measures
of service reliability that are measured over time, there are three specific steps in defining
an SLO via SLO monitoring. These are as follows:

1. Setting a SLI

2. Defining SLI details

3. Setting a SLO

Let's look at these steps in more detail.

Binding SRE and Cloud Operations 385

Setting an SLI
This is the first step and has two specific goals: choosing a metric as an SLI and selecting a
method of evaluation for measuring the chosen metric.

Choosing a metric
SLO monitoring allows you to choose either Availability or Latency as an out-of-the-box
SLI for a service that's been configured via Anthos Service Mesh, Istio on GKE, and
App Engine. These options are not available for microservices on GKE that haven't been
configured through the preceding options. These are also known as custom services.
However, irrespective of how the service is configured, you have the option to choose
Other. Here, the user can pick the metric of choice to track as the SLI.

Request-based or windows-based
There are two methods of evaluation to choose from that will affect how compliance
against SLIs is measured. These are request-based and windows-based. The request-based
option counts individual events and evaluates how a service performs over the compliance
period, irrespective of how load is distributed. The windows-based option, on the other
hand, measures performance in terms of time (good minutes versus bad minutes),
irrespective of how load is distributed.

Defining SLI details
This is the second step and provides options for the user to choose a performance metric.
The user can either use the predefined metrics in Cloud Monitoring or any user-defined
metrics that can be created from logs (through logs-based metrics). Once a metric has
been chosen, the performance criteria for the metric need to be defined. The performance
criteria for metrics related to services on Anthos Service Mesh, Istio on GKE, and App
Engine are predefined. However, for custom services, this needs to be manually defined by
the user by using two of the three filter options – Good, Bad, and Total.

Setting an SLO
This is the third and final step and has two specific goals: setting the compliance period
and setting the performance goal.

386 Exploring GCP Cloud Operations

Compliance period
The compliance period option allows you to set a time period to evaluate the SLO. There
are two possible choices:

• Calendar: Performance is measured from the start of the period, with a hard reset at
the start of every new period. The available options for period length are Calendar
day, Calendar week, Calendar fortnight, and Calendar month.

• Rolling: Performance is measured for a fixed time period; say, the last 10 days. The
user can specify the fixed time period in days.

Now, let's look at setting the performance goal.

Performance goal
The performance goal indicates the goal that's been set as a ratio of good service
to demanded service over the compliance period. This goal can be refined as more
information is known about the system's behavior.

This completes our overview of SLO monitoring, which we can use to define an SLO to
measure the reliability of a service. The next subsection provides a hands-on demonstration
of how SLO monitoring can be configured against a GKE service (that we previously
created in Chapter 8, Understanding GKE Essentials to Deploy Containerized Applications).

Hands-on lab – tracking service reliability using SLO
monitoring
SLO monitoring allows us to link the SRE technical practices with the practical options
available in Google Cloud. These help us monitor the reliability of the service and alert the
on-call engineer if the service misses the reliability threshold.

This subsection is a hands-on lab that will show you how to use the SLO monitoring
option from Cloud Monitoring. The SLO monitoring option tracks service reliability by
defining an SLO. In this lab, we will use hello-world-service from the my-first-
cluster GKE cluster, which was created as part of Chapter 8, Understanding GKE
Essentials to Deploy Containerized Applications. This lab has three main goals:

• Defining an SLO for a service

• Creating an SLO burn rate alert policy

• Verifying SLO monitoring

Let's take a look at these goals in more detail.

Binding SRE and Cloud Operations 387

Defining a SLO for a service
Follow these steps to define a SLO for hello-world-service:

1. Navigate to the Services UI under the Monitoring section of the GCP console. Select
the Define Service action. Then, select the hello-world-service section from
the my-first-cluster cluster, as shown in the following screenshot. Set the
display name to hello-world-service. The system will create the service to be
monitored and will navigate the user to the service overview dashboard:

Figure 10.31 – Defining a custom service by selecting one

2. Select the Create SLO action to define an SLO. This action will open a pop-up
window, as shown in the following screenshot. Note that, as discussed in Chapter 2,
SRE Technical Practices – Deep Dive, an SLO requires an SLI. So, to define an SLO,
we must first choose the SLI metric and then define it.

388 Exploring GCP Cloud Operations

3. Given that the service being used for this lab is not part of Anthos Service Mesh,
Istio on GKE, or App Engine, the only option available is to choose Other. Here, the
user can configure a metric of choice to measure the performance of the service. In
addition, set the method of evaluation to Request-based:

Figure 10.32 – Setting an SLI as part of SLO monitoring

4. To define the SLI's details, select a performance metric. In this case, we will select
the kubernetes.io/container/restart_count metric. Set the filters to
Total and Bad, as shown here:

Binding SRE and Cloud Operations 389

Figure 10.33 – Defining SLI details as part of SLO monitoring

5. Select a compliance period; that is, either Calendar or Rolling. For this specific lab,
set Period Type to Calendar and Period Length to Calendar day. Additionally, set
the performance goal to 90%, as shown here:

Figure 10.34 – Setting an SLO as part of SLO monitoring

390 Exploring GCP Cloud Operations

6. Review the configuration and save it by providing an appropriate display name,
such as 90% - Restart Count - Calendar Day, as shown here:

Figure 10.35 – Reviewing and saving the SLO as part of SLO monitoring

7. Once saved, the SLO – 90% - Restart Count - Calendar Day – will be
created under the hello-world-service service, as shown in the following
screenshot. At the moment, the error budget is 100% since none of the containers
were restarted:

Figure 10.36 – SLO created for a service as part of SLO monitoring

With this, we've learned the steps we need to take to define an SLO for a service. In the
next topic, we'll explore the steps we need to create an SLO burn rate alert policy.

Creating a SLO burn rate alert policy
The concept of alerting and notification channels from Cloud Monitoring (discussed
earlier in this chapter) is used to create an alert. Before we look at the steps for this, let's
recap on the critical jargon that was discussed in Chapter 3, Understanding Monitoring and
Alerting to Target Reliability. We must configure these elements while defining an alert
through Cloud Monitoring:

• Lookback duration refers to how far you must go back in time to retrieve
monitoring data.

Binding SRE and Cloud Operations 391

• Fast-burn alert refers to using shorter lookback durations that help with quickly
detecting problems. However, this will lead to more frequent alerting and,
potentially, false alarms.

• Slow-burn alert refers to using a longer lookback duration to ensure that a problem
exists for a longer duration and avoids false alarms. However, the downside is that
the alert is fired after a longer duration, even though the problem has a current
negative impact on the service.

Follow these steps to set up an alert for when the error budget for the SLO drops beyond a
certain burn rate within a specified period of time:

1. Click the Create alerting policy button, as shown in the preceding screenshot, to
create an SLO alerting policy. The SLO alerting policy tracks the error budget based
on the configured burn rate, as shown in the following screenshot. Set Lookback
duration to 1 minute(s) and Burn rate threshold to 10 minute(s). The following is
our configuration for a fast-burn alert:

Figure 10.37 – Setting an SLO alert condition

392 Exploring GCP Cloud Operations

2. Select a notification channel of choice (that has already been pre-configured). In
this case, select an email notification channel, as shown here:

Figure 10.38 – Selecting a notification channel to send an alert
Now, create the SLO burn rate alert policy. Optionally, add documentation that
references the alert in terms of what the on-job SRE engineer should check or do.

3. Once the alert has been configured, the SLO status will look as follows, where Error
Budget is currently at 100% and none of the alerts are firing:

Figure 10.39 – Showing the complete setup for SLO monitoring with its alert and initial error budget

With that, we've created an SLO burn rate alert policy. Now, let's verify SLO monitoring by
performing a test.

Binding SRE and Cloud Operations 393

Verifying SLO monitoring
In the previous two subsections of this hands-on lab on SLO monitoring, we created an
SLO for a service (that was previously created in Chapter 8, Understanding GKE Essentials
to Deploy Containerized Applications) and then created an SLO burn rate alert policy.
This section will show you how to test the configuration and verify if our SLO monitoring
option verifies the health of our service; that is, hello-world-service:

1. Given that we previously selected the performance metric while defining our SLO
as kubernetes.io/container/restart_count, let's restart the container
and see if the error budget changes and, subsequently, if the alert gets fired. Use the
following command to restart the container after connecting to the cluster. Replace
pod-name and container-name accordingly. pod-name can be found via the
service, while container-name can be found via pod-name:

kubectl exec -it <pod-name> -c <container-name> -- /bin/
sh -c "kill 1"

2. Once the command has been executed, the container inside the pod, with respect to
hello-world-service, will restart. This means that the SLI that's been defined
will not be met and, subsequently, the SLO will not be met. As a result, the error
budget will be consumed. If the error budget is consumed by more than the burn
rate that's been defined – which was 10 under 1 minute – then an alert will also be
fired. The following screenshot shows the updated status of the SLO for hello-
world-service. The status of the SLO has now been updated to Unhealthy:

Figure 10.40 – Displaying the service as Unhealthy, alerts firing, and the reduced error budget

394 Exploring GCP Cloud Operations

3. The alert triggers a notification that will be sent to the configured email, as shown in
the following screenshot:

Figure 10.41 – Alert notification set to the configured email address

This completes our detailed hands-on lab related to SLO monitoring, where we linked
the SRE technical practices to options available in Google Cloud Operations to monitor
and alert users about the reliability of the service. This also completes this chapter on
Cloud Operations.

Summary 395

Summary
In this chapter, we discussed the suite of tools that are part of Cloud Operations.
Cloud Operations is critical for forming the feedback loop of the CI/CD process and
is fundamental to establishing observability on GCP. Observability is key to ensuring
that an SRE's technical practices – specifically, SLIs, SLOs, SLAs, and Error Budgets –
are not violated. This is achieved by gathering logs, metrics, and traces from multiple
sources and by visualizing this information on dashboards. This information is used to
establish performance and reliability indicators. These indicators can then be tracked with
configurable alerts. These alerts trigger when there is a potential violation, and the alerts will
be notified on the configurable notification channels. Cloud Operations also offers services
that allow us to debug the application, without slowing down, and capture trace information.
The end goal is to ensure that the service is reliable. We concluded this chapter by providing
a hands-on lab on SLO monitoring, a feature from Google Cloud that tracks the reliability of
the service by bringing together Cloud Operations and SRE technical practices.

This was the last chapter of this book. The next section provides insights into preparing
to become a Professional Cloud DevOps Engineer, along with a summary on a few topics
that might show up in the exam but were not covered in the last 10 chapters. We have also
provided a mock exam, which will be useful as a preparation resource.

Points to remember
The following are some important points to remember:

• Cloud Monitoring is a GCP service that collects metrics, events, and metadata from
multi-cloud and hybrid infrastructures in real time.

• A workspace provides a single pane of glass related to GCP resources.

• A workspace can monitor resources from multiple monitored projects.

• A monitored project, however, can only be associated with a single workspace.

• Dashboards provide a graphical representation of key signal data, called metrics, in
a manner that is suitable for end users or the operations team.

• Metrics represent numerical measurements of resource usage that can be observed
and collected across the system at regular time intervals.

• MQL can be used to create a chart with a text-based interface and uses an expressive
query language to execute complex queries against time series data.

• Uptime checks test the availability of an external facing service within a specific
timeout interval.

396 Exploring GCP Cloud Operations

• Connection errors, 40x client errors, and not configuring firewall rules are potential
reasons for uptime check failures.

• Alerting is the process of processing the alerting rules that track the SLOs and
notify or perform certain actions when the rules are violated.

• The alignment period is a lookback interval from a particular point in time.

• The Monitoring agent is based on the collectd daemon and is used to collect
system statistics from various sources, including OSes, applications, logs, and
external devices.

• Cloud Logging is a GCP service that allows you to store, search, analyze, monitor,
and alert users about logging data and events from applications.

• Policy denied logs are specific to logs that are captured when access is denied by a
Google Cloud service to either a user or service account.

• Logs-based metrics are metrics that are created based on the content of the log
entries and can be extracted from both included and excluded logs.

• VPC Flow Logs capture real-time network activity (incoming/outgoing) against
VPC resources on an enabled subnet.

• Firewall logs capture the effects of a specific firewall rule in terms of the traffic that's
allowed or denied by that firewall rule.

• The Logging agent is based on fluentd and captures additional VM logs such as
operating system (OS) logs and logs from third-party applications.

• The Monitoring and Logging agents can both be installed on unmanaged GCE
VMs.

• GKE has built-in support for logging and can be enabled for new or existing clusters
via Cloud Operations for GKE.

• Cloud Debugger inspects the state of a running application in real time.

• Snapshots capture local variables and the call stack at a specific location in the
application's source code.

• A snapshot is only taken once, and the user needs to manually retake it if needed.

• Debug logpoints can inject a log into a running application without stopping,
editing, or restarting.

• Logpoints can be created even if direct access to the source code is not available.

• Logpoints become inactive after 24 hours and are automatically deleted after 30 days.

Further reading 397

• Cloud Trace is a collection of spans. A span is an object that wraps latency-specific
metrics. Cloud Trace is a distributed tracing system.

• Cloud Trace's language-specific SDKs are available for Java, Node.js, Ruby, and Go.

• Cloud Profiler provides low-impact continuous profiling to help us understand the
performance of a production system.

• The programming languages that are supported by Cloud Profiler include Java,
Go, Node.js, and Python. Profile data is retained for 30 days by default.

Further reading
For more information on GCP's approach toward DevOps, please read the following articles:

• Cloud Operations: https://cloud.google.com/products/operations

• Cloud Monitoring: https://cloud.google.com/monitoring

• Cloud Logging: https://cloud.google.com/logging

• Cloud Debugger: https://cloud.google.com/debugger

• Cloud Trace: https://cloud.google.com/trace

• Cloud Profiler: https://cloud.google.com/profiler

Practice test
Answer the following questions:

1. A user has performed administrative actions that modify the configuration or
metadata of resources. Which of the following is the most appropriate option to
quickly get to the logs related to administrative actions?

a) Go to Error Reporting and view the administrative activity logs.

b) Go to Cloud Logging and view the administrative activity logs.

c) Go to Cloud Monitoring and view the administrative activity logs.

d) Go to the Activity tab on the Cloud Console and view the administrative
activity logs.

https://cloud.google.com/products/operations
https://cloud.google.com/monitoring
https://cloud.google.com/logging
https://cloud.google.com/debugger
https://cloud.google.com/trace
https://cloud.google.com/profiler

398 Exploring GCP Cloud Operations

2. The default retention period for data access audit logs is ___________.

a) 7 days

b) 30 days

c) 400 days

d) Unlimited

3. Select the most appropriate option for monitoring multiple GCP projects with
resources through a single workspace.

a) Cannot monitor multiple GCP projects through a single workspace.

b) Configure a separate project as a host project for a Cloud Monitoring
workspace. Configure metrics and logs from each project to the host project
via Pub/Sub.

c) Configure a separate project as a host project for a Cloud Monitoring
workspace. Use this host project to manage all other projects.

d) Configure a separate project as a host project for a Cloud Monitoring
workspace. Configure the metrics and logs from each project for the host project
via Cloud Storage.

4. ____________ logs record operations of instances that have been reset for Google
Compute Engine.

a) Admin activity

b) System event

c) Data access

d) Access transparency

5. The maximum size of a log entry is __________.

a) 64 KB

b) 128 KB

c) 256 KB

d) 512 KB

Practice test 399

6. The default retention period for access transparency logs is ___________.

a) 7 days

b) 30 days

c) 400 days

d) Unlimited

7. ___________ logs are specific to actions that are performed by Google personnel
when accessing user's/customer's content.

a) Admin activity

b) System event

c) Data access

d) Access transparency

8. The SRE team supports multiple production workloads in GCP. The SRE team wants
to manage issues better by sending error reports and stack traces to a centralized
service. Which of the following is best suited for accomplishing this goal?

a) Cloud Error Logging

b) Cloud Error Reporting

c) Cloud Tracing

d) Cloud Profiling

9. ___________ logs record the operations that are performed when assigning/
unassigning IAM roles.

a) Admin activity

b) System event

c) Data access

d) Access transparency

10. _________ logs analyze the network logs of an application.

a) VPC flow

b) Firewall

c) Audit

d) Activity

400 Exploring GCP Cloud Operations

11. Select the option that represents the right characteristics for log entry from Cloud
Logging:

a) Timestamp

b) Log name

c) Resource tied to the log entry

d) All of the above

12. Select two actions where the user will want to send a subset of logs for big
data analysis:

a) Create a sink in Cloud Logging that identifies the subset of logs to send.

b) Export logs to Cloud Storage.

c) Export logs to BigQuery.

d) Export logs to Pub/Sub.

13. The default retention period for admin activity logs is ___________.

a) 7 days

b) 30 days

c) 400 days

d) Unlimited

14. Which of the following represents the right sequence of steps to export logs?

a) Choose destination, create sink, create filter

b) Create sink, create filter, choose destination

c) Create sink, choose destination, create filter

d) Choose destination, create filter, create Sink

15. ___________ logs will record how resources are created for Google Compute Engine:

a) Admin activity

b) System event

c) Data access

d) Access transparency

Practice test 401

16. Select the option that governs access to logs from Cloud Logging for a given user:

a) Service accounts

b) Cloud IAM roles

c) Both (a) and (b)

d) None of the above

17. Select the role that allows us to manage IAM roles for a Monitoring workspace:

a) Monitoring Viewer

b) Monitoring Editor

c) Monitoring Admin

d) Monitoring Metric Writer

18. Select the Cloud Monitoring widget that represents metrics with a distribution value:

a) Line charts

b) Heatmap charts

c) Gauges

d) Scorecards

19. To perform uptime checks, what is the minimum number of active locations that
need to be selected as geographic regions?

a) Two

b) Three

c) Four

d) Five

20. The Monitoring agent is based on _________, while the Logging agent is based on
__________.

a) fluentd, collectd

b) google-collectd, google-fluentd

c) collectd, fluentd

d) google-fluentd, google-collectd

402 Exploring GCP Cloud Operations

21. Which of the following is not a valid classification type for data access logs?

a) Admin read

b) Admin write

c) Data read

d) Data write

22. Select the role that allows us to view data access and access transparency logs:

a) Logs Viewer

b) Private Logs Viewer

c) Project Viewer

d) Project Editor

23. The default retention period for firewall logs is ___________.

a) 7 days

b) 30 days

c) 400 days

d) Unlimited

24. Every VPC has a set of hidden, implied, pre-configured rules with the lowest
priority. Select two valid pre-configured rules:

a) allow all ingress

b) deny all ingress

c) allow all egress

d) deny all egress

25. The default retention period for system event audit logs is ___________.

a) 7 days

b) 30 days

c) 400 days

d) Unlimited

Answers 403

Answers
1. (d): Go to the Activity tab on the Cloud Console and view the administrative

activity logs.

2. (b): 30 days.

3. (c): Configure a separate project as a host project for a Cloud Monitoring
workspace. Use this host project to manage all other projects.

4. (b): System event.

5. (c): 256 KB.

6. (c): 400 days.

7. (d): Access transparency.

8. (b): Cloud Error Reporting.

9. (a): Admin activity.

10. (a): VPC flow.

11. (d): All of the above.

12. (a) and (c).

13. (c): 400 days.

14. (b): Create sink, create filter, choose destination.

15. (a): Admin activity.

16. (b): Cloud IAM roles.

17. (c): Monitoring Admin.

18. (b): Heatmap chart.

19. (b): Three.

20. (c): collectd, fluentd.

21. (b): Admin write; this is not a valid classification for data access logs.

22. (b): Private Logs Viewer.

23. (b): 30 days.

24. (b) and (c): deny all ingress and allow all egress.

25. (c): 400 days.

Appendix
Getting Ready for

Professional Cloud
DevOps Engineer

Certification
This book is a practical guide to learning about and understanding site reliability
engineering or SRE, which is a prescriptive way of implementing DevOps. The book also
provides deep insights into the Google Cloud services that are critical to implementing
DevOps on Google Cloud Platform.

Additionally, the book also helps in preparing for the Professional Cloud DevOps
Engineer Certification exam. A professional Cloud DevOps engineer is responsible for
efficient development operations and balancing service reliability and delivery speed. They
are skilled at using Google Cloud Platform to build software delivery pipelines, deploy
and monitor services, and manage and learn from incidents. The official exam guide can
be found at https://cloud.google.com/certification/guides/cloud-
devops-engineer. To register for the certification exam, go to https://cloud.
google.com/certification/register.

https://cloud.google.com/certification/guides/cloud-devops-engineer
https://cloud.google.com/certification/guides/cloud-devops-engineer
https://cloud.google.com/certification/register
https://cloud.google.com/certification/register

406 Getting Ready for Professional Cloud DevOps Engineer Certification

At a high level, the certification is centered around SRE, Google Kubernetes Engine
(GKE), and Google Cloud's operations suite. These topics probably make up more than
80% of the certification exam. The chapters on SRE, GKE, and Google Cloud's operations
suite extensively cover key concepts assessed in the Professional Cloud DevOps Engineer
Certification exam. The Points to remember section and the practice test toward the end of
this chapter should help you revise the critical concepts from this chapter.

In addition, three additional topics that might come up on the certification exam will
be covered at a high level. Some of these topics overlap with other certification exams
from Google, such as Professional Cloud Architect Certification or Professional Cloud
Developer Certification.

The following are the topics that will be summarized. Please note that these topics are not
completely elaborated on here but rather only introduced. It is recommended to refer to
the specific documentation on these topics for in-depth information:

• Cloud Deployment Manager

• Cloud Tasks

• Spinnaker

Cloud Deployment Manager
Infrastructure as Code (IaC) is the process of managing and provisioning infrastructure
through code instead of manually creating the required resources. Cloud Deployment
Manager is a Google Cloud service that provides IaC. Cloud Deployment Manager can
create a set of Google Cloud resources and facilitates managing these resources as a unit
otherwise called a deployment. For example, it is possible to create a Virtual Private
Cloud (VPC) using declarative code through a configuration file rather than manually
creating it through the console. The following are some critical properties of Cloud
Deployment Manager:

• Can create multiple resources in parallel, such as multiple VMs

• Can provide input variables to create a resource with specific user-defined values
as required

• Can get the return value of a newly created resource, such as the instance ID of a
newly created Google Compute Engine instance

• Can create dependencies where one resource definition can reference another
resource and one resource can be created after creating another resource
(using dependsOn)

Cloud Tasks 407

Cloud Deployment Manager allows specifying all the resources required for an application
through a configuration file. This is the first step for implementing Cloud Deployment
Manager. This configuration file is written in a declarative format using YAML.

Each configuration file can be used to define one or more resources. Each resource section
consists of three main components: the name of the resource, the resource type, and the
resource properties. The resource properties that need to be used are in most cases specific
to the resource type. The resources specified in the configuration file are created by
making API calls (which could introduce a slight risk as certain APIs could be deprecated
in the future). The configuration file can either be completely spelled out or Cloud
Deployment Manager allows the usage of templates (which are preferred for creating
similar types of resources).

A configuration can contain templates that refer to parts of the configuration file that is
abstracted to individual building blocks. A template file is written in either Python or
Jinja2. Python templates are more powerful and provide the option to programmatically
create or manage templates. Jinja2 is a simpler but less powerful templating language that
uses the same syntax as YAML. A preview mode (using the --preview flag) can be
used to verify the potential operations on the resources before they are applied. For more
information on Cloud Deployment Manager, refer to https://cloud.google.com/
deployment-manager.

Cloud Tasks
Cloud Tasks is a fully managed service from Google Cloud that allows you to separate out
pieces of work that could be performed independently and asynchronously outside of a
user or a service-to-service request. An independent piece of work is referred to as a task.
Cloud Tasks is essentially used when an application accepts inputs from users and needs
to initiate background tasks accordingly to perform automated asynchronous execution.

The following is a summary of the critical features of Cloud Tasks:

• Cloud Tasks is aimed at explicit invocation, where the publisher retains full control
of execution.

• Cloud Tasks is most appropriate where the task producer can have control over
the execution.

The core difference between Cloud Tasks and Pub/Sub is the notion of explicit versus
implicit invocation. As mentioned, Cloud Tasks is aimed at explicit invocation. In
contrast, Pub/Sub supports implicit invocation, where a publisher implicitly causes the
subscriber to execute by publishing an event. For more in-depth information on Cloud
Tasks, refer to https://cloud.google.com/tasks.

https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://cloud.google.com/tasks

408 Getting Ready for Professional Cloud DevOps Engineer Certification

Spinnaker
Spinnaker is an open source, multi-cloud continuous delivery platform that was initially
developed by Netflix and later extended by Google. Spinnaker is not an official Google
Cloud service. Spinnaker is not a natively integrated service, and no such native service
exists yet from Google Cloud Platform for continuous deployment. Spinnaker is extensively
recommended by Google to implement CI/CD pipelines on Google Cloud Platform.
Spinnaker helps to release software changes at high velocity and with confidence. Spinnaker
is composed of several independent microservices. Spinnaker creates a Cloud Storage bucket
and uses a Redis database to maintain its assets. Spinnaker also creates a Pub/Sub topic.

Spinnaker can be considered an application management tool where it is possible to
view and manage GKE components, including workload resources, services, and load
balancers. Spinnaker can support multiple deployment models, including rolling update,
blue/green, or canary.

Spinnaker puts everything in an auto-pilot mode where there is no need for manual
intervention, or in other words, no need to manually execute kubectl commands.
Spinnaker can create and manage YAML files and can perform automated deployments
or even create/execute YAML files for load balancers as a service. The only manual step
involved is to provide approval to complete deployment.

The following figure shows a high-level summary in terms of interactions specifically
when Spinnaker is used to deploy to a GKE cluster:

Illustration of interactions when Spinnaker is used to deploy to GKE

Spinnaker 409

The interactions in the preceding figure are as follows:

1. The developer changes the code by creating a Git tag and pushes to the cloud
source repository.

2. The cloud source repository is configured to detect the new Git tag. This triggers
Cloud Build to execute the build process as per the provided specification. This
might include the running of unit tests. Once complete, a build artifact such as
a Docker image is created.

3. The created build artifact is stored either in Container Registry or Artifact Registry
and once available, a message is sent to Cloud Pub/Sub if configured.

4. Spinnaker, installed on GKE, will be listening to a Pub/Sub topic for the newly
created image.

5. Once the image is available, Spinnaker deploys the new container to a QA/staging
environment, preferably through canary deployment so that only a small set of
users are impacted.

6. Functional tests are run on the canary environment if available to verify the
quality of the deployment. If the deployment is as per the expected standards in
terms of quality, then after manual approval, the image is then deployed to the
production environment.

It is important to note that either while performing a blue/green deployment or a
canary deployment, Spinnaker can update the ReplicaSet in place. When deploying a
ReplicaSet with a Deployment, and the Deployment doesn't exist, Spinnaker first creates
the ReplicaSet with 0 replicas and then creates the Deployment, which will resize the
ReplicaSet. When the Deployment does exist, it does the same but edits the Deployment
in place rather than creating it.

For more information on installing and managing Spinnaker on Google Cloud Platform,
refer to https://cloud.google.com/docs/ci-cd/spinnaker/spinnaker-
for-gcp.

This concludes our summary of additional topics such as Cloud Deployment Manager,
Cloud Tasks, and Spinnaker.

You have reached the end of this book. Test your knowledge by attempting the mock
tests. This book includes 2 mock tests of 50 questions each. These tests can be used
as a reference. All the best if you are taking the certification exam!

https://cloud.google.com/docs/ci-cd/spinnaker/spinnaker-for-gcp
https://cloud.google.com/docs/ci-cd/spinnaker/spinnaker-for-gcp

Mock Exam 1

Test Duration: 2 hours

Total Number of Questions: 50
Answer the following questions:

1. Which of the following is an appropriate deployment solution with minimal
downtime and infrastructure needs?

a) Recreate

b) Rolling update

c) Canary deployment

d) Blue/green deployment

2. Cloud Pub/Sub and Cloud Tasks are two possible services in Google Cloud that
provide the ability to asynchronously integrate with message services. Select two
options that are the most appropriate for Cloud Tasks:

a) Cloud Tasks is aimed at explicit invocation where the publisher retains full
control over execution.

b) Cloud Tasks is most appropriate where the task producer can have control over
execution.

c) Cloud Tasks is aimed at implicit invocation where the publisher retains full
control over execution.

d) Cloud Tasks is most appropriate where the task consumer can have control
over execution.

412 Mock Exam 1

3. ____________ logs will record operations of instance reset for Compute Engine.

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

4. Select the appropriate service type where a service gets an internal IP address:

a) ClusterIP

b) NodePort

c) LoadBalancer

d) All of the above

5. Select the role that allows the writing of monitoring data to a workspace but doesn't
permit viewing via a console:

a) Monitoring Viewer

b) Monitoring Metric Writer

c) Monitoring Admin

d) Monitoring Editor

6. For a service, if the SLA is 99.0%, the SLO is 99.5%, and the SLI is 99.6%, then the
error budget is ________.

a) 1%

b) 0.4%

c) 0.5%

d) None of the above

7. _________ is a feature of Cloud Build where intermediate container image layers
are directly written to Google's container registry without an explicit push step.

a) Elastic cache

b) Kaniko cache

c) Redis cache

d) (a) and (c)

Total Number of Questions: 50 413

8. Who of the following coordinates the effort of the response team to address an
active incident?

a) Incident Commander (IC)
b) Communications Lead (CL)
c) Operations Lead (OL)
d) Planning Lead (PL)

9. Select the command that allows Docker to use gcloud to authenticate requests to
Container Registry?

a) gcloud auth configure docker
b) gcloud auth configure-docker
c) gcloud auth docker-configure
d) gcloud auth docker configure

10. Select the phase as per the SRE engagement model where an SRE engineer is less
engaged in comparison with the other phases:

a) Architecture and design
b) Active development
c) Limited availability
d) General availability

11. Your application is deployed in GKE and utilizes secrets to protect sensitive
information. Which of the following is the recommended approach?

a) Sensitive information should not be stored in the application.
b) Sensitive information should be passed as environment variables.
c) Sensitive information should be stored in the cloud's DLP service.
d) Sensitive information should be stored in Google Secrets Manager.

12. A logging agent is installed on Google Compute Engine. However, logs are not sent
to Cloud Logging. What should be the next logical step to troubleshoot this issue?

a) Re-install the logging agent.

b) Restart Compute Engine.

c) Configure data access logs as part of the logging agent configuration.

d) Verify whether the service account tied to Compute Engine has the required role
to send to Cloud Logging.

414 Mock Exam 1

13. The SLI is calculated as Good Events / Valid Events * 100. Which of the following
response counts are discarded while calculating valid events?

a) 2xx status count

b) 3xx status count

c) 4xx status count

d) 5xx status count

14. Deployment rollout is triggered only if the deployment's pod template is changed.
Select the option that represents the section of the deployment that should
be changed:

a) .spec

b) .spec.template

c) .template.spec

d) .template

15. Which of the following is not true as per SRE best practices?

a) There are consequences for missing an SLA.

b) There are no consequences for missing an SLO.

c) A missing SLO represents an unhappy user.

d) A missing SLO results in burning the error budget.

16. Select the log type that represents log entries to perform read-only operations
without modifying any data:

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

17. Which of the following is not a recommended best practice during the incident
management process?

a) Develop and document procedures.

b) The Incident Commander should sign off on all decisions during incident
management.

Total Number of Questions: 50 415

c) Prioritize the damage and restore the service.

d) Trust team members in specified roles.

18. _____________ represents an exact measure of a service's behavior.

a) SLI

b) SLO

c) SLA

d) Error budget

19. An application in App Engine Standard is generating a large number of logs.
Select the appropriate option that quickly provides access to errors generated by
the application?

a) Go to Cloud Console, the Activity tab, and view the error logs.

b) Go to Cloud Logging, filter the logs, and view the error logs.

c) Go to Cloud Error Reporting and view the error logs aggregated by occurrences.

d) Go to Cloud Monitoring, filter the logs, and view the error logs.

20. ____________ logs will record operations in terms of listing resources for
Compute Engine.

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

21. You are planning to adopt SRE practices and want to set an SLO for your application.
How do you get started?

a) Set the SLO to 100%.

b) Set the SLO based on collecting historical data during the pre-GA period.

c) Set the SLO based on an internal survey of all stakeholders.

d) Set the SLO slightly below the SLA.

416 Mock Exam 1

22. Select the appropriate option that describes how to delete admin activity logs:

a) Go to the Activity tab in Cloud Console. Filter the logs to delete and select the
delete action.

b) Go to the Activity tab in Cloud Logging. Filter the logs to delete and select the
delete action.

c) Admin activity logs cannot be deleted.

d) Go to the Activity tab in Cloud Monitoring. Filter the logs to delete and select the
delete action.

23. Which of the following is the preferred method if Cloud Build needs to
communicate with a separate CD tool regarding the availability of a new artifact,
which could be deployed by the CD tool?

a) Cloud Build makes an entry in a NoSQL database. The CD tool looks for an event
in the database.

b) Cloud Build makes an entry in a cloud storage bucket. The CD tool looks for an
event in the bucket.

c) Cloud Build publishes a message to a pub/sub topic. The CD tool is subscribed to
the topic.

d) (a) and (b).

24. Select all the possible characteristics of Toil (you may choose more than one):

a) It is repetitive.

b) It provides enduring value.

c) It grows linearly with the service.

d) Tactical.

25. _____________ is a process/service that digitally checks each component of the
software supply chain, ensuring the quality and integrity of software before the
application is deployed.

a) Container registry

b) Cloud storage

c) Container analysis

d) Binary authorization

Total Number of Questions: 50 417

26. How many times does Cloud Debugger allow you to take a snapshot for application
data for the same location in the code?

a) None

b) Twice

c) Once

d) Thrice

27. Select the option that is true in the case of audit security logs.

a) The retention period is 30 days and is configurable.

b) The retention period is 400 days and is configurable.

c) The retention period is 30 days and is not configurable.

d) The retention period is 400 days and is not configurable.

28. _______________ API enabled metadata storage regarding software artifacts and is
used during the binary authorization process

a) Container scanning

b) Container metadata

c) Container attestation

d) Container analysis

29. You have created a GKE cluster with binary authorization enabled. You are trying to
deploy an application, but you encountered an error – Denied by Attestor. Select the
next appropriate step.

a) Update the cluster and turn off binary authorization. Deploy the application again.

b) Create cryptographic keys and submit to binary authorization.

c) Create an attestation and submit to binary authorization.

d) Create an exemption for the container image from binary authorization.

30. Select the account to use in code when one Google cloud service interacts with
another Google cloud service:

a) User account

b) Service account

c) Both (a) and (b)

d) None of the above

418 Mock Exam 1

31. Your application has an API that serves responses in multiple formats, such as
JSON, CSV, and XML. You want to know the most requested format for further
analysis. Which of the following is the most appropriate approach?

a) Create a log filter and export the logs to cloud storage through a log sink. Query
the logs in cloud storage.

b) Create a log filter, create a custom metric using regex, and extract each requested
format into a separate metric. Monitor the count of metrics and create alerts
as needed.

c) Create a log filter and export the logs to BigQuery through a log sink. Query the
logs in BigQuery.

d) Create a log filter, create a custom metric using regex, and extract the requested
format to a label. Monitor the metric to view the count of requests grouped by label.

32. Select the incident severity classification that has the following characteristics: an
impact on, or inconvenience to, internal users, but external users might not notice.

a) Negligible

b) Minor

c) Major

d) Detrimental

33. Select the log type that represents the log entries for system maintenance operations
on Compute Engine resources?

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

34. Which of the following is a suitable SLI for big data systems (select two)?

a) Availability

b) Throughput

c) Quality

d) End-to-end latency

Total Number of Questions: 50 419

35. You need to deploy two applications represented by two deployments – Alpha and
Beta. Both the applications need to communicate with each other, but none of the
applications should be reachable from the outside. You decided to create a service.
Select the appropriate service type:

a) Ingress
b) NodePort
c) ClusterIP
d) LoadBalancer

36. There is an expectation to auditing network traffic inside a specific VPC. Which of
the following is the most appropriate option?

a) Enable VPC firewall-level logs
b) Enable VPC network logs
c) Enable VPC flow logs
d) Enable VPC audit logs

37. In RBAC, persistentvolume and certificatesigningrequests nodes
are scoped as:

a) Cluster scoped
b) Namespace scoped
c) Both
d) None

38. Select the resource that bundles application code and dependencies into a single
unit, leading to the abstraction of the application from the infrastructure.

a) Docker
b) Microservice
c) Containers
d) Virtual machines

39. VPC in Google Cloud is a __________ resource.

a) Regional
b) Zonal
c) Global
d) Multi-regional

420 Mock Exam 1

40. An application deployed in a GKE cluster is having an intermittent problem. Every
time a problem happens, the application is emitting a very specific set of logs. Your
intention is to debug the application or see the state of the application as soon as the
situation happens. Which of the following is the best possible approach?

a) Cloud monitoring: Set up a custom metric based on the specific log pattern and
create an alert from the metric when the number of lines for the pattern exceeds a
defined threshold.

b) Cloud logging: Create a log filter on a specific log pattern, export logs to
BigQuery by creating a log sink, and create alerts by monitoring data in BigQuery
based on specific patterns.

c) Cloud error reporting: Set up a custom metric based on the specific log pattern
and create an alert from the metric when the number of lines for the pattern
exceeds a defined threshold.

d) Cloud logging: Set up a custom metric based on the specific log pattern and
create an alert from the metric when the number of lines for the pattern exceeds a
defined threshold.

41. Select the option that is not in accordance with Google's recommendations vis-à-vis
cloud-native development:

a) Use microservice architectural patterns.

b) Design components to be stateful wherever possible.

c) Design for automation.

d) Build everything as containers.

42. You need to deploy a container image to a GKE cluster. A cluster is not yet created.
Which of the following options presents the most appropriate sequence of steps?

a) Create a GKE cluster using the kubectl command, create a deployment
specification using the container image, and use kubectl to create the deployment.

b) Create a GKE cluster using the gcloud command, create a deployment
specification using the container image, and use kubectl to create the deployment.

c) Create a GKE cluster using the kubectl command, create a deployment
specification using the container image, and use gcloud to create the deployment.

d) Create a GKE cluster using the gcloud command, create a deployment
specification using the container image, and use gcloud to create the deployment.

Total Number of Questions: 50 421

43. The smallest unit of virtualized hardware is known as a _____.

a) Pod

b) Node

c) Job

d) Container

44. The goal is to create a GKE cluster and use a third-party monitoring application.
Which of the following is the most appropriate way to implement this?

a) Deploy the monitoring application as a ReplicaSet object.

b) Deploy the monitoring application as a DaemonSet object.

c) Deploy the monitoring application as a StatefulSet object.

d) Deploy the monitoring application as a LoadBalancer service.

45. Select the controller used by Kubernetes Engine for stateful applications.

a) Stateless controller

b) StatefulSet controller

c) DaemonSet controller

d) Replication controller

46. There is a need to retain logs for at least 3 years for analytical purposes. Which of
the following is the most preferred approach?

a) Cloud logging: Logs are available for a configurable amount of time.

b) Cloud logging: Create a log sink and export it to cloud storage.

c) Cloud logging: Create a log sink and export it to Big Query.

d) Cloud logging: Create a log sink and export it to Pub/Sub.

47. _____________ is a precise numerical target for system availability.

a) SLI

b) SLO

c) SLA

d) Error budget

422 Mock Exam 1

48. Sam needs to view the access transparency logs. Select the role that is most
appropriate for this purpose?

a) Project Editor

b) Project Viewer

c) Logs Viewer

d) None of the above

49. Who of the following is responsible for the communications portion of the response?

a) Incident Commander (IC)

b) Communications Lead (CL)

c) Operations Lead (OL)

d) Planning Lead (PL)

50. Company A wants to set up alerting policies based on the burn rate (with respect
to error budgets). Which of the following is the best option as per SRE
recommended practices?

a) Create an alerting policy with a shorter lookback period.

b) Create an alerting policy that considers a shorter lookback period and a longer
lookback period.

c) Create an alerting policy with a longer lookback period.

d) Create an alerting policy whenever a defined condition is violated instantly.

Answers 423

Answers
1. (b) – Rolling update

2. (a) and (b)

3. (b) – System Event

4. (d) – All of the above. Each service type provides an internal IP address.

5. (b) – Monitoring Metric Writer

6. (c) – 0.5%

7. (b) – Kaniko cache

8. (a) – Incident Commander

9. (b) – gcloud auth configure-docker

10. (b) – Active development

11. (d) – Sensitive information should be stored in Google Secrets Manager.

12. (d) – Verify whether the service account tied to Compute Engine has the required
role to send to cloud logging.

13. (b) and (c) – 3xx status count and 4xx status count

14. (b) – spec.template

15. (b) – There are no consequences for missing an SLO.

16. (c) – Data Access

17. (b) – The Incident Commander should sign off on all decisions during
incident management.

18. (a) – SLI

19. (c) – Go to Cloud Error Reporting and view the error logs aggregated by occurrences.

20. (c) – Data Access

21. (b) – Set the SLO based on collecting historical data during the pre-GA period.

22. (c) – Admin activity logs cannot be deleted.

23. (c) – Cloud Build publishes a message to a pub/sub topic. The CD tool is subscribed
to the topic.

24. (a) and (d) – Provides enduring value and is tactical

25. (d) – Binary authorization

26. (c) – Once

424 Mock Exam 1

27. (d) – The retention period is 400 days and is not configurable.

28. (d) – Container analysis

29. (c) – Create an attestation and submit to binary authorization

30. (b) – Service account

31. (d)

32. (b) – Minor

33. (b) – System Event

34. (b) and (d) – Throughput and end-to-end latency

35. (c) – ClusterIP

36. (c) – Enable VPC flow logs

37. (b) – Namespace scoped

38. (c) – Containers

39. (c) – Global

40. (d)

41. (b) – Design components to be stateful wherever possible.

42. (b)

43. (b) – Node

44. (b) – Deploy the monitoring application as a DaemonSet object.

45. (b) – StatefulSet controller

46. (c) – Cloud logging: Create a log sink and export it to BigQuery.

47. (b) – SLO

48. (d) – None of the above (Private Logs Viewer)

49. (b) – Communications Lead

50. (b) – Create an alerting policy that considers a shorter lookback period and a
longer lookback period.

Mock Exam 2

Test Duration: 2 hours

Total Number of Questions: 50
Answer the following questions:

1. Which of the following Google Cloud services is suitable for storing Docker images?
Select all appropriate options.

a) Cloud Source Repositories
b) Container Registry
c) Cloud Build
d) Artifact Registry

2. Company A has decided to deploy a containerized application to a GKE cluster. The
GKE cluster is made up of multiple nodes or compute machines. The requirement
is to collect detailed metrics with respect to deployment, which includes node- and
container-related metrics. Which of the following is the recommended approach to
collect these metrics?

a) Install the Monitoring agent on the GKE cluster.

b) Enable Cloud Operations on the GKE cluster.

c) Install the Logging agent on the GKE cluster.

d) (a) and (b)

3. Which of the following is not a valid option while configuring a private GKE cluster?

a) Public endpoint access disabled.

b) Public endpoint access enabled; authorized networks enabled for limited access.

c) Public endpoint access disabled; authorized networks enabled for limited access.

d) Public endpoint access enabled; authorized networks disabled.

426 Mock Exam 2

4. Select the log type that represents log entries tied to setting or changing the
permissions of a Cloud Storage bucket:

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

5. Your team has decided to analyze logs in Cloud Logging through BigQuery. Select
the option that is most appropriate to achieve the team's goal:

a) Export to Cloud Storage by creating a log sink, create an event in a Cloud Storage
bucket, and push it to BigQuery.

b) Export to BigQuery by creating a log sink.

c) Export to Pub/Sub by creating a log sink and configure BigQuery as a subscriber
to the topic.

d) Cannot export to BigQuery.

6. Select two options from the following that Cloud Build does not support as a valid
machine type to initiate the Cloud Build process.

a) M1 – Memory Optimized

b) N1 – General Purpose

c) C2 – Compute Optimized

d) E2 – General Purpose

7. Which of the following is a characteristic of black-box monitoring?

a) Symptom-oriented and cause-oriented

b) Collects information from metrics, logs, and traces

c) Best used for the paging of incidents after the incident has occurred

d) Metrics exposed by the internals of the system

8. A debug snapshot captures ____________________.

a) local variables

b) the call stack at a specific location

c) Both (a) and (b)

d) None of the above

Total Number of Questions: 50 427

9. ____________ logs will record operations that modify the configuration or
metadata of Compute Engine resources.

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

10. _____________ stores trusted metadata used in the authorization process.

a) Container Registry

b) Cloud Storage

c) Container Analysis

d) Binary Authorization

11. As per SRE, a service moves to the General Availability phase when ________.

a) agreed-upon GA data has been reached

b) the Production Readiness Review has passed

c) an executive has used their silver tokens

d) the product head has raised a request to push to production

12. _________ is not a function of Log Router.

a) Ingest Logs

b) Debug Logs

c) Discard Logs

d) Export Logs

13. Which of the following options requires you to install a Logging agent?

a) View linux syslogs

b) View admin activity logs

c) View windows event view logs

d) (a) and (c)

428 Mock Exam 2

14. ____________ logs will record automatic restart operations for Google
Compute Engine.

a) Admin Activity
b) System Event
c) Data Access
d) Access Transparency

15. When creating a GKE cluster in Autopilot mode, select the possible configuration
choices from the following options with respect to network isolation:

a) Private or public cluster
b) Public cluster only
c) Private cluster only
d) None

16. Select the option that is best suited to analyze network traffic at a subnet level
in a VPC:

a) Data Access Logs
b) Flow Logs
c) Admin Logs
d) Firewall Logs

17. ____________ logs will record operations changing any properties of a resource
such as tags/labels for Google Compute Engine.

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

18. An application accepts inputs from users and needs to initiate background tasks
accordingly to perform automated asynchronous execution. Select the appropriate
Google Cloud service:

a) Cloud Pub/Sub
b) Cloud Task
c) Cloud Scheduler
d) Cloud Cron

Total Number of Questions: 50 429

19. Container Analysis stores trusted metadata using _________. This metadata is used
in the binary authorization process.

a) Cloud Storage

b) Container Registry

c) Cloud Source Repositories

d) Persistent Disk or Persistent Volume

20. Select the compute option that is the most managed out of the following:

a) Google Compute Engine

b) Google App Engine

c) Google Kubernetes Engine

d) Google Cloud Run

21. ____________ logs will record operations of setting or changing permissions for
Compute Engine.

a) Admin Activity

b) System Event

c) Data Access

d) Access Transparency

22. Which of the following is true with respect to the default retention period for user
logs stored in the default log bucket?

a) It's 30 days and it cannot be changed.

b) It's 400 days and it can be changed from between 1 day and 10 years.

c) It's 400 days and cannot be changed.

d) It's 30 days and can be changed to between 1 day and 10 years.

23. Select the order of Google Cloud services to implement CI/CD:

a) Cloud Build, Cloud Source Repositories, Container Registry, GKE

b) Cloud Source Repositories, Cloud Build, Container Registry, GKE

c) Cloud Source Repositories, Container Registry, Cloud Build, GKE

d) Cloud Build, Container Registry, Cloud Source Repositories, GKE

430 Mock Exam 2

24. Select the option to retain Admin Activity logs beyond the retention period:

a) Admin Activity logs never expire.

b) Admin Activity logs cannot be retained beyond the retention period.

c) Admin Activity logs can be exported to Cloud Storage.

d) Admin Activity logs that have expired can be recovered through the CLI.

25. Select two statements that are true with respect to toil in SRE:

a) Toil is used to track error budgets.

b) Reducing toil is a critical task of an SRE engineer.

c) Toil is a repetitive task that is not tied to the production system.

d) Toil is a repetitive task that is tied to the production system.

26. Select the most suitable definition for a StatefulSet:

a) Represents a set of services with unique, persistent identities and stable hostnames

b) Represents a set of clusters with unique, persistent identities and stable hostnames

c) Represents a set of pods with unique, persistent identities and stable hostnames

d) Represents a set of Docker images with unique, persistent identities and
stable hostnames

27. Cloud Trace can collect latency data from ________________.

a) load balancers

b) GKE applications

c) Both

d) None

28. The goal is to create a GKE cluster where nodes are configured to support resiliency
and high availability without manual intervention. Which of the following GKE
features is most appropriate?

a) GKE's node auto-upgrade feature

b) GKE's node auto-repairing feature

c) GKE's node auto-healing feature

d) Both (a) and (c)

Total Number of Questions: 50 431

29. Which of the following is used for storing records related to administrative events?

a) Tracing

b) Logging

c) Error reporting

d) Debugging

30. An application is deployed using Deployment Manager. You need to update the
deployment with minimal downtime. Select the appropriate command:

a) gcloud deployment-manager deployments update

b) gcloud deployment manager deployment update

c) gcloud deployment manager deployments update

d) gcloud deployment-manager deployment update

31. An application deployed on Google Cloud Platform is having issues with respect
to latency. Select the Google Cloud service that can inspect latency data in near
real time:

a) Cloud Networking

b) Cloud Trace

c) Cloud Profiler

d) Cloud Debugger

32. Select the best practices to conduct a blameless postmortem (select multiple):

a) Provide clarity that helps in future mitigation.

b) Generate an incident report.

c) Outline the events of the incident.

d) Identify the team members responsible for the incident.

33. Select the feature supported by GKE to increase cluster security using a verifiable
node identity:

a) Workload identity

b) Shielded GKE nodes

c) Binary authorization

d) (a) and (b)

432 Mock Exam 2

34. Which of the following is not a valid option when trying to connect an AWS
account to a workspace?

a) A GCP connector project is required.

b) A GCP connector project needs to be in a different parent organization than
the workspace.

c) A GCP connector project needs to be in the same parent organization as
the workspace.

d) The billing account should be tied to the connector project.

35. You are tasked to choose SLIs for a user-facing system. Which of the following
are not part of the four golden signals as per Google Cloud best practices (select
multiple)?

a) Saturation

b) Throughput

c) Traffic

d) Correctness

36. Select the best option to handle unexpected surges in traffic to a GKE cluster:

a) Create two separate clusters of different sizes. If the traffic increases, send traffic
to the bigger cluster.

b) Put a cap on the amount of traffic that your GKE cluster can handle.

c) Enable autoscaling on the GKE cluster.

d) Increase the size of the cluster or change the machine type of the nodes in
the cluster.

37. Based on the principle of least privilege, select the IAM role that allows an end user
to create or modify an export sink from Cloud Logging:

a) Project Editor

b) Logging Admin

c) Logs Configuration Writer

d) Project Viewer

Total Number of Questions: 50 433

38. Which of the following is the first step with respect to Cloud Deployment Manager?

a) Create a resource.

b) Create a template.

c) Create a configuration.

d) Create a deployment.

39. An application runs on GKE. There is a desire to use Spinnaker to perform blue/
green deployments. Select the most appropriate option:

a) Use a Kubernetes Deployment and then use Spinnaker to update the Deployment
for each new version deployed.

b) Use a Kubernetes ReplicaSet and then use Spinnaker to update the ReplicaSet for
each new version deployed.

c) Use a Kubernetes DaemonSet and then use Spinnaker to update the DaemonSet
for each new version deployed.

d) Use a Kubernetes StatefulSet and then use Spinnaker to update the StatefulSet
for each new version deployed.

40. You need to create a separate namespace for UAT. This is a way to isolate the
deployment. Select the most appropriate command:

a) kubectl namespace create uat

b) kubectl create namespace uat

c) kubectl namespace uat create

d) kubectl create uat namespace

41. Cloud Deployment Manager allows you to specify the resources required for your
application in a declarative format using YAML. Which flag allows you to verify the
resources that could be created before doing the actual implementation?

a) --dry-run

b) --preview

c) --snapshot

d) --verify

434 Mock Exam 2

42. _________ is not considered as a Kubernetes workload resource.

a) A Deployment

b) A Service

c) A Cronjob

d) A DaemonSet

43. A resource in Cloud Deployment Manager represents ____________.

a) a single API resource

b) a compute resource

c) a cloud database resource

d) a Cloud Storage resource

44. Which of the following commands is used to install kubectl on Google
Cloud Shell?

a) gcloud components install kubectl

b) gcloud component kubectl install

c) gcloud components kubectl install

d) gcloud component install kubectl

45. While creating a cluster in standard mode, the maximum pods per node defaults
to _______.

a) 115

b) 100

c) 110

d) 105

46. Select the command that can manually increase the number of nodes in a
GKE cluster:

a) gcloud container clusters resize

b) kubectl containers clusters resize

c) kubectl container clusters resize

d) gcloud containers clusters resize

Total Number of Questions: 50 435

47. The goal is to store audit logs for long-term access and allow access to external
auditors. Which of the following are the most appropriate steps (select two)?

a) Export audit logs to Cloud Storage by creating a log sink.

b) Export audit logs to BigQuery by creating a log sink.

c) Assign the IAM role to auditors so that they have access to the BigQuery dataset
that contains the audit logs.

d) Assign the IAM role to auditors so that they have access to the storage bucket
that contains the audit logs.

48. A user is trying to deploy an application to a GKE cluster. The user is using
kubectl to execute some commands but kubectl is unable to connect with the
cluster's kube-apiserver. Which of the following is the possible reason for this
issue and the potential fix?

a) The firewall ingress rule is not configured correctly, blocking incoming traffic
from the user to the cluster.

b) kubeconfig is missing the credentials to connect and authenticate with the
cluster. Run the gcloud container clusters auth login command.

c) The firewall egress rule is not configured correctly, blocking outgoing traffic from
the cluster to the user.

d) kubeconfig is missing the credentials to connect and authenticate with the
cluster. Run the gcloud container clusters get-credentials command.

49. __________ is a GCP service that is used for infrastructure automation.

a) Terraform

b) Cloud Terraform

c) Cloud Puppet

d) Cloud Deployment Manager

50. GKE allows up to a maximum of _______ clusters per zone.

a) 50

b) 25

c) 55

d) 40

436 Mock Exam 2

Answers
1. (b) and (d) – Container Registry and Artifact Registry.

2. (b) – Enable Cloud Operations on the GKE cluster.

3. (c) – Public endpoint access disabled; authorized networks enabled for limited access.

4. (a) – Admin Activity

5. (b) – Export to BigQuery by creating a log sink.

6. (a) and (c) – M1 – Memory Optimized and C2 – Compute Optimized

7. (c) – Best used for the paging of incidents after the incident has occurred

8. (c) – Both (a) and (b)

9. (a) – Admin Activity

10. (c) – Container Analysis

11. (b) – the Production Readiness Review has passed

12. (b) – Debug Logs

13. (d) – (a) and (c)

14. (b) – System Event

15. (a) – Private or public cluster

16. (b) – Flow Logs

17. (a) – Admin Activity

18. (b) – Cloud Task

19. (b) – Container Registry

20. (d) – Google Cloud Run

21. (a) – Admin Activity

22. (d) – It's 30 days and can be changed to between 1 day and 10 years.

23. (b) – Cloud Source Repositories, Cloud Build, Container Registry, GKE

24. (c) – Admin Activity logs can be exported to Cloud Storage.

25. (b) and (d) – Reducing toil is a critical task of an SRE engineer and Toil is a
repetitive task that is tied to the production system.

26. (c) – Represents a set of pods with unique, persistent identities and stable hostnames

27. (c) – Both

28. (b) – GKE's node auto-repairing feature

Answers 437

29. (b) – Logging

30. (b) – gcloud deployment manager deployment update

31. (b) – Cloud Trace

32. (a), (b), and (c) – Provide clarity that helps in future mitigation, Generate an
incident report, and Outline the events of the incident.

33. (b) – Shielded GKE nodes

34. (b) – A GCP connector project needs to be in a different parent organization than
the workspace.

35. (b) and (d) – Throughput and Correctness (not part of the 4 golden signals –
Latency, Error, Traffic, Saturation)

36. (c) – Enable autoscaling on the GKE cluster.

37. (c) – Logs Configuration Writer

38. (c) – Create a configuration.

39. (b) – Use a Kubernetes ReplicaSet and then use Spinnaker to update the ReplicaSet
for each new version deployed.

40. (b) – kubectl create namespace uat

41. (b) – --preview

42. (b) – A Service

43. (a) – a single API resource

44. (a) – gcloud components install kubectl

45. (c) – 110

46. (a) – gcloud container clusters resize

47. (a) and (d) – Export audit logs to Cloud Storage by creating a log sink and Assign
the IAM role to auditors so that they have access to the audit bucket that contains
the storage logs.

48. (b) – kubeconfig is missing the credentials to connect and authenticate with the
cluster. Run the gcloud container clusters auth login command.

49. (d) – Cloud Deployment Manager

50. (a) – 50

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

440 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Professional Cloud Architect – Google Cloud Certification Guide
Konrad Cłapa , Brian Gerrard
ISBN: 978-1-83855-527-6

• Manage your GCP infrastructure with Google Cloud management options such
as CloudShell and SDK

• Understand the use cases for different storage options

• Design a solution with security and compliance in mind

• Monitor GCP compute options

• Discover machine learning and the different machine learning models offered by GCP

• Understand what services need to be used when planning and designing your
architecture

https://www.packtpub.com/product/professional-cloud-architect-google-cloud-certification-guide/9781838555276

Other Books You May Enjoy 441

Multi-Cloud Architecture and Governance

Jeroen Mulder

ISBN: 978-1-80020-319-8

• Get to grips with the core functions of multiple cloud platforms

• Deploy, automate, and secure different cloud solutions

• Design network strategy and get to grips with identity and access management
for multi-cloud

• Design a landing zone spanning multiple cloud platforms

• Use automation, monitoring, and management tools for multi-cloud

• Understand multi-cloud management with the principles of BaseOps, FinOps,
SecOps, and DevOps

• Define multi-cloud security policies and use cloud security tools

• Test, integrate, deploy, and release using multi-cloud CI/CD pipelines

https://www.packtpub.com/product/multi-cloud-architecture-and-governance/9781800203198

442

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
access controls, Cloud Build

managing 174
managing, through Cloud Build

service accounts 175
managing, through end user

IAM roles 175
access transparency logs 357
achievable SLOs 45
admin activity logs 354
Agile 5
Agile Manifesto

URL 5
Agile software development

methodology 4
Agile System Administration 5
alerting

about 79, 80, 86, 87
potential approaches 88-92
service, handling with low traffic 92, 93

alerting, Cloud Monitoring 349
alerting, key attributes

about 87
detection time 88

precision 87
recall 87
reset time 88

alerting logic 53
alerting system

characteristics 94
alert policy

configuring 350
all repositories

about 148
operations 149

alpha clusters 276
Amazon Web Services 31
analysis reports, Cloud Trace

about 381
custom analysis reports 381
daily reports 381

App Engine flexible 185
application code 194
application monitoring 8
Application Performance Management 32
application programming

interfaces (APIs) 56

444 Index

application server
limitations, for measuring

Service-Level Indicators (SLIs) 54
used, for measuring Service-

Level Indicators (SLIs) 54
artifact management 179
Artifact Registry 180
aspirational SLOs 46
authentication 302
authentication, categories

Kubernetes service accounts 303-305
user accounts 303

authorization
GKE authorization, via Cloud IAM 306
IAM roles 306
Kubernetes RBAC 307
roles 307

automatic build process
invoking, through Cloud Build

with triggers 172
automation

need for 164, 165
Autopilot cluster

deployment details 294
versus Standard mode cluster 293

Autopilot mode
GKE cluster, creating 291-293

autoscaling, GKE
about 277
cluster autoscaler 277
Horizontal Pod Autoscaler

(HPA) 278, 279
Vertical Pod Autoscaler (VPA) 280

availability 13, 48
availability zone (AZ) 45
AWS Connector project 338

B
bad events 49
Binary Authorization

about 327
use cases, build verification 327
use cases, vulnerability scanning 327

black box monitoring 83
blameless postmortems 12
browse repositories

All repositories 148, 149
My source 149

browsing files 150,151
build configuration 167
build configuration file

about 194
used, for invoking manual build process

through Cloud Build 170, 171
build configuration file, Cloud Build

structure 168
build logs

storing 172
viewing 173

build phase 7
burn rate 90
bytes per second (B/s) 51

C
Cached Docker Images 176
canary rollouts 12, 20
Certificate Authority (CA) 304
CI/CD pipeline, in GCP

building, with building blocks 32, 33
CLI approach, via Cloud Shell

application, deploying 266

Index 445

Cloud Audit Logs
about 354
access transparency logs 357
admin activity logs 354
data access logs 355
policy denied logs 357
system event logs 356

Cloud Build
about 28
automatic build process, invoking

with triggers 171
features 166
manual build process, invoking with

build configuration file 170, 171
manual build process, invoking

with Dockerfile 170
manual build process, invoking

with gcloud CLI 170
used, for building code 169

Cloud Build, best practices
Cached Docker Images 176
Cloud Storage, for caching

directories 177, 178
custom virtual machine sizes 178
Kaniko cache 176, 177
Leaner Containers, building 176
unwanted files, ignoring 179

Cloud builders 166
Cloud Build, essentials

about 166
build configuration 167
community-contributed builders 167
Google-managed builders 167
Public Docker Hub builders 167

Cloud Build service accounts
used, for managing Cloud Build

access controls 175

Cloud Build trigger
creating 191

cloudbuild.yaml
versus Dockerfile 172

Cloud Code 27
Cloud Debugger

about 32, 371
access control 377, 378
debug logpoints 375, 376
debug snapshots 372-374
logs panel 377
setting up 371, 372
using 372

Cloud Functions
code, adding to existing repository

through Cloud Shell Editor 154
code, creating from repository

in CSR 156
code, deploying from repository

in CSR 156, 157
code, pushing from Cloud Shell Editor

(local repository) into CSR 155
creating, from repository in CSR 157
integrating with 154

Cloud IAM access controls
elements 306

Cloud Identity and Access
Management (IAM) 305

Cloud Logging
about 31, 288, 353
Audit Logs 354
features 353
logs-based metrics 365, 366
Logs Explorer UI 362
Logs Exports 358, 360
logs ingestion 358
Logs Router 358
network-based log types 368

446 Index

Cloud Logging API 358
Cloud Monitoring

about 31, 337
access control 352, 353
alerting 349
dashboards 341, 342
Metrics Explorer 344, 345
uptime check 347-349
workspace 337, 338

Cloud Native Computing
Foundation (CNCF) 56

cloud-native development
about 25
Kubernetes 26
serverless 25

cloud-native principles 25
Cloud Operations

about 30
binding, with Site Reliability

Engineering (SRE) 384
Cloud Operations, GKE

about 286
GKE Cloud Logging 288
Kubernetes Native Logging 287
logging 286

Cloud Profiler
about 32, 381, 383
access control 383
profiles 382

Cloud Run
about 29, 190
results, viewing 195, 197

Cloud Shell
application, deploying to

GKE cluster 266, 267
application, exposing as Service 267, 268

Cloud Source Repositories (CSR)
about 27
empty repository, creating in 191
files, adding to repository 141
key features 137
one-way sync, from GitHub/

Bitbucket 142-147
repository, accessing 138
repository, creating 138
universal code search, performing 152

Cloud Source Repositories (CSR),
common operations

about 148, 152, 153
access controls, assigning 153
browse repositories option 148
files, browsing 150, 151
security keys, detecting 153
universal code search, performing 151

Cloud Trace
about 32, 378
analysis reports 381
Trace List window 380, 381
Trace Overview page 379

cluster autoscaler
about 277
limitations 278

cluster availability type, GKE
cluster configuration

regional clusters 273
zonal clusters 272, 273

Cluster-Level Monitoring 289
cluster security, hardening in GKE

Binary Authorization 327-329
container-optimized OS 323, 324
features 319, 320
Network Policies 325, 326
private clusters 320

Index 447

shielded GKE nodes 324, 325
Workload Identity 328

CNCF Kubernetes project 29
code

adding, to repository 193
building, with Cloud Build 169
pushing, to master branch 193

code change 7
Command-Line Interface (CLI)

used, for creating repository 140
communication and collaboration

about 126
effective team composition 126
knowledge sharing 127
service-oriented meetings 126

Communications Lead (CL)
responsibilities 116

community-contributed builders
about 167
reference link 167

complex multi-request user journey 55
Compute Engine 184
consulting SRE team 108
container 163, 205
Container Analysis

about 187
configuring 188-190

Container Analysis API 187
Container/Artifact Registry 28
container-native load balancing 284
container orchestration

about 205
scenarios, handling 205

Container Registry
about 179, 180
access controls 183, 184
authentication methods 185, 186

Continuous Delivery/Deployment
integrations 184

disabling 180
enabling 180
service accounts 180
structure 181

Container Registry, key concepts
about 180
App Engine flexible 185
Compute Engine 184
Container Analysis 187-190
gcloud credential helper 186
Google Kubernetes Engine (GKE) 185
images, downloading 183
images, uploading 182
standalone credential helper 187

Container Runtime Interface (CRI) 212
Container Scanning API 187
containers, key terminologies

Docker 163
Docker daemon 163
Dockerfile 163
Docker image 163
Docker layer 163
hypervisor 163
operating system (OS) 162
virtualization 162

content delivery network (CDN) 56
continuous delivery 7
Continuous Delivery/Deployment

(CD) 183, 184
Continuous Delivery/Deployment

(CD), in GCP
about 28, 29
Cloud Run 29
Google Kubernetes Engine (GKE) 29

448 Index

Continuous Delivery/
Deployment integrations

through Container Registry 184
continuous deployment 7
continuous feedback 8
continuous feedback loop 77
Continuous Integration (CI) 7, 184
Continuous Integration (CI), in GCP

about 26, 27
Cloud Build 28
Cloud Code 27
Cloud Source Repositories 27
Container/Artifact Registry 28

continuous monitoring 8
continuous monitoring/

operations, in GCP
about 30
Application Performance

Management 32
Cloud Logging 31
Cloud Monitoring 31
Error Reporting 31

continuous operations 8
correctness

about 50
coverage 51
throughput 51, 52

counter metric 97
coverage 51
critical factors considerations,

while scheduling Pods
about 229
Inter-pod affinity and Anti-

Affinity 229, 231, 232
NodeAffinity 229
Node affinity and Anti-affinity 230, 231
NodeName 229, 232

NodeSelector 229
taints and tolerations 229, 233, 234

cross-account project access 153, 154
custom dashboards

creating 343

D
dashboards, Cloud Monitoring

about 341, 342
custom dashboards 343
predefined dashboards 342

data access logs
about 355
admin read 355
data read 355
data write 355

data processing/pipeline-
based user journey

about 50
freshness 50

debugging 79
debug logpoints 375, 376
debug snapshots 372-374
detection time 88
DevOps

evolution 4, 5
implementing, with Google

Cloud services 24
key pillars 8, 9

DevOps, key pillars
Site Reliability Engineering (SRE),

implementing 11, 12
DevOps, life cycle

about 6
continuous delivery 7
continuous deployment 7

Index 449

continuous feedback 8
continuous integration 7
continuous monitoring 8
continuous operations 8
plan and build 6

direct costs 10
Disaster Recovery (DR) 118
distribution metric 98
Docker 163
Docker daemon 163
Dockerfile

about 163, 194
used, for invoking manual build

process through Cloud Build 170
versus cloudbuild.yaml 172

Docker image 163
Docker layer 163
downtime 44
durability 52
Dynatrace 80

E
embedded SRE team 107
empty repository

creating, in Cloud Source
Repositories 191

EndPoint 223
end-to-end latency 52
end user IAM roles

used, for managing Cloud Build
access controls 175

epics 6
error budget policy

about 59
characteristics 59

error budgets
about 11, 18, 58, 59

advantages 19
hands-on scenarios 66-69
setting 60, 61
summarizing 64
well-documented SLOs 60

Error Reporting 31
events 94
events logs 289
excessive toil

issues 65
executive buy-in

need for 59
explicit agreement 39

F
fast burn alert 91
firewall logs 369
frequency

reducing 63
freshness 14, 50
frontend infrastructure

limitations, for measuring Service-
Level Indicators (SLIs) 55

used, for measuring Service-
Level Indicators (SLIs) 55

G
gauge metric 97
gcloud CLI

used, for invoking manual build
process through Cloud Build 170

gcloud credential helper 186
GCP

continuous delivery/deployment 28, 29
continuous integration 26, 27
continuous monitoring/operations 30

450 Index

GCP Console
application, exposing as Service 264-266

GCP HTTP(S) Load Balancing 284
GCP service account 303
general availability, SRE

engagement model
abandoned phase 111
depreciation phase 111

GitOps 8
GKE Autopilot 290
GKE Cloud Logging 288
GKE cluster

application, deploying 258
application, exposing 258
creating 254-257
creating, in Autopilot mode 291-293
features 252, 253

GKE cluster configuration
about 272
cluster availability type 272
cluster versions 273
default version 275
network isolation choices 275
private clusters 276
release channels 274
specific versions 274

GKE Console
about 258
application, deploying to

GKE cluster 258-263
GKE node pools 269-271
GKE private clusters

about 320
control plane 320

GKE private clusters, control plane
about 320
accessing, through private endpoint 320

accessing, through public endpoints 320
level of access, controlling through

configurations 321-324
golden signals, metrics

errors 86
latency 85
saturation 86
traffic 86

good events 49
Google Cloud Console

used, for creating repository 138-140
Google Cloud services

used, for implementing DevOps 24
Google Cloud Storage (GCS) 285
Google Compute Engine (GCE) 24, 185
Google Kubernetes Engine (GKE)

about 24, 29, 252-254
Autopilot mode 253
autoscaling 277
Cloud Operations 286
cluster security, hardening 319
core features 269
networking 281
Standard mode 253
storage options 285

Google-managed builders
about 167
reference link 167

Google Workspace 337
Grafana 80

H
Horizontal Pod Autoscaler

(HPA) 277-279
host project 338
HTTP Secure (HTTPS) 53

Index 451

human resource (HR) 38
HyperText Transfer Protocol (HTTP) 49
hypervisor 163

I
Identity Access Management

(IAM) 137, 254, 337
images

downloading, to Container Registry 183
uploading, to Container Registry 182

impact %
reducing 63

implicit agreement 39
Incident Commander (IC)

about 115
responsibilities 115

incident management
about 112
characteristics 112
life cycle 113

incident management, effective element
about 114
best practices 118
declaring 114
impact, assessing 114, 115
recurrence, avoiding 119
separation of responsibilities 115
service, restoring 119
thresholds, defining 114

Inclusion Filters 358
indirect costs 10
Infrastructure as Code (IaC) 25
infrastructure SRE team 106

J
JetBrains suite 27
JSON Web Token (JWT) 304

K
Kaniko cache 176, 177
Keep it Simple Stupid (KISS) 80
kitchen sink / everything SRE team 106
kube-dns 226
Kubernetes

about 26, 205, 206
cluster anatomy 207
container orchestration 205
deployment strategies 235
features 206
security patterns 302

Kubernetes cluster anatomy
about 207, 208
control plane 208
kubectl, using 213
master responsibilities 207
node components 210

Kubernetes control plane
about 208, 209
cloud-controller-manager 210
components 208
etcd 209
kube-apiserver 209
kube-controller-manager 210
kube-scheduler 210

Kubernetes deployment strategies
about 235
Blue/Green strategy 240-242

452 Index

Canary deployment 242
Recreate strategy 235, 236
Rolling update strategy 236

Kubernetes Native Logging 287
Kubernetes objects

about 213
DaemonSets 221, 222
deployment 218-220
Pod 214-218
service 222-224
StatefulSets 220, 221

Kubernetes Role-Based Access
Control (RBAC)

about 305
resources 307
subjects 307
verbs 307

Kubernetes service accounts 303, 304

L
latency 14, 48
Leaner Containers

building 176
log characteristics

across logs buckets 361
logging 82
logging agent

about 369
configuring, on GCE VM 370

Log Retention 358
logs

about 82, 84
exporting 360

logs-based metrics
access control 368

logs-based metrics, Cloud Logging
about 365, 366
system (logs-based) metrics 366
user-defined (logs-based) metrics 367

logs buckets 359
Logs Explorer UI, Cloud Logging

about 362
actions 365
log entries 364
page layout 365
payload-specific actions 364
query builder 363
query results 363

Logs Exports, Cloud Logging 358, 360
logs ingestion, Cloud Logging 358
log sink 358
logs panel 377
Logs Router, Cloud Logging 358
Logs Storage UI 359

M
manual build process

invoking, through Cloud Build with
build configuration file 170, 171

invoking, through Cloud Build
with Dockerfile 170

invoking, through Cloud Build
with gcloud CLI 170

Memcached 78
metrics

about 81, 82, 84, 94, 344
configuring, with Metrics

Explorer 346, 347
Metrics Explorer, Cloud

Monitoring 344, 345
microservice application 24

Index 453

monitored project 338
monitoring

about 76, 82
for GKE 289, 290
golden signals 85, 86
misconceptions, to avoid 80, 81
strategies 83

Monitoring Admin 341
Monitoring agent 351, 352
monitoring, as feedback loop

about 77
alerting 79, 80
debugging 79
long-term trend analysis 78
relevant questions, raising 78

Monitoring Editor 341
Monitoring Metric Writer 341
Monitoring Query Language (MQL) 347
monitoring, sources

logs 82
metrics 81, 82

monitoring, types
about 83
black box monitoring 83
white box monitoring 84, 85

Monitoring Viewer 341
monolith application 24
Multi-dimensional Pod

autoscaling (MPA) 281
multi-site production teams

versus single-site production teams 121
multi-zonal cluster 272
my-cloud-build-trigger repository

about 194
application code 194
build configuration file 194
Dockerfile 194
My source 149

N
Network Address Translation (NAT) 320
network-based log types, Cloud Logging

about 368
firewall logs 369
VPC flow logs 368

Network Endpoint Group (NEG) 284
networking, GKE

about 281
container-native load balancing 284
pod networking 282
service networking 282

Network Load Balancer (NLB) 282
network policies

about 325
default policies 326
reference link 326

NLB, and GKE cluster
interaction, within VPC 283

node components, Kubernetes
about 210, 211
container runtime engine 211, 212
kubelet 211
kube-proxy 211

node pool
about 270, 271
characteristics 270

nodes 269
non-paging events

versus paging events 120, 121
notification channels

configuring 350, 351

O
Objectives and Key Results (OKRs) 21
observability 77

454 Index

on-call duty
about 120
paging events, versus non-paging

events 120, 121
primary on-call rotation, versus

secondary on-call rotation 121
recommended practices 122, 123
single-site production teams, versus

multi-site production teams 121
one-way sync

from GitHub/Bitbucket to CSR 142-147
OpenCensus 56
OpenID Connect 305
OpenTelemetry 56
OpenTracing 56
operating system (OS) 162
operational overload

about 42, 123
versus operational underload 123

operational underload 123
Operations Lead (OL)

responsibilities 116
overhead 20

P
paging events

versus non-paging events 120, 121
Personally Identifiable

Information (PII) 370
Planning Lead (PL)

responsibilities 117
planning phase 6
Pod-Level Monitoring 289
pod networking 282

Pods
interacting with 227
master plane interactions, on

creation 227, 228
scheduling, critical factors 229
used, for scheduling 227

pod security
about 313
restrictions, defining ways 313

Pod Security Policies
about 315, 316
creating 316-319
defining, elements 316

policy denied logs 357
precision 87
predefined dashboards, Cloud

Monitoring 342
primary on-call rotation

versus secondary on-call rotation 121
Primary/Secondary Responder

responsibilities 117
private clusters 276
privileged containers 313
product/application SRE team 107
Production Readiness Review (PRR) 110
psychological safety

about 123, 124
factors, to overcome 124, 125

Public Docker Hub builders
about 167
reference link 167

Public-Key Infrastructure (PKIX) 328

Q
quality 49

Index 455

R
RBAC ClusterRole 309
RBAC ClusterRoleBindings 310, 311
RBAC RoleBindings 310
RBAC Roles 308, 309
recall 87
regional clusters 273
release channels

about 274
rapid 274
regular 274
stable 274

reliability 14, 43
reliability target 44, 45
remote procedure calls (RPCs) 381
repository

accessing, in CSR 138
creating, in CSR 138
creating, via Google Cloud

Console 138-140
creating, with Command-Line

Interface (CLI) 140
files, adding in CSR 141, 142
files, adding to repository 142

request/response user journey
about 48
availability 48
latency 48
quality 49

reset time 88
RoleBindings 309
roles

about 307
RBAC ClusterRole 309
RBAC roles 308
RoleBindings 309

Rolling update strategy
about 236
max surge 237
max unavailable 237
min ready 237
progress deadline 238, 239

S
search filters 152
secondary on-call rotation

versus primary on-call rotation 121
security patterns, Kubernetes

about 302
authentication 302
authorization 305
control plane security 311-313
pod security 313

security settings, pod security
Pod Security Context 314, 315
Pod Security Policies 316

separation of responsibilities
about 115
Communications Lead (CL) 116
Incident Commander (IC) 115
Operations Lead (OL) 116
Planning Lead (PL) 118
Primary/Secondary Responder 117

serverless 25
server monitoring 8
server-side logs

limitations, for measuring Service-
Level Indicators (SLIs) 54

used, for measuring Service-
Level Indicators (SLIs) 54

service
potential impact, determining 62
reliable performance, criteria 40

456 Index

Service 282
service consumer 38
service expectations 39
service, Kubernetes objects

about 223, 224
ClusterIP 224
ExternalName 226, 227
LoadBalancer 225
NodePort 224

Service-Level Agreements (SLAs)
about 12, 14, 17
defining 38
examples 17
hands-on scenarios 66-69

Service-Level Agreements
(SLAs), key jargon

about 38
explicit agreement 39
implicit agreement 39
service consumer 38
service expectations 39
service performance 39
service provider 38

Service-Level Indicators (SLIs)
about 11, 14, 15, 47
based on system types 52
best practices 57, 58
details, defining 385
examples 15
measuring, with application server 54
measuring, with frontend

infrastructure 55
measuring, with server-side logs 54
measuring, with synthetic clients 56
measuring, with telemetry 56
metric, selecting 385
request-based 385

setting 385
sources, to measure 53, 57
user journey, categorizing 47
windows-based 385

Service-Level Objectives (SLOs)
about 11, 14, 16, 47
compliance period 386
defining, for service 387-390
examples 16
hands-on scenarios 66-69
performance goal 386
reliability expectations, defining 41
setting 385
used, for driving business

decisions 41, 42
Service-Level Objectives

(SLOs), guidelines
reliability targets, finding 44, 45
setting 42-46
The happiness test 42

service networking 282
service performance 39
service provider 38
service reliability

about 62
operational improvements 64
tracking, with SLO monitoring 386

silver bullets 61
single-site production teams

versus multi-site production teams 121
single-zone cluster 272
Site Reliability Engineering (SRE)

about 10, 11, 163
binding, with Cloud Operations 384
cultural practices 21-23
evolution 9, 10

Index 457

implementing, DevOps
key pillars 11, 12

key concepts 12-14
Site Reliability Engineering (SRE),

technical practices
about 15
canary rollouts 20
error budgets 18, 19
Service-Level Agreements (SLAs) 17
Service-Level Indicators (SLIs) 15
Service-Level Objectives (SLOs) 16
toil 19

SLI equation 53
SLO alerting policy

establishing 93
SLO burn rate alert policy

creating 390-392
SLO monitoring

about 384
used, for tracking service reliability 386
verifying 393, 394

slow burn alert 91
SMART 84
span 378
SRE engagement model

about 109
active development 109, 110
architecture and design 109
general availability 110
limited availability 110

SRE engineers
skills 105
staffing 104, 105

SRE key pillars
fostering collaboration 125
knowledge sharing 125
unified vision 125

SRE team implementations
consulting SRE team 108
embedded SRE team 108
infrastructure SRE team 106
kitchen sink/everything SRE team 106
procedure and strategy 105, 106
product/application SRE team 107
tools SRE team 107

SRE teams
building 104

Stackdriver 30
standalone credential helper 187
Standard mode cluster

versus Autopilot cluster 293
storage options, GKE 285
synthetic clients

limitations, for measuring Service-
Level Indicators (SLIs) 56

used, for measuring Service-
Level Indicators (SLIs) 56

synthetic monitoring 56
system event logs 356
system (logs-based) metrics 366

T
telemetry

limitations, for measuring Service-
Level Indicators (SLIs) 57

used, for measuring Service-
Level Indicators (SLIs) 56

The happiness test 42
throughput 14, 51, 52
Time Between Failures (TBF) 62

458 Index

time series
about 87, 94
cardinality 97
structure 95, 96

time series, metric types
counter 97
distribution 98
gauge 97

Time to detect (TTD)
about 62
reducing 63

Time to fail (TTF) 62
Time to resolve (TTR)

about 62
reducing 63

toil
about 12, 19
advantages 65
removing, through automation 65, 66

tools SRE team 107
total events 49
trace 378
Trace List window 380, 381
Trace Overview page 379
traces 85
triggers

used, for invoking manual build
process through Cloud Build 172

U
unified vision 125
universal code search

performing 151, 152

uptime check, Cloud Monitoring 347-349
uptime check failures

potential reasons 349
user-defined (logs-based) metrics 367
user interactions

bucketizing 49
user journey

about 13
categorizing 47
correctness 50
data processing/pipeline-

based user journey 50
request/response user journey 48

V
Vertical Pod Autoscaler (VPA) 277, 280
virtualization 162
virtual machines (VMs) 207
Virtual Private Cloud (VPC) 281
virtual Trusted Platform

Modules (vTPMs) 324
Visual Studio Code 27
VPC flow logs 368
VPC-native cluster 282

W
well-defined SLA

blueprint 39, 40
white box monitoring 84, 85
Workload Identity

about 328, 329
enabling 329

Index 459

workspace, Cloud Monitoring 337, 338
workspace creation, Cloud Monitoring

strategies 339-341
workspace IAM roles

about 341
Monitoring Admin 341
Monitoring Editor 341
Monitoring Metric Writer 341
Monitoring Viewer 341

workspace/project relationship 338

Y
yaml configuration 213

Z
zonal cluster 272

	Cover
	Title Page
	Copyright and credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Site Reliability Engineering – A Prescriptive Way to Implement DevOps
	Chapter 1: DevOps, SRE, and Google Cloud Services for CI/CD
	Understanding DevOps, its evolution, and life cycle
	Revisiting DevOps evolution
	DevOps life cycle
	Key pillars of DevOps

	SRE's evolution; technical and cultural practices
	The evolution of SRE
	Understanding SRE
	SRE's approach toward DevOps' key pillars
	Introducing SRE's key concepts
	SRE's technical practices
	SRE's cultural practices

	Cloud-native approach to implementing DevOps using Google Cloud
	Focus on microservices
	Cloud-native development
	Continuous integration in GCP
	Continuous delivery/deployment in GCP
	Continuous monitoring/operations on GCP
	Bringing it all together – building blocks for a CI/CD pipeline in GCP

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 2: SRE Technical Practices – Deep Dive
	Defining SLAs
	Key jargon
	Blueprint for a well-defined SLA
	SLIs drive SLOs, which inform SLAs

	Defining reliability expectations via SLOs
	SLOs drive business decisions
	Setting SLOs – the guidelines

	Exploring SLIs
	Categorizing user journeys
	SLI equation
	Sources to measure SLIs
	SLI best practices (Google-recommended)

	Understanding error budgets
	Error budget policy and the need for executive buy-in
	Making a service reliable
	Summarizing error budgets

	Eliminating toil through automation
	Illustrating the impact of SLAs, SLOs, and error budgets relative to SLI
	Scenario 1 – New service features introduced; features are reliable; SLO is met
	Scenario 2 – New features introduced; features are not reliable; SLO is not met

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 3: Understanding Monitoring and Alerting to Target Reliability
	Understanding monitoring
	Monitoring as a feedback loop
	Monitoring misconceptions to avoid
	Monitoring sources
	Monitoring strategies
	Monitoring types
	The golden signals

	Alerting
	Alerting strategy – key attributes
	Alerting strategy – potential approaches
	Handling service with low traffic
	Steps to establish an SLO alerting policy
	Alerting system – desirable characteristics

	Time series
	Time series structure
	Time series cardinality
	Time series data – metric types

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 4: Building SRE Teams and Applying Cultural Practices
	Building SRE teams
	Staffing SRE engineers (SREs)
	SRE team implementations – procedure and strategy
	SRE engagement model

	Incident management
	Incident life cycle
	Elements of effective incident management

	Being on call
	Paging versus non-paging events
	Single-site versus multi-site production teams
	Recommended practices while being on call

	Psychological safety
	Factors to overcome in order to foster
psychological safety

	Sharing vision and knowledge
and fostering collaboration
	Unified vision
	Communication and collaboration

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Section 2:
Google Cloud Services to Implement
DevOps via CI/CD
	Chapter 5: Managing Source Code Using Cloud Source Repositories
	Technical requirements
	Introducing the key features
	Creating a repository via Google Cloud Console
	Creating a repository via the CLI
	Adding files to a repository in CSR

	One-way sync from GitHub/Bitbucket to CSR
	Common operations in CSR
	Browsing repositories
	Performing a universal code search
	Detecting security keys
	Assigning access controls

	Hands-on lab – integrating with Cloud Functions
	Adding code to an existing repository through the Cloud Shell Editor
	Pushing code from the Cloud Shell Editor (local repository) into CSR
	Creating a cloud function and deploying code from the repository in CSR

	Summary
	Further reading
	Practice test
	Answers

	Chapter 6: Building Code Using Cloud Build, and Pushing to Container Registry
	Technical requirements
	Key terminology (prerequisites)
	Understanding the need for automation
	Building and creating container
images – Cloud Build
	Cloud Build essentials
	Building code using Cloud Build
	Storing and viewing build logs
	Managing access controls
	Cloud Build best practices – optimizing builds

	Managing build artifacts – Container Registry
	Container Registry – key concepts

	Hands-on lab – building, creating, pushing, and deploying a container to Cloud Run using Cloud Build triggers
	Creating an empty repository in Source Repositories
	Creating a Cloud Build trigger
	Adding code and pushing it to the master branch
	Code walk-through
	Viewing the results

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 7: Understanding Kubernetes Essentials to Deploy Containerized Applications
	Technical requirements
	Kubernetes – a quick introduction
	Container orchestration
	Kubernetes features

	Kubernetes cluster anatomy
	Master components – Kubernetes control plane
	Node components
	Using kubectl

	Kubernetes objects
	Pod
	Deployment
	StatefulSets
	DaemonSets
	Service

	Scheduling and interacting with Pods
	Summarizing master plane interactions on Pod creation
	Critical factors to consider while scheduling Pods

	Kubernetes deployment strategies
	Recreate strategy
	Rolling update strategy
	Blue/Green strategy
	Canary deployment

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 8: Understanding GKE Essentials to Deploy Containerized Applications
	Technical requirements
	Google Kubernetes Engine (GKE) – introduction
	Creating a GKE cluster
	GKE cluster – deploying and exposing an application
	GKE Console

	GKE – core features
	GKE node pools
	GKE cluster configuration
	AutoScaling in GKE
	Networking in GKE
	Storage options for GKE
	Cloud Operations for GKE

	GKE Autopilot – hands-on lab
	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 9: Securing the Cluster Using GKE Security Constructs
	Technical requirements
	Essential security patterns in Kubernetes
	Authentication
	Authorization
	Control plane security
	Pod security

	Hardening cluster security in GKE
	GKE private clusters
	Container-optimized OS
	Shielded GKE nodes
	Network Policies – restricting traffic among pods
	Workload Identity

	Points to remember
	Further reading
	Practice test
	Answers

	Chapter 10: Exploring GCP
Cloud Operations
	Cloud Monitoring
	Workspaces
	Dashboards
	Metrics explorer
	Uptime checks
	Alerting
	Monitoring agent
	Cloud Monitoring access controls

	Cloud Logging
	Audit Logs
	Logs ingestion, routing, and exporting
	Summarizing log characteristics across log buckets
	Logs Explorer UI
	Logs-based metrics
	Network-based log types
	Logging agent

	Cloud Debugger
	Setting up Cloud Debugger
	Using Cloud Debugger
	Access control for Cloud Debugger

	Cloud Trace
	Trace Overview
	Trace List
	Analysis Reports

	Cloud Profiler
	Access control for Cloud Profiler

	Binding SRE and Cloud Operations
	SLO monitoring
	Hands-on lab – tracking service reliability using SLO monitoring

	Summary
	Points to remember
	Further reading
	Practice test
	Answers

	Appendix: Getting Ready for Professional Cloud DevOps Engineer Certification
	Cloud Deployment Manager
	Cloud Tasks
	Spinnaker

	Mock Exam 1
	Test Duration: 2 hours
	Total Number of Questions: 50
	Answers

	Mock Exam 2
	Test Duration: 2 hours
	Total Number of Questions: 50
	Answers
	Why subscribe?

	Other Books You May Enjoy
	Index

