

Docker Certified Associate
(DCA): Exam Guide

Enhance and validate your Docker skills by gaining
Docker certification

Francisco Javier Ramírez Urea

BIRMINGHAM - MUMBAI

Docker Certified Associate (DCA):
Exam Guide
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Romy Dias
Senior Editor: Arun Nadar
Technical Editor: Sarvesh Jayant
Copy Editor: Safis Editing
Language Support Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Aparna Bhagat

First published: September 2020

Production reference: 1280820

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-189-8

www.packt.com

http://www.packt.com

To my wife, Raquel; my kids, Jorge and Andrea; and my friends at Hopla! Software
for their patience, love, and support.

– Francisco Javier Ramírez Urea

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Francisco Javier Ramírez Urea is a technology enthusiast and professional. He is a Docker
Captain, casual developer, open source advocate, certified technology trainer, solutions
architect, and technical book writer and reviewer.

He is also a Kubernetes Certified Administrator, a Docker Certified Associate, a Docker
Certified Instructor, and a Docker MTA program consultant, as well as a
Docker/Kubernetes and NGINX expert and DevOps/CI-CD solutions integrator.

He currently works as a solutions architect focused on containers and microservices
technologies. He really enjoys teaching others everything he knows and continuous
learning is his life's main motivation.

I want to give special thanks to my wife, Raquel, and my kids, Jorge and Andrea, for
helping me remain focused on this book every day. I stole a lot of time from them to write
this book. I also want to give thanks to my friends at Hopla! Software, the Docker
community, and the Packt editors who had infinite patience helping me in this process.

Dear reader, I hope you enjoy this book. If you are preparing for the DCA exam, you need
to be comfortable with the Docker Enterprise platform and review all proposed labs and
questions. After that, I am sure you will be ready for your goal. Keep calm, read the
questions carefully, and take a breath before answering. I wish you all the best of luck for
the exam.

About the reviewer
Morten Nilsen is VP Principal DevOps Engineer at BNY Mellon. In 2016, after 12 years in
finance, including as a hedge fund manager, he made a career change to IT. He began using
Docker while developing the skills needed to be a DevOps engineer. At the time, Docker
was gaining traction, and learning Docker gave him a leg up on the competition for his first
consultancy with a company servicing e-commerce sites. In 2017, he was among the first to
obtain a Docker Certified Associate certification. He's built new DevOps teams for start-ups
and has improved SDLC automation and IaC for established teams. Docker is an important
tool in his role on an API platform team supporting hundreds of APIs, thousands of
services, and tens of thousands of containers.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1 - Key Container Concepts
Chapter 1: Modern Infrastructures and Applications with Docker 9

Technical requirements 10
Understanding the evolution of applications 10
Infrastructures 13
Processes 15
Microservices and processes 16
What are containers? 17
Learning about the main concepts of containers 20

Container runtime 21
Images 21
Containers 22
Process isolation 25
Orchestration 27
Registry 28

Docker components 29
Docker daemon 30
Docker client 31
Docker objects 31

Building, shipping, and running workflows 33
Building 33
Shipping 34
Running 34

Windows containers 35
Customizing Docker 36

Customizing the Docker daemon 37
Docker client customization 40

Docker security 41
Docker client-server security 41
Docker daemon security 45

Namespaces 45
User namespace 46
Kernel capabilities (seccomp) 47
Linux security modules 48
Docker Content Trust 49

Chapter labs 49
Installing the Docker runtime and executing a "hello world" container 51

Table of Contents

[ii]

Docker runtime processes and namespace isolation 53
Docker capabilities 57

Summary 58
Questions 58
Further reading 60

Chapter 2: Building Docker Images 61
Technical requirements 62
Building Docker images 62

Creating images with Dockerfiles 63
Creating images interactively 65
Creating images from scratch 68

Understanding copy-on-write filesystems 69
Building images with a Dockerfile reference 71

Dockerfile quick reference 71
Building process actions 76

Image tagging and meta-information 79
Docker registries and repositories 81
Securing images 82
Managing images and other related objects 83

Listing images 84
Sharing images using registries 85

Multistage building and image caches 88
Templating images 89
Image releases and updates 90
Chapter labs 90

Docker build caching 91
Where to use volumes in Dockerfiles 94
Multistage building 96
Deploying a local registry 99
Image templating using Dockerfiles 102

Summary 104
Questions 105
Further reading 106

Chapter 3: Running Docker Containers 107
Technical requirements 108
Reviewing the Docker command line in depth 108
Learning about Docker objects 111
Running containers 112

Main container actions 113
Container network properties 115
Container behavior definition 116
Executing containers 118
Container security options 123

Table of Contents

[iii]

Using host namespaces 125
Interacting with containers 126
Limiting host resources 129
Converting containers into images 132
Formatting and filtering information 133
Managing devices 135
Chapter labs 137

Reviewing Docker command-line object options 138
Executing containers 140
Limiting container resources 143
Formatting and filtering container list output 146

Summary 148
Questions 148
Further reading 150

Chapter 4: Container Persistency and Networking 151
Technical requirements 152
Understanding stateless and stateful containers 152

Learning how volumes work 153
Learning about volume object actions 155
Using volumes in containers 156

Learning about different persistence strategies 161
Local persistence 161
Distributed or remote volumes 161

Networking in containers 162
Using the default bridge network 164
Understanding null networks 168
Understanding the host network 168
Creating custom bridge networks 170
The MacVLAN network – macvlan 173

Learning about container interactions 174
Communication with the external world 174
Inter-container communications 175
DNS on custom bridge networks 175

Publishing applications 176
Chapter labs 178

Using volumes to code on your laptop 180
Mounting SSHFS 183
Multi-homed containers 186
Publishing applications 189

Summary 193
Questions 194
Further reading 195

Chapter 5: Deploying Multi-Container Applications 196

Table of Contents

[iv]

Technical requirements 197
Installing and using Docker Compose 197

Installing docker-compose as a Python module 198
Installing docker-compose using downloaded binaries 199
Executing docker-compose using a container 200
Installing docker-compose on Windows servers 200

Understanding the docker-compose.yaml file 201
Using the Docker Compose command-line interface 207
Customizing images with docker-compose 224
Automating your desktop and CI/CD with Docker Compose 228
Chapter labs 229

Colors application lab 230
Executing a red application 234
Scaling the red application's backends 235
Adding more colors 238
Adding a simple load balancer 240

Summary 245
Questions 246
Further reading 247

Chapter 6: Introduction to Docker Content Trust 248
Technical requirements 248
The Update Framework 249
Signing images 252
Reviewing signatures 256
Creating and running applications in trusted environments 258
Chapter labs 260

Signing images for Docker Hub 261
Summary 265
Questions 265
Further reading 266

Section 2 - Container Orchestration
Chapter 7: Introduction to Orchestration 268

Introducing orchestration concepts 269
Learning about container orchestration 270
Scheduling applications cluster-wide 272
Managing data and persistency 273
Scaling and updating application components 274
Summary 275
Questions 275
Further reading 276

Chapter 8: Orchestration Using Docker Swarm 277

Table of Contents

[v]

Technical requirements 278
Deploying Docker Swarm 278

Docker Swarm overall architecture 280
Management plane 281
Control plane 281
Data plane 282

Deploying a Docker Swarm cluster using the command line 282
Deploying Docker Swarm with high availability 286

Creating a Docker Swarm cluster 288
Recovering a faulty Docker Swarm cluster 293

Backing up your Swarm 294
Recovering your Swarm 294

Scheduling workloads in the cluster – tasks and services 295
Deploying applications using Stacks and other Docker Swarm
resources 302

Secrets 302
Config 304
Stacks 305

Networking in Docker Swarm 306
Service discovery and load balancing 309
Bypassing the router mesh 311

Using host mode 312
Using Round-Robin DNS mode 312

Chapter labs 312
Creating a Docker Swarm cluster 314
Deploying a simple replicated service 319
Deploying a global service 323
Updating a service's base image 326
Deploying using Docker Stacks 328
Swarm ingress internal load balancing 334
Service discovery 336

Summary 338
Questions 338
Further reading 339

Chapter 9: Orchestration Using Kubernetes 340
Technical requirements 341
Deploying Kubernetes using Docker Engine 341
Deploying a Kubernetes cluster with high availability 345
Pods, services, and other Kubernetes resources 347

Pods 347
Services 348
ConfigMaps and secrets 350
Namespaces 350
Persistent volumes 351

Table of Contents

[vi]

Deploying orchestrated resources 352
Kubernetes networking 357

Service discovery 361
Load balancing 364
Network policies 365

Publishing applications 366
Kubernetes security components and features 368
Comparing Docker Swarm and Kubernetes side by side 370
Chapter labs 373

Deploying applications in Kubernetes 375
Using volumes 383

Summary 390
Questions 391
Further reading 392

Section 3 - Docker Enterprise
Chapter 10: Introduction to the Docker Enterprise Platform 394

Reviewing the Docker editions 394
Docker Community 395
Docker Enterprise 396

Understanding CaaS 398
The Docker Enterprise platform 400

Docker Engine 400
Universal Control Plane 401
Docker Trusted Registry 403

Planning your Docker Enterprise deployment 404
Summary 407
Questions 407
Further reading 408

Chapter 11: Universal Control Plane 409
Technical requirements 410
Understanding UCP components and features 410

UCP components on manager nodes 411
UCP components on worker nodes 414

Deploying UCP with high availability 416
Reviewing the Docker UCP environment 426

The web UI 426
The command line using the UCP bundle 430

Role-based access control and isolation 432
UCP's Kubernetes integration 439
UCP administration and security 440
Backup strategies 444

Table of Contents

[vii]

Docker Swarm's backup 444
Backing up UCP 445

Upgrades, monitoring, and troubleshooting 448
Upgrading your environment 448
Monitoring a cluster's health 449
Troubleshooting UCP 451

Troubleshooting UCP-KV 451
Troubleshooting UCP-Auth 452
Troubleshooting nodes 452

Summary 453
Questions 453
Further reading 454

Chapter 12: Publishing Applications in Docker Enterprise 456
Technical requirements 457
Understanding publishing concepts and components 457
Understanding an application's logic 461
Publishing applications in Kubernetes using ingress controllers 462
Using Interlock to publish applications deployed in Docker Swarm 464
Reviewing Interlock usage 468

Simple application redirection 472
Publishing a service securely using Interlock with TLS 473

Summary 475
Questions 476
Further reading 477

Chapter 13: Implementing an Enterprise-Grade Registry with DTR 478
Technical requirements 479
Understanding DTR components and features 479
Deploying DTR with high availability 482
Learning about RBAC 493
Image scanning and security features 496

Security scanning 496
Image immutability 498
Content trust in DTR 498

Integrating and automating image workflow 503
Image promotion 504
DTR webhooks 505
Mirror images between registries 507
Registry caching 509
Garbage collection 509

Backup strategies 510
Updates, health checks, and troubleshooting 512

Logging 513
DTR disaster recovery 513

Table of Contents

[viii]

Some replicas are unhealthy, but we keep the cluster's quorum's state 514
The majority of replicas are unhealthy 514
All replicas are unhealthy 515

Summary 515
Questions 516
Further reading 517

Section 4 - Preparing for the Docker Certified Associate
Exam
Chapter 14: Summarizing Important Concepts 519

Reviewing orchestration concepts 520
Required knowledge for the exam 523

A brief summary of Docker image concepts 524
Required image management knowledge for the exam 527

A summary of the Docker architecture, installation, and
configuration topics 528

The knowledge required about the Docker platform for the exam 529
A summary of the networking topics 530

The Docker networking knowledge required for the exam 533
Understanding security concepts and related Docker features 534

The knowledge of Docker security required for the exam 537
Quickly summarizing Docker storage and volumes 537

The storage and volume knowledge required for the exam 539
Summary 540

Chapter 15: Mock Exam Questions and Final Notes 541
Docker Certified Associate exam details 541
Mock exam questions 542
Summary 559

Assessments 560

Other Books You May Enjoy 572

Index 575

Preface
Microservices and containers have changed the way developers create new applications.
Microservice architectures allow us to decouple applications in their components, and
today we have tools that can provide them with orchestrated and seamless interactions.
Also, containers have changed the deployment artifacts for applications. We have moved
from binaries to container images. This new development workflow helps developers to
build applications faster and more securely, and ensures that the final product will work as
intended, anywhere, without many modifications. Applications deployed as containers will
follow general code versioning rules, which helps us to keep track of component releases
and behavior.

This book will introduce microservices and containers and will help us to learn the key
concepts of these technologies. We will learn how containers work, see how networks are
implemented in different scenarios, and explore Docker Swarm and Kubernetes
orchestration strategies and environments. We will also cover all the Docker Enterprise
components and features required to implement Container as a Service platforms in
production. All the topics covered in this book, with sample questions and detailed
answers, will help you to learn the knowledge required to pass the official Docker Certified
Associate exam.

Who this book is for
This book is intended for people who want to learn about container technology and who
are preparing for the Docker Certified Associate exam. This book was also written as a
guide for Docker Enterprise products and serves as an introduction to Kubernetes'
terminology and features.

Good Linux and Windows user knowledge is required, and some networking skills will
help you to understand container networking and the use of load balancers and proxies to
provide a full-featured Container as a Service environment.

The labs in this book are focused on Linux hosts because most current Docker Enterprise
components are deployed on Linux operating systems. Windows hosts can be part of
Docker Swarm and Kubernetes clusters, but control planes are deployed using Linux hosts.

Preface

[2]

What this book covers
Chapter 1, Modern Infrastructures and Applications with Docker, introduces the microservices
architecture and containers as the perfect match for modern infrastructures. It also covers
Docker Engine concepts.

Chapter 2, Building Docker Images, presents the Docker image-building process, command-
line tools, and best practices for creating good and secure images.

Chapter 3, Running Docker Containers, shows how Docker helps us to run containers in our
systems and explains how these processes are isolated from Docker Engine hosts.

Chapter 4, Container Persistency and Networking, explains how to manage data out of the
containers' life cycles, as well as how containers interact with internal and external
resources.

Chapter 5, Deploying Multi-Container Applications, explains how we can deploy applications
in which components are based on containers. We will learn how to manage an
application's components with Infrastructure as Code files.

Chapter 6, Introduction to Docker Content Trust, shows how we can improve security in
container-based environments, ensuring image ownership, immutability, and provenance.

Chapter 7, Introduction to Orchestration, reviews orchestration concepts before diving into
Docker Swarm and Kubernetes as orchestrators.

Chapter 8, Orchestration Using Docker Swarm, covers Docker Swarm's features and
implementation, explaining how to implement applications using this orchestrator.

Chapter 9, Orchestration Using Kubernetes, introduces basic Kubernetes concepts and
compares this orchestrator with Docker Swarm to help you implement the best solution for
different applications or infrastructures.

Chapter 10, Introduction to the Docker Enterprise Platform, introduces Docker Enterprise
components and explains how Docker creates a production-ready Container as a Service
platform.

Chapter 11, Universal Control Plane, explains Docker Enterprise's control plane component.
We will learn how to implement Universal Control Plane in production and how to manage
the Docker Enterprise platform.

Preface

[3]

Chapter 12, Publishing Applications in Docker Enterprise, reviews different methods for
publishing applications and shows how to secure our Docker Swarm and Kubernetes
platforms using Interlock and Ingress Controller.

Chapter 13, Implementing an Enterprise-Grade Registry with DTR, explains how Docker
Enterprise provides a production-ready registry to manage and store Docker images.

Chapter 14, Summarizing Important Concepts, presents a summary of the most important
concepts learned in the previous chapters. This chapter will help us to prepare for the
Docker Certified Associate exam.

Chapter 15, Mock Exam Questions and Final Notes, contains some mock Docker Certified
Associate exam questions and explains the basics of the exam process.

To get the most out of this book
In order to follow the book's labs and examples, it is recommended to have Docker Engine
installed on your computer. A set of virtual environments is provided for you to allow you
to run all the labs without modifying your computer. There are also many labs in which
you have to deploy clusters, with many nodes involved. The labs will deploy virtual
machines so you don't have to install many nodes, although you can deploy all the labs on
your own infrastructure of hosts.

The provided virtual environments require Vagrant (https:/ /www. vagrantup. com/) and
VirtualBox (https:/ / www. virtualbox. org/) to be installed on your computer. Docker
images and software will be downloaded from the internet, so internet connectivity is also
required. The following table shows the computer resources required to run all of the
book's labs. You will free up resources by destroying environments once all the labs from
each section or chapter are completed.

Software/hardware covered in the
book Chapters OS requirements for running virtual

environments
Docker standalone platform (Docker
Engine) 1 to 7 2 vCPU, 4 GB of RAM, and 10 GB of disk

space.

Docker Swarm cluster platform 8 4 vCPU, 8 GB of RAM, and 50 GB of disk
space.

Kubernetes cluster platform 9 4 vCPU, 8 GB of RAM, and 50 GB of disk
space.

Docker Enterprise platform 11, 12, and 13 8 vCPU, 16 GB of RAM, and 100 GB of disk
space.

https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Preface

[4]

The labs from chapters 1 to 6 require one node. A minimum of 2 vCPUs and 4 GB of RAM
is required. The labs from chapter 8 and chapter 9 will deploy 4 and 3 virtual nodes
respectively, and more local resources are required. In these cases, you will need at least 4
vCPUs and 8 GB of RAM on your computer. The Docker Enterprise labs require more
resources because the platform has quite large CPU and memory requirements per virtual
node. These labs will run smoothly with at least 8 vCPUs and 16 GB of RAM because the
Vagrant environment will deploy 4 virtual nodes with 4 GB of RAM per node.

In terms of disk space, your computer should have at least 100 GB of free disk for the
biggest environment.

The minimum required Vagrant version is 2.2.8, while the minimum required version of
VirtualBox is 6.0.0. The labs can be executed on macOS, Windows 10, and Linux. The labs
were tested on the Ubuntu Linux 18.04 LTS and Windows 10 Pro operating systems during
the writing of this book.

All labs can be executed on Docker Swarm, Kubernetes, and Docker Enterprise, although it
is recommended to use virtual environments to execute all the labs' steps, including
installation procedures.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Before taking the exam, ensure that you understand and can answer all the questions in
Chapter 15, Mock Exam Questions and Final Notes. The questions in this chapter are quite
close to the ones currently present in Docker Certified Associate exam.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Code in Action
Code in Action videos for this book can be viewed at https:/ /bit. ly/34FSiEp.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it
here: http://www.packtpub.com/sites/default/files/downloads/9781839211898_ColorI
mages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We can configure the shared storage we need to execute the reconfigure
action."

A block of code is set as follows:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
https://bit.ly/34FSiEp
http://www.packtpub.com/sites/default/files/downloads/9781839211898_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839211898_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839211898_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839211898_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839211898_ColorImages.pdf

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

services:
 colors:
 image: codegazers/colors:1.16
 deploy:
 replicas: 3

Any command-line input or output is written as follows:

$ sudo mount -t nfs 10.10.10.11:/data /mnt
$ sudo cp -pR /var/lib/docker/volumes/dtr-registry-c8a9ec361fde/_data/*
/mnt/

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The screenshot shows the Garbage collection configuration page."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

https://www.packtpub.com/support/errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1 - Key Container

Concepts
This first section focuses on key container concepts. We will learn their main features, how
to create images, how to provide networking and persistent storage features, and how
containers help us to improve security in relation to processes. You will also learn how to
create and deploy container-based applications on Linux and Windows environments.

This section comprises the following chapters:

Chapter 1, Modern Infrastructures and Applications with Docker
Chapter 2, Building Docker Images
Chapter 3, Running Docker Containers
Chapter 4, Container Persistency and Networking
Chapter 5, Deploying Multi-Container Applications
Chapter 6, Introduction to Docker Content Trust

1
Modern Infrastructures and

Applications with Docker
Microservices and containers have probably been the most frequently mentioned
buzzwords in recent years. These days, we can still hear about them at conferences across
the globe. Although both terms are definitely related when talking about modern
applications, they are not the same. In fact, we can execute microservices without
containers and run big monolithic applications in containers. In the middle of the container
world, there is a well-known word that comes to mind when we find ourselves talking
about them – Docker.

This book is a guide to passing the Docker Certified Associate exam, which is a certification
of knowledge pertaining to this technology. We will cover each topic needed to pass this
exam. In this chapter, we will start with what microservices are and why they are important
in modern applications. We will also cover how Docker manages the requirements of
this application's logical components.

This chapter will guide you through Docker's main concepts and will give you a basic idea
of the tools and resources provided to manage containers.

In this chapter, we will cover the following topics:

Understanding the evolution of applications
Infrastructures
Processes
Microservices and processes
What are containers?
Learning about the main concepts of containers
Docker components
Building, shipping, and running workflows
Windows containers

Modern Infrastructures and Applications with Docker Chapter 1

[10]

Customizing Docker
Docker security

Let's get started!

Technical requirements
In this chapter, we will learn about various Docker Engine concepts. We'll provide some
labs at the end of this chapter that will help you understand and learn about the concepts
shown. These labs can be run on your laptop or PC using the provided Vagrant standalone
environment or any already deployed Docker host that you own. You can find additional
information in this book's GitHub repository: https:/ /github. com/ PacktPublishing/
Docker-Certified- Associate- DCA- Exam- Guide. git

Check out the following video to see the Code in Action:

"https://bit.ly/ 3jikiSl"

Understanding the evolution of applications
As we will probably read about on every IT medium, the concept of microservices is key in
the development of new modern applications. Let's go back in time a little to see how
applications have been developed over the years.

Monolithic applications are applications in which all components are combined into a
single program that usually runs on a single platform. These applications were not
designed with reusability in mind, nor any kind of modularity, for that matter. This means
that every time a part of their code required an update, all the applications had to be
involved in the process; for example, having to recompile all the application code in order
for it to work. Of course, things were not so strict then.

Applications grew in number in terms of tasks and functionalities, with some of these tasks
being distributed to other systems or even other smaller applications. However, the core
components were kept immutable. We used this model of programming because running
all application components together, on the same host, was better than trying to find some
required information from other hosts. Network speed was insufficient in this regard,
however. These applications were difficult to scale and difficult to upgrade. In fact, certain
applications were locked to specific hardware and operating systems, which meant that
developers needed to have the same hardware architectures at development stages to
evolve applications.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl
https://bit.ly/3jikiSl

Modern Infrastructures and Applications with Docker Chapter 1

[11]

We will discuss the infrastructure associated with these monolithic applications in the next
section. The following diagram represents how the decoupling of tasks or functionalities
has evolved from monolithic applications to Simple Object Access Protocol (SOAP)
applications and the new paradigm of microservices:

In trying to achieve better application performance and decoupling components, we moved
to three-tier architectures, based on a presentation tier, an application tier, and a data tier.
This allowed different types of administrators and developers to be involved in application
updates and upgrades. Each layer could be running on different hosts, but components
only talked to one another inside the same application.

This model is still present in our data centers right now, separating frontends from
application backends before reaching the database, where all the requisite data is stored.
These components evolved to provide scalability, high availability, and management. On
occasion, we had to include new middleware components to achieve these functionalities
(thus adding to the final equation; for example, application servers, applications for
distributed transactions, queueing, and load balancers). Updates and upgrades were easier,
and we isolated components to focus our developers on those different application
functionalities.

This model was extended and it got even better with the emergence of virtual machines in
our data centers. We will cover how virtual machines have improved the application of this
model in more detail in the next section.

As Linux systems have grown in popularity, the interaction between different components,
and eventually different applications, has become a requirement. SOAP and other queueing
message integration have helped applications and components exchange their information,
and networking improvements in our data centers have allowed us to start distributing
these elements in different nodes, or even locations.

Modern Infrastructures and Applications with Docker Chapter 1

[12]

Microservices are a step further to decoupling application components into smaller units.
We usually define a microservice as a small unit of business functionality that we can
develop and deploy standalone. With this definition, an application will be a compound of
many microservices. Microservices are very light in terms of host resource usage, and this
allows them to start and stop very quickly. Also, it allows us to move application health
from a high availability concept to resilience, assuming that the process dies (this can be
caused by problems or just a component code update) and we need to start a new one as
quickly as possible to keep our main functionality healthy.

Microservices architecture comes with stateless in mind. This means that the microservice
state should be managed outside of its own logic because we need to be able to run many
replicas for our microservice (scale up or down) and run its content on all nodes of our
environment, as required by our global load, for example. We decoupled the functionality
from the infrastructure (we will see how far this concept of "run everywhere" can go in the
next chapter).

Microservices provide the following features:

Managing an application in pieces allows us to substitute a component for a
newer version or even a completely new functionality without losing application
functionality.
Developers can focus on one particular application feature or functionality, and
will just need to know how to interact with other, similar pieces.
Microservices interaction will usually be effected using standard HTTP/HTTPS
API Representational State Transfer (REST) calls. The objective of RESTful
systems is to increase the speed of performance, reliability, and the ability to
scale.
Microservices are components that are prepared to have isolated life cycles. This
means that one unhealthy component will not wholly affect application usage.
We will provide resilience to each component, and an application will not have
full outages.
Each microservice can be written in different programming languages, allowing
us to choose the best one for maximum performance and portability.

Now that we have briefly reviewed the well-known application architectures that have
developed over the years, let's take a look at the concept of modern applications.

Modern Infrastructures and Applications with Docker Chapter 1

[13]

A modern application has the following features:

The components will be based on microservices.
The application component's health will be based on resilience.
The component's states will be managed externally.
It will run everywhere.
It will be prepared for easy component updates.
Each application component will be able to run on its own but will provide a
way to be consumed by other components.

Let's take a look.

Infrastructures
For every described application model that developers are using for their applications, we
need to provide some aligned infrastructure architecture.

On monolithic applications, as we have seen, all application functionalities run together. In
some cases, applications were built for a specific architecture, operating system, libraries,
binary versions, and so on. This means that we need at least one hardware node for
production and the same node architecture, and eventually resources, for development. If
we add the previous environments to this equation, such as certification or preproduction
for performance testing, for example, the number of nodes for each application would be
very important in terms of physical space, resources, and money spent on an application.

For each application release, developers usually need to have a full production-like
environment, meaning that only configurations will be different between environments.
This is hard because when any operating system component or feature gets updated,
changes must be replicated on all application environments. There are many tools to help
us with these tasks, but it is not easy, and the cost of having almost-replicated
environments is something to look at. And, on the other hand, node provision could take
months because, in many cases, a new application release would mean having to buy new
hardware.

Third-tier applications would usually be deployed on old infrastructures using application
servers to allow application administrators to scale up components whenever possible and
prioritize some components over others.

Modern Infrastructures and Applications with Docker Chapter 1

[14]

With virtual machines in our data centers, we were able to distribute host hardware
resources between virtual nodes. This was a revolution in terms of node provision time and
the costs of maintenance and licensing. Virtual machines worked very well on monolithic
and third-tier applications, but application performance depends on the host shared
resources that are applied to the virtual node. Deploying application components on
different virtual nodes was a common use case because it allowed us to run these virtually
everywhere. On the other hand, we were still dependent on operating system resources and
releases, so building a new release was dependent on the operating system.

From a developer's perspective, having different environments for building components,
testing them side by side, and certificating applications became very easy. However, these
new infrastructure components needed new administrators and efforts to provide nodes for
development and deployment. In fast-growing enterprises with many changes in their
applications, this model helps significantly in providing tools and environments to
developers. However, agility problems persist when new applications have to be created
weekly or if we need to accomplish many releases/fixes per day. New provisioning tools
such as Ansible or Puppet allowed virtualization administrators to provide these nodes
faster than ever, but as infrastructures grew, management became complicated.

Local data centers were rendered obsolete and although it took time, infrastructure teams
started to use computer cloud providers. They started with a couple of services, such as
Infrastructure as a Service (IaaS), that allowed us to deploy virtual nodes on the cloud as if
they were on our data center. With new networking speeds and reliability, it was easy to
start deploying our applications everywhere, data centers started to get smaller, and
applications began to run on distributed environments on different cloud providers. For
easy automation, cloud providers prepared their infrastructure's API for us, allowing users
to deploy virtual machines in minutes.

However, as many virtualization options appeared, other options based on Linux kernel
features and its isolation models came into being, reclaiming some old projects from the
past, such as chroot and jail environments (quite common on Berkeley Software
Distribution (BSD) operating systems) or Solaris zones.

The concept of process containers is not new; in fact, it is more than 10 years old. Process
containers were designed to isolate certain resources, such as CPU, memory, disk I/O, or
the network, to a group of processes. This concept is what is now known as control groups
(also known as cgroups).

Modern Infrastructures and Applications with Docker Chapter 1

[15]

This following diagram shows a rough timeline regarding the introduction of containers to
enterprise environments:

A few years later, a container manager implementation was released to provide an easy
way to control the usage of cgroups, while also integrating Linux namespaces. This project
was named Linux Containers (LXC), is still available today, and was crucial for others in
finding an easy way to improve process isolation usage.

In 2013, a new vision of how containers should run on our environments was introduced,
providing an easy-to-use interface for containers. It started with an open source solution,
and Solomon Hykes, among others, started what became known as Docker, Inc. They
quickly provided a set of tools for running, creating, and sharing containers with the
community. Docker, Inc. started to grow very rapidly as containers became increasingly
popular.

Containers have been a great revolution for our applications and infrastructures and we are
going to explore this area further as we progress.

Processes
A process is a way in which we can interact with an underlying operating system. We can
describe a program as a set of coded instructions to execute on our system; a process will be
that code in action. During process execution, it will use system resources, such as CPU and
memory, and although it will run on its own environment, it can share information with
another process that runs in parallel on the same system. Operating systems provide tools
that allow us to manipulate the behavior of this process during execution.

Modern Infrastructures and Applications with Docker Chapter 1

[16]

Each process in a system is identified uniquely by what is called the process identifier.
Parent-child relations between processes are created when a process calls a new one during
its execution. The second process becomes a subprocess of the first one (this is its child
process) and we will have information regarding this relationship with what is called the
parent PID.

Processes run because a user or other process launched it. This allows the system to know
who launched that action, and the owner of that process will be known by their user ID.
Effective ownership of child processes is implicit when the main process uses
impersonation to create them. New processes will use the main process designated user.

For interaction with the underlying system, each process runs with its own environment
variables and we can also manipulate this environment with the built-in features of the
operating system.

Processes can open, write, and close files as needed and use pointers to descriptors during
execution for easy access to this filesystem's resources.

All processes running on a system are managed by operating system kernels and have also
been scheduled on CPU by the kernel. The operating system kernel will be responsible for
providing system resources to process and interact with system devices.

To summarize, we can say that the kernel is the part of the operating system that interfaces
with host hardware, using different forms of isolation for operating system processes under
the definition of kernel space. Other processes will run under the definition of user space.
Kernel space has a higher priority for resources and manages user space.

These definitions are common to all modern operating systems and will be crucial in
understanding containers. Now that we know how processes are identified and that there
is isolation between the system and its users, we can move on to the next section and
understand how containers match microservices programming.

Microservices and processes
So far, we have briefly reviewed a number of different application models (monolith,
SOAP, and the new microservices architecture) and we have defined microservices as the
minimum piece of software with functionality that we can build as a component for an
application.

Modern Infrastructures and Applications with Docker Chapter 1

[17]

With this definition, we will associate a microservice with a process. This is the most
common way of running microservices. A process with full functionality can be described
as a microservice.

An application is composed of microservices, and hence processes, as expected. The
interaction between them will usually be made using HTTP/HTTPS/API REST.

This is, of course, a definition, but we recommend this approach to ensure proper
microservice health management.

What are containers?
So far, we have defined microservices and how processes fit in this model. As we saw
previously, containers are related to process isolation. We will define a container as a
process with all its requirements isolated with kernel features. This package-like object will
contain all the code and its dependencies, libraries, binaries, and settings that are required
to run our process. With this definition, it is easy to understand why containers are so
popular in microservices environments, but, of course, we can execute microservices
without containers. On the contrary, we can run containers with a full application, with
many processes that don't need to be isolated from each other inside this package-like
object.

In terms of multi-process containers, what is the difference between a virtual machine and
containers? Let's review container features against virtual machines.

Containers are mainly based on cgroups and kernel namespaces.

Virtual machines, on the other hand, are based on hypervisor software. This software,
which can run as part of the operating system in many cases, will provide sandboxed
resources to the guest virtualized hardware that runs a virtual machine operating system.
This means that each virtual machine will run its own operating system and allow us to
execute different operating systems on the same hardware host. When virtual machines
arrived, people started to use them as sandboxed environments for testing, but as
hypervisors gained in maturity, data centers started to have virtual machines in production,
and now this is common and standard practice in cloud providers (cloud providers
currently offer hardware as a service, too).

Modern Infrastructures and Applications with Docker Chapter 1

[18]

In this schema, we're showing the different logic layers, beginning with the machine
hardware. We will have many layers for executing a process inside virtual machines. Each
virtual machine will have its own operating system and services, even if we are just
running a single process:

Each virtual machine will get a portion of resources and guest operating systems, and the
kernel will manage how they are shared among different running processes. Each virtual
machine will execute its own kernel and the operating system running on top of those of
the host. There is complete isolation between the guest operating systems because
hypervisor software will keep them separated. On the other hand, there is an overhead
associated with running multiple operating systems side by side and when microservices
come to mind, this solution wastes numerous host resources. Just running the operating
system will consume a lot of resources. Even the fastest hardware nodes with fast SSD
disks require resources and time to start and stop virtual machines. As we have seen,
microservices are just a process with complete functionality inside an application, so
running the entire operating system for just a couple of processes doesn't seem like a good
idea.

On each guest host, we need to configure everything needed for our microservice. This
means access, users, configurations, networking, and more. In fact, we need administrators
for these systems as if they were bare-metal nodes. This requires a significant amount of
effort and is the reason why configuration management tools are so popular these days.

Modern Infrastructures and Applications with Docker Chapter 1

[19]

Ansible, Puppet, Chef, and SaltStack, among others, help us to homogenize our
environments. However, remember that developers need their own environments, too, so
multiply these resources by all the required environments in the development pipeline.

How can we scale up on service peaks? Well, we have virtual machine templates and,
currently, almost all hypervisors allow us to interact with them using the command line or
their own administrative API implementations, so it is easy to copy or clone a node for
scaling application components. But this will require double the resources – remember that
we will run another complete operating system with its own resources, filesystems,
network, and so on. Virtual machines are not the perfect solution for elastic services (which
can scale up and down, run everywhere, and are created on-demand in many cases).

Containers will share the same kernel because they are just isolated processes. We will just
add a templated filesystem and resources (CPU, memory, disk I/O, network, and so on,
and, in some cases, host devices) to a process. It will run sandboxed inside and will only
use its defined environment. As a result, containers are lightweight and start and stop as
fast as their main processes. In fact, containers are as lightweight as the processes they run,
since we don't have anything else running inside a container. All the resources that are
consumed by a container are process-related. This is great in terms of hardware resource
allocation. We can find out the real consumption of our application by observing the load of
all of its microservices.

Containers are a perfect solution for microservices as they will run only
one process inside. This process should have all the required functionality
for a specific task, as we described in terms of microservices.

Similar to virtual machines, there is the concept of a template for container creation called
Image. Docker images are standard for many container runtimes. They ensure that all
containers that are created from a container image will run with the same properties and
features. In other words, this eliminates the it works on my computer! problem.

Docker containers improve security in our environments because they are secure by
default. Kernel isolation and the kind of resources managed inside containers provide a
secure environment during execution. There are many ways to improve this
security further, as we will see in the following chapters. By default, containers will run
with a limited set of system calls allowed.

Modern Infrastructures and Applications with Docker Chapter 1

[20]

This schema describes the main differences between running processes on different virtual
machines and using containers:

Containers are faster to deploy and manage, lightweight, and secure by default. Because of
their speed upon execution, containers are aligned with the concept of resilience. And
because of the package-like environment, we can run containers everywhere. We only need
a container runtime to execute deployments on any cloud provider, as we do on our data
centers. The same concept will be applied to all development stages, so integration and
performance tests can be run with confidence. If the previous tests were passed, since we
are using the same artifact across all stages, we can ensure its execution in production.

In the following chapters, we will dive deep into Docker container components. For now,
however, just think of a Docker container as a sandboxed process that runs in our system,
isolated from all other running processes on the same host, based on a template named
Docker Image.

Learning about the main concepts of
containers
When talking about containers, we need to understand the main concepts behind the
scenes. Let's decouple the container concept into different pieces and try to understand
each one in turn.

Modern Infrastructures and Applications with Docker Chapter 1

[21]

Container runtime
The runtime for running containers will be the software and operating system features that
make process execution and isolation possible.

Docker, Inc. provides a container runtime named Docker, based on open source projects
sponsored by them and other well-known enterprises that empower container movement
(Red Hat/IBM and Google, among many others). This container runtime comes packaged
with other components and tools. We will analyze each one in detail in the Docker
components section.

Images
We use images as templates for creating containers. Images will contain everything
required by our process or processes to run correctly. These components can be binaries,
libraries, configuration files, and so on that can be a part of operating system files or just
components built by yourself for this application.

Images, like templates, are immutable. This means that they don't change between
executions. Every time we use an image, we will get the same results. We will only change
configuration and environment to manage the behavior of different processes between
environments. Developers will create their application component template and they can be
sure that if the application passed all the tests, it will work in production as expected. These
features ensure faster workflows and less time to market.

Docker images are built up from a series of layers, and all these layers packaged together
contain everything required for running our application process. All these layers are read-
only and the changes are stored in the next upper layer during image creation. This way,
each layer only has a set of differences from the layer before it.

Layers are packaged to allow ease of transport between different systems or environments,
and they include meta-information about the required architecture to run (will it run on
Linux or Windows, or does it require an ARM processor, for example?). Images include
information about how the process should be run, which user will execute the main
process, where persistent data will be stored, what ports your process will expose in order
to communicate with other components or users, and more.

Modern Infrastructures and Applications with Docker Chapter 1

[22]

Images can be built with reproducible methods using Dockerfiles or store changes made on
running containers to obtain a new image:

This was a quick review of images. Now, let's take a look at containers.

Containers
As we described earlier, a container is a process with all its requirements that runs
separately from all the other processes running on the same host. Now that we know what
templates are, we can say that containers are created using images as templates. In fact, a
container adds a new read-write layer on top of image layers in order to store filesystem
differences from these layers. The following diagram represents the different layers
involved in container execution. As we can observe, the top layer is what we really call the
container because it is read-write and allows changes to be stored on the host disk:

Modern Infrastructures and Applications with Docker Chapter 1

[23]

All image layers are read-only layers, which means all the changes are stored in the
container's read-write layer. This means that all these changes will be lost when we remove
a container from a host, but the image will remain until we remove it. Images are
immutable and always remain unchanged.

This container behavior lets us run many containers using the same underlying image, and
each one will store changes on its own read-write layer. The following diagram represents
how different images will use the same image layers. All three containers are based on the
same image:

There are different approaches to managing image layers when building and container
layers on execution. Docker uses storage drivers to manage this content, on read-only
layers and read-write ones. These drivers are operating system-dependent, but they all
implement what is known as copy-on-write filesystems.

A storage driver (known as graph-driver) will manage how Docker will store and manage
the interactions between layers. As we mentioned previously, there are different drivers
integrations available, and Docker will choose the best one for your system, depending on
your host's kernel and operating system. Overlay2 is the most common and preferred
driver for Linux operating systems. Others, such as aufs, overlay, and btfs, among others,
are also available, but keep in mind that overlay2 is recommended for production
environments on modern operating systems.

Modern Infrastructures and Applications with Docker Chapter 1

[24]

Devicemapper is also a supported graph driver and it was very common
on Red Hat environments before overlay2 was supported on modern
operating system releases (Red Hat 7.6 and above). Devicemapper uses
block devices for storing layers and can be deployed in observance of two
different strategies: loopback-lvm (by default and only for testing
purposes) and direct-lvm (requires additional block device pool
configurations and is intended for production environments). This link
provides the required steps for deploying: direct-lvm: https:/ /docs.
docker. com/ storage/ storagedriver/ device- mapper- driver/

As you may have noticed, using copy-on-write filesystems will make containers very small
in terms of disk space usage. All common files are shared between the same image-based
containers. They just store differences from immutable files that are part of image layers.
Consequently, container layers will be very small (of course, this depends on what you are
storing on containers, but keep in mind that good containers are small). When an existing
file in a container has to be modified (remember a file that comes from underlying layers),
the storage driver will perform a copy operation to the container layer. This process is fast,
but keep in mind that everything that is going to be changed on containers will follow this
process. As a reference, don't use copy-on-write with heavy I/O operations, nor process
logs.

Copy-on-write is a strategy for creating maximum efficiency and small
layer-based filesystems. This storage strategy works by copying files
between layers. When a layer needs to change a file from another
underlaying layer, it will be copied to this top one. If it just needs read
access, it will use it from underlying layers. This way, I/O access is
minimized and the size of the layers is very small.

A common question that many people ask is whether containers are ephemeral. The short
answer is no. In fact, containers are not ephemeral for a host. This means that when we
create or run a container on that host, it will remain there until someone removes it. We can
start a stopped container on the same host if it is not deleted yet. Everything that was inside
this container before will be there, but it is not a good place to store process state because it
is only local to that host. If we want to be able to run containers everywhere and use
orchestration tools to manage their states, processes must use external resources to store
their status.

https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/

Modern Infrastructures and Applications with Docker Chapter 1

[25]

As we'll see in later chapters, Swarm or Kubernetes will manage service or application
component status and, if a required container fails, it will create a new container.
Orchestration will create a new container instead of reusing the old one because, in many
cases, this new process will be executed elsewhere in the clustered pool of hosts. So, it is
important to understand that your application components that will run as containers must
be logically ephemeral and that their status should be managed outside containers
(database, external filesystem, inform other services, and so on).

The same concept will be applied in terms of networking. Usually, you will let a container
runtime or orchestrator manage container IP addresses for simplicity and dynamism.
Unless strictly necessary, don't use fixed IP addresses, and let internal IPAMs configure
them for you.

Networking in containers is based on host bridge interfaces and firewall-level NAT rules. A
Docker container runtime will manage the creation of virtual interfaces for containers and
process isolation between different logical networks creating mentioned rules. We will see
all the network options provided and their use cases in Chapter 4, Container Persistency and
Networking. In addition, publishing an application is managed by the runtime and
orchestration will add different properties and many other options.

Using volumes will let us manage the interaction between the process and the container
filesystem. Volumes will bypass the copy-on-write filesystem and hence writing will be
much faster. In addition to this, data stored in a volume will not follow the container life
cycle. This means that even if we delete the container that was using that volume, all the
data that was stored there will remain until someone deletes it. We can define a volume as
the mechanism we will use to persist data between containers. We will learn that volumes
are an easy way to share data between containers and deploy applications that need to
persist their data during the life of the application (for example, databases or static content).
Using volumes will not increase container layer size, but using them locally will require
additional host disk resources under the Docker filesystem/directory tree.

Process isolation
As we mentioned previously, a kernel provides namespaces for process isolation. Let's
review what each namespace provides. Each container runs with its own kernel
namespaces for the following:

Processes: The main process will be the parent of all other ones within the
container.
Network: Each container will get its own network stack with its own interfaces
and IP addresses and will use host interfaces.

Modern Infrastructures and Applications with Docker Chapter 1

[26]

Users: We will be able to map container user IDs with different host user IDs.
IPC: Each container will have its own shared memory, semaphores, and message
queues without conflicting other processes on the host.
Mounts: Each container will have its own root filesystem and we can provide
external mounts, which we will learn about in upcoming chapters.
UTS: Each container will get its own hostname and time will be synced with the
host.

The following diagram represents a process tree from the host perspective and inside a
container. Processes inside a container are namespaced and, as a result, their parent PID
will be the main process, with its own PID of 1:

Namespaces have been available in Linux since version 2.6.26 (July 2008), and they provide
the first level of isolation for a process running within a container so that it won't see others.
This means they cannot affect other processes running on the host or in any other container.
The maturity level of these kernel features allows us to trust in Docker namespace isolation
implementation.

Modern Infrastructures and Applications with Docker Chapter 1

[27]

Networking is isolated too, as each container gets its own network stack, but
communications will pass through host bridge interfaces. Every time we create a Docker
network for containers, we will create a new network bridge, which we will learn more
about in Chapter 4, Container Persistency and Networking. This means that containers
sharing a network, which is a host bridge interface, will see one another, but all other
containers running on a different interface will not have access to them. Orchestration will
add different approaches to container runtime networking but, at the host level, described
rules are applied.

Host resources available to a container are managed by control groups. This isolation will
not allow a container to bring down a host by exhausting its resources. You should not
allow containers with non-limited resources in production. This must be mandatory in
multi-tenant environments.

Orchestration
This book contains a general chapter about orchestration, Chapter 7, Introduction to
Orchestration, and two specific chapters devoted to Swarm and Kubernetes, respectively,
Chapter 8, Orchestration Using Docker Swarm, and Chapter 9, Orchestration Using
Kubernetes. Orchestration is the mechanism that will manage container interactions,
publishing, and health in clustered pools of hosts. It will allow us to deploy an application
based on many components or containers and keep it healthy during its entire life cycle.
With orchestration, component updates are easy because it will take care of the required
changes in the platform to accomplish a new, appropriate state.

Deploying an application using orchestration will require a number of instances for our
process or processes, the expected state, and instructions for managing its life during
execution. Orchestration will provide new objects, communication between containers
running on different hosts, features for running containers on specific nodes within the
cluster, and the mechanisms to keep the required number of process replicas alive with the
desired release version.

Swarm is included inside Docker binaries and comes as standard. It is easy to deploy and
manage. Its unit of deployment is known as a service. In a Swarm environment, we don't
deploy containers because containers are not managed by orchestration. Instead, we deploy
services and those services will be represented by tasks, which will run containers to
maintain its state.

Modern Infrastructures and Applications with Docker Chapter 1

[28]

Currently, Kubernetes is the most widely used form of orchestration. It requires extra
deployment effort using a Docker community container runtime. It adds many features,
multi-container objects known as pods that share a networking layer, and flat networking
for all orchestrated pods, among other things. Kubernetes is community-driven and evolves
very fast. One of the features that makes this platform so popular is the availability to create
your own kind of resources, allowing us to develop new extensions when they are not
available.

We will analyze the features of pods and Kubernetes in detail in Chapter 9, Orchestration
Using Kubernetes.

Docker Enterprise provides orchestrators deployed under Universal Control Plane with
high availability on all components.

Registry
We have already learned that containers execute processes within an isolated environment,
created from a template image. So, the only requirements for deploying that container on a
new node will be the container runtime and the template used to create that container. This
template can be shared between nodes using simple Docker command options. But this
procedure can become more difficult as the number of nodes grows. To improve image
distribution, we will use image registries, which are storage points for these kinds of
objects. Each image will be stored in its own repository. This concept is similar to code
repositories, allowing us to use tags to describe these images, aligning code releases with
image versioning.

An application deployment pipeline has different environments, and having a common
point of truth between them will help us to manage these objects through the different
workflow stages.

Docker provides two different approaches for registry: the community version and Docker
Trusted Registry. The community version does not provide any security at all, nor role-
based access to image repositories. On the other hand, Docker Trusted Registry comes with
the Docker Enterprise solution and is an enterprise-grade registry, with included security,
image vulnerability scanning, integrated workflows, and role-based access. We will learn
about Docker Enterprise's registry in Chapter 13, Implementing an Enterprise-Grade Registry
with DTR.

Modern Infrastructures and Applications with Docker Chapter 1

[29]

Docker components
In this section, we are going to describe the main Docker components and binaries used for
building, distributing, and deploying containers in all execution stages.

Docker Engine is the core component of container platforms. Docker is a client-server
application and Docker Engine will provide the server side. This means that we have the
main process that runs as a daemon on the host, and a client-side application that
communicates with the server using REST API calls.

Docker Engine's latest version provides separate packages for the client
and the server. On Ubuntu, for example, if we take a look at the available
packages, we will have something like this:
 - docker-ce-cli – Docker CLI: The open source application container
engine
 - docker-ce – Docker: The open source application container engine

The following diagram represents Docker daemon and its different levels of management:

Docker daemon listens for Docker API requests and will be responsible for all Docker object
actions, such as creating an image, list volumes, and running a container.

Docker API is available using a Unix socket by default. Docker API can be
used from within code-using interfaces that are available for many
programming languages. Querying for running containers can be
managed using a Docker client or its API directly; for example, with curl
--no-buffer -XGET --unix-socket /var/run/docker.sock

http://localhost/v1.24/containers/json.

Modern Infrastructures and Applications with Docker Chapter 1

[30]

When deploying cluster-wide environments with Swarm orchestration, daemons will share
information between them to allow the execution of distributed services within the pool of
nodes.

On the other hand, the Docker client will provide users with the command line required to
interact with the daemon. It will construct the required API calls with their payloads to tell
the daemon which actions it should execute.

Now, let's deep dive into a Docker daemon component to find out more about its behavior
and usage.

Docker daemon
Docker daemon will usually run as a systemd-managed service, although it can run as a
standalone process (it is very useful when debugging daemon errors, for example). As we
have seen previously, dockerd provides an API interface that allows clients to send
commands and interact with this daemon. containerd, in fact, manages containers. It was
introduced as a separate daemon in Docker 1.11 and is responsible for managing storage,
networking, and interaction between namespaces. Also, it will manage image shipping and
then, finally, it will run containers using another external component. This external
component, RunC, will be the real executor of containers. Its function just receives an order
to run a container. These components are part of the community, so the only one that
Docker provides is dockerd. All other daemon components are community-driven and use
standard image specifications (Open Containers Initiative – OCI). In 2017, Docker donated
containerd as part of their contribution to the open source community and is now part of
the Cloud Native Computing Foundation (CNCF). OCI was founded as an open
governance structure for the express purpose of creating open industry standards around
container formats and runtimes in 2015. The CNCF hosts and manages most of the
currently most-used components of the newest technology infrastructures. It is a part of the
nonprofit Linux Foundation and is involved in projects such as Kubernetes, Containerd,
and The Update Framework.

By way of a summary, dockerd will manage interaction with the Docker client. To run a
container, first, the configuration needs to be created so that daemon triggers containerd
(using gRPC) to create it. This piece will create an OCI definition that will use RunC to run
this new container. Docker implements these components with different names (changed
between releases), but the concept is still valid.

Modern Infrastructures and Applications with Docker Chapter 1

[31]

Docker daemon can listen for Docker Engine API requests on different types of sockets:
unix, tcp, and fd. By default, Daemon on Linux will use a Unix domain socket (or IPC
socket) that's created at /var/run/docker.sock when starting the daemon. Only root and
Docker groups can access this socket, so only root and members of the Docker group will
be able to create containers, build images, and so on. In fact, access to a socket is required
for any Docker action.

Docker client
Docker client is used to interact with a server. It needs to be connected to a Docker daemon
to perform any action, such as building an image or running a container.

A Docker daemon and client can run on the same host system, or we can manage a
connected remote daemon. The Docker client and daemon communicate using a server-side
REST API. This communication can be executed over UNIX sockets (by default) or a
network interface, as we learned earlier.

Docker objects
The Docker daemon will manage all kinds of Docker objects using the Docker client
command line.

The following are the most common objects at the time of writing this book:

IMAGE

CONTAINER

VOLUME

NETWORK

PLUGIN

There are other objects that are only available when we deploy Docker Swarm
orchestration:

NODE

SERVICE

SECRET

Modern Infrastructures and Applications with Docker Chapter 1

[32]

CONFIG

STACK

SWARM

The Docker command line provides the actions that Docker daemon is allowed to execute
via REST API calls. There are common actions such as list (or ls), create, rm (for remove),
and inspect, and other actions that are restricted to specific objects, such as cp (for
coping).

For example, we can get a list of running containers on a host by running the following
command:

$ docker container ls

There are many commonly used aliases, such as docker ps for docker
container ls or docker run for docker container run. I
recommend using a long command-line format because it is easier to
remember if we understand which actions are allowed for each object.

There are other tools available on the Docker ecosystem, such as docker-machine and
docker-compose.

Docker Machine is a community tool created by Docker that allows users and
administrators to easily deploy Docker Engine on hosts. It was developed in order to fast
provision Docker Engine on cloud providers such as Azure and AWS, but it evolved to
offer other implementations, and nowadays, it is possible to use many different drivers for
many different environments. We can use docker-machine to deploy docker-engine on
VMWare (over Cloud Air, Fusion, Workstation, or vSphere), Microsoft Hyper-V, and
OpenStack, among others. It is also very useful for quick labs, or demonstration and test
environments on VirtualBox or KVM, and it even allows us to provision docker-engine
software using SSH. docker-machine runs on Windows and Linux, and provides an
integration between client and provisioned Docker host daemons. This way, we can interact
with its Docker daemon remotely, without being connected using SSH, for example.

On the other hand, Docker Compose is a tool that will allow us to run multi-container
applications on a single host. We will just introduce this concept here in relation to multi-
service applications that will run on Swarm or Kubernetes clusters. We will learn about
docker-compose in Chapter 5, Deploying Multi-Container Applications.

Modern Infrastructures and Applications with Docker Chapter 1

[33]

Building, shipping, and running workflows
Docker provides the tools for creating images (templates for containers, remember),
distributing those images to systems other than the one used for building the image, and
finally, running containers based on these images:

Docker Engine will participate in all workflow steps, and we can use just one host or many
during these processes, including our developers' laptops.

Let's provide a quick review of the usual workflow processes.

Building
Building applications using containers is easy. Here are the standard steps:

The developer usually codes an application on their own computer.1.
When the code is ready, or there is a new release, new functionalities, or a bug2.
has simply been fixed, a commit is deployed.
If our code has to be compiled, we can do it at this stage. If we are using an3.
interpreted language for our code, we will just add it to the next stage.
Either manually or using continuous integration orchestration, we can create a4.
Docker image integrating compiled binary or interpreted code with the required
runtime and all its dependencies. Images are our new component artifacts.

Modern Infrastructures and Applications with Docker Chapter 1

[34]

We have passed the building stage and the built image, with everything included, must be
deployed to production. But first, we need to ensure its functionality and health (Will it
work? How about performance?). We can do all these tests on different environments using
the image artifact we created.

Shipping
Sharing created artifacts is easier with containers. Here are some of the new steps:

The created image is on our build host system (or even on our laptop). We will1.
push this artifact to an image registry to ensure that it is available for the next
workflow processes.
Docker Enterprise provides integrations on Docker Trusted Registry to follow2.
separate steps from the first push, image scanning to look for vulnerabilities, and
different image pulls from different environments during continuous integration
stages.
All pushes and pulls are managed by Docker Engine and triggered by Docker3.
clients.

Now that the image has been shipped on different environments, during integration and
performance tests, we need to launch containers using environment variables or
configurations for each stage.

Running
So, we have new artifacts that are easy to share between different environments, but we
need to execute them in production. Here are some of the benefits of containers for our
applications:

All environments will use Docker Engine to execute our containers (processes),
but that's all. We don't really need any portion of software other than Docker
Engine to execute the image correctly (naturally, we have simplified this idea
because we will need volumes and external resources in many cases).
If our image passed all the tests defined in the workflow, it is ready for
production, and this step will be as simple as deploying the image
built originally on the previous environment, using all the required arguments
and environment variables or configurations for production.

Modern Infrastructures and Applications with Docker Chapter 1

[35]

If our environments were orchestration-managed using Swarm or Kubernetes, all
these steps would have been run securely, with resilience, using internal load
balancers, and with required replicas, among other properties, that this kind of
platform provides.

As a summary, keep in mind that Docker Engine provides all the actions required for
building, shipping, and running container-based applications.

Windows containers
Containers started with Linux, but nowadays, we can run and orchestrate containers on
Windows. Microsoft integrated containers on Windows in Windows 2016. With this release,
they consolidated a partnership with Docker to create a container engine that runs
containers natively on Windows.

After a few releases, Microsoft decided to have two different approaches to containers on
Windows, these being the following:

Windows Server Containers (WSC), or process containers
Hyper-V Containers

Because of the nature of Windows operating system implementation, we can share kernels
but we can't isolate processes from the system services and DLLs. In this situation, process
containers need a copy of the required system services and many DLLs to be able to make
API calls to the underlying host operating system. This means that containers that use
process container isolation will run with many system processes and DLLs inside. In this
case, images are very big and will have a different kind of portability; we will only be able
to run Windows containers based on the same underlying operating system version.

As we have seen, process containers need to copy a portion of the
underlying operating system inside in order to run. This means that we
can only run the same operating system containers. For example, running
containers on top of Windows Server 2016 will require a Windows Server
2016 base image.

Modern Infrastructures and Applications with Docker Chapter 1

[36]

On the other hand, Hyper-V containers will not have these limitations because they will
run on top of a virtualized kernel. This adds overhead, but the isolation is substantially
better. In this case, we won't be able to run these kinds of containers on older Microsoft
Windows versions. These containers will use optimized virtualization to isolate the new
kernel for our process.

The following diagram represents both types of MS Windows container isolation:

Process isolation is a default container isolation on Windows Server, but
Windows 10 Pro and Enterprise will run Hyper-V isolation. Since the
Windows 10 October 2018 update, we can choose to use old-style process
isolation with the --isolation=process flag on Windows 10 Pro and
Enterprise.
Please check the Windows operating system's portability because this is a
very common problem on Windows containers.

Networking in Windows containers is different from Linux. The Docker host uses a Hyper-
V virtual switch to provide connectivity to containers and connects them to virtual switches
using either a host virtual interface (Windows Server containers) or a synthetic VM
interface (Hyper-V containers).

Customizing Docker
Docker behavior can be managed at daemon and client levels. These configurations can be
executed using command-line arguments, environment variables, or definitions on
configuration files.

Modern Infrastructures and Applications with Docker Chapter 1

[37]

Customizing the Docker daemon
Docker daemon behavior is managed by various configuration files and variables:

key.json: This file contains a unique identifier for this daemon; in fact, it is the
daemon's public key that uses the JSON web key format.
daemon.json: This is the Docker daemon configuration file. It contains all its
parameters in JSON format. It has a key-value (or list of values) format in which
all the daemon's flags will be available to modify its behavior. Be careful with
configurations implemented on the systemd service file because they must not
conflict with options set via the JSON file; otherwise, the daemon will fail to start.
Environment variables: HTTPS_PROXY, HTTP_PROXY, and NO_PROXY (or using
lowercase) will manage the utilization of Docker daemon and the client behind
the proxies. The configuration can be implemented in the Docker daemon
systemd unit config files using, for example,
/etc/systemd/system/docker.service.d/http-proxy.conf, and
following the content for HTTPS_PROXY (the same configuration might be applied
to HTTP_PROXY):

[Service]
Environment="HTTPS_PROXY=https://proxy.example.com:443/"
"NO_PROXY=localhost,127.0.0.1,docker-registry.example.com,.corp"

Be careful with the key.json file while cloning virtual machines because
using the same keys on different daemons will result in strange behaviors.
This file is owned by system administrators, so you will need to use a
privileged user to review its content. This JSON file contains Docker
Daemon's certificate in JSON Web Key format. We can just review the
key.json file's content using the cat and jq commands (jq is not
required, but I used it to format output. This command will help with
JSON files or JSON output):

$ sudo cat /etc/docker/key.json |jq
{
 "crv": "P-256",
 "d": "f_RvzIUEPu3oo7GLohd9cxqDlT9gQyXSfeWoOnM0ZLU",
 "kid": "QP6X:5YVF:FZAC:ETDZ:HOHI:KJV2:JIZW:
 IG47:3GU6:YQJ4:YRGF:VKMP",
 "kty": "EC",
 "x": "y4HbXr4BKRi5zECbJdGYvFE2KtMp9DZfPL81r_qe52I",
 "y": "ami9cOOKSA8joCMwW-y96G2mBGwcXthYz3FuK-mZe14"
}

Modern Infrastructures and Applications with Docker Chapter 1

[38]

The daemon configuration file, daemon.json, will be located by default at the following
locations:

/etc/docker/daemon.json on Linux systems
%programdata%\docker\config\daemon.json on Windows systems

In both cases, the configuration file's location can be changed using --config-file to
specify a custom non-default file.

Let's provide a quick review of the most common and important flags or keys we will
configure for Docker daemon. Some of these options are so important that they are usually
referenced in the Docker Certified Associate exam. Don't worry; we will learn about the
most important ones, along with their corresponding JSON keys, here:

Daemon argument JSON key Argument description

-b, --bridge string bridge

Attach containers to a network bridge. This option
allows us to change the default bridge behavior. In
some cases, it's useful to create your own bridge
interfaces and use the Docker daemon attached to
one of them.

--cgroup-parent string cgroup-parent Set the parent cgroup for all containers.

-D, --debug debug

This option enables debug mode, which is
fundamental to resolving issues. Usually, it's better
to stop Docker service and run the Docker daemon
by hand using the -D option to review all
dockerd debugging events.

--data-root string data-root

This is the root directory of the persistent Docker
state (default /var/lib/docker). With this
option, we can change the path to store all Docker
data (Swarm KeyValue, images, internal volumes,
and so on).

--dns list dns

This is the DNS server to use (default []). These
three options allow us to change the container DNS
behavior, for example, to use a specific DNS for the
container environment.

 --dns-opt list dns-opt These are the DNS options to use (default []).

--dns-search list dns-search
These are the DNS search domains to use (default
[]).

--experimental experimental This enables experimental features; don't use it in
production.

-G, --group string group
This is the group for the Unix socket (default
docker).

Modern Infrastructures and Applications with Docker Chapter 1

[39]

-H, --host list host This is the option that allows us to specify the
socket(s) to use.

--icc icc
This enables inter-container communication (default
true). With this option, we can disable any
container's internal communications.

 --ip IP ip

This is the default IP when binding container ports
(default 0.0.0.0). With this option, we can ensure
that only specific subnets will have access to
container-exposed ports.

 --label list label

Set key=value labels to the daemon (default []).
With labels, we can configure environment
properties for container location when using a
cluster of hosts. There is a better tagging method
you can use when using Swarm, as we will learn in
Chapter 8, Orchestration Using Docker Swarm.

--live-restore live-restore This enables the live restoration of Docker when
containers are still running.

--log-driver string log-driver

This is the default driver for container logs (default
json-file) if we need to use an external log
manager (ELK framework or just a Syslog Server,
for example).

-l, --log-level string log-level
This sets the logging level (debug, info, warn,
error, fatal) (default info).

--seccomp-profile
string

seccomp-profile This is the path to the seccomp profile if we want to
use anything other than the default option.

--selinux-enabled selinux-enabled
Enables SELinux support. This option is crucial for
production environments using Red Hat
Linux/CentOS. It is disabled by default.

-s, --storage-driver
string

storage-driver

This is the storage driver to use. This argument
allows us to change the default driver selected by
Docker. In the latest versions, we will use
overlay2 because of its stability and
performance. Other options include aufs, btrfs,
and devicemapper.

--storage-opt list storage-opts

Storage driver options (default []). Depending on
the storage driver used, we will need to add options
as arguments, for example, using devicemapper
or for specifying a maximum container size on
overlay2 or Windows filter (MS Windows copy-
on-write implementation).

--tls tls
This option enables TLS encryption between client
and server (implied by --tlsverify).

Modern Infrastructures and Applications with Docker Chapter 1

[40]

 --tlscacert string tlscacert
Trust certs signed only by this CA (default
~/.docker/ca.pem).

--tlscert string tlscert
This is the path to the TLS certificate file (default
~/.docker/cert.pem).

--tlskey string tlskey
This is the path to the TLS key file (default
~/.docker/key.pem).

--tlsverify tlsverify Use TLS and verify the remote.

Logging information in container environments can be deployed using different layers of
knowledge. As shown in the previous table, Docker daemon has its own logging
configuration using --log-driver. This configuration will be applied to all containers by
default if we do not specify any configuration during container execution. Therefore, we
can redirect all container logs to some remote logging system using the ELK framework, for
example (https:/ /www. elastic. co/ es/ what- is/elk- stack), while some specific
containers can be redirected to another logging backend. This can also be applied locally
using different logging drivers.

Docker client customization
The client will store its configuration under the users' home directory on .docker. There is
a config file where the Docker client will look for its configurations
($HOME/.docker/config.json on Linux or %USERPROFILE%/.docker/config.json on
Windows). In this file, we will set a proxy for our containers if it's needed to connect to the
internet or other external services, for example.

If we need to pass proxy settings to containers upon startup, we will configure the proxies
key in .docker/config.json for our user, for example, using my-company-proxy:

"proxies":
{
 "default":
 {
 "httpProxy": "http://my-company-proxy:3001",
 "httpsProxy": "http://my-company-proxy:3001",
 "noProxy": "*.test.example.com,.example2.com"
 }
}

https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/what-is/elk-stack

Modern Infrastructures and Applications with Docker Chapter 1

[41]

These configurations can be added as arguments when starting up the Docker container, as
follows:

--env HTTP_PROXY="http://my-company-proxy:3001"
--env HTTPS_PROXY="https://my-company-proxy:3001"
--env NO_PROXY="*.test.example.com,.example2.com"

We will see what "environment option" means in Chapter 3, Running Docker Containers.
Just keep in mind that, sometimes, our corporate environment will need applications to use
proxies and that there are methods to configure these settings, either as user variables or
using client configurations.

Other client features, such as experimental flags or output formatting, will be configured in
the config.json file. Here is an example of some configurations:

{
 "psFormat": "table {{.ID}}\\t{{.Image}}\\t{{.Command}}\\t{{.Labels}}",
 "imagesFormat": "table
{{.ID}}\\t{{.Repository}}\\t{{.Tag}}\\t{{.CreatedAt}}",
 "statsFormat": "table {{.Container}}\t{{.CPUPerc}}\t{{.MemUsage}}"
}

Docker security
There are many topics related to container security. In this chapter, we will review the ones
related to the container runtime.

As we have seen, Docker provides a client-server environment. From the client side, there
are a few things that will improve the way in which we will be able to access the
environment.

Configuration files and certificates for different clusters on hosts must be secured using
filesystem security at the operating system level. However, as you should have noticed, a
Docker client always needs a server in order to do anything with containers. Docker client
is just the tool to connect to servers. With this picture in mind, client-server security is a
must. Now, let's take a look at different kinds of access to the Docker daemon.

Docker client-server security
The Docker daemon will listen on system sockets (unix, tcp, and fd). We have seen that
we can change this behavior and that, by default, the daemon will listen on
the /var/run/docker.sock local Unix socket.

Modern Infrastructures and Applications with Docker Chapter 1

[42]

Giving users RW access to /var/run/docker.sock will add access to the local Docker
daemon. This allows them to create images, run containers (even privileged, root user
containers, and mount local filesystems inside them), create images, and more. It is very
important to know who can use your Docker engine. If you deployed a Docker Swarm
cluster, this is even worse because if the accessed host has a master role, the user will be
able to create a service that will run containers across the entirety of the cluster. So keep
your Docker daemon socket safe from non-trusted users and only allow authorized ones (in
fact, we will look at other advanced mechanisms to provide secure user access to the
container platform).

Docker daemon is secure by default because it does not export its service.
We can enable remote TCP accesses by adding -H tcp://<HOST_IP> to
the Docker daemon start process. By default, port 2375 will be used. If we
use 0.0.0.0 as the host IP address, Docker daemon will listen on all
interfaces.

We can enable remote access to Docker daemon using a TCP socket. By default,
communication will not be secure and the daemon will listen on port 2375. To ensure that
the client-to-daemon connection is encrypted, you will need to use either a reverse proxy or
built-in TLS-based HTTPS encrypted socket. We can allow the daemon to listen on all host
interface IP addresses or just one using this IP when starting the daemon. To use TLS-based
communications, we need to follow this procedure (assuming your server hostname is in
the $HOST variable):

Create a certificate authority (CA). The following commands will create its1.
private and public keys:

$ openssl genrsa -aes256 -out ca-key.pem 4096
 Generating RSA private key, 4096 bit long modulus
...
...
..++
++
 e is 65537 (0x10001)
 Enter pass phrase for ca-key.pem:
 Verifying - Enter pass phrase for ca-key.pem:
 $ openssl req -new -x509 -days 365 -key ca-key.pem -sha256 -out
ca.pem
 Enter pass phrase for ca-key.pem:
 You are about to be asked to enter information that will be
incorporated
 into your certificate request.
 What you are about to enter is what is called a Distinguished Name
or a DN.
 There are quite a few fields but you can leave some blank

Modern Infrastructures and Applications with Docker Chapter 1

[43]

 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]:
 State or Province Name (full name) [Some-State]:Queensland
 Locality Name (eg, city) []:Brisbane
 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Docker
Inc
 Organizational Unit Name (eg, section) []:Sales
 Common Name (e.g. server FQDN or YOUR name) []:$HOST
 Email Address []:Sven@home.org.au

Create a server CA-signed key, ensuring that the common name matches the2.
hostname you use to connect to Docker daemon from the client:

$ openssl genrsa -out server-key.pem 4096
 Generating RSA private key, 4096 bit long modulus
...
..++
...
..............................++
 e is 65537 (0x10001)

$ openssl req -subj "/CN=$HOST" -sha256 -new -key server-key.pem -
out server.csr
 $ echo subjectAltName = DNS:$HOST,IP:10.10.10.20,IP:127.0.0.1 >>
extfile.cnf
 $ echo extendedKeyUsage = serverAuth >> extfile.cnf
 $ openssl x509 -req -days 365 -sha256 -in server.csr -CA ca.pem -
CAkey ca-key.pem \
 -CAcreateserial -out server-cert.pem -extfile extfile.cnf

Signature ok
 subject=/CN=your.host.com
 Getting CA Private Key
 Enter pass phrase for ca-key.pem:

Start Docker daemon with TLS enabled and use arguments for the CA, server3.
certificate, and CA-signed key. This time, Docker daemon using TLS will run on
port 2376 (which is standard for the daemon TLS):

$ chmod -v 0400 ca-key.pem key.pem server-key.pem
$ chmod -v 0444 ca.pem server-cert.pem cert.pem
$ dockerd --tlsverify --tlscacert=ca.pem --tlscert=server-cert.pem
--tlskey=server-key.pem \
 -H=0.0.0.0:2376

Modern Infrastructures and Applications with Docker Chapter 1

[44]

Using the same CA, create a client CA-signed key, specifying that this key will be4.
used for client authentication:

$ openssl genrsa -out key.pem 4096
 Generating RSA private key, 4096 bit long modulus
 ...++
++
 e is 65537 (0x10001)
 $ openssl req -subj '/CN=client' -new -key key.pem -out client.csr
 $ echo extendedKeyUsage = clientAuth > extfile-client.cnf
 $ openssl x509 -req -days 365 -sha256 -in client.csr -CA ca.pem -
CAkey ca-key.pem \
 -CAcreateserial -out cert.pem -extfile extfile-client.cnf
 Signature ok
 subject=/CN=client
 Getting CA Private Key
 Enter pass phrase for ca-key.pem:

We will move generated client certificates to the client's host (the client's laptop,5.
for example). We will also copy the public CA certificate file. With its own client
certificates and the CA, we will be able to connect to a remote Docker daemon
using TLS to secure the communications. We will use the Docker command line
with --tlsverify and other arguments to specify the server's same CA, the
client certificate, and its signed key (the daemon's default port for TLS
communications is 2376). Let's review an example using docker version:

$ docker --tlsverify --tlscacert=ca.pem --tlscert=cert.pem --
tlskey=key.pem -H=$HOST:2376 version

All these steps should be done to provide TLS communications, and steps 4 and 5 should be
undertaken for all client connections if we want to identify their connections (if you don't
want to use a unique client certificate/key pair, for example). On enterprise environments,
with hundreds or even thousands of users, this is ungovernable and Docker Enterprise will
provide a better solution with all these steps included automatically, thereby providing
granulated accesses.

Since Docker version 18.09, we can interact with Docker daemon using
the $ docker -H ssh://me@example.com:22 ps command, for
example. To use the SSH connection, you need to set up an ssh public key
authentication.

Modern Infrastructures and Applications with Docker Chapter 1

[45]

Docker daemon security
Docker container runtime security is based on the following:

Security provided by the kernel to containers
The attack surface of the runtime itself
Operating system security applied to the runtime

Let's take a look at these in more detail.

Namespaces
We have been talking about kernel namespaces and how they implement the required
isolation for containers. Every container runs with the following namespaces:

pid: Process isolation (Process ID – PID)
net: Manages network interfaces (Networking – NET)
ipc: Manages access to IPC resources (InterProcess Communication – IPC)
mnt: Manages filesystem mount points (Mount – MNT)
uts: Isolates kernel and version identifiers (Unix Timesharing System – UTS)

As each container runs with its own pid namespace, it will only have access to the listed
process on this namespace. The net namespace will provide its own interfaces, which will
allow us to start many processes using the same port on different containers. Container
visibility is enabled by default. All containers will have access to external networks using
host bridge interfaces.

A complete root filesystem will be inside each container, and it will use this as a standard
Unix filesystem (with its own /tmp, and network files such as /etc/hosts and
/etc/resolv.conf). This dedicated filesystem is based on copy-on-write, using different
layers from images.

Namespaces provide layers of isolation for the container, and control groups will manage
how many resources will be available for the container. This will ensure that the host will
not get exhausted. In multi-tenant environments, or just for production, it is very important
to manage the resources of containers and to not allow non-limited containers.

The attack surface of the daemon is based on user access. By default, Docker daemon does
not provide any role-based access solution, but we have seen that we can ensure an
encrypted communication for external clients.

Modern Infrastructures and Applications with Docker Chapter 1

[46]

As Docker daemon runs as root (the experimental mode will allow us to run rootless), all
containers will be able to, for example, mount any directory on your host. This can be a real
problem and that is why it's so important to ensure that only required users have access to
the Docker socket (local or remote).

As we will see in Chapter 3, Running Docker Containers, containers will
run as root if we don't specify a user on image building or container
startup. We will review this topic later and improve this default user
usage.

It is recommended to run just Docker daemon on server-dedicated hosts because Docker
can be dangerous in the wrong hands when it comes to other services running on the same
host.

User namespace
As we've already seen, Linux namespaces provide isolation for processes. These processes
just see what cgroups and these namespaces offer, and for these processes, they are running
along on their own.

We always recommend running processes inside containers as non-root users (nginx, for
example, does not require root to be running if we use upper ports), but there are some
cases where they must be run as root. To prevent privilege escalation from within these
root containers, we can apply user remapping. This mechanism will map a root user (UID
0) inside the container, with the user's non-root (UID 30000).

User remapping is managed by two files:

/etc/subid: This sets the user ID range for subordinates.
/etc/subgid: This sets the group ID range for subordinates.

With these files, we set the first sequence ID for users and groups, respectively. This is an
example format for the subordinate ID, nonroot:30000:65536. This means that UID 0
inside the container will be mapped as UID 30000 on the Docker host and so forth.

We will configure Docker daemon to use this user remapping with the --userns-remap
flag or the userns-remap key in JSON format. In special cases, we can change the user
namespace behavior when running the container.

Modern Infrastructures and Applications with Docker Chapter 1

[47]

Kernel capabilities (seccomp)
By default, Docker starts containers with a restricted set of capabilities. This means that
containers will run unprivileged by default. So, running processes inside containers
improves application security by default.

These are the 14 capabilities available by default to any container running in your
system: SETPCAP, MKNOD, AUDIT_WRITE, CHOWN, NET_RAW, DAC_OVERRIDE, FOWNER,
FSETID, KILL, SETGID, SETUID, NET_BIND_SERVICE, SYS_CHROOT, and SETFCAP.

The most important thing to understand at this point is that we can run processes inside a
container listening on ports under 1024 because we have NET_BIND_SERVICE capability,
for example, or that we can use ICMP inside containers because we have NET_RAW
capability enabled.

On the other hand, there are many capabilities not enabled by default. For example, there
are many system operations that will need SYS_ADMIN capability, or we will need
NET_ADMIN capability to create new interfaces (running openvpn inside Docker containers
will require it).

Processes will not have real root privileges inside containers. Using seccomp capabilities, it
is possible to do the following:

Deny mount operations
Deny access to raw sockets (to prevent packet spoofing)
Deny access to some filesystem operations, such as file ownership
Deny module loading, and many others

The permitted capabilities are defined using a default seccomp profile. Docker uses
seccomp in filter mode, disabling all non-whitelisted calls defined on its own JSON format
in profile files. There is a default profile that will be used when running containers. We can
use our own seccomp profile using the --security-opt flag on launch. So, manipulating
allowed capabilities is easy during container execution. We will learn more about how to
manipulate the behavior of any container at the start of Chapter 3, Running Docker
Containers:

$ docker container run --cap-add=NET_ADMIN--rm -it --security-opt
seccomp=custom-profile.json alpine sh

Modern Infrastructures and Applications with Docker Chapter 1

[48]

This line will run our container, adding the NET_ADMIN capability. Using a custom
seccomp profile, we will be adding even more, as defined on custom-profile.json. For
security reasons, we can even use --cap-drop to drop some of the default capabilities if
we are sure that we don't need them.

Avoid using the --privileged flag as your container will run
unconfined, which means that it will run nearly with the same access to
the host as processes running outside containers on the host. In this case,
resources will be unlimited for this container (the SYS_RESOURCE
capability will be enabled and limit flags will not be used). Best practice
for users would be to remove all capabilities except those required by the
process to work.

Linux security modules
Linux operating systems provide tools to ensure security. In some cases, they come
installed and configured by default in out-of-the-box installations, while in other cases, they
will require additional administrator interaction.

AppArmor and SELinux are probably the most common. Both provide finer-grained
control over file operations and other security features. For example, we can ensure that
only the allowed process can modify some special files or directories (for
example, /etc/passwd).

Docker provides templates and policies that are installed with the product that ensures
complete integration with these tools to harden Docker hosts. Never disable SELinux or
AppArmor on production and use policies to add features or accesses for your processes.

We can review which security modules are enabled in our Docker runtime by looking at the
SecurityOptions section of the Docker system info output.

We can easily review Docker runtime features using docker system
info. It is good to know that the output can be displayed in JSON format
using docker system info --format '{{json .}}' and that we can
filter by using the --filter option. Filtering allows us, for example, to
retrieve only security options applied to the docker system info --
format '{{json .SecurityOptions}}' daemon.

Modern Infrastructures and Applications with Docker Chapter 1

[49]

By default, Red Hat flavor hosts will not have SELinux enabled, but, on the other hand,
Ubuntu will run by default with AppArmor.

There is a very common issue when we move the default Docker data root
path to another location in Red Hat Linux. If SELinux is enabled (by
default on these systems), you will need to add a new path to the allowed
context by using # semanage fcontext -a -e /var/lib/docker
_MY_NEW_DATA-ROOT_PATH and then # restorecon -R -
v _MY_NEW_DATA-ROOT_PATH.

Docker Content Trust
Docker Content Trust is the mechanism provided by Docker to improve content security. It
will provide image ownership and verification of immutability. This option, which is
applied at Docker runtime, will help to harden content execution. We can ensure that only
certain images can run on Docker hosts. This will provide two different levels of security:

Only allow signed images
Only allow signed images by certain users or groups/teams (we will learn about
the concepts that are integrated with Docker UCP in Chapter 11, Universal
Control Plane)

We will learn about volumes, which are the objects used for container persistent storage, in
Chapter 4, Container Persistency and Networking.

Enabling and disabling Docker Content Trust can be managed by setting
the DOCKER_CONTENT_TRUST=1 environment variable in a client session, in the systemd
Docker unit. Alternatively, we can use --disable-content-trust=false (true by
default) on image and container operations.

With any of these flags enabling content trust, all Docker operations will be trusted, which
means that we won't be able to download and execute any non-trusted flags (signed
images).

Chapter labs
We will use CentOS 7 as the operating system for the node labs in this book, unless
otherwise indicated. We will install Docker Community Edition now and Docker
Enterprise for the specific chapters pertaining to this platform.

Modern Infrastructures and Applications with Docker Chapter 1

[50]

Deploy environments/standalone-environment from this book's GitHub repository
(https://github.com/ PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide.
git) if you have not done so yet. You can use your own CentOS 7 server. Use vagrant up
from the environments/standalone-environment folder to start your virtual
environment.

If you are using a standalone environment, wait until it is running. We can check the
statuses of the nodes using vagrant status. Connect to your lab node using vagrant
ssh standalone. standalone is the name of your node. You will be using the vagrant
user with root privileges using sudo. You should get the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
up
Bringing machine 'standalone' up with 'virtualbox' provider...
==> standalone: Cloning VM...
==> standalone: Matching MAC address for NAT networking...
==> standalone: Checking if box 'frjaraur/centos7' version '1.4' is up to
date...
==> standalone: Setting the name of the VM: standalone
...
==> standalone: Running provisioner: shell...
 standalone: Running: inline script
 standalone: Delta RPMs disabled because /usr/bin/applydeltarpm not
installed.
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
status
Current machine states:
standalone running (virtualbox)
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$

We can now connect to a standalone node using vagrant ssh standalone. This process
may vary if you've already deployed a standalone virtual node before and you just started
it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
ssh standalone
[vagrant@standalone ~]$

Now, you are ready to start the labs.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Modern Infrastructures and Applications with Docker Chapter 1

[51]

Installing the Docker runtime and executing a
"hello world" container
This lab will guide you through the Docker runtime installation steps and running your
first container. Let's get started:

To ensure that no previous versions are installed, we will remove any docker*1.
packages:

[vagrant@standalone ~]$ sudo yum remove docker*

Add the required packages by running the following command:2.

[vagrant@standalone ~]$ sudo yum install -y yum-utils device-
mapper-persistent-data lvm2

We will be using a stable release, so we will add its package repository, as3.
follows:

[vagrant@standalone ~]$ sudo yum-config-manager \
--add-repo https://download.docker.com/linux/centos/docker-ce.repo

Now, install Docker packages and containerd. We are installing the server and4.
client on this host (since version 18.06, Docker provides different packages for
docker-cli and Docker daemon):

[vagrant@standalone ~]$ sudo yum install -y docker-ce docker-ce-cli
containerd.io

Docker is installed, but on Red Hat-like operating systems, it is not enabled on5.
boot by default and will not start. Verify this situation and enable and start the
Docker service:

[vagrant@standalone ~]$ sudo systemctl enable docker
[vagrant@standalone ~]$ sudo systemctl start docker

Now that Docker is installed and running, we can run our first container:6.

[vagrant@standalone ~]$ sudo docker container run hello-world
 Unable to find image 'hello-world:latest' locally
 latest: Pulling from library/hello-world
 1b930d010525: Pull complete
 Digest:
sha256:b8ba256769a0ac28dd126d584e0a2011cd2877f3f76e093a7ae560f2a530
1c00
 Status: Downloaded newer image for hello-world:latest

Modern Infrastructures and Applications with Docker Chapter 1

[52]

Hello from Docker!

This message shows that your installation appears to be working
correctly. To generate this message, Docker took the following
steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker
Hub. (amd64)
3. The Docker daemon created a new container from that image that
runs the executable, which produces the output you are currently
reading.
4. The Docker daemon streamed that output to the Docker client,
which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu container
with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/.

For more examples and ideas, visit:
https://docs.docker.com/get-started/.

This command will send a request to Docker daemon to run a container based on
the hello-world image, located on Docker Hub (http:/ / hub.docker. com). To
use this image, Docker daemon downloads all the layers if we have not executed
any container with this image before; in other words, if the image is not present
on the local Docker host. Once all the image layers have been downloaded,
Docker daemon will start a hello-world container.

This book is a guide for the DCA exam and is the simplest lab we can
easily deploy. However, you should be able to understand and describe
this simple process, as well as think about all the common issues that we
may encounter. For example, what happens if the image is on your host
and is different, but with the same name and tags? What happens if one
layer cannot be downloaded? What happens if you are connected to a
remote daemon? We will review some of these questions at the end of this
chapter.

http://hub.docker.com
http://hub.docker.com
http://hub.docker.com
http://hub.docker.com
http://hub.docker.com
http://hub.docker.com
http://hub.docker.com
http://hub.docker.com
http://hub.docker.com

Modern Infrastructures and Applications with Docker Chapter 1

[53]

As you should have noticed, we are always using sudo to root because our user7.
has not got access to the Docker UNIX socket. This is the first security layer an
attacker must bypass on your system. We usually enable a user to run containers
in production environments because we want to isolate operating system
responsibilities and management from Docker. Just add our user to the Docker
group, or add a new group of users with access to the socket. In this case, we will
just add our lab user to the Docker group:

[vagrant@standalone ~]$ docker container ls
Got permission denied while trying to connect to the Docker daemon
socket at unix:///var/run/docker.sock: Get
http://%2Fvar%2Frun%2Fdocker.sock/v1.40/containers/json
: dial unix /var/run/docker.sock: connect: permission denied

[vagrant@standalone ~]$ sudo usermod -a -G docker $USER

[vagrant@standalone ~]$ newgrp docker

[vagrant@standalone ~]$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5f7abd49b3e7 hello-world "/hello" 19 minutes ago Exited (0) 19
minutes ago festive_feynman

Docker runtime processes and namespace
isolation
In this lab, we are going to review what we learned about process isolation and Docker
daemon components and execution workflow. Let's get started:

Briefly review the Docker systemd daemon:1.

[vagrant@standalone ~]$ sudo systemctl status docker
 ● docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled;
vendor preset: disabled)
 Active: active (running) since sáb 2019-09-28 19:34:30 CEST;
25min ago
 Docs: https://docs.docker.com
 Main PID: 20407 (dockerd)
 Tasks: 10
 Memory: 58.9M
 CGroup: /system.slice/docker.service
 └─20407 /usr/bin/dockerd -H fd:// --
containerd=/run/containerd/containerd.sock

Modern Infrastructures and Applications with Docker Chapter 1

[54]

 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.222200934+02:00" level=info
msg="[graphdriver] using prior storage driver: overlay2"
 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.234170886+02:00" level=info msg="Loading
containers: start."
 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.645048459+02:00" level=info msg="Default
bridge (docker0) is assigned with an IP a... address"
 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.806432227+02:00" level=info msg="Loading
containers: done."
 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.834047449+02:00" level=info msg="Docker
daemon" commit=6a30dfc graphdriver(s)=over...n=19.03.2
 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.834108635+02:00" level=info msg="Daemon
has completed initialization"
 sep 28 19:34:30 centos7-base dockerd[20407]:
time="2019-09-28T19:34:30.850703030+02:00" level=info msg="API
listen on /var/run/docker.sock"
 sep 28 19:34:30 centos7-base systemd[1]: Started Docker
Application Container Engine.
 sep 28 19:34:43 centos7-base dockerd[20407]:
time="2019-09-28T19:34:43.558580560+02:00" level=info msg="ignoring
event" module=libcontainerd namespace=mo...skDelete"
 sep 28 19:34:43 centos7-base dockerd[20407]:
time="2019-09-28T19:34:43.586395281+02:00" level=warning
msg="5f7abd49b3e75c58922c6e9d655d1f6279cf98d9c325ba2d3e53c36...

This output shows that the service is using a default systemd unit configuration
and that dockerd is using the default parameters; that is, it's using the file
descriptor socket on /var/run/docker.sock and the default docker0 bridge
interface.

Notice that dockerd uses a separate containerd process to execute containers.2.
Let's run some containers in the background and review their processes. We will
run a simple alpine with an nginx daemon:

[vagrant@standalone ~]$ docker run -d nginx:alpine
 Unable to find image 'nginx:alpine' locally
 alpine: Pulling from library/nginx
 9d48c3bd43c5: Already exists
 1ae95a11626f: Pull complete
 Digest:
sha256:77f340700d08fd45026823f44fc0010a5bd2237c2d049178b473cd2ad977
d071

Modern Infrastructures and Applications with Docker Chapter 1

[55]

 Status: Downloaded newer image for nginx:alpine
 dcda734db454a6ca72a9b9eef98aae6aefaa6f9b768a7d53bf30665d8ff70fe7

Now, we will look for the nginx and containerd processes (process IDs will be3.
completely different on your system; you just need to understand the workflow):

[vagrant@standalone ~]$ ps -efa|grep -v grep|egrep -e containerd -e
nginx
 root 15755 1 0 sep27 ? 00:00:42
/usr/bin/containerd
 root 20407 1 0 19:34 ? 00:00:02 /usr/bin/dockerd -
H fd:// --containerd=/run/containerd/containerd.sock
 root 20848 15755 0 20:06 ? 00:00:00 containerd-shim -
namespace moby -workdir
/var/lib/containerd/io.containerd.runtime.v1.linux/moby/dcda734db45
4a6ca72a9
 b9eef98aae6aefaa6f9b768a7d53bf30665d8ff70fe7 -address
/run/containerd/containerd.sock -containerd-binary
/usr/bin/containerd -runtime-root /var/run/docker/runtime-runc
 root 20863 20848 0 20:06 ? 00:00:00 nginx: master
process nginx -g daemon off;
 101 20901 20863 0 20:06 ? 00:00:00 nginx: worker
process

Notice that, at the end, the container started from 20848 PID. Following the4.
runtime-runc location, we discover state.json, which is the container state
file:

[vagrant@standalone ~]$ sudo ls -laRt /var/run/docker/runtime-
runc/moby
 /var/run/docker/runtime-runc/moby:
 total 0
 drwx--x--x. 2 root root 60 sep 28 20:06
dcda734db454a6ca72a9b9eef98aae6aefaa6f9b768a7d53bf30665d8ff70fe7
 drwx------. 3 root root 60 sep 28 20:06 .
 drwx------. 3 root root 60 sep 28 13:42 ..
 /var/run/docker/runtime-
runc/moby/dcda734db454a6ca72a9b9eef98aae6aefaa6f9b768a7d53bf30665d8
ff70fe7:
 total 28
 drwx--x--x. 2 root root 60 sep 28 20:06 .
 -rw-r--r--. 1 root root 24966 sep 28 20:06 state.json
 drwx------. 3 root root 60 sep 28 20:06 ..

This file contains container runtime information: PID, mounts, devices,
capabilities applied, resources, and more.

Modern Infrastructures and Applications with Docker Chapter 1

[56]

Our NGINX server runs under PID 20863 and the nginx child process with PID5.
20901 on the Docker host, but let's take a look inside:

[vagrant@standalone ~]$ docker container exec dcda734db454 ps -ef
 PID USER TIME COMMAND
 1 root 0:00 nginx: master process nginx -g daemon off;
 6 nginx 0:00 nginx: worker process
 7 root 0:00 ps -ef

Using docker container exec, we can run a new process using a container
namespace. This is like running a new process inside the container.

As you can observe, inside the container, nginx has PID 1 and it is the worker
process parent. And, of course, we see our command, ps -ef, because it was
launched using its namespaces.

We can run other containers using the same image and we will obtain the same
results. Processes inside each container are isolated from other containers and
host processes, but users on the Docker host will see all the processes, along with
their real PIDs.

Let's take a look at nginx process namespaces. We will use the lsns command6.
to review all the host-running process's namespaces. We will obtain a list of all
running processes and their namespaces. We will look for nginx processes (we
will not use grep to filter the output because we want to read the headers):

[vagrant@standalone ~]$ sudo lsns
 NS TYPE NPROCS PID USER COMMAND

 4026532197 mnt 2 20863 root nginx: master process nginx -g daemon
off
 4026532198 uts 2 20863 root nginx: master process nginx -g daemon
off
 4026532199 ipc 2 20863 root nginx: master process nginx -g daemon
off
 4026532200 pid 2 20863 root nginx: master process nginx -g daemon
off
 4026532202 net 2 20863 root nginx: master process nginx -g daemon
off

This lab demonstrated process isolation within a process running inside containers.

Modern Infrastructures and Applications with Docker Chapter 1

[57]

Docker capabilities
This lab will cover seccomp capability management. We will launch containers using
dropped capabilities to ensure that, by using seccomp to avoid some system calls, processes
in containers will only execute allowed actions. Let's get started:

First, run a container using the default allowed capabilities. During the execution1.
of this alpine container, we will change the ownership of the /etc/passwd file:

[vagrant@standalone ~]$ docker container run --rm -it alpine sh -c
"chown nobody /etc/passwd; ls -l /etc/passwd"
 -rw-r--r-- 1 nobody root 1230 Jun 17 09:00 /etc/passwd

As we can see, there is nothing to stop us from changing whatever file ownership
resides inside the container's filesystem because the main process (in this
case, /bin/sh) runs as the root user.

Drop all the capabilities. Let's see what happens:2.

[vagrant@standalone ~]$ docker container run --rm -it --cap-
drop=ALL alpine sh -c "chown nobody /etc/passwd; ls -l /etc/passwd"
 chown: /etc/passwd: Operation not permitted
 -rw-r--r-- 1 root root 1230 Jun 17 09:00 /etc/passwd

You will observe that the operation was forbidden. Since containers run without
any capabilities, the chown command is not allowed to change file ownership.

Now, just add the CHOWN capability to allow a change of ownership for files3.
inside the container:

[vagrant@standalone ~]$ docker container run --rm -it --cap-
drop=ALL --cap-add CHOWN alpine sh -c "chown nobody /etc/passwd; ls
-l /etc/passwd"
 -rw-r--r-- 1 nobody root 1230 Jun 17 09:00 /etc/passwd

Modern Infrastructures and Applications with Docker Chapter 1

[58]

Summary
In this chapter, we have seen how modern applications are based on microservices. We
learned what containers are and their benefits, and how microservices and containers
match when we associate a process with specific functionality or a task (microservice) and
we run it inside a container. We reviewed container concepts. Then, we talked about
images, containers, and the mechanisms that isolate processes from the host. We introduced
orchestration and registries as requirements for deploying applications with resilience on
cluster environments and the ways in which we can manage images.

We then have learned about Docker's main components and how Docker Client interacts
with Docker Engine securely. We introduced the most common Docker objects and the
workflow we will use to create, share, and deploy new applications based on containers.

Nowadays, we can use containers on Microsoft Windows, but this all started with Linux.
We compared both approaches to understand the similarities and differences between them
and the advanced methods used to isolate processes on Windows using Hyper-V.

Finally, we reviewed how to configure Docker Engine using JSON files and environment
variables, learned that containers are secure by default, and reviewed the different
mechanisms used to accomplish this.

In the next chapter, we will build images using different methods and learn the processes
and primitives necessary to create good images.

Questions
Is it true that we can only run one process per container? (select which sentences1.
are true)

a) We cannot execute more than one process per container. This is a
limitation.
b) We can run more than one process per container, but it is not
recommended.
c) We will only run one process per container to follow microservices logic.
d) All of the above sentences are false.

Modern Infrastructures and Applications with Docker Chapter 1

[59]

What kernel facilities provide host CPU resource isolation on containers?2.

a) Kernel namespaces.
b) Cgroups (control groups).
c) Kernel domains.
d) None of them. It is not possible to isolate host resources.

Which of the following sentences are true?3.

a) All containers will run as root by default.
b) The user namespace will allow us to map UID 0 to another one on our
host system, controlled and without any non-required privileges.
c) As the Docker daemon runs as root, only root users can run containers on
Docker hosts.
d) All of the above sentences are false.

What have we learned about Windows Docker hosts?4.

a) Linux containers can run on Windows hosts too.
b) Windows Hyper-V containers will run a small virtual machine, providing
the required resources for containers and do not have any Windows
operating system dependencies.
c) Windows Process Isolation requires system DLLs and services on
containers to run properly, and do not provide complete portability.
d) Windows images are bigger than Linux ones because Windows operating
system component integrations are required in many cases to run even small
processes.

Which of the following sentences are true regarding the Docker daemon5.
configuration?

a) We will configure Docker daemon on Linux using JSON format keys and
values on /etc/docker/daemon.json or systemd unit files.
b) On Windows hosts, we will use
%programdata%\docker\config\daemon.json to configure Docker
daemon.
c) By default, the Docker client connection to the remote Docker daemon is
insecure.
d) None of the above sentences are true.

Modern Infrastructures and Applications with Docker Chapter 1

[60]

Further reading
What are microservices?: https:/ /microservices. io/

What is a container?: https:/ / www.docker. com/resources/ what- container

What is Docker?: https:/ /www. redhat. com/ en/ topics/ containers/ what- is-
docker

Docker Engine installation and configuration: https:/ /docs. docker. com/
engine/

Docker storage drivers: https:/ /docs. docker. com/ storage/ storagedriver/

https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://microservices.io/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/

2
Building Docker Images

Building images is the first step in deploying your own container-based applications. It is a
simple process and anyone can build images from scratch, but it is not easy to create images
with sufficient quality and security for production. In this chapter, we will learn all the
basics and tips and tricks for creating good, production-ready images. We will review the
requirements for saving and distributing our work, as well as how to improve these
processes to get better performance when the number of images and releases is substantial
in enterprise environments.

In this chapter, we will cover the following topics:

Building Docker images
Understanding copy-on-write filesystems
Building images with a Dockerfile reference
Image tagging and meta-information
Docker registries and repositories
Securing images
Managing images and other related objects
Multistage building and image caches
Templating images
Image releases and updates

Let's get started!

Building Docker Images Chapter 2

[62]

Technical requirements
In this chapter, we will learn about Docker image building concepts. We'll provide some
labs at the end of this chapter that will help you understand and learn about the concepts
explained here. These labs can be run on your laptop or PC using the provided Vagrant
standalone environment or any already deployed Docker host of your own. You can find
additional information in this book's GitHub repository at https:/ /github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. git.

Check out the following video to see the Code in Action:

"https://bit.ly/ 31v3AJq"

Building Docker images
Developers create their own images, along with their own code and runtime components,
to run their application components. However, the building process usually starts with a
previous image. All image build processes will start with a FROM statement. This indicates
that the previous image (compound on layers) will be used to add new components,
binaries, configurations, or actions for building our new image.

You may be asking yourself, who is responsible for image creation? Developers will probably
create application images if they are not automatically generated using Continuous
Integration platforms, but there will be teams who create images to be used by other users
as base images. For example, database administrators would create database base images
because they know what components should be included and how to ensure their security.
Developers will take those base images for their components. In a big organization, there
will be many teams creating images, or at least defining what components must be
included, which users to use, ports to expose, and so on.

There is something else, however. Many applications these days come prepared for
container environments, and software manufacturers will provide you with images to
deploy their software. Enterprises will look for homogenization and architecture, while
DevOps teams will provide their colleagues with standard base images. The container's
infrastructure runtime would be common to all of them and monitoring applications,
middleware, databases, and so on would be running on this environment alongside
developed business application components.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq
https://bit.ly/31v3AJq

Building Docker Images Chapter 2

[63]

There are three methods for creating images:

Using a file with all the instructions to create this image (Dockerfile)
Interacting with files in different container layers, executing one container,
modifying its content, and then storing the changes made (commit)
Using an empty layer and adding components by hand, file by file, also known
as creating an image from scratch

Now, we will review each one, along with their pros and cons and use cases.

Creating images with Dockerfiles
A Dockerfile is a script file that describes all the steps required to create a new image. Each
step will be interpreted and, in many cases, create a container to execute declared changes
against previous layers. On this Dockerfile, we will have a guide to creating this image.
This guide creates a reproducible process. We will ensure that every time we use this script,
we will get the same results. Of course, this can depend on some variables, but with some
key mechanisms, we can ensure the same results. In this chapter, we will cover the main
primitives available for creating image Dockerfiles.

A Dockerfile looks similar to the following:

FROM ubuntu:18.04
RUN apt-get update -qq && apt-get install -qq package1 package2
COPY . /myapp
RUN make /myapp
CMD python /myapp/app.py

In this simple example, and as we mentioned previously, we have a FROM sentence at the
beginning:

First, we used Ubuntu 18.04 as the base image. To use this image, we need it in1.
our building environment. Therefore, if the image is not present in our
environment, Docker daemon will download its layers for us to make it available
locally for the next steps. This will happen automatically; Docker daemon will do
this for us.
Using the downloaded Ubuntu 18.04 layers, Docker will automatically run a2.
container using this image and execute the declared commands since we used
the RUN primitive. In this simple case, the shell (because it is the default
command on the Ubuntu 18.04 image) will execute apt-get update to update
the container package cache. If everything goes well with this command, it will
execute the installation of package1 and package2 using apt-get install.

Building Docker Images Chapter 2

[64]

After software installation, Docker will execute a Docker container commit3.
command internally to persist these changes on a new layer in order to use them
as a base for the next step. The third line will copy our current directory content
into the application code directory on a new running container.
The next line will execute make (this is just an example; we haven't said anything4.
about the programming language used for my application and so on). This line
will run this action in a new container. As a result, a new image will be created
automatically when the action has finished.
We learned that a container is always created using an image as a template. The5.
last line of code defines the command line to be run each time we create a
container using this image.

In summary, Dockerfiles provide a guide of all the steps required to create an image so that
we can run our application. It is a reproducible process and therefore, every time we create
a new image using this file, we should obtain the same results (for example, in this case, we
have updated the package cache and installed the required software; perhaps these
packages changed since last time we did a build, but if not, we will have the same image).

The built image has a unique identification in the
algorithm:hexadecimal_code_using_algorithm format. This means that every time
we build this image, we will get the same image identification unless there is some kind of
change that's made during the process. This image ID, or digest ID, is calculated using an
algorithm in relation to a layer's content, so we will get a new one with any layer change.
This identification allows Docker Engine to verify whether the image described is the
correct one to use. A Docker image contains information about all of its layers and informs
Docker Engine of the layers' content that is required for the new container.

When we inspect the image information, we will get all the necessary layers to create this
image, RootFS. Here is an example:

"RootFS": {
 "Type": "layers",
 "Layers": [
 "sha256:f1b5933fe4b5f49bbe8258745cf396afe07e625bdab3168e364daf7c956b6b81",
 "sha256:402522b96a27c1af04af5650819febc11f71db14152b1db8e5eab1ae581fdb2e",
 "sha256:cf2850b10a1aba79774a291266262f1af49fac3db11341a5ca1a396430f17507",
 "sha256:c1912ec50df66e3e013851f6deb80f41810b284509eebc909811115a97a1fe01"
]
 }

Building Docker Images Chapter 2

[65]

This output shows different layers being created using defined code in the Dockerfile.
These layers will be interchangeable between images wherever possible. If we create an
image using Dockerfile's first two lines, the layers that are created by those commands will
be shared with the previous image. This ensures minimum disk space usage.

Creating images interactively
Images can be created interactively by running a container and making changes on the fly
to rootfs. This is very useful when an application's installation cannot be automated but
lacks reproducibility. Let's look at this process in action using an example:

Start an interactive container:1.

$ docker container run -ti debian
 Unable to find image 'debian:latest' locally
 latest: Pulling from library/debian
 4a56a430b2ba: Pull complete
 Digest:
sha256:e25b64a9cf82c72080074d6b1bba7329cdd752d51574971fd37731ed164f
3345
 Status: Downloaded newer image for debian:latest
 root@60265b7c8a61:/#

Once started, we will receive a command prompt because we launched the2.
container by allocating a pseudo-terminal and did so interactively. We need to
update the package's database and then install, for example, the postfix
package, which needs some interactive configurations (please note that some of
the output will be truncated and omitted):

root@60265b7c8a61:/# apt-get update -qq
 root@60265b7c8a61:/# apt-get install postfix
 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following additional packages will be installed:
 bzip2 cpio file libexpat1 libicu63
 Suggested packages:
 bzip2-doc libarchive1 libsasl2-modules-gssapi-mit | libsasl2-
modules-gssapi-heimdal
 The following NEW packages will be installed:
 bzip2 cpio file libexpat1 libicu63 libmagic-mgc libmagic1 l
 0 upgraded, 29 newly installed, 0 to remove and 5 not upgraded.
 Need to get 19.0 MB of archives.
 After this operation, 76.4 MB of additional disk space will be
used.

Building Docker Images Chapter 2

[66]

 Do you want to continue? [Y/n] y
 Get:1 http://cdn-fastly.deb.debian.org/debian buster/main amd64
libpython3.7-minimal amd64 3.7.3-2 [588 kB]

 debconf: falling back to frontend: Teletype
 Postfix Configuration

Please select the mail server configuration type that best meets
your needs.
No configuration:
 Should be chosen to leave the current configuration unchanged.
 Internet site:
 Mail is sent and received directly using SMTP.
 Internet with smarthost:
 Mail is received directly using SMTP or by running a utility such
 as fetchmail. Outgoing mail is sent using a smarthost.
 Satellite system:
 All mail is sent to another machine, called a 'smarthost', for
delivery.
 Local only:
 The only delivered mail is the mail for local users. There is no
network.

1. No configuration 2. Internet Site 3. Internet with smarthost 4.
Satellite system 5. Local only
 General type of mail configuration: 1
Unpacking postfix (3.4.5-1) ...

 Adding group `postfix' (GID 102) ...
 Done.
 Adding system user `postfix' (UID 101) ...
 Adding new user `postfix' (UID 101) with group `postfix' ...
 Not creating home directory `/var/spool/postfix'.
 Creating /etc/postfix/dynamicmaps.cf
 Adding group `postdrop' (GID 103) ...
 Done.
 /etc/aliases does not exist, creating it.
Postfix (main.cf) was not set up. Start with
 cp /usr/share/postfix/main.cf.debian /etc/postfix/main.cf
 . If you need to make changes, edit /etc/postfix/main.cf (and
others) as
 needed. To view Postfix configuration values, see postconf(1).
After modifying main.cf, be sure to run 'service postfix reload'.
invoke-rc.d: could not determine current runlevel
 invoke-rc.d: policy-rc.d denied execution of start.
 Setting up libpython3-stdlib:amd64 (3.7.3-1) ...

Building Docker Images Chapter 2

[67]

 Setting up python3.7 (3.7.3-2) ...
 Setting up python3 (3.7.3-1) ...
......
......
 Processing triggers for libc-bin (2.28-10) ...

The software was installed, and you were asked to confirm the installation of the3.
postfix package and some default configuration. Now, we can exit the current
container:

root@60265b7c8a61:/# exit

What we have done here is exit the current main process (which is a shell in a4.
Debian image) and, as a result, returned to our host. We will look for the last
container that was executed on our host and then save the container layer as a
new image layer (which means that we have created a new image with a name or
identification if we omit it):

$ docker container ls -l
CONTAINER ID IMAGE COMMAND LABELS
f11f8ad3b336 debian "bash"

$ docker container commit f11f8ad3b336 debian-with-postfix
sha256:a852d20d57c95bba38dc0bea942ccbe2c409d48685d8fc115827c1dcd501
0aa6

Finally, we review the newly created image on our host system (the IDs may5.
change in your environment):

$ docker image ls
IMAGE ID REPOSITORY TAG CREATED AT
a852d20d57c9 debian-with-postfix latest 2019-10-05 13:18:45 +0200
CEST
c2c03a296d23 debian latest 2019-09-12 01:21:51 +0200 CEST

Using this method, we have created a new image interactively using a previously running
Debian Docker container. As we can see, the new image has a different digest. If we inspect
its meta-information, we can identify its preceding image layers:

 "RootFS": {
 "Type": "layers",
 "Layers": [
"sha256:78c1b9419976227e05be9d243b7fa583bea44a5258e52018b2af4cdfe23d148d",
"sha256:998e883275f6192039dd6eff96ece024e259cf74dd362c44c5eb9db9f3830aa0"
]
 }

Building Docker Images Chapter 2

[68]

One key concept of images that are created using a Docker container commit is that they
are not reproducible; you really don't know how they were created, so the necessary steps
should be documented in relation to updates and management.

There is an image action that provides a detailed review of the steps to
create an image. docker image history will provide a historic view of
the steps that were taken to create that image. However, it will not work
on images that are created using committed containers. We will just have
a line with a bash, for example, indicating that all the actions that were
taken were made on an active container and therefore, no additional
information can be extracted. For example, using the previously created
image, executing docker image history debian-with-postfix will
provide the following output:

Creating images from scratch
Creating images from scratch is the most effective method. In this case, we will use a
Dockerfile, as described in the first method, but the initial base image will be an empty
reserved one known literally as scratch. A simple example definition will look as follows:

FROM scratch
ADD hello /
CMD ["/hello"]

The main difference in the Dockerfile definition is the FROM line because we use a defined
empty image named scratch. scratch is not a real image; it only contains the root
filesystem structure and its meta-information. Images built using this method must contain
all binaries, libraries, and files required by our process (as should always be the case).
However, we are not using a predefined image and its content; it will be empty and we
have to add each required file. This procedure is not easy and requires much more practice,
but images are way better because they will only contain the pieces required for our
application. We will see a complete lab at the end of this chapter.

Building Docker Images Chapter 2

[69]

Understanding copy-on-write filesystems
In the previous chapter, we learned what a container is. The isolated process or processes
running inside a container will have their own root filesystem among other namespaces.
The container adds a thin layer on top of image layers and every change made during the
execution of its processes will be stored only on this layer. In order to manage these
changes, the Docker storage driver will use stackable layers and copy-on-write (sometimes
referenced as CoW).

When a process inside a container needs to modify a file, the Docker daemon storage
filesystem mechanism will make a copy of that file from the underlying layers to the top
one. These are only available for container usage. The same happens when a new file is
created; it will only be written to the top container storage layer. All the other processes
running on other containers will manage their own version of the file. In fact, this will be
the original file from the other layers if no changes were made. Each container uses its own
top layer to write file changes.

We have seen how the image building process works using containers for each layer's
creation. We learned that we can commit a container's layers to obtain a new image. The
creation of images using Dockerfiles will run intermediate containers using previous
images that will be committed in order to obtain an intermediate image with all file changes
between their layers. This process will run sequentially, following the order defined in the
Dockerfile's code. As a result, an image will be created that's a compendium of thin layers
with the changes or differences between them.

Docker copy-on-write reduces the space needed to run containers and the time required to
launch them because it is only required for the creation of this writable layer for each
container:

Building Docker Images Chapter 2

[70]

This image represents an NGINX process running as a container. The base image was
created from a fresh alpine 3.5 image. We added some packages, performed some
configurations, and copied our own nginx.conf file. Finally, we added some meta-
information to be able to create containers using this image, declared which port we will
use to expose NGINX, and declared the command line that will be used to run a container
by default, starting NGINX in the foreground.

There are three strategies for CoW logic:

On AUFS and overlay-based drivers, Docker uses union filesystems
On BTFS and ZFS drivers, Docker uses filesystem snapshots
On device-mapper (available on a Red Hat-like OS), Docker uses an LVM
snapshot for blocks

Nowadays, almost all Docker host OSes use overlay-based drivers by default whenever
possible. There are some old implementations that use block devices instead, but today,
these are deprecated. Overhead added by the CoW process depends on the driver used.

We can review how much space a container is using. Docker provides the
docker container ls -s/--size option for this. It will return the
current thin layer's used space and the read-only data used from the
original image, defined as virtual. To understand how much space
containers are really consuming, we will need to combine both sizes for
each container to obtain the total amount of data used by all containers in
our environment. This will not include volumes or a container's log files,
among other small pieces that contribute to real used space.

CoW was prepared for maximum disk space efficiency, but it depends on how many layers
are shared in your local images and how many containers will run using the same images.
As you can imagine, containers that write a lot of data to their writable layer consume
much more space than other containers.

CoW is a very fast process, but for heavy-write operations on containers, it is not enough. If
we have a process that requires the creation of many small files, a very deep directory
structure, or just very big files, we need to bypass CoW operations because performance
will be impacted. This will lead us to using volumes to mitigate such situations. We will
learn about volumes, which are the objects used for container persistent storage, in Chapter
4, Container Persistency and Networking.

Building Docker Images Chapter 2

[71]

Building images with a Dockerfile reference
As we mentioned previously, building images is easy, but building good images is not. This
section will guide you through the basics and provide you with tips and tricks that you can
use to improve the image building process using Dockerfiles.

Dockerfile quick reference
We have already learned which methods are available for building images. For production,
it is recommended to use Dockerfiles because this method provides reproducibility and we
can use a code versioning methodology. We will introduce the main Dockerfile instructions
in their standard order of usage:

Instruction Description and usage

FROM

This instruction sets the base image and initializes a new build (we will
review this concept in the Multistage building and image caches section, later in
this chapter). It is the only mandatory instruction that all Dockerfiles should
start with. We can use any valid image as the base image for building or the
reserved scratch word to start with an empty root filesystem, as we learned
in the previous section.
We can define a name for the build stage initialized using AS name in the
same FROM instruction. We will use it in the Multistage building section at the
end of this chapter.
The base image can be defined using either its image name (repository) and a
specific tag (version of that image) or its digest; for example, FROM
<image>[:tag] or FROM <image>[@digest].

ARG

The ARG instruction defines a variable that will be set to the value provided
when building, passing its value as an argument using --build-arg
<variable>=<value>. To avoid problems when building with missing
values, we can use ARG to define a default value for a variable that will be
overwritten if an argument is passed.
ARG will take the value every time it is invoked. This is very important when
creating Dockerfiles.
ARG can be used, preceding the FROM instruction, to specify different base
images using arguments.

Building Docker Images Chapter 2

[72]

LABEL

With LABEL, we can add meta-information to the image. This information
should be in the key-value format and we can include many keys and values
in the same LABEL sentence. Here, you have a number of brief examples:
LABEL version="1.0"
LABEL description="This image has these \
and these properties...."
LABEL maintainer="Javier Ramirez" team="Docker Infrastructures"
environment="preproduction"

ENV

With the ENV instruction, we can set an environment variable for the next
step and all subsequent steps thereafter. We can add more than one
environment variable in the same sentence and values will be overwritten if
we specify new values during Docker container creation:
ENV DATABASE_NAME=TEST

WORKDIR
WORKDIR sets the working directory for the next sentences and subsequent
ones thereafter. We can specify full paths or relative ones:
WORKDIR /myappcode

RUN

RUN will probably be one of the most frequently used sentences in your
Dockerfiles. It will execute all commands in the line in a new layer and will
commit the results on a new one (as we described in the previous chapter).
This new layer will be used in the next sentence as a base layer, with the
changes made by the RUN sentence. This means that every RUN sentence will
create a new layer. Therefore, RUN directly affects the resulting number of
layers in our image. To avoid using more layers than needed, we usually add
more than one command per RUN sentence:
RUN apt-get update -qq \
&& apt-get install curl

COPY

The COPY instruction copies new files and directories from the build context
(set during build execution) into the specified directory of the container
filesystem (remember that building images is based on execution on
containers and committing results in images for subsequent stages). COPY
admits the --chown=<user>:<group> argument for providing file
ownership on Linux containers. The owner will be root:root if it is not
used.
COPY accepts --from=<name or index> in order to copy files or directories
from other build stages (this is key when employing multistage building, as
we will learn later in this chapter):
COPY mycode/* /myapp

ADD

ADD is similar to COPY, but can be used with URLs and TAR package files as
well. It accepts the same ownership arguments for changing destination files
and directory permissions:
ADD http://example.com/bigpackagefile.tar.gz /myapp

Building Docker Images Chapter 2

[73]

USER

The USER instruction is used to specify the user, along with the group to use
in the following sentences. It is very important to understand the required
permissions of our process and specify a user and its group with USER. If it is
not present, the steps will use root:root and the process inside the
container will run as root. It should be mandatory in production to use a
specific non-root user for container processes and, if root is required, we
should use user mappings (as described in the previous chapter):
USER www-data:www-data

VOLUME

The VOLUME definition will create a mount point to bypass the CoW system.
This means that this set directory's content will be out of the container's life
cycle. As it is outside the container, any change in subsequent sentences
affecting that directory will be discarded, so if we want to provide certain
files during volume initialization, the VOLUME sentence should be after we've
provisioned files inside the directory:
VOLUME /mydata

EXPOSE

EXPOSE is used to inform Docker daemon about listening ports for containers
created using this image. This does not mean that the defined ports listen at
the Docker host level. They will just listen internally, inside the container's
network. We can define which transport protocol to use – UDP or TCP (by
default):
EXPOSE 80/tcp

CMD

The CMD instruction defines the default process or argument when executing
a container based on this image. This behavior will be applied irrespective of
whether the ENTRYPOINT instruction is defined. By default, and depending
on the format used, CMD will provide the default arguments for a shell, which
is the default entry point (the main executor for processes inside a container):
CMD ["/usr/bin/curl","--help"]
CMD /usr/bin/curl -I https://www.packtpub.com

ENTRYPOINT

The ENTRYPOINT directive will set which command container will run as an
executable. As we learned previously, CMD will be the argument for this
command.
The interaction between CMD and ENTRYPOINT defines the command that will
be executed when running a container. They are not required, but it is a good
practice to define at least CMD so as to have a default process to launch on
execution.

Building Docker Images Chapter 2

[74]

HEALTHCHECK

HEALTHCHECK defines a command line that will run inside the container to
verify the health of the process or processes. Without HEALTHCHECK, Docker
daemon will only verify if the main process is alive, and if it isn't, the
container will be exited. The HEALTHCHECK instruction allows us to improve
the health of the application by defining a better script or binary-based
process status monitoring.
We can adjust the interval between checks, timeout, and the number of retries
in case of failure before declaring a non-healthy state. And, if we have a
process that takes time to start, we can set when to start monitoring the
container processes' health:
HEALTHCHECK \
--interval=DURATION (default: 30s) \
--timeout=DURATION (default: 30s) \
--start-period=DURATION (default: 0s) \
--retries=N (default: 3) \
CMD /bin/myverificationscript

It is very important to understand that, by default, the main process running
inside a container that is not working as expected (the process is alive but the
health check is failing) will not be set as unhealthy until there are three failed
verifications, with 30 seconds between them by default. This means that, by
default, a process could be failing for 90 seconds before the container is
marked as unhealthy. This is too much in many cases, and you should take
action to change this behavior.
We can use our own scripts inside containers and we just have to manage
two different exit statuses for the output (0 – verification is OK; 1 –
verification is wrong).

Be careful if you defined a primitive key multiple times in a Dockerfile.
These files are read top to bottom and definition precedence matters
because instruction values will be overwritten in some cases (ARG, ENV,
CMD, ENTRYPOINT, LABEL, USER, WORKDIR, HEALTHCHECK, and so on) or
added in others (VOLUME, EXPOSE, and so on).

There are some instructions that admit two different formats, shell and exec, that have
different behaviors in each case:

RUN: When using the shell form, all commands will be launched in a shell, as if
we were using /bin/sh -c (on Linux by default) or cmd /S or cmd /C (on
Windows by default). We can change which shell to use in this format by means
of the SHELL directive:

RUN <command> <argument1> <argument2> <-- shell form
RUN ["executable", "argument1", "argument2"] <-- exec JSON form

Building Docker Images Chapter 2

[75]

We will need to use the exec format in Windows containers. This format is
required in this case because the defined values for some keys, such as
directory paths, will contain slashes (\) and must be avoided.

CMD: This key will be used to define the command or arguments to pass to the
main container process:

CMD <command> <argument1> <argument2> <-- shell form
CMD ["executable or argument0", "argument1", "argument2"] <-- exec
JSON form

As we learned previously, the shell form uses a shell to execute commands (this
can be changed by setting a different shell using the SHELL key).

In order to execute CMD commands without a shell, we must use the exec form.
If we want to use CMD values as arguments for a defined entrypoint, we will use
the exec form too, but this must be used on both ENTRYPOINT and CMD
definitions.

ENTRYPOINT: This key will be used to define the main process to be executed
inside the created container:

ENTRYPOINT <command> <argument1> <argument2> <-- shell form
ENTRYPOINT ["executable", "argument1", "argument2"] <-- exec JSON
form

The same behavior is expected here in shell form, but in this case, using this form
will not allow the use of CMD values as arguments. Using the shell form for
ENTRYPOINT is not recommended because it uses /bin/sh -c to launch the main
process and, in this case, it will not have PID 1 and will not receive Unix signals
directly (we will review how Unix signals interact with container processes in
Chapter 3, Running Docker Containers.

Remember, in order to use CMD values as ENTRYPOINT arguments, ENTRYPOINT must be
defined in exec form.

When we use a base image to create new ones, the base image's defined
values are inherited by new images. This means that CMD and
ENTRYPOINT definitions will be used unless we overwrite them, thereby
setting new values on our image. However, there is an exception; if we set
a new ENTRYPOINT on our new image, CMD will be reset to an empty
value.

Building Docker Images Chapter 2

[76]

Building process actions
The Docker command line provides management actions for Docker objects, as we learned
in the previous chapter. Images are Docker objects and the command line will provide tools
for building and manipulating them.

I encourage the use of docker image build instead of the frequently used docker
build. As you may have noticed, docker image build follows the object
action schema, which is easier to remember.

We can review Docker image actions in different categories:

For management: ls, prune, rm, and tag. These actions allow us to list, remove,
and set identifications for images.
To get information: history and inspect. These actions provide information
about the steps that need to be followed to create that image and all its
properties.
To share images between hosts: pull, push, load, import, and save. These
actions allow us to interact with the registry to download and upload image
layers, and different ways to import and export images to and from different
Docker hosts.
To create new images: build. Using the build action, we will be able to create
new images, using base images or starting from an empty root filesystem.
Therefore, we will use the Docker image build to create new images. There are a
few very important options that change the building behavior, and these must be
reviewed for the Docker Certified Associate exam.

We will use docker image build [options] <context> with some additional
options:

--add-host: This option allows us to include host-to-IP entries with an image. It
is very useful for adding non-DNS entries or for masking external resources, for
example.
--build-arg: Using arguments during the construction of new images is
standard in Continuous Integration pipelines combined with templated
Dockerfiles.

Building Docker Images Chapter 2

[77]

In cluster environments, we will need to specify which nodes should build
the required image. To ensure that images are built on specific nodes, we
will specify some of their labels as constraints by using them as
arguments; for example, using --build-arg
constraint:ostype==linux on a cluster with both Windows and Linux
nodes will send the building process just to Linux ones.

--file or -f: We can define which Dockerfile to use. We can have different files
for each environment, architecture, and so on, but nowadays, there are other
features, such as "target definition," that allow us to use a unique Dockerfile for
different purposes and build each one as required.
--force-rm: This option will keep your environment clean as it will remove all
intermediate containers. By default, intermediate containers are only removed
after a successful build.
--isolation: This option is mandatory when building Windows images as we
will choose which isolation to use.
--label: This option allows us to add meta-information in key-value pairs
format.
--no-cache: By default, Docker daemon will use host cached layers when
building a new image. There are some circumstances when we need to create a
new fresh image, including, for example, new package updates. In these cases,
we will avoid using previously built layers with this option. Take care of time
and overheads when using this option since disabling caching will increase build
times and we need to execute all the steps to produce a new image.
--tag or -t: Tagging an image should be mandatory. By default, Docker will not
"name" your images and we will just be able to reference the image using its
IMAGE ID (we learned about this earlier in this chapter). It is very important to
specify a repository name (we will learn what a repository is in the forthcoming
sections; for now, just understand this concept as a simple name) and its version
to help us with image management. We can apply more than one tag at build
time using multiple --tag or -t arguments with image names and tags. We will
learn that image names are also known as repository names and that we have to
add our own registry (with a non-standard port), username, and team or
organization that we belong to as a prefix when not using Docker Hub.

Building Docker Images Chapter 2

[78]

IMAGE IDs are unique. Each created image will have a unique ID that
identifies this compound of layers on all systems. But we can add tags to
this IMAGE ID for ease of management. An image will have just one
unique identifier but can have many names and versions. This concept is
very important and is key to ensuring the correct image is executed in
production.

--target: We can have multiple build stage definitions on the same Dockerfile.
These definitions allow us to execute multistage builds using compiled binaries
between different resulting images, for example, but they also allow us to have
multiple architectures or environment definitions and choose which one to build,
instead of using different Dockerfile files.

We can limit the resources used when building using options such as --
cpu-quota, --cpu-shares, and --memory, which will limit the number
of resources available on each container's execution during the build
process.

The build context is a set of files located in a directory or URL (a Git URL or a tarball file)
and we use it to refer to its files when building. These files are sent to Docker daemon, to
either use them or not during the image build. Therefore, it's very important to know which
files in the context directory, Git repository, or tarball are actually needed during
compilation. If we have many small files inside our build context or very big files, Docker
daemon will retrieve those files and will either incorporate them or not in the image,
depending on the Dockerfile instruction. Therefore, the context directory should only
contain those files required for the image. Files that should not be managed by Docker
during image building should not be in the context path.

Irrespective of whether you use Git URLs or tarball files, the behavior will
be similar. Docker daemon will retrieve the repository or .tar file and
will unpackage or uncompress data to be able to treat the temporary
directory as a build context.

We usually store Dockerfiles with our application code and, as a result, the build context is
the location where the Dockerfile is located. Due to this, we use . to indicate the current
directory if we launch the build from the same directory.

Building Docker Images Chapter 2

[79]

A simple command-line example of image building with a number of options is as follows:

$ docker image build [-t MY_TAG] [--label MY_LABEL=VALUE] [--file
MY_DOCKERFILE] [BUILD_CONTEXT]

Docker daemon will try to find any file named Dockerfile to script the build. If you are not
using this standard name, use --file or -f, along with the file location (we can use the
full or relative path for Dockerfile, but take care of the build context location relative to it).

And, having substituted some real values, we will have something along the lines of the
following (this line has been taken from one of the labs at the end of this chapter):

$ docker build --file Dockerfile.application -t templated:production --
build-arg ENVIRONMENT=production .

Here, we are using a non-standard Dockerfile name, creating an image
named templated:production using the ENVIRONMENT variable with a production
value inside the building process, and using the current location as the build context.
Notice the . at the end of the command. This means that we are using the current directory
as the build context to create the image. If we run this command from the previous
directory, we will use the directory containing the required Dockerfile as the build context.

Using the same Git repository philosophy, if there are some files that we
want to be stored within our Docker build context (for example, files that
come with our Git repository data), but that we do not want to be
processed during the build, we can use the .dockerignore file to avoid
them. Just write down unwanted filenames in .gitignore and Docker
daemon will not treat them during the image build.

Image tagging and meta-information
Usually, you won't manage just a few images but probably hundreds or thousands, so
having as much information as possible about them is very important.

Using labels, we will be able to search for specific images by environment, as follows:

$ docker image ls --filter label=environment
 REPOSITORY TAG IMAGE ID CREATED SIZE
 myapp 1.0 7dad160a2b02 4 seconds ago 5.6MB
 myapp latest 285c3d16e672 7 minutes ago 5.6MB

$ docker image ls --filter label=environment=test
 REPOSITORY TAG IMAGE ID CREATED SIZE
 myapp latest 285c3d16e672 7 minutes ago 5.6MB

Building Docker Images Chapter 2

[80]

$ docker image ls --filter label=environment=production
 REPOSITORY TAG IMAGE ID CREATED SIZE
 myapp 1.0 7dad160a2b02 18 seconds ago 5.6MB

$ docker image inspect myapp:1.0 --format "{{ index .Config.Labels }}"
 map[environment:production]

Remember that an image can have multiple names and tags, but its digest is unique. Using
different tags and names is very useful for interacting with different CI/CD workflow
stages, using the same image content. For example, developers will create many images
during development and testing, but only a few will make it to the quality and assurance or
certification stages. We can automate these processes based on image names and tags on
Docker Enterprise, as we will learn in Chapter 13, Implementing an Enterprise-Grade Registry
with DTR.

We've already learned that we can have many names for the same image, so removing one
image by its name will not really delete its content if it is still in use by other names. If we
use its image ID to remove docker image rm <imageid>, Docker daemon will inform us
about multiple images with different names using the same layers and will not delete the
image unless we use --force, in which case it will remove that image, along with all its
layers and referenced names.

We can use docker rmi as a command alias for docker image rm. On
the other hand, docker image prune will be used to remove dangling
images.

There are special untagged images that will appear in our Docker build hosts as we create
new images. These images are the result of making changes between different compilations.
They are unreferenced and unused. In your host, when used as their layers, they are not
used by any other image and therefore can be removed from our system (in fact, you
should remove them because they are using precious disk space). These images are usually
known as dangling images, and we will learn how to purge them later in this chapter.

To add a new tag to an image, we will use the Docker image tag, SOURCE_IMAGE[:TAG]
TARGET_IMAGE[:TAG]. By default, if we omit tags, we are using the latest tag. Avoid
using the latest tag for your images as this doesn't really indicate that this was the latest
image built. The only way to ensure when the image was built is by reviewing its date of
creation.

Building Docker Images Chapter 2

[81]

Docker registries and repositories
Images must be stored somewhere. Locally, each Docker host stores its own data under
/var/lib/docker/image in Linux and c:\programdata\docker\image in Windows,
by default. But these directories will work locally only, and we usually need to use images
to build new ones and share them across multiple nodes.

We can use the Docker command line to export and import image layers on different hosts,
but this is hard to maintain and this method does not scale. Docker Registry is a server
application that will store and let us download and upload images as required. It provides
an API for sharing information and image layers using a Docker client. As a result, we can
define a registry as a store and content delivery system for container images. Images will be
stored locally using the settings defined at the Docker daemon level. To use remote
registries, we will set up different storage backends that can handle S3, Microsoft Azure,
OpenStack Swift for cloud environments, and NFS for your local data center.

At the end of this chapter, we will have a lab in which we will create a local registry.
Docker Registry is an open source solution and can be configured using
the /etc/docker/registry/config.yml configuration file to change storage backends,
ports, and other advanced settings.

Docker Hub is the cloud-based registry provided by Docker. We can use it to store public
or private images and, as a software as a service solution, there are some features that
require a paid subscription.

Docker Registry will not provide any authentication method, nor TLS, to
allow Docker clients to use encrypted connectivity. These security
enhancements are only available in Docker Hub (Docker public/private
image registry as a service) and Docker Trusted Registry (Registry
deployed on the Docker Enterprise platform).

We usually describe three different image namespaces or naming conventions:

Root (docker.io hosted images): We reference these images using their names
and tags; for example, nginx:alpine and postgres:12.0. They are public.
User or organization images under root (docker.io hosted images): In this case,
images could be private or public, depending on user licensing. Image names
will contain the username or an organization, where users are allowed to pull or
push their images, for example, frjaraur/simplest-demo:simplestapp or
codegazers/colors:1.13.

Building Docker Images Chapter 2

[82]

Full registry format (used for private registries on the cloud or on your own
data center): We will use usernames, teams, or organizations, but we will need to
use the fully qualified name of the registry; for
example, dtr.myorganization.com[:my_registry_port][/myteam or
/myoraganization][/myusername]/<repository>[:tag].

In fact, root registries and repository names can be completed using the
full registry format; for example, we can pull
the docker.io/codegazers/colors:1.13 image using this full name
convention.

You should have noticed that in this case, we added my_registry_port and repository.
We added the first because, by default, Docker Hub and Docker Trusted Registry use
HTTPS, and therefore the port is 443, but we can deploy our own registries using custom
ports. repository is a reference to a compound of same-named images, each one with a
different IMAGE ID (unique) and tags (multiple). Consequently, when we talked about
the nginx:alpine image, we were referring to the docker.io registry, the nginx
repository, and the alpine tag, and the same rule should be applied to all other images
used throughout the course of this chapter.

Securing images
As seen in the previous chapter, Docker containers are secure by default, but this is because
they run inside namespaces and cgroups isolation. Images are different objects and their
security is related to their content. With this idea, it is easy to understand that having less
content will be more secure. So, the main rules for securing images are as follows:

Images should only contain mandatory binaries, libraries, and configurations to
run our containerized process. Don't add any non-required applications or debug
tools to production images. Less attack surface is better, and having many
binaries increases this surface.
Always declare resources on your images. In this case, we use the term resources
to describe users, exposed ports, and volumes. Always describe what is needed
to run your image and avoid root usage inside a container.

Building Docker Images Chapter 2

[83]

Update image content packages if there is some security bug fix, rebuild all
derived images, and redeploy the containers. In fact, there are more steps to
follow, but this statement is true. If you identify any exploit or bug that could
result in any security issue, you must fix it as soon as possible using a Docker
container's life cycle. To fix the base image with an updated build and rebuild all
their derivatives, follow the CI/CD workflow and pass all the tests again before
deploying these new image versions to production.

In the Docker Enterprise sections, we will learn about Docker image security scanning,
which is an automated tool that verifies all of an image's content against the CVE database.
We can mark images as insecure if a bug or exploit is found. This tool can trigger new
events to implement a secure pipeline, scan all images before they go into the production
stage, and provide information regarding any security risks found.

We know that image layers are read-only for containers and that a new
writable layer will be created for each container. In the next chapter, we
will learn that we can improve this situation using the read-only root
filesystem, allowing only write access to external volumes.

Managing images and other related objects
We have learned how to manage image containers throughout this chapter, so now, let's
take a look at the most common image administration tasks.

Dangling images can be a nightmare if you do not take care of them from the very
beginning. As we mentioned in the previous sections, dangling images are images that aren't
referenced and therefore, are not used by any other image. In fact, they are the result of
continuous builds as Docker uses them for caching and improving build performance. They
are just layers used during image builds that are no longer used because, in a particular
step, we changed a package, we updated our code, we changed a configuration file, and so
on, and, as a result, it is not necessary. We should delete these images since they can
consume a significant amount of disk space.

Since version 1.13, Docker provides the Docker image prune action, which, by default, will
remove all dangling images. However, we can choose what images we want to remove, for
example, by filtering by date or labels:

$ docker image prune --force --filter label=environment=test
Deleted Images:
deleted:
sha256:285c3d16e6721700724848024b9258b05a0c8cd75ab9bd4330d9d48f3313ff28
deleted:

Building Docker Images Chapter 2

[84]

sha256:62ee8a779b918d678f139941d19e33eeecc8e333a1c00d120c3b83b8545a6650
deleted:
sha256:fb077551608a1c7244c4ed5f88e6ba301b6be2b7db7dd2a4f7194e03db6e18dd
deleted:
sha256:9a704cd7c7c2a5233fad31df5f7186a9cf631b9b22bc89bc4d32d7ab0a1bc4a7

Total reclaimed space: 19.83kB

This command line has removed all dangling images with an environment label equal
to test.

The Docker image prune not only removes the dangling images but also
the old images. However, you should manage this situation because it
depends on what containers you have been running in your environment.
Before removing non-dangling images in production, verify that there are
no containers running using that image; for example, docker container
ls --filter ancestor=<image_to_be_removed>.

Many containers are used in building operations. By default, Docker daemon will delete all
the containers used during builds that exited correctly, so all the containers that were used
during correct builds will be removed. However, containers that have been used on faulty
builds should be removed by hand. It is easy to identify faulty containers related to image
builds. We will usually set container names in all containers launched by hand in other
situations. In Section 2, Containers Orchestration, dedicated to orchestration, we will learn
about the naming patterns used by Kubernetes and Swarm orchestrators to create
containers, thereby helping us identify their origin.

It is always useful to take a look at Docker host filesystem usage,
especially the space used by Docker daemon. We can use docker system
df --verbose to obtain fine-grained information about the images,
containers, and volume usage of each host.

Other common tasks involve inspecting images to understand the resources required in
each case and sharing them.

Listing images
Listing images is a common task for reviewing host system content. We can modify the
default docker image ls command's output using the --format modifier in the GoLang
format structure:

$ docker image ls --format "table
{{.ID}}\\t{{.Repository}}:{{.Tag}}\\t{{.CreatedAt}}"

Building Docker Images Chapter 2

[85]

IMAGE ID REPOSITORY:TAG CREATED AT
 28b4509cdae8 debian-with-postfix:latest 2019-10-05 13:18:45 +0200
CEST
 c2c03a296d23 debian:latest 2019-09-12 01:21:51 +0200
CEST
 d87c83ec7a66 nginx:alpine 2019-08-28 00:20:07 +0200
CEST

As we learned in the previous examples, we can filter this output using labels, for example,
to only show specific images.

Sharing images using registries
We learned that registries are servers where images can be stored using the HTTP REST
API. The Docker client knows how to manage the required requests, thereby facilitating
image management at these locations.

Images are always required to execute a container. Therefore, each time we run a new
container, the image will be downloaded from a registry if it is not present on the Docker
host.

We can download images manually using docker image pull <IMAGE:TAG>. This will
download all image layers and we will be ready to launch a new container based on this
image. This is very useful for warming hosts before launching containers; think of a 2 GB
image that should be downloaded from the internet, for example.

We can download all the images from a repository using --all-tags; for
example, docker image pull --all-tags --quiet
codegazers/colors. Using this command line, we are downloading all
the images (all tags) that are available in the codegazers/colors
repository without any output.

Consequently, we will use Docker push to upload images to registries. But remember to
use the full name, including the registry's fully qualified domain name and port (if we are
not using docker.io and the default 443 port). We will use the full path with custom
registries – myregistry.com[:non-default-
port]/myusername/myrepository[:tag]; for example, $ docker push
docker.io/codegazers/colors:test.

Building Docker Images Chapter 2

[86]

Docker registries should require a login to access them, for both pulling
and pushing. Usually, we will use TLS encryption to connect to registries
and it is enabled by default on Docker Client. Docker Engine needs to
trust registry certificates to permit login and image pulling or pushing. If
you do not want to use this feature, you will need to add a registry as an
insecure registry in /etc/docker/daemon.json and restart Docker
Daemon.

There are other methods for sharing images. We can save an image, along with all its layers
and meta-information, using docker image save. This command will stream content to
standard output by default, so we usually use --output to store all the content in a file (or
redirect its output to a file):

$ docker image save docker.io/codegazers/colors:test -o
/tmp/codegazers_colors_test.tar

$ file /tmp/codegazers_colors_test.tar
 /tmp/codegazers_colors_test.tar: POSIX tar archive

$ tar -tf /tmp/codegazers_colors_test.tar
.........
.........
d420450ab5b04122577e05172291941dcd735eaefd01ab61c64c056b148ebfde/layer.tar
 f99211cb5c4f5e30e2c5d6ce0f0f2ac42361aecbdcc77fd0e2eccf1650558a0c/
 f99211cb5c4f5e30e2c5d6ce0f0f2ac42361aecbdcc77fd0e2eccf1650558a0c/VERSION
 f99211cb5c4f5e30e2c5d6ce0f0f2ac42361aecbdcc77fd0e2eccf1650558a0c/json
 f99211cb5c4f5e30e2c5d6ce0f0f2ac42361aecbdcc77fd0e2eccf1650558a0c/layer.tar
 manifest.json
 repositories

As a result, docker image save will create a .tar file containing all the layers, along
with all their files, and the manifest file (among other meta-information) required to
recreate that image in your host. Notice that we choose the filename and its extension (.tar
will not be added by default, but it does not affect content upload).

Uploading this image .tar file is easy. We have two options.

The first option will be to use docker image import. With this action, we will just import
image layers, without any meta-information, and so we will not have a defined entry point,
command arguments, exposed ports, volume definitions, and so on. It will just import the
layers provided by the image into our host.

Building Docker Images Chapter 2

[87]

Consequently, we will not be able to run a container using this image as is (but we will be
able to add Dockerfile-like instructions on import to avoid this situation):

$ docker import /tmp/codegazers_colors_test.tar
 sha256:5bd30fec31de659bbfb6e3a294e826ada0474817f4c4163dd8a62027b627c81d

$ docker image ls
 REPOSITORY TAG IMAGE ID CREATED
SIZE
 <none> <none> 5bd30fec31de 4 seconds
ago 77MB

$ docker inspect codegazers/colors:test --format '{{json
.Config.ExposedPorts }}'
 {"3000/tcp":{}}

$ docker inspect 5bd30fec31de --format '{{json .Config.ExposedPorts }}'
 null

We can use docker image load to upload a saved image, along with all its layers and
information for launching containers. This is a direct step, without any modifications, and
we can use this loaded image as is. This command uses standard input to read content by
default, but we can use a .tar file by adding the --input argument or simply by using
redirection:

$ docker image rm codegazers/colors:test
Untagged: codegazers/colors:test

$ docker image load </tmp/codegazers_colors_test.tar
 Loaded image: codegazers/colors:test

$ docker inspect codegazers/colors:test --format '{{json
.Config.ExposedPorts }}'
 {"3000/tcp":{}}

As you will have noticed, we haven't used any name because it takes it from the image
.tar file's meta-information.

Using docker image save on the original host and Docker import/load on the destination
host, we can avoid the use of external storage, but as the platform grows in terms of the
number of images and hosts, this is not enough and you should use a registry to manage
sharing images.

Building Docker Images Chapter 2

[88]

Multistage building and image caches
Multistage building is a feature that appeared with Docker 17.05. Prior to this version, if we
wanted to ensure minimum image size and void compilers on final production images, we
usually had to install the packages required for compiling, execute the binary's build, and
then remove all non-required software, including used compilers, which are a real security
problem in production.

Automating this kind of compilation was not easy, and sometimes, we needed to create our
own scripts to reproduce those steps on every build, usually using third-party CI/CD
orchestrations.

We can use many build definitions on a Dockerfile to create small and compiler-free
images. These images will only include application libraries, executables, and
configurations. All compilations steps will be done on another image and we will just
include the resulting files in a new one. We could also use external images in this process.
We will only copy the required files for our application to a new image. This is known as
multistage building.

Let's look at an example that will help us understand this new process:

FROM alpine AS sdk
RUN apk update && \
apk add --update --no-cache alpine-sdk
RUN mkdir /myapp
WORKDIR /myapp
ADD hello.c /myapp
RUN mkdir bin
RUN gcc -Wall hello.c -o bin/hello

FROM alpine
COPY --from=sdk /myapp/bin/hello /myapp/hello
CMD /myapp/hello

In this example, we start a building stage named sdk. We add the name to be able to use it
as a reference in the next stage. In the sdk stage, we compile our C code after installing the
alpine-sdk package with the required tools for that task. As a result, we obtain a hello
binary with our application, located in the /myapp/bin directory (check the WORKDIR
instruction). In the next stage, we start again with a fresh alpine image and we just copy the
compiled hello binary from the sdk build stage (from the previously compiled image
container) to /myapp/hello on our new stage build container. And, as always in a
building process, this container is committed as our new image.

Building Docker Images Chapter 2

[89]

Multistage building simplifies the creation of images and improves security. This way, the
process will just add previously created binaries and libraries instead of compilers, which
can cause a security breach.

Templating images
Using prepared Dockerfiles with a certain template format is common. It is certainly a very
useful approach. Passing arguments and using environment variables during builds will
create different images for different CI/CD stages, for example, using the same Dockerfile.

Templating is key when building using CI/CD orchestration, but there are a few rules:

Don't use debugging tools in production images, so take care of these images and
use slimmer ones (with fewer components) by default in templates.
Don't use credentials as arguments when building. There are other mechanisms
for managing users and passwords and the Docker history command will
reveal this information.
Proxy settings are prepared for use as arguments. Therefore, the HTTP_PROXY,
HTTPS_PROXY, FTP_PROXY, and NO_PROXY environment variables can be used
during build time. These variables will be excluded from the Docker history
output and will not be cached, so we will need to use an ARG definition to allow
changes in proxy settings between compilations using the same Dockerfile. In
other words, before using the HTTP_PROXY variable, we should call the ARG
instruction to retrieve its value from the Docker build arguments:

FROM alpine:latest
ARG HTTP_PROXY
RUN apk update

The previous code shows an example that illustrates the behavior described since the proxy
settings will get updated on every build if its value has changed.

Operating systems and other applications would use http_proxy,
https_proxy, ftp_proxy, and no_proxy instead of the capital strings
described in this section. Review the application's requirements and use
the appropriate format.

We will see a simple, but illustrative, lab at the end of this chapter that uses a templated
Dockerfile that will build a different version for production and development, along with a
different base image that includes some debugging tools for developers.

Building Docker Images Chapter 2

[90]

Image releases and updates
Earlier, we mentioned how we should manage image updates. In that instance, we were
focused on security updates to avoid bugs and exploits in production. Similarly, we can
apply this concept to application fixes and releases.

Base images should be updated in critical image components and these changes do not
happen very frequently. Usually, the application releases are weekly or even daily (or
hourly, depending on numerous factors, such as business requirements and critical fixes).

Depending on how many containers are running based on a specific image, a new image
release can be a big change. These changes can be done in a couple of minutes or they can
take you an hour. However, the procedure using containers is very quick; let the orchestrator
do its job. Kubernetes and Swarm will provide automated image updates and rollback and
we will be able to manage how this deployment should be done, how many containers will
update their images in parallel, how much time we will wait between these updates, and
more.

It is easy to understand that changes to base images (used for building the others) require
special care. Those image updates must be managed in cascade to all derived images. We
will usually automate this kind of cascade building. These changes will require all the
derived images to be rebuilt and will involve much more effort. It is recommended to use a
Continuous Integration orchestrator to automate these kinds of tasks.

On the other hand, when we create a code or binary update, the changes will be easier
because we will only affect the containers that were created for a specific application. We
can deploy these updates quickly after passing all the required tests in our organization.

Chapter labs
In this section, we will review the most important concepts for the Docker Certified
Associate exam. For these labs, we will be using a CentOS Linux host with a Docker engine
installed, which we covered in the previous chapter.

Deploy environments/standalone-environment from this book's GitHub repository
(https://github.com/ PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide.
git) if you have not done so yet. You can use your own CentOS 7 server. Use vagrant up
from the environments/standalone-environment folder to start your virtual
environment.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Building Docker Images Chapter 2

[91]

If you are using standalone-environment, wait until it is running. We can check the
status of our nodes using vagrant status. Connect to your lab node using vagrant ssh
standalone. standalone as the name of your node. You will be using the vagrant user
with root privileges using sudo. You should get the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
up
Bringing machine 'standalone' up with 'virtualbox' provider...
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
status
Current machine states:
standalone running (virtualbox)
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$

We can now connect to the standalone node using vagrant ssh standalone. This
process may vary if you've already deployed a standalone virtual node before and you've
just started it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
ssh standalone
[vagrant@standalone ~]$

Now, you are ready to start the labs.

Docker build caching
This lab will show us how caching works when building images. We will be able to speed
up the building process, but it will depend on how the image layers are sorted. Let's get
started:

 First, create a directory named chapter2 in your home directory on your1.
Docker host. We will use this directory for these labs:

[vagrant@standalone ~]$ cd $HOME
[vagrant@standalone ~]$ mkdir chapter2
[vagrant@standalone ~]$ cd chapter2

Create a file named Dockerfile.cache with the following simple content:2.

FROM alpine:latest
RUN echo "hello world"

Building Docker Images Chapter 2

[92]

Now, build an image named test1 while using this directory as an image3.
context:

[vagrant@standalone chapter2]$ docker image build \
--file Dockerfile.cache --no-cache --label lab=lab1 -t test1 .

 Sending build context to Docker daemon 2.048kB
 Step 1/2 : from alpine:latest
 ---> 961769676411
 Step 2/2 : run echo "hello world"
 ---> Running in af16173c7af8
 hello world
 Removing intermediate container af16173c7af8
 ---> 9b3e0608971f
 Successfully built 9b3e0608971f
 Successfully tagged test1:latest

Since we have not used any specific tag, Docker adds latest. Now, rebuild the4.
image without any changes:

[vagrant@standalone chapter2]$ docker image build \
--file Dockerfile.cache --no-cache --label lab=lab1 -t test2 .

 Sending build context to Docker daemon 2.048kB
 Step 1/2 : from alpine:latest
 ---> 961769676411
 Step 2/2 : run echo "hello world"
 ---> Running in 308e47ddbf7a
 hello world
 Removing intermediate container 308e47ddbf7a
 ---> aa5ec1fe2ca6
 Successfully built aa5ec1fe2ca6
 Successfully tagged test2:latest

Now, we can list our images using the lab label we created during the build:5.

[vagrant@standalone chapter2]$ docker image ls --filter
label=lab=lab1
 REPOSITORY TAG IMAGE ID
CREATED SIZE
 test2 latest fefb30027241 About
a minute ago 5.58MB
 test1 latest 4fe733b3db42 About
a minute ago 5.58MB

Building Docker Images Chapter 2

[93]

Although we have not changed anything, the image ID is different. This is
because we have avoided layer caches and we have always compiled each layer.
Because we launched image buildings one after the other, only a few seconds
passed between them. However, the meta-information has changed between
them and they have different IDs, even though they contain the same content.

Now, we will use caching because it will improve the build time. In many6.
situations, this can make a big difference. Let's add just a line for installing
Python on our Dockerfile. Updating the package cache and the Python
installation with its dependencies will take some time. When we use cached
layers that have been created from previous builds, the building process will be
quicker:

FROM alpine:latest
RUN echo "hello world"
RUN apk add --update -q python3

Now, we build again without caching, measuring how many seconds it took for7.
the process to complete:

[vagrant@standalone chapter2]$ time docker image build \
--file Dockerfile.cache -q -t test3 --no-cache .
sha256:f2b524ac662682bdc13f77216ded929225d1b4253ebacb050f07d6d7e570
bc51

 real 0m8.508s
 user 0m0.021s
 sys 0m0.042s

Now, add a new line for adding httpie, which needs Python (and the package8.
cache) to be installed. Now, let's run the build with and without caching:

FROM alpine:latest
RUN echo "hello world"
RUN apk add --update -q python3
RUN apk add -q httpie

Without caching, it will take more than a minute:

[vagrant@standalone chapter2]$ time docker image build \
--file Dockerfile.cache -q -t test4 --no-cache .
sha256:b628f57340b34e7fd2cba0b50f71f4269cf8e8fb779535b211dd668d7c21
912f
real 1m28.745s
 user 0m0.023s
 sys 0m0.030s

Building Docker Images Chapter 2

[94]

Before launching a new build with caching, we removed the test4 image
using docker image rm test4 because we just wanted to use the
previous layers.

Using caching, it will just take a few seconds:

[vagrant@standalone chapter2]$ time docker image build --file
Dockerfile.cache -q -t test5 .
sha256:7bfc6574efa9e9600d896264955dcb93afd24cb0c91ee5f19a8e5d231e4c
31c7
real 0m15.038s
 user 0m0.025s
 sys 0m0.025s

Since this process used the previously cached layers, it only took 15 seconds (test4,
without caching, took 1 minute and 28 seconds to build). We have just added one layer and,
to install just one package, we got more than 1 minute of difference, even though the
images are small (around 100 MB in size). It can take hours to compile 5 GB images (which
is not recommended, even though it is a good approach for caching).

Where to use volumes in Dockerfiles
In this lab, we will review how the VOLUME key definition will be managed by Docker
Daemon to specify persistent storage or to avoid container space when building. Let's get
started:

Let's consider a small Dockerfile that's using a volume to persist data between1.
layers when building. The volume definition will also inform Docker Daemon
about bypassing the volume directory from the CoW mechanism. We will name
this Dockerfile Dockerfile.chapter2.lab2:

FROM alpine
RUN mkdir /data
RUN echo "hello world" > /data/helloworld
VOLUME /data

Let's build this image: 2.

[vagrant@standalone ~]$ docker image build \
-f Dockerfile.chapter2.lab2 -t ch2lab2 --label lab=lab2 .

 Sending build context to Docker daemon 3.072kB
 Step 1/5 : FROM alpine

Building Docker Images Chapter 2

[95]

 ---> 961769676411
 Step 2/5 : RUN mkdir /data
 ---> Running in fc194efe122b
 Removing intermediate container fc194efe122b
 ---> d2d208a0c39e
 Step 3/5 : RUN echo "hello world" > /data/helloworld
 ---> Running in a390abafda32
 Removing intermediate container a390abafda32
 ---> b934d9c51292
 Step 4/5 : VOLUME /data
 ---> Running in 33df48627a75
 Removing intermediate container 33df48627a75
 ---> 8f05e96b072b
 Step 5/5 : LABEL lab=lab2
 ---> Running in 353a4ec552ef
 Removing intermediate container 353a4ec552ef
 ---> 4a1ad6047fea
 Successfully built 4a1ad6047fea
 Successfully tagged ch2lab2:latest

Now, run a container using the ch2lab2 image to retrieve the container's /data3.
directory content:

[vagrant@standalone ~]$ docker container run ch2lab2 ls -lt /data
 total 4
 -rw-r--r-- 1 root root 12 Oct 7 19:30
helloworld

Now, we will change the VOLUME instruction order. We write the VOLUME4.
definition before the execution of echo. We will use a new file named
Dockerfile.chapter2.lab2-2:

FROM alpine
RUN mkdir /data
VOLUME /data
RUN echo "hello world" > /data/helloworld

Now, let's build a new image and review what happened with the /data5.
content:

[vagrant@standalone ~]$ docker image build \
-f Dockerfile.chapter2.lab2-2 -t ch2lab2-2 --label lab=lab2 .

 Sending build context to Docker daemon 4.096kB
 Step 1/5 : FROM alpine
 ---> 961769676411
 Step 2/5 : RUN mkdir /data

Building Docker Images Chapter 2

[96]

 ---> Using cache
 ---> d2d208a0c39e
 Step 3/5 : VOLUME /data
 ---> Using cache
 ---> 18022eec6fd2
 Step 4/5 : RUN echo "hello world" > /data/helloworld
 ---> Using cache
 ---> dbab99bb29a0
 Step 5/5 : LABEL lab=lab2
 ---> Using cache
 ---> ac8ef5e1b61e
 Successfully built ac8ef5e1b61e
 Successfully tagged ch2lab2-2:latest

Let's review the /data content again:6.

[vagrant@standalone ~]$ docker container run ch2lab2-2 ls -lt /data
 total 0

As we expected, the VOLUME directive allows containers to bypass the CoW filesystem.
During builds, containers will not maintain volume content because the commit action will
just transform container content into images, and volumes are not found inside containers.

Multistage building
In this lab, we will create a simple hello world binary in C and use an intermediate image to
compile this code in the first stage and then copy the binary to a cleaner image. As a result,
we will obtain a small image containing just the required components to run our compiled
application. Let's get started:

Create a new directory named multistage inside the chapter2 directory:1.

[vagrant@standalone ~]$ cd $HOME/chapter2
[vagrant@standalone ~]$ mkdir multistage
[vagrant@standalone ~]$ cd multistage

Now, create a helloword.c file with the following content:2.

#include <stdio.h>
 int main()
 {
 printf("Hello, World!\n");
 return 0;
 }

Building Docker Images Chapter 2

[97]

Prepare a multistage Dockerfile based on alpine called3.
Dockerfile.multistage. The first stage will be named compiler and in it, we
will install alpine-sdk to compile C code. We compile the C code in the first
stage and we just use a COPY sentence to copy the binary from the previous stage.
It will look like this:

FROM alpine AS compiler
RUN apk update && \
apk add --update -q --no-cache alpine-sdk
RUN mkdir /myapp
WORKDIR /myapp
ADD helloworld.c /myapp
RUN mkdir bin
RUN gcc -Wall helloworld.c -o bin/helloworld

FROM alpine
COPY --from=compiler /myapp/bin/helloworld /myapp/helloworld
CMD /myapp/helloworld

Using the previous code, we will build a new image:

[vagrant@standalone multistage]$ docker build \
--file Dockerfile.multistage --no-cache -t helloworld --label
lab=lab3 .

 Sending build context to Docker daemon 3.072kB
 Step 1/11 : FROM alpine AS compiler
 ---> 961769676411
 Step 2/11 : RUN apk update && apk add --update -q --no-cache
alpine-sdk
 ---> Running in f827f4a85626
 fetch
http://dl-cdn.alpinelinux.org/alpine/v3.10/main/x86_64/APKINDEX.tar
.gz
 fetch
http://dl-cdn.alpinelinux.org/alpine/v3.10/community/x86_64/APKINDE
X.tar.gz
 v3.10.2-102-ge3e3e39529
[http://dl-cdn.alpinelinux.org/alpine/v3.10/main]
 v3.10.2-103-g1b5ddad804
[http://dl-cdn.alpinelinux.org/alpine/v3.10/community]
 OK: 10336 distinct packages available
 Removing intermediate container f827f4a85626
 ---> f5c469c3ab61
 Step 3/11 : RUN mkdir /myapp
 ---> Running in 6eb27f4029b3
 Removing intermediate container 6eb27f4029b3

Building Docker Images Chapter 2

[98]

 ---> 19df6c9092ba
 Step 4/11 : WORKDIR /myapp
 ---> Running in 5b7e7ef9504a
 Removing intermediate container 5b7e7ef9504a
 ---> 759173258ccb
 Step 5/11 : ADD helloworld.c /myapp
 ---> 08033f10200a
 Step 6/11 : RUN mkdir bin
 ---> Running in eaaff98b5213
 Removing intermediate container eaaff98b5213
 ---> 63b5d119a25e
 Step 7/11 : RUN gcc -Wall helloworld.c -o bin/helloworld
 ---> Running in 247c18ccaf03
 Removing intermediate container 247c18ccaf03
 ---> 612d15bf6d3c
 Step 8/11 : FROM alpine
 ---> 961769676411
 Step 9/11 : COPY --from=compiler /myapp/bin/helloworld
/myapp/helloworld
 ---> 18c68d924646
 Step 10/11 : CMD /myapp/helloworld
 ---> Running in 7055927efe3e
 Removing intermediate container 7055927efe3e
 ---> 08fd2f42bba9
 Step 11/11 : LABEL lab=lab3
 ---> Running in 3a4f4a1ad6d8
 Removing intermediate container 3a4f4a1ad6d8
 ---> 0a77589c8ecb
 Successfully built 0a77589c8ecb
 Successfully tagged helloworld:latest

We can now verify that helloworld:latest works as expected and that it will4.
just contain the /myapp/helloworld binary on top of a clean alpine:latest
image:

[vagrant@standalone multistage]$ docker container run
helloworld:latest
 Hello, World!

Now, we will list the images in order to review the image we created recently:

[vagrant@standalone multistage]$ docker image ls --filter
label=lab=lab3
 REPOSITORY TAG IMAGE ID
CREATED SIZE
 helloworld latest 0a77589c8ecb 2
minutes ago 5.6MB

Building Docker Images Chapter 2

[99]

Deploying a local registry
In this lab, we will run a local registry and push/pull an image. Let's get started:

First, we'll deploy a registry using the official Docker Registry image. We will1.
launch it on the standard registry port, 5000:

[vagrant@standalone ~]$ cd $HOME/chapter2

[vagrant@standalone ~]$ docker container run -d \
-p 5000:5000 --restart=always --name registry registry:2
....
....
0d63bdad4017ce925b5c4456cf9f776551070b7780f306882708c77ce3dce78c

Then, we need to download a simple alpine:latest image (if you don't2.
already have one):

[vagrant@standalone ~]$ docker pull alpine
Using default tag: latest
latest: Pulling from library/alpine
e6b0cf9c0882: Pull complete
Digest:
sha256:2171658620155679240babee0a7714f6509fae66898db422ad803b951257
db78
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

Then, we need to add a new tag to this image to be able to upload it to our local3.
registry, which is running on port 5000:

[vagrant@standalone ~]$ docker tag alpine localhost:5000/my-alpine

We will use docker image tag <ORIGINAL_TAG> <NEW_TAG> to add names
and tags to images. This will add new names and tags; the old ones will stay until
they are removed. We will use docker image rm to remove image names and
tags. This will remove only the names and tags passed as arguments. Other
images associated with the same ID will remain until they are specifically
removed. If we create a new build, some layers will be un-referenced and even
pushed out of any image construction chain.

Building Docker Images Chapter 2

[100]

We can remove all the images associated with a specific ID using docker
image rm --force <IMAGE_ID>. All image names and tags associated
with it will be removed.

Unreferenced images, also known as dangling images, should be removed,
especially on image-building hosts. These are common in CI/CD environments
where we assign some nodes to this process. We will use docker image prune
to execute this image's housekeeping.

Then, we push the image to our local registry:4.

[vagrant@standalone ~]$ docker image push localhost:5000/my-alpine
The push refers to repository [localhost:5000/my-alpine]
6b27de954cca: Pushed
latest: digest:
sha256:3983cc12fb9dc20a009340149e382a18de6a8261b0ac0e8f5fcdf11f8dd5
937e size: 528

To ensure that no other alpine image is present, we remove it by its ID:5.

[vagrant@standalone ~]$ docker images --
filter=reference='alpine:latest'
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest cc0abc535e36 42 hours ago 5.59MB

We remove this ID and all its children (the IDs may vary):6.

[vagrant@standalone ~]$ docker image rm cc0abc535e36 --force
Untagged: alpine:latest
Untagged:
alpine@sha256:2171658620155679240babee0a7714f6509fae66898db422ad803
b951257db78
Untagged: localhost:5000/my-alpine:latest
Untagged: localhost:5000/my-
alpine@sha256:3983cc12fb9dc20a009340149e382a18de6a8261b0ac0e8f5fcdf
11f8dd5937e
Deleted:
sha256:cc0abc535e36a7ede71978ba2bbd8159b8a5420b91f2fbc520cdf5f67364
0a34

Building Docker Images Chapter 2

[101]

Then, we run a container using the localhost:5000/my-alpine:latest7.
image:

[vagrant@standalone ~]$ docker container run localhost:5000/my-
alpine:latest ls /tmp
Unable to find image 'localhost:5000/my-alpine:latest' locally
latest: Pulling from my-alpine
e6b0cf9c0882: Already exists
Digest:
sha256:3983cc12fb9dc20a009340149e382a18de6a8261b0ac0e8f5fcdf11f8dd5
937e
Status: Downloaded newer image for localhost:5000/my-alpine:latest

Here, we used the image we downloaded from our localhost:5000 registry.

As we mentioned previously, Docker Registry is insecure by default. It is easy to
deploy but we will need authentication and authorization in production.
Authentication can be deployed using a frontend proxy with validation.
NGINX can be deployed even with basic authentication and can also provide TLS
certificate encryption. Authorization is not as easy, so Docker Trusted Registry is
a better solution.

In this example, we published our registry on local port 5000. The application
container will restart if the main process dies and the image's data will be stored
on the host under the /var/lib/docker/volumes/REGISTRY_DATA/_data
directory. We have used the REGISTRY_DATA named volume, so the registry data
will remain even if we remove the registry container.

Docker Registry can be configured to use different storage backends. We
will learn about this feature regarding DTR in Chapter 13, Implementing
an Enterprise-Grade Registry with DTR. Docker Registry can be configured
using the /etc/docker/registry/config.yml file. To deploy a
localhost configuration file under the current directory, we will use
$(pwd)/config.yml:/etc/docker/registry/config.yml. This will
integrate a custom file as a bind-mount volume.

Finally, we remove the registry we deployed:8.

[vagrant@standalone ~]$ docker container rm --force registry
registry

Building Docker Images Chapter 2

[102]

Image templating using Dockerfiles
This lab will show us how we can build images for different environments by adding some
debugging tools, for example, to debug a container's processes.

Create a new directory named templating inside the chapter2 directory:

[vagrant@standalone ~]$ cd $HOME/chapter2
[vagrant@standalone ~]$ mkdir templating
[vagrant@standalone ~]$ cd templating

We will have a couple of images: one for production and one for development. We will
build each one with its own Dockerfile; in this case, we will use a simple
nginx:alpine image as the basis for both:

Development – Dockerfile.nginx-dev:

FROM nginx:alpine
RUN apk update -q
RUN apk add \
curl \
httpie

Production – Dockerfile.nginx:

FROM nginx:alpine
RUN apk update -q

Let's build both images:

We build both images as baseimage:development and1.
baseimage:production:

[vagrant@standalone templating]$ docker image build \
--quiet --file Dockerfile.nginx-dev -t baseimage:development --
label lab=lab4 .
sha256:72f13a610dfb1eee3332b87bfdbd77b17f38caf08d07d5772335e963377b
5f39

[vagrant@standalone templating]$ docker image build \
 --quiet --file Dockerfile.nginx -t baseimage:production --label
lab=lab4 .

sha256:1fc2505b3bc2ecf3f0b5580a6c5c0f018b03d309b6208220fc8b4b7a65be
2ec8

Building Docker Images Chapter 2

[103]

Now, we can review the image's sizes. These are pretty different because2.
the debugging image has curl and httpie for testing (this is an example lab).
We will use these images to launch debugging tools in order to review a
container's processes or against other components:

[vagrant@standalone templating]$ docker image ls --filter
label=lab=lab4
 REPOSITORY TAG IMAGE ID CREATED
SIZE
 baseimage development 72f13a610dfb 13 seconds ago
83.4MB
 baseimage production 1fc2505b3bc2 4 minutes ago
22.6MB

Now, we can build our application image for development and production3.
environments using the ENVIRONMENT variable and a templated
Dockerfile.application file:

ARG ENVIRONMENT=development
FROM baseimage:${ENVIRONMENT}
COPY html/* /usr/share/nginx/html

Now, we simply prepare a simple text file named index.html with some4.
content inside the html directory:

[vagrant@standalone templating]$ mkdir html
[vagrant@standalone templating]$ echo "This is a simple test and of
course it is not an application!!!" > html/index.html

Finally, we just compile both images for the DEV and PROD environments. For5.
development, we use the ENVIRONMENT argument, as follows:

[vagrant@standalone templating]$ docker image build \
--file Dockerfile.application \
-t templated:development \
--build-arg ENVIRONMENT=development \
--label lab=lab4 .
 Sending build context to Docker daemon 5.632kB
 Step 1/4 : ARG ENVIRONMENT=development
 Step 2/4 : FROM baseimage:${ENVIRONMENT}
 ---> 1fc2505b3bc2
 Step 3/4 : COPY html/* /usr/share/nginx/html
 ---> Using cache
 ---> e038e952a087
 Step 4/4 : LABEL lab=lab4
 ---> Running in bee7d26757da
 Removing intermediate container bee7d26757da

Building Docker Images Chapter 2

[104]

 ---> 06542624803f
 Successfully built 06542624803f
 Successfully tagged templated:development

For the production environment, we will do the same:

[vagrant@standalone templating]$ docker image build \
--file Dockerfile.application \
-t templated:production \
--build-arg ENVIRONMENT=production \
--label lab=lab4 .
 Sending build context to Docker daemon 5.632kB
 Step 1/4 : ARG ENVIRONMENT=development
 Step 2/4 : FROM baseimage:${ENVIRONMENT}
 ---> 1fc2505b3bc2
 Step 3/4 : COPY html/* /usr/share/nginx/html
 ---> Using cache
 ---> e038e952a087
 Step 4/4 : LABEL lab=lab4
 ---> Using cache
 ---> 06542624803f
 Successfully built 06542624803f
 Successfully tagged templated:production

With this lab, we built different images using just one Dockerfile. Arguments will change
the building process.

Summary
This chapter guided us in terms of building container images. We learned about all the
building steps and tips and tricks that will help us to ensure we have security in images.
Building good and secure images is key for production and, as we learned, having good
base images will help us build better application images. We will reuse many layers, so it is
safer to ensure security from the bottom to the top. To ensure security, we just need to add
the requisite software, expose the required processes, and avoid the root processes if they
are not required.

We also learned how to store images and their meta-information using code versioning-like
tags to ensure that the correct image is running in production.

Finally, we learned how to implement templates to create images for different
environments or stages on CI/CD pipelines.

In the next chapter, we will learn how to run containers.

Building Docker Images Chapter 2

[105]

Questions
How can we uniquely identify an image?1.

a) All images with their tags are unique
b) The image ID is what really makes an image unique; we can have an
image ID with many names and tags, but they will all reference the same
layers and meta-information
c) Only base images on the root registry namespace are unique because all
other images are based on these
d) All the preceding answers are correct

Which methods can be used to create container images?2.

a) We can build images from containers, committing their read-write layers
on top of read-only ones
b) We can use a Dockerfile, starting with a base image
c) We can start from an empty one, known as scratch
d) All of the above.

Which image creation methods are reproducible?3.

a) Committing containers to images is reproducible because we know which
steps we followed
b) Using Dockerfiles, we will ensure that the requisite steps are written and
that the creation process is reproducible
c) There is no reproducible method for creating images
d) All of the above options are incorrect

Which Dockerfile instructions admit Shell and Exec formats?4.

a) RUN
b) Only CMD
c) ENTRYPOINT and CMD
d) All Dockerfile instructions admit both Exec and Shell formats

Building Docker Images Chapter 2

[106]

How can we avoid using command arguments when launching a container5.
based on an image?

a) We can avoid user modification of the main process arguments and
parameters by using the shell format for ENTRYPOINT
b) It is never possible to modify the container main process
c) It is always possible to modify the main container process arguments,
irrespective of the ENTRYPOINT format used
d) None of the above options are correct

Further reading
You can refer to the following links for more information on topics covered in this chapter:

Multi-architecture images using new builds: https:/ /www. docker. com/blog/
multi-arch- images/

Dockerfile best practices: https:/ /www. docker. com/blog/ intro- guide- to-
dockerfile- best- practices/

Dockerfile reference: https:/ /docs. docker. com/engine/ reference/ builder/

https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/multi-arch-images/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://www.docker.com/blog/intro-guide-to-dockerfile-best-practices/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

3
Running Docker Containers

This chapter is dedicated to the Docker command line. We have run some containers in the
previous chapters, but we did not go into detail regarding the arguments and options used.

In this chapter, we will talk about different Docker objects, such as images, containers, and
volumes, and their associated actions. Not all objects will have the same features and,
consequently, they will not have the same actions and arguments.

Remember that image building is based on container execution. Each layer
is the result of executing commands on a container that is automatically
"committed" in a Docker node's filesystem. All these layers, when
grouped together, constitute an image.

In this chapter, we will cover the following topics:

Reviewing the Docker command line in depth
Learning about Docker objects
Running containers
Interacting with containers
Limiting host resources
Converting containers into images
Formatting and filtering information
Managing devices

Let's begin by looking at how to work with the Docker command line.

Running Docker Containers Chapter 3

[108]

Technical requirements
In this chapter, we will learn about Docker container concepts. We'll provide some labs at
the end of this chapter that will help you understand and learn about the concepts covered.
These labs can be run on your laptop or PC using the provided Vagrant standalone
environment or any Docker host of your own that you've deployed. Additional information
can be found in this book's GitHub repository at https:/ / github. com/ PacktPublishing/
Docker-Certified- Associate- DCA- Exam- Guide. git.

Check out the following video to see the Code in Action:

"https://bit.ly/ 32AEGHU"

Reviewing the Docker command line in
depth
As we learned in the previous chapters, Docker is a client-server application. Previous
versions of the software installed both components at the same time, but the newer versions
allow us to just install the client for using remote servers.

We learned about the various Docker daemon options and arguments in Chapter 1, Modern
Infrastructures and Applications with Docker. In this chapter, we are going to review the
Docker client command line.

When we use the Docker command line on either Linux or Windows, we are
always referencing the Docker client and, usually, the binary or executable program is
/usr/bin/docker or C:\ProgramData\Docker on Linux and Windows, respectively.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU
https://bit.ly/32AEGHU

Running Docker Containers Chapter 3

[109]

Docker's command-line usage format is docker [OPTIONS] COMMAND. Various options
are used to define the daemon we will connect to and how this communication will be
created. Debugging and the level of logging are managed at this point too. Some of these
options can be set using Docker client configuration in each user' s config.json file under
their home directory.

The Docker client configuration file, config.json, will manage filtering
options, which we will learn about at the end of this chapter. It also stores
login access to registries.

Environment variables can also be used to configure Docker client behavior. Here is a list of
the most frequently used ones:

DOCKER_CONFIG: This will set the Docker client's config file path.
DOCKER_CERT_PATH: This sets the path for client-server certificates.
DOCKER_HOST: We can use remote Docker engines. By default, we will use the
local Docker daemon.
DOCKER_TLS: This option enables TLS communication (requires certificates to
work).
DOCKER_TLS_VERIFY: This option will not validate remote daemon certificates.
DOCKER_CONTENT_TRUST: We will use this option to use content trust features
(image immutability and ownership).

Docker commands will always require a Docker daemon and they will be executed against
objects. These are internal resources managed by Docker, distributed on categories with
different features and properties. We'll look at this in more detail in the next section.

All Docker objects have their own IDs. Names are tags associated with
these IDs and therefore, in some cases, we will be able to have many
names for an object. The object ID will uniquely identify each object and
thus, Docker can show or manage information regarding that object
without using its category. We recommend using categories that
are always on the Docker command line.

Running Docker Containers Chapter 3

[110]

The following table shows the commands that will be common to all objects:

ls or
list

This will show a list of all objects in that category. The output may be different,
depending on which objects are queried, but we will usually obtain object names
and their IDs.We will use the --all or -a modifiers to show all the objects from
a selected category because, in some cases, the output will only show a subset.
For example, if we list container objects, by default, we will just get running
containers. Dead (exited) containers will not be shown unless you use the --
all command modifier. Filtering will allow us to retrieve only a subset of
objects. We will use the --filter or -f arguments for this. Each object category
will have its own keys for easy filtering. We will learn how to filter information
later in this chapter.
Formatting is also very important. We will use the --format option to format
the output's information. The usual formats are table and json for obtaining
table-like information and JSON formats, respectively. We can customize and
sort obtained information. All filters should be constructed using the Go
templates format.
Formatting output is an art! We will see many options later in this chapter.
A good starting point will always be to use --format='{{json .}}' to review
which JSON keys can be used for formatting. We can avoid a full command's
output using --quiet or -q. This parameter will show only listed object IDs in
that category. This is very useful for concatenating or piping output to other
commands.

rm or
remove

This action will remove defined objects. We can remove them using their IDs or
their names. Once deleted, they cannot be recovered.
To avoid confirmation of object deletion, we will use the --force argument.

create
All objects can be created and removed, but each object will have its own
arguments. Therefore, we will learn about each object's arguments in different
chapters. We will start with container arguments in the next section.

inspect

To review object-defined properties, we will use the inspect action. By default,
the object description will be shown in JSON format.
We can also use --format to format its output. In this case, we can format the
output of the object's description. This is very useful for getting just a few
required values, as shown in the following example:
$ docker image inspect nginx:alpine --format "{{ json
.Config.Cmd }}"
["nginx","-g","daemon off;"]

The Docker client was programmed in Go and it contains many Go template formatting
and filtering options.

Running Docker Containers Chapter 3

[111]

Every time we use docker ps, we are actually executing docker
container ls.

In the next section, we will introduce the different resources or objects we have available in
Docker.

Learning about Docker objects
Let's define the different categories of objects that are available for a standalone Docker
daemon:

Images: These are the basis for creating containers. In Chapter 2, Building Docker
Images, we learned the concept of multi-layered templates for providing a root
filesystem for the container's main process and all the meta-information required
to execute it.
Containers: As we learned in Chapter 1, Modern Infrastructures and Applications
with Docker, a container is a compound of isolated namespaces, resources, and
files for a process (or multiple processes). This process will run inside a wrapped
environment as if it was alone in its own system, sharing the host kernel and its
resources.
Volumes: Volumes are used to bypass copy-on-write containers' filesystems. As
a result, we will be able to store data out of containers, avoiding their life cycle.
We will learn more about volumes in Chapter 4, Container Persistency and
Networking.
Networks: Containers run on their own network namespace, but they need to
reach real infrastructure networks. They will use host physical interfaces in
bridge mode, creating virtual interfaces for each container interface. We will
learn more about this working model and many other options in Chapter
4, Container Persistency and Networking.
Plugins: Docker plugins extend engine functionality using processes that will
run alongside a Docker daemon. They will share information and configuration
with the daemon to provide new features. There are three different kinds of
plugins: authorization, volume, and network plugins. The Docker client
command line provides the interface for installing and managing plugins. Their
configurations will be deployed under the /usr/lib/docker/plugins or
/etc/docker/plugins directories.

Running Docker Containers Chapter 3

[112]

These objects are available in a standalone Docker Daemon, but there are other objects
when the host participates in a distributed Docker Swarm cluster. We will talk about these
in the orchestration chapters, but we will provide a brief synopsis here:

Swarm: This object provides cluster properties. It allows us to create new clusters
and join or leave previously created ones. It also maintains cluster security by
managing certificate authority or locking access to cluster certificates.
Nodes: Nodes are hosts that are part of the cluster. We can update node roles
within the cluster and remove them when needed. We can also modify which
nodes will run the defined workloads.
Services: Docker Swarm will not manage containers. The minimum scheduling
unit in Docker Swarm is the service. They will create tasks, and those will be
represented by containers. In Docker Swarm, we deploy services by declaring
their state and the number of tasks required to be healthy. We will be able to
create services, update their properties (replicas, images used for containers, and
so on), or remove them.
Stacks: When we talk about deploying workloads on Swarm, we usually use
stacks, which are multi-service applications. We will define all the components
required by an application to run. These components will be services and all their
volumes, networks, and so on, as well as their interactions.

Swarm objects have all the actions described previously. However, we can also use the
update action to set and change object properties. This action is only available using
Docker Swarm.

In the next section, we will learn how to run containers securely using the command line
described.

Running containers
Containers are just processes that run in an isolated manner on the Docker host. All the
features or properties required for the process to run may be tweaked on container creation.

Running Docker Containers Chapter 3

[113]

Main container actions
Containers can be created, executed, and stopped when required. The following table will
introduce the main container actions for this workflow:

create

Because containers are Docker objects, we can create them. When we
create a container, we configure how this container will work, without
starting it. This stage will prepare a container and we can review its static
configuration using inspect. Any dynamic configuration will not be
present because the container is not running yet.

start

Once the container has been created, it can be started using start. This
means that the container-defined process will be executed with the
configured isolation (memory, CPU, networking, and so on) and the
external resources that are required. Once the container is started, we will
be able to list it or review its state.

run

This action will create and then start a container. This is how we usually
launch a container. There are some command aliases for many objects
and actions; for example, docker run. We recommend using full
sentences, including the object in which you are executing the action. A
Docker container started with either docker container run or docker
run will run in the foreground. Your Terminal, by default, will be
attached to the container's output. To avoid this behavior, we must use -
-detach or -d to launch the container in the background, detached from
the current Terminal.

pause/unpause
We can freeze the container's process using cgroups in Linux. The process
will stay suspended until it is unfrozen.

stop

Stopping a container will follow the next workflow described. First, the
main process will receive a SIGTERM signal. This will try to shut down
and terminate the process normally. By default, the Docker daemon will
wait 10 seconds before sending a second signal. Then, the daemon will
send a SIGKILL signal to kill the process completely. Therefore, the
daemon will first try to terminate the container's main process gracefully
and will kill it if it was not stopped. We can configure what signal to send
to stop a container using --stop-signal. It defaults to SIGTERM, as
mentioned previously.
Also, we can change the number of seconds to wait (10 seconds by
default) before sending the second SIGKILL signal using the --time
argument. This can be configured on container creation or execution
using --stop-timeout when it is already running.

Running Docker Containers Chapter 3

[114]

kill

As we mentioned earlier, when we run docker container stop,
Docker daemon will first try to stop it gracefully. There are some cases
where we want to kill the main process completely without waiting. In
these cases, we can use docker container kill to stop the container
immediately. A signal that's been sent can be changed using -s and, by
default, a SIGKILL signal will be sent.

restart

The restart action will stop and start a container. This means that
previously learned procedures will be taken and the Docker container's
stop and start operations will be executed. Therefore, the previously
described arguments will also be valid.

rm

Containers are not ephemeral, as we have learned in previous chapters.
They will remain in our system until someone deletes them. We will use
docker container rm to remove them.
Running containers cannot be removed unless we use the --force/-f
argument. It is recommended to stop containers in production before
deleting them to avoid removing an important one by mistake.

prune
This command will remove all stopped containers. They can be forced
using --force, and we can limit containers to be removed using filters
with the --filter argument.

rename With this action, we change the container name.

update
Using the update action, we can change the container's host resource
limits and its restart policy.

Only containers using Hyper-V isolation can be paused on Windows.

By default, all containers will be executed using non-limited resources. They will not run
isolated unless we limit their access to host resources. To limit the number of resources
available for a container, we must specify its thresholds during creation. We will use the
same arguments for docker container create or docker container run. We will
review how to manage container resources in the Limiting host resources section of this
chapter.

Running Docker Containers Chapter 3

[115]

We can use the --rm option to remove a container after its execution. It
will also remove all unnamed volumes created during its lifetime. These
volumes are defined ephemerally to override copy-on-write filesystems.
We must remove them manually or use the -v argument with the docker
container rm action.

Container network properties
Containers run in their own network namespace. They will get their own IP addresses and
network resources. By default, a Docker daemon will use bridge networking, and
containers will get their own name resolution configuration by copying the host values. We
can change this behavior on container creation and execution. Let's review some options we
can use to configure networking within containers:

--name
We can provide a name for each container. If we do not specify any
container name, a random one will be generated. This way, we can manage
containers using this defined name. It will be used as a hostname by default.

--add-host
Using this parameter, we are allowed to add hosts and their IP addresses.
We will use host:ip formatted entries.

--dns
This option will allow us to avoid default DNS resolution. Every time a
name cannot be resolved by the embedded DNS server, a query is forwarded
to the defined external DNS servers (copied from hosts by default).

--dns-option This will add container-related options to an embedded DNS server.

Each bridge network will be provided with internal name resolution using
the Docker-embedded DNS server, on 127.0.0.11. There is only one
exception: the default bridge interface. In this case, we will need to use --
link to allow access to a deployed container from another one on a bridge
interface according to its name.

--dns-search This option sets the search domain names for name resolutions.
--domainname This option sets the domain name for the container.

--ip

and
--ip6

Sometimes, we need to specify a container IP address, either for IPv4 or
IPv6. We will just pass version 4 or version 6 addresses as arguments on
container creation or execution. Internal IPAM will assign internal IP
addresses from the bridged network interface range.

--hostname We can set an internal container hostname. It defaults to the container ID.

Running Docker Containers Chapter 3

[116]

--link

We can add internal name resolution to other containers using
CONTAINER_NAME:DNS_ALIAS. These added linked names will be accessible
to other containers using their names or IP addresses (this is the default
option).

--mac-address This option allows us to set a container MAC address.

--network

We can choose what type of network connectivity we will provide to
containers. By default, all the containers will run on the default bridged
network. In this chapter, we will just use the default networking mode, but
there are other options as well, which we will learn about in the following
chapters.

--network-alias
This option helps us specify an alias for the container on a network. We will
have more name resolutions for a container IP.

We need to define a restart policy to manage the container's life. We require containers to
stop/die and start fast. Resilience is the new key to an application's availability. We can
manage this container's behavior with the --restart parameter. There are four options:

no: This is the default option. The container will remain stopped if it died or it
was stopped manually.
on-failure: This option will restart the container only if it died because of the
main process's failure.
always: We don't care whether someone stopped the container or whether it
died by itself. We require the container to be running; therefore, Docker daemon
will always try to restart it.
unless-stopped: This option will not restart the container if we have executed
a Docker stop command.

These options are very important as they manage what a Docker daemon has to do with the
containers when the Daemon is restarted; for example, when we have to reboot the host.

Container behavior definition
The following table shows some options that can be used to overwrite image predefined
values:

--entrypoint

We can overwrite a defined entry point on container
creation or execution. Don't rely on your security for this
feature. Anyone can change your entry point for any other
binary or script included in your image.

Running Docker Containers Chapter 3

[117]

--env or -e or --env-file We can overwrite variables defined within the base image
or add new ones for new containers.

--expose
We can expose new ports for containers. These ports will
be internally available. They are not published.

--health-cmd,
--health-interval,
--health-retries,
--health-start-period,
--health-timeout

All these options will overwrite health check base
image values.

--no-healthcheck This option disables the image-defined health check.

--label or -l or --label-
file

This option allows labels to be added upon container
creation or execution. These labels will help us filter or
find information pertaining to processes. There are some
labels that are automatically added by the Docker daemon
or orchestrators to identify grouped objects.

--user or -u This option overwrites the image-defined user.

--volume or -v

This option uses a defined volume or host path mounted
inside the container. This option is very important
because ephemeral volumes (also referenced as unnamed
volumes) that are used to bypass copy-on-write
filesystems will be created under
/var/lib/docker/volumes (or the equivalent path on
MS Windows hosts). They are identified by a random ID.
Volumes will not follow the container's life cycle and
must be removed manually unless we use the -v
argument with the docker container rm action.

Arguments passed on container creation will be added to the image-
defined entry point as arguments. Therefore, image-defined CMD values
will be overwritten with arguments passed upon container execution.
Other arguments such as --user, --env, --entrypoint, or --health-
cmd, --health-timeout, and so on will overwrite image-defined values,
modifying the image's process behavior. Notice that the argument syntax
is related to the image's defined keys.

Once a container has been created and executed, by default, the Terminal will be attached
to its standard and error outputs. We will get all the main process errors and output. We
can also launch containers interactively using the --interactive or -i options. We
usually allocate a pseudo-Terminal using --tty or -t in order to have a fully functional
Terminal attached to the main process.

Running Docker Containers Chapter 3

[118]

Executing containers
A simple example will help us understand this behavior. We will launch a small web server
using an nginx:alpine image. In this case, we are using the official nginx image from the
docker.io registry tagged alpine, which is the smallest one based on Alpine Linux:

$ docker container run nginx:alpine
 Unable to find image 'nginx:alpine' locally
 alpine: Pulling from library/nginx
 9d48c3bd43c5: Already exists
 1ae95a11626f: Pull complete
 Digest:
sha256:77f340700d08fd45026823f44fc0010a5bd2237c2d049178b473cd2ad977d071
 Status: Downloaded newer image for nginx:alpine

The output may vary if the image was already on your Docker host. All the object IDs will
be different on your system as they are created automatically for you.

We can exit from running the container's standard output by executing
either the exit command or the Ctrl + C keyboard combination.

We are stuck on this Terminal because we started a container with Nginx as the main
process. What happened? Well, we are attached to the container's main process. If we issue
a Ctrl + C sequence, since we are attached to that process, we will send an interruption to
the container's main process and nginx will die. However, if we open another Terminal
and list the running containers, it will be listed as expected:

$ docker container ls
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 f84f6733537c nginx:alpine "nginx -g 'daemon of…" 11 seconds ago Up 10
seconds 80/tcp gallant_lederberg

Since we have not set a name for our container, we get a random one; in this case,
gallant_lederberg.

All names will be created using random combinations of names and
adjectives.

Running Docker Containers Chapter 3

[119]

We can also inspect this running container to get its current IP address. To access its
information, we can use either its ID or name. We will obtain all object information
managed by the Docker daemon. We will now take a look at the NetworkSettings section
from the docker container inspect command's output:

$ docker container inspect gallant_lederberg
[
 {
 "Id": "f84f6733537c3733bda67387b394cabce3f35cf7ee50a46937cb1f59f2a7a680",
 "Created": "2019-10-20T09:34:46.179017074Z",
 "Path": "nginx",
......
......
......
"NetworkSettings": {
 "Bridge": "",
 "SandboxID":
"7bb519745e9b7becc806f36bc16b141317448388f7c19a3bd86e1bc392bea469",
 "HairpinMode": false,
......
......
"Gateway": "172.17.0.1",
 "IPAddress": "172.17.0.2",
......
......

This output shows that the container was created and that it is running on our system with
an IP of 172.17.0.2. We have not exposed its service to the world, although we did notice
its port and protocol (80/tcp) on the docker container ls output earlier. The people
who created the nginx:alpine image declared this port to access the container's main
process. We are not going to continue reviewing the networking aspects of this container
here as we have a complete chapter on networking, that is, Chapter 4, Container Persistency
and Networking. Just be aware that we have a running nginx process in our system that is
not accessible for users:

$ ps -fea |grep -v grep |egrep -e nginx -e f84f67
 zero 1524 5881 0 11:34 pts/0 00:00:00 docker container run nginx:alpine
 root 1562 1693 0 11:34 ? 00:00:00 containerd-shim -namespace moby -workdir
/var/lib/containerd/io.containerd.runtime.v1.linux/moby/f84f6733537c3733bda
67387b394cabce3f35cf7ee50a46937cb1f59f2a7a680 -address
/run/containerd/containerd.sock -containerd-binary /usr/bin/containerd -
runtime-root /var/run/docker/runtime-runc
 root 1594 1562 0 11:34 ? 00:00:00 nginx: master process nginx -g daemon
off;
 systemd+ 1644 1594 0 11:34 ? 00:00:00 nginx: worker process
 systemd+ 1646 1594 0 11:34 ? 00:00:00 nginx: worker process

Running Docker Containers Chapter 3

[120]

 systemd+ 1647 1594 0 11:34 ? 00:00:00 nginx: worker process
 systemd+ 1648 1594 0 11:34 ? 00:00:00 nginx: worker process

We have not changed any of the parameters from the original image, so we are using image
creator options and declared values. For example, nginx is running as root inside the
container. Container port 80 is not accessible from outside the bridged network.

We have already learned that there are some parameters that allow container interaction, so
let's start a simple busybox to access the previous container's service:

$ docker run -ti busybox
 Unable to find image 'busybox:latest' locally
 latest: Pulling from library/busybox
 7c9d20b9b6cd: Pull complete
 Digest:
sha256:fe301db49df08c384001ed752dff6d52b4305a73a7f608f21528048e8a08b51e
 Status: Downloaded newer image for busybox:latest
wget http://172.17.0.2 -q -O -
 <!DOCTYPE html>
 <html>
 <head>
 <title>Welcome to nginx!</title>
 <style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
 </style>
 </head>
 <body>
 <h1>Welcome to nginx!</h1>
 <p>If you see this page, the nginx web server is successfully installed
and
 working. Further configuration is required.</p>

 <p>For online documentation and support please refer to
 nginx.org.

 Commercial support is available at
 nginx.com.</p>

 <p>Thank you for using nginx.</p>
 </body>
 </html>
/ # exit

Running Docker Containers Chapter 3

[121]

In the running nginx container's output, we will read a few lines. These are nginx logfile
lines because the main nginx process is redirected to standard output. In fact, both error
and access logs are redirected to the container's output. If we go back to the first Terminal,
this is what we get from running the nginx container's standard output and error:

$ docker container run nginx:alpine
 172.17.0.3 - - [20/Oct/2019:10:26:56 +0000] "GET / HTTP/1.1" 200 612 "-"
"Wget" "-"
 172.17.0.3 - - [20/Oct/2019:10:27:09 +0000] "GET / HTTP/1.1" 200 612 "-"
"Wget" "-"

Notice that the busybox container's IP (running from the second Terminal) is shown on
nginx requests.

We have learned that running two containers together on the same network subnet will
have unlimited access. This happens because we don't have any rules to disallow this
interaction. Both containers use the default bridge network, which is why they run in the
same network.

If we exit the busybox container using a simple exit command line on the container's
shell, we will exit the main process (shell) and consequently, the container will die.

We can list non-running containers by using --all or -a because, by default, docker
container ls will only show running containers:

$ docker container ls --all
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 4848ed569f61 busybox "sh" 34 minutes ago Exited (0) 31 minutes ago
interesting_yalow
 f84f6733537c nginx:alpine "nginx -g 'daemon of…" About an hour ago Up
About an hour 80/tcp gallant_lederberg

Here, we can see that we can review running and stopped containers. We will stop the
gallant_lederberg container (ID: f84f6733537c). Remember that executing docker
container stop will first try to issue a graceful stop before killing the main process:

$ docker stop gallant_lederberg
 gallant_lederberg

The container is stopped immediately. Now, let's run another container that is not so easy
to stop. We can run a busybox image executing an infinite ping to www.google.com, for
example, and review what happens when we try to stop it:

$ docker container run --name ping busybox ping www.google.com
 PING www.google.com (172.217.16.228): 56 data bytes
 64 bytes from 172.217.16.228: seq=0 ttl=56 time=694.384 ms

Running Docker Containers Chapter 3

[122]

 64 bytes from 172.217.16.228: seq=1 ttl=56 time=291.257 ms
 64 bytes from 172.217.16.228: seq=2 ttl=56 time=365.674 ms
 64 bytes from 172.217.16.228: seq=3 ttl=56 time=433.928 ms
 64 bytes from 172.217.16.228: seq=4 ttl=56 time=718.424 ms

We have changed the busybox image-defined CMD with the passed argument, ping
www.google.com. As a result, we will get an infinite ping output. To stop this container
and review how much time it takes to die, we can send a stop command from another
Terminal:

$ time docker container stop ping
 ping
 real 0m10,721s
 user 0m0,019s
 sys 0m0,032s

We added time before the Docker command to review how many seconds the container
took to stop. As we expected, the ping had to be killed and, as a result, the stop command
took more than the default 10 seconds.

We launched a named container using the --name argument. To ensure
the uniqueness of containers, once a container is created with a name, it is
not possible to create another one with the same name. When we get into
the orchestration chapters of this book, we will learn how orchestrators
manage the naming of containers. To deploy another ping container, in
this case, we will need to remove the first ping container using docker
container rm ping.

We have seen how to launch a container using the docker container run command and
how to stop it. Let's now review container creation to understand the container's life cycle:

$ docker container create --name webserver nginx:alpine
 6121184dd136781ceb87a210049b25334ce140968dd110ea7d6945ced3ca6668

We obtained the container's identification, but it is not running. We can verify this situation
by executing docker container ls --filter name=webserver.

If we filter using all containers, including those that are not running, we can see that the
container was created:

$ docker container ls --all --filter name=webserver
 CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
 6121184dd136 nginx:alpine "nginx -g 'daemon of…" 2 minutes
ago Created webserver

Running Docker Containers Chapter 3

[123]

Now that the container has been created, we can start it using docker container start:

$ docker container start webserver
 webserver

The container was started, but we are not attached to its main process's input/output.
Container creation is different from running a container. As we will learn, Docker Swarm
services and Kubernetes pods will create container configurations and they will also start a
defined number of replicas. This is different from starting a single container.

The STATUS column shows that the container is now running:

$ docker container ls --filter name=webserver
 CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
 6121184dd136 nginx:alpine "nginx -g 'daemon of…" 10 minutes ago Up 3
minutes 80/tcp webserver

We can add attachments to the container's input/output by adding the --
attach argument to the docker container run action. This way, we
will run the container interactively. Remember that your interaction with
the container's main process will depend on the parameters that are
passed when it was created. We can also use --interactive as the
start parameter.

Container security options
There are a number of options for container creation and execution related to its security.
Let's review the most important ones with some examples:

--cap-add or --cap-drop

Remember that not all system calls are available inside containers.
We can add or drop default ones using this option. For example, if a
container needs some special networking features for creating
interfaces or allowing ports under 1024, we will add NET_ADMIN
capability.

--disable-content-trust
We use this option to disable any content trust verification (check
image origin or ownership, for example). This is not recommended in
production environments.

--isolation

This option is only used on MS Windows containers. Allowed values
are process or hyper-v. We will choose which isolation will be
used in our container. Remember that they have different features, as
we learned in Chapter 1, Modern Infrastructures and Applications with
Docker.

Running Docker Containers Chapter 3

[124]

--privileged

Privileged containers will run with all capabilities and without any
resource limitations. Be careful with these kinds of containers and
always try to establish what capabilities are required by your
application instead of using the privileged mode.

--read-only
We can run containers using a read-only root filesystem. This is a
very good practice in general but we must ensure that all the
required container storage will use volumes.

--security-opt

We will be able to change container options when changing default
security behavior; for example, using a different seccomp profile or
specifying that the container will run unconfined. Custom SELinux
policies will also use this parameter to inform SELinux of non-default
values.

All the security options described here must be used with care. It is very important to
understand what capabilities or requirements the applications have instead of using default
or insecure configurations.

It is very important to understand that executing containers using
privileged mode will bypass all resource restrictions. Be sure that the --
privileged option is only used in specific situations where you really
understand the implications of running a container with all capabilities
and without any resource limits. Users allowed to execute privileged
containers can run processes without CPU or memory limits and can
modify important system files.

Take your time to review the application requirements before executing the privileged
containers. Only use them under very clear circumstances and watch out for any suspicious
behavior on those containers.

Executing containers in read-only mode is very useful. We can ensure that
the applications will not change during their lifetime. Of course, using
read-only mode depends on your application, but it is good to take some
time to analyze the process and try to make it work with a read-only
filesystem. We will separate writable directories into ephemeral volumes
to store process data. This is a very good practice for improving security
easily.

Running Docker Containers Chapter 3

[125]

Using host namespaces
The following options are not directly related to security, but they are very important.
These are related to container isolation and must be managed with care because any misuse
may cause significant security problems:

--ipc
--pid
--uts

We can share host namespaces if needed. For example, if we are executing a
monitoring application inside a container and we need to be able to watch for
host processes, we will include a host pid namespace using --pid host.
Take care of these options as this container will be able to manage host
processes if we also use extra capabilities or privileged mode.

--network

We have mentioned this option before, but not in this context. We can use a
host network. In this case, we will use the host's network inside a container.
Therefore, all host interfaces will be available inside the container. Other
containers' interfaces will also be included.

--userns

In the first chapter, we talked about user namespaces inside containers. We
learned about process isolation when we introduced the main container's
concepts. This option will allow us to implement an isolated user namespace
inside a container. We must first prepare user mappings and then we will set
which one to use on container creation or execution.

We can easily verify some of the options mentioned in our Docker host. For example, we
can run a container using the host network mode and retrieve the container's interface:

$ docker container run busybox ip add
 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 37: eth0@if38: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc
noqueue
 link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.3/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

Now, we can launch another container using the same image but with a host network:

$ docker container run --network=host busybox ip add
 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

Running Docker Containers Chapter 3

[126]

 2: enp0s25: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel
qlen 1000
 link/ether 68:f7:28:c1:bc:13 brd ff:ff:ff:ff:ff:ff
 3: wlp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq qlen 1000
 link/ether 34:02:86:e3:f6:25 brd ff:ff:ff:ff:ff:ff
 inet 192.168.200.161/24 brd 192.168.200.255 scope global dynamic wlp3s0
 valid_lft 49sec preferred_lft 49sec
 inet6 fe80::ee87:e44f:9189:f720/64 scope link
 valid_lft forever preferred_lft forever
 6: virbr1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue qlen
1000
 link/ether 52:54:00:f7:57:34 brd ff:ff:ff:ff:ff:ff
 inet 192.168.39.1/24 brd 192.168.39.255 scope global virbr1
 valid_lft forever preferred_lft forever

All host interfaces are available inside this small busybox container. This is very useful for
monitoring host resources. This can help us solve host network problems without installing
any software, especially in a production environment.

In the next section, we will learn how to interact with running containers, execute new
processes inside them, and copy content to or from them.

Interacting with containers
We can interact with running or stopped containers. We need to interact with containers to
run some processes within them, review some of their files, or retrieve the main process
output. These are the main actions we will use to interact with containers:

attach

Using attach, we will be able to connect to the main process's
STDIN/STDOUT/STDERR. In other terms, we will be attached to this process to
interact with it. Be careful because sending a signal with your keyboard may
interrupt the process and container's life (we can omit this behavior using --
sig-proxy false). We can only attach to running containers.

cp

This action will allow us to send /receive content to/from the container's
filesystem. It acts as a normal copy but we can maintain file ownership using --
archive. We will just use the source path and destination and we will use the
<container>:</path_to_file> notation to reference files inside containers.
Containers can be stopped when we copy files to/from the Docker host.

Running Docker Containers Chapter 3

[127]

exec

Using exec, we will be able to execute a command inside the container's
isolation. This new command inherits all main process namespaces. As a result,
the new command seems to be running inside the container because they share
namespaces.

logs

We can review all the container's output by accessing the container's STDERR and
STDOUT. Logging can be improved using logging drivers to extend its
functionality; for example, sending these logs to an external host or logging
backend. Logging is fundamental when we execute background containers or
services. The only way to know what is happening inside a container is by
supervising its log.

Once attached to a container, we can detach using the Ctrl + P +
Q keyboard sequence, but we can change this keyboard combination
using the --detach-keys option while attaching, and when creating or
starting a container.

We will now take a quick look at our running containers (if you do not have any, run one
container, as described in the previous section):

$ docker container ls
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 4b2806790a4f nginx:alpine "nginx -g 'daemon of…" 2 hours ago Up 40 minutes
80/tcp webserver

Now, we execute ps -ef inside the container using docker exec:

$ docker container exec webserver ps -ef
 PID USER TIME COMMAND
 1 root 0:00 nginx: master process nginx -g daemon off;
 6 nginx 0:00 nginx: worker process
 7 nginx 0:00 nginx: worker process
 8 nginx 0:00 nginx: worker process
 9 nginx 0:00 nginx: worker process
 10 root 0:00 ps -ef

We executed the command inside the container's isolation using the main process declared
user (root, in this example).

Running Docker Containers Chapter 3

[128]

If we want to execute an interactive command – a shell, for example – we can do so by
specifying --interactive (or -i) and allocating a pseudo-tty using --tty (or -t). We can
set environment variables for this new process with --env or change the execution user
using --user. If we need to execute the new command with special privileges inside a
container, we can also use --privileged. This can be very useful in debugging on test
environments:

$ docker exec -ti --user nginx --env ENVIRONMENT=test webserver /bin/sh
 / $ id
 uid=101(nginx) gid=101(nginx) groups=101(nginx)
 / $ env|grep ENVIRON
 ENVIRONMENT=test

We can copy a file located in the host /tmp directory, for example, inside our container
using docker container cp:

$ docker container cp /tmp/TEST webserver:/tmp/TEST

As we mentioned previously, logging is an important aspect of managing containers. We
can use docker container logs on running or stopped containers. These are very useful
options to improve the manner in which logs are shown:

--follow or -
f

With this option, we can obtain the online output of a running container.
The output will be updated with every new entry.

--tail
With this option, we can specify how many previous lines we want to
show. By default, all the lines will be shown.

--since or --
until

Both of these options are very useful for showing logging only from or
before a timestamp or relative period of time (30 minutes or 30 m, for
example).

Now, let's review some of the docker container logs arguments in the previously
executed web server container. In the following example, we will retrieve all the lines from
the webserver container's output:

$ docker container logs --tail all webserver
 172.17.0.3 - - [20/Oct/2019:18:39:52 +0000] "GET / HTTP/1.1" 200 612 "-"
"Wget" "-"
 172.17.0.3 - - [20/Oct/2019:18:39:55 +0000] "GET / HTTP/1.1" 200 612 "-"
"Wget" "-"
 172.17.0.3 - - [20/Oct/2019:18:39:57 +0000] "GET / HTTP/1.1" 200 612 "-"
"Wget" "-"

In the next section, we will review how to avoid host problems by limiting container access
to host resources.

Running Docker Containers Chapter 3

[129]

Limiting host resources
We have seen some options for limiting the container's resource consumption. We will be
able to limit access to CPU, memory, and block devices. There are two types of limits when
we focus on memory resources: soft and hard limits.

Soft limits will represent a reservation of resources. This means that a container could
consume more memory than declared, but this value will be reserved.

On the other hand, a hard limit will ensure that no more than the declared value will be
consumed. In fact, the container will die if this limit is surpassed. An out-of-memory (also
known as OOM) killer will kill the main process to prevent host problems.

Remember that, by default, if you do not specify any limits, containers
will be able to consume all your host resources.

There are many options available to ensure limited access to resources. We can modify
default cgroups settings automatically with these parameters:

--cpu-period

and
--cpu-quota

CFS is the Linux kernel CPU scheduler and, with these parameters,
we modify the scheduler period. Both must be configured in
microseconds and will modify the CPU limits.

--cpu-shares

This parameter manages the weights for the container's main process.
By default, it will start with a value of 1024 and we can set the
proportion of CPU cycles by increasing or decreasing this value. This
is a soft limit, which means that the Docker daemon will not prevent
container scheduling on Docker Swarm.

--cpus
or -c

This option helps us set the amount of available CPU resources that
will be provided to a container process. It is related to the number of
CPUs available in the host. For example, in a host with three CPUs,
using a value of --cpus=1.5 will guarantee half of the CPU
resources for this container.

--cpuset-cpus

This CPU setting is simpler than CPU shares or setting how many
CPUs to use. We will just specify a comma-separated list of host
CPUs where the container can run (we will start at 0 when writing a
CPU range).

Running Docker Containers Chapter 3

[130]

--memory
or -m

This will set the maximum amount of memory available for a
container's process. This is a threshold and the Docker daemon will
not allow the container to surpass this limit. Whenever this limit is
surpassed, the kernel will kill the container's main process. We will
obtain an out-of-memory error. This procedure is known as oom-
killer. We can disable oom-killer using --oom-kill-disable.
This can be dangerous and you must be careful with this option as
containers could take all the host memory resources.

--memory-reservation
With this parameter, we will configure a reservation of memory for
our processes. It should be set to a lower value than the previously
mentioned --memory threshold value.

--blkio-weight

and
--blkio-weight-device

The first argument will manage how much total block direct I/O
bandwidth will be available for a container, while the second one will
manage how much bandwidth will be available for a specific block
device. By default, all containers run with the same bandwidth. This
value is 500, and we can increase or decrease this value so that it's
between 10 and 1,000.

Many of the features we will use to isolate access to resources require that
the host kernel supports Linux capabilities. We can review all disabled
capabilities using docker system info, looking for any WARNING
messages.

Whenever we need to update the container limits, we can use the docker container
update action, which allows us to change memory, CPU, and block device usage limits on
containers.

There are a few actions that will help us in reviewing the container's resource usage.

We will use docker container stats to retrieve container usage metrics. By default,
only CPU usage percentage, memory usage and its limit, network and block I/O, and the
number of processes inside containers will be shown. We can format its output using the --
format parameter, with common Go language format patterns. We will usually use a table
format:

$ docker stats --all --format "table [{{.Container}}]
{{.Name}}\t{{.CPUPerc}}\t{{.MemUsage}}"
 [CONTAINER] NAME CPU % MEM USAGE / LIMIT
 [8ab15ccdc42f] stress 0.00% 0B / 0B
 [ed19e4376cdc] intelligent_easley 0.00% 0B / 0B
 [0ca76903840f] vigilant_mendeleev 0.00% 0B / 0B
 [afa67a5a2162] inspiring_mclaren 0.00% 0B / 0B
 [49229db83166] mystifying_maxwell 0.00% 0B / 0B
 [4cef73c07691] naughty_diffie 0.00% 0B / 0B

Running Docker Containers Chapter 3

[131]

 [5dcc40de271e] adoring_wright 0.00% 0B / 0B
 [07aeb6f9c6df] focused_fermi 0.00% 0B / 0B
 [bbe4cb0d9cac] magical_chaplygin 0.00% 0B / 0B
 [4b2806790a4f] webserver 0.00% 4.676MiB / 11.6GiB

We can specify a container's name or ID to only show its statistics. It is important to know
that docker stats is a stream-like command. This means that it will be continuously
refreshing content with new data unless we use the --no-stream argument to obtain static
output on a single page.

Depending on the amount of data shown, sometimes, values are
truncated. This can happen in many other objects' actions. To avoid the
truncation of important data, we can use --no-trunc any time we need
to retrieve all column data.

On the other hand, docker container top will show us information in a top-like format
regarding all the container's internal processes. Using our web server from the previous
examples, we can execute docker container top webserver to obtain the nginx main
process and its child's states:

$ docker container top webserver
 UID PID PPID C STIME TTY TIME CMD
 root 17878 17848 0 19:06 ? 00:00:00 nginx: master process nginx -g daemon
off;
 systemd+ 17924 17878 0 19:06 ? 00:00:00 nginx: worker process
 systemd+ 17925 17878 0 19:06 ? 00:00:00 nginx: worker process
 systemd+ 17927 17878 0 19:06 ? 00:00:00 nginx: worker process
 systemd+ 17928 17878 0 19:06 ? 00:00:00 nginx: worker process

We can add swap access using --memory-swap and --memory-swappiness but this is not
recommended. Swapping could decrease application performance and it really breaks the
logic of distributed microservices. Orchestration will allow us to run different components
on different nodes, depending on their requirements.

In the next section, we will review actions related to images. With these, we will be able to
create an image from a container, as we learned in Chapter 2, Building Docker Images.

Running Docker Containers Chapter 3

[132]

Converting containers into images
We have learned about three different methods for building images, and all of them use
containers in some shape or form. Let's review the container actions that can be used to
create images:

commit

docker commit will allow us to create an image from a container. We will add
a container's layer as a new image layer. As a result, we obtain a new image. We
will set a new image name (although we learned that we can change image
names whenever we need to) with its tag. The container will be paused during
the commit to avoid file changes during its execution.

export

This action will create a .tar file containing the container's filesystem
(including data from all of its layers). By default, this command will stream
binary content to STDOUT, but we can use --output or -o to define a file for
this content.

When we need to know about the changes we made to the original image layers, we can
use docker container diff. This will show a list of all the files that have been modified
or created on the container's layer.

Using the container web server from the previous examples, we can observe all the changes
that were made during its execution:

$ docker container diff webserver
 C /var
 C /var/cache
 C /var/cache/nginx
 A /var/cache/nginx/client_temp
 A /var/cache/nginx/fastcgi_temp
 A /var/cache/nginx/proxy_temp
 A /var/cache/nginx/scgi_temp
 A /var/cache/nginx/uwsgi_temp
 C /root
 A /root/.ash_history
 C /run
 A /run/nginx.pid
 C /tmp
 A /tmp/TEST

This list shows added files, marked as A, as well as changed files and directories, marked
with C. Notice that every time we add a file to a directory, the directory is also changed.

Running Docker Containers Chapter 3

[133]

We will usually deploy tens, hundreds, or even thousands of containers within Docker
hosts. It is important to be able to retrieve information about them in order to manage their
properties and states. In the next section, we will review some of the options available to
format and filter information in container environments.

Formatting and filtering information
Formatting and filtering the output of any command is always useful. In Docker commands
with long lists or outputs, it is really necessary. Let's begin with formatting some command
output.

Almost all actions that represent or show any kind of information can be formatted. Docker
uses Go templates to modify the output format. It is very useful to be able to format output
for our specific needs. We will use the table format here. Each column will represent a
specified key.

We will consider a brief example output listing all the deployed containers in a host using
docker container ls with the table format:

$ docker container ls --all --format "table {{.Names}}: {{.Image}}
{{.Command}}" --no-trunc
NAMES: IMAGE COMMAND
loving_diffie: alpine "/bin/sh"
recursing_fermi: alpine "/bin/sh"
silly_payne: centos "/bin/bash"
wonderful_visvesvaraya: centos "/bin/bash"
optimistic_lamarr: centos "/bin/bash"
focused_shtern: centos "/bin/bash"
stress: frjaraur/stress-ng:alpine "stress-ng stress-ng --vm 2 --vm-bytes 1G
--timeout 60s"
vibrant_faraday: baseimage:development "curl"
lucid_wright: baseimage:production "curl"
elastic_cori: baseimage:production "env"

We have used --no-trunc to disable the truncation of printed values.
Without using this option, all long strings will be truncated and will only
show a few characters. Usually, they will be enough to identify a value,
but sometimes, we need the entire string; for example, to review the
container's main executed command.

Running Docker Containers Chapter 3

[134]

It is very useful to know what keys can be queried for formatting. To obtain all allowed
keys for formatting, we will use --format='{{json .}}'. This will show all the columns
or keys for a specified action (for example, try docker container ls --all --
format='{{json .}}'). The output will be shown in unformatted JSON.

The unformatted JSON output is not easy to read. We can use jq (https:/
/stedolan. github. io/ jq/), which is a command-line JSON processor for
better reading. Using jq, we will obtain more prettily formatted JSON.

There are a number of customized options for formatting:

json

As we have seen, this option will format the output as a single-line
JSON string. For example, we can use --format='{{json
.Config}}' with docker inspect output for a container to obtain all
its configuration keys and values.

table
The table format option is not available in all outputs, but it will work
pretty well on lists.

join/split
With these options, we will be able to join or split key outputs; for
example, '{{json .Mounts}}' or '{{split .Image ":"}}'.

lower/upper/title
These options allow us to change strings to lowercase, uppercase, or just
capitalize the first character; for example, '{{title .Name}}' will
show all names with a capitalized first character.

range
This option will help us format list/array values. You have to use
'{{range <JSON keys> }}{{end}}' to correctly manage the listed
values.

println
This option will print each queried value in a new line. It is very
interesting for formatting range values.

The --pretty option is available for inspecting some objects. It is very
useful but, as we mentioned previously, it is not available for all objects.
For example, you can use it to inspect services, which we will learn about
in Chapter 8, Orchestration Using Docker Swarm.

Formatting will help us to obtain only required pieces of information, but it will not be easy
when we have to manage a lot of items. We will filter the information using the --filter
option to retrieve only specific objects matching some keys and values. Not all keys will be
available for filtering. We will use keys with their values for filters and we can use as many
filter options as required. If we add more than one filter with the same key, they will be
used as OR. But if we use different keys, this will be an AND filter. We will use "equal" (using
=) or "different" (using <>) to compare key values.

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Running Docker Containers Chapter 3

[135]

Container objects can be filtered by means of the following:

ID or name: With these options, we can find containers by their IDs or names.
Label: This case is special as we can express the query using a key to match all
the containers with that label or key-value format, in order to find a specific
value for that key.
Exited: We will use this option with an exited integer when using --all to filter
containers stopped with errors, for example.
Status: We use this option to filter by container state (created, restarting,
running, removing, paused, exited or dead).
Ancestor: This is very important because it will allow us to filter by image name
and tags.
Before/since: This filter allows us to specify dates, for example, to find a
container running for a long time or filter by its creation date.
Volume/network: This option allows us to filter which containers are using a
volume or network. It is useful for removing old resources.
Publish or expose: These options filter which containers are publishing or
exposing specified ports. We can use a range of ports and protocols
(<startport-endport>/[<proto>]).
Health: This filter allows us to search containers by their health check status
(healthy, unhealthy, starting, or none).
Is-task: This option is very interesting because it allows us to filter containers
created by tasks when using Docker Swarm orchestration.

Notice that --format is used for filtering on the docker <object>
inspect command. We can only query specific object keys and subkeys.
For example, using --format='{{json .Config}}' will just show keys
and values under the Config key.

In the next section, we will review how to use host attached devices as if they were inside
containers.

Managing devices
We can provide access to host devices inside containers. We use the --device argument
with docker container create or docker container run for this. We will be able to
use hardware devices connected directly to a host, such as serial controllers, block storage,
or audio devices.

Running Docker Containers Chapter 3

[136]

By default, devices will have read and write permissions. To be able to manipulate special
devices, the mknod permission is also added by default. We can override these default
settings using r, w, and m in the command line as modifiers of the --device option.

As an example, we can mount our lvm mapped block device to a defined directory; notice
that the mounting capability must be added. In this example, we added SYS_ADMIN
capabilities:

$ docker run -ti --cap-add SYS_ADMIN --device /dev/mapper/centos-
root:/dev/sdx centos
 [root@5ccb0ef8ce84 /]# mkdir /data
 [root@5ccb0ef8ce84 /]# mount /dev/sdx /data
 [root@5ccb0ef8ce84 /]# cd /data
 [root@5ccb0ef8ce84 data]# ls
 bin boot dev etc home lib lib64 media mnt opt proc root run
sbin srv sys tmp usr vagrant var

In the following example, we are using our host sound device inside a container. Adding
these devices to containers will allow us to run some applications with sound:

$ docker container run -ti --device /dev/snd alpine
 / # apk add --update -q alsa-utils
 / # speaker-test -t wav -c 6 -l1

 speaker-test 1.1.9

 Playback device is default
 Stream parameters are 48000Hz, S16_LE, 6 channels
 WAV file(s)
 Rate set to 48000Hz (requested 48000Hz)
 Buffer size range from 2048 to 16384
 Period size range from 1024 to 1024
 Using max buffer size 16384
 Periods = 4
 was set period_size = 1024
 was set buffer_size = 16384
 0 - Front Left
 1 - Front Right
 2 - Unused
 3 - Unused
 4 - Unused
 5 - Unused
 Time per period = 8.298695

Here, we have learned that not just files or directories can be accessed inside containers. We
can use special devices as if they were directly attached to containers.

Running Docker Containers Chapter 3

[137]

Chapter labs
In the labs in this chapter, we will run containers and interact with them. We will also
review some examples, limiting their resources and formatting and filtering the command
output.

To run these labs, deploy environments/standalone-environment from this book's
GitHub repository (https:/ /github. com/ PacktPublishing/ Docker- Certified-
Associate-DCA-Exam- Guide. git) if you have not done so yet. You can use your own
CentOS 7 server. Use vagrant up from the environments/standalone-
environment folder to start your virtual environment.

If you are using standalone-environment, wait until it is running. We can check the
statuses of our nodes using vagrant status. Connect to your lab node using vagrant
ssh standalone. standalone is the name of your node. You will be using the vagrant
user with root privileges using sudo. You should get the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
up
Bringing machine 'standalone' up with 'virtualbox' provider...
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
status
Current machine states:
standalone running (virtualbox)
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$

We can now connect to the standalone node using vagrant ssh standalone. This
process may vary if you've already deployed a standalone virtual node before and you
just started it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
ssh standalone
[vagrant@standalone ~]$

If you are reusing your standalone-environment, this means Docker Engine is installed.
If you started a new instance, please execute the /vagrant/install_requirements.sh
script so that you have all the required tools (Docker Engine and docker-compose):

[vagrant@standalone ~]$ /vagrant/install_requirements.sh

Now, you are ready to start the labs.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Running Docker Containers Chapter 3

[138]

Reviewing Docker command-line object options
The Docker command line will allow us to interact with Docker daemons. We will use
Docker objects or resources with their allowed actions. In the following screenshot, we can
easily review this behavior in the Docker help command's output:

Running Docker Containers Chapter 3

[139]

Objects will appear in the first part, after common options. At the bottom, we will have all
the options allowed. As we mentioned in this chapter, not all objects have the same actions.
This chapter is dedicated to containers. So, let's review what actions are allowed with
containers (the output is truncated):

[vagrant@standalone ~]$ docker container --help
Usage: docker container COMMAND
Manage containers
Commands:
 attach Attach local standard input, output, and error streams to a running
container
 commit Create a new image from a container's changes
.....
.....
.....
 unpause Unpause all processes within one or more containers
 update Update configuration of one or more containers
 wait Block until one or more containers stop, then print their exit codes
Run 'docker container COMMAND --help' for more information on a command.

We should use --help with each kind of object to review what actions are available for
them. If we have not set any DOCKER_HOST variable (nor using -H), we will interact with
the local Docker daemon. We will use these arguments in the command line to connect to
remote daemons.

Actually, there are many well-known Docker command-line aliases:

docker run: docker container run
docker ps: docker container ls
docker rm: docker container rm
docker start/stop: docker container start/stop
docker port: docker container port
docker rmi: docker image rm

It is recommended to use long command-line terms as they actually indicate an object and
action. This will avoid confusion or the misspelling of commands.

Running Docker Containers Chapter 3

[140]

Executing containers
This is a long lab in which we are going to review many actions and options available to
containers. Let's get started:

Execute an interactive container based on an Alpine image in the background:1.

[vagrant@standalone ~]$ docker container run -ti -d alpine
aa73504ba37299aa7686a1c5d8023933b09a0ff13845a66be0aa69203eea8de7

Now, we will review and rename the container myalpineshell:2.

[vagrant@standalone ~]$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aa73504ba372 alpine "/bin/sh" About a minute ago Up About a minute
elastic_curran

We use -l or --last to obtain the latest container that was executed on
our Docker host. Notice that we will use -q in the following code to obtain
the container's ID.

Now, we rename the previously launched container using its ID:

[vagrant@standalone ~]$ docker container rename $(docker container
ls -ql) myalpineshell

If we review the latest container again, we will see that we have a different name.
Notice that the container is running (the output will show different dates for you):

[vagrant@standalone ~]$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aa73504ba372 alpine "/bin/sh" 11 minutes ago Up 11 minutes
myalpineshell

We attach our Terminal to the running myalpineshell container and we create3.
an empty file named TESTFILE under the /tmp directory. Then, we exit from
the container:

[vagrant@standalone ~]$ docker container attach myalpineshell
/ # touch /tmp/TESTFILE
/ # exit

Running Docker Containers Chapter 3

[141]

If we review the container's status again, we will find that it has stopped, but that4.
it exited correctly:

[vagrant@standalone ~]$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aa73504ba372 alpine "/bin/sh" 14 minutes ago Exited (0) 46 seconds
ago myalpineshell

The container now shows an Exited (0) status. The Alpine image's main
process is a shell. Its CMD is /bin/sh. We exited by issuing the exit command.
Therefore, the exit status was 0. No problem was identified during execution.

Now, we are going to force a failure status by executing, for example, a5.
command that doesn't exist in the image. We will execute the curl command on
a new container:

[vagrant@standalone ~]$ docker container run alpine curl
www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec:
\"curl\": executable file not found in $PATH": unknown.
ERRO[0001] error waiting for container: context canceled

As the curl binary does not exist, we cannot even execute the desired command.
As a result, the container was created but not executed:

[vagrant@standalone ~]$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
466cc346e5d3 alpine "curl www.google.com" 17 seconds ago Created
fervent_tharp

Now, we will execute ls -l /tmp/TESTFILE on a new container:6.

[vagrant@standalone ~]$ docker container run alpine ls -l
/tmp/TESTFILE
ls: /tmp/TESTFILE: No such file or directory

[vagrant@standalone ~]$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
7c328b9a0609 alpine "ls -l /tmp/TESTFILE" 8 seconds ago Exited (1)
6 seconds ago priceless_austin

Running Docker Containers Chapter 3

[142]

As expected, the /tmp/TESTFILE file does not exist in this new container. We
only created it in the myalpineshell container. In fact, the file is still there.
Notice that this time, the container was executed and that the exit status shows an
error code. This is the exit code of the execution of the ls command against a
non-existent file.

Let's rename the last executed container again:7.

[vagrant@standalone ~]$ docker container rename $(docker container
ls -ql) secondshell

Now, we will create the /tmp/TESTFILE file on our own host filesystem and8.
copy it to the secondshell container:

[vagrant@standalone ~]$ touch /tmp/TESTFILE

[vagrant@standalone ~]$ docker container cp /tmp/TESTFILE
secondshell:/tmp/TESTFILE

It is not possible to copy files from one container to another using docker
container cp.

Now, let's start the secondshell container again and observe the new results:9.

[vagrant@standalone ~]$ docker container start secondshell
secondshell

[vagrant@standalone ~]$ docker container ls -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
7c328b9a0609 alpine "ls -l /tmp/TESTFILE" 32 minutes ago Exited (0)
4 seconds ago secondshell

The file now exists inside the secondshell container and, as a result, the
execution exited correctly. We can notice this new result in the STATUS column
(Exited (0)). We have manipulated a dead container by copying a file inside it.
Therefore, containers are still present in our host system until we remove them.

Now, we will remove the secondshell container and try to filter the container10.
list's output. We will search for the secondshell and myalpineshell
containers:

[vagrant@standalone ~]$ docker container rm secondshell
secondshell

Running Docker Containers Chapter 3

[143]

[vagrant@standalone ~]$ docker container ls --all --filter
name=myalpineshell --filter name=secondshell
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aa73504ba372 alpine "/bin/sh" 59 minutes ago Exited (0) 45 minutes
ago myalpineshell

As expected, we only get the myalpineshell container.

To finish this lab, we will start the myalpineshell container once more using11.
docker container start -a -i to attach our Terminal to the started
container. Then, we will send the container to the background using the Ctrl + P +
Q escape sequence. Finally, we will attach a second shell to the container using
the docker container exec command:

[vagrant@standalone ~]$ docker container start -a -i myalpineshell
<PRESS Ctrl+p+q>
/ # read escape sequence

[vagrant@standalone ~]$ docker container exec -ti myalpineshell sh
/ # ps -ef
PID USER TIME COMMAND
 1 root 0:00 /bin/sh
 6 root 0:00 sh
 11 root 0:00 ps -ef
/ # exit

We can observe that exiting from the newly executed shell process does not kill
the myalpineshell container. Both processes share the same namespaces:

[vagrant@standalone ~]$ docker container ls --all --filter
name=myalpineshell
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aa73504ba372 alpine "/bin/sh" About an hour ago Up 4 minutes
myalpineshell

Limiting container resources
In this lab, we are going to use the frjaraur/stress-ng:alpine image from Docker
Hub. This image is based on Alpine Linux with the stress-ng packages installed. It is
small and will help us stress our containers.

Running Docker Containers Chapter 3

[144]

We will start with testing memory limits. In this lab, we will use two Terminals on the same
host. On the first Terminal, we will launch docker container stats. Keep this running
during all these labs because, in this Terminal, we are going to observe different behaviors.

In the second Terminal, we will launch two containers that will try to consume 2 GB of
memory. We will use --vm 2 --vm-bytes 1024M to create two processes with 1,024 MB
of memory in each:

We are going to launch a container with a memory reservation. This means that1.
the Docker daemon will reserve at least that amount of memory for this
container. Remember that this is not a limit; it is a reservation:

[vagrant@standalone ~]$ docker container run --memory-
reservation=250m --name 2GBreserved -d frjaraur/stress-ng:alpine --
vm 2 --vm-bytes 1024M
b07f6319b4f9da3149d41bbe9a4b1440782c8203e125bd08fd433df8bac91ba7

Now, we will launch a limited container. Only 250 MB of memory will be2.
allowed, although the container will try to consume 2 GB:

[vagrant@standalone ~]$ docker container run --memory=250m --name
2GBlimited -d frjaraur/stress-ng:alpine --vm 2 --vm-bytes 1024M
e98fbdd5896d1d182608ea35df39a7a768c0c4b843cc3b425892bee3e394eb81

In the first Terminal, we have docker container stats running to review our3.
container's resource consumption. We will have something like this (IDs and
usage will vary):

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O
PIDS
b07f6319b4f9 2GBreserved 203.05% 1.004GiB / 11.6GiB 8.65% 6.94kB /
0B 0B / 0B 5
e98fbdd5896d 2GBlimited 42.31% 249.8MiB / 250MiB 99.94% 4.13kB / 0B
1.22GB / 2.85GB 5

If you obtain a warning message about limiting resources, this is normal.
The WARNING: Your kernel does not support swap limit
capabilities or the cgroup is not mounted. Memory limited

without swap. message indicates that your operating system will not
limit swap for containers. It comes disabled by default on Debian/Ubuntu.

Running Docker Containers Chapter 3

[145]

We can observe that the non-limited container is taking more than the specified
memory. In the second case, the container was limited to 250 MB, although the
process could consume more, it was limited and it will not get more than this
memory. It is confined to 250 MB, as we can observe in the MEM USAGE/LIMIT
MEM column. It could reach 100% of its confined memory, but it cannot surpass
that limit.

Remove the 2GBreserved and 2GBlimited containers:4.

[vagrant@standalone ~]$ docker container rm -f 2GBlimited
2GBreserved
2GBlimited
2GBreserved

Now, we will limit the CPU consumption.

We will launch three containers with different CPU limitations and process5.
requirements. The first container is limited to one CPU, but with two CPU
requirements. This is not a genuine requirement, but the process will try to use
two CPUs if they are present in this system:

[vagrant@standalone ~]$ docker container run -d --cpus=1 --name
CPU2vs1 frjaraur/stress-ng:alpine --cpu 2 --timeout 120

The second container is limited to two CPUs with a requirement of two CPUs. It
will try to use both during execution:

[vagrant@standalone ~]$ docker container run -d --cpus=2 --name
CPU2vs2 frjaraur/stress-ng:alpine --cpu 2 --timeout 120

The third container is limited to four CPUs with two CPUs required. In this case,
the processes could consume four CPUs, but as they will just use two CPUs, they
will not have a real limitation unless we try to use more than four CPUs:

[vagrant@standalone ~]$ docker container run -d --cpus=4 --name
CPU2vs4 frjaraur/stress-ng:alpine --cpu 2 --timeout 120

If we observe the Docker container's stats output, we can confirm the expected6.
results:

CONTAINER ID NAME CPU % MEM
USAGE / LIMIT MEM % NET I/O BLOCK I/O
PIDS
0dc652ed28b0 CPU2vs4 132.47%
7.379MiB / 11.6GiB 0.06% 4.46kB / 0B 0B /
0B 3

Running Docker Containers Chapter 3

[146]

ec62ee9ed812 CPU2vs2 135.41%
7.391MiB / 11.6GiB 0.06% 5.71kB / 0B 0B /
0B 3
bb1034c8b588 CPU2vs1 98.90%
7.301MiB / 11.6GiB 0.06% 7.98kB / 0B 262kB
/ 0B 3

With that, we have reviewed how we can limit the container's resources. We tested CPU
and memory usage with docker container stats, pushing them to their defined limits.

Now, let's review formatting and filtering with some labs.

Formatting and filtering container list output
In this lab, we will review the docker container ls output. Let's get started:

Launch a number of containers. For this example, we will run three1.
nginx:alpine instances with sequence names:

[vagrant@standalone ~]$ docker run -d --name web1 --label
stage=production nginx:alpine
bb5c63ec7427b6cdae19f9172f5b0770f763847c699ff2dc9076e60623771da3

[vagrant@standalone ~]$ docker run -d --name web2 --label
stage=development nginx:alpine
4e7607f3264c52c9c14b38412c95dfc8c286835fd1ffab1d7898c5cfab47c9b8

[vagrant@standalone ~]$ docker run -d --name web3 --label
stage=development nginx:alpine
fcef82c80ed0b049705609885bc9c518bf062a39bbe2b6d68b7017bcc6dcaa14

Let's list the running containers using the docker container ls default2.
output:

[vagrant@standalone ~]$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
fcef82c80ed0 nginx:alpine "nginx -g 'daemon of…" About a minute
ago Up 59 seconds 80/tcp web3
4e7607f3264c nginx:alpine "nginx -g 'daemon of…" About a minute
ago Up About a minute 80/tcp web2
bb5c63ec7427 nginx:alpine "nginx -g 'daemon of…" About a minute
ago Up About a minute 80/tcp web1

Running Docker Containers Chapter 3

[147]

Since we want to be able to review the current status of the containers, we can3.
format the output so that it includes label information:

[vagrant@standalone ~]$ docker container ls \
--format "table {{.Names}} {{.Command}}\\t{{.Labels}}"

NAMES COMMAND LABELS
web3 "nginx -g 'daemon of…" maintainer=NGINX Docker Maintainers
<docker-maint@nginx.com>,stage=development
web2 "nginx -g 'daemon of…" stage=development,maintainer=NGINX
Docker Maintainers <docker-maint@nginx.com>
web1 "nginx -g 'daemon of…" stage=production,maintainer=NGINX
Docker Maintainers <docker-maint@nginx.com>

Now, let's filter just the development containers (stage=development):4.

[vagrant@standalone ~]$ docker container ls --format "table
{{.Names}} {{.Command}}\\t{{.Labels}}" --filter
label=stage=development
NAMES COMMAND LABELS
web3 "nginx -g 'daemon of…" maintainer=NGINX Docker Maintainers
<docker-maint@nginx.com>,stage=development
web2 "nginx -g 'daemon of…" maintainer=NGINX Docker Maintainers
<docker-maint@nginx.com>,stage=development

Now, let's kill just those development containers using the list output:5.

[vagrant@standalone ~]$ docker container kill $(docker container ls
--format "{{.ID}}" --filter label=stage=development)

[vagrant@standalone ~]$ docker container ls --format "table
{{.Names}}\\t{{.Labels}}"
NAMES LABELS
web1 maintainer=NGINX Docker Maintainers <docker-
maint@nginx.com>,stage=production

Only web1, labeled as production, is still running as expected.

Filtering and formatting are very useful. Practice these methods because they are important
for the Docker Certified Associate exam.

Running Docker Containers Chapter 3

[148]

Summary
This chapter was dedicated to the Docker command line and running containers. We found
a powerful command line that allowed us to create containers from image artifacts, share
them between hosts, and execute the already built application components.

We learned how to interact with different Docker objects, as well as what kind of objects are
available in standalone Docker host environments and what objects are available in
orchestrated environments.

We then reviewed how containers can be created, executed, paused/unpaused, and stopped
or killed. They will stay in our Docker host until they are removed from the system. We
also learned how to manipulate the container's execution behavior and how they exist
within the network. To improve security, we introduced a number of options and we also
learned how executing containers in read-only mode can be very useful.

Limiting the container's resources is necessary for production. By default, they will be able
to consume all the host's resources, which can be very dangerous. We learned how to avoid
this situation using soft and hard limits to ensure that our applications will run on a host
with enough resources and does not disturb others.

Formatting and filtering specific information is needed while deploying applications on
dynamic environments. We learned how format and filter actions will help us retrieve
specific information.

We concluded this chapter by learning how to use a host's devices as if they were attached
directly to containers.

In the next chapter, we will look at container persistency and their networking features.

Questions
 Which of the following options is not available for containers?1.

a) build
b) update
c) destroy
d) create

Running Docker Containers Chapter 3

[149]

Which of the following sentences is false?2.

a) A container's life is managed using start and stop commands
b) Containers always stop after 10 seconds
c) Containers can be created and then started
d) Volumes created during the container's lifetime must be deleted by hand
unless we use the -v option when deleting the container

Which of the following sentences is true in relation to docker kill?3.

a) It will kill all container processes
b) It will send a SIGKILL signal to the container's main process
c) It will remove the container once it is killed
d) It will wait 10 seconds by default before really killing the container

We executed a container named webserver. Which of the following sentences is4.
false?

a) It can be removed using docker container rm --force
b) We can update its image using docker container update
c) We can rename the webserver container to websrv using docker
container rename

d) We can view the container's output using docker container logs

 We have executed the docker container run --name app1 --user 10005.
--memory 100m --privileged alpine touch /testfile command.
Which of the following sentences are true?

a) /testfile was created as root because the container was executed with
all capabilities.
b) The container will not be able to consume more than 100 m of host
memory.
c) /testfile was not created because we used a user with an ID of 1000
and it will not be able to write on /, the root directory.
d) We used --privileged. This option will disable all root capabilities
inside the container and, as a result, the file can't be created.

Running Docker Containers Chapter 3

[150]

Further reading
Refer to the following links to find out more about the topics that were covered in this
chapter:

Docker command-line reference: https:/ / docs. docker. com/ engine/ reference/
commandline/ docker/

Memory limits behavior: https:/ /medium. com/ faun/ understanding- docker-
container- memory- limit- behavior- 41add155236c

https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c
https://medium.com/faun/understanding-docker-container-memory-limit-behavior-41add155236c

4
Container Persistency and

Networking
 Containers are processes that run on a host. This seems very simple, but how will this
work on a pool of nodes? If we are looking for high availability, being able to run our
containers on any host from a pool will ensure execution everywhere. But this approach
requires some special logic in our applications. Our applications must be completely
portable and avoid friction and dependencies on any host. Applications with many
dependencies are always less portable. We need to find a way to manage status data for
containers. We will review different persistence strategies in this chapter.

On the other hand, the aforementioned pool of hosts must be able to communicate with all
containers. In this chapter, we will learn about basic standalone host networking and
introduce advanced cluster-orchestrated networking concepts.

In this chapter, we will cover the differences between stateless and stateful applications,
how volumes work and how can we use them, and how the Docker daemon provides
networking on standalone environments. We'll also consider interactions between
containers and how to publish services provided by processes running within containers.

The following topics will be covered in this chapter:

Understanding stateless and stateful containers
Learning about different persistence strategies
Networking in containers
Learning about container interactions
Publishing applications

Let's get started!

Container Persistency and Networking Chapter 4

[152]

Technical requirements
In this chapter, we will learn about Docker volumes and networking concepts. We'll
provide some labs at the end of this chapter that will help you understand and learn about
the concepts shown. These labs can be run on your laptop or PC using the provided
Vagrant standalone environment or any already deployed Docker host of your own. You
can find additional information in this book's GitHub repository: https:/ / github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. git

Check out the following video to see the Code in Action:

"https://bit.ly/ 34DJ3V4"

Understanding stateless and stateful
containers
Portability is key in modern applications because they should run in every environment
(on-premises or the cloud). Containers are prepared for these situations. We will also seek
the high availability of applications in production, and containers will help us here too.

Not all applications are ready for containers by default. Processes' states and their data are
difficult to manage inside containers.

In Chapter 1, Modern Infrastructures and Applications with Docker, we learned that containers
are not ephemeral. They live in our hosts. Containers are created, executed, and stopped or
killed, but they will remain in our host until they are deleted. We can restart a previously
stopped container. But this is only true in standalone environments because all information
resides under the host data path-defined directory (/var/lib/docker
and C:\ProgramData\docker by default on Linux and Windows, respectively). If we
move our workloads (that is, our application components running as containers) to another
host, we will not have their data and state there. What happens if we need to upgrade their
image versions? In that case, we could run a new container and everything will be
recreated again. We can launch a new container, but we need to maintain all application
data.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4
https://bit.ly/34DJ3V4

Container Persistency and Networking Chapter 4

[153]

Previously, we introduced volumes as a method used to bypass the internal filesystem of
containers and their life cycles. Everything inside a volume is, in fact, outside of the
container's filesystem. This will help us with application performance using direct access to
a host's devices' but it will also keep data. Volumes will persist even when containers are
removed (unless we use --volumes or -v on removal). Therefore, volumes will help us
maintain application data locally, but how about execution on other Docker hosts? We can
share images, but a container's associated data will not be there unless we can also share
volumes between them.

Under these circumstances, stateless processes – those that do not require any kind of
persistent data to work – are easier to manage. These processes are always candidates to
run within containers.

And what about stateful processes – those using persistent data between executions? We
have to take care in this case. We should provide external volumes or databases to store the
process's state and its required data. These concepts are very important when we design
microservice-based application architectures.

Let's deep dive into how volumes work.

Learning how volumes work
Previously, we learned how to define volumes in images to simply bypass a container's
filesystem. Here is a simple Dockerfile definition showing a defined volume (this is an
excerpt from the PostgreSQL database official image):

FROM alpine:3.10
RUN set -ex; \
 postgresHome="$(getent passwd postgres)"; \
 postgresHome="$(echo "$postgresHome" | cut -d: -f6)"; \
 ["$postgresHome" = '/var/lib/postgresql']; \
 mkdir -p "$postgresHome"; \
 chown -R postgres:postgres "$postgresHome"
...
...
RUN mkdir -p /var/run/postgresql && chown -R postgres:postgres
/var/run/postgresql && chmod 2777 /var/run/postgresql
ENV PGDATA /var/lib/postgresql/data
RUN mkdir -p "$PGDATA" && chown -R postgres:postgres "$PGDATA" && chmod 777
"$PGDATA"

VOLUME /var/lib/postgresql/data

COPY docker-entrypoint.sh /usr/local/bin/

Container Persistency and Networking Chapter 4

[154]

ENTRYPOINT ["docker-entrypoint.sh"]
EXPOSE 5432
CMD ["postgres"]

We have omitted many lines because we just want to review the VOLUME definition. In this
case, all data stored under the /var/lib/postgresql/data directory will be outside of
the container's filesystem. This is an unnamed volume definition and it will be identified in
our system by a random ID when we run a container using this image. It was defined for
bypassing copy-on-write filesystems. Every time we create or run a new container, a new
random identifier volume will be created. These volumes should be removed manually or
by using the --volume or -v options when we remove their associated containers.

Now, it is time to define the different volumes types we can have on Docker:

Unnamed volumes: These are the volumes that are defined on images and
therefore created using random identifiers. It is hard to track them on local
filesystems because they are unnamed. As volumes can grow very fast,
depending on your application, it is very important to check for volume
definitions before running any image on your local system. Remember that
unnamed volumes will grow under your Docker data root path, wherever it is.
Named volumes: These are the volumes we create manually. As we learned in
Chapter 1, Modern Infrastructures and Applications with Docker, volumes are
Docker objects and we have some actions to control them. In this chapter, we will
learn about their associated actions and how to use them. These volumes will be
located under the data root path also, but we can use different plugins or drivers
to create them. Drivers will allow local or remote volumes, via NFS for example.
In these cases, what we will have under the data root path is a link to the real
mounted remote filesystem. Consequently, these volumes will not consume local
storage if they are remote.
Localhost directories or files: In this case, we will use host directories and files
inside containers. We usually refer to these volumes as bind mounts. We must
take care of file and directory permissions because we can also use any special
file inside containers (including devices). Adding permissions that are too open
will give users access to your host's devices. They will require appropriate
process capabilities and permissions. It is important to understand that Docker
does not care about how block devices, directories, and filesystems are mounted
on the Docker host. They will be used always as if they were locally available.
Bind mounts will not be listed as volumes.

Container Persistency and Networking Chapter 4

[155]

tmpfs volumes: This kind of volume is temporal. They will only persist in the
host memory. When the container stops, the volume will be removed. Files inside
them will not persist.

All kinds of volumes can be mounted in read-only mode inside
containers. This is very important and useful when volume data shouldn't
be modified by running processes, for example, when serving static web
content. We can have containers that should be able to modify data and
others that will only read and serve this modified data using read-only
mode.

Named volumes or bind mounts will retain data. Unnamed volumes will be created with
new containers. Keep this in mind. If we need to provide some data to an unnamed
volume, it should be done when the container starts. We can also define a procedure in the
image definition. This concept is very important as the position of the VOLUME definition in
Dockerfiles matters. As we learned in Chapter 2, Building Docker Images, image creation is
based on a sequence of container executions. If we add a volume for a specific path, all
subsequent executions will not retain data in that directory. The building process will
create a new unnamed volume on each new container and content will not be used between
executions.

Learning about volume object actions
Volumes can be created, used, and removed. We will also be able to inspect all their
properties. The following table shows the actions that are allowed for volume objects:

Objects Actions

create

We are able to create named volumes. We can add labels for filtering the listing
output, as we learned in previous chapters. We can specify the driver to be used
for creating a new volume. By default, volumes will use a local driver. This
driver will create directories under the volumes directory. Each new volume will
have its own directory containing the required meta-information and
a _data subdirectory. This directory contains all files added to the volume. As
we mentioned previously, some drivers will provide host external storage
resources. Linked directories will provide connection information instead of their
data.
We will use --driver to specify a driver other than local. The --opt or -o
arguments allow us to add required options for the specified driver. Each driver
will have its own special options.

Container Persistency and Networking Chapter 4

[156]

inspect
All objects can be inspected. In this case, the inspect action will provide
information about the object's location, the driver used, and the labels provided.

ls
We can list all volumes using the ls action. Almost all filtering and formatting
options learned throughout this book can be applied. Formatting will also
depend on a given volume's properties.

prune
The prune option will help us with volume housekeeping. It will remove all
created volumes not used by any container. It will not delete any bind mount
because they are not really treated as volumes.

rm

We can remove volumes using the rm action. It is important to note that volumes
attached to existing containers cannot be removed. Containers should be
removed before volumes. Alternatively, you can use the --volumes option on
container removal.

Now, let's introduce how containers use volumes.

Using volumes in containers
First, we will start with unnamed volumes. These are volumes defined in a container's
images. As we mentioned previously, always review images before execution. If we run an
application that stores a huge amount of data on a predefined unnamed volume, our
Docker host can run out of disk space. It is very important to review what image will run
and what resources will be required. If we take a quick view of the postgres:alpine
image (the PostgreSQL database image based on Alpine Linux), for example, we will find a
volume definition (we first pull the postgres:alpine image from Docker Hub):

$ docker image pull --quiet postgres:alpine
docker.io/library/postgres:alpine

$ docker image inspect postgres:alpine --format "{{ .Config.Volumes }} "
map[/var/lib/postgresql/data:{}]

As we can see, postgres:alpine will define an unnamed volume to bypass the copy-on-
write container filesystem to allow a process to write or modify any content under
the /var/lib/postgresql/data directory.

Let's create a container named mydb using the postgres:alpine image:

$ docker container run -d --name mydb postgres:alpine
e1eb5e5df725541d6a3b31ee86746ab009251c5292b1af95b22b166c9d0922de

Container Persistency and Networking Chapter 4

[157]

Now, we can inspect the mydb container, looking for its mount points (identifiers will be
different in your system):

$ docker container inspect mydb --format "{{ .Mounts }} "
[{volume c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f
/var/lib/docker/volumes/c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60
334522281d76f/_data /var/lib/postgresql/data local true }]

Using the obtained volume identifier, we can review its properties:

$ docker volume inspect
c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f
[
 {
 "CreatedAt": "2019-11-03T19:20:59+01:00",
 "Driver": "local",
 "Labels": null,
 "Mountpoint":
"/var/lib/docker/volumes/c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db6
0334522281d76f/_data",
 "Name":
"c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f",
 "Options": null,
 "Scope": "local"
 }
]

The output shows where this volume is mounted on our host
(/var/lib/docker/volumes/c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d1
7db60334522281d76f/_data) and what container is using it that it's mounted on
(/var/lib/postgresql/data).

If we take a look at
the /var/lib/docker/volumes/c888a831d6819aea6c6b4474f53b7d6c60e085efaa30
d17db60334522281d76f/_data directory, we can list all PostgreSQL database data files
(notice in the following log that the directory is owned by root, so root access will be
required):

$ sudo ls -lart
/var/lib/docker/volumes/c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60
334522281d76f/_data
total 64
drwxr-xr-x 3 root root 19 nov 3 19:20 ..
-rw------- 1 70 70 3 nov 3 19:20 PG_VERSION
drwx------ 2 70 70 6 nov 3 19:20 pg_twophase
...
...

Container Persistency and Networking Chapter 4

[158]

-rw------- 1 70 70 94 nov 3 19:20 postmaster.pid
drwx------ 2 70 70 25 nov 3 19:42 pg_stat_tmp

Notice that files and directories are owned by userid (70) and groupid
(70). This is because the container's main process is not running under the
root user and, as a result, all files created by the PostgreSQL process will
be owned by an internal postgres:postgres user, whose ID may be
different or even may not exist on our host. This is the ID used within the
container.

Let's stop the mydb container and check our volume. You will see that the volume is still in
our system:

$ docker container stop mydb
 mydb

$ docker volume ls --filter
name=c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f
 DRIVER VOLUME NAME
 local c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f

Again, we can start our mydb container and it will reuse its volume data. If we had added
data to this database, we would still be able to access it, because the volume persists our
data.

Now, let's remove the mydb container:

$ docker container rm mydb
mydb

We can verify that the volume is still under /var/lib/docker/volumes:

$ docker volume ls --filter
name=c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f
DRIVER VOLUME NAME
local c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f

Volumes survive containers unless we use --volume to remove them with its associated
container. We can also reuse volume content with other containers. But unnamed
containers are not easy to manage because they are identified only by a digest. We will
remove this volume:

$ docker volume rm
c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f
c888a831d6819aea6c6b4474f53b7d6c60e085efaa30d17db60334522281d76f

Container Persistency and Networking Chapter 4

[159]

Now, let's create a volume named mydata:

$ docker volume create mydata
mydbdata

In this case, we can create a new container using this volume and its content will be
available for our new process.

It is important to understand that the VOLUME definition in an image is not
required to use volumes on containers. But they will help us understand
what directories should be managed out of the container filesystem. Good
container images will define the directories where persistent data should
be stored.

Docker containers can mount volumes using two different options in terms of container
creation or execution:

--volume

or -v

We will use this option with three arguments, separated by :. We will use the
last argument to declare what type of access will be provided (read-only or
read-write). The second argument will indicate the container's directory or file
where the volume will be mounted within the container. The first argument
will be different, depending on what type of resource we are using. If we are
using bind mounts, we will use them as a file or directory in the host. If we
are using named volumes, this argument will declare which volume will be
mounted inside the container.

There are other options for the third argument when using the --volume
option. In addition to read or write access, we can specify z or Z when we
use SELinux. If the volume is going to be shared between multiple
containers, we will use these options to declare the volume content as
private and unshareable.

--mount

This notation allows more arguments than --volume. We will use the key/value
format to declare multiple options. The available keys are as follows:
- type: Values available are bind, volume, or tmpfs.
- source (or src): This will describe the volume or host path.
- destination (or dst or target): This describes the path where the volume content
will be mounted.
- readonly: This identifies the access type for the volume content.

Container Persistency and Networking Chapter 4

[160]

There is only one difference between using the --volume and --mount
options. Using --volume will create the endpoint if we specify a path that
does not exist in the Docker host when using bind mounts, while --mount
will raise an error in this instance and it will not be created.

Now, we'll start an alpine container using the defined volume mounted in /data. We
named it c1 here. We will just touch a file under its /data directory:

$ docker container run --name c1 -v mydata:/data -ti alpine
/ # touch /data/persistent-file-test
/ # exit

After exiting the container, we can list the files under the mydata volume filesystem:

$ sudo ls -lart /var/lib/docker/volumes/mydata/_data
total 0
drwxr-xr-x 3 root root 19 nov 3 20:34 ..
-rw-r--r-- 1 root root 0 nov 3 20:44 persistent-file-test
drwxr-xr-x 2 root root 34 nov 3 20:44 .

Now, we can create a new container and reuse our previously created named
volume, mydata. In this example, we will mount it under /tmp:

$ docker container run --name c2 -v mydata:/tmp -ti alpine ls -lart /tmp
total 0
-rw-r--r-- 1 root root 0 Nov 3 19:44 persistent-file-test
drwxr-xr-x 2 root root 34 Nov 3 19:44 .
drwxr-xr-x 1 root root 6 Nov 3 19:48 ..

Now, both containers, c1 and c2, have mounted the mydata volume. Consequently, we
can't remove the mydata volume unless both are removed from the local system (even if we
use --force for removal):

$ docker volume rm mydata
Error response from daemon: remove mydata: volume is in use -
[a40f15ab8977eba1c321d577214dc4aca0f58c6aef0eefd50d6989331a8dc723,
472b37cc19571960163cdbcd902e83020706a46f06fbb6c7f9f1679c2beeed0e]

We will only be able to remove the mydata volume when both containers have been
removed:

$ docker container rm c1 c2
c1
c2

$ docker volume rm mydata
mydata

Container Persistency and Networking Chapter 4

[161]

Now, let's learn about some strategies and use cases for storing persistent data in
containerized environments.

Learning about different persistence
strategies
As we've already learned, there are different approaches to persistence in containers.
Choosing the right solution will depend on the use case or requirements of the
environment and our applications.

Local persistence
We will use local directories or files whenever we are deploying applications on isolated
and standalone Docker daemons. In this approach, you should take care of filesystem
permissions and secure module configurations. This strategy is quite interesting for
developers as they can run multi-container applications on their laptops using local source
code files inside containers. Therefore, all changes made on their local files will be synced
within the containers (in fact, they will not quite be synced; rather, they are the same files
that are mounted inside the container filesystem as a bind mount volume). We will review
some examples of this in the Chapter labs section. This solution will not provide high
availability.

Distributed or remote volumes
These are the preferred solutions for orchestrated environments. We should provide a pool
of distributed or remote storage endpoints to allow applications to run everywhere within
the cluster. Depending on your applications, volume speed could be key for deciding which
driver to use. We will also have different choices regarding cloud providers. But for
common use cases with static content, Network File System (NFS) will be fine. While it
would not be enough for databases or high I/O application requirements, locking filesystem
files is needed when we scale instances using shared resources. The Docker daemon will
not manage these situations as they are out of Docker's scope. Volume I/O and file
locking will really depend on the application logic and its architecture. Neither distributed
nor remote volume solutions will provide high availability. In fact, Docker doesn't really
know anything about storage. It just cares about volumes, no matter how storage was
implemented on your host.

Container Persistency and Networking Chapter 4

[162]

Volume drivers provide extensions to extend Docker's out-of-the-box features. The Docker
plugin system changed in version 1.12 of Docker. Therefore, we refer to old plugins as
legacy plugins, which are not managed using docker plugin actions. We can find a list of
legacy volume plugins at https:/ / docs. docker. com/ engine/ extend/ legacy_ plugins/
#volume-plugins. New plugins are always managed using docker plugin command-line
actions. These plugins may require special capabilities because they should be able to
execute privileged actions at the host system level. We will review a quick lab at the end of
this chapter, where we'll use the sshfs plugin.

These described use cases are closer to data management. But what about the application
state? This is usually managed using volumes, but it really depends on your application
architecture. One recommendation for new application development projects is to track the
application state out of containers or even volumes. This makes it easier to manage instance
replication when we need to scale up or down some components. But remember, it should
be managed at the application level. Docker will just manage how your containerized
application components run; it will not manage their application states or dependencies.

Now that we know how to manage container data and their states using persistent
volumes, let's get into networking features.

Networking in containers
We have already learned that containers are processes that run isolated on top of host
operating systems. This isolation is provided using different namespaces for users,
processes trees, inter-process communications, and a set of complete network resources for
each containerized process. Therefore, each container will have its own network interfaces.
To be able to communicate with the world, by default, the Docker daemon will create a
bridged interface called docker0. The Docker network plane has not changed too much in
the latest releases. It can be extended using external tools and plugins and is based on
bridged and virtual network interfaces that connect hosts and container resources.

By default, a fresh Docker installation will show three network objects:

$ docker network ls
 NETWORK ID NAME DRIVER SCOPE
 033e4c3f3608 bridge bridge local
 82faac964567 host host local
 2fb14f721dc3 none null local

https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins

Container Persistency and Networking Chapter 4

[163]

As we have already learned, all objects are identified by their unique ID. The Docker
network listing shows the network NAME (we can set our own network name), DRIVER (the
network type), and SCOPE columns (indicating where this network will be available). There
are different types of networks, according to which network driver containers will be used
to attach to that network.

Besides all common object actions such as create, list (using ls), inspect, and remove
(using rm or prune), networks also have connect and disconnect actions in order to
attach or detach containers to/from them.

Let's review some of the creation options before deep diving on each network type:

Option Description

--attachable
This option enables manual container attachment. It is not required for
locally scoped networks.

--aux-address

Using --aux-address, we can add a host and its addresses to this
network. For example, we can use --aux-
address="mygateway=192.168.1.10" to set a specific host-to-IP
mapping on the declared network. It is usually used on macvlan
networks.

--config-from

and
--config-only

We can create (or reuse previously created) network configurations. This
is very useful for building configurations using automation tools, for
example, on different hosts and being able to use them when needed.

--driver or -d
and
--opt

This option allows us to specify which driver to use. By default, we can
only use macvlan, none, host, and bridge. But we can extend Docker's
networking capabilities using other external plugins. We will use --opt
to customize the applied driver.

--gateway
We can overwrite the default gateway (the lower IP address of the
defined subnet, by default) and specify another IP address for this
purpose.

--ingress
This option will be used in cases where we want to create a special
Swarm vxLan network for internal service management.

--internal

This option is only available on overlay networks. We will only use it to
define internal networks because, by default, all overlay networks will be
attached to the docker_gwbridge bridge network (created automatically
when operating on a Swarm) to provide external connectivity.

--ip-range
Once we have configured a subnet, we can specify a range of IP
addresses to be used for containers.

Container Persistency and Networking Chapter 4

[164]

--ipam-driver

and
--ipam-opt

With these options, we can use an external IP address management
driver.

--ipv6 We will use this option to enable IPv6 on this network.

--label
With this, we can add metadata information to networks for better
filtering.

--scope
With this option, we declare the scope where the network will be created
for local or Swarm usage.

--subnet
This specifies a subnet in CIDR format that represents a network
segment.

Once created, network objects will exist until they are removed. But removal is only
possible when no containers are attached to them. It is important to understand that dead
containers will still have endpoints configured for existing networks and must, as a result,
be deleted before network removal. On the other hand, the prune action will remove all
unused networks.

Docker manipulates the iptables rules for you every time a network is created or some
connection or container process publication must be implemented. You can avoid this
feature, but we strongly recommend allowing the Docker daemon to manage these rules for
you. It is not easy to track unexpected behaviors and there will be many rules to manage.

Now that we have the basic create command options under our belts, let's look at the
different standard networks we can create.

Using the default bridge network
Bridge is the default network type for all containers. Any other network types must be
declared on container creation or execution using the --network optional parameter.

In operating system terms, we use bridged interfaces to allow forwarded traffic from other
virtual interfaces. All those virtual interfaces will use a physical interface, associated with
the bridge, to talk to other network devices or connected hosts. In the world of containers,
all container interfaces are virtual and they will be attached to these bridge interfaces at the
host level. Therefore, all containers attached to the same bridge interface will see each
other.

Container Persistency and Networking Chapter 4

[165]

Let's look at a quick example of using a bridge network:

We just run two containers, c1 and c2, attached to the default network (notice1.
that we have not defined any network at all):

zero@sirius:~$ docker container run -ti -d --name c1 alpine ping
8.8.8.8
c44fbefb96b9321ef1a0e866fa6aaeb26408fc2ef484bbc9ecf904546f60ada7

zero@sirius:~$ docker container run -ti -d --name c2 alpine ping
8.8.8.8
cee980d7f9e587357375e21dafcb406688ac1004d8d7984ec39e4f97533492ef

We find their IP addresses:2.

$ docker container inspect c1 --format "{{
.NetworkSettings.Networks.bridge.IPAddress }}"
172.17.0.2

$ docker container inspect c2 --format "{{
.NetworkSettings.Networks.bridge.IPAddress }}"
172.17.0.3

Consequently, we can ping each of them:3.

$ docker exec c1 ping -c 2 172.17.0.3
PING 172.17.0.3 (172.17.0.3): 56 data bytes
64 bytes from 172.17.0.3: seq=0 ttl=64 time=0.113 ms
64 bytes from 172.17.0.3: seq=1 ttl=64 time=0.210 ms
--- 172.17.0.3 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.113/0.161/0.210 ms

Let's quickly review some of the c1 container properties:4.

$ docker container inspect c1 --format "{{json
.NetworkSettings.Networks }}"
{"bridge":{"IPAMConfig":null,"Links":null,"Aliases":null,"NetworkID
":"033e4c3f360841b0826f3b850fe9f5544d145bea644ee1955717e67d02df92ce
","EndpointID":"390d2cf0b933ddd3b11fdebdbf6293c97f2a8568315c80794fa
d6f5b8eef3207","Gateway":"172.17.0.1","IPAddress":"172.17.0.2","IPP
refixLen":16,"IPv6Gateway":"","GlobalIPv6Address":"","GlobalIPv6Pre
fixLen":0,"MacAddress":"02:42:ac:11:00:02","DriverOpts":null}}

Container Persistency and Networking Chapter 4

[166]

Each container will have its own IP address and EndpointID. Let's inspect the 5.
bridge network's configuration (created by Docker by default):

$ docker network inspect bridge
[
 {
 "Name": "bridge",
 "Id":
"033e4c3f360841b0826f3b850fe9f5544d145bea644ee1955717e67d02df92ce",
 ...
 "IPAM": {
 ...
 "Config": [
 {
 "Subnet": "172.17.0.0/16",
 "Gateway": "172.17.0.1"
 }
]
 },
 ...
 "Containers": {
"c44fbefb96b9321ef1a0e866fa6aaeb26408fc2ef484bbc9ecf904546f60ada7":
{
 "Name": "c1",
 "EndpointID":
"390d2cf0b933ddd3b11fdebdbf6293c97f2a8568315c80794fad6f5b8eef3207",
 "MacAddress": "02:42:ac:11:00:02",
 "IPv4Address": "172.17.0.2/16",
 "IPv6Address": ""
 },
"cee980d7f9e587357375e21dafcb406688ac1004d8d7984ec39e4f97533492ef":
{
 "Name": "c2",
 "EndpointID":
"cb49b93bc0bdd3eb887ad3b6fcd43155eb4ca7688c788719a27acc9e2f2e2a9d",
 "MacAddress": "02:42:ac:11:00:03",
 "IPv4Address": "172.17.0.3/16",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade":
"true",
 "com.docker.network.bridge.host_binding_ipv4":
"0.0.0.0",
 "com.docker.network.bridge.name": "docker0",

Container Persistency and Networking Chapter 4

[167]

 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

Let's talk about some of the most important sections in this output:

This network is not using IPv6. It's called bridge, was created using the bridge
driver, and will only be available locally on this host.
It was created using the 172.17.0.0/16 subnet and consequently, all containers
on this network will get an IP address on this segment range.
The bridge interface has the IP address 172.17.0.1 and will be the default
gateway for all containers.
We have two running containers on this network. They are both listed under
the Containers section with their virtual MAC addresses, IP addresses, and
associated endpoints.
There are a number of options that can be used during network creation that are
of interest:

com.docker.network.bridge.default_bridge: true: This
means that this is the default bridge when no network is defined.
com.docker.network.bridge.enable_icc: true: This
parameter indicates that containers connected to this network can
talk to each other. We can disable this feature on custom bridges,
allowing just North-South traffic.
com.docker.network.bridge.name: docker0: This is the
name of the associated host interface.

When we refer to North-South traffic, we mean the type of communication
that goes out of the Docker host to the containers and vice versa. On the
other hand, East-West traffic is the traffic between different containers.
These are references to well-known network terms that are applied to
describe network traffic.

Container Persistency and Networking Chapter 4

[168]

Understanding null networks
Null or none networks are used when we need to deploy a container that should run
without any network interface. Although it might sound useless, there are many situations
where we may need to launch a task for executing a mathematical operation, compression,
or many other examples that don't require networking capabilities. In these cases, we just
need to use volumes and we really do not need any network operation. Using a null
network ensures that the task will only have access to its required resources. If it does not
require network access, do not provide it. By default, the container will use a bridge
network unless we specify none:

$ docker run -ti --network none alpine
/ # ip add
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen
1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
/ #

Now that we understand that containers can have a null interface to avoid networking, we
can look at the host's network namespace.

Understanding the host network
Host networking is only available on Linux hosts. This is important because it is an
important difference in Windows containers.

Using host networking, the container shares the host networking namespace. Therefore,
the container will get all host IP addresses, and every port that's used at the container level
will be set on the host. Consequently, no more than one container using a specific given
port will be allowed to run at a time. But, on the other hand, network performance is better
because container services are directly attached to host ports. There isn't any NAT or
firewall rule adaptation:

$ docker run -ti --network host alpine
/ # ip add
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen
1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

Container Persistency and Networking Chapter 4

[169]

2: enp0s25: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel
state DOWN qlen 1000
 link/ether 68:f7:28:c1:bc:13 brd ff:ff:ff:ff:ff:ff
3: wlp3s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
qlen 1000
 link/ether 34:02:86:e3:f6:25 brd ff:ff:ff:ff:ff:ff
 inet 192.168.200.165/24 brd 192.168.200.255 scope global dynamic wlp3s0
 valid_lft 51sec preferred_lft 51sec
 inet6 fe80::ee87:e44f:9189:f720/64 scope link
 valid_lft forever preferred_lft forever
...
...
10: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP
 link/ether 02:42:11:73:cc:2b brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:11ff:fe73:cc2b/64 scope link
 valid_lft forever preferred_lft forever
...
...
18: docker_gwbridge: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP
 link/ether 02:42:4b:21:09:6d brd ff:ff:ff:ff:ff:ff
 inet 172.18.0.1/16 brd 172.18.255.255 scope global docker_gwbridge
 valid_lft forever preferred_lft forever
 inet6 fe80::42:4bff:fe21:96d/64 scope link
 valid_lft forever preferred_lft forever
20: veth82a8134@if19: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue master docker_gwbridge state UP
 link/ether a6:5d:02:ed:79:0a brd ff:ff:ff:ff:ff:ff
 inet6 fe80::a45d:2ff:feed:790a/64 scope link
 valid_lft forever preferred_lft forever
22: veth4b1102e@if21: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue master docker0 state UP
 link/ether fa:08:70:aa:b1:4b brd ff:ff:ff:ff:ff:ff
 inet6 fe80::f808:70ff:feaa:b14b/64 scope link
 valid_lft forever preferred_lft forever
27: wwp0s20u4: <BROADCAST,MULTICAST,NOARP> mtu 1428 qdisc noop state DOWN
qlen 1000
 link/ether 06:1b:05:d6:e9:12 brd ff:ff:ff:ff:ff:ff
/ #

Container Persistency and Networking Chapter 4

[170]

Here, you can see that all host interfaces are listed because the container is using its
network namespace.

This networking mode is risky because we are allowing any kind of
communication on the containers. This should be used with care
in privileged mode. It is very common in monitoring tools or when we
run applications that require high levels of network interface
performance.

We can define our own network interfaces. We'll create custom bridge networks in the next
section.

Creating custom bridge networks
As we discussed in the default bridge network example, this networking type will be
associated with host bridge interfaces. By default, it is attached to docker0, but every time
we create a new bridge network, a new bridge interface will be created for us and all
attached containers will have a virtual interface linked to this one.

There are a few very important differences between a default bridge network and custom
created ones:

Custom bridge isolation: Each new custom bridge network created will have its
own associated bridge with its own subnet and host iptables. This feature
provides a higher level of isolation as only attached containers can talk to each
other. All other containers running on the same host will not see these containers
running on custom bridge networks.
Internal DNS: The Docker daemon provides a custom DNS for each custom
bridge network. This means that all containers running on the same network will
know each other by name. This is a very important feature because your service
discovery will not need any external source of knowledge. But remember that
this is valid only for internal usage within the network.

We can provide this kind of DNS resolution on default bridge networks
using the legacy --link functionality. This was the way of
interconnecting containers on old Docker releases. Nowadays, using
custom bridge networks is considered as providing better isolation.

Container Persistency and Networking Chapter 4

[171]

On-the-fly container attachment: In default bridge networks, we must provide
connectivity in terms of container creation or execution. Imagine that we used a
null or none network for a container and we want to attach it to a default bridge
network later – this is not possible. Once a container is created, it can't be
attached to a default bridge network later. It must be recreated from the
beginning with that network attachment. On the other hand, custom bridge
networks are attachable, which means that we can consider a situation where our
container was created without a specific attachment and can add it later. We can
also run a container with multiple interfaces on different custom networks, with
its name resolution.

Let's review a quick example. We will provide more detailed examples in the Chapter labs
section of this chapter:

$ docker network create --driver bridge --internal --subnet 192.168.30.0/24
--label internal-only internal-only
c275cdd25b422b35d3f2b4fbbb153e7cd09c8721133667cfbeb9c297af89364a

We review the created network properties (notice the defined subnet) and internal settings:

$ docker network inspect internal-only
[
 {
 "Name": "internal-only",
 "Id":
"c275cdd25b422b35d3f2b4fbbb153e7cd09c8721133667cfbeb9c297af89364a",
 "Created": "2019-11-10T11:03:20.490907017+01:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "192.168.30.0/24"
 }
]
 },
 "Internal": true,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,

Container Persistency and Networking Chapter 4

[172]

 "Containers": {},
 "Options": {},
 "Labels": {
 "internal-only": ""
 }
 }
]

Now, we create a container and test internet access:

$ docker container run --network internal-only -ti --name intc1 alpine sh
/ # ping 8.8.8.8 -c 2
PING 8.8.8.8 (8.8.8.8): 56 data bytes
--- 8.8.8.8 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss
/ #

Remember to use the Ctrl + P + Q shortcut to leave the intc1 container
running in the background.

You may have noticed that we do not have any egress connectivity. Let's review the
internal connectivity with another container:

$ docker container run --network internal-only -ti --name intc2 alpine sh
/ # ping intc1 -c2
PING intc1 (192.168.30.2): 56 data bytes
64 bytes from 192.168.30.2: seq=0 ttl=64 time=0.185 ms
64 bytes from 192.168.30.2: seq=1 ttl=64 time=0.157 ms
--- intc1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.157/0.171/0.185 ms
/ #

As shown in the preceding output, we have internal communication and DNS resolution,
but we are unable to talk to any other external IP address.

If we take a look at iptables, we can see that the creation of the internal network added
some very interesting rules to our local firewall. Executing iptables -L and avoiding all
non-Docker related rules, we can observe these rules:

Chain DOCKER (4 references)
target prot opt source destination
Chain DOCKER-ISOLATION-STAGE-1 (1 references)
target prot opt source destination
DOCKER-ISOLATION-STAGE-2 all -- anywhere anywhere

Container Persistency and Networking Chapter 4

[173]

DOCKER-ISOLATION-STAGE-2 all -- anywhere anywhere
DROP all -- !192.168.30.0/24 anywhere
DROP all -- anywhere !192.168.30.0/24
DOCKER-ISOLATION-STAGE-2 all -- anywhere anywhere
DOCKER-ISOLATION-STAGE-2 all -- anywhere anywhere
RETURN all -- anywhere anywhere

Chain DOCKER-ISOLATION-STAGE-2 (4 references)
target prot opt source destination
DROP all -- anywhere anywhere
DROP all -- anywhere anywhere
DROP all -- anywhere anywhere
DROP all -- anywhere anywhere
RETURN all -- anywhere anywhere

Chain DOCKER-USER (1 references)
target prot opt source destination
RETURN all -- anywhere anywhere

These are the rules that manage the internal network isolation we created previously.

We will examine some multi-interface examples toward the end of this chapter in the
Chapter labs section.

The MacVLAN network – macvlan
The MacVLAN driver assigns a virtual MAC address to each container interface.
Consequently, a container will be able to manage its own IP address on the real network.
To manage this type of network interface, we need to declare a host physical interface. As
containers will get their own MACs, we can use VLANs on these interfaces to provide
containers with access only to the defined VLAN. But note that in these cases, we will need
to assign all required VLANs to the macvlan assigned host interface.

The macvlan driver will only work on Linux hosts (with a kernel version
above 3.9; 4.0 is recommended). This kind of interface is usually blocked
on cloud providers.

As a result, we have described two different modes for macvlan:

Bridge mode: In this case (the default one), traffic will go through the defined
host physical interface.
802.1q trunk bridge mode: Traffic will go through an 802.1q VLAN interface,
created by the Docker daemon on network creation.

Container Persistency and Networking Chapter 4

[174]

In these networks, we usually use --aux-address to add existing nodes
or network devices to this newly created Docker network.

We have been reviewing different interfaces that are provided by Docker out of the box.
Now, let's continue our journey and understand how these communications happen at the
host level.

Learning about container interactions
There are two different types of communication in container environments:

Communication with the external world
Inter-container communications

We'll take a look at both of these in this section.

Communication with the external world
There are two features at the host level that are required to allow containers to talk to the
external world:

IP forwarding is required to allow packets from container IP addresses to go
outside the containerized environment. This is done at the kernel level and the
Docker daemon will manage the required parameters (the ip_forward kernel
parameter will be set to 1) to allow this strategy. We can change this default
behavior setting with --ip-forward=false in the daemon configuration. This
forwarding is required for all kinds of communications between containers in
general.
iptables will manage the required rules to strictly allow only required
communications once forwarding is enabled. We can manually set iptables
rules, instead of allowing the Docker daemon to take care of these settings, using
the --iptables=false option in the daemon configuration. It is recommended
to allow the Docker daemon to manage these rules unless you are sure of what
changes to implement. Docker will only manage DOCKER and DOCKER-
ISOLATION filter chains and we are able to manage custom rules in the DOCKER-
USER chain.

Container Persistency and Networking Chapter 4

[175]

By default, Docker forwards all packets and permits all external source IP addresses. If we
need to allow only required IP addresses, we can add custom rules to DROP all non-
permitted communications.

Inter-container communications
We can also manage inter-container communications with IP forwarding and iptables.
As we've already learned, we can use --internal on network creation to only allow
internal communications. Any other communication out of this defined subnet will be
dropped.

On the other hand, we can disallow any inter-container communication by applying --
icc=false. This option manages the internal interaction within containers linked to the
same bridge. If we set this parameter to false, no inter-container communication will be
allowed, even if they are running on the same subnet. This is the most secure network
configuration because we can still allow specific communications using the --link option.
Container links will create special iptables rules to allow these specific communications.

DNS on custom bridge networks
We've already learned that custom bridge networks own an internal DNS. This means that
any container interaction can be managed using container names. This internal DNS will
always run on 127.0.0.11. We can modify some of its features, such as adding new hosts,
for example.

Let's review some of the common features that can easily be manipulated to improve
application discovery and interactions:

Features Description

--network-alias=ALIAS
This option allows us to add another internal DNS
name to a container.

--link=CONTAINER_NAME:ALIAS

We have been talking about the link option for legacy
environments. It is also a way to allow specific
communications when no container interaction is
allowed by default. This option will also add an entry
to the internal DNS to allow the resolution of
CONTAINER_NAME as a defined ALIAS. This use case is
different to --network-alias because it is used on
different containers.

Container Persistency and Networking Chapter 4

[176]

--dns,
--dns-search,
and --dns-option

These options will manage forwarded DNS resolution
in cases where an internal DNS cannot resolve a
defined name. We can add a forwarder DNS, with its
specific options to allow or disallow external searches
for some containers. This will help us use different
name resolutions to access internal or external
applications.

Now that we have learned about the different interfaces that are available and how
communications work at the host system level, let's go ahead and learn how applications
will be accessed from the client side. We have just introduced iptables as a mechanism to
gain that access automatically when deploying containers on different networks. In the next
section, we will deep dive into publishing application methods for standalone Docker
hosts.

Publishing applications
By default, all container processes are isolated from outside access. This means that
although we had defined a port for the process service (using EXPOSE on images), it will
not be accessible unless we declare it publicly available. This is a great security measure.
No external communication will be allowed until it is specifically declared. Only containers
attached to the same bridged network or host, using its host internal IP (attached to the
bridge), will be able to use the process service.

Let's review a quick example using the nginx:alpine base image. We know that
nginx:alpine exposes port 80:

$ docker container run -d --name webserver nginx:alpine
4a37b49721b4fe6ffc57aee07c3fb42e5c08d4bcc0932e07eb7ce75fe696442d

$ docker container inspect webserver --format "{{json
.NetworkSettings.Networks.bridge.IPAddress }}"
"172.17.0.4"

$ curl http://172.17.0.4
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;

Container Persistency and Networking Chapter 4

[177]

 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>

Our host IP on the default bridge network is 172.17.0.1 in this case, and we can reach
container port 80, but no other host will be able to reach this port. It is exposed internally
by a webserver container.

To publish a port exposed internally, we need to declare it during container creation or
execution using the --publish or -p parameters.

We will use --publish [HOST_IP:][HOST_PORT:]CONTAINER_PORT[/PROTOCOL] for
this. This means that the only required argument is the container port. By default, the TCP
protocol and a random port between 32768 and 65000 will be used, and the port will be
publicly published on all host IP addresses (0.0.0.0). We can also use -P to publish all
ports exposed in a given container's image definition.

If we need to declare a UDP application publication, we need to specify this protocol.

Host mode networking does not require any publication of ports because
any exposed container process will be accessible from outside.

We can declare a range of ports in the form --publish StartPort-
EndPort[/PROTOCOL] to publish more than one port.

Container Persistency and Networking Chapter 4

[178]

For security reasons, it is important to use a specific IP address on multi-homed hosts in
order to only allow access to specified IP addresses:

$ docker container run -d --name public-webserver --publish 80 nginx:alpine
562bfebccd728fdc3dff649fe6ac578d52e77c409e84eed8040db3cfc5589e40

$ docker container ls --filter name=public-webserver
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
562bfebccd72 nginx:alpine "nginx -g 'daemon of…" About a minute ago Up
About a minute 0.0.0.0:32768->80/tcp public-webserver

$ curl http://0.0.0.0:32768
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

We will see more examples of this in the next section.

Chapter labs
This chapter was dedicated to learning how to manage stateful environments and the
magic behind container networking. Now, let's complete some labs to review what we've
learned. For these labs, we will use a CentOS Linux host with a Docker engine installed.

Container Persistency and Networking Chapter 4

[179]

Deploy environments/standalone-environment from this book's GitHub repository
(https://github.com/ PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide.
git) if you have not done so yet. You can use your own CentOS 7 server. Use vagrant up
from the environments/standalone-environment folder to start your virtual
environment.

If you are using a standalone environment, wait until it is running. We can check the
statuses of our nodes using vagrant status. Connect to your lab node using vagrant
ssh standalone. standalone is the name of your node. You will be using the vagrant
user with root privileges using sudo. You should have the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
up
Bringing machine 'standalone' up with 'virtualbox' provider...
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
status
Current machine states:
standalone running (virtualbox)
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$

We can now connect to the standalone node using vagrant ssh standalone. This
process may vary if you deployed a standalone virtual node previously and you just started
it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
ssh standalone
[vagrant@standalone ~]$

If you are reusing your standalone environment, this means Docker Engine is installed. If
you started a new instance, please execute the /vagrant/install_requirements.sh
script so that you have all the required tools (Docker Engine and docker-compose):

[vagrant@standalone ~]$ /vagrant/install_requirements.sh

Now, you are ready to start the labs.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Container Persistency and Networking Chapter 4

[180]

Using volumes to code on your laptop
In this lab, we will run a container with our application code inside. As the application is
created using an interpreted language, any change or code modification will be refreshed
(we added debugging to reload the application on each change using debug=True):

We've created a simple Python Flask application for you. The following is the1.
content of the app.py file:

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')

def just_run():
 return render_template('index.html')

if __name__ == '__main__':
 app.run(debug=True,host='0.0.0.0')

We only require the Flask Python module, so we will only have one line in2.
our requirements.txt file:

Flask

We will use a simple template HTML file under templates/index.html with3.
this content:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple Flask Application</title>
</head>
<body>
 <h1>Simple Flask Application</h1>
 <h1>Version 1</h1>
</body>
</html>

Container Persistency and Networking Chapter 4

[181]

We will run this application inside a container. We will create a Dockerfile and4.
build an image called simpleapp, with a tag of v1.0. This is the content of the
Dockerfile:

FROM python:alpine
WORKDIR /app
COPY ./requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY app.py .
COPY templates templates
EXPOSE 5000
CMD ["python", "app.py"]

Let's build our application image (simpleapp:v1.0):5.

[vagrant@standalone ~]$ docker image build -q -t simpleapp:v1.0 .
sha256:1cf398d39b51eb7644f98671493767267be108b60c3142b3ca9e0991b4d3
e45b

We can run this simple application by executing a detached container6.
exposing port 5000:

[vagrant@standalone ~]$ docker container run -d --name v1.0
simpleapp:v1.0
1e775843a42927c25ee350af052f3d8e34c0d26f2510fb2d85697094937f574f

Now, we can review the container's IP address. We are running this container in7.
a host, which means we can access the process port and defined IP address:

[vagrant@standalone ~]$ docker container ls --filter name=v1.0
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1e775843a429 simpleapp:v1.0 "python app.py" 35 seconds ago Up 33
seconds 5000/tcp v1.0
 "python app.py" 35 seconds ago Up 33 seconds 5000/tcp v1.0

[vagrant@standalone ~]$ docker container inspect v1.0 \
 --format "{{.NetworkSettings.Networks.bridge.IPAddress }}"

172.17.0.6

We can access our application as expected using the container's defined IP and8.
port:

[vagrant@standalone ~]$ curl http://172.17.0.6:5000
<!DOCTYPE html>
<html lang="en">
<head>

Container Persistency and Networking Chapter 4

[182]

 <meta charset="UTF-8">
 <title>Simple Flask Application</title>
</head>
<body>
 <h1>Simple Flask Application</h1>
 <h1>Version 1</h1>
</body>
</html>

It is simple to change index.html if we get into the container. The problem is9.
that when we run a new container, changes will not be stored and
index.html will be lost. Every time, we will get index.html defined in the
base image. As a result, if we want changes to persist, we need to use volumes.
Let's use a bind mount to change the index.html file while the container is
running:

[vagrant@standalone ~]$ docker container run -d \
--name v1.0-bindmount -v $(pwd)/templates:/app/templates
simpleapp:v1.0

fbf3c35c2f11121ed4a0eedc2f47b42a5ecdc6c6ff4939eb4658ed19999f87d4

[vagrant@standalone ~]$ docker container inspect v1.0-bindmount --
format "{{.NetworkSettings.Networks.bridge.IPAddress }}"
172.17.0.6

[vagrant@standalone ~]$ curl http://172.17.0.6:5000
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple Flask Application</title>
</head>
<body>
 <h1>Simple Flask Application</h1>
 <h1>Version 1</h1>
</body>
</html>

We can now change templates/index.html because we have used -v10.
$(pwd)/templates:/app/templates, assuming the current directory. Using
the vi editor, we can modify the content of the templates/index.html file:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">

Container Persistency and Networking Chapter 4

[183]

 <title>Simple Flask Application</title>
</head>
<body>
 <h1>Simple Flask Application</h1>
 <h1>Version 2</h1>
</body>
</html>
~
~

We change the line containing the Version key and we access it again using11.
curl:

[vagrant@standalone ~]$ curl http://172.17.0.6:5000
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple Flask Application</title>
</head>
<body>
 <h1>Simple Flask Application</h1>
 <h1>Version 2</h1>
</body>
</html>

The changes are reflected because we did them on our host filesystem and it is mounted
inside our container. We can also change our application code by mounting app.py.
Depending on what programming language we are using, we can change the application
code on the fly. If changes must be persistent, we need to follow a versioning strategy. We
will build a new image with the required changes.

Mounting SSHFS
In this lab, we will install and use the sshfs volume plugin:

First, we need to install the sshfs plugin:1.

[vagrant@standalone ~]$ docker plugin install vieux/sshfs
Plugin "vieux/sshfs" is requesting the following privileges:
 - network: [host]
 - mount: [/var/lib/docker/plugins/]
 - mount: []
 - device: [/dev/fuse]
 - capabilities: [CAP_SYS_ADMIN]

Container Persistency and Networking Chapter 4

[184]

Do you grant the above permissions? [y/N] y
latest: Pulling from vieux/sshfs
52d435ada6a4: Download complete
Digest:
sha256:1d3c3e42c12138da5ef7873b97f7f32cf99fb6edde75fa4f0bcf9ed27785
5811
Status: Downloaded newer image for vieux/sshfs:latest
Installed plugin vieux/sshfs

Let's review our host IP address and start the sshd or ssh daemons (depending2.
on your system and whether it is already running):

[vagrant@standalone ~]$ sudo systemctl status ssh
● ssh.service - OpenBSD Secure Shell server
 Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor
preset: enabled)
 Active: active (running) since Mon 2019-11-11 23:59:38 CET; 6s
ago
 Main PID: 13711 (sshd)
 Tasks: 1 (limit: 4915)
 CGroup: /system.slice/ssh.service
 └─13711 /usr/sbin/sshd -D

nov 11 23:59:38 sirius systemd[1]: Starting OpenBSD Secure Shell
server...
nov 11 23:59:38 sirius sshd[13711]: Server listening on 0.0.0.0
port 22.
nov 11 23:59:38 sirius sshd[13711]: Server listening on :: port 22.
nov 11 23:59:38 sirius systemd[1]: Started OpenBSD Secure Shell
server.

Let's review the installed plugin:3.

[vagrant@standalone ~]$ docker plugin ls
ID NAME DESCRIPTION ENABLED
eb37e5a2e676 vieux/sshfs:latest sshFS plugin for Docker true

Since plugins are objects, we can inspect installed plugins. We can review
important aspects such as version, debug mode, or the type of mount points that
will be managed with this plugin:

[vagrant@standalone ~]$ docker plugin inspect eb37e5a2e676
[
 {
 "Config": {
..
 "Description": "sshFS plugin for Docker",
 "DockerVersion": "18.05.0-ce-rc1",

Container Persistency and Networking Chapter 4

[185]

 "Documentation":
"https://docs.docker.com/engine/extend/plugins/",
 "Entrypoint": [
 "/docker-volume-sshfs"
],
...
...
 "Source": "/var/lib/docker/plugins/",
 "Type": "bind"
 },
...
...
 "Enabled": true,
 "Id":
"eb37e5a2e676138b6560bd91715477155f669cd3c0e39ea054fd2220b70838f1",
 "Name": "vieux/sshfs:latest",
 "PluginReference": "docker.io/vieux/sshfs:latest",
 "Settings": {
 "Args": [],
 "Devices": [
...
...
]

Now, we will create a new volume named sshvolume (we assume that you have4.
a valid SSH username and password here). Notice that we're using 127.0.0.1
and the /tmp directory or filesystem for demo purposes:

[vagrant@standalone ~]$ docker volume create -d vieux/sshfs \
-o sshcmd=ssh_user@127.0.0.1:/tmp \
-o password=ssh_userpasswd \
sshvolume

Now, we can easily run an alpine container by mounting previously5.
created sshvolume:

[vagrant@standalone ~]$ docker container run --rm -it -v
sshvolume:/data alpine sh
/ # ls -lart /data
total 92
drwx------ 1 root root 17 Nov 9 08:27 systemd-
private-809bb564862047608c79c2cc81f67f24-systemd-timesyncd.service-
gQ5tZx
drwx------ 1 root root 17 Nov 9 08:27 systemd-
private-809bb564862047608c79c2cc81f67f24-systemd-resolved.service-
QhsXg9
drwxrwxrwt 1 root root 6 Nov 9 08:27 .font-unix

Container Persistency and Networking Chapter 4

[186]

drwxrwxrwt 1 root root 6 Nov 9 08:27 .XIM-unix
drwxr-xr-x 1 root root 30 Nov 11 23:13 ..
drwxrwxrwt 1 root root 4096 Nov 11 23:13 .
/ #

Let's continue with some network labs.

Multi-homed containers
We will now look at a quick lab on attaching containers to multiple networks. Let's get
started:

First, we'll create two different zones, zone-a and zone-b:1.

[vagrant@standalone ~]$ docker network create zone-a
bb7cb5d22c03bffdd1ef52a7469636fe2e635b031b7528a687a85ff9c7ee4141

[vagrant@standalone ~]$ docker network create zone-b
818ba644512a2ebb44c5fd4da43c2b1165f630d4d0429073c465f0fe4baff2c7

Now, we can start a container named cont1 on zone-a:2.

[vagrant@standalone ~]$ docker container run -d --name cont1 --
network zone-a alpine sleep 3000
ef3dfd6a354b5310a9c97fa9247739ac320da1b4f51f6a2b8da2ca465b12f95e

Next, we connect the cont1 container to zone-b and review its IP addresses:3.

[vagrant@standalone ~]$ docker network connect zone-b cont1

$ docker exec cont1 ip add
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
92: eth0@if93: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue state UP
 link/ether 02:42:ac:13:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.19.0.2/16 brd 172.19.255.255 scope global eth0
 valid_lft forever preferred_lft forever
94: eth1@if95: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue state UP
 link/ether 02:42:ac:14:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.20.0.2/16 brd 172.20.255.255 scope global eth1
 valid_lft forever preferred_lft forever

Container Persistency and Networking Chapter 4

[187]

Now, we can run two containers with just one interface. One of them will run4.
attached to zone-a, while the other one will just be attached to zone-b:

[vagrant@standalone ~]$ docker container run -d --name cont2 --
network zone-b --cap-add NET_ADMIN alpine sleep 3000
048e362ea27b06f5077306a71cf8adc95ea9844907aec84ec09c0b991d912a33

[vagrant@standalone ~]$ docker container run -d --name cont3 --
network zone-a --cap-add NET_ADMIN alpine sleep 3000
20c7699c54786700c65a0bbe002c750672ffb3986f41d106728b3d598065ecb5

Let's review the IP addresses and routes on both containers:5.

[vagrant@standalone ~]$ docker exec cont2 ip route
default via 172.20.0.1 dev eth0
172.20.0.0/16 dev eth0 scope link src 172.20.0.3

[vagrant@standalone ~]$ docker exec cont3 ip route
default via 172.19.0.1 dev eth0
172.19.0.0/16 dev eth0 scope link src 172.19.0.3

If we want the cont3 container to contact the cont2 container, we should add a6.
route through the cont1 container, which contains both networks. In the cont2
container, enter the following command:

[vagrant@standalone ~]$ docker exec cont2 route add -net 172.19.0.0
netmask 255.255.255.0 gw 172.20.0.2

[vagrant@standalone ~]$ docker exec cont2 ip route
default via 172.20.0.1 dev eth0
172.19.0.0/24 via 172.20.0.2 dev eth0
172.20.0.0/16 dev eth0 scope link src 172.20.0.3

In the cont3 container, enter the following:

[vagrant@standalone ~]$ docker exec cont3 route add -net 172.20.0.0
netmask 255.255.255.0 gw 172.19.0.2

[vagrant@standalone ~]$ docker exec cont3 ip route
default via 172.19.0.1 dev eth0
172.19.0.0/16 dev eth0 scope link src 172.19.0.3
172.20.0.0/24 via 172.19.0.2 dev eth0

Container Persistency and Networking Chapter 4

[188]

Remember that we don't have name resolution between different networks.7.
Therefore, we cannot reach cont2 using its name:

[vagrant@standalone ~]$ docker exec cont3 ping -c 3 cont2
ping: bad address 'cont2'

[vagrant@standalone ~]$ docker exec cont3 ping -c 3 cont1
PING cont1 (172.19.0.2): 56 data bytes
64 bytes from 172.19.0.2: seq=0 ttl=64 time=0.063 ms
64 bytes from 172.19.0.2: seq=1 ttl=64 time=0.226 ms
64 bytes from 172.19.0.2: seq=2 ttl=64 time=0.239 ms

--- cont1 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.063/0.176/0.239 ms

As we expected, name resolution within the zone-a network works fine. Any
other container on another network will not be able to resolve containers by their
names.

We should be able to ping from cont3 to cont2 using its IP address:8.

[vagrant@standalone ~]$ docker exec cont3 ping -c 3 172.20.0.3
PING 172.20.0.3 (172.20.0.3): 56 data bytes
64 bytes from 172.20.0.3: seq=0 ttl=63 time=0.151 ms
64 bytes from 172.20.0.3: seq=1 ttl=63 time=0.229 ms
64 bytes from 172.20.0.3: seq=2 ttl=63 time=0.201 ms

--- 172.20.0.3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.151/0.193/0.229 ms

So, although we do not have name resolution, we can reach containers on other networks
using a container gateway that has interfaces on all networks. For this to work, we added a
route to each network container to route all other network traffic to the gateway container.
We could have added aliases to reach other network containers by name. Try it yourself –
it's easy!

Container Persistency and Networking Chapter 4

[189]

Publishing applications
In this lab, we are going to deploy a simple three-layer application. In fact, it's a two-layer
application with the addition of a load balancer for our lab purposes:

First, we'll create a bridge network named simplenet, where we will attach all1.
application components:

[vagrant@standalone ~]$ docker network create simplenet
b5ff93985be84095e70711dd3c403274c5ab9e8c53994a09e4fa8adda97f37f7

We will deploy a PostgreSQL database with changeme as the password for the2.
root user. We created a simple database named demo with a demo user and a
password of d3m0 for this lab:

[vagrant@standalone ~]$ docker container run -d \
--name simpledb \
--network simplenet \
--env "POSTGRES_PASSWORD=changeme" \
codegazers/simplestlab:simpledb

Notice that we have not published any port for the database.

Never use environment variables for secure content. There are other
mechanisms to manage this kind of data. Use the secrets functionality of
Docker Swarm or Kubernetes to provide security for these keys.

Now, we need to launch the backend application component, named3.
simpleapp. Notice that in this case, we used many environment variables to
configure the application side. We set the database host, database name, and the
required credentials, as follows:

[vagrant@standalone ~]$ docker container run -d \
 --name simpleapp \
--network simplenet \
--env dbhost=simpledb \
--env dbname=demo \
--env dbuser=demo \
--env dbpasswd=d3m0 \
codegazers/simplestlab:simpleapp
556d6301740c1f3de20c9ff2f30095cf4a49b099190ac03189cff3db5b6e02ce

We have not published the application. Therefore, it is only accessible locally.

Container Persistency and Networking Chapter 4

[190]

Let's review the application component IP addresses deployed. We will inspect4.
the containers attached to simplenet:

[vagrant@standalone ~]$ docker network inspect simplenet --format
"{{range .Containers}} {{.IPv4Address }} {{.Name}} {{end}}"
 172.22.0.4/16 simpleapp 172.22.0.3/16 simpledb

If we take a look at the exposed (not published) ports on each image definition,5.
we will observe the following in the database component:

[vagrant@standalone ~]$ docker inspect
codegazers/simplestlab:simpledb \
--format "{{json .Config.ExposedPorts }}"

{"5432/tcp":{}}

In the application backend, we will observe the following:

[vagrant@standalone ~]$ docker inspect
codegazers/simplestlab:simpleapp \
--format "{{json .Config.ExposedPorts }}"

{"3000/tcp":{}}

Now, we have all the required information to test the connections to both6.
components. We can even use the curl command to test whether the server is a
database server. Let's try the database with an IP address of 172.22.0.3 on
port 5432. We will use curl -I because we don't really care about the response
content. We just want to be able to connect to the exposed port:

[vagrant@standalone ~]$ curl -I 172.22.0.3:5432
curl: (52) Empty reply from server

In this case, Empty reply from server is OK (it does not use the HTTP
protocol). The database is listening on that IP-port combination. The same will
happen on the application backend on IP address 172.22.0.4 and port 3000:

[vagrant@standalone ~]$ curl -I 172.22.0.4:3000
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Date: Sat, 16 Nov 2019 11:38:22 GMT
Connection: keep-alive

Container Persistency and Networking Chapter 4

[191]

In this situation, we will be able to open http://172.22.0.4:3000 in the
browser. The application will be visible, but it can only be consumed locally. It
hasn't been published yet.

Let's deploy the load balancer component. This component will publish a port on7.
our host. Notice that we added two environment variables to allow the load
balancer to connect to the backend application (we configured the load balancer
on the fly with these variables because this image is modified for this behavior):

[vagrant@standalone ~]$ docker container run -d \
--name simplelb \
--env APPLICATION_ALIAS=simpleapp \
--env APPLICATION_PORT=3000 \
--network simplenet \
--publish 8080:80 \
codegazers/simplestlab:simplelb
35882fb4648098f7c1a1d29a0a12f4668f46213492e269b6b8262efd3191582b

Let's take a look at our local iptables. The Docker daemon has added a NAT8.
rule to guide traffic from port 8080 to port 80 on the load balancer component:

[vagrant@standalone ~]$ sudo iptables -L DOCKER -t nat --line-
numbers --numeric
Chain DOCKER (2 references)
num target prot opt source destination
1 RETURN all -- 0.0.0.0/0 0.0.0.0/0
2 RETURN all -- 0.0.0.0/0 0.0.0.0/0
3 RETURN all -- 0.0.0.0/0 0.0.0.0/0
4 RETURN all -- 0.0.0.0/0 0.0.0.0/0
5 RETURN all -- 0.0.0.0/0 0.0.0.0/0
6 DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:8080 to:172.22.0.2:80

Notice that the load balancer will be available on all host IP addresses
because we have not set any specific IP in the publish option.

Container Persistency and Networking Chapter 4

[192]

Now, open http://localhost:8080 in your web browser. You will be able to9.
consume the deployed application. You will see the following GUI in your
browser:

Container Persistency and Networking Chapter 4

[193]

This GUI is, in fact, the application backend's front page. As we mentioned previously, it is
not a real three-layer application. We added a load balancer as a frontend just to be able to
publish it and add some rules there.

To ensure that the application only listens on the required interfaces, we
can specify them to avoid unsecured ones. Always use a specific IP
address with the --publish option (for example, --listen
MY_PUBLIC_IP_ONLY:8080:80) to publish your application on a defined
IP address.

In this lab, we published a simple application and ensured that only specific components
are visible externally. Remember that it is possible to use container gateways and internal-
only networks. These features will improve application security.

Summary
Throughout this chapter, we have reviewed how to manage data associated with
containers. We took a look at different strategies to manage the data of processes and their
statuses. We used host filesystems and unnamed and named volumes, and we learned how
to extend the available Docker daemon volume management functionality by using
plugins. We noticed that the Docker daemon will not take care of any application lock or
even determine how storage resources are defined at the host level.

There are two different options for mounting volumes or bind mounts on containers using
--volume or --mount. We also reviewed all the parameters required and the differences
between them.

We talked about how to manage data and process states in high-availability environments.
We haven't introduced any orchestration concepts yet, but it is important to understand
that high availability or multiple instances of a process will require special application
logic. Docker will not manage that logic and this is something you must be aware of.

We also introduced some basic networking concepts. We explained the different types of
networks we can use out of the box on the Docker daemon and the special features of each
one. We then reviewed the interactions between containers and how they can talk to
external networks. Lastly, we finished this chapter by learning how to publish application
processes running inside containers.

The next chapter will introduce you to how to run applications on multiple containers. We
will learn how an application's components run and interact.

Container Persistency and Networking Chapter 4

[194]

Questions
In this chapter, we reviewed container persistency and networking in non-cluster
environments. Let's verify our understanding of these topics with some questions:

Which of the following statements is not true?1.

a) Containers are not ephemeral – once created, they will stay in the host
unless they are removed.
b) We can run more than one container at a time using the same image.
c) Containers created from the same image share their filesystems.
d) All of these statements are false.

Which methods are allowed when creating a volume?2.

a) We can manually create a volume using the docker volume create
command for volume objects.
b) We can declare a VOLUME sentence in a Dockerfile to use a volume on
containers created from a built image.
c) We can use Docker host filesystems inside containers as if they were
Docker volumes.
d) Volume creation is only allowed in terms of container creation or
execution.

When we remove a container, all associated volumes will be removed. Is this3.
true?

a) This is false. You need to use the --force or -f option on container
removal.
b) This is false. You need to use the --volumes or -v options on container
removal.
c) This is false. You need to use the --volumes or -v options on container
removal, and only unnamed volumes are removed.
d) This is false. Volumes can only be removed manually using docker
volume rm or docker volume purge.

Container Persistency and Networking Chapter 4

[195]

Which of the following statements is not true regarding container networking?4.

a) By default, all exposed container ports are accessible from the Docker
host`
b) docker network prune will remove all unused networks`
c) By default, all bridge networks are attachable on the fly`
d) Docker provides an internal DNS for each custom bridge network`

Which of the following statements is true regarding a container publishing an5.
Nginx web server with port 80 exposed?

a) If we use the host driver, we need to run this container with NET_ADMIN
capabilities.
b) If we use the --publish-all or -P options, a random port between
32768 and 65535 will be associated at the host level with each container port
exposed. You need to add a NAT rule in iptables to allow requests to reach
the container's internal port 80.
c) Using --publish 192.168.2.100:1080:80, we will ensure that only
requests to the host IP address 192.168.2.100 on port 1080 will be
redirected to the internal web server container port. (We are assuming that
IP address 192.168.2.100 is a host interface.)
d) If we use --publish 80 or -p 80, a random port between 32768 and
65535 will be associated at the host level with port 80, and a NAT rule will
be added to iptables.

Further reading
The following links will help you learn more about volumes and networking concepts:

Using storage volumes: https:/ /docs. docker. com/storage/ volumes/

Volume plugins: https:/ /docs. docker. com/ engine/ extend/ legacy_ plugins/

Networking overview: https:/ /docs. docker. com/ network/

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/engine/extend/legacy_plugins/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/

5
Deploying Multi-Container

Applications
In this chapter, we will learn about the Docker Compose tool, a key component of any
Docker environment. Using Docker Compose, we can manage multi-container applications,
and all the actions and functionalities we usually use to manage a container-based
application will be made available in multi-container environments by Docker Compose.
We are able to build all the required images for a project at once. There is no need to build,
pull/push, and execute containers one by one. We can declare all the pieces, along with
their interconnections, storage, environments, and so on, in a single file. We are also able to
debug multi-container applications from a single endpoint, which is vital when you have
many separate elements running on production environments.

But this is not just a tool. Docker Compose declares a new type of file, docker-
compose.yaml. This file provides all the requirements for multi-container applications and
can be used with other Docker tools. The introduction of this kind of file is very important
because it was the basis for Swarm-orchestrated deployments and the newest CNAB-based
applications. We will not cover Cloud-Native Application Bundles (CNABs) in this book,
but if you are interested, take a look at https:/ /cnab. io. Docker has its own CNAB
implementation, but it is in the experimental stage at the time of writing this book and is
not part of the DCA exam.

In this chapter, we will review Docker Compose. We will learn how to install this tool with
different methods, along with its keys and how we should use them. We will discover some
of the actions provided by the tool and their use cases. We will finish with some tips that
will help us to use docker-compose with variables. This allows us to provision dynamic
content for different environments using the same deployment files.

https://cnab.io.
https://cnab.io.
https://cnab.io.
https://cnab.io.
https://cnab.io.
https://cnab.io.
https://cnab.io.
https://cnab.io.

Deploying Multi-Container Applications Chapter 5

[197]

We will cover the following topics in this chapter:

Installing and using Docker Compose
Understanding the docker-compose.yaml file
Using docker-compose
Customizing images with docker-compose
Automating your desktop and CI/CD with docker-compose

Let's get started!

Technical requirements
In this chapter, we will learn about Dockerized multi-container applications. We'll provide
some labs at the end of this chapter that will help you understand and learn the concepts
covered. These labs can be run on your laptop or PC using the provided Vagrant
standalone environment or any already deployed Docker host of your own. Check the
additional information in this book's GitHub code repository at https:/ /github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. git.

Check out the following video to see the Code in Action:

"https://bit.ly/ 3hz0IB0"

Installing and using Docker Compose
Before deep-diving into the Docker Compose tool, let's learn about the differences between
multi-container applications and multi-service applications:

Multi-container applications are applications based on multiple containers. These
containers will run together on the same host. Therefore, we can deploy multi-
container applications on our laptop or on any other Docker daemon. All
application components will run together on a host. As a result, possible network
performance issues will be mitigated because all the pieces will run together.
Take into account that this deployment will not provide high availability if the
host goes down. We will be able to configure the automatic restart of all
components, but that is not enough for production.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0
https://bit.ly/3hz0IB0

Deploying Multi-Container Applications Chapter 5

[198]

Multi-service applications are applications based on multiple services. These
applications will run using Swarm orchestration and containers will run
distributed on different hosts. We will learn about Docker Swarm orchestration
in Chapter 8, Orchestrating with Docker Swarm. But you should understand that
services are the smallest unit of scheduling on Docker Swarm environments. We
will not schedule containers; we will schedule a service, based on the execution
of a number of tasks. Those tasks are associated with containers; in fact, one
container per task. Therefore, a service is represented by a number of tasks
(known as replicas) that run containers. We schedule a service in Docker Swarm,
setting the number of replicas required to be healthy. Docker Swarm will take
care of the container's status. As we mentioned previously, services will run
distributed on different hosts. Multi-service application components will usually
run distributed cluster-wide. Components' interconnections will rely on internal
and external networking, while Swarm provides out-of-the-box high availability
based on resilience for all services' tasks. Keep these features in mind. We will
learn about the great features behind Swarm and Kubernetes orchestrations in
the Container orchestration section.

In summary, we deploy multi-container applications on one node while multi-service
applications run distributed in different nodes.

docker-compose does not come with Docker packages when you install
it. It is a different product. On Docker Desktop for macOS and Windows,
Docker Compose is included and ready to use.

The first thing we have to learn about Docker Compose is that it is a Python-based
application. Therefore, we can install it as we would any other Python module or download
it as a binary file. We can also run docker-compose within a container. We can find easy
instructions at https:/ /docs. docker. com/ compose/ install. Notice that at the time of
writing, the latest docker-compose release was 1.24.1. We will use this version for all of
the following installation methods.

Installing docker-compose as a Python module
Installation using pip (the Python module installer) is easy on Linux systems. We will
review this method and we will also download the Docker Compose binary. First, we need
to have pip installed on our system. It is a package that's available on almost all Linux
systems and, consequently, whether it's already installed or not will depend on the Linux
flavor used (the package name can be py-pip, python3-pip, or pip-python; it really
depends on your operating system and the Python version used).

https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install
https://docs.docker.com/compose/install

Deploying Multi-Container Applications Chapter 5

[199]

We will not cover this package installation and will assume you have pip installed on your
system. We will install the docker-compose module as the root user to allow all host users
to use it.

There is a version of pip for Python 2.x and another for Python 3.x.
Remember that Python 2.x is obsolete nowadays, so it might be time to
move to Python 3.x. We will cover Python 3 installation only, for this
reason.

We use sudo as root with -H to use our logged-in user's home path:

$ sudo -sH pip install -q docker-compose

After execution, we will have docker-compose installed at /usr/local/bin/docker-
compose.

Installing docker-compose using downloaded
binaries
Here, we just need curl or wget to download the defined version binaries from this
project's GitHub page (https:/ / github. com/ docker/ compose/ releases). Make sure to
choose the right binary and version for your architecture processor and system. We will
review the installation for the CentOS 7 Linux system, which is used for all our labs:

$ curl -sL
"https://github.com/docker/compose/releases/download/1.24.1/docker-compose-
$(uname -s)-$(uname -m)" -o /tmp/docker-compose

$ sudo chmod +x /tmp/docker-compose

$ sudo mv /tmp/docker-compose /usr/local/bin/docker-compose

We can also use a container to execute docker-compose, as we will learn in the next
section.

https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases

Deploying Multi-Container Applications Chapter 5

[200]

Executing docker-compose using a container
This is quite interesting because, as we have learned, executing applications as containers
just requires a Docker daemon running on our system. It is a great way to execute
applications! In this case, run.sh is a script that will prepare all the required volumes and
parameters (curl -L will follow redirections and the -o argument will allow us to choose
the destination filename):

$ sudo curl -L --fail
https://github.com/docker/compose/releases/download/1.24.1/run.sh -o
/usr/local/bin/docker-compose

$ sudo chmod +x /usr/local/bin/docker-compose

Docker Compose can also be installed on Windows nodes, as we will learn in the next
section.

Installing docker-compose on Windows servers
On Windows servers, we will use an elevated PowerShell (that is, run it as administrator).

Since GitHub now requires TLS1.2, it is required to run the following on
our administrator PowerShell before executing the installation:

[Net.ServicePointManager]::SecurityProtocol =
[Net.SecurityProtocolType]::Tls12

Once in the administrator's PowerShell, we need to run the following command:

Invoke-WebRequest
"https://github.com/docker/compose/releases/download/1.24.1/docker-compose-
Windows-x86_64.exe" -UseBasicParsing -OutFile
$Env:ProgramFiles\Docker\docker-compose.exe

In the next section, we will learn about Docker Compose files.

Deploying Multi-Container Applications Chapter 5

[201]

Understanding the docker-compose.yaml
file
Docker Compose introduces the concept of multi-container applications using an all-in-one
application components' definition file. This file is known as docker-compose.yaml.
Usually, we will manage a docker-compose.yaml file. Notice that this is a YAML file;
therefore, indentation is fundamental. The file will contain all of the application
components and their properties.

This is how a simple docker-compose.yaml file looks (we can use either the .yaml or
.yml extension for YAML files):

version: "3.7"
services:
 lb:
 build: simplestlb
 image: myregistry/simplest-lab:simplestlb
 environment:
 - APPLICATION_ALIAS=simplestapp
 - APPLICATION_PORT=3000
 networks:
 simplestlab:
 aliases:
 - simplestlb
 ports:
 - "8080:80"
 db:
 build: simplestdb
 image: myregistry/simplest-lab:simplestdb
 environment:
 - "POSTGRES_PASSWORD=changeme"
 networks:
 simplestlab:
 aliases:
 - simplestdb
 volumes:
 - pgdata:/var/lib/postgresql/data
 app:
 build: simplestapp
 image: myregistry/simplest-lab:simplestapp
 environment:
 - dbhost=simplestdb
 - dbname=demo
 - dbuser=demo
 - dbpasswd=d3m0

Deploying Multi-Container Applications Chapter 5

[202]

 networks:
 simplestlab:
 aliases:
 - simplestapp
 depends_on:
 - lb
 - db
volumes:
 pgdata:
networks:
 simplestlab:
 ipam:
 driver: default
 config:
 - subnet: 172.16.0.0/16

The docker-compose.yaml file will contain definitions for all Docker-based application
components (services, networks, and volumes). In this file, we first declare the file
definition version. This definition manages how Docker Compose should interpret some of
the directives written. We will use version 3.x for our file definition because it is the most
up to date and is recommended at the time of writing. There are a few differences between
versions, although docker-compose provides backward compatibility, so you should
check the Docker documentation for more information. It is important to know that keys
and definition structures may vary between versions, and you should use specific versions
with older Docker engines. We will use version 3.7 (the current version at the time of
writing).

Let's learn a bit about the file contents.

We are using environment variables to provide credentials and access to
some services. This is just for demo purposes – never use environment
variables for your passwords, credentials, or connection strings. In Docker
Swarm, we use secrets and configuration objects. In Docker Compose, we
do not have this kind of object, so it's preferred to use external
configuration tools or secure key-value stores to manage these values.

Deploying Multi-Container Applications Chapter 5

[203]

We have a section for services and another one for networks. We can also have a
volumes section. The volumes and networks sections will define their properties for the
application. In these sections, we will declare special features and the drivers used for
them. In the example file, we have declared a special subnet to use on the simplestlab
network with the default bridge driver. This is the network that will be created and used
for all the components, as we can see in all of our service definitions.

In Docker Swarm, we can also define Configs and Secrets, which are
cluster objects. We will declare objects in one section of the file and then
we will use these objects inside each service definition.

Each service represents one component. Let's take a closer look at the definitions of the app
service, for example.

Each service definition has some key configurations to explain how this application
component will run. In the app service, we have a build definition, which indicates how
this component will be created. The value of the build key indicates the context path for
building an image for these components (the simplestapp directory). Therefore, we can
build this component with this docker-compose.yaml file and the simplestapp
directory content. We've learned that to build an image, we need a Dockerfile;
consequently, a Dockerfile is mandatory inside the simplestapp directory. All the files
required to compile the myregistry/simplest-lab:simplestapp image should be in
this directory.

When we talk about multi-container applications with Docker Compose,
services definitions are different from Swarm Services, which are
managed by Swarm orchestration. In non-Swam environments, we refer
to services as application components.

The next line, which contains the image key, defines the name of the image. If the image
does not exist in your host, it will be built with this name. If we do not have a build
definition, the Docker daemon will try to download the defined image from the registry.

Deploying Multi-Container Applications Chapter 5

[204]

The next key defines a list of variables and their values to be used as environment variables
during container execution. We can override the image-defined ENVIRONMENT, CMD,
ENTRYPOINT, and VOLUME values, among others, as we usually do within containers. We
will take a look at the Docker Compose definitions later, but keep in mind that almost every
option we use on the docker container run or docker container create actions is
available as a key on docker-compose.yaml.

Then, we define the networks to be used in this component. We also defined an alias name
to use in this network. This component will be known as app, which is its service name,
and also by its defined alias, which is simplestapp.

It is important to note that Docker Compose allows us to define an order of execution, as
we can see in the last few lines. We used the depends_on key to wait until all the
components in the list were available (that is, all the containers were marked as healthy).

With that, we have reviewed the services section of the preceding code file. In this
example, we also have volumes and networks sections.

In the volumes section, we have the simplest definition. It is empty and just defines a
volume with the default parameters (the local driver). In the services section, we define
where and how these volumes should be attached.

Now that we know the basics, we can take a look at some of the most used key definitions:

Key Definitions

build

This key will define the options used to build the application
images. These are some of the most used options:
•
context: This option defines the path to the build context, the
directory that contains the Dockerfile, and all the other files
required for the image.
•
dockerfile: This defines an alternative Dockerfile name.
•
args: We can set Dockerfile arguments here.
•
labels: This option allows us to set image labels.

image
This is the name of the image to be used. If the image does not
exist, it will be pulled from the registry. If the image must be built,
it will use this value for its name.

Deploying Multi-Container Applications Chapter 5

[205]

environment
We are able to set environment variables within containers. This
will overwrite any image-defined values. We can also use
env_file to define a file with many values.

command This will set or overwrite the image's command definition.

entrypoint This will set or overwrite the image's entrypoint definition.

ports
These are the ports to be exposed by the services to be reachable at
the host level.

expose
This option defines which service ports will be available for other
services.

privileged
cap_add/cap_drop
read_only

These options will set the same features we learned about when
we talked about container execution in Chapter 3, Running Docker
Containers.

user This will set or overwrite the image's user definition.

labels This will set or overwrite image labels.

restart

With restart, we can set how associated containers should be
managed. If they die, should Docker restart them or leave them
stopped? Remember the options defined for our containers – we
will use the same values here.

container_name

We are able to set the container name using this variable. If not
defined, the container name will be generated using the service
project name as a prefix, followed by the service name and the
instance number, starting from 1. Take care with this parameter;
as you've already learned, there can only be one container with a
defined name per host.

hostname
domainname

These options will allow us to change the container hostname and
its domain name. Under the network definition, we are able to
add as many DNS aliases as required.

extra_hosts
With this option, we can add external hosts to be discovered via
internal DNS. This will help us reach external services as if they
were running within containers.

depends_on

This key allows us to set components' dependencies. It is
deprecated now in version 3 but is included here to explain to you
that it did not provide real dependency. This option will just
control the boot order.

Deploying Multi-Container Applications Chapter 5

[206]

networks

We can set which network drivers to use, their options and subnet
ranges, and how they will be accessible (internal and/or
attachable). Let's review a simple example:
networks:
 mynet:
 driver: bridge
 ipam:
 driver: default
 config:
 - subnet: 172.28.0.0/16

In the preceding code, we have defined mynet as a bridge
network with a defined subnet for all our containers. We can use
this defined network on each service section:
 myservice:
 build:
 context: .
 dockerfile: ./src/myapp/Dockerfile
 networks:
 - mynet

volumes

Volumes are defined in the volumes section. We will be able to
set their drivers and special options. The following is an example
of a simple local definition that we can use in the services
section:
...
...
 myservice:
 image: myregistry/myimage:tag
 volumes:
 - data:/appdata/
...
...
volumes:
 config-data:
 driver: local

tmpfs

We can use an in-memory filesystem with tmpfs. This option is
very useful for bypassing the overlay filesystem to improve I/O
performance or for security reasons. The in-memory filesystem
will disappear when the container dies:
 - type: tmpfs
 target: /app
 tmpfs:
 size: 1000

healthcheck This will set or overwrite the image's healthcheck definitions.

Deploying Multi-Container Applications Chapter 5

[207]

These keys are the most commonly used ones. Consult the Docker Compose documentation
for more information, which is available on the Docker website at https:/ / docs. docker.
com/compose/compose- file/ .

There are many keys that are only allowed on Docker Swarm
environments. We didn't include them in the preceding information table
because the Swarm options will be shown in Chapter 8, Orchestration
Using Docker Swarm. Defining container resource limits in docker-
compose.yaml files is only allowed either using Docker Swarm mode or
using Docker Compose version 2.

Once we have created our docker-compose.yaml file, we will be able to use the Docker
Compose command-line definitions written in this file.

Using the Docker Compose command-line
interface
We installed the docker-compose binary in the previous section, which means we can
now review the actions available to us. docker-compose will provide most of the actions
available for Docker because we will execute them on multiple containers at once. Let's
review the available docker-compose actions in the following table:

Command Definition

build

As expected, this action will build or rebuild all docker-compose.yaml
file components, or just the selected ones. This action will look for any
build keys in our docker-compose.yaml file and launch a build or
rebuild. If we set a project name using --project, all images will be
created as <project_name>_<service_name> if no image name is
defined. If so, this is the name that will be used if we push them to a
registry.

pull/push We will be able to push or pull all images at once because we manage all
the application components with docker-compose.

images This action will list all application images.

create
Remember that we can create containers. In this case, we will create all
containers required by the application, but they will not be launched until
a start action is executed.

rm
This action will remove all stopped containers. Remember to use the
project name, or leave it empty to use the current directory as the
application name.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Deploying Multi-Container Applications Chapter 5

[208]

up (-d or --detach)
We will create and start all components with this simple action. All the
components will run at once. We will use --detach to run the application
in the background, as we learned with containers.

down

To remove all application components, we will use the down action. This
will end all application containers or just the specified ones. Take care as
externally defined resources will not be deleted and must be removed
manually.

start/stop/restart
These options will allow us to manage components, applying either to all
components at once or only those specified.

run
With this option, we can execute one component to run a specified
command, such as to initialize a database or create a required file.

pause/unpause As we learned with containers, we can pause and unpause application
components.

ps
docker-compose will show all application containers (processes) and
their ports.

top
This option will show the processes running on each container deployed
for the application.

exec
We will be able to run a process within any application container
namespace. Remember what we learned in Chapter 3, Running Docker
Containers.

logs

It is very useful to be able to retrieve all application container' logs using a
single command. We can use the logs action to retrieve all application
logs at once. Logs will appear together, along with their service names, to
help us identify each component.

config
We can verify a Docker Compose definition using the config action. We
can also list the defined services using services as the argument.

With this information, we can quickly see how the usual container workflow can be
achieved in multi-container environments with Docker Compose, which gives us a new
command-line interface to build, share, and run all our application components at once.

We can define external resources such as volume or networks. We will
use the external: true option in these cases and you'll have to create
these resources manually.

Deploying Multi-Container Applications Chapter 5

[209]

Each application that's deployed using docker-compose will have its own project
definition. Each project will run in isolation alongside others in the same host. By default,
docker-compose will use the current directory name as the project's name. We can
override this behavior using --project-name or -p to set a more descriptive name.

In Chapter 1, Modern Infrastructures and Applications with Docker, we learned that object
names are unique (we can have objects with many names, but each is unique, and we
cannot have repeated names); therefore, docker-compose adds the project's name as a
prefix to each created object. This way, we identify all application components and ensure
that they have unique names. Of course, we can use the same docker-compose file to
deploy the same application twice, but we should choose a different project name each
time.

We can use the docker-compose.yaml file to launch the same
application multiple times, but we cannot share unique resources such as
ports, volumes, and IP addresses between volumes. Sharing a volume
between components depends on application behavior, but IP addresses
or ports will be unique to a given Docker host.

Let's review the complete application deployment workflow with the previous docker-
compose.yaml file (seen in the Understanding the docker-compose file section).

First, we need to build the application images. You can download all the application code
from this book's GitHub repository at https:/ /github. com/PacktPublishing/ Docker-
Certified-Associate- DCA- Exam- Guide. git.

Let's clone the repository to get all the source code directories and configuration files. Your
output may vary from the following:

$ git clone
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guid
e.git
Cloning into 'dca-book-code'...
remote: Enumerating objects: 26, done.
remote: Counting objects: 100% (26/26), done.
remote: Compressing objects: 100% (22/22), done.
remote: Total 26 (delta 0), reused 26 (delta 0), pack-reused 0
Unpacking objects: 100% (26/26), done.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git.

Deploying Multi-Container Applications Chapter 5

[210]

We will have a directory for the simplest-lab project with a docker-compose.yaml file
and different directories for each application component:

$ cd chapter5/simplest-lab/

$ ls -lRt
.:
total 4
-rw-rw-r-- 1 zero zero 982 nov 24 11:06 docker-compose.yaml
drwxrwxr-x 2 zero zero 146 nov 24 11:06 simplestapp
drwxrwxr-x 3 zero zero 112 nov 24 11:06 simplestdb
drwxrwxr-x 2 zero zero 80 nov 24 11:06 simplestlb
./simplestapp:
total 32
-rw-rw-r-- 1 zero zero 91 nov 24 11:06 dbconfig.json
-rw-rw-r-- 1 zero zero 466 nov 24 11:06 Dockerfile
-rw-rw-r-- 1 zero zero 354 nov 24 11:06 package.json
-rw-rw-r-- 1 zero zero 191 nov 24 11:06 README.md
-rw-rw-r-- 1 zero zero 1244 nov 24 11:06 reset.html
-rw-rw-r-- 1 zero zero 3837 nov 24 11:06 simplestapp.html
-rw-rw-r-- 1 zero zero 6556 nov 24 11:06 simplestapp.js
./simplestdb:
total 12
drwxrwxr-x 2 zero zero 26 nov 24 11:06 docker-entrypoint-initdb.d
-rwxrwxr-x 1 zero zero 2587 nov 24 11:06 docker-entrypoint.sh
-rw-rw-r-- 1 zero zero 152 nov 24 11:06 Dockerfile
-rw-rw-r-- 1 zero zero 2568 nov 24 11:06 Dockerfile.scratch
./simplestdb/docker-entrypoint-initdb.d:
total 4
-rw-rw-r-- 1 zero zero 484 nov 24 11:06 init-demo.sh
./simplestlb:
total 16
-rw-rw-r-- 1 zero zero 467 nov 24 11:06 Dockerfile
-rwxrwxr-x 1 zero zero 213 nov 24 11:06 entrypoint.sh
-rw-rw-r-- 1 zero zero 837 nov 24 11:06 nginx.conf
-rw-rw-r-- 1 zero zero 24 nov 24 11:06 README.md

In each project directory, there is a Dockerfile we can use to build that specific component.
So, let's build all the components at once.

Deploying Multi-Container Applications Chapter 5

[211]

We have the same options for removing the intermediate containers (used
for building and disallowing image caching) as we had with the docker
image build command. We will use --force-rm and --no-cache,
respectively.

To ensure that the defined docker-compose.yaml file is valid, we can use docker-
compose config --quiet. If there is an issue, it will be reported. We can also list the
names of the services or volumes that have been defined:

$ docker-compose config --services
db
lb
app

$ docker-compose config --volumes
pgdata

We will use these service name definitions later on in this section.

We will execute docker-compose build to build all the component images defined in our
docker-compose.yaml file. This command will take some time because we are not just
building an image, but all the images required. The following output is truncated:

$ docker-compose build
Building db
Step 1/2 : FROM postgres:alpine
alpine: Pulling from library/postgres
....
Successfully built 336fb84e7fbf
Successfully tagged myregistry/simplest-lab:simplestdb
Building lb
Step 1/10 : FROM alpine:latest
latest: Pulling from library/alpine
....
Successfully built 4a5308d90123
Successfully tagged myregistry/simplest-lab:simplestlb
Building app
Step 1/15 : FROM alpine
 ---> 965ea09ff2eb
Step 2/15 : RUN apk --update --no-progress --no-cache add nodejs npm
....
Successfully built ffa49ee4228e
Successfully tagged myregistry/simplest-lab:simplestapp

Deploying Multi-Container Applications Chapter 5

[212]

After a few minutes (or seconds, depending on your internet connection and processor
speed), all three images will be created. As we have not set a project name, docker-
compose has created one for you. As we mentioned previously, by default, all the
components will be created with the directory name prefixed. In this case, we have an
image key on our docker-compose.yaml file, so that image naming syntax will be used
instead of a local directory reference.

Notice that we have used a dummy registry name (myregistry). This means that we
cannot push images to this dummy registry, but it is important to understand the logic
behind image names. If we list current images on our Docker daemon, we should have all
the images created for this project:

$ docker images --filter=reference='myregistry/*:*'
REPOSITORY TAG IMAGE ID CREATED SIZE
myregistry/simplest-lab simplestapp ffa49ee4228e About an hour ago 56.5MB
myregistry/simplest-lab simplestlb 4a5308d90123 About an hour ago 7MB
myregistry/simplest-lab simplestdb 336fb84e7fbf About an hour ago 72.8MB

Now that we have our images, we can share them. We can now execute the docker-
compose push command to push them to myregistry (in our example file). This will
upload the images one by one with defined tags.

We are ready to run all the application components together using docker-compose up.
To launch it in the background, we will use the --detach option. If we do not use this
option, we will be attached to all our container's standard and error outputs. We learned
how to attach to container output in Chapter 3, Running Docker Containers. Remember that
this behavior is expected on docker container run without the --detach or -d option:

$ docker-compose up --detach
Creating network "simplest-lab_simplestlab" with the default driver
Creating simplest-lab_db_1 ... done
Creating simplest-lab_lb_1 ... done
Creating simplest-lab_app_1 ... done

With this line, we have just started our application. It is important to understand that
docker-compose up does more than merely execute all the components. In this case, we
built our components first, but the docker-compose up instruction will verify that
component images are present on the Docker host. If not, it will build or pull them. If
the images are not present, they should be downloaded, and that is what the Docker
daemon will do.

Deploying Multi-Container Applications Chapter 5

[213]

The application should be running. Let's verify the execution of all components. We will
use docker-compose ps to obtain the application component status:

$ docker-compose ps
 Name Command State Ports

simplest-lab_app_1 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_db_1 docker-entrypoint.sh postgres Up 5432/tcp
simplest-lab_lb_1 /entrypoint.sh /bin/sh -c ... Up 0.0.0.0:8080->80/tcp

Take a look at the application component names. They are all created with the simplest-
lab prefix, followed by _ and the name used in the service definition. This is what we
expected because we have not defined a project name. The directory name was used as the
project name by default.

We can also see that component names end with _, followed by a number (in this case, 1).
This indicates the number of replicas we have for this component. We use more than one
replica for some application components. Keep in mind that Docker Compose does not
know anything about our application logic. Therefore, it is up to us to code this component
to make it scalable. In our example, we have a three-layer application with three
components: a simple load balancer, lb, an application's backend, app, and a database
component, db. We will not be able to scale up our database component because this will
corrupt the database data. No more than one postgres process can use a specific set of
data files, and this applies to our case. On the other hand, our app sample application
component is prepared to run multiple times.

Let's take a look at our application environment. By reviewing the output of docker-
compose ps, we can see that only one component is exposing its service. We have only
published the lb component. This is our application frontend (in fact, it is a load balancer
component that will route traffic to different app component backends). If we open a web
browser on http://0.0.0.0:8080, we will have a web application similar to the one
shown in the following screenshot:

Deploying Multi-Container Applications Chapter 5

[214]

Deploying Multi-Container Applications Chapter 5

[215]

At this point, the application is already deployed. We can review the component logs using
the service name with the docker-compose logs action. If we do not add a service name,
we will be reviewing the logs of all the containers deployed with this docker-
compose.yaml file. This is very useful because we will be able to review all their outputs
from a single endpoint. Each component's log will appear in a different color to help us
distinguish between them.

For example, to review the database component log, we will use the following command:

$ docker-compose logs db
Attaching to simplest-lab_db_1
db_1 |
db_1 | PostgreSQL Database directory appears to contain a database;
Skipping initialization
db_1 |
db_1 | 2019-11-24 11:57:14.011 UTC [1] LOG: starting PostgreSQL 12.1 on
x86_64-pc-linux-musl, compiled by gcc (Alpine 8.3.0) 8.3.0, 64-bit
db_1 | 2019-11-24 11:57:14.011 UTC [1] LOG: listening on IPv4 address
"0.0.0.0", port 5432
db_1 | 2019-11-24 11:57:14.011 UTC [1] LOG: listening on IPv6 address "::",
port 5432
db_1 | 2019-11-24 11:57:14.025 UTC [1] LOG: listening on Unix socket
"/var/run/postgresql/.s.PGSQL.5432"

It is important to notice that the service name is the name defined in our docker-
compose.yaml file. It is not the name of the service running.

All docker-compose commands need a docker-compose.yaml file (or
any other filename using the --file or -f options) and a project name
(defined using the --project or -p options, or the current directory by
default). These two parameters define the instances where all the docker-
compose commands will be applied.

As we did with containers in Chapter 3, Running Docker Containers, we can run a new
process within the container's process namespaces using docker-compose exec:

$ docker-compose exec app sh
/APP $ ls -lart
total 344
-rwxr-xr-x 1 root root 314658 May 24 2017 Chart.js
-rw-rw-r-- 1 root root 6556 Nov 24 10:06 simplestapp.js
-rw-rw-r-- 1 root root 1244 Nov 24 10:06 reset.html
-rw-rw-r-- 1 root root 354 Nov 24 10:06 package.json
-rw-rw-r-- 1 root root 91 Nov 24 10:06 dbconfig.json
-rw-rw-r-- 1 root root 3826 Nov 24 14:38 simplestapp.html
-rw-r--r-- 1 root root 7654 Nov 24 14:38 package-lock.json

Deploying Multi-Container Applications Chapter 5

[216]

drwxr-xr-x 31 root root 4096 Nov 24 14:38 node_modules
drwxr-xr-x 1 root root 22 Nov 24 14:38 .
drwxr-xr-x 1 root root 6 Nov 24 14:38 ..

Notice that it allocates a Terminal by default. Therefore, it is not necessary to use the -t and
-i options.

Using docker-compose top, we will obtain the consumption of each process on each
container:

$ docker-compose top
simplest-lab_app_1
UID PID PPID C STIME TTY TIME CMD
--
zero 9594 9564 0 15:38 ? 00:00:05 node simplestapp.js 3000

simplest-lab_db_1
UID PID PPID C STIME TTY TIME CMD

70 9374 9304 0 15:38 ? 00:00:00 postgres
70 9558 9374 0 15:38 ? 00:00:00 postgres: checkpointer
70 9559 9374 0 15:38 ? 00:00:00 postgres: background writer
70 9560 9374 0 15:38 ? 00:00:00 postgres: walwriter
70 9561 9374 0 15:38 ? 00:00:00 postgres: autovacuum launcher
70 9562 9374 0 15:38 ? 00:00:00 postgres: stats collector
70 9563 9374 0 15:38 ? 00:00:00 postgres: logical replication launcher
70 9702 9374 0 15:38 ? 00:00:00 postgres: demo demo 172.16.0.4(37134) idle

simplest-lab_lb_1
 UID PID PPID C STIME TTY TIME CMD

root 9360 9295 0 15:38 ? 00:00:00 nginx: master process nginx -g pid
/run/nginx.pid; daemon off;
systemd+ 9467 9360 0 15:38 ? 00:00:01 nginx: worker process
systemd+ 9468 9360 0 15:38 ? 00:00:00 nginx: worker process

Deploying Multi-Container Applications Chapter 5

[217]

Let's review some of the objects created by this multi-container deployment. We have a
new network, with the name defined following the format we learned about previously;
that is, <project or directory name>_ <defined_network_name>. We have not
specified a special network type, so, by default, it is a bridge network, as expected. The
output may vary in your environment, but the name for the newly deployed network will
exist:

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
0950a6281629 bridge bridge local
82faac964567 host host local
2fb14f721dc3 none null local
a913507af228 simplest-lab_simplestlab bridge local

Remember that all custom bridge networks manage their own internal DNS resolution. As
a result, all services (application components) deployed on the same network can be
reached using their service names.

The same occurs with our defined volumes. If we list our local volume, we will get a new
volume following the same naming convention. The output may vary in your environment,
but the name for the newly deployed volume will exist:

$ docker volume ls
DRIVER VOLUME NAME
local 3f93b55b105f64dd03a9088405484909d2f8cad83dacc5fb5a53ea27af1f33e6
local mydbdata
local simplest-lab_pgdata
vieux/sshfs:latest sshvolume

We can stop and start (or restart) any service defined in the docker-compose.yaml file
using their names. The following action will restart all the instances of a defined service:

$ docker-compose restart lb
Restarting simplest-lab_lb_1 ... done

Deploying Multi-Container Applications Chapter 5

[218]

Let's go back to the concept of instances. We can have more than one instance of a defined
process for a service. This is the reason we have numbered all our instances. As we
mentioned previously, the ability of a process to be scaled up or down is not defined in
Docker. It is related to your application logic. In this example, we can scale up the number
of instances of the app component. We can use docker-compose scale to change the
number of instances (containers) for a defined application component:

$ docker-compose scale app=5
WARNING: The scale command is deprecated. Use the up command with the --
scale flag instead.
Starting simplest-lab_app_1 ... done
Creating simplest-lab_app_2 ... done
Creating simplest-lab_app_3 ... done
Creating simplest-lab_app_4 ... done
Creating simplest-lab_app_5 ... done

Note that the scale action is deprecated, so nowadays, we should use
docker-compose up --scale <service=number_of_instances>.

As a result, we now have five instances of the app application component. All the instances'
IP addresses are added to the internal DNS resolution. Therefore, we can resolve the service
name to all the instances' IP addresses in a round-robin sequence:

$ docker-compose ps
 Name Command State Ports

simplest-lab_app_1 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_app_2 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_app_3 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_app_4 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_app_5 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_db_1 docker-entrypoint.sh postgres Up 5432/tcp
simplest-lab_lb_1 /entrypoint.sh /bin/sh -c ... Up 0.0.0.0:8080->80/tcp

Deploying Multi-Container Applications Chapter 5

[219]

If we go back to the application GUI at http://localhost:8080/, we'll notice that the
chart has changed because the requests are now distributed across five different backends:

In this chart, we can see that we now have five different IP addresses and that requests are
distributed between them. Because we have been running the application for a long time
(and automated requests are executed during this period), we have more requests for the
first IP address (the first instance launched).

Deploying Multi-Container Applications Chapter 5

[220]

We can remove previous data from the database using the Reset App Data button. Let's
click this button and review the requests count. You can either wait for more requests (a
new request is made every 5 seconds) or simply click the Make Request button a few times.
You should now have something similar to the following chart:

Deploying Multi-Container Applications Chapter 5

[221]

This chart shows the request distribution of the five defined instances of
the app component. Now, let's scale down to three instances, as follows:

$ docker-compose up -d --scale app=3
simplest-lab_db_1 is up-to-date
simplest-lab_lb_1 is up-to-date
Stopping and removing simplest-lab_app_4 ... done
Stopping and removing simplest-lab_app_5 ... done
Starting simplest-lab_app_1 ... done
Starting simplest-lab_app_2 ... done
Starting simplest-lab_app_3 ... done

Now, we can review the app instances:

$ docker-compose ps app
 Name Command State Ports
--
simplest-lab_app_1 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_app_2 node simplestapp.js 3000 Up 3000/tcp
simplest-lab_app_3 node simplestapp.js 3000 Up 3000/tcp

The chart will change again and only three backends will receive requests (there are only
three running). Once again, we will use the Reset App Data button and get a chart similar
to the following one:

Deploying Multi-Container Applications Chapter 5

[222]

Deploying Multi-Container Applications Chapter 5

[223]

Take a quick look at the running containers associated with the deployed docker-
compose.yaml application file. In this case, we are using a filter to obtain all the containers
with names starting with the simplest pattern. We formatted the result to obtain only
their names and labels:

Notice that docker-compose has added labels for each application component, indicating
the name of the project, the container name, and the associated service name.

We can easily stop or kill a single component or all of them at once. We can also remove all
the components using the down or rm options. Usually, we use docker-compose down
because it is easier to remember. We can also define a timeout for components to stop using
stop_grace_period, which defaults to 10 seconds (review the docker-compose file
reference for available options at https:/ / docs.docker. com/ compose/ compose- file/).
Using docker-compose down, components will be removed once they are stopped:

$ docker-compose down
Stopping simplest-lab_app_3 ... done
Stopping simplest-lab_app_2 ... done
Stopping simplest-lab_app_1 ... done
Stopping simplest-lab_lb_1 ... done
Stopping simplest-lab_db_1 ... done
Removing simplest-lab_app_3 ... done
Removing simplest-lab_app_2 ... done
Removing simplest-lab_app_1 ... done
Removing simplest-lab_lb_1 ... done
Removing simplest-lab_db_1 ... done
Removing network simplest-lab_simplestlab

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Deploying Multi-Container Applications Chapter 5

[224]

Let's take a look at all the application-related objects. Here, we can see that network was
removed but volume persists. This is because Docker does not know what to do with the
volume. Are we going to use it later? Consequently, it is preferred not to delete the volume
unless we use the docker-compose down --volumes (or -v) option to remove all the
volumes associated with the application:

$ docker volume ls
DRIVER VOLUME NAME
local 3f93b55b105f64dd03a9088405484909d2f8cad83dacc5fb5a53ea27af1f33e6
local mydbdata
local simplest-lab_pgdata
vieux/sshfs:latest sshvolume

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
0950a6281629 bridge bridge local
82faac964567 host host local
2fb14f721dc3 none null local

In this section, we have learned about all of the main docker-compose actions associated
with the usual Docker workflow. In the next section, we will review some specific options
for building images.

Customizing images with docker-compose
Building applications using docker-compose is very useful because we can use it for
creating all the images in Docker Swarm or Kubernetes environments. We just need a
docker-compose file definition and the application components' code.

We have been using a static docker-compose file definition, but in many cases, we will use
some variables to fulfill their values for specific needs. In fact, we could use variables in
Dockerfiles as well, to complete the dynamic configurations at all levels.

Let's introduce some variables to our application's docker-compose.yaml file (we do this
to allow different behaviors):

version: "3.7"

services:
 lb:
 build:
 context: ./simplestlb
 args:
 alpineversion: "latest"

Deploying Multi-Container Applications Chapter 5

[225]

 dockerfile: Dockerfile.custom
 labels:
 org.codegazers.dscription: "Test image"
 image: ${dockerhubid}/simplest-lab:simplestlb
 environment:
 - APPLICATION_ALIAS=simplestapp
 - APPLICATION_PORT=3000
 networks:
 simplestlab:
 aliases:
 - simplestlb
 ports:
 - "${LB_PORT}:80"

...

...

You will find this file in https:/ /github. com/ PacktPublishing/ Docker- Certified-
Associate-DCA-Exam- Guide. git as docker-compose.dev.yaml, along with all the other
code files that were used in the previous section.

First, we'll review the definition configuration using the docker-compose config action:

$ docker-compose --file docker-compose.dev.yaml config
WARNING: The dockerhubid variable is not set. Defaulting to a blank string.
WARNING: The LB_PORT variable is not set. Defaulting to a blank string.
ERROR: The Compose file './docker-compose.dev.yaml' is invalid because:
services.lb.ports contains an invalid type, it should be a number, or an
object

These warnings and errors indicate that the following variables must be set:

dockerhubid: By default, this will be empty.
LB_PORT: This must be set to a port number because it is the one we will publish
to consume the application.

We need to have values for these variables. We can also use variables on Dockerfiles to add
even more granularity. However, this is not the point here and we will not deep dive into
Dockerfile variable usage again. For the Docker Certified Associate exam, it is important to
know how to use variables to provide values to docker-compose deployments. We can
use dynamic configurations with variables to deploy different projects using just one
docker-compose.yaml file. This is very useful for building debugging images with
developer tools, for example.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Deploying Multi-Container Applications Chapter 5

[226]

Let's set the LB_PORT and dockerhubid variables and review our project configuration
once more:

$ LB_PORT=8081 docker-compose --file docker-compose.dev.yaml config
WARNING: The dockerhubid variable is not set. Defaulting to a blank string.
networks:
 simplestlab:
 ipam:
 config:
 - subnet: 172.16.0.0/16
 driver: default
services:
 app:
 build:
 context: <..>/Docker-Certified-Associate-DCA-Exam-Guide/simplest-
lab/simplestapp
 depends_on:
 - db
 - lb
 environment:
 dbhost: simplestdb
 dbname: demo
 dbpasswd: d3m0
 dbuser: demo
 image: myregistry/simplest-lab:simplestapp
 networks:
 simplestlab:
 aliases:
 - simplestapp
 db:
 build:
 context: <..>/Docker-Certified-Associate-DCA-Exam-Guide/simplest-
lab/simplestdb
 environment:
 POSTGRES_PASSWORD: changeme
 image: myregistry/simplest-lab:simplestdb
 networks:
 simplestlab:
 aliases:
 - simplestdb
 volumes:
 - pgdata:/var/lib/postgresql/data:rw
 lb:
 build:
 args:
 alpineversion: latest
 context: <..>/Docker-Certified-Associate-DCA-Exam-Guide/simplest-
lab/simplestlb

Deploying Multi-Container Applications Chapter 5

[227]

 dockerfile: Dockerfile.custom
 labels:
 org.codegazers.description: Test image
 environment:
 APPLICATION_ALIAS: simplestapp
 APPLICATION_PORT: '3000'
 image: /simplest-lab:simplestlb
 networks:
 simplestlab:
 aliases:
 - simplestlb
 ports:
 - published: 8081
 target: 80
version: '3.7'
volumes:
 pgdata: {}

The other variables have been left empty. We defined different configurations to provide
some features for production, for example, using specific credentials:

$ LB_PORT=8081 dockerhubid=frjaraur docker-compose --project-name test --
file docker-compose.dev.yaml build --build-arg alpineversion="3.6"
Building db
Step 1/2 : FROM postgres:alpine
...
...
[Warning] One or more build-args [alpineversion] were not consumed
Successfully built 336fb84e7fbf
Successfully tagged myregistry/simplest-lab:simplestdb
Building lb
Step 1/12 : ARG alpineversion=latest
...
...
Step 12/12 : LABEL org.codegazers.dscription=Test image
 ---> Using cache
 ---> ea4739af8eb5
Successfully built ea4739af8eb5
Successfully tagged frjaraur/simplest-lab:simplestlb
Building app
Step 1/15 : FROM alpine
...
...
[Warning] One or more build-args [alpineversion] were not consumed
Successfully built ff419f0998ae
Successfully tagged myregistry/simplest-lab:simplestapp

Deploying Multi-Container Applications Chapter 5

[228]

If we review the new build image, we will notice that it now has a new label and was
created using alpine:3.6 instead of the latest version:

"Labels": {
 "org.codegazers.dscription": "Test image"
 }

With that, we have learned how we can prepare different environments using variables.
With variables, we can use one docker-compose.yaml file for any stage in our
environment. We have learned how to prepare a deployment for the following:

Development, using images with compilers or debugging utilities
Tests, thereby adding tools to verify connectivity with third-party applications,
for example
Pre-production or integration, with libraries to execute load and performance
tests before passing the application to production
The production stage, with only well-tested application components within
images being tagged as release, for example

Docker Compose allows us to keep track of all configurations required for each stage with a
YAML file. This file will be stored in our infrastructure as a code repository. Versioning will
help us keep control of deployed applications in production.

Automating your desktop and CI/CD with
Docker Compose
Docker Compose allows us to easily develop on our own laptops. DevOps teams will
provide complete application stack files, docker-compose.yaml files, along with all the
required components and configurations. Developers do not have to learn how all the
components work. They can focus on the component they are developing because the rest
of the components will run automatically thanks to docker-compose.

We can use Docker Compose on a Continuous Integration/Continuous
Deployment (CI/CD) pipeline, building all the components at once.

Docker Compose helps us build all the application components at the development stage,
but we can also use this tool to run all the components together. CI/CD orchestrators will
execute docker-compose files at different stages.

Deploying Multi-Container Applications Chapter 5

[229]

With the described steps and variables, it is easy to imagine how to implement a pipeline
starting at the development stages and ending with the application in production. We
would use different image tags in production, which are created by applying different
variable values between environments.

It is very important to understand that docker-compose.yaml files are key in
Infrastructure-as-Code (IaC) environments. We need to store them and use version control
systems. These files describe what application components will run and what resources
they will use. We can add variables for an application's published ports, for example, to
avoid port conflicts if we deploy a couple of applications using the same docker-compose
files in the same host. We can also use the same docker-compose file for development and
testing, as well as deploying applications to these environments. To avoid environment
conflicts, we can use variables to define an application's component endpoints, such as
databases or any connection chain that should be different between environments.

Developers will use these files to launch the required application components on their
laptops while they are developing new features or fixing code errors. They can focus on
coding because they do not need to create complex infrastructures to test what they are
coding. In fact, they do not need development infrastructures at all, as they can use their
own computers.

We will continue this chapter by reviewing some labs to help us understand and build on
the concepts we've learned so far.

Chapter labs
We will deploy a simple lab to review the different steps described during this chapter.
First, we will build the images required and will continue executing and scaling up
components. We will use a CentOS Linux host with Docker Engine installed.

Deploy environments/standalone-environment from this book's GitHub repository
(https://github.com/ PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide.
git) if you have not done so yet. You can use your own CentOS 7 server. Use vagrant up
from the environments/standalone-environment folder to start your virtual
environment.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Deploying Multi-Container Applications Chapter 5

[230]

If you are using standalone-environment, wait until it is running. We can check the
node's status using vagrant status. Connect to your lab node using vagrant ssh
standalone. Now, standalone is the name of your node. You will be using the vagrant
user with root privileges using sudo. You should get the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
up
Bringing machine 'standalone' up with 'virtualbox' provider...
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
status
Current machine states:
standalone running (virtualbox)
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$

We can now connect to the standalone node using vagrant ssh standalone. This
process may vary if you deployed the standalone virtual node previously and you started
it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
ssh standalone
[vagrant@standalone ~]$

If you are reusing your standalone-environment instance, this means that Docker
Engine is already installed. If you started a new instance, please execute
the /vagrant/install_requirements.sh script to get access to all the required tools
(Docker Engine and docker-compose):

[vagrant@standalone ~]$ /vagrant/install_requirements.sh

Now, you are ready to start the labs.

Colors application lab
We will start these labs by deploying a simple application that will run a small Python
process. This process is a web server that was developed using Flask that will show a
colored page (a random color, by default) with some information about the container name,
its IP address, and the application version.

Deploying Multi-Container Applications Chapter 5

[231]

All the files required for this lab can be found in the Docker-Certified-Associate-
DCA-Exam-Guide/chapter5 folder in this book's GitHub repository at https:/ / github.
com/PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide. git. Let's get
started:

Let's begin by cloning our repository, navigating to our folder, and listing the1.
files present inside the folder:

[vagrant@standalone ~]$ git clone
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-E
xam-Guide.git
[vagrant@standalone ~]$ cd Docker-Certified-Associate-DCA-Exam-
Guide/chapter5
[vagrant@standalone chapter5]$ ls -1
app
docker-compose.loadbalancer.yaml
docker-compose.multicolor.yaml
docker-compose.random.yaml
docker-compose.red.yaml
lb
Readme.md

Let's quickly review the docker-compose.random.yaml file's content:2.

version: "3.7"
services:
 red:
 build: app
 environment:
 COLOR: "red"
 labels:
 role: backend
 ports:
 - 3000
 networks:
 - lab
networks:
 lab:

It is very simple. We defined a random service using the code contained in
the app directory. We will expose container port 3000 to a random host one.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Deploying Multi-Container Applications Chapter 5

[232]

We will now build images using lab1 as the project name. Notice that we3.
defined the lab network. The Docker daemon will create a lab1_random image
and the lab1_lab network:

[vagrant@standalone chapter5]$ docker-compose -p lab1 -f docker-
compose.random.yaml build
Building random
Step 1/9 : FROM node:alpine
alpine: Pulling from library/node
89d9c30c1d48: Already exists
5320ee7fe9ff: Pull complete
...
...
Step 9/9 : EXPOSE 3000
 ---> Running in 51379c5e7630
Removing intermediate container 51379c5e7630
 ---> c0dce423a972

Successfully built c0dce423a972
Successfully tagged lab1_random:latest

Now, we execute our multi-container application (in this case, we just have one4.
service definition):

[vagrant@standalone chapter5]$ docker-compose -p lab1 -f docker-
compose.random.yaml up -d
Creating network "lab1_lab" with the default driver
Creating lab1_random_1 ... done

Let's review the docker-compose project's lab1 execution:

[vagrant@standalone chapter5]$ docker-compose -p lab1 -f docker-
compose.random.yaml ps
 Name Command State Ports

lab1_random_1 docker-entrypoint.sh node ... Up
0.0.0.0:32780->3000/tcp

Notice that the application's port, 3000, is linked to the Docker host port 32780
(using NAT).

Deploying Multi-Container Applications Chapter 5

[233]

We can access the application via that random port; that is, 32780:5.

[vagrant@standalone chapter5]$ curl 0.0.0.0:32780/text
APP_VERSION: 1.0
COLOR: blue
CONTAINER_NAME: 17bc24f60799
CONTAINER_IP: 172.27.0.2
CLIENT_IP: ::ffff:172.27.0.1
CONTAINER_ARCH: linux

We can use a web browser to access the running application. We can also
use curl because the application is prepared to show a text response using
the /text URI:

A random color will be used. In this case, we get a blue page. It may vary in your
environment because a random color will be chosen if the COLOR variable is not
set.

If you deployed the random color application using the provided
vagrant standalone environment, you should use
192.168.56.11:<PUBLISHED_PORT> in your browser because you are
using a virtual machine. However, we prepared a host-to-virtual node
interface (the 192.168.56.11 IP address).

We can now remove the application and continue to the next lab using docker-6.
compose down:

[vagrant@standalone chapter5]$ docker-compose -p lab1 -f docker-
compose.random.yaml down
Stopping lab1_random_1 ... done
Removing lab1_random_1 ... done
Removing network lab1_lab

Deploying Multi-Container Applications Chapter 5

[234]

Now, we will create a red application, defining a simple variable to change the
application's behavior.

Executing a red application
In this lab, we will change the application's behavior by setting the COLOR environment
variable. In this case, we will execute our red application. This new application can be
deployed with just a few changes, which will help us integrate more components in the
following labs.

Now, let's execute a red application. In this case, we just change the service name and add
an environment variable to define the backend color (a COLOR key and a red value). The
following is the content of the docker-compose.red.yaml file:

version: "3.7"

services:
 red:
 build: app
 environment:
 COLOR: "red"
 labels:
 role: backend
 ports:
 - 3000
 networks:
 - lab

networks:
 lab:

We can reuse the lab1 project name or create a new one. If we use lab2 as the new project
name, new tags will be added. Building it will not create new layers because we haven't
changed any code. We will simply use docker-compose up -d, as follows:

[vagrant@standalone ~]$ docker-compose -p lab2 -f docker-compose.red.yaml
up -d
Creating network "lab2_lab" with the default driver
Building red
Step 1/9 : FROM node:alpine
 ---> fac3d6a8e034
Step 2/9 : ENV APPDIR /APP
 ---> Using cache
 ---> 61bbe191216e
Step 3/9 : WORKDIR ${APPDIR}

Deploying Multi-Container Applications Chapter 5

[235]

 ---> Using cache
...
...
 ---> Using cache
 ---> df0f6838dfca
Step 9/9 : EXPOSE 3000
 ---> Using cache
 ---> 24ae28db3e15

Successfully built 24ae28db3e15
Successfully tagged lab2_red:latest
WARNING: Image for service red was built because it did not already exist.
To rebuild this image you must use `docker-compose build` or `docker-
compose up --build`.
Creating lab2_red_1 ... done

We can review the deployment status using docker-compose ps:

[vagrant@standalone ~]$ docker-compose -p lab2 -f docker-compose.red.yaml
ps
 Name Command State Ports

--
lab2_red_1 docker-entrypoint.sh node ... Up 0.0.0.0:32781->3000/tcp

We can easily access 0.0.0.0:32781 to access the red application using curl:

[vagrant@standalone ~]$ curl 0.0.0.0:32781/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: fc05e400d02a
CONTAINER_IP: 172.29.0.2
CLIENT_IP: ::ffff:172.29.0.1
CONTAINER_ARCH: linux

Now, let's try to scale up the number of application instances.

Scaling the red application's backends
In this lab, we will increase the number of application backends by scaling one of its
components up using docker-compose.

Deploying Multi-Container Applications Chapter 5

[236]

Let's set the new number of instances required for the application using docker-compose
scale:

[vagrant@standalone ~]$ docker-compose -p lab2 -f docker-compose.red.yaml
scale red=5
WARNING: The scale command is deprecated. Use the up command with the --
scale flag instead.
Starting lab2_red_1 ... done
Creating lab2_red_2 ... done
Creating lab2_red_3 ... done
Creating lab2_red_4 ... done
Creating lab2_red_5 ... done

Notice that in this case, we are deploying a stateless application, without any persistence.
There is something else to take note of in this case – we left the host-linked port unset.
Therefore, a random one is always used for each container instance. Let's review the new
instance port number with docker-compose ps:

[vagrant@standalone ~]$ docker-compose -p lab2 -f docker-compose.red.yaml
ps
 Name Command State Ports

--
lab2_red_1 docker-entrypoint.sh node ... Up 0.0.0.0:32781->3000/tcp
lab2_red_2 docker-entrypoint.sh node ... Up 0.0.0.0:32784->3000/tcp
lab2_red_3 docker-entrypoint.sh node ... Up 0.0.0.0:32785->3000/tcp
lab2_red_4 docker-entrypoint.sh node ... Up 0.0.0.0:32783->3000/tcp
lab2_red_5 docker-entrypoint.sh node ... Up 0.0.0.0:32782->3000/tcp

Now, we can access all the instances. Each one is using its own NAT port, all of which are
available in the Docker host. We can check this again using curl:

[vagrant@standalone ~]$ curl 0.0.0.0:32781/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: fc05e400d02a
CONTAINER_IP: 172.29.0.2
CLIENT_IP: ::ffff:172.29.0.1
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl 0.0.0.0:32782/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: f5de33465357
CONTAINER_IP: 172.29.0.3
CLIENT_IP: ::ffff:172.29.0.1
CONTAINER_ARCH: linux

Deploying Multi-Container Applications Chapter 5

[237]

[vagrant@standalone ~]$ curl 0.0.0.0:32783/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: 5be016aadadb
CONTAINER_IP: 172.29.0.4
CLIENT_IP: ::ffff:172.29.0.1
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl 0.0.0.0:32784/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: 413c9d605bd5
CONTAINER_IP: 172.29.0.5
CLIENT_IP: ::ffff:172.29.0.1
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl 0.0.0.0:32785/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: fe879a59c3aa
CONTAINER_IP: 172.29.0.6
CLIENT_IP: ::ffff:172.29.0.1
CONTAINER_ARCH: linux

All the IP addresses are different because we are accessing different containers. However,
all of them are red, as expected.

Let's remove all the application instances:

[vagrant@standalone ~]$ docker-compose -p lab2 -f docker-compose.red.yaml
down
Stopping lab2_red_2 ... done
Stopping lab2_red_3 ... done
Stopping lab2_red_4 ... done
Stopping lab2_red_5 ... done
Stopping lab2_red_1 ... done
Removing lab2_red_2 ... done
Removing lab2_red_3 ... done
Removing lab2_red_4 ... done
Removing lab2_red_5 ... done
Removing lab2_red_1 ... done
Removing network lab2_lab

In the next lab, we will add more colors using a single file.

Deploying Multi-Container Applications Chapter 5

[238]

Adding more colors
We will now increase our application's components by adding more colors.

Let's add more color applications. In the docker-compose.multicolor.yaml file, we'll
add a couple of services, along with their own COLOR variables:

version: "3.7"

services:
 red:
 build: app
 environment:
 COLOR: "red"
 labels:
 role: backend
 ports:
 - 3000
 networks:
 - lab
 green:
 build: app
 environment:
 COLOR: "green"
 labels:
 role: backend
 ports:
 - 3000
 networks:
 - lab
 white:
 build: app
 environment:
 COLOR: "white"
 labels:
 role: backend
 ports:
 - 3000
 networks:
 - lab

networks:
 lab:

Deploying Multi-Container Applications Chapter 5

[239]

We will launch our red, green, and white applications using docker-compose up:

[vagrant@standalone ~]$ docker-compose -p lab3 -f docker-
compose.multicolor.yaml up -d
Creating network "lab3_lab" with the default driver
Building white
Step 1/9 : FROM node:alpine
 ---> fac3d6a8e034
...
Successfully built 24ae28db3e15
Successfully tagged lab3_white:latest
...
Building green
...
Successfully tagged lab3_green:latest
...
Building red
...
Successfully tagged lab3_red:latest
WARNING: Image for service red was built because it did not already exist.
To rebuild this image you must use `docker-compose build` or `docker-
compose up --build`.
Creating lab3_green_1 ... done
Creating lab3_white_1 ... done
Creating lab3_red_1 ... done

We will be able to access different applications. Let's review their processes and ports using
docker-compose ps and then access each instance using curl:

[vagrant@standalone ~]$ docker-compose -p lab3 -f docker-
compose.multicolor.yaml ps
 Name Command State Ports

lab3_green_1 docker-entrypoint.sh node ... Up 0.0.0.0:32789->3000/tcp
lab3_red_1 docker-entrypoint.sh node ... Up 0.0.0.0:32791->3000/tcp
lab3_white_1 docker-entrypoint.sh node ... Up 0.0.0.0:32790->3000/tcp

$ curl 0.0.0.0:32789/text
APP_VERSION: 1.0
COLOR: green
CONTAINER_NAME: a25a4cc36232
CONTAINER_IP: 172.31.0.2
CLIENT_IP: ::ffff:172.31.0.1
CONTAINER_ARCH: linux

$ curl 0.0.0.0:32791/text
APP_VERSION: 1.0

Deploying Multi-Container Applications Chapter 5

[240]

COLOR: red
CONTAINER_NAME: 5e12b0de196c
CONTAINER_IP: 172.31.0.4
CLIENT_IP: ::ffff:172.31.0.1
CONTAINER_ARCH: linux

$ curl 0.0.0.0:32790/text
APP_VERSION: 1.0
COLOR: white
CONTAINER_NAME: b67b09c8c836
CONTAINER_IP: 172.31.0.3
CLIENT_IP: ::ffff:172.31.0.1
CONTAINER_ARCH: linux

In this situation, all application components are accessible using random published ports.
We can use fixed ports to route users' requests to external load balancers, for example. We
would not use random ports in production.

Note that the backend ports are dynamically associated with random
ports. This allows us to run this application more than once without any
docker-compose file changes. We will just need to use another project
name to ensure the created objects' uniqueness.

Now, let's add a simple load balancer to see some other deployment features. We will
publish this load balancer, and other services will only be accessible through this
component.

Adding a simple load balancer
In this lab, we will add a simple nginx load balancer to route traffic to different color
backends.

Let's take a look at the new deployment file:

version: "3.7"

services:
 loadbalancer:
 build: lb
 environment:
 APPLICATION_PORT: 3000
 ports:
 - 8080:80
 networks:
 - lab

Deploying Multi-Container Applications Chapter 5

[241]

 red:
 build: app
 environment:
 COLOR: "red"
 labels:
 role: backend
 networks:
 - lab
 green:
 build: app
 environment:
 COLOR: "green"
 labels:
 role: backend
 networks:
 - lab
 white:
 build: app
 environment:
 COLOR: "white"
 labels:
 role: backend
 networks:
 - lab

networks:
 lab:

Notice that we have removed all the color's service backends' ports. Now, we are just
exposing port 8080, which is linked to the internal nginx component's port; that is,
port 80.

Let's launch the application deployment and review the results using docker-compose up
-d:

[vagrant@standalone ~]$ docker-compose -p lab5 -f docker-
compose.loadbalancer.yaml up -d
Creating network "lab5_lab" with the default driver
Building white
...
Successfully tagged lab5_white:latest
WARNING: Image for service white was built because it did not already
exist. To rebuild this image you must use `docker-compose build` or
`docker-compose up --build`.
Building green
...
Successfully tagged lab5_green:latest

Deploying Multi-Container Applications Chapter 5

[242]

WARNING: Image for service green was built because it did not already
exist. To rebuild this image you must use `docker-compose build` or
`docker-compose up --build`.
Building red
...
Successfully tagged lab5_red:latest
WARNING: Image for service red was built because it did not already exist.
To rebuild this image you must use `docker-compose build` or `docker-
compose up --build`.
Building loadbalancer
...Successfully tagged lab5_loadbalancer:latest
WARNING: Image for service loadbalancer was built because it did not
already exist. To rebuild this image you must use `docker-compose build` or
`docker-compose up --build`.
Creating lab5_loadbalancer_1 ... done
Creating lab5_white_1 ... done
Creating lab5_red_1 ... done
Creating lab5_green_1 ... done

Once all our components are ready, we can test all the color backends using different host
headers to reach each backend. We prepared a simple nginx load balancing configuration
for this (we've provided a quick review of the load balancer configuration file in
lb/nginx.conf). Every time we ask for a specific host header using each color, we will be
routed to the right backend:

[vagrant@standalone ~]$ cat lb/nginx.conf
...
...
 server {
 listen 80;
 set $port "__APPLICATION_PORT__";
...
...
 location / {
 proxy_pass http://$host:$port;
 }
...
...

Using curl, we can test all the backends:

[vagrant@standalone ~]$ curl -H "Host: white" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: white
CONTAINER_NAME: 86871cba5a71
CONTAINER_IP: 192.168.208.5
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

Deploying Multi-Container Applications Chapter 5

[243]

[vagrant@standalone ~]$ curl -H "Host: green" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: green
CONTAINER_NAME: f7d90dc89255
CONTAINER_IP: 192.168.208.2
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl -H "Host: red" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: 25bb1b66bab8
CONTAINER_IP: 192.168.208.3
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

Remember, none of the services are accessible except loadbalancer. Let's review the
published ports using docker-compose ps:

[vagrant@standalone ~]$ docker-compose -p lab5 -f docker-
compose.loadbalancer.yaml ps
 Name Command State Ports

lab5_green_1 docker-entrypoint.sh node ... Up 3000/tcp
lab5_loadbalancer_1 /entrypoint.sh /bin/sh -c ... Up 0.0.0.0:8080->80/tcp
lab5_red_1 docker-entrypoint.sh node ... Up 3000/tcp
lab5_white_1 docker-entrypoint.sh node ... Up 3000/tcp

What will happen if we scale up the green service to four instances? We expect to reach all
the instances because the service instances will be added to the internal DNS. Let's scale up
this service using docker-compose up -d:

[vagrant@standalone ~]$ docker-compose -p lab5 -f docker-
compose.loadbalancer.yaml up -d --scale green=4
Starting lab5_green_1 ...
lab5_white_1 is up-to-date
lab5_red_1 is up-to-date
Starting lab5_green_1 ... done
Creating lab5_green_2 ... done
Creating lab5_green_3 ... done
Creating lab5_green_4 ... done

Let's ask for the green service again using curl:

[vagrant@standalone ~]$ curl -H "Host: green" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: green

Deploying Multi-Container Applications Chapter 5

[244]

CONTAINER_NAME: ba90c57914f9
CONTAINER_IP: 192.168.208.7
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl -H "Host: green" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: green
CONTAINER_NAME: c1a9ebcf82ac
CONTAINER_IP: 192.168.208.6
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl -H "Host: green" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: green
CONTAINER_NAME: d5436822ca8f
CONTAINER_IP: 192.168.208.8
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

[vagrant@standalone ~]$ curl -H "Host: green" 0.0.0.0:8080/text
APP_VERSION: 1.0
COLOR: green
CONTAINER_NAME: f7d90dc89255
CONTAINER_IP: 192.168.208.2
CLIENT_IP: ::ffff:192.168.208.4
CONTAINER_ARCH: linux

As we expected, we get different backends on each request because the DNS gave the load
balancer a different backend IP address.

To finish this lab, let's install the bind-tools package on the loadbalancer container to
query the internal DNS using the host tool. We will query the red and green services to
verify the internal DNS resolution. This is key in application deployment when using
components' names. We will use docker-compose exec to install the bind-
tools package in the loadbalancer container. Once the package is installed, we will use
docker-compose exec again with the host command to query the DNS:

[vagrant@standalone ~]$ docker-compose -p lab5 \
-f docker-compose.loadbalancer.yaml exec loadbalancer apk add -q --update
bind-tools

[vagrant@standalone ~]$ docker-compose -p lab5 -f docker-
compose.loadbalancer.yaml \
exec loadbalancer host red
red has address 192.168.208.3

Deploying Multi-Container Applications Chapter 5

[245]

[vagrant@standalone ~]$ docker-compose -p lab5 \
-f docker-compose.loadbalancer.yaml exec loadbalancer host green
green has address 192.168.208.8
green has address 192.168.208.2
green has address 192.168.208.7
green has address 192.168.208.6

The internal DNS gave us all the IP addresses associated with the green and red services.
Those are the associated containers' IP addresses. Therefore, our defined green service is
load-balanced to all running green backends.

Remove all the labs using docker-compose down with the appropriate docker-compose
file and project name.

Summary
This chapter covered how to deploy multi-container applications on Docker hosts. We
learned that the docker-compose command does not just deploy applications, but allows
us to build and share all application components. Reviewing all the components' statuses is
also easier because docker-compose provides a command-line interface for retrieving all
the application container's standard and error outputs. We can start and stop all the
components at once. But we can go even further than this: we are also able to scale the
number of instances of each component up and down. This feature depends on our
application logic because the Docker daemon does not know anything about our
application processes.

All application components are defined in a YAML-formatted file that can be customized
using variables. We learned about the most important keys and their default values in this
instance. The docker-compose file is key as it describes all the application components
and its resources, as well as their interactions. Each component has its own version because
we use images with their tags and arguments. We can also code versioning systems to be
able to track docker-compose changes because this provides IaC information. We need to
know exactly what application components are running in production, and Docker
Compose allows us to apply release numbers to the files used for application deployments.
This will ensure that the right application components are running. Introducing variables in
these files allows us to use them at different development and deployment stages with only
minor changes.

In the following section, there are some questions that you can have a go at to consolidate
your understanding of the topics that we've learned about in this chapter. The next chapter
will teach us how to manage image ownership and content using Docker Content Trust.

Deploying Multi-Container Applications Chapter 5

[246]

Questions
Which of these statements is not true?1.

a) Docker Compose can run multi-service applications distributed on
different services.
b) Docker Compose can run multi-container applications on a Docker host.
c) Docker Compose is a software application that is not installed with
standard Docker packages.
d) All of the above are true.

What can we do with docker-compose?2.

a) We can build all application images.
b) We can pull and push application component images.
c) We can run all application components at once.
d) All of the above.

What will happen if we execute docker-compose up with a docker-compose3.
file in which we have defined the frontend, backend, and database services?
(Choose all of the correct statements out of the following options.)

a) Docker Compose will look for all the services' defined images and will
pull them if they are not present in the current host.
b) Docker Compose will execute only images with the start key defined.
c) Docker Compose will run all containers at once and your terminal will be
attached to their standard and error outputs.
d) All of the above are false.

How can we use a docker-compose file to launch application services more4.
than once?

a) In actual fact, we cannot do that, but we can launch service process
instances using the scale action. This service name will resolve to all replica
IP addresses.
b) Docker Compose will only execute images with the start key defined.
c) Docker Compose will run all the containers at once, without any
precedence.
d) All of the above are false.

Deploying Multi-Container Applications Chapter 5

[247]

What does the execution of docker-compose down do?5.

a) It will stop all running containers associated with an application.
b) It will try to stop all running containers associated with an application.
c) It will try to stop all running containers associated with an application.
Once they're all stopped, it will remove them.
d) It will try to stop all running containers associated with an application.
Once they're all stopped, it will remove them, along with all of their
associated resources, unless they were defined externally.

Further reading
You can refer to the following links for more information regarding the topics that were
covered in this chapter:

The Docker Compose file reference: https:/ /docs. docker. com/ compose/
compose- file/

Docker Compose's GitHub repository: https:/ / github. com/ docker/ compose.
git

Docker Compose with Visual Studio Code: https:/ /code. visualstudio. com/
docs/containers/ docker- compose

Docker Compose samples: https:/ /github. com/ dockersamples/ example-
voting-app

Docker Compose releases: https:/ /github. com/ docker/ compose/ releases

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://github.com/docker/compose.git
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://code.visualstudio.com/docs/containers/docker-compose
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases
https://github.com/docker/compose/releases

6
Introduction to Docker Content

Trust
In this chapter, we will learn about the Docker Content Trust concept and its related tools.
To provide trusted content in Docker environments, we will use Docker Content Trust to
encrypt metadata information applied to Docker objects. Therefore, any unauthorized
changes or object manipulation will be reported. We will be able to ensure that all the
objects in our environment are trusted if none of these issues are found.

First, we will introduce The Update Framework, and then we will learn how to sign
images. After that, we will learn how to verify signatures to ensure their precedence and
ownership. Finally, we will apply those concepts to run a trusted environment in
production.

We will cover the following topics in this chapter:

The Update Framework
Signing images
Reviewing signatures
Creating and running applications in trusted environments

Let's get started!

Technical requirements
In this chapter, we will learn about various Docker Content Trust concepts. We'll provide
some labs at the end of this chapter that will help you understand and learn about the
shown concepts. These labs can be run on your laptop or PC using the provided Vagrant
standalone environment or any already-deployed Docker host deployed by yourself. You
can find additional information in this book's GitHub code repository: https:/ / github.
com/PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide. git.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Introduction to Docker Content Trust Chapter 6

[249]

Check out the following video to see the Code in Action:

"https://bit.ly/ 3b0qviR"

The Update Framework
Before learning about The Update Framework, also known as TUF, we will introduce a
number of concepts. The following concepts will help us understand why we need tools to
manage application updates:

Software update system: A software update system is an application that looks
for new updates continuously. When they are found, it triggers processes to get
these updates and installs these changes. A good example is the Google Chrome
web browser update system. It continuously looks for its components' updates
and, once they are found, it will show us a There is a new release, do you want
to update now? message.
Library package managers: The library package managers will manage and
update programming language libraries and their dependencies. Python's
Package Installer for Python (PIP) and Node.js's Node Package Manager (NPM)
are good examples. These applications look for library updates and install them
with their requisite dependencies.
Operating system component updates: In this case, different package managers
will manage all software updates and their dependencies, triggering, in some
cases, some of the aforementioned solutions (software update systems or library
package managers).

An application update usually takes three logical steps:

It looks for any update or change.1.
It downloads updates.2.
It applies changes to our system.3.

What would happen if those updates were malicious because the code was intercepted and
modified by an attacker?

https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR
https://bit.ly/3b0qviR

Introduction to Docker Content Trust Chapter 6

[250]

TUF was created to prevent these situations. It will handle the steps described for
application updates to ensure that downloaded changes are trusted. No manipulated
changes will be allowed. TUF metadata includes information related to trusted keys,
cryptographic hashes and files, component versions, creation and expiration dates, and
signatures. An application that requires a number of updates does not have to manage this
verification process. It will ask TUF to manage these processes. To summarize, we can say,
in a way, that TUF provides a secure method of obtaining trusted files.

TUF is currently hosted by the Linux Foundation as part of the Cloud Native Computing
Foundation (CNCF). It is open source and can be used in production environments. It is
recommended to use this in conjunction with some vendor tools because it will be easier to
manage and use.

TUF metadata provides information about the truthfulness of the update to the software
update system. This component will then make the right decision (install or reject the
update). This metadata information will be presented in JSON format. We will talk about
four levels of signing. We will refer to them as roles:

Root metadata (root.json) and role: This role is related to the owner of the
change. It is the top role; others will be related to this one.
Targets metadata (targets.json) and role: This role is related to the files
included in the package.
Snapshot metadata (snapshot.json) and role: All files apart
from timestamp.json will be listed on this role to ensure the consistency of
updates.
Timestamp metadata (timestamp.json) and role: This sign will ensure the
exact date of the update and that it is the only one required when checking for
updates, for example.

The update application uses TUF to interact with the repositories and sources of files while
managing their updates. Roles, trusted keys, and target files should not be included in
those repositories because they will be used to manage them.

Introduction to Docker Content Trust Chapter 6

[251]

There should be a client side on this framework so that we can include the roles
described in its normal usage. Therefore, a client side must manage the following:

Trusted root keys, from all possible owners that must be trusted
Target delegation, when there is a target with many owners
Checking for updates using timestamp role dates
All signing processes

Now that we know the benefits of using TUF to manage repository updates, let's review
how this is implemented in Docker.

Docker Content Trust is the Docker implementation of TUF. It is integrated using Notary,
which is an open source tool for publishing and managing trusted content. The Docker
client provides an interface that allows us to sign and verify content publishers.

Notary is a separate piece of software; it can be downloaded and used to inspect keys
included in a Docker registry. Docker integrates Notary using its library. Therefore, every
time we pull an image when Docker Content Trust is enabled (disabled by default), the
Docker daemon will validate its signatures. Image pulling is done by its digest. Image
names and tags will not be used. This ensures that only the right image will be
downloaded.

Notary usage is beyond the scope of this book. At the time of writing, it is
not required in order to pass the DCA certification exam. It is
recommended, however, to read about some of the Notary features
provided at the following link: https:/ /docs. docker. com/ notary/
getting_ started.

When we use Docker Content Trust and we push an image, the Docker client will ask us to
sign at all the levels described (root, target, snapshot, and timestamp).

In summary, Docker Content Trust (Docker's TUF implementation) will do the following:

Ensure image provenance
Sign content prior to distribution
Ensure that everything running on a host is trusted.

In the next section, we will learn how to sign and use signed images that have been
validated by Docker Engine.

https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started
https://docs.docker.com/notary/getting_started

Introduction to Docker Content Trust Chapter 6

[252]

Signing images
So far, we have learned about the different roles and the metadata information that will be
used to validate and trust image content. Let's look at a quick summary before getting into
the Docker signing action:

The root key will validate other keys. It signs the root.json file, which contains
the list of IDs of the root, targets, snapshot, and timestamp public keys. To verify
content signatures, the Docker client will use these public keys. The root key is
offline and must be kept safe. The owner of a collection of images should
maintain this key. Don't lose this key. You can recreate it, but all your signed
images will be invalid.
The target key signs the targets.json file, which contains a list of your content
filenames, along with their sizes and hashes. This file is used to delegate trust to
other users in a team so that others can sign the same repository. This key is held
by administrators and owners of a collection (repository).
The delegation key is used to sign delegation metadata files. This key is held by
administrators and everyone who can contribute to the specified collection.
The snapshot key signs the snapshot.json metadata file. This file also contains
filenames, as well as the sizes and hashes of root, targets, and delegation files in
the collection. This key will be held by administrators and the collection owner. If
we use the Notary service, this key can also be held by this service to allow
signing by collection collaborators. This key represents the current package
signature.
The timestamp key ensures the freshness of the collection. It is used to verify the
integrity of the snapshot.json file. Because this key is only valid for a period of
time, it is better to be held in Notary. In this case, it will not be necessary that
owners recreate the key each time it expires. Notary will regenerate this key as
needed.

Now, let's sign an image using the Docker client.

First, we will enable Docker Content Trust. By default, it is not enabled. We can enable it for
all Docker commands or add an argument each time we want to enable it. To enable Docker
Content Trust for all subsequent Docker commands, we need to define the
DOCKER_CONTENT_TRUST variable:

$ export DOCKER_CONTENT_TRUST=1

Introduction to Docker Content Trust Chapter 6

[253]

Alternatively, we can enable Docker Content Trust for only specified commands:

$ docker pull --disable-content-trust=false busybox:latest

We used --disable-content-trust=false here because, by default, Docker Content
Trust is disabled.

Now that we have enabled Docker Content Trust for all commands in this session by
setting DOCKER_CONTENT_TRUST= 1, we can pull an image using docker image pull:

$ export DOCKER_CONTENT_TRUST=1

$ docker image pull busybox
Using default tag: latest
Pull (1 of 1):
busybox:latest@sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2
c712260b5a0
sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260b5a0:
Pulling from library/busybox
0f8c40e1270f: Pull complete
Digest:
sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260b5a0
Status: Downloaded newer image for
busybox@sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260
b5a0
Tagging
busybox@sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260
b5a0 as busybox:latest
docker.io/library/busybox:latest

Notice that the docker image pull command's output changed. In fact, the downloaded
image was managed by its hash; in this
case, busybox@sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669fa
f2c712260b5a.

Docker's official images and certified images are always signed. Official
images are managed and built by Docker, and they are located under
docker.io/<REPOSITORY>:<TAG>.

Let's run this image using docker container run and see what happens:

$ docker container run -ti busybox sh
/ # ls
bin dev etc home proc root sys tmp usr var
/ # touch NEW_FILE
/ # exit

Introduction to Docker Content Trust Chapter 6

[254]

It worked, as expected. We added a file because we wanted to modify a container before
committing its content to create a new, untrusted image. For this process, we will run
docker container commit, setting DOCKER_CONTENT_TRUST=0 for the command. We
do this because Content Trust was previously enabled in our current session:

$ DOCKER_CONTENT_TRUST=0 docker container commit 3da3b341e904
busybox:untrusted
sha256:67a6ce66451aa10011d379e4628205889f459c06a3d7793beca10ecd6c21b68a

Now, we have an untrusted busybox image. What will happen if we try to execute this
image?

$ docker container run -ti busybox:untrusted sh
docker: No valid trust data for untrusted.
See 'docker run --help'.

We cannot run this image because it is not trusted; it does not have any content trust
metadata. Therefore, it cannot be validated and will not be allowed to run. If Docker
Content Trust is enabled, unsigned images will not be allowed.

Let's sign this image. In this case, we will change the image name and create a
new trusted tag. The signing process requires two passphrases, as described here:

First, we will be asked to set a root passphrase. You will be asked twice to1.
validate the password that's entered as it is not shown.
Then, you will be asked to set a repository passphrase. You will be asked twice2.
again to validate the password that's entered as it is not shown.

We have been asked for the passphrase twice because we are setting their values for the
first time. Next time we use these keys to push or pull to this repository, we will be asked
just once (or more if it was typed in incorrectly). Let's execute docker image push:

$ docker image push frjaraur/mybusybox:trusted
The push refers to repository [docker.io/frjaraur/mybusybox]
0736ae522762: Pushed
1da8e4c8d307: Mounted from library/busybox
trusted: digest:
sha256:e58e349eee38baa38f8398510c44e63a1f331dc1d80d4ed6010fe34960b9945f
size: 734
Signing and pushing trust metadata
You are about to create a new root signing key passphrase. This passphrase
will be used to protect the most sensitive key in your signing system.
Please
choose a long, complex passphrase and be careful to keep the password and
the
key file itself secure and backed up. It is highly recommended that you use

Introduction to Docker Content Trust Chapter 6

[255]

a
password manager to generate the passphrase and keep it safe. There will be
no
way to recover this key. You can find the key in your config directory.
Enter passphrase for new root key with ID 6e03824:
Repeat passphrase for new root key with ID 6e03824:
Enter passphrase for new repository key with ID b302395:
Repeat passphrase for new repository key with ID b302395:
Finished initializing "docker.io/frjaraur/mybusybox"
Successfully signed docker.io/frjaraur/mybusybox:trusted

The root passphrase is very important. Keep it safe because if you lose it, you will need to
start again. If this happens, your already-signed images will be untrusted and you will
need to update them. If you lose a key, you will need to contact Docker Support
(support@docker.com) to reset the repository state.

The passphrases you choose for both the root key and your repository
should be strong. It is recommended to use randomly generated ones.

Now, we have a signed image. It is owned by us (in this example, I am the owner of
frjaraur/mybusybox:trusted).

Now, we can execute this newly signed (and hence trusted) image using docker
container run:

$ docker container run -ti frjaraur/mybusybox:trusted
/ # touch OTHERFILE
/ # exit

To manage Docker Content Trust, we can use docker trust with its available actions. We
will be able to manage keys (load and revoke) and sign images (this process is similar to the
one previously described). We can review these signatures using docker trust inspect:

$ docker trust inspect --pretty docker.io/frjaraur/mybusybox:trusted

Signatures for docker.io/frjaraur/mybusybox:trusted

SIGNED TAG DIGEST SIGNERS
trusted e58e349eee38baa38f8398510c44e63a1f331dc1d80d4ed6010fe34960b9945f
(Repo Admin)

Administrative keys for docker.io/frjaraur/mybusybox:trusted

 Repository Key:

Introduction to Docker Content Trust Chapter 6

[256]

b3023954026f59cdc9be0b7ba093039353ce6e2d1a06c1338e4387689663abc0
 Root Key:
e9120faa839a565838dbad7d45edd3c329893ae1f2085f225dc039272dec98ed

Notice that we have used docker.io/frjaraur/mybusybox:trusted
instead of frjaraur/mybusybox:trusted. This is because if we do not
use the registry's fully qualified domain name (FQDN) and the image
exists locally, it will be used to retrieve all signature information and you
will receive a WARN[0006] Error while downloading remote
metadata, using cached timestamp - this might not be the

latest version available remotely message because you will be
using the cached timestamp instead of the real one.

Now that we have learned how to sign content – in this case, images – let's move on and
learn how to verify signatures.

Reviewing signatures
The Docker client stores content trust-related files under the .docker/trust directory,
inside the user's home directory.

If we navigate to the trusted directory, we will find different registry files under
.docker/trust/tuf. We used Docker Hub in this chapter's examples. Therefore, we will
find the docker.io registry and different repositories. This may vary in your environment;
you may have more registries or repositories. It will depend on when you started to use
Docker Content Trust in your Docker host. Using the examples from the previous sections,
we will find a tree-like directory structure under the .docker directory:

trust/tuf/docker.io/frjaraur/mybusybox/metadata:
total 16
-rw------- 1 zero zero 494 nov 30 17:29 timestamp.json
-rw------- 1 zero zero 531 nov 30 17:28 targets.json
-rw------- 1 zero zero 682 nov 30 17:28 snapshot.json
-rw------- 1 zero zero 2417 nov 30 17:03 root.json
...
...
trust/tuf/docker.io/library/busybox/metadata:
total 28
-rw------- 1 zero zero 498 nov 30 17:17 timestamp.json
-rw------- 1 zero zero 13335 nov 30 16:41 targets.json
-rw------- 1 zero zero 688 nov 30 16:41 snapshot.json
-rw------- 1 zero zero 2405 nov 30 16:41 root.json

Introduction to Docker Content Trust Chapter 6

[257]

Remember the JSON files described in the previous section. All these files are located under
each registry and repository's structure.

The Docker client will store your keys under your
.docker/trust/private directory. It is very important to keep them
safe. To back up these keys, use the $ umask 077; tar -zcvf
private_keys_backup.tar.gz ~/.docker/trust/private; umask

022 command.

Notary will assist us in managing signatures. It is an open source server and client
application and can be downloaded from its GitHub project page (https:/ /github. com/
theupdateframework/ notary).

Notary can be installed either on Linux or Windows hosts.

We will simply download the latest release using the curl command and modify its
permissions and path:

$ curl -o /tmp/notary -sL
https://github.com/theupdateframework/notary/releases/download/v0.6.1/notar
y-Linux-amd64

$ sudo mv /tmp/notary /usr/local/bin/notary

$ sudo chmod 755 /usr/local/bin/notary

In this section, we will use Docker's own Notary server that's been published on the
internet (https://notary. docker. io) and that is associated with Docker Hub.

Docker Enterprise will run its own Docker Notary server implementation
in your environment.

Let's verify, for example, all the signatures associated with a Docker Hub repository. In this
example, we are reviewing the busybox repository. We use notary list with the
appropriate server and directory arguments:

$ notary -s https://notary.docker.io -d ~/.docker/trust list
docker.io/library/busybox
NAME DIGEST SIZE (BYTES) ROLE

https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io
https://notary.docker.io

Introduction to Docker Content Trust Chapter 6

[258]

---- ------ ------------ ----
1 1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260b5a0 1864
targets
...
...
1.31.1-uclibc
817e459ca73c567e9132406bad78845aaf72d2e0c0965ff68861b318591e949a 1210
targets
buildroot-2013.08.1
c0a08c5e4c15c53f03323bae8e82fdfd9f4fccb7fd01b97579b19e3e3205915c 5074
targets
buildroot-2014.02
ced99ae82473e7dea723e6c467f409ed8f051bda04760e07fd5f476638c33507 5071
targets
glibc 0ec061426ef36bb28e3dbcd005f9655b6bfa0345f0d219c8eb330e2954f192ac 1638
targets
latest 1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260b5a0
1864 targets
...
...
uclibc 817e459ca73c567e9132406bad78845aaf72d2e0c0965ff68861b318591e949a
1210 targets

We listed all the targets on a remote trusted collection – in this case, the busybox collection
on Docker Hub (docker.io/library/busybox).

Now, let's learn how to automate these processes and ensure security to build a trusted
environment in our organization.

Creating and running applications in trusted
environments
In this section, we will consider a trusted environment where CONTENT_TRUST_ENABLED is
used for all actions. This will ensure that images built in that environment will always be
signed. All images that have been pushed and pulled will be signed, and we will only run
containers based on trusted images.

Introduction to Docker Content Trust Chapter 6

[259]

It is interesting to add CI/CD orchestration tools to these processes. It is not easy to disallow
non-trusted content without some system or even higher security policies. If we set
the DOCKER_CONTENT_TRUST value to only allow Docker Content Trust, but users are
allowed to interact with the Docker host directly, they can disable this feature at the
command line.

Automation is key in production environments, although it is true that Docker Enterprise
provides other methods, which we will discuss later on in Chapter 12, Universal Control
Plane. Kubernetes also provides features to force security for trusted content, but this topic
is beyond the scope of this book.

Using an external CI/CD, we can automate the building, sharing, or deployment of Docker
content. Let's look at a brief example of building and pushing an image:

$ export
DOCKER_CONTENT_TRUST_ROOT_PASSPHRASE="MyVerySecureRootPassphraseForAutomati
on"
$ export
DOCKER_CONTENT_TRUST_REPOSITORY_PASSPHRASE="MyVerySecureRepositoryPassphras
eForAutomation"

$ docker build -t docker/trusttest:testing .
Using default tag: latest
latest: Pulling from docker/trusttest
b3dbab3810fc: Pull complete
a9539b34a6ab: Pull complete
Digest: sha256:d149ab53f871

$ docker push docker/trusttest:latest
The push refers to a repository [docker.io/docker/trusttest] (len: 1)
a9539b34a6ab: Image already exists
b3dbab3810fc: Image already exists
latest: digest: sha256:d149ab53f871 size: 3355
Signing and pushing trust metadata

We can write a script for a CI/CD orchestration job using the root and repository
passphrases to ensure that content trust is applied during building and pushing to our
registry. We can follow the same method to deploy on production, disallowing any user
interaction with this secure environment. Take care of environment variables for
passphrases on scripts because they will be visible. CI/CD orchestrators will provide secure
methods to manage this. This will give you an idea of how you should implement a secure
chain with your own management configuration tools.

Now, let's review a lab to better understand the topics we've learned in this chapter.

Introduction to Docker Content Trust Chapter 6

[260]

Chapter labs
We will now complete a lab that will help us improve on the concepts we've learned about.

Deploy environments/standalone-environment from this book's GitHub repository
(https://github.com/ PacktPublishing/ Docker- Certified- Associate- DCA-Exam- Guide.
git) if you have not done so yet. You can use your own CentOS 7 server. Use vagrant up
from the environments/standalone-environment folder to start your virtual
environment.

If you are using a standalone environment, wait until it is running. We can check the
statuses of our nodes using vagrant status. Connect to your lab node using vagrant
ssh standalone. standalone is the name of your node. You will be using the vagrant
user with root privileges using sudo. You should get the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
up
Bringing machine 'standalone' up with 'virtualbox' provider...
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
status
Current machine states:
standalone running (virtualbox)
...
Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$

We can now connect to a standalone node using vagrant ssh standalone. This process
may vary if you've already deployed a standalone virtual node before and you've just
started it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/standalone$ vagrant
ssh standalone
[vagrant@standalone ~]$

If you are reusing your standalone environment, this means Docker Engine is installed. If
you started a new instance, please execute the /vagrant/install_requirements.sh
script so that you have all the required tools (Docker Engine and docker-compose):

[vagrant@standalone ~]$ /vagrant/install_requirements.sh

Now, you are ready to start the labs.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Introduction to Docker Content Trust Chapter 6

[261]

Signing images for Docker Hub
First, sign in to https:/ /hub. docker. com/ signup to create your own account at Docker
Hub if you do not already have one. You can use your own registry, but you should have a
Notary server running. Let's get started:

This lab will use the frjaraur/pingo repository in Docker Hub. You
must substitute frjaraur with your username.

In this lab, we will start from the very beginning. This is a lab, so don't remove1.
your own .docker/trust directory if you have been signing images
beforehand. In that case, back up your trust directory somewhere safe so that you
can recover it later or just create a dummy user in your Docker host system. To
create this backup, we will just execute cp -pR ~/.docker/trust
~/.docker/trust.BKP. After these labs, you can recover it:

[vagrant@standalone ~]$ rm -rf ~/.docker/trust/

Now, enable Docker Content Trust and create a directory for this lab:2.

[vagrant@standalone ~]$ export DOCKER_CONTENT_TRUST=1

[vagrant@standalone ~]$ cd $HOME
[vagrant@standalone ~]$ mkdir chapter6
[vagrant@standalone ~]$ cd chapter6

We have prepared a quite-simple Dockerfile, executing ping to 8.8.8.8 for 3003.
times. These lab files can be found in the chapter6 directory if you have
downloaded the book samples from this book's GitHub repository. Create a
Dockerfile file with the following content using your file editor:

FROM alpine:3.8
RUN apk add --update curl
CMD ping 8.8.8.8 -c 300

Now, we can build the image. Remember that Docker Content Trust was4.
enabled. We will use docker image build in the directory where you wrote
your Dockerfile:

[vagrant@standalone chapter6]$ docker image build -t
frjaraur/pingo:trusted .

Sending build context to Docker daemon 2.048kB

https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup
https://hub.docker.com/signup

Introduction to Docker Content Trust Chapter 6

[262]

Step 1/3 : FROM
alpine@sha256:04696b491e0cc3c58a75bace8941c14c924b9f313b03ce5029ebb
c040ed9dcd9
sha256:04696b491e0cc3c58a75bace8941c14c924b9f313b03ce5029ebbc040ed9
dcd9: Pulling from library/alpine
c87736221ed0: Pull complete
Digest:
sha256:04696b491e0cc3c58a75bace8941c14c924b9f313b03ce5029ebbc040ed9
dcd9
Status: Downloaded newer image for
alpine@sha256:04696b491e0cc3c58a75bace8941c14c924b9f313b03ce5029ebb
c040ed9dcd9
 ---> dac705114996
Step 2/3 : RUN apk add --update curl
...
...
Successfully built b3aba563b2ff
Successfully tagged frjaraur/pingo:trusted
Tagging
alpine@sha256:04696b491e0cc3c58a75bace8941c14c924b9f313b03ce5029ebb
c040ed9dcd9 as alpine:3.8

You may have noticed new messages from the Docker daemon. The daemon used
the alpine:3.8 image hash,
sha256:04696b491e0cc3c58a75bace8941c14c924b9f313b03ce5029ebbc04

0ed9dcd9, instead of the image name and tag. If we had an image locally with the
same image:tag values, it would have been verified. If the hash did not match, it
would have been avoided and the real image would have been downloaded from
Docker Hub. This will ensure that the trusted alpine:3.8 image will be
downloaded.

Now, we will sign this image using docker trust sign. This process will ask5.
us to create a root passphrase, a repository passphrase, and a user
passphrase (this is new in this chapter because we did not use Docker Content
Trust in previous chapters). This will create a new trust directory
under .docker. When the image is pushed, you will be asked about your
registry user passphrase again. This is not your Docker Hub password. This is
the passphrase you created so that you can perform signing. We will use docker
trust sign:

[vagrant@standalone chapter6]$ docker trust sign
frjaraur/pingo:trusted
You are about to create a new root signing key passphrase. This
passphrase
will be used to protect the most sensitive key in your signing

Introduction to Docker Content Trust Chapter 6

[263]

system. Please
choose a long, complex passphrase and be careful to keep the
password and the
key file itself secure and backed up. It is highly recommended that
you use a
password manager to generate the passphrase and keep it safe. There
will be no
way to recover this key. You can find the key in your config
directory.
Enter passphrase for new root key with ID 9e788ed:
Repeat passphrase for new root key with ID 9e788ed:
Enter passphrase for new repository key with ID fb7b8fd:
Repeat passphrase for new repository key with ID fb7b8fd:
Enter passphrase for new frjaraur key with ID f1916d7:
Repeat passphrase for new frjaraur key with ID f1916d7:
Created signer: frjaraur
Finished initializing signed repository for frjaraur/pingo:trusted
Signing and pushing trust data for local image
frjaraur/pingo:trusted, may overwrite remote trust data
The push refers to repository [docker.io/frjaraur/pingo]
6f02cc23eebe: Pushed
d9ff549177a9: Mounted from library/alpine
trusted: digest:
sha256:478cd976c78306bbffd51a4b5055e28873697d01504e70ef85bddd9cc348
450b size: 739
Signing and pushing trust metadata
Enter passphrase for frjaraur key with ID f1916d7:
Successfully signed docker.io/frjaraur/pingo:trusted

With that, the image was signed and pushed to Docker Hub. We can verify that6.
the image was uploaded by using curl:

[vagrant@standalone chapter6]$ curl -s
https://hub.docker.com/v2/repositories/frjaraur/pingo/tags|jq
{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "name": "trusted",
 "full_size": 4306493,
 "images": [
 {
 "size": 4306493,
 "digest":
"sha256:478cd976c78306bbffd51a4b5055e28873697d01504e70ef85bddd9cc34
8450b",

Introduction to Docker Content Trust Chapter 6

[264]

 "architecture": "amd64",
 "os": "linux",
 "os_version": null,
 "os_features": "",
 "variant": null,
 "features": ""
 }
],
 "id": 78277337,
 "repository": 8106864,
 "creator": 380101,
 "last_updater": 380101,
 "last_updater_username": "frjaraur",
 "image_id": null,
 "v2": true,
 "last_updated": "2019-11-30T22:03:28.820429Z"
 }
]
}

Finally, we will review the image signatures using docker trust inspect:7.

[vagrant@standalone chapter6]$ docker trust inspect --pretty
frjaraur/pingo:trusted
Signatures for frjaraur/pingo:trusted
SIGNED TAG DIGEST SIGNERS
trusted
478cd976c78306bbffd51a4b5055e28873697d01504e70ef85bddd9cc348450b
frjaraur
List of signers and their keys for frjaraur/pingo:trusted
SIGNER KEYS
frjaraur f1916d7ad60b
Administrative keys for frjaraur/pingo:trusted
Repository Key:
fb7b8fdaa22738c44b927110c377aaa7c56a6a15e2fa0ebc554fe92a57b5eb0b
 Root Key:
4a739a076032b94a79c6d376721649c79917f4b5f8c8035ca11e36a0ed0696b4

Now, let's look at a brief summary of the topics that were covered in this chapter before we
look at some questions.

Introduction to Docker Content Trust Chapter 6

[265]

Summary
Docker Content Trust helps us guarantee content security in container environments and
ensure image provenance and trusted content. In production environments, it is critical to
be able to ensure that any running container was generated from trusted content. If image
security cannot be validated, no container should be allowed to run based on that image.

We have learned that Content Trust improves Docker repository security by means of four
fundamental keys. The root key ensures ownership and the targets key will allow content
to be verified in specific collections or repositories. These keys will be protected by
passphrases and we will be asked for them when signing. The snapshot and timestamp
keys will not require any user interaction and will be generated automatically to guarantee
the content key files and the dates and expiration of the signed image.

In the next chapter, we will introduce the concept of orchestration. We will review all the
features required to manage container-based applications in distributed environments.

Questions
Which of these sentences is not true?1.

a) Docker Content Trust is based on TUF.
b) TUF was developed to ensure software updating processes.
c) It is not possible to validate new software releases.
d) All of the preceding statements are false.

Which of the following names represent Docker Content Trust keys used to2.
validate image content?

a) Targets
b) Users
c) Groups
d) Timestamp

Introduction to Docker Content Trust Chapter 6

[266]

How can we ensure that the busybox:latest release is, in fact, the latest one?3.

a) We cannot ensure the freshness of images.
b) busybox:latest indicates that this image is the latest one created.
c) Content Trust will validate the freshness of images; therefore, we can
ensure that the host really executes the busybox:latest image, although
we cannot ensure that it is the latest one.
d) All of the preceding statements are false.

Why will we obtain a denied: requested access to the resource is4.
denied error when trying to sign busybox:trusted?

a) This image does not exist.
b) We are not allowed to modify that repository.
c) Docker Content Trust was probably not enabled.
d) All of the preceding.

We lost our root key because we changed our laptop. Which of the following5.
statements is true?

a) If we don't have a key under .docker/trust/private, a new one will
be generated when signing.
b) We can recover the private root key if we perform a backup.
c) If we generate a new key, our old images will become untrusted and we
will need to resign them.
d) All of the preceding statements are true.

Further reading
You can refer to the following links for more information on the topics that were covered in
this chapter:

TUF: https:/ /theupdateframework. io/

TUF specification: https:/ / github. com/ theupdateframework/ specification

Notary: https:/ /github. com/ theupdateframework/ notary

Docker Content Trust: https:/ /docs. docker. com/engine/ security/ trust/
content_ trust/

https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://theupdateframework.io/
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/

2
Section 2 - Container

Orchestration
In this section, we will cover the orchestration of containers on cluster-wide environments.
We will learn how to deploy applications based on cluster-wide distributed components.
You will also learn how orchestrators manage applications' processes and their interactions,
and how to publish them for users.

This section comprises the following chapters:

Chapter 7, Introduction to Orchestration
Chapter 8, Orchestration Using Docker Swarm
Chapter 9, Orchestration Using Kubernetes

7
Introduction to Orchestration

In this chapter, we will talk about orchestration concepts that can be applied to container
environments. We will learn why we need orchestration to deploy applications based on
container components on a pool of nodes. Orchestrators provide new features to an
environment but they also introduce new management challenges. We will also look at new
definitions so that we can provide Docker Engine features in a distributed orchestrated
environment. This chapter will introduce important concepts that will help you understand
the Swarm and Kubernetes orchestrators.

We will learn about orchestration as a concept and we will also introduce some interesting
topics, such as the importance of orchestration in distributed and dynamic environments,
and the fact that it allows us to easily scale up and down and update application
components. We will also learn how to manage stateless and stateful components and
provide data persistency on distributed deployments.

By the end of this chapter, you will know what an orchestrator is and how it applies to
container-based application environments.

We will cover the following topics in this chapter:

Introducing orchestration concepts
Learning about container orchestration
Scheduling applications cluster-wide
Managing data and persistency
Scaling and updating application components

This chapter does not include any labs as it is an introductory chapter
with theoretical and general concepts.

Let's start by introducing orchestration as a key concept for managing distributed
applications.

Introduction to Orchestration Chapter 7

[269]

Introducing orchestration concepts
Understanding orchestration concepts is key in this chapter so that we can learn more
about Docker Swarm or Kubernetes. Let's imagine an orchestra: there are violinists,
pianists, percussionists, and so on; every player has studied for many years to become a
professional musician. They can play alone perfectly, but things get difficult when we add
more instruments. Players can read the musical score and each one will play their part. But
even the best musicians need someone to guide them when they're playing together. The
orchestra director is key to making all the instruments work together.

When we divide our applications into small pieces – microservices – orchestration is
required. An application requires a lot of components to work together. Remember that
splitting a monolithic application into different functionalities also creates a new
development workflow. We can have different groups of developers working who are
focused on just one functionality. Each application component is an atomic piece.

Deploying an application requires the execution and management of all its components at
the same time. An orchestrator will manage these components and the application life
cycle.

Orchestration will also manage components' dependencies, or will at least provide some
tools to allow us to implement application logic.

Orchestration is even more necessary when applications run their components distributed
in a pool of computation nodes. We can even distribute these components on different
cloud providers or mix on-premises and cloud infrastructures.

Time synchronization is critical on distributed environments and it is even
more important when we are securing connections using Secure Sockets
Layer/Transport Layer Security (SSL/TLS) or other certificate-based
solutions.

To summarize, we can say that orchestration provides the tools that we need to manage an
application's components in a seamless way across distributed environments.

Now that we know what an orchestrator should do on distributed applications, let's deep
dive into container environments.

Introduction to Orchestration Chapter 7

[270]

Learning about container orchestration
Orchestration helps us manage applications running multiple components. In our case,
these components or microservices will run on containers. Therefore, let's summarize what
features are required in a container environment:

Deployment: All application components must run in a coordinated manner. An
orchestrator should help us deploy application components as they are required
and they should run in the right order.
Configuration: It is not easy to manage configuration in distributed
environments. An orchestrator should manage this configuration and the
configuration should be available anywhere a container needs it.
Resilience: If one application component fails, the orchestrator should keep the
application healthy, if possible.
Scaling up/down: The microservices concept allows application components to
be replicated to increase application performance if needed. If no extra power is
required, we should be able to decommission these replicas to save resources.
Node distribution: To ensure high availability, we will provide a pool of
orchestrated compute nodes. This way, we will distribute all application
components on different nodes. If some of these nodes die, the orchestrator
should ensure that the components running on those nodes run automatically on
other healthy ones.
Networking: Because we distribute applications within different hosts, the
orchestrator will need to provide the required application component
interactions. Networking is key in this situation.
Publishing: The orchestrator should also ensure a way to interact with running
application components since our application's purpose is to provide a service to
customers.
State: An application component's state is hard to manage. Therefore, it is easier
to orchestrate stateless components. This is why people think of containers as
ephemeral artifacts. We learned that containers have their own life cycles and
that they are not really ephemeral. They exist on hosts until someone deletes
them, but orchestration should schedule these components wherever it is
permitted. This means that a container's state should be managed in a
coordinated way and that components should run with the same properties
everywhere. Application components have to maintain their status when they
are moved to another host. In most cases, we will run a new, fresh container if a
component dies, instead of trying to restart an unhealthy one.

Introduction to Orchestration Chapter 7

[271]

Storage: If some application components require storage, such as for persistence
data, the orchestrator should provide an interface to interact with the host's
available storage providers.

As you can see, orchestration helps us to maintain application logic, but it cannot do magic.
In fact, an orchestrator does not know anything about your application logic. We must
provide that logic in some kind of configuration.

In this chapter, we are introducing concepts that can be applied to well-known container
orchestrators. Kubernetes and Swarm are the most commonly used, although there are
others.

Orchestration will not run containers. Containers are packaged into other orchestration
structures. These atomic structures will be scheduled cluster-wide, depending on certain
properties or key values. The orchestrator should decide on the best place to launch these
atomic components. All orchestrators need a database-like component to store
orchestration objects, their properties, and their state.

In Kubernetes, we deploy Pods, which are multiple containers running together. In Swarm,
we deploy services, which are based on tasks – which, in the end, are containers. Therefore,
we never launch containers. We have other units of deployment. If we deploy a container
on a host as-is, it will not be managed by the orchestrator.

In the API era, orchestrators are managed using their exposed API. In fact, we will use
the kubectl and docker commands to interact with orchestration processes via their APIs.
This will be transparent for us. Client applications will do the job with different arguments
and actions applied.

Orchestrators are also based on microservices architectures. They have many distributed
components. At least a database is required, as we mentioned previously, and an API
server and a scheduler to decide where to run the defined application workloads. We will
think about applications as groups of logical components, defined using scheduling units.

In the next section, we will cover how orchestration decides where to run application
components in cluster-wide environments.

Introduction to Orchestration Chapter 7

[272]

Scheduling applications cluster-wide
So far, we have learned what to expect from an orchestrator and the basic components
required to make it work. We mentioned distributing application components on different
hosts. To be able to distribute application components, we will need to deploy a cluster. A
cluster is a set of nodes working together. Deploying an application to a host should be
similar to deploying the same application to a cluster. The orchestrator will manage the
entire workflow, and this process should be transparent for us.

Orchestrators usually manage nodes with different roles. Depending on the kind of
processes those nodes run, we will define manager and worker nodes. The names may
differ for each orchestrator implementation, but the logic will be the same. Manager nodes
execute the orchestration control plane, while workers execute the application
deployments. Worker nodes, therefore, are compute nodes.

Control plane nodes manage all the actions required for an orchestration framework to
work. The aforementioned database, which is required for storing all object definitions and
states, will run on these nodes. The scheduler logic will also run on these nodes. Depending
on the database used, for the orchestration to work, it may require a number of odd nodes.
Many orchestrators rely on key-value databases (very fast databases accessible via
HTTP/HTTPS protocols).

In these cases, databases use the Raft consensus protocol. This means that a defined number
of nodes have to vote for every change in the environment before they are stored in the
database by just one of them. Once all the required votes are correctly received, database
values are synced to other nodes. This ensures that all the nodes have the same information
and that the database is safe if some of them go down. This is a very important feature in
these environments. And this is the reason why Swarm and Kubernetes, among others,
require a specific number of manager nodes to work correctly.

All orchestrated objects have labels. Some of them are automatically added by the
orchestrator, for example, to set cluster node architectures. Other labels can be manually
configured to define some special behaviors or characteristics, such as to define the
application tier or layer for a component. Layers are key to managing cluster object
interactions.

The orchestrator will also manage all node resources (CPU, memory, and the ports that are
available, among other things) and review whether there are enough resources to run a
defined workload before it is deployed.

Introduction to Orchestration Chapter 7

[273]

The orchestrator will review all the node resources, labels, and other application
requirements before deciding where to execute workloads. We will be able to set some
affinity and anti-affinity features to specify some special requirements and, of course, we
will be able to use labels to help the orchestrator choose the right place for them. We will
use these labels to associate application components with faster nodes, closer to some
required components, or distributed on each node in the cluster.

Remember that application components can be deployed cluster-wide. The orchestrator
should manage their network interactions and provide access to these deployments.

These are the basic components for orchestration and the logic behind orchestration
scheduling. In the next section, we will take a quick look at how data and application states
are managed. Remember that this chapter is just a quick introduction to some orchestration
concepts that Docker Swarm and Kubernetes will implement on their workflows, with
different architectures and more complexity.

Managing data and persistency
In many cases, application components need to store some data. This can be very
complicated in distributed environments. That is why we usually talk about containers as
ephemeral components. Stateless components are easy to implement, but in stateful
components, we try to decouple persistent data from a container's filesystems. Remember
that data in containers can be lost. In fact, orchestration does not care about data and
therefore, if a container dies, it will just run a new one. In these cases, we need to persist
data out of a container's environment. We can use what we learned about volume objects in
Chapter 4, Container Persistency and Networking, to do this. We defined volumes to bypass a
container's filesystem to improve performance and to store data out of the container's life
cycle.

In distributed environments, using the host's local storage will leave application
components in inconsistent states when they are moved from one host to another. To avoid
these situations, we will use the host's external volumes. In fact, we will choose a storage
driver that will allow us to run our application components everywhere, alongside their
required storage. All orchestrators can provide NFS storage to containers as required, but in
some cases, this is not enough and specialized drivers are required. Cloud providers and
many on-premises software-defined storage (SDS) manufacturers provide REST API
interfaces. Storage drivers use these definitions to allow an orchestrator to find the right
node to run our application components.

Introduction to Orchestration Chapter 7

[274]

An orchestrator does not know anything about our application logic. It is our responsibility
to implement application logic in its code. Some orchestrators, for example, will not
manage any kind of dependencies between components. We will also need to implement
component health checks, rules, and procedures to follow in case any dependent
component dies. We should implement retry procedures if a required component is not
accessible.

Docker Swarm and Kubernetes provide objects to ensure configuration files and secrets
(authentication files or credentials) are distributed cluster-wide. As we mentioned
previously, orchestration will not manage data, just these kinds of configuration objects.

In the next section, we will learn how orchestrators allow us to implement replicated
components and how application upgrades are easier in these environments.

Scaling and updating application
components
Orchestrators provide another great feature. If my application is prepared to run more than
one instance of some components, the orchestrator will help us easily manage this
replication. This is easy because components are based on containers, so if we need to run
more than one replica of a component, we can ask the orchestrator to execute more
containers. In fact, this feature is key because, in orchestration, we define an application
component with the number of required healthy replicas. If all required replicas are alive,
that application component will be healthy. If one replica dies, a new one will be executed
to ensure that the required number is accomplished.

The management of replicas is one of the features provided by orchestrators. If application
performance is compromised and application logic allows replication, we will be able to
scale up or down the number of replicas or instances of a component.

On the other hand, we learned that the microservices application model is better for
components' life cycles. Developers can focus on each component, and fixing errors and
upgrades is easier. Each component is treated as an isolated piece of functionality. This
allows us to manage each piece separately from others. We are able to upgrade this
component without impacting others. The orchestrator also manages these procedures. We
set a new definition or property, such as a new image for an application component or a
different port, and the orchestrator deploys these changes for us. We are able to set how
this process has to be done. For example, we decide how many instances will be updated at
a time or the interval between updates, among other interesting settings.

Introduction to Orchestration Chapter 7

[275]

We will review all these features in depth in each orchestrator chapter. We will learn about
Docker Swarm and Kubernetes in Chapter 8, Orchestration Using Docker Swarm, and
Chapter 9, Orchestration Using Kubernetes.

Summary
In this short chapter, we learned about some important concepts that will help us
understand Docker Swarm and Kubernetes. We reviewed the orchestration concept in
general before taking a look at the features that orchestration provides. Thanks to
orchestration, we are able to distribute application components cluster-wide on different
nodes to provide better performance and availability. Application stability is also improved
because we are able to execute many instances of one component. We can define an
application component with the number of replicas required to be considered healthy. The
orchestrator will manage the application's health and will deploy new instances if some of
them die. We are also able to scale up and down components as required in our
environment if the application permits this behavior.

Orchestration uses new cluster objects. They are stored in a distributed database for high
availability. A component's status and other orchestration data will be also stored in this
database. The application's components' data and the necessary logic are not managed by
the orchestrator. We use external components to share information and the orchestrator
interacts with them to ensure the required data is available whenever a component is
deployed on a different host.

In the next chapter, we will deep dive into Docker Swarm and learn how Docker
implements the orchestration features we have reviewed.

Questions
In this chapter, we learned about orchestration in general. We will review some of the
topics presented here with some questions:

Which of these sentences is true?1.

a) Kubernetes and Swarm are orchestrators that run distributed applications.
b) Orchestration replicates application logic into container-based objects.
c) It is not possible to manage application data in distributed environments.
d) All of the preceding sentences are false.

Introduction to Orchestration Chapter 7

[276]

What do orchestrators manage?2.

a) Application components' data.
b) Application components' logic.
c) Application components' resilience.
d) All of the preceding options are incorrect.

What challenges do we have when we deploy applications with multiple3.
components in distributed environments?

a) Application component networking.
b) Application component logic.
c) Application component resilience.
d) None of the preceding options are correct.

What features does orchestration provide to application deployments?4.

a) We deploy application components by setting the number of replicas
required to be considered healthy.
b) Application components can be scaled up or down as required in your
environment and the orchestrator will launch the required instances.
c) Application components are updated all at once.
d) None of the preceding options are correct.

How does an orchestrator choose where to run application components?5.

a) Nodes with enough resources can receive workloads.
b) We can label nodes to fix some components on specific nodes.
c) The orchestrator will review the defined rules to choose where to run each
component
d) All of the preceding sentences are correct.

Further reading
Raft consensus algorithm: https:/ / raft. github. io/

Docker Swarm features: https:/ / docs. docker. com/ engine/ swarm/

Kubernetes introduction and features: https:/ /kubernetes. io/ docs/ concepts/
overview/ what- is- kubernetes/

https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

8
Orchestration Using Docker

Swarm
In the previous chapter, we learned about orchestration features. In this chapter, we will
build on this by learning about Docker Swarm. It comes with Docker Engine (Docker
installation packages) out of the box, so we don't need to install any other software. It is
simpler to master the basics of Docker Swarm compared to the other orchestrators
available, and it is powerful enough for production deployments.

In summary, in this chapter, we will learn how to deploy Docker Swarm in production. We
will also review the new objects introduced by Docker Swarm and the steps required to
deploy a complete application based on containers with orchestration. Networking is key
for node-distributed applications, so we will examine how Docker Swarm provides
solutions for internal networking, service discovery, and publishing deployed applications.
At the end of the chapter, we will review how Docker Swarm can help us upgrade our
application's components without service interruption.

We will cover the following topics in this chapter:

Deploying Docker Swarm
Creating a Docker Swarm cluster
Scheduling workloads in the cluster – tasks and services
Deploying applications using Stacks and other Docker Swarm resources
Networking in Docker Swarm

Let's get started!

Orchestration Using Docker Swarm Chapter 8

[278]

Technical requirements
In this chapter, we will learn about Docker Swarm's orchestrator features. We'll provide
some labs at the end of this chapter that you can use to test your understanding and
demonstrate the concepts you've learned. These labs can be run on your laptop or PC using
the provided Vagrant "Docker Swarm" environment, or any already deployed Docker
Swarm cluster of your own. Check out this book's GitHub code repository for the code
we're going to be using in this chapter, along with additional information, at https:/ /
github.com/PacktPublishing/ Docker- Certified- Associate- DCA- Exam- Guide. git.

Check out the following video to see the Code in Action:

"https://bit.ly/ 31wfqmu"

Deploying Docker Swarm
Docker Swarm is the built-in orchestrator that comes with Docker Engine out of the box. It
was introduced in Docker Engine release 1.12 (the release numbers changed after 1.13 to
four-digit numbers) as swarm mode. There was a previous swarm approach currently known
as Legacy Swarm, which was closer in architecture to Kubernetes. It required an external
key-value store database, among other components. Swarm mode is different from this
because it includes everything needed for the orchestrator to work out of the box.

The Swarm architecture is quite simple as it provides secure communications between
components by default. Before deploying a Docker Swarm cluster, let's review its main
features:

Container orchestration for multiple nodes is included on each Docker Engine:
This means that we can deploy a cluster without any other software. Docker
Engine provides all the required components to deploy and manage the
cluster out of the box.
Node roles can be changed at runtime: Orchestration is based on different node
roles. While the control plane is managed by managers or master nodes,
computation or application deployment will be done on slave, worker, or minion
nodes. Each orchestrator uses different names for these different roles, but they
are essentially the same. Swarm allows us to change nodes from one role to
another when one of them is unhealthy or when we need to do some
maintenance tasks.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu
https://bit.ly/31wfqmu

Orchestration Using Docker Swarm Chapter 8

[279]

Workloads will be declared as services, defining a number of instances to be
healthy: The Docker orchestrator will keep the required number of replicas alive.
If some of them die, the orchestrator will run new tasks to keep the required
number alive. The orchestrator will manage this reconciliation process. If a node
dies, the orchestrator will move all containers to a new, healthy node.
As workloads are based on the number of instances required, the orchestrator
will allow us to change this number any time we require: As a result, we can
scale up or down the number of instances of a service (application component) to
respond to a high demand for requests, for example.
We will deploy applications based on multiple service components, with all
their requirements and connectivity between them: As components may run on
any cluster node, Docker Swarm will provide an internal overlay network to
interconnect all application components.
Swarm will provide service discovery and internal load balancing: In the
Service discovery and load balancing section, we will learn how Docker Swarm can
provide internal application DNS resolution so that all the components will
easily be able to discover each other, along with load balancing between service
replicas using a virtual IP.
Orchestration will allow us to update application components automatically:
In fact, all we need to decide is how these updates will be managed; orchestration
will do the rest. This way, we can update application components without
impacting users.
We can ensure that our cluster runs securely by default: Docker Swarm will
deploy Transport Layer Security (TLS) to interconnect control plane
components. It will manage certificates for all of our nodes, creating an internal
CA and verifying all node certificates itself.

It is important to know that only the control plane is secure by default.
Users' access to features such as application publishing will require
additional configuration.

As we learned in the previous chapter, orchestrators require databases to store and manage
workloads and any other cluster resource information. Docker Swarm has a built-in key-
value store under the /var/lib/docker/swarm path (this is on Linux; it can be found in
its equivalent directory on Windows, under C:\ProgramData\docker).

It is important to understand that the /var/lib/docker/swarm
directory is essential, should we need to restore an unhealthy cluster. Take
care of this directory and keep a backup of it.

Orchestration Using Docker Swarm Chapter 8

[280]

We can lock users' access to the /var/lib/docker/swarm path using a key. This improves
security. If it is unlocked, someone with enough system privileges can obtain Docker
Swarm certificates.

Docker Swarm overall architecture
As we mentioned previously, Docker Swarm deploys its own secure control plane. There
are two kinds of node roles:

Managers: These manage the overall Swarm cluster environment. They share an
internal key-value database. More specifically, one of the managers has a
different role. This is the manager's leader. There is only one leader per cluster
and it makes all the necessary updates to the database. All other manager nodes
will follow and sync their databases with the leader's one. Managers maintain
cluster health, serve the Swarm HTTP API, and schedule workloads on available
compute nodes.
Workers: Workloads will run on worker nodes. It is important to know that
managers have worker roles too. This means that workloads can also run on
managers if we do not specify any special scheduling location. Workers will
never participate in scheduling decisions; they will just run assigned workloads.

We manage workload locations either by using location constraints on each workload or by
disabling container execution on some nodes.

On nodes with multiple interfaces, we will be able to choose which interface we will use for
the control plane. Manager nodes will implement the Raft consensus algorithm to manage
the Swarm cluster state. This algorithm requires multiple servers coming to an agreement
on data and status. Once they reach a decision on a value, that decision is written to disk.
This will ensure information distribution with consistency across multiple managers.

As we mentioned previously, there is a leader node that modifies and store changes on its
database; all other nodes will sync their databases with it. To maintain this consistency,
Swarm implements Raft. This algorithm will manage all changes in the database, as well as
the election of a new leader when it is unhealthy. When the leader needs to make a change
(such as to the application's component status, and its data), it will query all the other nodes
for their opinions. If they all agree with the change, the leader will commit it, and the
change will be synced to all the nodes. If the leader fails (as in, the node goes down, the
server process dies, and so on), a new election is triggered. In this case, all the remaining
manager nodes will vote for a new leader.

Orchestration Using Docker Swarm Chapter 8

[281]

This process requires reaching a consensus, with the majority of nodes agreeing on the
result of the election. If there is no majority, a new election process will be triggered until a
new leader is elected. After that, the cluster will be healthy again. Keep these concepts in
mind because they are key in Docker Swarm and other orchestrators.

The following diagram represents the basic architecture of a Swarm orchestrator:

Let's review each plane in detail.

Management plane
The management plane is the layer where all management tasks run. All cluster
management traffic and workload maintenance will take place on this plane. The
management plane provides high availability based on an odd number of manager nodes.

All communication in this plane is mutually encrypted using TLS (mutual TLS) by default.
This is where the Raft protocol operates.

Control plane
This plane manages the state of the cluster. The gossip protocol will periodically inform all
nodes about the cluster state, reducing the amount of information required by nodes to
simply having an overview of the health of the cluster. This protocol manages host-to-host
communications and is called the control plane because each host communicates only with
its closest companions, and information flows through this to reach all the nodes within the
control plane.

Orchestration Using Docker Swarm Chapter 8

[282]

Data plane
The data plane manages all the service's internal communications. It is based on VXLAN
tunneling, encapsulating layer-2 packets within layer-3 headers. It will use UDP transport
but VXLAN guarantees no dropped packets. We will be able to isolate the data plane from
the control and management planes using the appropriate flags upon Docker Swarm
creation (or joining).

When we initialize a new Docker Swarm cluster, it generates a self-signed Certificate
Authority (CA) and issues self-signed certificates to every node. This ensures mutual TLS
communication. The following is a summary of the steps taken to ensure secure
communications when a new node joins the cluster:

When a node joins, it sends the manager its join token, along with a certificate1.
request.
Then, if the token is valid, the manager accepts the node's request and sends back2.
a self-signed node certificate.
The manager then registers the new node in the cluster and it will appear as part3.
of the Docker Swarm cluster.
Once the node is included in the cluster, it is ready (by default) to accept any new4.
workload scheduled by the manager.

In the next section, we will learn how to easily deploy a Docker Swarm cluster using
common Docker command-line actions.

Deploying a Docker Swarm cluster using the
command line
We can use the Docker swarm object to initialize a new cluster, join or leave a previously
created one, and manage all Docker Swarm properties. Let's take a look at the docker
swarm actions:

init: We will use docker swarm init to initialize a new cluster or recreate an
existing one (we will describe this situation in more detail in the High availability
with Swarm section). We will set many cluster options during cluster creation, but
there are a few that can be changed later. The most important options are --
data-path-addr and --data-path-port because they are used to set which
node interface will be dedicated to the control plane on multi-homed nodes.

Orchestration Using Docker Swarm Chapter 8

[283]

These are the most commonly used arguments for creating the cluster:

--advertise-addr: This option allows us to set which interface will be
used to announce the cluster. All other nodes will use this interface's IP
address to join the cluster.
--data-path-addr/--data-path-port: These options configure the
interface and port used for the control plane. All traffic in this interface will
be encrypted using TLS, and certificates will be managed internally by
Swarm. We can use the IP address/port or host interface notation. The
default port is 4789.
--external-ca/--cert-expiry: Although Swarm will manage TLS for
us, we can deploy our own CA for all certificates using this parameter. We
can also specify how often certificates will be rotated. By default, they will
be automatically recreated every 90 days (2,160 hours).
--listen-addr: This option allows us to specify which host interface will
be used to serve the cluster API. We can use IP address/port or host interface
notation, with the default of 0.0.0.0:2377.
--autolock: As we mentioned previously, we can lock access to internal
Docker Swarm data. This is important because /var/lib/docker/swarm
contains the CA and other certificates. If you are not sure about node access,
it is better to lock this directory from users. Take care with this option
because any system or Docker daemon restart will require the unlock key in
order to enable this node in the cluster again.
--dispatcher-heartbeat: This option will manage how often nodes will
report their health. It defaults to 5 seconds, but you can change it if your
cluster has high latency.
--max-snapshots/--snapshot-interval: Swarm will take database
snapshots for manager synchronization. We can set the number of snapshots
to keep. By default, none will be kept (just one for synchronization), but
these can be useful for debugging or disaster recovery. We can also set the
interval between snapshots. Take care when changing this option because
having many snapshots will trigger a lot of sync operations to other nodes
and can incur high-performance costs. But on the other hand, syncing less
frequently can guide the cluster to non-synced states. This parameter
defaults to 10,000 ms.

Orchestration Using Docker Swarm Chapter 8

[284]

join: After cluster initialization, all the other nodes will join the previously
created cluster, regardless of whether they are managers or workers. Joining
Docker nodes to a cluster requires a cluster-specific token, with different tokens
for the manager and worker nodes. We will always require a token and the
leader IP address to join the cluster. Remember that the leader can change from
time to time. We will also be able to set the control plane's IP and port, the IP
address to be announced to the other nodes, and the listen IP address for the API.
We will execute this command on the joining node using the following
format: docker swarm join --token <MANAGER_OR_WORKER_TOKEN>
<LEADER_IP:PORT>.
leave: Once a node is part of the cluster, it can leave it whenever we need it to. It
is important to understand what it means to leave the cluster. The leave
command will be executed on the node leaving the cluster. Manager nodes are
not able to leave the cluster because this would force the cluster into an
unhealthy state. We can use --force to make a node leave the cluster, even if it
is a manager node, but this comes with risks that you need to understand before
proceeding. Leaving the cluster will not remove the node from the internal
Docker Swarm database. Rather, we need to inform the managers of this change
by issuing docker node rm <NODE_NAME_OR_ID>.
update: With this action, we can change some of the Docker Swarm cluster's
described properties, such as the external CA, certificate expiration settings, and
snapshot behavior.
ca: As we mentioned previously, all internal control plane communication is
based on TLS certificates. The ca option allows us to customize the CA and other
certificate behavior. We can rotate them or choose our own CA.
join-token: With this action, we can review the current tokens for managers
and workers. In fact, we can execute join-token, followed by the required role,
to retrieve their values. We do not need to keep them safe since we can retrieve
them as needed. These tokens are only used when joining the cluster. We can
change them whenever we want, using docker swarm join-token --
rotate to create a new one. This will not affect already joined nodes. We usually
execute docker swarm join-token worker to retrieve the command line and
token required to join the node to the cluster. We can use --quiet to retrieve
only the token, which is useful for automating the joining process.

Orchestration Using Docker Swarm Chapter 8

[285]

unlock/unlock-key: We mentioned previously that it is unsafe to allow users to
access the /var/lib/docker directory. Access is only allowed to root by
default, but it is even more secure to lock Docker Swarm information. For
example, all cluster certificates will be stored under
the /var/lib/docker/swarm/certificates directory. Locking Swarm
information is a good practice, but be aware of losing your unlock key. Every
time the cluster node starts (such as a Docker Engine or node restart, for
example), the unlock key will be required. This leaves the cluster in a non-
automatic, high-availability environment in some situations. The unlock option
unlocks the Docker Swarm cluster information, while unlock-key allows us to
manage the defined key used for this behavior.

Docker Swarm will also create new objects:

swarm: This is the cluster itself, along with its own properties, as described
earlier.
node: These are the nodes that are part of the cluster. We will add labels to them
and manage their roles as part of the cluster.
service: We deploy services on our Docker Swarm cluster. We won't deploy a
standalone container. We will learn more about services in the Scheduling
workloads in the cluster – tasks and services section.
secret and config: Both objects allow us to share service configurations in the
cluster. Remember, it is not easy to manage information on different hosts, even
if the application is completely stateless.
stack: We will use stacks to deploy applications. We will use a Docker
Compose-like file format containing all application components and their
interactions.

All these objects will have common actions associated with them, including listing,
deploying/creating, removing, and inspecting their properties. Services and stacks will
have containers associated with them, so we will be able to list their processes' distributions
cluster-wide.

We can run a single node cluster on our laptop. It is not a problem
running a single node cluster for testing or developing services or stacks.

In the next section, we will learn how to deploy a Docker Swarm environment with high
availability.

Orchestration Using Docker Swarm Chapter 8

[286]

Deploying Docker Swarm with high availability
So far, we have learned about the different roles in Docker Swarm clusters. However, in
order to provide high availability, we will need to deploy more than one manager and
worker.

The Raft consensus algorithm requires an odd number of healthy nodes to work because a
majority of the nodes must agree on all the changes and resources states. This means that
we will need at least N/2+1 healthy nodes to agree before committing a change or resource
state. In other words, we will not grant Docker Swarm availability if fewer than N/2+1
manager nodes are healthy. Let's review the options in the following table to get a better
understanding:

Number of
managers

Required for
consensus

(N/2+1)

Allowed
failures Provides high availability?

1 1 0 No.
2 2 0 No.
3 2 1 Yes.

4 3 1 Yes, but this is not better than the three-manager option
and can lead to election problems if the leader fails.

5 3 2 Yes.

6 4 2 Yes, but this is not better than the five-manager option and
can lead to election problems if the leader fails.

7 4 3 Yes.

When a manager fails in the 3-manager configuration, two nodes can agree and changes
will be updated without problems. But if one of those fails, only one will be left and
changes can't be committed. There is no consensus and no cluster operations can be
deployed. This means that any service deployed in the cluster will stay running. Users will
not be affected unless one service loses some replicas and Docker Swarm should have
started new ones to achieve the required number. No automatic actions will be allowed
because these have to update the database data, and this is not permitted. We will not be
able to add or remove any nodes in that situation, so the cluster will be inconsistent.

Consequently, Swarm requires an odd number of managers to provide high availability.
Although there is no limit regarding the number of manager nodes, more than seven is not
recommended. Increasing the number of managers will reduce write performance because
the leader will require more acknowledged responses from more nodes to update cluster
changes. This will result in more round-trip network traffic.

Orchestration Using Docker Swarm Chapter 8

[287]

It is key to understand these behaviors. Even if we have deployed a three-node cluster, we
can still lose quorum if a sufficient number of nodes become unhealthy. It is important to
attend to node failures as soon as possible.

We will usually deploy three-node clusters because they allow for the failure of 1 node. It is
enough for production, but in some critical environments, we will deploy five-node clusters
to allow for two node failures.

In cases where a Swarm cluster needs to be distributed between different
locations, the recommended number of managers is seven. It will
allow distribution across multiple data centers. We will deploy three
nodes in the first data center, two in the second data center, and a final
two in the third data center (3+2+2). This distribution will allow us to
handle a full data center failure with services being redistributed if worker
nodes have sufficient resources.

What happens when a manager node fails? The leader will start to store committed changes
in order to sync the unhealthy manager node when it is ready again. This will increase
Docker Swarm's directory size. If you did not set your node disk space sufficiently to allow
for these situations, your nodes will probably consume your entire filesystem if the failure
doesn't recover soon. And then, you will get a second unhealthy node and your cluster will
be inconsistent. This situation we've described is not a horror movie – it happens all too
often on new installations where administrators think that the cluster will be alright with
some unhealthy nodes for weeks at a time.

We mentioned one important option in the docker swarm command-line table when we
talked about Docker Swarm cluster initialization. We will use docker swarm init --
force-new-cluster in situations where the cluster is unhealthy, but at least one manager
is working. If the cluster isn't quorate and no operations can be performed with cluster
resources (that is, nodes can't be added/removed and services won't be repaired if they fail),
we can force a new cluster. This is an extreme situation.

Take care of your environment before recreating the cluster. Forcing a new cluster will set
the node where the command was executed as the leader. All other nodes in the cluster
(including those managers that were insufficient for a quorum) will be set as workers. It is
like a cluster quorum reset. Services and other resources will retain their states and
configurations (as they were committed or retrieved from nodes). Therefore, we will end
up with a one-manager node cluster with all the other nodes as workers. Services and other
stuff should not be affected. In these situations, it is a good practice to review the manager
node's logs because some containers can be left unmanaged if some cluster changes were
not committed.

Orchestration Using Docker Swarm Chapter 8

[288]

Although managers can act as workers, it is safer in production to run
workloads on worker-role nodes only. A manager's processes may impact
the application and vice versa.

We will always deploy more than one worker in production environments. This will ensure
the health of our services if one of the workers goes offline unexpectedly or if we need to
perform any maintenance tasks, such as updating Docker Engine. We should usually
deploy worker nodes according to our application's resource requirements. Adding
workers will increase the total cluster workload capacity.

In the next section, we will learn how to deploy a Docker Swarm cluster.

Creating a Docker Swarm cluster
Now that we have reviewed the Docker Swarm architecture and the command-line actions
required to initialize the cluster, we can create a cluster. By the end of this chapter, we will
have a fully functional cluster with high availability. Let's start by reviewing the Docker
Swarm cluster creation process:

First, we initialize a Swarm cluster on a manager node. This node automatically1.
becomes the cluster leader because no other manager is available. If we have a
node with multiple interfaces, we will choose which interface will be associated
with the control plane and which ones will be announced for other nodes and the
Swarm API. The output will vary from the following in your environment. Let's
execute docker swarm init:

$ docker swarm init
Swarm initialized: current node (ev4ocuzk61lj0375z80mkba5f) is now
a manager.
To add a worker to this swarm, run the following command:
docker swarm join --token
SWMTKN-1-4dtk2ieh3rwjd0se5rzwyf2hbk7zlyxh27pbh4plg2sn0qtitx-50zsub5
f0s4kchwjcfcbyuzn5 192.168.200.18:2377
To add a manager to this swarm, run 'docker swarm join-token
manager' and follow the instructions.

Once the cluster has been created, we can review the cluster nodes and their2.
properties by using docker node ls:

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY
MANAGER STATUS ENGINE VERSION

Orchestration Using Docker Swarm Chapter 8

[289]

ev4ocuzk61lj0375z80mkba5f * sirius Ready Active
Leader 19.03.2

The first column shows the node object identifier. As we mentioned previously,
new objects have been created with Docker Swarm. The second column shows its
name from the internal host resolution service (this may contain a Fully
Qualified Domain Name (FQDN)). Notice the asterisk near the hostname. This
means that we are working on this node right now. All the commands are
executed on that node, regardless of whether it is a leader.

On Docker Swarm, cluster commands related to cluster-wide objects are
only available on manager nodes. We won't need to execute commands on
the leader node, but we won't be able to execute any cluster commands on
a worker node. We can't list nodes or deploy a service.

The last column shows each node's Docker Engine version. Let's take a look at
the STATUS, AVAILABILITY, and MANAGER STATUS columns:

STATUS, as its name suggests, shows the status of the node within the cluster. If it
is not healthy, it will be shown here.
MANAGER STATUS shows the current role of the node (in this case, the node is the
leader). We have three different states:

Leader, when the node is the cluster leader.
Manager, which means that the node is one of the cluster
managers.
An empty value will mean that the node has a worker role, and is
therefore not part of the control plane.

AVAILABILITY represents a node's availability to receive workloads. Here, we
can see that managers can receive workloads too. We can set this node property.
In fact, there are three different states:

active, which means that the node will be able to receive any
workload.
passive, which means that the node will not run any other
additional workload. Those already running will maintain their
state, but no additional workloads will be allowed.
drain is the state that we get when we disable any workload on
this node. When this happens, all running workloads on the node
will be moved to any other healthy and available node.

Orchestration Using Docker Swarm Chapter 8

[290]

We can enforce the behavior of any node when joining the cluster, or even
when we create the cluster, using the --availability flag with docker
swarm init or docker swarm join. We will set the node availability
for new workloads (active | pause | drain). By default, all the nodes
will be active and ready to receive workloads.

We will join another node as a worker to demonstrate this, using the previously3.
shown cluster initialization output with docker swarm join:

$ docker swarm join --token
SWMTKN-1-4dtk2ieh3rwjd0se5rzwyf2hbk7zlyxh27pbh4plg2sn0qtitx-50zsub5
f0s4kchwjcfcbyuzn5 192.168.200.18:2377

Now, we can review the cluster node status (remember, this command will only4.
be available on manager nodes) once more by executing docker node ls:

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY
MANAGER STATUS ENGINE VERSION
glc1ovbcqubmfw6vgzh5ocjgs antares Ready Active
19.03.5
ev4ocuzk61lj0375z80mkba5f * sirius Ready Active
Leader 19.03.2

In this example, we are executing commands on the sirius node (marked with
*), which is a leader and hence a manager. Notice that antares is a worker node
because it has an empty value in the MANAGER STATUS column.

We can review node information by executing the docker node inspect action
(the following output is truncated):

$ docker node inspect antares
[
 {
 "ID": "glc1ovbcqubmfw6vgzh5ocjgs",
...
 "Spec": {
 "Labels": {},
 "Role": "worker",
 "Availability": "active"
 },
 "Description": {
 "Hostname": "antares",
 "Platform": {
 "Architecture": "x86_64",
 "OS": "linux"

Orchestration Using Docker Swarm Chapter 8

[291]

 },
 "Resources": {
 "NanoCPUs": 16000000000,
 "MemoryBytes": 33736785920
 },
 "Engine": {
 "EngineVersion": "19.03.5",
 ...
 ...
 },
 "TLSInfo": {
 "TrustRoot": "-----BEGIN CERTIFICATE-----
\nMIIBaTCCARCgAwIBAgIUUB8yKqt3uUh2wmF/z450dyg9EDAwCgYIKoZIzj0EAwIw\
nEzERMA8GA1UEAxMIc3dhcm0tY2EwHhcNMTkxMjI5MTA1NTAwWhcNMzkxMjI0MTA1\n
NTAwWjATMREwDwYDVQQDEwhzd2FybS1jYTBZMBMGByqGSM49AgEGCCqGSM49AwEH\nA
0IABACDe6KWpqXiEMyWB9Qn6y2O2+wH8HLoikR+48xqnjeU0SkW/+rPQkW9PilB\ntI
YGwaviLPXpuL4EpVBWxHtMDQCjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNVHRMB\nAf8
EBTADAQH/MB0GA1UdDgQWBBTbL48HmUp/lYB1Zqu3GL7q5oMrwTAKBggqhkjO\nPQQD
AgNHADBEAiAh1TVNulaIHf2vh6zM9v6raer5WgTcGu8xQYBcDViPnwIgU4sl\ntK70b
gSfEzLx6WpOv4yjr+c0tlJt/6Gj3waQl10=\n-----END CERTIFICATE-----\n",
 "CertIssuerSubject":
"MBMxETAPBgNVBAMTCHN3YXJtLWNh",
 "CertIssuerPublicKey":
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEAIN7opampeIQzJYH1CfrLY7b7Afwcu
iKRH7jzGqeN5TRKRb/6s9CRb0+KUG0hgbBq+Is9em4vgSlUFbEe0wNAA=="
 }
 },
 "Status": {
 "State": "ready",
 "Addr": "192.168.200.15"
 }
 }
]

When we inspect a node, information regarding its status, node IP address, and
TLS information will be shown in JSON format.

We can use labels on nodes to help Docker Swarm choose the best location for
specific workloads. It uses node architectures to deploy workloads in the right
place, but if we want a workload to run on a specific node, we can add a unique
label and add a constraint to deploy the workload. We will learn more about
service locations and labels in the Chapter labs section.

Orchestration Using Docker Swarm Chapter 8

[292]

Under the Spec key, we can review the node role in the docker node inspect
output. We can change the node role whenever necessary. This is a big
improvement over other orchestrators, where roles are static. Keep in mind that
role changes will affect your Docker Swarm architecture because it will change
the number of managers and worker nodes. Keep high availability in mind, its
requirement of an odd number of managers, and the consequences of this in case
of node failures.

A role is just a node property, which means we can change it just like any other5.
object property. Remember that changes can only be deployed from manager
nodes. We change a node's role by executing docker node update:

$ docker node update --role manager antares
antares

Once again, let's list all the nodes in the cluster by executing docker node ls,
this time with a filter to retrieve only managers:

$ docker node ls --filter role=manager
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
glc1ovbcqubmfw6vgzh5ocjgs antares Ready Active Reachable 19.03.5
ev4ocuzk61lj0375z80mkba5f * sirius Ready Active Leader 19.03.2

We can now use docker node inspect to retrieve the ManagerStatus key:

$ docker node inspect antares --format "{{.ManagerStatus}}"
{false reachable 192.168.200.15:2377}

Nodes can be removed from the cluster by using docker node rm, just as we did with
other Docker objects. We will only remove worker nodes. The usual sequence for removing
a manager node from a Docker Swarm cluster will require a previous step to change its role
to a worker. Once a node role has changed to a worker, we can remove the node. If we need
to remove a failed manager, we can force node removal using --force. However, this is
not recommended as you can leave the cluster in an inconsistent state. The manager's
database should be updated before you remove any node, which is why the removal
sequence we've described here is so important.

Remember to make sure that you have an odd number of manager nodes
if you demote or remove any manager. If you have problems with the
leader when you do not have an odd number of managers, you can reach
an inconsistent state when other managers have to elect a new leader.

Orchestration Using Docker Swarm Chapter 8

[293]

As we mentioned previously, labels are node properties. We can add and remove them at
runtime. This is a big difference compared to the labels learned about in Chapter 1, Modern
Infrastructures and Applications with Docker. Those labels were set at the Docker daemon
level and are static. We needed to add them to the daemon.json file, so we were required
to restart the node's Docker Engine to make them effective. In this case, however, node
labels are managed by Docker Swarm and can be changed with the common node
object's update action (docker node update).

The Docker command line provides some shortcuts, as we have observed
in previous chapters. In this case, we can change node roles by demoting a
manager to a worker role, or by promoting a worker to a manager role.
We use docker node <promote|demote> <NODENAME_OR_ID> to
change between node roles.

We can also change a node's workload availability. This allows a node to receive (or not)
cluster-deployed workloads. As with any other node property, we will use docker node
update --availability <available|drain|pause> <NODENAME_OR_ID> to drain or
pause a node when it was active. Both drain and pause will prevent us from scheduling any
new workload on the node, while drain on its own will remove any currently running one
from the affected node.

Remember that when we drain a node, the scheduler will reassign any
tasks running on the affected node to another available worker. Keep in
mind that the other nodes should have enough resources before draining
the given node.

In the next section, we will review how to back up and recover a faulty Docker Swarm
cluster.

Recovering a faulty Docker Swarm cluster
We will review a few steps to back up and restore Docker Swarm clusters. Losing your
cluster quorum is not a big problem. As we have learned, we can recover the cluster by
forcing the initialization of a new one, even with just one healthy manager. However,
losing your cluster data will completely destroy your environment if you don't have any
manager nodes that are operational and working correctly. In these situations, we can
recover the cluster by restoring a copy containing healthy data that was taken when the
cluster was running correctly. Let's learn how to take backups of our clusters now.

Orchestration Using Docker Swarm Chapter 8

[294]

Backing up your Swarm
As we learned in this chapter, /var/lib/docker/swarm (and its Microsoft Windows
equivalent directory) contains the key-value store data, the certificates, and the encrypted
Raft logs. Without them, we can't recover a faulty cluster, so let's back up this directory on
any manager.

Having a consistent backup requires static files. If files are opened or some process is
writing them, they will not be consistent. Therefore, we need to stop Docker Engine on the
given node. Do not launch the backup procedure on the leader node.

Keep in mind that while the backup operation is running, if the Docker daemon is stopped,
the number of managers will be affected. The leader will continue managing changes and
generating new sync points to recover synchronization with the lost manager. Your cluster
will be vulnerable to losing quorum if other managers fail. If you plan to do daily backups,
consider using five managers.

Recovering your Swarm
In case we need to recover a completely failed cluster (where no managers can't achieve
quorum and we can't force a new cluster), we will stop Docker Engine on one manager.
Remove all /var/lib/docker/swarm directory content (or its Microsoft Windows
equivalent) and restore the backed-up content to this directory. Then, start Docker Engine
again and reinitialize the cluster with docker swarm init --force-new-cluster.

When the single-manager cluster is healthy, start to add the other old Swarm cluster
managers. Before adding those managers, ensure that they've left the old Swarm cluster.

If we set up Swarm auto-lock, we will need the key that was stored with
the restored backup. Even if you changed it after the backup was issued,
you will still need the old one.

In the next section, we will learn how workloads are deployed on the cluster and how
Docker Swarm tracks the health of application components to ensure that services are not
impacted when something goes wrong.

Orchestration Using Docker Swarm Chapter 8

[295]

Scheduling workloads in the cluster – tasks
and services
We don't run containers on a Swarm cluster; rather, we deploy services. These are atomic
workloads that can be deployed in a Docker Swarm cluster. Services are defined by tasks,
and each task is represented by a container in the Docker Swarm model. Swarm is based on
SwarmKit and its logic is inherited. SwarmKit was created as a response to clustering any
kind of task (such as virtual machines, for example), but Docker Swarm works with
containers.

The Docker Swarm orchestrator uses a declarative model. This means that we define the
desired state for our services and Docker Swarm will take care of the rest. If the defined
number of replicas or tasks for a service is wrong – for example, if one of them died –
Docker Swarm will take action to recover the correct state of the service. In this example, it
will deploy a new replica to keep all the required nodes healthy.

The following diagram represents services and tasks in relation to containers. The colors
service has five replicas (colors.1 to colors.5). Each replica runs on one container from
the same image, codegazers/colors:1.13, and these containers run distributed cluster-
wide across node1, node2, and node3:

Orchestration Using Docker Swarm Chapter 8

[296]

Service creation requires the following information:

Which image will run the associated containers?
How many containers does this service require to be healthy?
Should the service be available to users on any port and protocol?
How should service updates be managed?
Is there any preferred location for this service to run?

Service creation will require all this information to be entered on the command line. Since
services are Docker objects, we can use common actions such as listing, creating, removing,
updating, and inspecting their properties. Docker Swarm will manage all our tasks'
integration with services. We will never deploy tasks or containers. We will just create and
manage services. Let's take a look at Docker command-line actions and options related to
services:

create: This is common to other objects, but services have many non-standard
properties. We will not list and review all service arguments because most of
them are inherited from containers. Here, we'll review the most important ones
related to service behavior:

--config: We can create a service configuration only, not a real
service. This will create all service environments and requirements
but without running any task.
--container-label/--label: We added this option here
because it is important to understand that services and containers
are different objects and that we can add labels to both. By default,
Docker Swarm will create many labels on each service container to
relate them to each other. We can easily use those labels to filter
information regarding our services' containers on any host.
--constraint/--placement-pref: As we mentioned
previously, we can specify which nodes should run a given
service's tasks. We use a list of key-value pairs as constraints to do
this. All defined keys must be fulfilled to schedule the service's
tasks on a given node. If no node satisfies the defined constraints,
the tasks will not be run because Docker Swarm's scheduler will
not find any node with those requirements. On the other hand,
placement-pref will provide a placement preference. This will
not limit which nodes will run the tasks, but we can use this to
spread our services' tasks across different nodes using a defined
key. For example, we might distribute a given service's tasks across
different physical locations (such as data centers).

Orchestration Using Docker Swarm Chapter 8

[297]

--mode: There are two different service modes (in fact, there are
three, as we will find out later in the Networking in Docker
Swarm section, but at this point, just keep the following two in
mind). By default, all services will use replication mode. This
means that we will set a number of replicas to be healthy (by
default, this is one replica). We also have global services. In this
case, we will create as many replicas as nodes in the cluster, but we
will just run one replica per node. This mode is very interesting for
monitoring applications, for example, because all the nodes will
receive their monitoring process. One important thing about these
services is that every node that gets into the cluster will receive its
own replica. Docker Swarm will deploy it on the new node for us
automatically.
--with-registry-auth: This is a very important option because
it allows us to distribute credentials among cluster nodes so that
we can use private images. It is also important to understand that
Docker Swarm requires external or internal registries to work. We
will not work with local images on cluster nodes anymore. Local
images will lead to inconsistent deployments because image names
can match, while content could be completely different across
nodes.
--endpoint-mode: This option sets how services announce or
manage their tasks. We can use vip and dnsrr for this. Services
will default to vip, so each service will receive a virtual IP
associated with its name, and an internal load balancer will route
traffic to each replicated process (container/task) associated with it.
On the other hand, dnsrr will use internal name resolution to
associate each replica IP address whenever we ask for a service
name. This way, internal name resolution will give us a different IP
address when a given service has been deployed with more than
one task.
--network: We can attach new services to an existing network. As
we did with containers, we can also use a host network namespace.
The difference here is that we can't execute privileged services, so
our services will have to expose ports numbered higher than 1024.
--publish: We will use this option to publish ports externally.
Docker Swarm will expose ports using Docker Swarm's router
mesh on every node. If external requests arrive on a host that does
not execute any service tasks, Docker Swarm will internally
reroute requests to an appropriate node.

Orchestration Using Docker Swarm Chapter 8

[298]

--replicas/--replicas-max-per-node: Services are defined
by how many replicas or tasks are deployed to maintain their
healthy state. By default, all services deploy one single replica. As
we will see later, we can change the number of replicas at any time
we need. Not all application components (processes) will work
well if we scale up or down their replicas. Imagine, for example, a
SQL database. It is a completely stateful component because the
database process will write data. If we add a new database replica
accessing the same storage, the database will become corrupted. If
each database replica has its own storage, they will manage
different data. As a result, not all services can be scaled up or
down.
--reserve-cpu/--reserve-memory: We can reserve the amount
of resources required for a service to work. If no node presents
enough resources, it will not be scheduled.
--update-delay/--update-failure-action/--update-max-
failure-ratio/--update-monitor/--update-order/--
update-parallelism: update options manage how changes are
executed for a service. We will set how many services' tasks will be
updated at once, how many seconds we will wait between
instances' updates, and how the update process will be done. The -
-update-order option sets how this update process will be
executed. By default, the running container will be stopped and a
new one will be created after the old one is completely finished.
With this setting, the service will be impacted. We can set a
different order by starting a new container first. Then, once
everything is fine, the old one will be stopped. This way, the
service will not be impacted, but your application process must be
able to allow for this situation. For example, it will not work on a
standard SQL database, as we mentioned previously. We will also
set what to do when some of the updates fail, either by executing
an automatic rollback or by pausing the rest of the service updates
until manual action is taken.
--rollback-delay/--rollback-failure-action/--
rollback-max-failure-ratio/--rollback-monitor/--
rollback-order/--rollback-parallelism: If the update
process goes wrong, we can set an automatic rollback. These
settings modify how rollbacks will be done. We have the same
options we reviewed for the update process, but this time, the
arguments will refer to the rollback process.

Orchestration Using Docker Swarm Chapter 8

[299]

ps: With this, we can review all our service's tasks and their distributions in the
cluster. We can also use filters and output format. We will see a couple of
examples of this in the Chapter labs section.
logs: This is a very useful action because Docker Swarm will retrieve the logs of
all our tasks for us. We can then review them from the manager command line
instead of going to wherever the tasks were running to read the container's logs.
update: Service properties can be updated. For example, we can change image
release versions, publish new ports, and change the number of replicas, among
other things.
rollback: With this, we can return to the service's previous properties. It is
important to understand that images from previous executions should be kept in
our hosts to allow for the application's rollbacks.
inspect/ls/rm: These are the common actions we encounter with all other kinds
of objects. We've already learned how to use them.

It is important to note that privileged containers are not allowed on
services. Therefore, if we want to use the host network namespace,
container processes should expose and use non-privileged ports (higher
than 1024).

Docker service constraints can be set with custom labels, but there are some internal ones
that are created by default that are very useful:

Label Attribute
node.id Node ID

node.hostname Node hostname; for example, node.hostname==antares
node.role Node Swarm role; for example, node.role!=manager

node.labels
Swarm node-assigned labels; for

example, node.labels.environment==production

engine.labels
Docker Engine-defined labels; for

example, engine.labels.operatingsystem==ubuntu 18.04

We can use variables to define service properties. In the following example, we're using
internal Docker Swarm variables in the container's hostname:

$ docker service create --name "top" --hostname="{{.Service.Name}}-
{{.Task.ID}}" busybox top

Orchestration Using Docker Swarm Chapter 8

[300]

To summarize, before continuing with other Swarm resources: services are a group of tasks,
each executing one container. All these containers run together to maintain the service's
state. Docker Swarm will monitor the service's state and if one container dies, it will run a
new container to maintain the number of instances. It is important to note that a container's
IDs and names will change. However, while new tasks can be created, the task's name will
not be changed.

Let's have a look at a quick example before moving on to the next topic. We will create a
simple NGINX web server service using docker service create:

$ docker service create --name webserver --publish 80 nginx:alpine
lkcig20f3wpfcbfpe68s72fas
overall progress: 1 out of 1 tasks
1/1: running [==>]
verify: Service converged

We can review where the created task is running by using docker service ps:

$ docker service ps webserver
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
lb1akyp4dbvc webserver.1 nginx:alpine sirius Running Running about a minute
ago

Then, we move to the node where the task is running. Once there, we kill the associated
container using docker container kill:

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6aeaee25ff9b nginx:alpine "nginx -g 'daemon of…" 6 minutes ago Up 6 minutes
80/tcp webserver.1.lb1akyp4dbvcqcfznezlhr4zk

$ docker container kill 6aeaee25ff9b
6aeaee25ff9b

After a few seconds, a new task will be created automatically with a new container. The
task name hasn't changed, but it is a new task, as we can tell from its ID:

$ docker service ps webserver
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
lnabvvg6k2ne webserver.1 nginx:alpine sirius Running Running less than a
second ago
lb1akyp4dbvc _ webserver.1 nginx:alpine sirius Shutdown Failed 7 seconds
ago "task: non-zero exit (137)"

Orchestration Using Docker Swarm Chapter 8

[301]

Finally, we can review some of the labels that were created by Swarm to fully identify
containers using their services. We use docker container inspect for this:

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1d9dc2407f74 nginx:alpine "nginx -g 'daemon of…" 13 minutes ago Up 13
minutes 80/tcp webserver.1.lnabvvg6k2ne6boqv3hvqvth8

$ docker container inspect 1d9dc2407f74 --format "{{.Config.Labels}}"
map[com.docker.swarm.node.id:ev4ocuzk61lj0375z80mkba5f
com.docker.swarm.service.id:lkcig20f3wpfcbfpe68s72fas
com.docker.swarm.service.name:webserver com.docker.swarm.task:
com.docker.swarm.task.id:lnabvvg6k2ne6boqv3hvqvth8
com.docker.swarm.task.name:webserver.1.lnabvvg6k2ne6boqv3hvqvth8
maintainer:NGINX Docker Maintainers <docker-maint@nginx.com>]

There are some service options that can be set using strings to help us identify their
configuration and other associated resources. This is very important when we need to
isolate resources attached to a specific service's tasks or use some special information to
access other services, such as the container's hostname. We can use labels to add meta-
information to containers, but there are also Docker Swarm-defined variables that we can
use within strings. These variables use Go's template syntax (as we also learned when
formatting the listing command's output) and can be used with docker service create
and the --hostname, --mount, and --env arguments.

Therefore, we can set an associated service container's hostname to be unique between
tasks using these variables; for example, --hostname="{{.Service.Name}}-
{{.Task.ID}}". We can even use the node's name to identify this task with the node in
which it is running using --hostname="{{.Node.Hostname}}". This can be very useful
with global services.

The following is a quick list of valid service template substitutions:

Service: .Service.ID, .Service.Name, and .Service.Labels
Node: .Node.ID and .Node.Hostname
Task: .Task.ID, .Task.Name, and .Task.Slot

In the next section, we will introduce some new Docker Swarm objects that will help us
deploy our applications on clusters.

Orchestration Using Docker Swarm Chapter 8

[302]

Deploying applications using Stacks and
other Docker Swarm resources
In this section, we will learn about other Docker Swarm objects that will help us to fully
deploy applications within the cluster.

We've already learned how to configure applications using environment variables. This is
not recommended for production because anyone with system Docker access can read their
values. To avoid this situation, we will use external data sources. We also learned how to
integrate host resources inside containers. We can set configurations and passwords in files
shared between hosts and containers. This will work on standalone environments but not
for distributed workloads, where containers can run on different hosts. We will need to
sync those files on all cluster nodes.

To avoid syncing files on multiple nodes, Docker Swarm provides two different objects for
managing them. We can have private files or secrets and configurations. Both objects store
their values in the Swarm key-value store. Stored values will be available for every cluster
node that requires them. These objects are similar, but secrets are used for passwords,
certificates, and so on, while config objects are used for application configuration files.
Now, let's examine them in depth.

Secrets
A secret is a blob of data that contains passwords, certificates, and any other information
that should not be shared over the network. They will be stored in an encrypted fashion so
that they're safe from snoopers. Docker Swarm will manage and store secrets for us.
Because this kind of data is stored in the key-value store, only managers will have access to
any secrets we create. When a container needs to use that stored secret, the host responsible
for running that container (a service task container) will have access too. The container will
receive a temporal filesystem (in-memory tmpfs on Linux hosts) containing that secret.
When the container dies, the secret will not be accessible on the host. Secrets will only be
available to running containers when they are required.

Since secrets are Docker Swarm objects, we can use all of the usual actions (list, create,
remove, inspect, and so on). Do not expect to read secret data with the inspect action.
Once created, it is not possible to read or change a secret's content. We create secrets with
files or by using standard input for data. We can add labels for easy listing in big cluster
environments.

Orchestration Using Docker Swarm Chapter 8

[303]

Once a secret has been created, we can use it within our services. We have both short and
long notations. By default, using the short format, a file with secret data will be created
under /run/secrets/<SECRET_NAME>. This file will be mounted in a tmpfs filesystem on
Linux. Windows is different because it does not support on-memory filesystems. We can
use the long format to specify the filename to be used for the secret file under
/run/secrets, along with its ownership and file permissions. This will help us avoid root
usage inside the container in order to access the file. Let's create a secret with docker
secret create and then use it on a service:

$ echo this_is_a_super_secret_password|docker secret create app-key -
o9sh44stjm3kxau4c5651ujvr

$ docker service create --name database \
 --secret source=ssh-key,target=ssh \
 --secret source=app-key,target=app,uid=1000,gid=1001,mode=0400 \
 redis:3.0

As we mentioned previously, it is not possible to retrieve secret data. We can inspect
previously created secrets using the common docker secret inspect action:

$ docker secret inspect app-key
[
 {
 "ID": "o9sh44stjm3kxau4c5651ujvr",
 "Version": {
 "Index": 12
 },
 "CreatedAt": "2019-12-30T20:42:59.050992148Z",
 "UpdatedAt": "2019-12-30T20:42:59.050992148Z",
 "Spec": {
 "Name": "app-key",
 "Labels": {}
 }
 }
]

In the next section, we will learn about configuration objects.

Orchestration Using Docker Swarm Chapter 8

[304]

Config
Config objects are similar to secrets, but they aren't encrypted on the Docker Swarm Raft
log and will not be mounted on a tmpfs filesystem in containers. Configs can be added or
removed while service tasks are running. In fact, we can even update service
configurations. We will use these objects to store configurations for applications. They can
contain strings or binaries (up to 500 KB, which is more than enough for configurations).

When we create a config object, Docker Swarm will store it in the Raft log, which is
encrypted, and it will be replicated to other managers by mutual TLS. Therefore, all the
managers will have the new config object value.

Using config files on services requires there to be a mount path inside the containers. By
default, the mounted configuration file will be world-readable and owned by the user
running the container, but we can adjust both properties should we need to.

Let's look at a quick example. We will create a configuration file using docker config
create and then use it inside a service:

$ echo "This is a sample configuration" | docker config create sample-
config -
d0nqny24g5y1tiogwggxmesox

$ docker service create \
 --name sample-service \
 --config source=sample-config,target=/etc/sample.cfg,mode=0440 \
 nginx:alpine

In this case, we can review the config content and see that it is readable. Using docker
config inspect, we get the following output:

$ docker config inspect sample-config --pretty
ID: d0nqny24g5y1tiogwggxmesox
Name: sample-config
Created at: 2019-12-10 21:07:51.350109588 +0000 utc
Updated at: 2019-12-10 21:07:51.350109588 +0000 utc
Data:
This is a sample configuration

Let's move on to stacks.

Orchestration Using Docker Swarm Chapter 8

[305]

Stacks
Stacks help us deploy complete applications. They are Infrastructure-as-Code (IaC) files
with all their component definitions, their interactions, and the external resources required
to deploy an application. We will use docker-compose file definitions (docker-
compose.yaml). Not all docker-compose file primitive keys will be available. For
example, depends_on will not be available for stacks because they don't have dependency
declarations. This is something you have to manage in your own application logic.

As we learned with the docker-compose command in Chapter 5, Deploying Multi-
Container Applications, every application that's deployed will run by default in its own
network. When using stacks on Docker Swarm, application components are deployed
cluster-wide. Overlay networks will be used because each component should reach others,
regardless of where they are running. Stacks will also be deployed on their own networks
by default.

Stacks deploy applications based on services. Therefore, we will keep our service
definitions in the docker-compose file. To be able to identify these services from other
stacks, we will set the stacks' names.

It is important to understand that docker-compose will deploy multi-
container applications on one Docker Engine, while docker stack will
deploy multi-service applications on a Swarm cluster. Note that,
nonetheless, both use the same kind of IaC file.

Let's have a quick look at the docker stack command line:

deploy: Deploying Stacks requires a docker-compose file version of 3.0
and above. We will use the deploy action to create and run all application
components at once. It is also possible to use a Docker Application Bundle file,
which is something that will not be covered in this book, but it is good to know
that we have multiple options with Docker Stacks for deploying applications on
Docker Swarm. As we mentioned previously, we will need to name our stack's
deployment to fully identify all its components within the cluster. All of the
stack's resources will receive the stack's name as a prefix unless they were
externally created from the stack's file definition. In this latter case, they will
retain their original names.

Orchestration Using Docker Swarm Chapter 8

[306]

These are the main options for docker stack deploy:

--compose-file/-c: We use docker-compose.yaml as the stack
definition file unless we specify a custom filename with this
option.
--orchestrator: This option was recently added and allows us
to choose which orchestrator will deploy and manage the stack.
We will be able to choose between Docker Swarm and Kubernetes
when both are available in our environment.
--with-registry-auth: As we learned with services, sharing
authentication is vital when using private registries. Without this
option, we can't ensure all the nodes are using the same image or
that they have access to the registry because this will depend on
locally stored authentication.

services: The services option shows us a list of the deployed stack's services.
As with all other listing actions, we can format and filter its output.
ps: This action lists all the services and where tasks were deployed. It is easy to
filter and format its output, as we will see in the Chapter labs section of this
chapter.
ls/rm: These are common object actions for listing and removing them.

There is not much more to say about stacks. IaC requires that every deployment is
reproducible. Even for a simple standalone service, make sure to use a stack file to deploy
it. The Chapter labs section will cover these actions and options with some more examples.
In the next section, we will learn how Swarm can change application networking cluster-
wide.

Networking in Docker Swarm
When we talk about Docker Swarm, we need to introduce a new concept regarding
networks: overlay networks. As we mentioned at the beginning of this chapter, a new
network driver will be available because Docker Swarm will distribute all application
components across multiple nodes. They have to be reachable no matter where they run.
The overlay network will work over VXLAN tunnels using the User Datagram Protocol
(UDP). We will be able to encrypt this communication, but some overhead should normally
be expected.

Orchestration Using Docker Swarm Chapter 8

[307]

The overlay network driver will create a distributed network across cluster nodes and
automatically provides routing of packets to interconnect distributed containers.

When Swarm is first initialized, two networks are created:

docker_gwbridge: This bridge network will connect all Docker daemons that
are part of the cluster.
ingress: This is an overlay network that will manage Docker Swarm services'
control and data traffic. All the services will be connected to this network so that
they can reach each other if we do not specify any custom overlay network.

Docker Swarm will only manage overlay networks. We can create new overlay networks
for our applications that will be isolated from each other. The same happens when working
locally with custom bridged networks. We will be able to connect services to different
networks at once, as we did with bridged environments. We will also be able to connect
containers to overlay networks, although this is not something that's commonly done.
Remember that we will not run standalone containers in Docker Swarm.

If firewalls are enabled in your environment, you'll need to allow the following traffic:

Port or Range
of Ports Protocol Purpose

2377 TCP Cluster management traffic
7946 TCP/UDP Swarm node intercommunication
4789 UDP Overlay networking

Docker Swarm management traffic is always encrypted by default, as we learned in
previous sections. We can also encrypt overlay networking. When we use encryption
arguments on overlay network creation, Docker Swarm creates Internet Protocol
Security (IPSEC) encryption on overlay VXLANs. It adds security, though a performance
overhead is to be expected. It is up to you to manage the balance between security and
performance in your applications. As encryption is done upon network creation, it can't be
changed once the network has been created.

Creating overlay networks is easy – we just specify the overlay driver with docker
network create:

$ docker network create -d overlay testnet
1ff11sixrjj7cqppgoxhrdu3z

Orchestration Using Docker Swarm Chapter 8

[308]

By default, it is created unencrypted and non-attachable. This means that containers will
not be able to connect to this network. Only services will be allowed. Let's verify this by
trying to attach a simple container to the created network using docker container run:

$ docker container run -ti --network testnet alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
Digest:
sha256:2171658620155679240babee0a7714f6509fae66898db422ad803b951257db78
Status: Downloaded newer image for alpine:latest
docker: Error response from daemon: Could not attach to network testnet:
rpc error: code = PermissionDenied desc = network testnet not manually
attachable.

To avoid this, we need to declare the network as attachable from the very beginning. This
second example also adds an encryption option using docker network create --
attachable --opt encrypted:

$ docker network create -d overlay testnet2 --attachable --opt encrypted
9blpskhcvahonytkifn31w91d

$ docker container run -ti --network testnet2 alpine
/ #

We connected to the newer sample encrypted network without any problem because it was
created with the attachable property.

All services that are connected to the same overlay network will see each other by their
names, and all their exposed ports will be available internally, regardless of whether they
are published.

By default, all Swarm overlay networks will have 24-bit masks, which
means we will be able to allocate 255 IP addresses. Each service that's
deployed may consume multiple IP addresses, as well as one for each
node peering on a given overlay network. You may run into IP exhaustion
in some situations. To avoid this, consider creating bigger networks if
many services need to use them.

In the next section, we will take a closer look at service discovery and how Docker routes
traffic to all service replicas.

Orchestration Using Docker Swarm Chapter 8

[309]

Service discovery and load balancing
Docker Swarm has internal Internet Protocol Address Management (IPAM) and Domain
Name System (DNS) components to automatically assign a virtual IP address and a DNS
entry for each service that's created. Internal load balancing will distribute requests among
a service's tasks based on the service's DNS name. As we mentioned earlier, all the services
on the same network will know each other and will be reachable on their exposed ports.

Docker Swarm managers (in fact, the leader) will use the created ingress overlay network to
publish the services we declared as accessible from outside the cluster. If no port was
declared during service creation, Docker Swarm will automatically assign one for each
exposed port that's declared in the 30000-32767 range. We have to manually declare any
port above 1024 because we can't create privileged services.

All the nodes will participate in this ingress router mesh. Therefore, the nodes will accept
connections on the published port, regardless of whether they run one of the requested
tasks. The router mesh will route all incoming requests to published ports on all the nodes
to running tasks (containers). Therefore, published ports will be allocated on all Swarm
nodes and hence only one service will be able to use declared ports. In other words, if we
publish a service on port 8080, we will not be able to reuse that port for another service.
This will limit the maximum number of services that can run on the cluster to the number
of free ports available on the Linux or Windows systems used. We learned that Docker
Engine will not be able to publish more than one container on the same port using NAT. In
this case, all the nodes will fix ports to published services.

The router mesh listens on the published ports on all the node's available IP addresses. We
will use cluster-external load balancers to route traffic to the cluster's hosts. We usually use
a couple of them for publishing, with the load balancer forwarding all requests to them.

We can use docker service update to modify or remove already
declared ports or add new ones.

Orchestration Using Docker Swarm Chapter 8

[310]

The following schema shows how a router mesh works on a three-node cluster publishing a
service with two replicas. The colors service runs two tasks. Therefore, one container runs
on NODE1 and NODE2, respectively (these are Docker Swarm-scheduled tasks on the
nodes in the following diagram). Internally, these containers expose their application on
port 3000. The service that defined that container's port as 3000 will be published on the
host's port; that is, 8080. This port will be published on all the nodes, even if they do not
run any service tasks. Internal load balancing will route requests to the appropriate
containers using the ingress overlay network. Finally, users will access the published
service through an external load balancer. This is not part of the Docker Swarm
environment, but it helps us to provide high-availability forwarding requests to a set of
available nodes:

We will have short and long formats for publishing services. Long formats always provide
more options. In the following example, we're publishing an NGINX process on cluster
port 8080 and forwarding its traffic to the container's port, 80, using docker service
create --publish:

$ docker service create --name webserver \
 --publish published=8080,target=80,protocol=tcp \
nginx:alpine

Orchestration Using Docker Swarm Chapter 8

[311]

On any node, we will be able to access the NGINX service on port 8080. We can test this
using the curl command:

$ curl -I 0.0.0.0:8080
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Tue, 31 Dec 2019 17:51:26 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

We can retrieve the current service tasks' IP addresses by querying the
DNS for tasks.<SERVICE_NAME>.

By default, all the services use the router mesh. However, we can avoid this default
behavior, as we will see in the following section.

Bypassing the router mesh
Using host mode or a Round-Robin DNS (RRDNS) endpoint, we can bypass the router
mesh. This will allow us to access instances on given nodes on defined ports or apply our
own load balancer. In some situations, we need to include special load balancing features
such as weights or persistence of users' sessions. The default Docker Swarm's router mesh
behavior will route requests to all available services' backend instances. It is important to
identify your application's requirements to determine whether you should deploy its
components using Docker Swarm's default load balancing.

Docker's internal load balancer will just do L3 routing. It will not provide
any weight-based routing or special features.

Orchestration Using Docker Swarm Chapter 8

[312]

Using host mode
Using host mode, only nodes with running instances will receive traffic. We can label nodes
so that they only schedule some tasks on them and route traffic to them from load
balancers. In this case, we can't run more replicas for this service than the defined and
labeled number of nodes.

In the following example, we will run one NGINX process on each node in the cluster since
we defined a global service. We will use docker service create --mode global --
publish mode=host:

$ docker service create --name webserver \
 --publish published=8080,target=80,protocol=tcp,mode=host \
 --mode global \
nginx:alpine

The service's defined port will be available on all the nodes in the cluster.

Using Round-Robin DNS mode
We can also use RRDNS mode to avoid the service's virtual IP address. In this situation,
Docker Swarm will not assign a virtual IP for the service, so it will create a service DNS
entry with all its replicas' IP addresses. This is useful when we want to use our own load
balancer inside the Docker Swarm cluster to deploy this load balancer as another service. It
is not easy to maintain the IP addresses of replicas inside the load balancer service. We will
probably use DNS resolution inside the load balancer's configuration, querying the DNS to
retrieve all instances' IP addresses.

The next section will help us understand the concepts we've learned in this chapter with
some labs.

Chapter labs
Now, we will complete this chapter's lab to help us improve our understanding of the
concepts we've learned. Deploy environments/swarm-environment from this book's
GitHub repository (https:/ /github. com/ PacktPublishing/ Docker- Certified-
Associate-DCA-Exam- Guide. git) if you have not done so yet. You can use your own Linux
server. Use vagrant up from the environments/swarm folder to start your virtual
environment.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Orchestration Using Docker Swarm Chapter 8

[313]

Wait until all your nodes are running. We can check the nodes' status using vagrant
status. Connect to your lab node using vagrant ssh swarm-node1. Vagrant has
deployed four nodes for you. You will be using the vagrant user with root privileges
using sudo. You should get the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$ vagrant up

 Docker SWARM MODE Vagrant Environment
 Engine Version: current
 Experimental Features Enabled

Bringing machine 'swarm-node1' up with 'virtualbox' provider...
Bringing machine 'swarm-node2' up with 'virtualbox' provider...
Bringing machine 'swarm-node3' up with 'virtualbox' provider...
Bringing machine 'swarm-node4' up with 'virtualbox' provider...

...
Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$

Nodes will have three interfaces (IP addresses and virtual hardware resources can be
modified by changing the config.yml file):

eth0 [10.0.2.15]: Internal, required for Vagrant.
eth1 [10.10.10.X/24]: Prepared for Docker Swarm internal communication.
The first node will get the IP address 10.10.10.11, and so on.
eth2 [192.168.56.X/24]: A host-only interface for communication between
your host and the virtual nodes. The first node will get the IP
address 192.168.56.11, and so on.

We will use the eth1 interface for Docker Swarm and we will be able to connect to
published applications using the 192.168.56.X/24 IP address range. All nodes have
Docker Engine Community Edition installed and the vagrant user is allowed to execute
docker.

Now, we can connect to the first deployed virtual node using vagrant ssh swarm-
node1. This process may vary if you've already deployed a Docker Swarm virtual
environment before and just started it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$ vagrant ssh
swarm-node1
vagrant@swarm-node1:~$

Orchestration Using Docker Swarm Chapter 8

[314]

Now, you are ready to start the labs. Let's start by creating a Docker Swarm cluster.

Creating a Docker Swarm cluster
Once Vagrant (or your own environment) has been deployed, we will have four nodes
(named node<index>, from 1 to 4) with Ubuntu Xenial and Docker Engine installed.

First, review your lab node's IP addresses (10.10.10.11 to 10.10.10.14 if you used
Vagrant since the first interface will be Vagrant's internal host-to-node interface). Once you
are familiar with the environment's IP addresses, we can initiate a cluster on node1, for
example.

If you are using Linux as a VirtualBox host, you can execute alias
vssh='vagrant ssh' on your Terminal to use vssh instead of vagrant
ssh to connect to nodes as it will be more familiar with non-Vagrant-
based real environments.

Now that we have our environment ready for the labs, along with four nodes and Docker
Engine already installed, let's get started:

Connect to node1 and initialize a new cluster using docker swarm init:1.

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node1

 Docker SWARM MODE Vagrant Environment
 Engine Version: current
 Experimental Features Enabled

...
...

vagrant@swarm-node1:~$ docker swarm init
Error response from daemon: could not choose an IP address to
advertise since this system has multiple addresses on different
interfaces (10.0.2.15 on eth0 and 10.10.10.11 on eth1) - specify
one with --advertise-addr

Orchestration Using Docker Swarm Chapter 8

[315]

This is normal if you are using Vagrant as nodes will have at least two interfaces.
The first interface is internal to Vagrant, while the other is the one fixed for the
labs. In this case, we will need to specify which interface to use for the cluster
with --advertise-addr. We will execute docker swarm init --advertise-
addr:

vagrant@swarm-node1:~$ docker swarm init --advertise-addr
10.10.10.11
Swarm initialized: current node (b1t5o5x8mqbz77e9v4ihd7cec) is now
a manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token
SWMTKN-1-3xfi4qggreh81lbr98d63x7299gtz1fanwfjkselg9ok5wroje-
didcmb39w7apwokrah6xx4cus 10.10.10.11:2377

To add a manager to this swarm, run 'docker swarm join-token
manager' and follow the instructions.

Now, Swarm is initialized correctly.

Add a second node that's connecting to node2 and executing the command2.
described in the initialization output. We will join the cluster using the docker
swarm join command with the obtained token:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node2

vagrant@swarm-node2:~$ docker swarm join --token
SWMTKN-1-3xfi4qggreh81lbr98d63x7299gtz1fanwfjkselg9ok5wroje-
didcmb39w7apwokrah6xx4cus 10.10.10.11:2377
This node joined a swarm as a worker.

With this, a node is added as a worker.

On node1, verify that the new node was added by using docker node ls:3.

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node1

vagrant@swarm-node1:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
b1t5o5x8mqbz77e9v4ihd7cec * swarm-node1 Ready Active Leader 19.03.5
rj3rgb9egnb256cms0zt8pqew swarm-node2 Ready Active 19.03.5

Orchestration Using Docker Swarm Chapter 8

[316]

Notice that swarm-node1 is the leader because this is the node that
initialized the cluster. We couldn't have executed docker node ls on
swarm-node2 because it was not a manager node.

We will execute the same joining process on swarm-node3, using docker swarm4.
join again:

vagrant@swarm-node1:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
b1t5o5x8mqbz77e9v4ihd7cec * swarm-node1 Ready Active Leader 19.03.5
rj3rgb9egnb256cms0zt8pqew swarm-node2 Ready Active 19.03.5
ui67xyztnw8kn6fjjezjdtwxd swarm-node3 Ready Active 19.03.5

Now, we will review the token for managers, so the next node will be added as a5.
manager. We will use docker swarm join-token manager:

vagrant@swarm-node1:~$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

 docker swarm join --token
SWMTKN-1-3xfi4qggreh81lbr98d63x7299gtz1fanwfjkselg9ok5wroje-
aidvtmglkdyvvqurnivcsmyzm 10.10.10.11:2377

Now, we connect to swarm-node4 and execute the shown joining command
(docker swarm join) with the new token:

vagrant@swarm-node4:~$ docker swarm join --token
SWMTKN-1-3xfi4qggreh81lbr98d63x7299gtz1fanwfjkselg9ok5wroje-
aidvtmglkdyvvqurnivcsmyzm 10.10.10.11:2377
This node joined a swarm as a manager

The cluster now has four nodes: two managers and two workers. This will not6.
provide high availability should the leader fail. Let's promote swarm-node2 to
the manager role too, for example, by executing docker node update --role
manager:

vagrant@swarm-node4:~$ docker node update --role manager swarm-
node2
swarm-node2

We can change node roles using the promote and demote commands as
well, but it is more convenient to know what they really mean for node
property updates. Also, notice that we can change node roles whenever
we want, but we should maintain the number of healthy managers.

Orchestration Using Docker Swarm Chapter 8

[317]

We can review the node's status again. Managers are shown as Reachable or
Leader, indicating that this node is the cluster leader. Using docker node ls,
we get the following output:

vagrant@swarm-node4:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
b1t5o5x8mqbz77e9v4ihd7cec swarm-node1 Ready Active Leader 19.03.5
rj3rgb9egnb256cms0zt8pqew swarm-node2 Ready Active Reachable
19.03.5
ui67xyztnw8kn6fjjezjdtwxd swarm-node3 Ready Active 19.03.5
jw9uvjcsyg05u1slm4wu0hz6l * swarm-node4 Ready Active Reachable
19.03.5

Notice that we executed these commands on node4. We can do this
because it is a manager (not a leader, but a manager). We can use any
manager to manage the cluster, but only the leader will perform updates
on the internal database.

We will just leave one manager for the rest of the labs, but first, we will kill7.
the node1 Docker Engine daemon to see what happens in the cluster. We will
stop the Docker daemon using systemctl stop docker:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node1

vagrant@swarm-node1:~$ sudo systemctl stop docker

Connect to the other manager (node2, for example; that is, the recently promoted
node). Now, let's review the node's status with docker node ls:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node2

vagrant@swarm-node2$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
b1t5o5x8mqbz77e9v4ihd7cec swarm-node1 Down Active Unreachable
19.03.5
rj3rgb9egnb256cms0zt8pqew * swarm-node2 Ready Active Reachable
19.03.5
ui67xyztnw8kn6fjjezjdtwxd swarm-node3 Ready Active 19.03.5
jw9uvjcsyg05u1slm4wu0hz6l swarm-node4 Ready Active Leader 19.03.5

Orchestration Using Docker Swarm Chapter 8

[318]

A new leader was elected from among the other running managers. Now, we can
start the node1 Docker Engine daemon again using systemctl start docker:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node1

vagrant@swarm-node1$ sudo systemctl start docker

vagrant@swarm-node1$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
b1t5o5x8mqbz77e9v4ihd7cec * swarm-node1 Ready Active Reachable
19.03.5
rj3rgb9egnb256cms0zt8pqew swarm-node2 Ready Active Reachable
19.03.5
ui67xyztnw8kn6fjjezjdtwxd swarm-node3 Ready Active 19.03.5
jw9uvjcsyg05u1slm4wu0hz6l swarm-node4 Ready Active Leader 19.03.5

The node remains as a manager but is no longer the leader of the cluster because a
new one was elected when it failed.

Let's demote all non-leader nodes to workers for the rest of the labs using8.
docker node update --role worker:

vagrant@swarm-node1$ docker node update --role worker swarm-node2
swarm-node2

vagrant@swarm-node1:~$ docker node update --role worker swarm-node1
swarm-node1

vagrant@swarm-node1:~$ docker node ls
Error response from daemon: This node is not a swarm manager.
Worker nodes can't be used to view or modify cluster state. Please
run this command on a manager node or promote the current node to a
manager.

Notice the error when listing again. node1 is not a manager now, so we can't
manage the cluster from this node anymore. All management commands will
now run from node4 for the rest of the labs. node4 is the only manager, which
makes it the cluster leader, as we can observe using docker node ls once more:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node4

vagrant@swarm-node4:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY
MANAGER STATUS ENGINE VERSION
b1t5o5x8mqbz77e9v4ihd7cec swarm-node1 Ready Active

Orchestration Using Docker Swarm Chapter 8

[319]

19.03.5
rj3rgb9egnb256cms0zt8pqew swarm-node2 Ready Active
19.03.5
ui67xyztnw8kn6fjjezjdtwxd swarm-node3 Ready Active
19.03.5
jw9uvjcsyg05u1slm4wu0hz6l * swarm-node4 Ready Active
Leader 19.03.5

In the next lab, we will deploy a simple web server service.

Deploying a simple replicated service
From swarm-node4, we will create a replicated service (by default) and test how we can
distribute more replicas on different nodes. Let's get started:

Deploy the webserver service using a simple nginx:alpine image by1.
executing docker service create:

vagrant@swarm-node4:~$ docker service create --name webserver
nginx:alpine
kh906v3xg1ni98xk466kk48p4
overall progress: 1 out of 1 tasks
1/1: running [==>]
verify: Service converged

Notice that we had to wait a few seconds until all the instances were correctly
running. The amount of time this takes may vary if the image has some
configured health check.

We can overwrite the image-defined health checks on service creation or
by updating the configuration using --health-cmd and other related
arguments. In fact, we can change almost everything on a used image, just
as we did with containers.

Once it is deployed, we can review where the replica was started by using2.
docker service ps:

vagrant@swarm-node4:~$ docker service ps webserver
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR
PORTS
wb4knzpud1z5 webserver.1 nginx:alpine swarm-
node3 Running Running 14 seconds ago

Orchestration Using Docker Swarm Chapter 8

[320]

In this case, nginx was deployed on swarm-node3. This may vary in your
environment.

We can scale the number of replicas to 3 and review how they were distributed.3.
We will use docker service update --replicas for this:

$ docker service update --replicas 3 webserver
webserver
overall progress: 3 out of 3 tasks
1/3: running [==>]
2/3: running [==>]
3/3: running [==>]
verify: Service converged

If we review the replicas' distribution, we can discover where the containers are
running using docker service ps webserver:

vagrant@swarm-node4:~$ docker service ps webserver
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
wb4knzpud1z5 webserver.1 nginx:alpine swarm-node3 Running Running 2
minutes ago
ie9br2pblxu6 webserver.2 nginx:alpine swarm-node4 Running Running
50 seconds ago
9d021pmvnnrq webserver.3 nginx:alpine swarm-node1 Running Running
50 seconds ago

Notice that, in this case, swarm-node2 did not receive a replica, but we can force
replicas to run there.

To force specific locations, we can add labels to specific nodes and add4.
constraints to nodes. We'll add a label using docker node update --label-
add:

vagrant@swarm-node4:~$ docker node update --label-add tier=front
swarm-node2
swarm-node2

Now, we can modify the current service so that it runs on specific nodes labeled
as tier==front. We will use docker service update --constraint-add
node.labels.tier and then review its distributed tasks again with docker
service ps:

vagrant@swarm-node4:~$ docker service update --constraint-add
node.labels.tier==front webserver
webserver
overall progress: 3 out of 3 tasks

Orchestration Using Docker Swarm Chapter 8

[321]

1/3: running
[==>]
2/3: running
[==>]
3/3: running
[==>]
verify: Service converged

vagrant@swarm-node4:~$ docker service ps webserver
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR
PORTS
wjgkgkn0ullj webserver.1 nginx:alpine swarm-
node2 Running Running 24 seconds ago
wb4knzpud1z5 _ webserver.1 nginx:alpine swarm-
node3 Shutdown Shutdown 25 seconds ago
bz2b4dw1emvw webserver.2 nginx:alpine swarm-
node2 Running Running 26 seconds ago
ie9br2pblxu6 _ webserver.2 nginx:alpine swarm-
node4 Shutdown Shutdown 27 seconds ago
gwzvykixd5oy webserver.3 nginx:alpine swarm-
node2 Running Running 28 seconds ago
9d021pmvnnrq _ webserver.3 nginx:alpine swarm-
node1 Shutdown Shutdown 29 seconds ago

Now, all the replicas are running on swarm-node2.

Now, we will perform some maintenance tasks on node2. In this situation, we5.
will remove the service constraint before draining swarm-node2. If we do not
do that, no other node will receive workloads because they are restricted to
tier=front node labels. We removed the service's constraints using docker
service update --constraint-rm node.labels.tier:

vagrant@swarm-node4:~$ docker service update --constraint-rm
node.labels.tier==front webserver
webserver
overall progress: 3 out of 3 tasks
1/3: running
[==>]
2/3: running
[==>]
3/3: running
[==>]
verify: Service converged

vagrant@swarm-node4:~$ docker service ps webserver
ID NAME IMAGE NODE

Orchestration Using Docker Swarm Chapter 8

[322]

DESIRED STATE CURRENT STATE ERROR
PORTS
wjgkgkn0ullj webserver.1 nginx:alpine swarm-
node2 Running Running 4 minutes ago
wb4knzpud1z5 _ webserver.1 nginx:alpine swarm-
node3 Shutdown Shutdown 4 minutes ago
bz2b4dw1emvw webserver.2 nginx:alpine swarm-
node2 Running Running 4 minutes ago
ie9br2pblxu6 _ webserver.2 nginx:alpine swarm-
node4 Shutdown Shutdown 4 minutes ago
gwzvykixd5oy webserver.3 nginx:alpine swarm-
node2 Running Running 4 minutes ago
9d021pmvnnrq _ webserver.3 nginx:alpine swarm-
node1 Shutdown Shutdown 4 minutes ago

The tasks did not move to other nodes because the tasks were already satisfying
the service constraints (no constraint in the new situation).

Docker Swarm will never move tasks if it is not really necessary because it
will always try to avoid any service disruption. We can force an update
regarding service task redistribution by using docker service update
--force <SERVICE_NAME>.

In this step, we will pause swarm-node3 and drain swarm-node2. We will use6.
docker node update --availability pause and docker node update -
-availability drain to do so, respectively:

vagrant@swarm-node4:~$ docker node update --availability pause
swarm-node3
swarm-node3

vagrant@swarm-node4:~$ docker node update --availability drain
swarm-node2
swarm-node2

Now, let's review our service replica distribution again using docker service
ps:

vagrant@swarm-node4:~$ docker service ps webserver --filter
desired-state=running
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR
PORTS
6z55nch0q8ai webserver.1 nginx:alpine swarm-
node4 Running Running 3 minutes ago
8il59udc4iey webserver.2 nginx:alpine swarm-
node4 Running Running 3 minutes ago

Orchestration Using Docker Swarm Chapter 8

[323]

1y4q96hb3hik webserver.3 nginx:alpine swarm-
node1 Running Running 3 minutes ago

Notice that only swarm-node1 and swarm-node4 get some tasks because swarm-
node3 is paused and we removed all tasks on swarm-node2.

We can use docker node ps <NODE> to get all the tasks from all the
services running on the specified node.

We will remove the webserver service and enable nodes node2 and node37.
again. We will execute docker service rm to remove the service:

vagrant@swarm-node4:~$ docker service rm webserver
webserver

vagrant@swarm-node4:~$ docker node update --availability active
swarm-node2
swarm-node2

vagrant@swarm-node4:~$ docker node update --availability active
swarm-node3
swarm-node3

In the next lab, we will create a global service.

Deploying a global service
In this lab, we will deploy a global service. It will run one task on each cluster node. Let's
learn how to use global mode:

In this chapter, we learned that global services will deploy one replica on each1.
node. Let's create one and review its distribution. We will use docker service
create --mode global:

vagrant@swarm-node4:~$ docker service create --name webserver --
mode global nginx:alpine
4xww1in0ozy3g8q6yb6rlbidr
overall progress: 4 out of 4 tasks
ui67xyztnw8k: running
[==>]
b1t5o5x8mqbz: running
[==>]
rj3rgb9egnb2: running

Orchestration Using Docker Swarm Chapter 8

[324]

[==>]
jw9uvjcsyg05: running
[==>]
verify: Service converged

All the nodes receive their own replicas, as we can see with docker service
ps:

vagrant@swarm-node4:~$ docker service ps webserver --filter
desired-state=running
ID NAME IMAGE
NODE DESIRED STATE CURRENT STATE
ERROR PORTS
0jb3tolmta6u webserver.ui67xyztnw8kn6fjjezjdtwxd
nginx:alpine swarm-node3 Running
Running about a minute ago
im69ybzgd879 webserver.rj3rgb9egnb256cms0zt8pqew
nginx:alpine swarm-node2 Running
Running about a minute ago
knh5ntkx7b3r webserver.jw9uvjcsyg05u1slm4wu0hz6l
nginx:alpine swarm-node4 Running
Running about a minute ago
26kzify7m7xd webserver.b1t5o5x8mqbz77e9v4ihd7cec
nginx:alpine swarm-node1 Running
Running about a minute ago

We will now drain swarm-node1, for example, and review the new task2.
distribution. We will drain the node using docker node update --
availability drain:

vagrant@swarm-node4:~$ docker node update --availability drain
swarm-node1
swarm-node1

vagrant@swarm-node4:~$ docker service ps webserver --filter
desired-state=running
ID NAME IMAGE
NODE DESIRED STATE CURRENT STATE
ERROR PORTS
0jb3tolmta6u webserver.ui67xyztnw8kn6fjjezjdtwxd
nginx:alpine swarm-node3 Running
Running 3 minutes ago
im69ybzgd879 webserver.rj3rgb9egnb256cms0zt8pqew
nginx:alpine swarm-node2 Running
Running 3 minutes ago
knh5ntkx7b3r webserver.jw9uvjcsyg05u1slm4wu0hz6l
nginx:alpine swarm-node4 Running
Running 3 minutes ago

Orchestration Using Docker Swarm Chapter 8

[325]

None of the nodes received the swarm-node1 task because global services will
only run one replica of a defined service.

If we enable swarm-node1 once more using docker node update --3.
availability active, its replica will start to run again:

vagrant@swarm-node4:~$ docker node update --availability active
swarm-node1
node1
vagrant@swarm-node4:~$ docker service ps webserver --filter
desired-state=running
ID NAME IMAGE
NODE DESIRED STATE CURRENT STATE
ERROR PORTS
sun8lxwu6p3k webserver.b1t5o5x8mqbz77e9v4ihd7cec
nginx:alpine swarm-node1 Running
Running 1 second ago
0jb3tolmta6u webserver.ui67xyztnw8kn6fjjezjdtwxd
nginx:alpine swarm-node3 Running
Running 5 minutes ago
im69ybzgd879 webserver.rj3rgb9egnb256cms0zt8pqew
nginx:alpine swarm-node2 Running
Running 5 minutes ago
knh5ntkx7b3r webserver.jw9uvjcsyg05u1slm4wu0hz6l
nginx:alpine swarm-node4 Running
Running 5 minutes ago

Swarm will run one task of any global service on each node. When a new
node joins the cluster, it will also receive one replica of each global service
defined in the cluster.

We will remove the webserver service again to clear the cluster for the4.
following labs by using docker service rm webserver:

vagrant@swarm-node4:~$ docker service rm webserver
webserver

We will now take a quick look at service updates to learn how to update a service's base
image.

Orchestration Using Docker Swarm Chapter 8

[326]

Updating a service's base image
Let's learn how to refresh a new image version of a deployed and running service
while avoiding user access interruption:

First, we create a 6-replica webserver service using docker service create1.
--replicas 6:

vagrant@swarm-node4:~$ docker service create --name webserver \
--replicas 6 --update-delay 10s --update-order start-first \
nginx:alpine
vpllw7cxlma7mwojdyswbkmbk
overall progress: 6 out of 6 tasks
1/6: running
[==>]
2/6: running
[==>]
3/6: running
[==>]
4/6: running
[==>]
5/6: running
[==>]
6/6: running
[==>]
verify: Service converged

Next, we update to a specific nginx:alpine version with perl support, for2.
example. We use docker service update --image to change only its base
image:

vagrant@swarm-node4:~$ docker service update --image nginx:alpine-
perl webserver
webserver
overall progress: 6 out of 6 tasks
1/6: running [==>]
2/6: running [==>]
3/6: running [==>]
4/6: running [==>]
5/6: running [==>]
6/6: running [==>]
verify: Service converged

Orchestration Using Docker Swarm Chapter 8

[327]

The update took more than 60 seconds because Swarm updated tasks one by one
at 10-second intervals. It will first start the new container with the newly defined
image. Once it is healthy, it will stop the old version of the container. This must be
done on each task and therefore takes more time, but this way, we can ensure that
there is always a webserver task running. In this example, we have not
published any webserver ports, so no user interaction is expected. It is just a
simple lab – but real-life environments will be the same, and internal Docker
Swarm load balancing will always guide the user's requests to alive instances
while an update is running.

The new version is running now, as we can observe by using docker service
ps again:

vagrant@swarm-node4:~$ docker service ps webserver --filter
desired-state=running
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR
PORTS
n9s6lrk8zp32 webserver.1 nginx:alpine-perl swarm-
node4 Running Running 4 minutes ago
68istkhse4ei webserver.2 nginx:alpine-perl swarm-
node1 Running Running 5 minutes ago
j6pqig7njhdw webserver.3 nginx:alpine-perl swarm-
node1 Running Running 6 minutes ago
k4vlmeb56kys webserver.4 nginx:alpine-perl swarm-
node2 Running Running 5 minutes ago
k50fxl1gms44 webserver.5 nginx:alpine-perl swarm-
node3 Running Running 5 minutes ago
apur3w3nq95m webserver.6 nginx:alpine-perl swarm-
node3 Running Running 5 minutes ago

We will remove the webserver service again to clear the cluster for the3.
following labs using docker service rm:

vagrant@swarm-node4:~$ docker service rm webserver
webserver

In the next lab, we will deploy applications using stacks instead of creating services
manually, which might lead to us making configuration errors, for example. Using stacks
will provide environment reproducibility because we will always run the same IaC
definitions.

Orchestration Using Docker Swarm Chapter 8

[328]

Deploying using Docker Stacks
In this lab, we will deploy a PostgreSQL database using secrets, configurations, and
volumes on an IaC file. This file will contain all the application's requirements and will be
used to deploy the application as a Docker Stack. Let's get started:

First, we will create a secret for the required PostgreSQL admin user password.1.
We will execute docker service create with the standard input as the secret
content:

vagrant@swarm-node4:~$ echo SuperSecretPassword|docker secret
create postgres_password -
u21mmo1zoqqguh01u8guys9gt

We will use it as an external secret inside the docker-compose file.

We are going to create a simple initialization script to create a new database2.
when PostgreSQL starts. We will create a simple file in the current directory
named create-docker-database.sh with the following content and
appropriate 755 permissions:

#!/bin/bash
set -e

psql -v ON_ERROR_STOP=0 --username "$POSTGRES_USER" --dbname
"$POSTGRES_DB" <<-EOSQL
 CREATE USER docker;
 CREATE DATABASE docker;
 GRANT ALL PRIVILEGES ON DATABASE docker TO docker;
EOSQL

Then, we create a config file with the file's content. We will use this file to create a
database named docker on starting up PostgreSQL. This is something we can use
because it is provided by the official Docker Hub PostgreSQL image. We will use
docker config create with the create-docker-database.sh file:

vagrant@swarm-node4:~$ docker config create create-docker-database
./create-docker-database.sh
uj6zvrdq0682anzr0kobbyhk2

Orchestration Using Docker Swarm Chapter 8

[329]

We will add labels to some of the nodes to ensure the database is always running3.
there since we will create an external volume only on that node. For this
example, we will use node2. We will create a volume using docker volume
create:

Docker-Certified-Associate-DCA-Exam-Guide/environments/swarm$
vagrant ssh swarm-node2

vagrant@swarm-node2:~$ docker volume create PGDATA
PGDATA

This volume will only exist on swarm-node2, so we will create a constraint based
on a node label to run the service task only on swarm-node2. We will use docker
node update --label-add tier=database for this:

vagrant@swarm-node4:~$ docker node update --label-add tier=database
swarm-node2
swarm-node2

This is a simple sample. In your production environment, you will never
use local volumes. We will need to define and use some plugin that allows
us to share the same volume on different hosts, such as NFS and RexRay.

Now, we will create the following Docker Compose file, named postgres-4.
stack.yaml:

version: '3.7'
services:
 database:
 image: postgres:alpine
 deploy:
 placement:
 constraints:
 - node.role == worker
 - node.labels.tier == database
 environment:
 - POSTGRES_PASSWORD_FILE=/run/secrets/postgres_password
 secrets:
 - source: postgres_password
 target: "/run/secrets/postgres_password"
 configs:
 - source: create-docker-database
 target: "/docker-entrypoint-initdb.d/create-db.sh"
 mode: 0755
 uid: "0"

Orchestration Using Docker Swarm Chapter 8

[330]

 volumes:
 - type: volume
 source: PGDATA
 target: /var/lib/postgresql/data
 ports:
 - target: 5432
 published: 15432
 protocol: tcp
 networks:
 net:
 aliases:
 - postgres
 - mydatabase
configs:
 create-docker-database:
 external: true
secrets:
 postgres_password:
 external: true
volumes:
 PGDATA:
 external: true
networks:
 net:
 driver: overlay
 attachable: true

Take note of the following things in this file; we added a lot of learned
information here:

We defined the postgres:alpine image for the database service.
The database service will only be scheduled on worker nodes with a tier label
key and a value of database. In this case, it will run tasks only on node2.
The postgres image can use Docker Swarm secret files as environment
variables, and in this case, it will use postgres_password mounted on
/run/secrets/postgres_password. The secret is declared externally because
it was previously created outside of this file.
We also added a config file to create an initial database called docker. The config
file is external as well because we added it outside the postgres-stack.yaml
file.
We also added an external volume named PGDATA. We will use this volume for
the database but it will only exist on node2. It is defined as external because we
manually create the PGDATA volume locally on node2.

Orchestration Using Docker Swarm Chapter 8

[331]

We published the PostgreSQL application's port 5432 on the host's port; that
is, 15432. We changed the published port to recognize that they are not the same
because 5432 will be an internal port on the defined network named net.
Finally, we defined the net network as attachable to be able to test our
database with a simple container running a postgres client. We added two
aliases to the database service inside this network: postgres and mydatabase.

Notice that all the objects that were created for the stack will use the
stack's name as a prefix. This will not happen on externally defined
objects. They will be used, but we create them manually, outside of the
stack's life cycle.

We deploy the postgres stack using docker stack deploy:5.

vagrant@swarm-node4:~$ docker stack deploy -c postgres-stack.yaml
postgres
Creating network postgres_net
Creating service postgres_database

We can easily review the stack's status using docker stack ps.

vagrant@swarm-node4:~$ docker stack ps postgres
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
53in2mik27r0 postgres_database.1 postgres:alpine swarm-node2
Running Running 19 seconds ago

It is running on swarm-node2, as we expected.

We published port 5432 on port 15432. We can connect to this port from any6.
node IP address in the cluster because Swarm uses a routing mesh. We use
the curl command to review the port's availability:

vagrant@swarm-node4:~$ curl 0.0.0.0:15432
curl: (52) Empty reply from server

vagrant@swarm-node2:~$ curl 0.0.0.0:15432
curl: (52) Empty reply from server

vagrant@swarm-node3:~$ curl 0.0.0.0:15432
curl: (52) Empty reply from server

We get this response to curl because we are not using the right software client
(but the ports are listening). Let's run a simple alpine container with
the postgres client.

Orchestration Using Docker Swarm Chapter 8

[332]

Now, we can run a simple alpine container attached to the stack's deployed7.
network. In this example, it is postgres_net:

vagrant@swarm-node4:~$ docker network ls --filter name=postgres_net
NETWORK ID NAME DRIVER SCOPE
mh53ek97pi3a postgres_net overlay swarm

Here, we ran a simple alpine container and installed the postgresql-client
package using docker container run with an appropriate network:

vagrant@swarm-node4:~$ docker container run -ti --network
postgres_net alpine
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
e6b0cf9c0882: Pull complete
Digest:
sha256:2171658620155679240babee0a7714f6509fae66898db422ad803b951257
db78
Status: Downloaded newer image for alpine:latest
/ # apk add --update --no-cache postgresql-client --quiet

Remember that we added the mydatabase and postgres aliases to
the database service. Therefore, any of them will be valid for testing database
connectivity since Swarm added these entries to the internal DNS. We can test
this by running a simple ping command inside the container:

/ # ping -c 1 mydatabase
PING mydatabase (10.0.3.2): 56 data bytes
64 bytes from 10.0.3.2: seq=0 ttl=64 time=0.237 ms
--- mydatabase ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.237/0.237/0.237 ms

/ # ping -c 1 postgres
PING postgres (10.0.3.2): 56 data bytes
64 bytes from 10.0.3.2: seq=0 ttl=64 time=0.177 ms
--- postgres ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.177/0.177/0.177 ms

/ # ping -c 1 database
PING database (10.0.3.2): 56 data bytes
64 bytes from 10.0.3.2: seq=0 ttl=64 time=0.159 ms
--- database ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.159/0.159/0.159 ms

Orchestration Using Docker Swarm Chapter 8

[333]

We will use the installed client to test our deployed PostgreSQL. Remember to
use the previously defined password that we created as a secret,
SuperSecretPassword. We will test our database's connectivity using the psql
command:

/ # psql -h mydatabase -U postgres
Password for user postgres:
psql (12.1)
Type "help" for help.

postgres=# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+------------+------------+-------

 docker | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =Tc/postgres
+
 | | | | | postgres=CTc/postgres+
 | | | | | docker=CTc/postgres
 postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
 template0 | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
=c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
=c/postgres +
 | | | | | postgres=CTc/postgres
(4 rows)

postgres=#

We listed the deployed databases using \l and the docker database, which was
created with our create-db.sh script. Notice that we used the default
PostgreSQL database port 5432 (we omitted any port customization on client
request) instead of 15432. This is because the docker container was connecting to
the database internally. Both the postgres_database.1 task and the externally
run container are using the same network, postgres_net.

Notice that we can use all learned options with the created stack service,
postgres_database. Anyway, we can modify the Docker Compose file
and redeploy the same stack again with some changes. Swarm will review
the required updates and take the necessary actions on all components.

Orchestration Using Docker Swarm Chapter 8

[334]

Let's exit the running container by executing the exit command, and then
remove the postgres stack and node2 volume to clean up for the following labs
using docker stack rm:

postgres=# exit
/ # exit

vagrant@swarm-node4:~$ docker stack rm postgres
Removing service postgres_database
Removing network postgres_net

In the next lab, we will launch a simple replicated service and review internal ingress load
balancing.

Swarm ingress internal load balancing
In this lab, we will use the codegazers/colors:1.13 image. This is a simple application
that will show different random front page colors or texts. Let's get started:

Let's create a service named colors based on the codegazers/colors:1.131.
image. Since we won't be setting any specific color using environment variables,
random ones will be chosen for us. Use docker service create --
constraint node.role==worker, as follows:

vagrant@swarm-node4:~$ docker service create --name colors \
 --publish 8000:3000 \
--constraint node.role==worker \
codegazers/colors:1.13

mkyz0d94ovb144xmvo0q4py41
overall progress: 1 out of 1 tasks
1/1: running [==>]
verify: Service converged

We chose not to run a replica on the manager node because we will use curl
from node4 in this lab.

Let's test local connectivity from the swarm-node4 manager with curl:2.

vagrant@swarm-node4:~$ curl 0.0.0.0:8000/text
APP_VERSION: 1.0
COLOR: orange
CONTAINER_NAME: d3a886d5fe34
CONTAINER_IP: 10.0.0.11 172.18.0.3

Orchestration Using Docker Swarm Chapter 8

[335]

CLIENT_IP: ::ffff:10.0.0.5
CONTAINER_ARCH: linux

We deployed one replica and it is running the orange color. Take note of the
container's IP address and its name.

Let's run five more replicas by executing docker service update --3.
replicas 6:

vagrant@swarm-node4:~$ docker service update --replicas 6 colors --
quiet
colors

If we test service port 8080 with curl once more, we will get different colors.4.
This is because the containers were launched without color settings:

vagrant@swarm-node4:~$ curl 0.0.0.0:8000/text
APP_VERSION: 1.0
COLOR: red
CONTAINER_NAME: 64fb2a3009b2
CONTAINER_IP: 10.0.0.12 172.18.0.4
CLIENT_IP: ::ffff:10.0.0.5
CONTAINER_ARCH: linux

vagrant@swarm-node4:~$ curl 0.0.0.0:8000/text
APP_VERSION: 1.0
COLOR: cyan
CONTAINER_NAME: 73b07ee0c287
CONTAINER_IP: 10.0.0.14 172.18.0.3
CLIENT_IP: ::ffff:10.0.0.5
CONTAINER_ARCH: linux

We get different colors on different containers. The router mesh is guiding our
requests to the colors tasks' containers using the ingress overlay network.

We can access all the colors service task logs using docker service
logs colors.

Let's remove the colors service for the next and final lab using docker5.
service rm:

vagranr@swarm-node4:~$ docker service rm colors
colors

Orchestration Using Docker Swarm Chapter 8

[336]

In the next lab, we will review service endpoint modes and consider how DNS resolves vip
and dnsrr situations.

Service discovery
In this lab, we will create a test overlay attachable network and review DNS entries for
the vip and dnsrr endpoint modes. Let's get started:

First, we need to create an attachable overlay test network using docker1.
network create --attachable -d overlay, as follows:

vagrant@swarm-node4:~$ docker network create --attachable -d
overlay test
32v9pibk7cqfseknretmyxfsw

Now, let's create two different colors services. Each one will use different2.
endpoint modes. For the vip mode, we will use docker service create:

vagrant@swarm-node4:~$ docker service create --replicas 2 \
--name colors-vip --network test --quiet codegazers/colors:1.13
4m2vvbnqo9wgf8awnf53zr5b2

Let's create the second one for dnsrr using docker service create --
endpoint-mode dnsrr, as follows:

vagrant@swarm-node4:~$ docker service create --replicas 2 \
--name colors-dnsrr --network test --quiet --endpoint-mode dnsrr
codegazers/colors:1.13
wqpv929pe5ehniviclzkdvcl0

Now, let's run a simple alpine container on the test network using docker3.
container run and test the internal name resolution functionality. We will
need to install the bind-tools package to be able to use the host and nslookup
tools:

vagrant@swarm-node4:~$ docker run -ti --rm --network test alpine
/ # apk add --update --no-cache bind-tools --quiet
/ # host colors-vip
colors-vip has address 10.0.4.2
/ # host colors-dnsrr
colors-dnsrr has address 10.0.4.7
colors-dnsrr has address 10.0.4.8
/ #exit

Orchestration Using Docker Swarm Chapter 8

[337]

As expected, when using the vip endpoint mode, the service receives a virtual IP
address. All requests will be redirected to that address and ingress will route to
the appropriate container using internal load balancing.

On the other hand, using the dnsrr endpoint will not provide a virtual IP
address. The internal DNS will add an entry for each container IP.

We can also take a look at the containers attached to the test network. These4.
containers will get one internal IP address and one that will be routed on the
overlay network. We can launch the ip add show command attached to one of
the running colors-dnsrr tasks' containers using docker container exec:

vagrant@swarm-node4:~$ docker exec -ti colors-
dnsrr.1.vtmpdf0w82daq6fdyk0wwzqc7 ip add show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
111: eth0@if112: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450
qdisc noqueue state UP
 link/ether 02:42:0a:00:04:07 brd ff:ff:ff:ff:ff:ff
 inet 10.0.4.7/24 brd 10.0.4.255 scope global eth0
 valid_lft forever preferred_lft forever
113: eth1@if114: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500
qdisc noqueue state UP
 link/ether 02:42:ac:12:00:04 brd ff:ff:ff:ff:ff:ff
 inet 172.18.0.4/16 brd 172.18.255.255 scope global eth1
 valid_lft forever preferred_lft forever

All Vagrant environments can easily be removed by executing vagrant
destroy -f to remove all previously created nodes for this lab. This
command should be executed on your environments/swarm local
directory.

Remove all the services that you created for this last lab with docker service rm
colors-dnsrr colors-vip.

Orchestration Using Docker Swarm Chapter 8

[338]

Summary
In this chapter, we reviewed how to deploy and work with the Docker Swarm orchestrator.
This is the default orchestrator in Docker as it comes out of the box with Docker Engine.

We learned about Docker Swarm's features and how to deploy applications using stacks
(IaC files) and services instead of containers. Orchestration will manage the application's
components to keep them running, helping us to even upgrade them without impacting
users. Docker Swarm also introduced new objects such as secrets and config, which help us
distribute workloads within cluster nodes. Volumes and networks should be managed
cluster-wide. We also learned about overlay networking and how Docker Swarm's router
mesh has simplified application publishing.

In the next chapter, we will learn about the Kubernetes orchestrator. Currently, Kubernetes
is a small part of the Docker Certified Associate exam, but this will probably be increased in
the following releases. It is also useful for you to know and understand the
concepts of Kubernetes alongside Docker Swarm. Docker Enterprise provides both and we
can make them work together.

Questions
Choose all of the false statements from the following options:1.

a) Docker Swarm is the only orchestrator that can work with Docker.
b) Docker Swarm comes included out of the box with Docker Engine.
c) Docker Swarm will allow us to deploy applications on a pool of nodes
working together, known as a cluster.
d) All of the preceding statements are false.

Which of the following statements are false regarding what Swarm provides by2.
default?

a) Service discovery
b) Internal load balancing
c) Overlay networking among distributed containers on cluster nodes
d) All of the preceding statements are false

Orchestration Using Docker Swarm Chapter 8

[339]

Which of the following statements are true in relation to managers?3.

a) We can't create replicated services with tasks running on managers.
b) There is just one leader node on each cluster that manages all Swarm
cluster changes and object statuses.
c) If the leader node dies, all the changes will be frozen until the leader node
is healthy again.
d) All of the preceding statements are true.

Which of the following statements are false in relation to workers?4.

a) Worker nodes just run workloads.
b) If we drain a worker node, all the workloads running on that node will be
moved to other available nodes.
c) Swarm roles can be changed for any node in the cluster whenever this is
required.
d) All of the preceding statements are true.

Which of the following statements are false about Swarm Stacks?5.

a) By default, all Stacks will be deployed on their own networks.
b) Stacks will use Docker Compose files to define all application components.
c) Everything that's used for a Stack should be defined inside the docker-
compose file. We can't add external objects.
d) All of the preceding statements are true.

Further reading
Refer to the following links for more information regarding the topics that were covered in
this chapter:

Docker Swarm overview: https:/ /docs. docker. com/ engine/ swarm/

Deploying applications on Docker Swarm: https:/ /docs. docker. com/ get-
started/ swarm- deploy/

Orchestration with Docker Swarm: https:/ /hub. packtpub. com/orchestration-
docker-swarm/

Native Docker clustering with Swarm: https:/ /www. packtpub. com/
virtualization- and- cloud/ native- docker- clustering- swarm

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://docs.docker.com/get-started/swarm-deploy/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://hub.packtpub.com/orchestration-docker-swarm/
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm
https://www.packtpub.com/virtualization-and-cloud/native-docker-clustering-swarm

9
Orchestration Using

Kubernetes
This chapter is dedicated to the most widely used container orchestrator
today—Kubernetes. In 2018, Kubernetes was adopted by 51% of container users as their
main orchestrator. Kubernetes adoption has increased in recent years, and it is now at the
core of most Container-as-a-Service (CaaS) platforms.

Cloud providers have followed the expansion of Kubernetes, and most of them (including
Amazon, Google, and Azure) now provide their own Kubernetes-as-a-Service (KaaS)
platforms where users do not have to take care of Kubernetes' administrative tasks. These
services are designed for simplicity and availability on cloud platforms. Users just run their
workloads on them and the cloud providers manage complicated maintenance tasks.

In this chapter, we will learn how Kubernetes works and what features it provides. We'll
review what is required to deploy a Kubernetes cluster with high availability. We will then
learn about Kubernetes objects, such as pods and services, among others. Networking is
key to distributing workloads within a cluster; we will learn how Kubernetes networking
works and how it provides service discovery and load balancing. Finally, we will review
some of the special security features provided by Kubernetes to manage cluster
authentication and authorization.

In this chapter, we will cover the following topics:

Deploying Kubernetes
High availability with Kubernetes
Pods, services, and other Kubernetes resources
Deploying orchestrated resources
Kubernetes networking
Publishing applications

Orchestration Using Kubernetes Chapter 9

[341]

Kubernetes is not part of the Docker Certified Associate exam yet, but it
probably will be in the next release as Docker Enterprise comes with a
fully compatible Kubernetes platform deployed on top of the Docker
Swarm orchestrator. Docker Enterprise is the only container platform that
provides both orchestrators at the same time. We will learn about Docker
Enterprise's components and features in the third section of this book,
with a chapter dedicated to each component.

Technical requirements
In this chapter, we will learn about the features of the Docker Swarm orchestrator. We also
provide some labs at the end of the chapter to help you to understand and learn about the
concepts that we will cover. These labs can be run on your laptop or PC using the provided
Vagrant Kubernetes environment or any already-deployed Docker Swarm cluster by yourself.
You can view additional information in this book's GitHub code repository, which is
available at https:/ / github. com/ PacktPublishing/ Docker- Certified- Associate- DCA-
Exam-Guide.git.

Check out the following video to see the Code in Action:

"https://bit.ly/ 3gzAnS3"

Deploying Kubernetes using Docker Engine
Kubernetes has many features and is more complex than Docker Swarm. It provides
additional features not available on Docker Swarm without having to modify our
application code. Docker Swarm is more aligned with microservices logic, while
Kubernetes is closer to the virtual machine application's lift and shift approach (move
application as is to a new infrastructure). This is because the Kubernetes pod object can be
compared to virtual machines (with application processes running as containers inside a
pod).

Before we begin discussing Kubernetes architecture, let's review some of the concepts that
we've learned about orchestration.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3
https://bit.ly/3gzAnS3

Orchestration Using Kubernetes Chapter 9

[342]

Orchestration should provide all that's required for deploying a solution to execute,
manage, and publish applications based on the containers distributed on a pool of nodes.
Therefore, it should provide a control plane to ensure cluster availability, a scheduler for
deploying applications, and a network plane to interconnect distributed applications. It
should also provide features for publishing cluster-distributed applications. Application
health will also be managed by the orchestrator. As a result, if one application component
dies, a new one will be deployed to ensure the application's health.

Kubernetes provides all of these features, and so does Docker Swarm too. However,
Kubernetes has many more features, is extensible, and has a bigger community behind the
project. Docker also adopted Kubernetes in its Docker Enterprise 2.0 release. It is the only
platform that supports Docker Swarm and Kubernetes on the same infrastructure.

Kubernetes provides more container density because it is able to run more than one
container at once for each application component. It also provides autoscale features and
other advanced scheduling features.

Because Kubernetes is a big community project, some of its components have also been
decoupled on different projects to provide faster deployment. The main open source project
is hosted by the Cloud Native Computing Foundation (CNCF). Kubernetes releases a new
version every 6 months—imagine updating old legacy applications in production every 6
months. As previously mentioned, it is not easy to follow this application life cycle for
many other products, but Kubernetes provides a methodology to upgrade to new software
releases easily.

Kubernetes' architectural model is based on the usual orchestration components. We
deploy master nodes to execute management tasks and worker nodes (also known as
minions) to run application workloads. We also deploy an etcd key-value database to store
all of the cluster object data.

Let's introduce the Kubernetes components. Masters and workers run different processes,
and their number may vary depending on the functionalities provided by each role. Most of
these components could be installed as either system services or containers. Here is a list of
Kubernetes cluster components:

kube-apiserver

kube-scheduler

kube-controller-manager

etcd

kubelet

Orchestration Using Kubernetes Chapter 9

[343]

kube-proxy

Container runtime

Note that this list is very different from what we learned about Docker Swarm, where
everything was built-in. Let's review each component's features and properties. Remember,
this is not a Kubernetes book—we will only learn the basics.

We will run dedicated master nodes to provide an isolated cluster control plane. The
following components will run on these nodes:

kube-apiserver: This is the Kubernetes core, and it exposes the Kubernetes
API via HTTP (HTTPS if we use TLS certificates). We will connect to this
component in order to deploy and manage applications.
kube-scheduler: When we deploy an application's components, the scheduler
will decide where to run each one if no node-specific location has been defined.
To decide where to run deployed workloads, it will review workload properties,
such as specific resources, limits, architecture requirements, affinities, or
constraints.
kube-controller-manager: This component will manage controllers, which
are processes that are always watching for a cluster object's state changes. This,
for example, will manage the node's and workload's states to ensure the desired
number of instances are running.
etcd: This is the key-value store for all Kubernetes objects' information and
states. Some production environments will run etcd out of the master nodes'
infrastructure to avoid performance issues and to improve components' high
availability.

Worker processes, on the other hand, can run on any node. As we learned with Docker
Swarm, we can decide to run application workloads on worker and master nodes. These
are the required components for compute nodes:

kubelet: This is the core Kubernetes agent component. It will run on any cluster
node that is able to execute application workloads. This process will also ensure
that node-assigned Kubernetes workloads are running and are healthy (it will
only manage pods created within Kubernetes).

We are talking about scheduling containers or workloads on a Kubernetes
cluster. The fact is that we will schedule pods, which are Kubernetes-
specific objects. Kubernetes will run pods; it will never run standalone
containers.

Orchestration Using Kubernetes Chapter 9

[344]

kube-proxy: This component will manage the workload's network interactions
using operating system packet filtering and routing features. kube-
proxy should run on any worker node (that is, nodes that run workloads).

Earlier, we mentioned the container runtime as one of the Kubernetes cluster's components.
In fact, it is a requirement because Kubernetes itself does not provide one. We will use
Docker Engine as it is the most widely used engine, and we have already discussed it in
previous chapters.

The following workflow represents all Kubernetes components distributed on five nodes
(notice that the master has worker components too and that etcd is also deployed out of it):

As discussed in Chapter 8, Orchestration Using Docker Swarm, external load balancers will
provide L4 and L7 routing on replicated services. In this case, cluster management
components do not use router mesh-like services. We will provide high availability for core
components using replicated processes on different nodes. A virtual IP address will be
required and we will also use Fully Qualified Domain Name (FQDN) names for
Transport Layer Security (TLS) certificates. This will ensure secure communications and
access to and from Kubernetes components.

Orchestration Using Kubernetes Chapter 9

[345]

The following diagram shows the TLS certificates that will be created to ensure secure
communication between components:

We will use the kubectl command line to interact with the Kubernetes cluster, and we will
always connect to the kube-apiserver processes.

In the next section, we will learn how to implement high-availability Kubernetes cluster
environments.

Deploying a Kubernetes cluster with high
availability
Docker Swarm was easy to implement. To provide high availability, we simply changed the
node roles to accomplish the required odd number of managers. In Kubernetes, this is not
so easy; roles cannot be changed, and, usually, administrators do not change the initial
number of master nodes.

Therefore, installing a Kubernetes cluster with high-availability components requires some
planning. The good thing here is that Docker Enterprise will deploy the cluster for you
(since the 2.0 release). We will review this method in Chapter 11, Universal Control Plane, as
Universal Control Plane (UCP) will deploy Kubernetes on top of Docker Swarm.

Orchestration Using Kubernetes Chapter 9

[346]

To provide high availability, we will deploy an odd number of control plane components. It
is usual to deploy etcd on three additional nodes. In this scenario, nodes would be neither
masters nor workers because etcd will be deployed out of the Kubernetes nodes. We will
require access to this external etcd from the master nodes only. Therefore, in this situation,
we will run a cluster of eight nodes: three nodes will run etcd, three masters nodes will
run all of the other control plane components (cluster management), and there will be at
least two workers to provide redundancy if one of them dies. This is appropriate for many
Kubernetes environments. We isolate etcd from the control plane components to provide
better management performance.

We can deploy etcd on master nodes. This is similar to what we learned about Docker
Swarm. We can have pure masters—running only management components—and worker
nodes for workloads.

Installing Kubernetes is not easy, and there are many software vendors that have
developed their own KaaS platforms to provide different methods of installation.

For high availability we will run distributed copies of etcd. In this scenario, kube-
apiserver will connect to a list of nodes instead of just one etcd node. The kube-
apiserver, kube-scheduler, and kube-controller-manager processes will run
duplicated on different master nodes (one instance on each master node).

We will use kube-apiserver to manage the cluster. The Kubernetes client will connect to
this server process using the HTTP/HTTPS protocol. We will use an external load balancer
to distribute traffic between different replicas running on the master nodes. Kubernetes
works with the Raft algorithm because etcd uses it.

Applications deployed in the cluster will have high availability based on resilience by
default (just like in Docker Swarm clusters). Once an application is deployed with all of its
components, if one of them fails, kube-controller-manager will run a new one. There
are different controllers processes, for different deployments that are responsible for
executing applications based on replicas, on all nodes at the same time, and other specific
execution situations.

In the next section, we will introduce the pod concept, which is key to understanding the
differences between Kubernetes and Docker Swarm.

Orchestration Using Kubernetes Chapter 9

[347]

Pods, services, and other Kubernetes
resources
The pod concept is key to understanding Kubernetes. A pod is a group of containers that
run together. It is very simple. All of these containers share a network namespace and
storage. It is like a small logical host because we run many processes together, sharing the
same IP addresses and volumes. The isolation methods that we learned about in Chapter 1,
Modern Infrastructures and Applications with Docker, are applicable here.

Pods
Pods are the smallest scheduling unit in Kubernetes environments. Containers within a pod
will share the same IP address and can find each other using localhost. Therefore,
assigned ports must be unique within pods. We cannot reuse ports for other containers and
inter-process communication because processes will run as if they were executed on the
same logical host. A pod's life relies on the healthiness of a container.

Pods can be used to integrate full application stacks, but it is true that they are usually used
with a few containers. In fact, microservices rely on small functionalities; therefore, we will
run just one container per node. As pods are the smallest Kubernetes scheduling unit, we
scale pods up and down, not containers. Therefore, complete stacks will be replicated if
many grouped application components are executed together within a pod.

On the other hand, pods allow us, for example, to execute a container in order to initialize
some special features or properties for another container. Remember the Deploying using
Docker Stacks section from Chapter 8, Orchestration Using Docker Swarm? In that lab, we
launched a PostgreSQL database and we added an initialization script to create a specific
database. We can do this on Kubernetes using the initial containers within a pod.

Terminating and removing pods will depend on how much time it will take to stop or
delete all of the containers running within a pod.

The following diagram represents a pod with some containers inside, sharing the same IP
address and volume, among other features (we will be able to apply a special security
context to all containers within a pod):

Orchestration Using Kubernetes Chapter 9

[348]

Let's now review the service resources on Kubernetes.

Services
Services have a different meaning in Kubernetes. Services are abstract objects for the
cluster; we do not schedule services in Kubernetes. They define a logical set of pods that
work together to serve an application component. We can also associate a service with an
external resource (endpoint). This service will be used inside a cluster like any other, but
with external IP addresses and ports, for example.

We also use services to publish applications inside and outside a Kubernetes cluster. For
these purposes, there are different types of services. All of them, except headless services,
provide internal load balancing between all pod replicas for a common service:

Headless: We use headless services to interface with non-Kubernetes service
discovery solutions. No virtual IP will be allocated. There will be no load
balancing or proxy to reach the service's pods. This behavior is similar to Docker
Swarm's DNSRR mode.
ClusterIP: This is the default service type. Kubernetes will provide an internal
virtual IP address chosen from a configurable pool. This will allow only internal
cluster objects to reach the defined service.
NodePort: NodePort services also receive a virtual IP (ClusterIP), but exposed
services' ports will be available on all cluster nodes. Kubernetes will route
requests to the service's ClusterIP address, no matter which node received them.
Therefore, the service's defined port will be available on
<ANY_CLUSTER_NODE>:<NODEPORT_PORT>. This effectively reminds us of the
routing mesh's behavior on Docker Swarm. In this case, we need to add some
cluster nodes to external load balancers to reach the defined and exposed
service's ports.

Orchestration Using Kubernetes Chapter 9

[349]

LoadBalancer: This service type is available only in a cloud provider's
Kubernetes deployment. We expose a service externally using automatically
created (using the cloud provider's API integration) load balancers. It uses both a
ClusterIP virtual IP for internal routing and a NodePort concept for reaching
service-defined ports from load balancers.
ExternalName: This is not very common nowadays because it relies on DNS
CNAME records and is a new implementation. It is used to add external services,
out of the Kubernetes cluster. External services will be reachable by their names
as if they were running inside
Kubernetes cluster.

The following schema represents the NodePort service type's usual configuration. In this
example, the service is reachable on port 7000 from an external load balancer, while pods
are reachable internally on port 5000. All traffic will be internally load balanced between
all of the service's pod endpoints:

There are many other resources in Kubernetes. We will take a quick look at some of them
before going into how we deploy applications on Kubernetes clusters in depth.

Orchestration Using Kubernetes Chapter 9

[350]

ConfigMaps and secrets
We learned how to distribute the required application information cluster-wide with
Docker Swarm. Kubernetes also provides solutions for this. We will use ConfigMaps,
instead of Docker Swarm config objects, and secrets.

In both cases, we can use either files or standard input (using the --from-literal option)
to create these resources. The literal option will allow us to create these objects using the
command line instead of a YAML file.

The Kubernetes kubectl command line provides two different
approaches to create cluster resources/objects (imperative and
declarative). We will use either command-line generators or resource files,
usually in YAML format. The first method is usually known as
imperative, but is not available for all kinds of resources, and using files is
known as declarative. This will apply to all Kubernetes resources;
therefore, we will be able to use either kubectl create pod with
arguments or kubectl create -f
<POD_DEFINITION_FILE_IN_YAML_FORMAT>. We can export a
previously generated command-line object into YAML format easily to
allow resource reproducibility, to save its definition somewhere safe.

ConfigMaps and secrets allow us to decouple configurations from image content without
using unsecured runtime-visible variables or local files shared on some nodes. We will use
secrets for sensitive data, while ConfigMaps will be used for common configurations.

Namespaces
Namespaces can be understood as scopes based on names. They allow us to isolate
resources between them. The names of resources are unique within each namespace.
Resources can only be within one namespace; therefore, we can divide access to them using
namespaces.

One of the simplest uses for namespaces is to limit user access and the usage of Kubernetes'
objects and resources' quotas. Based on namespaces, we will allow a specific set of host
resources for users. For example, different groups of users or teams will have their own
resources and a quota that will limit their environment's behavior.

Orchestration Using Kubernetes Chapter 9

[351]

Persistent volumes
We learned about volumes in Chapter 4, Container Persistency and Networking. In
Kubernetes, volumes are attached to pods, not containers; therefore, volumes will follow a
pod's life cycle.

There are many volume types in Kubernetes and we can mix them inside pods. Volumes
are available to any container running within a pod. There are volumes specially designed
for cloud providers and storage solutions that are available in most data centers. Let's
review a couple of interesting, commonly used volumes:

emptyDir: This volume is created when a pod is assigned to a node and is
removed with the pod. It starts off empty and is usually used to share
information between containers running within a pod.
hostPath: We have already used this type of volume on Docker. These volumes
allow us to mount a file or directory from the host into pods.

Each volume type has its own special options to enable its unique features.

These volumes are designed to be used within pods, but they are not prepared for
Kubernetes clustering and storing permanent data. For these situations, we use Persistent
Volumes (PVs).

PVs allow us to abstract how storage is provided. It doesn't matter how storage hosts arrive
in the cluster; we only care about how to use them. A PV is provisioned by an
administrator, for example, and users are allowed to use it. PVs are Kubernetes resources;
hence, we can associate them with namespaces and they have their own life cycle. They are
pod-independent.

PVs are requested by Persistent Volume Claims (PVCs). Therefore, PVCs consume defined
PVs. This is the way to associate a pod with a PV.

Therefore, PVCs allow users to consume storage. We can designate storage according to
internal properties, such as speed, how it is provided on the hosts, and more, and allow
dynamic provisioning using storage classes. With these objects, we describe all of the
storage solutions available in the cluster with their properties as profiles and Kubernetes
prepares the persistent storage to be used.

Orchestration Using Kubernetes Chapter 9

[352]

It is important to know that we can decide the behavior of the PV data
once pods die. The retail reclaim policy describes what to do with
volumes and their content once pods no longer use them. Therefore, we
will choose between deleting the volume, retaining the volume and its
content, and recycling it.

We can say that PVs are Kubernetes cluster resources designated for application persistent
storage and PVCs are the requests to use them.

Storage classes are a new feature that allow administrators to integrate
dynamic provisions into our cluster. This helps us to provide storage
without having to manually configure each volume. We will just define
profiles and features for storage and the provisioners will give the best
solution for the required volume.

In the next section, we will learn how to deploy workloads on Kubernetes clusters.

Deploying orchestrated resources
Deploying workloads in Kubernetes is easy. We will use kubectl to specify the resources
to be created and interact with kube-apiserver.

As mentioned earlier, we can use the command line to either use built-in generators or
YAML files. Depending on the Kubernetes API version, some options may not be available,
but we will assume Kubernetes 1.11 or higher.

In this chapter, all examples use Kubernetes 1.14 because it is the version
available on the current Docker Enterprise release, 3.0, at the time of
writing this book.

Let's start by creating a simple pod. We will review both options—imperative, using the
command-line, and declarative, using YAML manifests.

Using the pod generator, we will run the kubectl run --generator=run-pod/v1
command:

$ kubectl run --generator=run-pod/v1 --image=nginx:alpine myfirstpod --
labels=example=myfirstpod
pod/myfirstpod created

Orchestration Using Kubernetes Chapter 9

[353]

Using a YAML definition file, we will describe all of the required properties of the pod:

apiVersion: v1
kind: Pod
metadata:
 name: myfirstpod
 labels:
 example: myfirstpod
spec:
 containers:
 - name: myfirstpodcontainer
 image: nginx:alpine

To deploy this .yaml definition file, we will just run kubectl create -f
<YAML_DEFINITION_FILE>. This will create all of the defined resources in the file on the
specified namespace. Because we are not using an argument to specify a namespace, they
will be created on the user-defined one. In our case, we are using the default namespace
by default.

We can define the namespace either on each YAML file or by using a
command-line argument. The latter will overwrite the YAML definition.

Both examples will create the same pod, with one container inside, running
an nginx:alpine image.

Take care when using the args and command definitions on Kubernetes.
These keys differ from the definitions we used for Docker containers or
images. Kubernetes' command will represent ENTRYPOINT, while args will
represent the container/image CMD definition.

We can kill this pod by simply removing it using kubectl delete. To get a list of pods
running within a namespace, we will use kubectl get pods. If the namespace is omitted
on the kubectl execution, the user-assigned namespace will be used:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
myfirstpod 1/1 Running 0 11s

But this just created a simple pod; we cannot create more NGINX replicas with this kind of
resource. To use replicas, we will use ReplicaSets instead of single pods.

Orchestration Using Kubernetes Chapter 9

[354]

We will set up a pod template section and pod selectors to identify which deployed pods
belong to this ReplicaSet resource within a new YAML file. This will help the
controller to watch the pods' health.

Here, to the previous pod definition, we add a template section and a selector key with
labels:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: myfirstrs
 labels:
 example: myfirstrs
spec:
 replicas: 3
 selector:
 matchLabels:
 example: myfirstrs
 template:
 metadata:
 name: myfirstpod
 labels:
 example: myfirstrs
 spec:
 containers:
 - name: myfirstpodcontainer
 image: nginx:alpine

Therefore, we created three replicas using the same pod definition as we did earlier. This
pod's definition was used as a template for all of the replicas. We can review all of the
resources deployed using kubectl get all. In the following command, we filter the
results to retrieve only resources with the example label and the myfirstrs value:

$ kubectl get all -l example=myfirstrs
NAME READY STATUS RESTARTS AGE
pod/myfirstrs-2xrpk 1/1 Running 0 47s
pod/myfirstrs-94rb5 1/1 Running 0 47s
pod/myfirstrs-jm6lc 1/1 Running 0 47s

NAME DESIRED CURRENT READY AGE
replicaset.apps/myfirstrs 3 3 3 47s

Each replica will have the same prefix name, but its own ID will be part of the name. This
uniquely identifies the resource in the Kubernetes cluster.

Orchestration Using Kubernetes Chapter 9

[355]

We are using kubectl get all -l <KEY=VALUE> to filter all of the
resources we labeled with the example key and the myfirstrs value.

We can use DaemonSet to deploy a replica on each node in the cluster, just as we did with
Docker Swarm's global services:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: myfirstds
 labels:
 example: myfirstds
spec:
 selector:
 matchLabels:
 example: myfirstds
 template:
 metadata:
 name: myfirstpod
 labels:
 example: myfirstds
 spec:
 containers:
 - name: myfirstpodcontainer
 image: nginx:alpine
 resources:
 limits:
 memory: 100Mi
 requests:
 cpu: 100m
 memory: 10Mi

We can now review the pod distribution again using kubectl get all.

Notice that we added the container's resource limits and resource requests. The limits key
allows us to specify resource limits for each container. On the other hand,
requests informs the scheduler about the minimal resources required to run this
component. A pod will not be able to run on a node if there are not enough resources to
achieve the requested CPU, memory, and more. If any containers exceed their limits, they
will be terminated:

$ kubectl get all -l example=myfirstds -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod/myfirstds-cr7xc 1/1 Running 0 84s 192.168.135.5 node3 <none> <none>

Orchestration Using Kubernetes Chapter 9

[356]

pod/myfirstds-f6x8n 1/1 Running 0 84s 192.168.104.6 node2 <none> <none>

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
CONTAINERS IMAGES SELECTOR
daemonset.apps/myfirstds 2 2 2 2 2 <none> 84s myfirstpodcontainer
nginx:alpine example=myfirstds

The Deployment resource is a higher-level concept, as it manages ReplicaSet and allows
us to issue application component updates. It is recommended that you use Deployment
instead of ReplicaSet. We will again use the template and select sections:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myfirstdeployment
 labels:
 example: myfirstds
spec:
 replicas: 3
 selector:
 matchLabels:
 example: myfirstdeployment
 template:
 metadata:
 name: myfirstpod
 labels:
 example: myfirstdeployment
 spec:
 containers:
 - name: myfirstpodcontainer
 image: nginx:alpine
 ports:
 - containerPort: 80

Therefore, the deployment will run three replicas of nginx:alpine, distributed again on
cluster nodes:

$ kubectl get all -l example=myfirstdeployment -o wide
NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE READINESS GATES
pod/myfirstdeployment-794f9bfcd7-9m8vg 1/1 Running 0 12s
192.168.135.9 node3 <none> <none>
pod/myfirstdeployment-794f9bfcd7-f7499 1/1 Running 0 12s
192.168.104.10 node2 <none> <none>
pod/myfirstdeployment-794f9bfcd7-kfzfk 1/1 Running 0 12s
192.168.104.11 node2 <none> <none>

NAME DESIRED CURRENT READY

Orchestration Using Kubernetes Chapter 9

[357]

AGE CONTAINERS IMAGES SELECTOR
replicaset.apps/myfirstdeployment-794f9bfcd7 3 3 3
12s myfirstpodcontainer nginx:alpine pod-template-
hash=794f9bfcd7,example=myfirstdeployment

Notice that replicas are only running on some nodes. This is because we have
some taints on the other nodes (some Kubernetes deployments avoid workloads on master
nodes by default). Taints and tolerations help us to allow the scheduling of pods on only
specific nodes. In this example, the master node will not run a workload, although it also
has a worker role (it runs the Kubernetes worker processes that we learned about, kubelet
and kube-proxy). These features remind us of Docker Swarm's node availability concepts.
In fact, we can also execute kubectl cordon <NODE> to set a node as non-schedulable.

This chapter is a brief introduction to the main concepts of Kubernetes.
We highly recommend that you view the Kubernetes documentation for
further information: https:/ /kubernetes. io.

We can set replication based on a pod's performance and limits. This is known as
autoscaling, and it is an interesting feature that is not available in Docker Swarm.

When an application's replicated components require persistence, we use another kind of
resource. StatefulSets guarantee the order and uniqueness of pods.

Now that we know how to deploy applications, let's review how Kubernetes manages and
deploys a network locally with components distributed on different nodes.

Kubernetes networking
Kubernetes, like any other orchestrator, provides local and distributed networking. There
are a few important communication assumptions that Kubernetes has to accomplish:

Container-to-container communication
Pod-to-pod communication
Pod-to-service communication
User access and communication between external or internal applications

https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io

Orchestration Using Kubernetes Chapter 9

[358]

Container-to-container communication is easy because we learned that containers within a
pod share the same IP and network namespace.

We know that each pod gets its own IP address. Therefore, Kubernetes needs to provide
routing and accessibility to and from pods running on different hosts. Following the
Docker concepts that we learned about in Chapter 4, Container Persistency and Networking,
Kubernetes also uses bridge networking for pods running on the same host. Therefore, all
pods running on a host will be able to talk with each other using bridge networking.

Remember how Docker allowed us to deploy different bridge networks on a single host?
This way, we were able to isolate applications on a host using different networks. Using
this local concept, overlaying networks on a Docker Swarm cluster also deployed bridged
interfaces. And these interfaces will be connected using tunnels created between hosts
using VXLAN. Isolation was something simple on Docker standalone hosts and Docker
Swarm. Docker Engine had to manage all of the backstage magic to make this work with
firewall rules and routing, but overlay networking is available out of the box.

Kubernetes provides a simpler approach. All pods run on the same network; hence, every
pod will see other pods within the same host. In fact, we can go further—pods are locally
accessible from hosts.

Let's consider this concept with a couple of pods. We will run example-webserver
and example-nettools at the same time, executing simple nginx:alpine and
frjaraur/nettools:minimal (this is a small alpine image with some helpful network
tools) pods. First, we will create a deployment for example-webserver using kubectl
create deployment:

$ kubectl create deployment example-webserver --image=nginx:alpine
deployment.apps/example-webserver created

We review the pod's IP address using kubectl get pods:

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
example-webserver-7789c6d697-kts7l 1/1 Running 0 69s
192.168.104.16 node2 <none> <none>

As we said, localhost communications to the pod will work. Let's try a simple ping
command from the host to the pod's IP address:

node3:~$ ping -c 2 192.168.104.16
PING 192.168.104.16 (192.168.104.16) 56(84) bytes of data.
64 bytes from 192.168.104.16: icmp_seq=1 ttl=63 time=0.483 ms
64 bytes from 192.168.104.16: icmp_seq=2 ttl=63 time=0.887 ms

Orchestration Using Kubernetes Chapter 9

[359]

--- 192.168.104.16 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.483/0.685/0.887/0.202 ms

Additionally, we can also have access to its running nginx process. Let's try curl using the
pod's IP again, but this time, we will use port 80:

node3:~$ curl -I 192.168.104.16:80
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Sun, 05 Jan 2020 22:20:42 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

Therefore, the host can communicate with all of the pods running on top of Docker Engine.

We can get a pod's IP address using jsonpath, to format the pod's
information output, which is very interesting when we have hundreds of
pods: kubectl get pod example-webserver -o
jsonpath='{.status.podIP}'.

Let's execute an interactive pod with the
aforementioned frjaraur/nettools:minimal image. We will use kubectl run --
generator=run-pod/v1 to execute this new pod. Notice that we added -ti -- sh to run
an interactive shell within this pod. From this pod, we will run curl again, connecting to
the example-webserver pod's IP address:

$ kubectl run --generator=run-pod/v1 example-nettools --
image=frjaraur/nettools:minimal -ti -- sh
If you don't see a command prompt, try pressing enter.
/ # ping -c 2 192.168.104.16
PING 192.168.104.16 (192.168.104.16): 56 data bytes
64 bytes from 192.168.104.16: seq=0 ttl=62 time=0.620 ms
64 bytes from 192.168.104.16: seq=1 ttl=62 time=0.474 ms

--- 192.168.104.16 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.474/0.547/0.620 ms

/ # curl -I 192.168.104.16:80
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Sun, 05 Jan 2020 22:22:16 GMT

Orchestration Using Kubernetes Chapter 9

[360]

Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

We have successfully accessed the deployed example-webserver pod using ping
and curl, sending some requests to its nginx running process. It is clear that both
containers can see each other.

There is something even more interesting in this example: we have not reviewed where
these pods are running. In fact, they are running on different hosts, as we can read from the
kubectl get pods -o wide command's output:

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
example-nettools 1/1 Running 1 85s
192.168.135.13 node3 <none> <none>
example-webserver-7789c6d697-kts7l 1/1 Running 0 5m8s
192.168.104.16 node2 <none> <none>

Networking between hosts is controlled by another component that will allow these
distributed communications. In this case, this component is Calico, which is a container
network interface (CNI) applied to this Kubernetes cluster. The Kubernetes network model
provides a flat network (all pods are distributed on the same network), and data plane
networking is based on interchangeable plugins. We will use the plugin that best affords all
of the required features in our environment.

There are other CNI implementations apart from Calico, such as Flannel, Weave, Romana,
Cillium, and more. Each one provides its own features and host-to-host implementations.
For example, Calico uses Border Gateway Protocol (BGP) to route real container IP
addresses inside the cluster. Once a CNI is deployed, all of the container IP addresses will
be managed by its implementation. They are usually deployed at the beginning of a
Kubernetes cluster implementation. Calico allows us to implement network policies, which
are very important to ensure security in this flat network where every pod sees other pods.

We have not looked at any service networking yet, which is also important here. If a pod
dies, a new IP will be allocated, hence access will be lost on the previous IP address; that is
why we use services. Remember, services are logical groupings of pods, usually with a
virtual IP address. This IP address will be assigned from another pool of IP addresses (the
service IP addresses pool). Pods and services do not share the same IP address pool. A
service's IP will not change when new pods are recreated.

Orchestration Using Kubernetes Chapter 9

[361]

Service discovery
Let's create a service associated with the currently deployed example-
webserver deployment. We'll use kubectl expose:

$ kubectl expose deployment example-webserver \
--name example-webserver-svc --type=NodePort --port=80

service/example-webserver-svc exposed

We could have done this using either kubectl create service (imperative format) or a
YAML definition file (declarative format). We used kubectl expose because it's simpler
to quickly publish any kind or resource. We can review a service's IP addresses using
kubectl get services:

$ kubectl get services -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE SELECTOR
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
11h <none>
example-webserver-svc NodePort 10.98.107.31 <none>
80:30951/TCP 39s app=example-webserver

Remember that we define the services associated with pods using selectors. In this case, the
service will group all pods with the app label and the example-webserver value. This
label was automatically created because we created Deployment. As a result, all pods
grouped for this service will be accessible on the 10.98.107.31 IP address and the internal
TCP port 80. We defined which pod's port will be associated with this service—in both
cases, we set port 80:

$ curl -I 10.98.107.31:80
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Sun, 05 Jan 2020 22:26:09 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

It is accessible, as expected. Kubernetes' internal network has published this service on the
defined ClusterIP address.

Orchestration Using Kubernetes Chapter 9

[362]

Because we created this service as NodePort, a random port has been associated with the
service. In this case, it is port 30951. As a result, requests will be routed to the application's
pods within the cluster when we reach the cluster nodes' IP addresses in the randomly
chosen port.

NodePort ports are assigned randomly by default, but we can set them
manually in the range between 30000 and 32767.

Let's verify this feature. We will send some requests to the port that is listening on cluster
nodes. In this example, we'll use the curl command on the local 0.0.0.0 IP address and
port 30951 on various nodes:

node1:~$ curl -I 0.0.0.0:30951
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Sun, 05 Jan 2020 22:26:57 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

node3:~$ curl -I 0.0.0.0:30951
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Sun, 05 Jan 2020 22:27:41 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

Communication between pods happens even if they are not running on the same node. The
following output shows that pods are not running in either node1 or node3. The
application's pod is running on node2. The internal routing works:

$ kubectl get pods -o wide -l app=example-webserver
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
example-webserver-7789c6d697-kts7l 1/1 Running 0 10m
192.168.104.16 node2 <none> <none>

Orchestration Using Kubernetes Chapter 9

[363]

There is something more interesting, though—services create a DNS entry with their names
following this pattern:

<SERVICE_NAME>.<NAMESPACE>.svc.<CLUSTER>.<DOMAIN>

In our example, we have not used a namespace or a domain. The service resolution will be
simple: example-webserver.default.svc.cluster.local. This resolution is only
available in the Kubernetes cluster by default. Therefore, we can test this resolution by
executing a pod with the host or nslookup tools. We will attach our terminal interactively
to the running example-nettools pod using kubectl attach and run host and curl to
test the DNS resolution:

$ kubectl attach example-nettools -c example-nettools -i -t
If you don't see a command prompt, try pressing enter.
/ # host example-webserver.default.svc.cluster.local
example-webserver.default.svc.cluster.local has address 10.101.195.251
/ # curl -I example-webserver.default.svc.cluster.local:80
HTTP/1.1 200 OK
Server: nginx/1.17.6
Date: Sun, 05 Jan 2020 21:58:37 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 19 Nov 2019 15:14:41 GMT
Connection: keep-alive
ETag: "5dd406e1-264"
Accept-Ranges: bytes

We have confirmed that the service has a DNS entry that is reachable by any other
Kubernetes cluster resource. We have also published the service using NodePort, so it is
accessible on any node IP address. We could have an external load balancer routing
requests to this deployed service on any cluster node's IP address and a chosen (or
manually set) port. This port will be fixed for this service until it is removed.

Notice that we used kubectl attach example-nettools -c
example-nettools -i -t to reconnect to a running pod left in the
background.

In the next section, we will learn how scaling will change the described behavior.

Orchestration Using Kubernetes Chapter 9

[364]

Load balancing
If we now scale up to three replicas, without changing anything on the deployed service,
we will add load balancing features. Let's scale up using kubectl scale:

$ kubectl scale --replicas=3 deployment/example-webserver
deployment.extensions/example-webserver scaled

Now we will have three running instances or pods for the example-webserver
deployment.

Notice that we have scaled from the command line using the resource's
type and its name: kubectl scale --
replicas=<NUMBER_OF_REPLICAS> <RESOURCE_TYPE>/<NAME>.

We can review deployment pods using kubectl get pods with the associated label:

$ kubectl get pods -o wide -l app=example-webserver
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
example-webserver-7789c6d697-dnx6l 1/1 Running 0 4m8s
192.168.135.14 node3 <none> <none>
example-webserver-7789c6d697-kts7l 1/1 Running 0 23m
192.168.104.16 node2 <none> <none>
example-webserver-7789c6d697-zdrtr 1/1 Running 0 4m8s
192.168.104.17 node2 <none> <none>

If we now test the service's access again, we will reach each one of the three replicas. We
execute the next simple loop to reach the service's backend pods five times:

$ for I in $(seq 5);do curl -I 10.98.107.31:80;done

If we review one of the deployed pod's logs using kubectl logs, we will notice that not
all requests were logged. Although we made more than two requests using the service's IP
address, we just logged a few:

$ kubectl logs example-webserver-7789c6d697-zdrtr
192.168.166.128 - - [05/Jan/2020:22:44:32 +0000] "HEAD / HTTP/1.1" 200 0 "-
" "curl/7.47.0" "-"
192.168.166.128 - - [05/Jan/2020:22:45:38 +0000] "HEAD / HTTP/1.1" 200 0 "-
" "curl/7.47.0" "-"

Only one-third of the requests are logged on each pod; therefore, the internal load balancer
is distributing the traffic between all available applications' pods. Internal load balancing is
deployed by default between all pods associated with a service.

Orchestration Using Kubernetes Chapter 9

[365]

As we have seen, Kubernetes provides flat networks for pods and services, simplifying
networking and internal application accessibility. On the other hand, it is insecure because
any pod can reach any other pods or services. In the next section, we will learn how to
avoid this situation.

Network policies
Network policies define rules to allow communication between groups of pods and other
components. Using labels, we apply specific rules to matching pods for ingress and egress
traffic on defined ports. These rules can be set using IP ranges, namespaces, or even other
labels to include or exclude resources.

Network policies are applied using network plugins; therefore, the CNI deployed on our
cluster must support them. For example, Calico supports NetworkPolicy resources.

We will be able to define default rules to all pods in the cluster, isolating
all internet traffic, for example, or a defined group of hosts.

This YAML file represents an example of a NetworkPolicy resource applying ingress and
egress traffic rules:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: database-traffic
spec:
 podSelector:
 matchLabels:
 tier: database
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 172.17.10.0/24
 - podSelector:
 matchLabels:
 tier: frontend
 ports:
 - protocol: TCP
 port: 5432

Orchestration Using Kubernetes Chapter 9

[366]

 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

In this example, we will apply defined ingress and egress rules to all pods including
the tier label with the database value.

The ingress rule allows traffic from any pod on the same namespace with the tier label
and the frontend value. All IP addresses in subnet 172.17.10.0/24 will also be allowed
to access defined database pods.

The egress rule allows traffic from defined database pods to port 5978 on all IP addresses
on subnet 10.0.0.0/24.

If we do not apply a NetworkPolicy resource to a namespace, all traffic is allowed. We can
change this behavior using podSelector: {}. This will match all pods in the namespace.
For example, to disallow all egress traffic, we can use the following NetworkPolicy YAML
definition:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny
spec:
 podSelector: {}
 policyTypes:
 - Egress

So, we have learned that we can ensure security even on a Kubernetes flat network
with NetworkPolicy resources. Let's review the ingress resources.

Publishing applications
Ingress resources help us to publish applications deployed on Kubernetes clusters. They
work very well with HTTP and HTTPS services, providing many features for distributing
and managing traffic between services. This traffic will be located on the OSI model's
transport and application layers; they are also known as layers 4 and 7, respectively. It also
works with raw TCP and UDP services; however, in these cases, traffic will be load
balanced at layer 4 only.

Orchestration Using Kubernetes Chapter 9

[367]

These resources route traffic from outside the cluster to services running within the cluster.
Ingress resources require the existence of a special service called an ingress
controller. These services will load balance or route traffic using rules created by ingress
resources. Therefore, publishing an application using this feature requires two components:

Ingress resource: The rules to apply to incoming traffic
Ingress controller: The load balancer that will automatically convert or translate
ingress rules to load balance configurations

A combination of both objects provides the dynamic publishing of applications. If one
application's pod dies, a new one will be created and the service and ingress controller will
automatically route all traffic to the new one. This will also isolate services from external
networks. We will publish one single endpoint instead of the NodePort or
LoadBalancer service types for all services, which will consume many nodes' ports or
cloud IP addresses. This endpoint is the load balancer that will use the ingress controller
and ingress resource rules to route traffic internally to deployed services:

This chapter's labs show us an interesting load balancing example using NGINX Ingress
Controller. Let's review a quick example YAML configuration file:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: simple-fanout-example
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /

Orchestration Using Kubernetes Chapter 9

[368]

spec:
 rules:
 - host: example.local
 http:
 paths:
 - path: /example1
 backend:
 serviceName: example-webserver
 servicePort: 80
 - path: /example2
 backend:
 serviceName: another-service
 servicePort: 8080

This example outlines the rules that should be applied to route requests to a specific
example.local-specific host header. Any request containing /example1 in its URL will
be guided to example-webserver, while another-service will receive requests
containing the /example2 path in its URL. Notice that we have used the internal service's
ports; therefore, no additional service exposure is required. One ingress controller endpoint
will redirect traffic to the example-webserver and another-service services. This saves
up the host's ports (and/or IP addresses on the cloud providers because
the LoadBalancer service type uses one published public IP address per service).

We can provide as many ingress controllers as needed. In fact, in multi-
tenant environments, we usually deploy more than just one to isolate
publishing planes between different tenants.

This brief look at publishing applications on Kubernetes has finished this review of the
main Kubernetes networking features. Let's now move on to Kubernetes security
properties.

Kubernetes security components and
features
Kubernetes provides mechanisms to authenticate and authorize access to its API. This
allows us to apply different levels of privileges for users or roles within a cluster. This
prevents unauthorized access to some core resources, such as scheduling or nodes in the
cluster.

Orchestration Using Kubernetes Chapter 9

[369]

Once users are allowed to use cluster resources, we use namespaces to isolate their own
resources from other users. This works even in multi-tenant environments where a higher
level of security is required.

Kubernetes works with the very elaborate Role-Based Access Control (RBAC)
environment, which provides a great level of granularity to allow specific actions on some
resources while other actions are denied.

We manage the Role and ClusterRole resources to describe permissions for different
resources. We use Role to define permissions within namespaces and ClusterRole for
permissions on cluster-wide resources. Rules are supplied using some defined verbs, such
as list, get, update, and more, and these verbs are applied to resources (or even specific
resource names). The RoleBinding and ClusterRoleBinding resources grant
permissions defined in roles to users or sets of users.

Kubernetes also provides the following:

Service accounts to identify processes within pods to other resources
Pod security policies to control the special behaviors of pods, such as privileged
containers, host namespaces, restrictions on running containers with root users,
or enabling read-only root filesystems on containers, among other features
Admission controllers to intercept API requests, allowing us to validate or
modify them to ensure image freshness and security, forcing the creation of pods
to always pull from registries, to set the default storage, to deny the execution of
processes within privileged containers, or to specify the default host resource
limit ranges if none are declared, among other security features

It is very important in production environments to limit a host's resource
usage because non-limited pods can consume all of their resources by
default.

Kubernetes provides many features to ensure cluster security at all levels. It is up to you to
use them because most of them are not applied by default. We will learn more about the
roles and grants applied to resources in Chapter 11, Universal Control Plane, because many
of these configurations are integrated into Docker Enterprise.

We are not going to go deeper into this topic because Kubernetes is not part of the current
Docker Certified Associate curriculum, and this is just a quick introduction.

Orchestration Using Kubernetes Chapter 9

[370]

It is recommended that you take a closer look at Kubernetes' security features because it has
many more compared to Docker Swarm. On the other hand, it is true that Docker
Enterprise provides many of these features to Docker Swarm.

Comparing Docker Swarm and Kubernetes
side by side
In this section, we will compare the Docker Swarm and Kubernetes features side by side to
get a good idea of how they solve common problems. We have discussed these concepts in
both this chapter and in Chapter 8, Orchestration Using Docker Swarm. They have common
approaches to many problems:

Parameters Docker Swarm Kubernetes
High-availability

solution
Provides high availability for core
components.

Provides high availability for core
components.

Resilience All services run with resilience based on
the state definition.

All resources based on replication
controllers will provide resilience
(ReplicaSet, DaemonSet,
Deployment, and StatefulSet)
based on the state definition.

Infrastructure as code The Docker Compose file format will allow
us to deploy stacks.

We will use YAML to format resource
files. These will allow us to deploy
workloads using a declarative format.

Dynamic distribution

Application components and their replicas
will be automatically distributed cluster-
wide, although we can provide some
constraints.

Kubernetes also distributes
components, but we can provide
advanced constraints using labels and
other features.

Automatic updates
Application components can be upgraded
using rolling updates and rollbacks in the
case of a failure.

Kubernetes also provides rolling
updates and rollbacks.

Publishing
applications

Docker Swarm provides internal load
balancing between service replicas and
router mesh to publish an application's
service's ports on all of the cluster nodes at
the same time.

Kubernetes also provides internal load
balancing, and NodePort type
services will also publish the
application's components on all of the
nodes at the same time. But
Kubernetes also provides load
balancing services (among other types)
to auto-configure external load
balancers to route requests to
deployed services.

Orchestration Using Kubernetes Chapter 9

[371]

Cluster-internal
networking

Containers that are deployed as tasks for
each service can communicate with other
containers deployed in the same network.
Internal IP management will provide their
IP addresses, and services can be
consumed by their names so that there is
internal DNS resolution.

Pod-to-pod communication works and
IP addresses are provided by internal
Internet Protocol Address
Management (IPAM). We will also
have service-to-service communication
and resolution.

Key-value store

Docker Swarm provides an internal store
to manage all objects and their statuses.
This store will have high availability with
an odd number of master nodes.

Kubernetes also requires a key-value
store to manage its resources. This
component is provided using etcd
and we can deploy it externally out of
Kubernetes cluster nodes. We should
provide an odd number of etcd
nodes to provide high availability.

The preceding table showed us the main similarities regarding solving common problems.
The next table will show the main differences:

Parameters Docker Swarm Kubernetes

Pods versus
tasks

Docker Swarm deploys tasks for
services. Each task will run one
container at a time. If the container
dies, a new one will be created to
ensure the required number of
replicas (tasks).Services are the
smallest unit of deployment. We will
deploy applications running their
components as services.

Kubernetes has the concept of a pod. Each pod can
run more than one container inside. All of them
share the same IP address (networking namespace).
Containers inside a pod share volumes and will
always run on the same host. A pod's life relies on
containers. If one of them dies, a pod is unhealthy.
Pods are the smallest unit of deployment in
Kubernetes; therefore, we scale pods up and down,
with all of their containers.

Services

Services in Docker Swarm are
objects with an IP address for
internal load balancing between
replicas (by default, we can avoid
this using the dnsrr endpoint
mode). We create services to execute
our application components, and we
scale up or down the number of
replicas required to be healthy.

In Kubernetes, services are different. They are
logical resources. This means that they are
deployed only to publish a group of pod resources.
Kubernetes services are logical groupings of pods
that work together. Kubernetes services also get an
IP address for internal load balancing
(clusterIP), and we can also avoid this situation
by using the "headless" feature.

Orchestration Using Kubernetes Chapter 9

[372]

Networking

Docker Swarm deploys overlay
networking by default. This ensures
communications between an
application's components are
deployed on different hosts.Stacks in
Docker Swarm will be deployed on
different networks. This means that
we can provide a subnet for each
application. Multiple networks for
deployments will provide a good
level of security because they are
isolated from each other. This can be
improved using available network
encryption (disabled by default).
However, on the other hand, they
are difficult to manage and things
can get complicated when we need
to provide isolation on services
integrated into multiple stacks.

Kubernetes provides a flat network using a
common interface called a CNI. Networking has
been decoupled from Kubernetes' core to allow us
to use multiple and different networking solutions.
Each solution has its own features and
implementation for routing on a cluster
environment. A flat network makes things easier.
All pods and services will see each other by default.
On the other hand, security is not provided. We
will deploy NetworkPolicy resources to ensure
secure communications between resources in the
cluster. These policies will manage who can talk to
who in the Kubernetes world.

Authentication
and

authorization

Docker Swarm, by default, does not
provide any mechanism to
authenticate or authorize specific
requests. Once a Docker Swarm
node has published its daemon
access (in a daemon.json
configuration file), anyone can
connect to it and manage the cluster
if we use a manager node. This is a
security risk that should always be
avoided. We can create a secure
client configuration with SSL/TLS
certificates. But certificates in Docker
Swarm will ensure secure
communication only. There is no
authorization validation. Docker
Enterprise will provide the required
features to provide RBAC to Docker
Swarm's clusters.

Kubernetes does provide authentication and
authorization. In fact, it includes a full-featured
RBAC system to manage users' and applications'
accesses to the resources deployed within the
Kubernetes cluster. This RBAC system allows us to
set specific permissions for a user's or team's access.
Using Kubernetes namespaces will also improve
security in multi-tenant or team scenarios.

Secrets
Docker encrypts secrets by default.
They will only be readable inside
containers while they are running.

Kubernetes will encode secrets using the Base64
algorithm by default. We will need to use external
secret providers or additional encryption
configuration (EncryptionConfig) to ensure a
secret's integrity.

Orchestration Using Kubernetes Chapter 9

[373]

Publishing
applications

Docker Swarm just provides a router
mesh for publishing applications.
This will publish application ports
on all cluster nodes. This can be
insecure because all nodes will have
all the applications published and
we will use a lot of ports (at least
one for each published application).
Docker Enterprise will provide
Interlock, which has many features
in common with ingress controllers.

Kubernetes provides ingress controller resources.
Ingress controllers publish a few endpoints (using
NodePort or any other cloud service definition),
and this internal ingress will talk to services'
backends (pods). This will require fewer ports for
applications (only those required to publish ingress
controllers). Requests will be routed by these
resources to real backend services. Security is
improved because we add a smart piece of software
in the middle of the requests to help us to decide
which backends will process requests. The ingress
controller acts as a reverse-proxy and it will verify
whether a valid host header is used on every
request. If none is used, requests will be forwarded
to a default backend. If requests contain a valid
header, they will be forwarded to the defined
service's virtual IP and the internal load balancer
will choose which pod will finally receive them.
The orchestrator will manage defined rules and
clusters, and the internal or external load balancer
will interpret them to ensure the right backend
receives the user's request.

So far, we have learned that there are several similarities and differences between Docker
Swarm and Kubernetes. We can note the following:

Kubernetes provides more container density.
Docker Swarm provides cluster-wide networking with subnets for isolation by
default.
Kubernetes provides role-based access to cluster resources.
Publishing applications in Kubernetes is better using ingress controllers.

Let's now review some of the topics we have learned by applying them to some easy labs.

Chapter labs
We will now work through a long lab that will help us to review the concepts we've learned
so far.

Orchestration Using Kubernetes Chapter 9

[374]

Deploy environments/kubernetes from this book's GitHub repository (https:/ /
github.com/PacktPublishing/ Docker- Certified- Associate- DCA- Exam- Guide. git) if you
have not done so yet. You can use your own Linux server. Use vagrant up from the
environments/kubernetes folder to start your virtual environment. All files used during
these labs can be found inside the chapter9 folder.

Wait until all of the nodes are running. We can check the status of the nodes using vagrant
status. Connect to your lab node using vagrant ssh kubernetes-node1. Vagrant
deploys three nodes for you, and you will be using the vagrant user with root privileges
using sudo. You should have the following output:

Docker-Certified-Associate-DCA-Exam-Guide/environments/kubernetes$ vagrant
up

 KUBERNETES Vagrant Environment
 Engine Version: current
 Kubernetes Version: 1.14.0-00
 Kubernetes CNI: https://docs.projectcalico.org/v3.8/manifests/calico.yaml

Bringing machine 'kubernetes-node1' up with 'virtualbox' provider...
Bringing machine 'kubernetes-node2' up with 'virtualbox' provider...
Bringing machine 'kubernetes-node3' up with 'virtualbox' provider...

...
Docker-Certified-Associate-DCA-Exam-Guide/environments/kubernetes$

Nodes will have three interfaces (IP addresses and virtual hardware resources can be
modified by changing the config.yml file):

eth0 [10.0.2.15]: This is an internal interface, required for Vagrant.
eth1 [10.10.10.X/24]: This is prepared for Docker Kubernetes' internal
communication. The first node will get the 10.10.10.11 IP address and so on.
eth2 [192.168.56.X/24]: This is a host-only interface for communication
between your host and the virtual nodes. The first node will get the
192.168.56.11 IP address and so on.

We will use the eth1 interface for Kubernetes, and we will be able to connect to published
applications using the 192.168.56.X/24 IP address' range. All nodes have Docker Engine
Community Edition installed and a Vagrant user is allowed to execute docker. A small
Kubernetes cluster with one master (kubernetes-node1) and two worker nodes
(kubernetes-node2 and kubernetes-node3) will be deployed for you.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git

Orchestration Using Kubernetes Chapter 9

[375]

We can now connect to the first deployed virtual node using vagrant ssh kubernetes-
node1. The process may vary if you have already deployed a Kubernetes virtual
environment and have just started it using vagrant up:

Docker-Certified-Associate-DCA-Exam-Guide/environments/kubernetes$ vagrant
ssh kubernetes-node1
vagrant@kubernetes-node1:~$

Now you are ready to start the labs. We will start these labs by deploying a simple
application.

Deploying applications in Kubernetes
Once Vagrant (or your own environment) is deployed, we will have three nodes (named
kubernetes-node<index> from 1 to 3) with Ubuntu Xenial and Docker Engine installed.
Kubernetes will also be up and running for you, with one master node and two workers.
The Calico CNI will also be deployed for you automatically.

First, review your node IP addresses (10.10.10.11 to 10.10.10.13 if you used Vagrant,
because the first interface will be Vagrant-internal).

The steps for deploying our application are as follows:

Connect to kubernetes-node1 and review the deployed Kubernetes cluster1.
using kubectl get nodes. A file, named config, including the required
credentials and the Kubernetes API endpoint will be copied under
the ~/.kube directory automatically. We'll also refer to this file as Kubeconfig.
This file configures the kubectl command line for you:

Docker-Certified-Associate-DCA-Exam-Guide/environments/kubernetes$
vagrant ssh kubernetes-node1

vagrant@kubernetes-node1:~$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubernetes-node1 Ready master 6m52s v1.14.0
kubernetes-node2 Ready <none> 3m57s v1.14.0
kubernetes-node3 Ready <none> 103s v1.14.0

Kubernetes cluster version 1.14.00 has been deployed and is running. Notice that
kubernetes-node1 is the only master node in this cluster; therefore, we are not
providing high availability.

Orchestration Using Kubernetes Chapter 9

[376]

Currently, we are using the admin user, and, by default, all deployments will run
on the default namespace, unless another is specified. This configuration is also
done in the ~/.kube/config file.

The Calico CNI was also deployed; hence, host-to-container networking should
work cluster-wide.

Create a deployment file, named blue-deployment-simple.yaml, using your2.
favorite editor with the following content:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: blue-app
 labels:
 color: blue
 example: blue-app
spec:
 replicas: 2
 selector:
 matchLabels:
 app: blue
 template:
 metadata:
 labels:
 app: blue
 spec:
 containers:
 - name: blue
 image: codegazers/colors:1.12
 env:
 - name: COLOR
 value: blue
 ports:
 - containerPort: 3000

This will deploy two replicas of the codegazers/colors:1.12 image. We will
expect two running pods after it is deployed. We set the COLOR environment
variable to blue and, as a result, all of the application components will be blue.
Containers will expose port 3000 internally within the cluster.

Orchestration Using Kubernetes Chapter 9

[377]

Let's deploy this blue-app application using kubectl create -f3.
<KUBERNETES_RESOURCES_FILE>.yaml:

vagrant@kubernetes-node1:~$ kubectl create -f blue-deployment-
simple.yaml
deployment.extensions/blue-app created

This command line has created a deployment, named blue-app, with two
replicas. Let's review the deployment created using kubectl get deployments:

vagrant@kubernetes-node1:~$ kubectl get deployments -o wide
NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
blue-app 2/2 2 2 103s blue codegazers/colors:1.12 app=blue

Therefore, two pods will be running, associated with the blue-app deployment.
Let's now review the deployed pods using kubectl get pods:

vagrant@kubernetes-node1:~$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
blue-app-54485c74fc-wgw7r 1/1 Running 0 2m8s 192.168.135.2
kubernetes-node3 <none> <none>
blue-app-54485c74fc-x8p92 1/1 Running 0 2m8s 192.168.104.2
kubernetes-node2 <none> <none>

In this case, one pod runs on kubernetes-node2 and another one runs on
kubernetes-node3. Let's try to connect to their virtual assigned IP addresses on
the exposed port. Remember that IP addresses will be assigned randomly, hence
they may vary on your environment. We will just use curl against the IP address
of kubernetes-node1 and the pod's internal port:

vagrant@kubernetes-node1:~$ curl 192.168.104.2:3000/text
APP_VERSION: 1.0
COLOR: blue
CONTAINER_NAME: blue-app-54485c74fc-x8p92
CONTAINER_IP: 192.168.104.2
CLIENT_IP: ::ffff:192.168.166.128
CONTAINER_ARCH: linux

We can connect from kubernetes-node1 to pods running on other hosts
correctly. So, Calico is working correctly.

Orchestration Using Kubernetes Chapter 9

[378]

We should be able to connect to any pods' deployed IP addresses. These IP
addresses will change whenever a container dies and a new pod is deployed. We
will never connect to pods to consume their application processes. We will use
services instead of pods to publish applications, as we have already discussed in
this chapter. They will not change their IP addresses when application
components, running as pods, have to be recreated.

Let's create a service to load balance requests between deployed pods with a4.
fixed virtual IP address. Create the blue-service-simple.yaml file with the
following content:

apiVersion: v1
kind: Service
metadata:
 name: blue-svc
spec:
 ports:
 - port: 80
 targetPort: 3000
 protocol: TCP
 name: http
 selector:
 app: blue

A random IP address will be associated with this service. This IP address will be
fixed, and it will be valid even if pods die. Notice that we have exposed a new
port for the service. This will be the service's port, and requests reaching the
defined port 80 will be routed to port 3000 on each pod. We will use kubectl
get svc to retrieve the service's port and IP address:

vagrant@kubernetes-node1:~$ kubectl create -f blue-service-
simple.yaml
service/blue-svc created

vagrant@kubernetes-node1:~$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
blue-svc ClusterIP 10.100.207.49 <none> 80/TCP 7s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 53m

Let's verify the internal load balance by sending some requests to the blue-5.
svc service using curl against its IP address, accessing port 80:

vagrant@kubernetes-node1:~$ curl 10.100.207.49:80/text
APP_VERSION: 1.0
COLOR: blue
CONTAINER_NAME: blue-app-54485c74fc-x8p92

Orchestration Using Kubernetes Chapter 9

[379]

CONTAINER_IP: 192.168.104.2
CLIENT_IP: ::ffff:192.168.166.128
CONTAINER_ARCH: linux

Let's try again using curl. We will test the internal load balancing by executing6.
some requests to the service's IP address and port:

vagrant@kubernetes-node1:~$ curl 10.100.207.49:80/text
APP_VERSION: 1.0
COLOR: blue
CONTAINER_NAME: blue-app-54485c74fc-wgw7r
CONTAINER_IP: 192.168.135.2
CLIENT_IP: ::ffff:192.168.166.128
CONTAINER_ARCH: linux

The service has load-balanced our requests between both pods. Let's now try to
expose this service to be accessible to the application's users.

Now we will remove the previous service's definition and deploy a new one with7.
the service's NodePort type. We will use kubectl delete -f
<KUBERNETES_RESOURCES_FILE>.yaml:

vagrant@kubernetes-node1:~$ kubectl delete -f blue-service-
simple.yaml
service "blue-svc" deleted

Create a new definition, blue-service-nodeport.yaml, with the following
content:

apiVersion: v1
kind: Service
metadata:
 name: blue-svc
spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 3000
 protocol: TCP
 name: http
 selector:
 app: blue

Orchestration Using Kubernetes Chapter 9

[380]

We now just create a service definition and notice a random port associated with8.
it. We will also use kubectl create and kubectl get svc after it is
deployed:

vagrant@kubernetes-node1:~$ kubectl create -f blue-service-
nodeport.yaml
service/blue-svc created

vagrant@kubernetes-node1:~$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
blue-svc NodePort 10.100.179.60 <none> 80:32648/TCP 5s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 58m

We learned that the NodePort service will act as Docker Swarm's router mesh.9.
Therefore, the service's port will be fixed on every node. Let's verify this feature
using curl against any node's IP address and assigned port. In this example, it is
32648. This port may vary on your environment because it will be assigned
dynamically:

vagrant@kubernetes-node1:~$ curl 0.0.0.0:32648/text
APP_VERSION: 1.0
COLOR: blue
CONTAINER_NAME: blue-app-54485c74fc-x8p92
CONTAINER_IP: 192.168.104.2
CLIENT_IP: ::ffff:192.168.166.128
CONTAINER_ARCH: linux

Locally, on node1 port 32648, the service is accessible. It should be accessible on10.
any of the nodes on the same port. Let's try on node3, for example, using curl:

vagrant@kubernetes-node3:~$ curl 10.10.10.13:32648/text
APP_VERSION: 1.0
COLOR: blue
CONTAINER_NAME: blue-app-54485c74fc-wgw7r
CONTAINER_IP: 192.168.135.2
CLIENT_IP: ::ffff:10.0.2.15
CONTAINER_ARCH: linux

We learned that even if a node does not run a related workload, the service will
be accessible on the defined (or, in this case, random) port using NodePort.

Orchestration Using Kubernetes Chapter 9

[381]

We will finish this lab by upgrading the deployment images to a newer version.11.
We will use kubectl set image deployment:

vagrant@kubernetes-node1:~$ kubectl set image deployment blue-app
blue=codegazers/colors:1.15
deployment.extensions/blue-app image updated

Let's review the deployment again to verify that the update was done. We will12.
use kubectl get all -o wide to retrieve all of the created resources and their
locations:

vagrant@kubernetes-node1:~$ kubectl get all -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
pod/blue-app-787648f786-4tz5b 1/1 Running 0 76s 192.168.104.3 node2
<none> <none>
pod/blue-app-787648f786-98bmf 1/1 Running 0 76s 192.168.135.3 node3
<none> <none>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service/blue-svc NodePort 10.100.179.60 <none> 80:32648/TCP 22m
app=blue
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 81m <none>

NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
deployment.apps/blue-app 2/2 2 2 52m blue codegazers/colors:1.15
app=blue

NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES SELECTOR
replicaset.apps/blue-app-54485c74fc 0 0 0 52m blue
codegazers/colors:1.12 app=blue,pod-template-hash=54485c74fc
replicaset.apps/blue-app-787648f786 2 2 2 76s blue
codegazers/colors:1.15 app=blue,pod-template-hash=787648f786

Notice that new pods were created with a newer image. We can verify the update13.
using kubectl rollout status:

vagrant@kubernetes-node1:~$ kubectl rollout status
deployment.apps/blue-app
deployment "blue-app" successfully rolled out

Orchestration Using Kubernetes Chapter 9

[382]

We can go back to the previous image version just by executing kubectl14.
rollout undo. Let's go back to the previous image version:

vagrant@kubernetes-node1:~$ kubectl rollout undo
deployment.apps/blue-app
deployment.apps/blue-app rolled back

And now, we can verify that the current blue-app deployment runs15.
the codegazers/colors:1.12 images again. We will again review deployment
locations using kubectl get all:

vagrant@kubernetes-node1:~$ kubectl get all -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
pod/blue-app-54485c74fc-kslgw 1/1 Running 0 62s 192.168.104.4 node2
<none> <none>
pod/blue-app-54485c74fc-lrkxv 1/1 Running 0 62s 192.168.135.4 node3
<none> <none>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service/blue-svc NodePort 10.100.179.60 <none> 80:32648/TCP 29m
app=blue
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 87m <none>

NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
deployment.apps/blue-app 2/2 2 2 58m blue codegazers/colors:1.12
app=blue

NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES SELECTOR
replicaset.apps/blue-app-54485c74fc 2 2 2 58m blue
codegazers/colors:1.12 app=blue,pod-template-hash=54485c74fc
replicaset.apps/blue-app-787648f786 0 0 0 7m46s blue
codegazers/colors:1.15 app=blue,pod-template-hash=787648f786

Going back to the previous state was very easy.

We can set comments for each change using the --record option on the
update commands.

Orchestration Using Kubernetes Chapter 9

[383]

Using volumes
In this lab, we will deploy a simple web server using different volumes. We will use
webserver.deployment.yaml.

We have prepared the following volumes:

congigMap: Config volume with /etc/nginx/conf.d/default.conf—the
configuration file)
emptyDir: Empty volume for NGINX logs, /var/log/nginx
secret: Secret volume to specify some variables to compose the index.html
page
persistentVolumeClaim: Data volume bound to the hostPath defined as
persistentVolume using the host's /mnt content

We have declared one specific node for our web server to ensure the index.html file
location under the /mnt directory. We have used nodeName: kubernetes-node2 in our
deployment file, webserver.deployment.yaml:

First, we verify that there is no file under the /mnt directory in the kubernetes-1.
node2 node. We connect to kubernetes-node2 and then we review the /mnt
content:

$ vagrant ssh kubernetes-node2

vagrant@kubernetes-node2:~$ ls /mnt/

Then, we change to kubernetes-node1 to clone our repository and launch the2.
web server deployment:

$ vagrant ssh kubernetes-node1

vagrant@kubernetes-node1:~$ git clone
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-E
xam-Guide.git

We move to chapter9/nginx-lab/yaml:

vagrant@kubernetes-node1:~$ cd Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml/
vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$

Orchestration Using Kubernetes Chapter 9

[384]

We will use the ConfigMap, Secret, Service, PersistentVolume, and3.
PersistentVolumeClaim resources in this lab using YAML files. We will
deploy all of the resource files in the yaml directory:

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ kubectl create -f .
configmap/webserver-test-config created
deployment.apps/webserver created
persistentvolume/webserver-pv created
persistentvolumeclaim/werbserver-pvc created
secret/webserver-secret created
service/webserver-svc created

Now we will review all of the resources created. We have not defined a4.
namespace; therefore, the default namespace will be used (we omitted it in our
commands because it is our default namespace). We will use kubectl get all
to list all of the resources available in the default namespace:

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ kubectl get all
NAME READY STATUS RESTARTS AGE
pod/webserver-d7fbbf4b7-rhvvn 1/1 Running 0 31s
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none>
443/TCP 107m
service/webserver-svc NodePort 10.97.146.192 <none>
80:30080/TCP 31s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/webserver 1/1 1 1 31s
NAME DESIRED CURRENT READY
AGE
replicaset.apps/webserver-d7fbbf4b7 1 1 1
31s

However, not all of the resources are listed. The PersistentVolume and
PersistentVolumeClaim resources are not shown. Therefore, we will ask the
Kubernetes API about these resources using kubectl get pv
(PersisteVolumes) and kubectl get pvs (PersistenVolumeClaims):

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
webserver-pv 500Mi RWO Retain Bound
default/werbserver-pvc manual 6m13s

Orchestration Using Kubernetes Chapter 9

[385]

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
werbserver-pvc Bound webserver-pv 500Mi RWO
manual 6m15s

Let's send some requests to our web server. You can see, in kubectl get all5.
output, that webserver-svc is published using NodePort on port 30080,
associating the host's port 30080 with the service's port 80. As mentioned earlier,
all hosts will publish port 30080; therefore, we can use curl on the current host
(kubernetes-node1) and port 30080 to try to reach our web server's pods:

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ curl 0.0.0.0:30080
<!DOCTYPE html>
<html>
<head>
<title>DEFAULT_TITLE</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>DEFAULT_BODY</h1>
</body>
</html>

We have used ;a ConfigMap resource to specify an NGINX configuration file,6.
webserver.configmap.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
 creationTimestamp: null
 name: webserver-test-config
data:
 default.conf: |+
 server {
 listen 80;
 server_name test;
 location / {
 root /wwwroot;

Orchestration Using Kubernetes Chapter 9

[386]

 index index.html index.htm;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }
 }

This configuration is included inside our deployment file,
webserver.deployment.yaml . Here is the piece of code where it is defined:

...
 volumeMounts:
 - name: config-volume
 mountPath: /etc/nginx/conf.d/
...
 volumes:
 - name: config-volume
 configMap:
 name: webserver-test-config
...

The first piece declares where this configuration file will be mounted, while the
second part links the defined resource: webserver-test-config. Therefore, the
data defined inside the ConfigMap resource will be integrated inside the web
server's pod as /etc/nginx/conf.d/default.conf (take a look at the data
block).

As mentioned earlier, we also have a Secret resource7.
(webserver.secret.yaml):

apiVersion: v1
data:
 PAGEBODY: SGVsbG9fV29ybGRfZnJvbV9TZWNyZXQ=
 PAGETITLE: RG9ja2VyX0NlcnRpZmllZF9EQ0FfRXhhbV9HdWlkZQ==
kind: Secret
metadata:
 creationTimestamp: null
 name: webserver-secret

We can verify, here, that keys are visible while values are not (encoded using the
Base64 algorithm).

Orchestration Using Kubernetes Chapter 9

[387]

We can also create this secret using the imperative format with the
kubectl command line:
kubectl create secret generic webserver-secret \
--from-
literal=PAGETITLE="Docker_Certified_DCA_Exam_Guide" \
--from-literal=PAGEBODY="Hello_World_from_Secret"

We also used this secret resource in our deployment:

...
 env:
...
 - name: PAGETITLE
 valueFrom:
 secretKeyRef:
 name: webserver-secret
 key: PAGETITLE
 - name: PAGEBODY
 valueFrom:
 secretKeyRef:
 name: webserver-secret
 key: PAGEBODY
...

In this case, the PAGETITLE and PAGEBODY keys will be integrated as
environment variables inside the web server's pod. These values will be used in
our lab as values for the index.html page. DEFAULT_BODY and DEFAULT_TITLE
will be changed from the pod's container process.

This lab has another volume definition. In fact, we have8.
PersistentVolumeclaim included as a volume in our deployment's definition:

...
 volumeMounts:
...
 - mountPath: /wwwroot
 name: data-volume
...
 - name: data-volume
 persistentVolumeClaim:
 claimName: werbserver-pvc
...

Orchestration Using Kubernetes Chapter 9

[388]

The volume claim is used here and is mounted in /wwwroot inside the web
server's pod. PersistentVolume and PersistentVolumeClaim are defined in
webserver.persistevolume.yaml and
webserver.persistevolumeclaim.yaml, respectively.

Finally, we have an emptyDir volume definition. This will be used to bypass the9.
container's filesystem and save the NGINX logs:

...
 volumeMounts:
...
 - mountPath: /var/log/nginx
 name: empty-volume
 readOnly: false
...
 volumes:
...
 - name: empty-volume
 emptyDir: {}
...

The first pod execution will create a default /wwwroot/index.html file inside it.10.
This is mounted inside the kubernetes-node2 node's filesystem, inside the
/mount directory. Therefore, after this first execution, we find that
/mnt/index.html was created (you can verify this by following step 1 again).
The file was published, and we get it when we execute curl 0.0.0.0:30080 in
step 5.

Our application is quite simple, but it is prepared to modify the content of the11.
index.html file. As mentioned earlier, the default title and body will be
changed with the values defined in the secret resource. This will happen after the
creation of the container if the index.html file already exists. Now that it has
been created, as verified in step 10, we can delete the web server's pod.
Kubernetes will create a new one, and, therefore, the application will change its
content. We use kubectl delete pod:

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ kubectl delete pod/webserver-
d7fbbf4b7-rhvvn
pod "webserver-d7fbbf4b7-rhvvn" deleted

Orchestration Using Kubernetes Chapter 9

[389]

After a few seconds, a new pod is created (we are using a deployment and
Kubernetes takes care of the application's component resilience):

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ kubectl get pods
NAME READY STATUS RESTARTS AGE
webserver-d7fbbf4b7-sz6dx 1/1 Running 0 17s

Let's again verify the content of our web server using curl:12.

vagrant@kubernetes-node1:~/Docker-Certified-Associate-DCA-Exam-
Guide/chapter9/nginx-lab/yaml$ curl 0.0.0.0:30080
<!DOCTYPE html>
<html>
<head>
<title>Docker_Certified_DCA_Exam_Guide</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Hello_World_from_Secret</h1>
</body>
</html>

Now the content has changed inside the defined PersistentVolume resource.

We can also verify the /mnt/index.html content in kubernetes-node2:13.

$ vagrant ssh kubernetes-node2

vagrant@kubernetes-node2:~$ cat /mnt/index.html
<!DOCTYPE html>
<html>
<head>
<title>Docker_Certified_DCA_Exam_Guide</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>

Orchestration Using Kubernetes Chapter 9

[390]

<body>
<h1>Hello_World_from_Secret</h1>
</body>
</html>

In this lab, we have used four different volume resources, with different definitions and
features. These labs were very simple, showing you how to deploy a small application on
Kubernetes. All of the labs can be easily removed by destroying all the Vagrant nodes using
vagrant destroy from the environments/kubernetes directory.

We highly recommend going further with Kubernetes because it will become a part of the
exam in the near future. However, right now, Kubernetes is outside the scope of the Docker
Certified Associate exam.

Summary
In this chapter, we quickly reviewed some of Kubernetes' main features. We compared
most of the must-have orchestration features with those discussed in Chapter 8,
Orchestration Using Docker Swarm. Both provide workload deployment and the
management of a distributed pool of nodes. They monitor an application's health and allow
us to upgrade components without service interruption. They also provide networking and
publishing solutions.

Pods provide higher container density, allowing us to run more than one container at once.
This concept is closer to applications running on virtual machines and makes container
adoption easier. Services are logical groups of pods and we can use them to expose
applications. Service discovery and load balancing work out of the box dynamically.

Cluster-wide networking requires additional plugins in Kubernetes, and we also learned
that a flat network can facilitate routing on different hosts and make some things easier;
however, it does not provide security by default. Kubernetes provides enough mechanisms
to ensure network security using network policies and single endpoints for multiple
services with ingress. Publishing applications is even easier with ingress. It adds internal
load balancing features dynamically with rules managed using ingress resources. This
allows us to save up node ports and public IP addresses within the environment.

At the end of the chapter, we reviewed a number of points about Kubernetes security. We
discussed how RBAC provides different environments to users running their workloads on
the same cluster. We also talked about some features provided by Kubernetes to ensure
default security on resources.

Orchestration Using Kubernetes Chapter 9

[391]

There is much more to learn about Kubernetes, but we will have to end this chapter here.
We highly recommend that you follow the Kubernetes documentation and the release notes
on the project's website (https:/ /kubernetes. io/).

In the next chapter, we'll look at the differences and similarities between Swarm and
Kubernetes, side by side.

Questions
Which of these features is not included in Kubernetes by default?1.

a) An internal key-value store.
b) Network communication between containers distributed on different
Docker hosts.
c) Controllers for deploying workload updates without service interruptions.
d) None of these features are included.

Which of these statements is true about pods?2.

a) Pods always run in pairs to provide an application with high availability.
b) Pods are the minimum unit of deployment on Kubernetes.
c) We can deploy more than one container per pod.
d) We need to choose which containers in a pod should be replicated when
pods are scaled.

Which of these statements is true about pods?3.

a) All pod containers run using a unique network namespace.
b) All containers within a pod can share volumes.
c) All pods running on Docker Engine are accessible from the host using
their IP addresses.
d) All of these statements are true.

Kubernetes provides different controllers to deploy application workloads.4.
Which of these statements is true?

a) DaemonSet will run one replica on each cluster node.
b) ReplicaSet will allow us to scale application pods up or down.
c) Deployments are higher-level resources. They manage ReplicaSet.
d) All of these statements are true.

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/

Orchestration Using Kubernetes Chapter 9

[392]

How can we expose services to users in Kubernetes? (Which of these statements5.
is false?)

a) ClusterIP services provide a virtual IP accessible to users.
b) NodePort services listen on all nodes and route traffic using the provided
ClusterIP to reach all service backends.
c) LoadBalancer creates simple load balancers on cloud providers to load
balance requests to service backends.
d) Ingress controllers help us to use single endpoints (one per ingress
controller) to load balance requests to non-published services.

Further reading
You can refer to the following links for more information on topics covered in this chapter:

Kubernetes documentation: https:/ /kubernetes. io/docs/ home/

Kubernetes concepts: https:/ / kubernetes. io/ docs/ concepts/

Kubernetes learning tasks: https:/ /kubernetes. io/ docs/ tasks/

Kubernetes on Docker Enterprise: https:/ /docs. docker. com/ ee/ucp/
kubernetes/ kube- resources

Getting Started with Kubernetes: https:/ /www. packtpub. com/virtualization-
and-cloud/ getting- started- kubernetes- third- edition

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://kubernetes.io/docs/tasks/
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://docs.docker.com/ee/ucp/kubernetes/kube-resources
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition

3
Section 3 - Docker Enterprise

This section introduces Docker Enterprise Containers as a Service (CaaS) platform,
including a deep dive review of all its components. We will cover Docker Enterprise
runtime, Universal Control Plane, and Docker Trusted Registry. In each section, we will
take a closer look at all of the components, the management of each feature provided, and
the installation of each product in a production environment.

This section comprises the following chapters:

Chapter 10, Introduction to the Docker Enterprise Platform
Chapter 11, Universal Control Plane
Chapter 12, Publishing Applications in Docker Enterprise
Chapter 13, Implementing an Enterprise-Grade Registry with DTR

10
Introduction to the Docker

Enterprise Platform
In the previous chapters, we talked about Docker's features and Docker environments. We
introduced the concepts of containers and looked at how we can deploy applications to
orchestrated environments. All the features we saw were based on Docker Community
Edition. In this chapter, we will learn about all the various Docker editions and their
differences before introducing the Docker Enterprise platform.

In this chapter, we will introduce the different Docker editions and tools. We will also
review the concept of Container as a Service (CaaS) and learn about what we need in these
kinds of environments. Docker provides an enterprise-ready CaaS platform and we will
review all of its components.

We will cover the following topics in this chapter:

Reviewing the Docker editions
Understanding CaaS
The Docker Enterprise platform
Planning your Docker Enterprise deployment

Let's start this chapter by learning about all the different Docker editions and their specific
features.

Reviewing the Docker editions
In this section, we will have a quick review of the different Docker editions. We have been
using Docker Community in previous chapters, but now, it is time to learn about Docker
Enterprise. This is because it is very important for the Docker Certified Associate exam. In
fact, it could relate to more than 50% of the knowledge required for the exam because all of
the concepts you'll be learning about will relate to this platform.

Introduction to the Docker Enterprise Platform Chapter 10

[395]

Docker Community is the Docker platform we use while developing container-based
applications. It is free to use and is supported on GitHub (https:/ /github. com/docker/
docker-ce) and Docker Forums (https:/ /forums. docker. com/).

Docker Enterprise is an enterprise-ready solution. Docker/Mirantis provides 24/7 support
and is licensed by subscription.

Docker Community
When we talk about Docker Community Edition, also known as docker-ce, we are just
referring to Docker Engine (daemon), although there are other community software
products made by Docker's team:

Docker Toolbox: This was the first approach available for Microsoft Windows
and Apple Mac users. Before Windows containers, this was the only way of
using Docker on Windows nodes. It provides a desktop environment with many
tools and shortcuts for most components and actions.
Docker Machine: Docker Machine allows us to provision Docker hosts. It comes
with some predefined provisioners and we can extend this list with external
binaries to deploy nodes with the most popular cloud providers and on-premises
infrastructures.
Docker Desktop: This was an evolution of the Docker Toolbox environment on
Windows Professional environments. Developers were very happy with the
experience they had with Docker Toolbox. In response, Docker created a desktop
environment capable of launching a small Kubernetes environment, while also
including application templates to help developers create simple applications
with just a few mouse clicks.

Docker Community Edition provides a complete Docker Engine platform. Hence, we can
create a cluster with either Docker Swarm or Kubernetes. All Community Edition features
have been covered in previous chapters – we have never talked about any Enterprise-
specific integrations. Docker Swarm does not provide role-based access control (RBAC) for
user management. We also have to provide a solution for publishing applications securely.
Remember that Docker just provides a router mesh and host publishing features and that
they are not secure. For many users, Docker Swarm, with a couple of tweaks, is more than
enough. It is easy to learn and manage and also provides resilience and high availability for
core components.

https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://github.com/docker/docker-ce
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/
https://forums.docker.com/

Introduction to the Docker Enterprise Platform Chapter 10

[396]

Kubernetes can be deployed on top of Docker Community Edition. We will just use Docker
Engine as the runtime for the Kubernetes cluster. This is quite common as it's the most-used
solution nowadays. Kubernetes provides a rich ecosystem and comes with some out-of-the-
box features required for production. But, on the other hand, some details, such as
networking, require third-party solutions. Kubernetes has a different approach to the world
of containers. Docker follows the "batteries included but interchangeable" approach, providing
everything required to work out of the box, although we can change most of its
components. On the other hand, Kubernetes was made with the "everything should be
pluggable" mindset. Kubernetes has a richer ecosystem because there are many solutions
around its core pieces. These help it grow faster and bigger than Docker.

Docker Enterprise
Docker Enterprise has everything that's missing from Docker Swarm. It provides a full
CaaS platform that's based on two components: Docker Universal Control Plane (UCP)
and Docker Trusted Registry (DTR). During the last European DockerCon, in December
2018, Docker Desktop Enterprise was announced and it was stated that it would include
desktop functionality for developers. Docker Desktop Enterprise allows developers to
create applications easily using Docker. They can also test their developed containers on
Kubernetes locally or even choose which production environment they want to test in to
ensure that their applications will run smoothly in production. Docker Desktop was created
with developers in mind and Enterprise helps them avoid friction between development
and production.

At the time of writing this book, Docker can be found under two different product brands.
Mirantis bought the Docker Enterprise product, while Docker maintains Docker
Community software and their desktop product. The complete Enterprise platform will be
part of the Mirantis catalog.

Therefore, Docker Enterprise Edition covers the following products:

Docker Enterprise Engine: Docker Engine is required for the Docker Enterprise
platform; it provides all the required runtime features. There are slight
differences between the Community and Enterprise editions. In fact, the most
important one is to do with support. Docker Enterprise provides an enterprise
24/7 support subscription option and a working hours support subscription
option. The Docker Community edition does not provide such support. This
slight difference will probably persuade enterprise users to use Docker
Enterprise Edition.

Introduction to the Docker Enterprise Platform Chapter 10

[397]

Docker UCP: The control plane for the cluster is also included in Docker
Enterprise Edition. This product is called Docker UCP. It also provides a
Kubernetes production-ready platform out of the box, on top of a production-
ready Docker Swarm cluster. It is probably the best option for getting a
Kubernetes cluster with minimal effort. This cluster distribution is also
supported by Docker, which means that all Kubernetes integrations have been
fully tested on the Docker Enterprise platform. The bad thing about this is that
Kubernetes releases have to be frozen during a product's lifetime. At the time of
writing this book, the currently supported and distributed Kubernetes release is
1.14, while it is generally available as 1.17 in the Community edition. This is
normal for enterprise products. Everything must be tested and verified before
moving to a newer release, and this takes time.
Docker Trusted Registry: A registry is always required to work with containers.
Although Docker developed Docker Registry and it is open source, it is not
enough for production. It provides neither authentication nor authorization,
which are fundamental to ensure secure access to images. We can
integrate Docker Trusted Content, but this is not easy. We will need to
include Notary services and integrate them into the rest of the deployed
platform. Believe me, this is not easy. I have done it in the past and it was hard to
implement and even harder to maintain. DTR includes authentication and
authorization based on the RBAC model. We can have organizations, teams, and
different access for different users, and we can make some of our images publicly
available. We get fully featured access and image publishing control. It also
includes a Docker Trusted Content implementation, with all the required
components and integrations. It includes CI/CD workflow integrations for
different stages and security image scanning. These features will allow us to
ensure that only approved images that are free from vulnerabilities run in our
production CaaS platform.
Docker Desktop Enterprise: This is the most recently added feature at the time
of writing this book. The Docker Certified Associate exam does not include any
questions about it right now. Due to this, we will just provide a basic Docker
Desktop introduction. This is a desktop application that provides developers
with full Docker Swarm and Kubernetes environments so that they can develop
and test their applications on their laptops before moving their artifacts to other
stages.

Introduction to the Docker Enterprise Platform Chapter 10

[398]

As we can see, there's a number of different components that are packaged in a Docker
Enterprise release. If we go to https:/ /success. docker. com/ article/ compatibility-
matrix, we can review which component releases are verified and are supported to work
together. At the time of writing this book, these are the latest supported releases of each
component for Docker Enterprise Edition 3.0:

Docker Engine 19.03.x
Universal Control Plane 3.2.x
Docker Trusted Registry 2.7.x

Docker Engine is supported on many Linux distributions (such as Red Hat/CentOS, SUSE
SLES, Oracle Linux, and Ubuntu) and Windows (2016 and 2019 releases).

Windows nodes are only supported as worker nodes and they will only
be part of a Docker Swarm orchestration. Kubernetes is not available on
the Windows platform on Docker Enterprise 3.0.

In the next section, we will discuss what a CaaS platform is and how Docker provides all
the expected features.

Understanding CaaS
A CaaS platform is a platform that can be used to provide container services to users. The
term as a Service is usually associated with cloud providers and their solutions. We will
extend this terminology to on-premises environments here. We will talk about CaaS as a
framework or compound of applications designed to provide a complete container-based
solution to users. A CaaS solution must provide the full container workflow (build, ship,
and run). There is also another new term these days: KaaS solutions. This terminology
refers to Kubernetes as a Service platforms, where Kubernetes is the core of the
environment. These solutions add some facilities that are not included with Kubernetes out
of the box, such as monitoring, logging, and CI/CD.

CaaS and KaaS environments are aimed at users that require a complete solution. There
will be administrators of the solution and clients that will consume the services provided in
the environment.

https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix

Introduction to the Docker Enterprise Platform Chapter 10

[399]

These platforms must provide the following:

Authentication: Users accessing the platform should be authenticated so as to
only allow approved users.
Authorization: Roles will provide different access to different users. There
should be administrators and users. Each should have different levels of access
and views within the platform. Actions that can be performed on containers
should be inaccessible to non-authorized users.
Runtime: All containers will run on container engines. This is a requirement.
There are different engines, but Docker Engine is still the most common
nowadays.
Publishing: We use these platforms to create and run applications based on
containers, but people have to be able to consume our deployed services.
CaaS/KaaS platforms must provide a component that allows us to publish
applications that are deployed inside our environment.
Registry: All images must be stored somewhere. Remember, images are always
required. There are no containers without images, and versioning them alongside
code changes will help you track issues and new functionalities. Having a
registry included in your CaaS/KaaS platform is vital.
Status: We need to have a complete view of the statuses of all our platform
components. If there's a failure, we need to know which components will be
affected, whether we'll be able to push new images, and whether our services
work, for instance.
Integrations: Although, in my opinion, logging and monitoring are not strictly
required, it is good to at least provide integrations to external platforms for these
features. Some CaaS platforms include these services in their deployment (such
as Red Hat's OpenShift, among others), but it should be easy to integrate our
logging and monitoring environments. Sometimes, operations teams will have
their own monitoring platforms; a CaaS platform should just forward all
required events to them. CI/CD workflows are another interesting integration. If
a CaaS platform can integrate development and test stages within the platform,
users will be able to just code. Everything else can be automated with CI/CD
tools.

As we mentioned previously, these platforms will require some administrators to do all the
maintenance tasks and configurations, while users will just consume the provided services
to create and run their applications. There are some cloud providers that have taken a
different approach. Azure Kubernetes Service (AKS), Amazon's Elastic Kubernetes
Service (EKS), and Google Kubernetes Service (GKS) are the most well-known examples
of these environments.

Introduction to the Docker Enterprise Platform Chapter 10

[400]

On these platforms, we just select the number of workers to deploy in our cluster. All
maintenance tasks are managed by the cloud provider; we just configure user access and
prepare some of the cloud provider's load balancers to route the traffic. Everything else is
configured and deployed in Kubernetes. This is great because we get to just focus on
deploying applications. We don't have to care about high availability in the environment,
backups, or platform upgrades. The cloud provider will manage all these tasks for us. Such
platforms also include monitoring and logging facilities that are integrated into their
Platform as a Service (PaaS) environments.

In this section, we reviewed what we need to provide in a CaaS or KaaS platform. In the
next section, we will learn about how Docker Enterprise implements these concepts.

The Docker Enterprise platform
Docker Enterprise provides a CaaS platform. In this section, we will try to apply everything
we know about CaaS platforms to what we understand about Docker Enterprise. We will
cover many concepts in order to help you to understand how we implement end-to-end
container-based solutions with Docker Enterprise. We will not cover Docker
Desktop Enterprise because it is not part of the Docker Certified Associate exam.

Docker Engine
Docker Engine is a core piece of the platform. It provides the runtime for executing the
platform. Unlike Kubernetes, Docker Swarm requires Docker Engine to work. Kubernetes
provides the option to use containerd directly or a Container Runtime Interface
Optimized (CRI-O for OCI-compatible containers). Docker Engine includes Swarm mode,
and we do not need any other software to implement a fully functional distributed
orchestration environment. Docker Engine provides the underlying layer of execution of all
platform components.

On top of Docker Engine, we will create a Docker Swarm cluster, and other Docker
Enterprise components will run either as Docker Swarm services or multi-container
applications. This is key because there are a few components that will run as agents in the
platform, and we will automatically deploy them as global services (remember these
concepts). But there are also some components that must be unique within the cluster. They
will run as multi-container applications on top of some defined hosts. These components
will use different schemas for their execution.

Introduction to the Docker Enterprise Platform Chapter 10

[401]

For Docker Enterprise, we will deploy Docker Enterprise Engine, along with support for
specific releases. Enterprise releases have to be supported for a long time, so this affects
release times. As we saw in the Docker Enterprise Engine section, the currently supported
release is 19.03.x (at the time of writing this book), while for the Community Edition, the
supported release can be different (it's currently also 19.03.6, but it was only until recently
that there could be big differences between releases). This is normal because Docker
engineers and support teams must verify all components' integrations and solve any issues
for current Docker Enterprise releases, while at the same time evolving the product by
adding new features. These features always appear on Docker Community Edition before
they are fully tested and implemented for Docker Enterprise Edition.

Because we will be working in a cluster environment, we will be able to execute
maintenance tasks and move workloads between nodes without service interruption.
Docker Engine updates will be smooth and easy.

Universal Control Plane
UCP provides the control plane for the Docker Enterprise platform. It provides all the
processes and tools you need in order to manage all your cluster components and their
statuses. UCP will deploy components on master and worker nodes, as we will learn in
Chapter 11, Universal Control Plane. It is based on Docker Swarm orchestration, but, as we
mentioned previously, the core components will run as multi-container applications. The
master nodes will run the control plane processes. These processes will not run on any
other node if they fail. It is important to understand that these core processes can only run
on defined nodes. No other nodes can take these workloads. If we have a problem
occurring on a master node and we cannot recover the master node, we need to create a
new master. We will promote a worker node or install a new master after removing the old
one.

UCP will deploy some distributed databases, and it is important to maintain their quorum.
We will review a couple of common issues in Chapter 11, Universal Control Plane.
Remember, UCP manager nodes are very important and processes need to run on defined
nodes.

All internal cluster communications will be encrypted using TLS. UCP manages all nodes,
all components, and all their certificates. It will also provide certificates for authenticated
and authorized users. We can ensure secure client-to-server communications by default.

The Kubernetes cluster will also be deployed with the required Container Network
Interface (CNI), Calico, by default, and secured configurations. UCP provides a
production-ready Docker Swarm and Kubernetes platform.

Introduction to the Docker Enterprise Platform Chapter 10

[402]

Cluster authentication and authorization will be managed by UCP. We will be able to
integrate third-party authentication systems, such as Lightweight Directory Access
Protocol (LDAP), and Active Directory. All authorization mechanisms and
implementations are also included in UCP. We can provide a unified login, delegating all
DTR authentication requests to UCP. This is the usual and preferred configuration. UCP
provides a complete RBAC system based on resources, roles, and grants. We will have high
levels of granularity to specify customized access to any resource within the cluster.

UCP provides a management web UI and also an API interface to access a cluster's
resources. We will be able to configure all Docker Swarm and Kubernetes resources. For
Kubernetes, a simple interface is provided to deploy resources' YAML files. We will use the
cluster remotely. We will never allow a user access to either manager or worker nodes.

It is very important to disallow any non-authorized access to cluster
nodes. Access via SSH to Docker hosts or directly to Docker Engine's
daemon will bypass all security implementations applied by UCP.

The web UI will also provide some simple monitoring capabilities to verify the entire
cluster's state. We can review the status of all containers, pods, services, and, in general, all
resources managed by the cluster. We can also export the cluster's metrics using
Prometheus' standard integrations. The web UI also provides access to container logs, and
we can even use them to review the application's behavior. All this access will be managed
by UCP's RBAC system.

Docker Swarm and Kubernetes will be available through their APIs. Kubernetes provides
its own RBAC, as we learned in Chapter 9, Orchestration Using Kubernetes. Docker Swarm
requires external tools. UCP provides these external tools, proxying all API requests to
UCP's internal RBAC integration and providing appropriate authentication and
authorization mechanisms.

UCP also provides an integrated component for publishing applications deployed within
the cluster. This component is Interlock and, at the time of writing this book, is based on
NGINX. Interlock only works with Docker Swarm deployments, monitoring the cluster's
API for changes on defined services. We will define which services will be published and
which headers, names, and routes should be available. All changes that are applied to the
services will be automatically populated to Interlock's reverse proxy component, which will
forward requests to the associated backends. We will learn about this in more depth
in Chapter 12, Publishing Applications in Docker Enterprise.

Introduction to the Docker Enterprise Platform Chapter 10

[403]

Docker Trusted Registry
As we mentioned when we were talking about CaaS requirements, we need a registry to
store images. This registry must provide secure access and roles because we need some
granularity when publishing images. Some users will be owners of their images, while
others will only use them. We need to ensure image immutability. DTR provides this. It is
built on top of the open source Docker Registry, but many improvements were added to
provide an enterprise-ready solution.

DTR provides a secured store for all CaaS/KaaS images. We will be able to ensure
provenance and immutability. We will also provide different access levels to images. Some
users will be maintainers of base images, while others will be able to use them for their own
projects. We also have teams and organizations. We can publish images within
organizations in a multi-tenant environment, ensuring that all users within an organization
are able to use their public images. Teams will share image maintenance responsibilities,
but only some members will be able to modify image content.

Because security is key in CaaS environments, DTR will provide image scanning and
signing. Image scanning will review all images, searching for binary vulnerabilities. It will
use a Common Vulnerabilities and Exposures (CVE) database to find any vulnerable files.
All vulnerable content will be reported and administrators will manage these issues within
the platform. We can decide to only execute clean images; that is, images that are without
any reported vulnerabilities. Image signing will allow us to forbid any unsigned images
into our infrastructure. This ensures that we will only execute images that have been
created and signed within our organization. If an image has been externally modified, it
will not be allowed to run a container.

DTR can also be integrated into a CI/CD pipeline, along with its image promotion features.
Image tags can be modified with triggers. This process can also tell external applications to
track and help us implement special stages in our deployment workflow. Images are the
new code artifacts for applications and we can integrate DTR in our CI/CD pipelines.

In the next section, we will describe a minimal environment for production using Docker
Enterprise Edition.

Introduction to the Docker Enterprise Platform Chapter 10

[404]

Planning your Docker Enterprise
deployment
Docker Enterprise provides a production-ready CaaS platform, as we have been discussing
throughout this chapter. In this section, we will review the minimum logical requirements
for deploying Docker Enterprise in production.

We learned that Docker Swarm and Kubernetes require an odd number of master nodes to
work properly. Docker Swarm does not require an external key-value store, while
Kubernetes does. Docker Enterprise will deploy this key-value store with UCP, so a
minimum of three manager nodes will be required to provide high availability. All
managers will run the same services. In Docker Swarm and Kubernetes, we have a leader
node that writes cluster changes in the database. Other managers will sync their data, but
we can also run administration commands on any of them. We need to integrate an external
load balancer to distribute API requests on all manager nodes.

Remember, three nodes only protect the cluster if one of them fails. The
cluster will work fine with two manager nodes, but if another one fails,
the cluster will become inconsistent.

UCP requires at least three manager nodes. But what about DTR? This component has its
own distributed database: it uses RethinkDB. This database also requires an odd number
of replicas; therefore, three nodes will be required. DTR will be deployed on worker nodes
using a multi-container architecture. We can then say that we will need at least three
worker nodes for DTR. Image scanning can consume a lot of CPU resources, and it is
recommended to isolate DTR nodes from other worker nodes to avoid application impact.
A DTR cluster requires shared storage between nodes because only the node receiving the
application's requests will write changes to the database. But all nodes must write to the
same storage location, so shared storage is required. We will use an external load balancer
in front of DTR's API to distribute requests between service nodes.

Introduction to the Docker Enterprise Platform Chapter 10

[405]

We will add workers to this platform as needed. In fact, we will start with a minimum of
two worker nodes for high availability. All application workloads must have resilience;
hence, a minimum of two nodes for Windows and Linux workloads will be required if we
deploy on both architectures. The following diagram represents the described scenario:

We will use fixed IP addresses for the manager and worker nodes. This is preferred,
although worker nodes can be deployed using DHCP. We will isolate the control plane
from the data plane, as we discussed in Chapter 8, Orchestration Using Docker Swarm. The
data plane will be used for applications, while the control plane will be used for internal
cluster communications.

Calico will be used by default as the Kubernetes CNI, and it is important to check for any
possible IP range conflicts. The following table shows the default IP addresses used for
Docker Engine, Docker Swarm, and Kubernetes:

Component Subnet Range Default IP address

Engine fixed-cidr
CIDR range for
the docker0 interface and
local containers

172.17.0.0/16

Introduction to the Docker Enterprise Platform Chapter 10

[406]

Engine default-address-pools

CIDR range for
the docker_gwbridge
interface and bridge
networks

172.18.0.0/16

Swarm default-addr-pool
CIDR range for Docker
Swarm overlay networks

10.0.0.0/8

Kubernetes pod-cidr
CIDR range for
Kubernetes pods

192.168.0.0/16

Kubernetes service-cluster-ip-range
CIDR range for
Kubernetes services

10.96.0.0/16

To avoid any firewall issues, take a look at the following link, which describes some of the
configurations required on some Linux platforms: https:/ /docs. docker. com/ ee/ ucp/
admin/install/plan- installation.

We will use Fully Qualified Domain Names (FQDNs) for the virtual IP addresses
associated with UCP/Kubernetes and DTR APIs.

We will review all required ports in Chapter 11, Universal Control Plane, and Chapter 13,
Implementing an Enterprise-Grade Registry with DTR. But clients consume cluster services
using specific exposed ports. By default, UCP and DTR will expose their APIs and web UI
on port 443, while Kubernetes will be exposed on port 6443.

We will usually require internet access during product installation, although we can
execute an offline installation. Internet access is needed for DTR if we need to provide
automatic image-scanning database synchronization. We can download a compressed
database file from Docker's site once a week, for example, to avoid this required
connectivity.

Licensing processes can also be automated, and subscription renewal can synchronize
product licenses before they expire.

This was a brief description of the deployment of Docker Enterprise components to
production. We will cover these components in more depth in the following chapters.

https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation
https://docs.docker.com/ee/ucp/admin/install/plan-installation

Introduction to the Docker Enterprise Platform Chapter 10

[407]

Summary
In this chapter, we provided an introduction to the Docker Enterprise platform. We
reviewed the main differences between Docker Community tools and Docker Enterprise
products.

We also covered the concepts of the CaaS and KaaS platforms. We looked at what we
should expect from these platforms and how different manufacturers and cloud providers
deploy their implementations.

We also described the most important features of Docker Enterprise, namely Docker
Enterprise Engine, UCP, and DTR. These components provide Docker's CaaS solution. With
that, we've covered the most important things to consider when planning a Docker
Enterprise production environment.

In the next chapter, we will explore UCP in more depth.

Questions
Which of these components is not part of the Docker Enterprise platform?1.

a) DTR.
b) Docker Enterprise Engine.
c) Docker Machine.
d) All of these are part of the Docker Enterprise platform.

Which of these statements are true about Docker Community and Docker2.
Enterprise?

a) Docker Enterprise provides an enterprise-ready platform.
b) We cannot deploy Docker Swarm to production.
c) Kubernetes is not supported in Docker Enterprise; only Docker Swarm is
supported.
d) Docker Registry is an enterprise-ready registry.

Which Docker components are required to deploy a KaaS solution?3.

a) Docker Enterprise Engine.
b) UCP.
c) Kubernetes.
d) DTR.

Introduction to the Docker Enterprise Platform Chapter 10

[408]

Which of the following statements are true for deploying a Docker Enterprise4.
environment?

a) We use fixed IP addresses for manager nodes only.
b) We just route traffic to one of the manager nodes.
c) We need to deploy a CNI after UCP completes the Kubernetes installation.
d) None of the above.

What is the minimum number of nodes required to execute Linux workloads on5.
a Docker Enterprise platform with high availability?

a) We need to deploy three managers, three workers with DTR, and one
Linux worker with enough resources to run all workloads.
b) We need to deploy three managers with DTR running on them and two
Linux workers.
c) We need to deploy three managers, three workers with DTR, and
two Linux workers.
d) All these options are valid.

Further reading
You can refer to the following references for more information about the topics that were
covered in this chapter:

Introduction to Docker Enterprise: https:/ /docs. docker. com/ ee/

Docker Enterprise components: https:/ /docs. docker. com/ ee/ docker- ee-
architecture/

Mirantis Docker Enterprise website: https:/ / www.mirantis. com/ software/
docker/docker- enterprise/

Mirantis Docker acquisition: https:/ /www. mirantis. com/company/ press-
center/company- news/ mirantis- acquires- docker- enterprise/

https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/software/docker/docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/

11
Universal Control Plane

In this chapter, we will learn everything about Docker's Universal Control Plane (UCP)
that's required for the Docker Certified Associate exam. Universal Control Plane is the
Docker Enterprise component in charge of managing clusters. First, we will introduce
UCP's components and their features. It is important to know that UCP has changed a lot in
recent years. The Docker Enterprise platform was previously known as Docker Datacenter.
Docker changed its name when version 2.0 was released. That version was also important
because it was the first one to include Kubernetes as a second orchestrator. In this chapter,
we will learn how Kubernetes is integrated and how to deploy a production-ready
platform.

In November 2019, Mirantis Inc. acquired the Docker Enterprise platform
business, including its products, customers, and employees. Therefore,
Docker Enterprise is currently a Mirantis Inc. product.

We will discover UCP's main components and learn how to deploy a production-ready
environment with high availability. Enterprise environments have many security
requirements and UCP includes its own authentication and authorization systems based on
RBAC, all of which can be easily integrated with an enterprise's user management platform.
Docker Enterprise is based on Docker Swarm but also includes an enterprise-ready
Kubernetes environment within the cluster. We will learn about UCP's administration
tasks, security configurations, special features, and how to provide a disaster recovery
strategy based on backup and restore features. We will finish this chapter by reviewing
what should be monitored on this platform to ensure its health.

We will cover the following topics in this chapter:

Understanding UCP components and features
Deploying UCP with high availability
Reviewing Docker UCP's environment

Universal Control Plane Chapter 11

[410]

Role-based access control and isolation
UCP's Kubernetes integration
UCP administration and security
Backup strategies
Upgrades, health checks, and troubleshooting

Let's get started!

Technical requirements
You can find the code for this chapter in the GitHub repository: https:/ /github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. git

Check out the following video to see the Code in Action:

"https://bit.ly/ 34BHHdj"

Understanding UCP components and
features
Docker's UCP provides the control plane for the Docker Enterprise platform. It is based on
Docker Swarm but also integrates the Kubernetes orchestrator. The following is a quick list
of its current features:

A centralized cluster management interface
A cluster resource environment
Role-based access control
A client environment via WebGUI or the CLI

As we mentioned previously, UCP is based on Docker Swarm orchestration. We will
deploy a Docker Swarm cluster with managers and worker roles.

First, we will install a manager node. This will be the leader during the installation process.
All the components will be deployed as containers, so we only require a Docker Enterprise
Engine to run them.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj
https://bit.ly/34BHHdj

Universal Control Plane Chapter 11

[411]

Once the first manager has been installed, and with all the UCP components up and
running, we will continue adding nodes to the cluster. This is a really simple process.

All the components will be managed by a master agent process called ucp-agent. This
process will deploy all the other components according to the role of the installed node.

Let's review the different components that are deployed on manager and worker role
nodes.

UCP components on manager nodes
In Chapter 8, Orchestration Using Docker Swarm, we learned how these clusters work.
Manager nodes run all management processes. We will deploy an odd number of manager
nodes to provide high availability because Docker Swarm is based on the Raft protocol and
requires consensus or quorum in the management plane.

Manager nodes run all UCP core services, including the web UI and data stores that persist
the state of UCP. These are the UCP services running on manager nodes:

Component Description

ucp-agent
This component is the agent running on each
node to monitor and ensure the required
services are running.

ucp-swarm-manager
To provide compatibility with a Docker Swarm
environment, this component runs on manager
nodes.

ucp-proxy
This component provides secure access to each
Docker Engine on the platform using TLS and
forwarding requests to a local socket.

ucp-auth-api
Authentication is managed with this component
running on manager nodes, exposing its API to
authorize access.

ucp-auth-store
This component stores data and the
configurations of users, organizations, and
teams on the UCP platform.

ucp-auth-worker
An authentication worker periodically runs
synchronization tasks with external
authentication backends.

Universal Control Plane Chapter 11

[412]

ucp-client-root-ca

This component provides a certificate authority
to sign users' bundles on the platform. Bundles
are packages issued by the management
platform to provide users with access.

ucp-cluster-root-ca
To ensure secure communication between
platform components, this component provides
a CA for signing TLS certificates.

ucp-kv

This component provides a key-value database
to store cluster configurations. It was only used
for Legacy Swarm (we have not seen how
Docker Swarm was deployed in the past, but it
is similar to Kubernetes these days) but
currently, it is also used as a Kubernetes key
value.

ucp-controller

The UCP web UI is key for management. ucp-
controller provides this feature. It is the first
point of failure when users cannot access the
cluster.

ucp-reconcile

To monitor components' health, UCP runs ucp-
agent, and if some of them fail, it will try to
restart them. This component will just run when
something goes wrong.

ucp-dsinfo

UCP can run troubleshooting reports. It
executes this component to retrieve all available
information. We use support dumps to send
information to support services.

ucp-metrics
This component recovers node metrics. This
data can be used in other monitoring
environments.

ucp-interlock/ucp-interlock-proxy

Interlock components allow advanced users to
publish applications deployed in the cluster.
ucp-interlock queries the UCP API for
changes to be configured to publish services in
the ucp-interlock-proxy component, as well
as a reverse proxy to be deployed and
configured automatically for you by UCP.

Universal Control Plane Chapter 11

[413]

The following processes also run on master nodes but are separated into a different table
because they are related to Kubernetes:

Process Description

ucp-kube-apiserver

This is the Kubernetes master API component. All
Kubernetes processes will be deployed as containers in
our host. Using containers to deploy applications helps us
to maintain applications' components and their upgrades.

ucp-kube-controller-manager
This Kubernetes process will manage all controllers
required to control, replicate, and monitor Pods.

ucp-kube-scheduler
kube-scheduler schedules workloads within cluster
nodes.

ucp-kubelet
kubelet is the Kubernetes agent. It is the endpoint used
by Kubernetes to manage nodes and their interactions.

ucp-kube-proxy
kube-proxy manages a Pod's publishing and
communications.

k8s_ucp-kube-dns/
k8s_ucp-kubedns-sidecar/
k8s_ucp-dnsmasq-nanny

These containers manage and monitor DNS procedures
and the resolution required for UCP and Kubernetes.

k8s_calico-node/
k8s_install-cni_calico-node/
k8s_calico-kube-controllers

Calico is the default container network interface (CNI)
for Kubernetes and it is automatically deployed during
UCP installation.

There is also an important component on newer releases to help with the interaction
between Docker Swarm and Kubernetes interactions:

Process Description

k8s_ucp-kube-compose
kube-compose allows us to deploy Docker Compose's workloads either
on Docker Swarm as stacks or Kubernetes.

These are the components that can be deployed on manager nodes. We will usually deploy
at least three manager nodes because either Docker Swarm or Kubernetes requires an odd
number of nodes for a distributed consensus.

Now, let's review worker components.

Universal Control Plane Chapter 11

[414]

UCP components on worker nodes
The following are the components that are deployed on worker nodes once they are joined
to the cluster:

Components Description
ucp-agent, ucp-
proxy, ucp-dsinfo, and
ucp-reconcile

These processes have the same functionality that was described
for manager nodes.

ucp-interlock-extension

interlock-extension prepares configurations for
interlock-proxy based on changes retrieved from Docker
Swarm service configurations. This process is based on
templates reconfigured dynamically to accomplish all updates
that happen within cluster-wide published workloads.

ucp-interlock-proxy

interlock-proxy runs a proxy process configured
dynamically thanks to all other Interlock processes. These
prepare a configuration file for the proxy component with all
the running backends required for each published service.

For Kubernetes to work, worker nodes also execute the following processes:

Processes Description

ucp-kubelet and ucp-kube-proxy Only these two processes are required for
Kubernetes on worker nodes.

k8s_calico-node and
k8s_install-cni_calico-node

Networking within cluster nodes requires Calico, so
its processes are also deployed on worker nodes.

From these lists, it is easy to understand how Kubernetes is deployed on Docker Enterprise.
Manager nodes run Kubernetes' control plane while workers receive workloads. Notice that
managers run kube-proxy and kubelet, so they are also able to receive workloads. This is
also true for Docker Swarm, as we learned in Chapter 8, Orchestration Using Docker Swarm.
Docker Enterprise allows managers to execute application workloads by default.

Universal Control Plane Chapter 11

[415]

We will also review the volumes that are deployed on UCP. We will divide them into two
categories:

Volumes for certificates: All these volumes are associated with certificate
management within the cluster. Take care of them because if we lose them, we
will have serious authentication problems between UCP/Kubernetes processes:

ucp-auth-api-certs

ucp-auth-store-certs

ucp-auth-worker-certs

ucp-client-root-ca

ucp-cluster-root-ca

ucp-controller-client-certs

ucp-controller-server-certs

ucp-kv-certs

ucp-node-certs

Volumes for data: These are data volumes and are used to store different
databases deployed within the cluster, as well as the metrics that have been
retrieved from different components:

ucp-auth-store-data

ucp-auth-worker-data

ucp-kv

ucp-metrics-data

ucp-metrics-inventory

All these volumes are important for the cluster. Key-value pairs, common certificates, and
authentication data volumes are replicated on control plane nodes. They are created using
the default local volume driver unless we have already created them using a different
driver. Keep in mind that they should be created before deploying the cluster if we want to
store data in a non-standard location (/var/lib/docker/volumes or the defined data-
root path in your environment).

This section is very important for the Docker Certified Associate exam because we need to
know where components are distributed and their functionality on the platform.

Now that we know what components will be deployed on each cluster role, we will learn
how to install production-ready environments.

Universal Control Plane Chapter 11

[416]

Deploying UCP with high availability
First, we will take a look at the hardware and software requirements for the platform. We
will use version 3.0 – the current version at the time of writing this book. It is known that
the DCA exam was prepared even before Docker Enterprise version 2.0 was released.
Neither Docker Desktop nor Kubernetes were part of the Docker Enterprise platform on
that release. We will deploy the current version because the exam has evolved to cover
important topics in newer versions. Let's quickly review the current maintenance life cycle:

Docker Enterprise 2.1 Docker Enterprise 3.0
End of life on 2020-11-06 End of life on 2021-07-21
Components:
- Enterprise Engine 18.09.z
- Universal Control Plane 3.1.z
- Docker Trusted Registry 2.6.z

Components:
- Enterprise Engine 19.03.z
- Universal Control Plane 3.2.z
- Docker Trusted Registry 2.7.z

Docker provides 2 years of support from the release date. We recommend taking a look at
Docker's website for updated information on the maintenance life cycle and compatibility
matrix:

https:// success. docker. com/ article/ maintenance- lifecycle

https:// success. docker. com/ article/ compatibility- matrix

All of the listed versions include Kubernetes, but the deployed version will be different. At
the time of writing this book, Docker Enterprise deploys Kubernetes v1.14.8.

We can deploy the Docker Enterprise platform on-premises or on cloud providers. Before
deploying the first node, let's review the minimum node requirements:

8 GB and 4 GB of RAM for the manager and worker nodes, respectively.
2 vCPUs for manager nodes. Worker nodes' vCPUs will depend on the
applications to be deployed.
10 GB of free disk space for the /var partition for manager nodes (a minimum of
6 GB is recommended because Kubernetes will verify disk space before
installation) and at least 500 MB of free disk space for the /var partition for
worker nodes. Worker node space will depend on the applications to be
deployed, how big their images are, and how many image releases should be
present on our nodes.

https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/maintenance-lifecycle
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix
https://success.docker.com/article/compatibility-matrix

Universal Control Plane Chapter 11

[417]

A more realistic approach to resources for control plane and image management would
probably be the following:

16 GB of RAM for manager nodes and workers with DTR (we will learn about
DTR in Chapter 13, Implementing an Enterprise-Grade Registry with DTR).
Four vCPUs for manager nodes and workers with DTR. Control plane CPU and
image scanning can take forever if there is not enough CPU available.

Keep in mind that a cluster's size will really depend on the applications being deployed. It
is usually recommended to distribute application components in several nodes because
clusters with fewer nodes are harder to maintain. A few nodes with many resources is
worse than having the same resources distributed on many nodes. It gives you better
cluster life cycle management and a better workload distribution when some nodes fail.

On control plane nodes, we will deploy Docker Enterprise Engine version 19.03 (the latest
release at the time of writing). These nodes should be deployed with static IP addresses and
Linux kernel version 3.10 or higher. Because we will deploy more than one replica, we will
require an external load balancer to route control plane requests to any of the available
manager nodes. We will use a virtual IP address and a Fully Qualified Domain Name
(FQDN) associated with this load balancer. We will add them as Subject Alternative
Names (SANs) to ensure valid certificates. Certificates should be associated (as a SAN)
with any node that can be reached as part of UCP's service. In this case, manager nodes will
run control plane components, so certificates should be valid for any of them, including all
possible FQDN names associated with UCP's management endpoints (ports 443 and 6443
by default for Docker Swarm and Kubernetes, respectively).

We will expose TCP ports 443 and 6443 to users by default. Both can be changed to other
ones more appropriate for our environment. The first port allows user interaction with
UCP's control plane either using the web browser, the API, or the Docker command line.
The second port described publishes the Kubernetes API server. It allows us to interact
directly with the Kubernetes orchestrator.

Worker nodes do not require static IP addresses but they should be accessible by their
names using DNS.

Universal Control Plane Chapter 11

[418]

We cannot deploy user namespaces within UCP. (We learned about the
user namespaces that are used to improve host security in Chapter 3,
Running Docker Containers.) It is not easy to use this feature under UCP
conditions, which is why it is not supported.

A minimum environment with high availability will include three managers and at least
two workers. The following diagram shows the smallest environment (DTR nodes are not
included). We can say that UCP has three major logical components:

Therefore, as a summary, we will need the following logical requirements for the
deployment:

Static IP addresses for manager nodes
A VIP address and FQDN for the control plane
An external load balancer owning a VIP and TCP pass through to managers on
ports 443 and 6443 (by default)

Universal Control Plane Chapter 11

[419]

The following ports and protocols should be permitted (TCP ports unless explicitly
described):

On managers:
Port 443 for the UCP web UI and API
Port 6443 for the Kubernetes API server
Ports 2376 and 2377 for Docker Swarm communication
Ports ranging from 12379 to 12388 for internal UCP component
communication

On workers and managers:
Port 7946 (TCP and UDP) for Docker Swarm gossip
Port 4789 (UDP) for overlay networking
Port 12376 for TLS authentication proxy to access Docker Engine
Port 6444 for the Kubernetes API reverse proxy
Port 179 for BGP peers for Kubernetes networking
Port 9099 for Calico health checks
Port 10250 for Kubernetes Kubelet

Users will use ports 443 and 6443 to access UCP services via the HTTPS protocol.

All cluster nodes will run containers. Some of these nodes will act as managers and they
will run management components while others just run a few worker components and
workloads. But there are two common elements on managers and workers: UCP agent and
Docker Engine.

Docker Engine is always required because we need to run containers. Docker Enterprise
requires Docker Enterprise Engine. The installation process is easy and it will be based on
the license key file and the specific packages available for each customer
at https://hub.docker.com/u/<YOUR_USER_OR_ORGANIZATION>/content. First, we
will go to https://hub.docker.com/ and register for a Docker Hub account. Docker
provides a 1-month trial of the Docker Enterprise platform, available at https:/ /hub.
docker.com/editions/ enterprise/ docker- ee-trial. In Chapter 11, Universal Control
Plane, Chapter 12, Publishing Applications in Docker Enterprise, and Chapter 13,
Implementing an Enterprise-Grade Registry with DTR, we will show my own account
(frjaraur) for example purposes, as well as the different steps and pictures to help you
understand this.

https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial
https://hub.docker.com/editions/enterprise/docker-ee-trial

Universal Control Plane Chapter 11

[420]

The following screenshot shows the frjaraur content URL. You will have your own
content once you log into the Docker Hub website. We will find the required license and
our package repository URL on this page after signing up for a Docker Enterprise 30-day
trial:

At the bottom right, we will read our package's URL. Click on the copy button and follow
the next procedure to install Docker Enterprise Engine. This procedure will be different for
each Linux distribution. In this book, we will follow Ubuntu's procedure. The process is
described at the previously provided customer content URL. Microsoft Windows nodes are
also supported within the Docker Enterprise platform, although they can just be used as
workers at the time of writing this book.

These are the steps to follow to install UCP with high availability on Ubuntu nodes:

Export the Docker Engine version and the previously shown URL on1.
the DOCKER_EE_VERSION and DOCKER_EE_URL variables, respectively. At the
time of writing this book, the latest Docker Enterprise Engine version is 19.03:

export
DOCKER_EE_URL="https://storebits.docker.com/ee/trial/sub-76c16081-2

Universal Control Plane Chapter 11

[421]

98d-4950-8d02-7f5179771813"
export DOCKER_EE_VERSION=19.03

Notice that your DOCKER_EE_URL will be completely different. You can ask for a
trial license to follow these steps.

Then, we need to add the Docker customer's package repository to our2.
environment:

curl -fsSL "${DOCKER_EE_URL}/ubuntu/gpg" | sudo apt-key add -
apt-key fingerprint 6D085F96
add-apt-repository \
"deb [arch=$(dpkg --print-architecture)] $DOCKER_EE_URL/ubuntu \
$(lsb_release -cs) \ stable-$DOCKER_EE_VERSION"
apt-get update -qq

Finally, we will install the required packages:3.

apt-get install -qq docker-ee docker-ee-cli containerd.io

These procedures must be applied to all cluster nodes before installing UCP. As we
mentioned previously, we will have different procedures for different Linux flavors, but we
will also be able to include Microsoft Windows nodes in the cluster. Microsoft Windows
Docker Engine's installation is completely different and is shown
at https://hub.docker.com/u/<YOUR_USER_OR_ORGANIZATION>/content.

Always review your Docker customer's content page before installing
Docker Enterprise Engine because the installation procedure may change.

When all the cluster nodes have Docker Engine installed, we can continue with Docker
UCP's installation. This workflow is not required but it is recommended because we can
avoid any problems before installing UCP. This is because its components will run as
containers in your hosts.

Docker provides support for different infrastructures and also certifies running the Docker
Enterprise platform on them. Amazon Web Services and Microsoft Azure are the certified
environments at the time of writing this book. In both cases, Docker also provides
infrastructure scripts and/or step-by-step documentation for successfully deploying the
Docker Enterprise platform on them.

Universal Control Plane Chapter 11

[422]

The Docker Enterprise platform is based on Docker Swarm, although Kubernetes is also
deployed. Therefore, we will create a Docker Swarm cluster using the UCP installer, and
then we will add other nodes as managers or workers.

The installation will require launching a container named ucp. This is very important
because it ensures just one installation at once. We will also use Docker Engine's local
socket as the volume inside the installation container. The UCP installation process has
many options – we will cover the most important ones here.

To install UCP, we will launch docker container run --name ucp
docker/ucp:<RELEASE_TO_INSTALL>. It is important to install a specific release because
the docker/ucp container will also be used for backup/recovery and other tasks.

Let's write down and execute a usual installation command line for the first manager in the
cluster:

(first manager node) # docker container run --rm -it --name ucp \
 -v /var/run/docker.sock:/var/run/docker.sock \
 docker/ucp:3.2.5 install \
 --host-address <MANAGEMENT_HOST_IP_ADDRESS> \
 --san <LOAD_BALANCED_FQDN> \
 --san <OTHER_FQDN_ALIAS_OR_IP> \
 --admin-username <ADMIN_USER> \
 --admin-password <ADMIN_USER_PASSWORD>

 INFO[0000] Your Docker daemon version 19.03.5, build 2ee0c57608
(4.4.0-116-generic) is compatible with UCP 3.2.5 (57c1024)
 WARN[0000] None of the Subject Alternative Names we'll be using in the
UCP certificates ["<NODE_IP_ADDRESS>" "<NODE_NAME>"] contain a domain
component. Your generated certs may fail TLS validation unless you only use
one of these short names or IP addresses to connect. You can use the --san
flag to add more aliases
 INFO[0000] Checking required ports for connectivity
 INFO[0004] Checking required container images
 INFO[0007] Running install agent container ...
 INFO[0000] Loading install configuration
 INFO[0000] Running Installation Steps
 INFO[0000] Step 1 of 35: [Setup Internal Cluster CA]
 ...
 INFO[0014] Step 16 of 35: [Deploy UCP Controller Server]
 INFO[0016] Step 17 of 35: [Deploy Kubernetes API Server]
 ...
 INFO[0033] Step 24 of 35: [Install Kubernetes CNI Plugin]
 INFO[0063] Step 25 of 35: [Install KubeDNS]
 INFO[0064] Step 26 of 35: [Create UCP Controller Kubernetes Service
Endpoints]

Universal Control Plane Chapter 11

[423]

 INFO[0066] Step 27 of 35: [Install Metrics Plugin]
 INFO[0067] Step 28 of 35: [Install Kubernetes Compose Plugin]
 INFO[0073] Step 29 of 35: [Deploy Manager Node Agent Service]
 INFO[0073] Step 30 of 35: [Deploy Worker Node Agent Service]
 INFO[0073] Step 31 of 35: [Deploy Windows Worker Node Agent Service]
 INFO[0073] Step 32 of 35: [Deploy Cluster Agent Service]
 INFO[0073] Step 33 of 35: [Set License]
 INFO[0073] Step 34 of 35: [Set Registry CA Certificates]
 INFO[0073] Step 35 of 35: [Wait for All Nodes to be Ready]
 INFO[0078] All Installation Steps Completed

After 35 steps, your UCP's environment will be installed on the first Linux node. Take care
and use DNS resolution and an external load balancer. As we mentioned in the previous
sections, all the managers will run the same control plane components. Therefore, an
external load balancer is required to guide requests to any of them. This can be done by
following the round-robin algorithm, for example (it does not matter which UCP manager
node receives the requests, but at least one should be reachable).

The external load balancer will provide a virtual IP address to the UCP control plane and
we will also provide pass-through port-routing for ports 443 and 6443 (or customized ones
if you changed them). We will add this external load balancer's virtual IP address and the
associated fully qualified domain name as a SAN. In fact, we will add as many SANs as
required for our environment using the --san argument.

These steps are key for your organization access and Docker Trusted Registry (DTR)
because it is usual to integrate both within UCP. In this case, DTR will ask UCP for user
authentication, so it has to have access and resolution to UCP's FQDN and ports.

We will use a pass-through or transparent proxy on external load
balancers to allow UCP's backends to manage TLS certificates and
connections.

The UCP image will allow us to do the following:

Install and uninstall UCP using the install and uninstall-ucp actions. The
uninstall option will remove all UCP components from all cluster nodes. We do
not have to execute any other procedure to completely remove UCP from our
nodes. Docker Engine will not be removed.
Download the required Docker images from Docker Hub using the images
option.
Backup and restore UCP manager nodes using the backup and restore actions.

Universal Control Plane Chapter 11

[424]

Provide a UCP cluster ID and its certificates using the id and dump-certs
options. Dumping certificates allows us to store them securely to avoid certificate
problems if we accidentally remove any required volume.
Create a support-dump using the support action. These dumps will contain all
the useful information about our environment, including application/container
logs.
Upgrade the UCP platform by executing the upgrade option. This option will
upgrade all UCP components and may impact our services. It is preferred to add
the --manual-worker-upgrade argument to avoid worker nodes from being
auto-upgraded. We will need to take care of our workloads and move them
within worker nodes and manually upgrade UCP on them.
Create an example UCP configuration file and verify the required port status.
UCP can be configured using either the provided web UI or using configuration
files. Using configuration files will allow us to maintain reproducibility, and
changes can be managed with any configuration management application. This
method can be achieved once UCP is installed or during installation by
customizing the example config file generated with the example-config option
and using docker/ucp install --existing-config with this modified file.
The available options are described at the following link: https:/ / docs. docker.
com/ee/ ucp/ admin/ configure/ ucp-configuration- file.

The following are the most commonly used UCP installation options:

Options Description

--swarm-grpc-port,
--controller-port,
--kube-apiserver-port, and
--swarm-port

These options allow us to modify the default ports used in
several services. The most important ones, probably
customized in your environment, will be kube-apiserver-
port (defaults to 6443) and controller-port (defaults to
443). They publish Kubernetes and UCP user endpoints to
allow us to interact with the cluster.

--host-address and
--data-path-addr

The first option sets which node's IP address will be
allocated for publishing the control plane. The second option
allows us to isolate the control plane from the data plane.
We set a different interface or IP address for the data plane.

--pod-cidr, --service-
cluster-ip-range and --
nodeport-range

These options allow us to customize Kubernetes Pods' and
Services' IP address ranges and publishing ports for
NodePort services.

--external-server-cert
With this option, we configure our own certificate within the
UCP cluster.

https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file
https://docs.docker.com/ee/ucp/admin/configure/ucp-configuration-file

Universal Control Plane Chapter 11

[425]

--san

We include as many SANs as required to add these aliases to
UCP certificates. Ask yourself how users and admins will
consume the UCP cluster and add the FQDN names related
to these services.

--admin-username and --
admin-password

It is recommended to set up an admin username and
password during installation to provide a reproducible
workflow. We will avoid the --interactive option to
have an Infrastructure-as-Code (IaC) UCP installation
process.

Once UCP is installed on the first manager node, we will just join other manager nodes and
workers to the cluster, as we learned in Chapter 8, Orchestration Using Docker Swarm. To get
the required docker join command line, we just execute docker swarm join-token
manager for manager nodes and docker swarm join-token worker for worker nodes.
We just copy their output and execute the docker join command on each manager and
worker node. It is quite easy.

It is also possible to obtain the required joining instructions from the web UI by going to
the Shared Resources | Nodes menu.

Nodes in a UCP cluster can work with either Docker Swarm or Kubernetes, or even in
mixed mode. This allows nodes to run Docker Swarm and Kubernetes workloads at the
same time.

Mixed mode is not recommended in production because orchestrators do not share their
load information. Therefore, a node can be almost full for one orchestrator and empty for
another. In this situation, it can continue receiving new workloads for a non-full
orchestrator, hence impacting other orchestrator's application performance.

As a summary, we installed Docker Engine and then we installed UCP. We reviewed this
process and the main arguments required to install the Docker Enterprise platform in our
environment.

If you plan to install Docker Enterprise on Amazon AWS or the Microsoft Azure cloud, you
should read the specific instructions and options in the Docker documentation (for
AWS, https://docs. docker. com/ ee/ ucp/ admin/ install/ cloudproviders/ install- on-
aws; for Azure, https:/ / docs. docker. com/ee/ ucp/admin/ install/ cloudproviders/
install-on-azure).

Now, we will review the UCP environment.

https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-aws
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure
https://docs.docker.com/ee/ucp/admin/install/cloudproviders/install-on-azure

Universal Control Plane Chapter 11

[426]

Reviewing the Docker UCP environment
In this section, we will review the Docker UCP environment. We will be able to use either
the web UI, the command line, or its published REST API. In this book, we will cover the
web application interface and how to integrate our docker client command line with UCP.

First, we will introduce the web UI.

The web UI
The web UI will run on all manager nodes. We will use UCP's fully qualified domain name,
which is associated with its virtual IP address. Port 443 will be used unless you manually
configured a different one. If we open https://<UCP_FQDN>:<UCP_PORT> on our
browser, we will access the UCP login page. If we have used autogenerated certificates, the
browser will warn us about an untrusted CA. This is normal because UCP generates an
internal CA automatically for us to sign all internal and external certificates. We can upload
our corporate or private certificates into UCP.

Remember to apply a passthrough (or transparent proxy) configuration
on your external load balancer to access UCP backends. We will use
https://<MANAGER_IP>:<UCP_PORT>/_ping for the backend's health
check.

Let's have a quick review of UCP's web UI. The following screenshot shows the main login
interface. We set the admin's password during installation, either executing this process
interactively with the --interactive argument or automating these settings by adding
the --admin-username and --admin-password arguments. The username and password
that are used during installation should be used to log into UCP.

Universal Control Plane Chapter 11

[427]

The main page will also ask us to add a license file if we have not applied it during
installation. This can be done using the --license argument for docker run
docker/ucp:<RELEASE> install:

Universal Control Plane Chapter 11

[428]

The following screenshot shows the UCP Dashboard. Each user will have access to their
own. The left panel will provide access to the user's profile, Dashboard, Access Control,
Shared Resources, and resources specific to Kubernetes and Swarm:

The Dashboard screen shows us a quick review of the cluster's components' status. It also
provides a summary of the Swarm and Kubernetes workloads and an overview of the
cluster's load. Do not think this is enough for monitoring as this is too simple. We should
add monitoring tools to improve alerting, performance reporting, and capacity planning
features.

Universal Control Plane Chapter 11

[429]

Access Control will only appear when UCP administrators access the cluster's Web UI.
Administrators will be able to manage all of RBAC's behavior:

Orgs & Teams provides an interface to create organizations and teams and we
will integrate users into them from these entries.
The Users endpoint will allow us to manage users as expected. We will learn
how to create and manage users in the next topic.
Roles provides an interface for Kubernetes and UCP roles. Kubernetes resources
should be managed using declarative methods using YAML resource files, while
Docker Swarm's resources (managed by UCP) will be created using the web UI.
Grants helps us manage Kubernetes role bindings and Swarm roles and
collection integrations.

Shared Resources provides access to resources for either Kubernetes or Docker Swarm. We
will manage collections, stacks, containers, images, and nodes:

Nodes can be managed from the Nodes entry point. We will set node properties and the
orchestrator mode. Adding new nodes is easy, as we have seen. The Add Node option
shows us the cluster's docker join command line. We will just copy this instruction to the
new node's Terminal. This will also apply to Microsoft Windows nodes.

Stacks will show either multi-container or multi-service applications deployed on a Docker
Swarm cluster. This view also shows Kubernetes workloads.

Kubernetes and Swarm endpoints show us each orchestrator's specific resources:

Kubernetes shows namespaces, service accounts, controllers, services, ingress
resources, Pod configurations, and storage. We will be able to change which
namespace will be used for all users' web UI endpoints. We will also review and
create Kubernetes resources using the declarative method.

Universal Control Plane Chapter 11

[430]

Swarm allows us to create and review services, volumes, networks, secrets, and
configurations.

We can review the UCP documentation as well as Kubernetes' and the UCP API. This will
help us implement automation procedures based on REST API integrations.

The command line using the UCP bundle
The UCP bundle is probably the most important part to access for your users and
administrators. Although every user can have access to UCP's web UI, CI/CD, monitoring
tools, and DevOps, users will review and launch their workloads using the Docker
command line. Therefore, this access should be secure. Remember that Docker Swarm
deploys an encrypted control plane. All its internal communications will be secured by TLS.
Users' access is not secured. UCP, on the other hand, provides a completely secure solution.
Security is ensured using TLS for users and admin access. This is managed using
personalized certificates. Each user will get their own group of certificates. Kubernetes
access is also secured using the UCP user bundle.

To obtain this UCP bundle, users will use either the web UI or a simple curl command – or
any command-line web client – to download this package file, compressed as a ZIP folder:

Universal Control Plane Chapter 11

[431]

The preceding screenshot shows web GUI access to the user bundle file. We will just
download it using a web browser. Once it is on our computer, we will decompress it. This
file contains certificates, configuration, and scripts to load the client environment on our
computer, regardless of whether it is running Linux, Mac, or Windows operating systems.
There is an environment file for each one. We will look at its content and the procedure in
Linux, but it is similar in Windows (the commands will vary).

We can use curl and jq to download the user bundle from the command line:

$ AUTHTOKEN=$(curl -sk -d
'{"username":"<username>","password":"<password>"}'
https://<UCP_FQDN>:<UCP_PORT>/auth/login | jq -r .auth_token)

$ curl -k -H "Authorization: Bearer $AUTHTOKEN"
https://<UCP_FQDN>:<UCP_PORT>/api/clientbundle -o ucp-bundle-admin.zip

If we decompress the admin bundle file, ucp-bundle-admin.zip, using unzip, we will
obtain all the files required to connect to our cluster:

$ unzip ucp-bundle-admin.zip

We will then load this environment. We will use env.ps1 in Microsoft Windows
PowerShell or the env.cmd Command Prompt. On Linux hosts, we will use env.sh. When
we load the environment on our shell, we will be able to connect remotely to the UCP
cluster using the docker or kubectl client software:

$ source env.sh
 Cluster "ucp_<UCP_FQDN>:6443_admin" set.
 User "ucp_<UCP_FQDN>:6443_admin" set.
 Context "ucp_<UCP_FQDN>:6443_admin" created.

Notice that the Kubernetes context has also been set. Therefore, we will be able to manage
the cluster and deploy workloads on either Kubernetes or Docker Swarm. Each user's UCP
bundle must be stored securely. We can generate a new one if we remove it, but keep it
safe; someone could potentially use it and obtain access to your environment files.

UCP provides client software for Microsoft Windows and Linux on our
manager nodes
at https://<UCP_FQDN>:<UCP_PORT>/manage/dashboard/dockercl
i. We can download them to connect to the cluster.

Universal Control Plane Chapter 11

[432]

It is key to use the UCP bundle instead of connecting to the cluster using SSH or any other
local access. We will never allow local access to cluster nodes. Everyone must access the
cluster either using the command line or the web UI.

UCP's REST API is also secured using certificates. We will require the
UCP bundle's certificate files to access the cluster using its API.

We will review UCP's access control in the next section and provide a simple example that
will help us understand RBAC concepts.

Role-based access control and isolation
Role-based access control (RBAC) manages authorization for Docker Swarm and
Kubernetes. Docker Enterprise lets us manage users' access to resources. We use roles to
allow users to view, edit, and use cluster resources.

Authorization is based on the following concepts:

Subjects: We manage users, teams, and service accounts within organizations.
Users are part of teams, included in organizations.
Resources: These are the groups of Docker objects we were talking about
in Chapter 1, Modern Infrastructures and Applications with Docker. As Kubernetes
is also integrated into the UCP cluster, Kubernetes resources are also part of
these groupings. UCP manages resources grouped in collections.
Collections: These are sets of resources, including different kinds of objects, such
as volumes, secrets, configs, networks, services, and so on.
Roles: These group sets of permissions and we assign them to different subjects.
Roles define what can be done by whom.
Grants: Combining subjects with roles and resource sets, we obtain grants. They
are effective user permissions applied to groups of resources.

Service accounts are only valid for Kubernetes. These are not user
accounts; they are associated with applications or APIs assigned to
manage their access.

Universal Control Plane Chapter 11

[433]

There are some predefined roles but we can create our own. This is a list of the default ones
included with Docker Enterprise's UCP:

None: This role does not provide access to any Docker Swarm resources. This
should be the default role for new users.
View Only: Users with this role can view resources such as services, volumes,
and networks but they cannot create new resources.
Restricted Control: Users with this role can view and edit resources but they
cannot use bind mounts (hosts' directories) or execute new processes within
containers using docker exec. They cannot run privileged containers or with
enhanced capabilities.
Scheduler: This role allows users to view nodes so that they can schedule
workloads on them. By default, all users get a grant with the Scheduler role
against the /Shared collection.
Full Control: This role should be restricted to advanced users only. These can
view and edit volumes, networks, and images. They also can create privileged
containers.

Users will only be able to manage their own containers or Pods. This
behavior allows integrating namespaces (Kubernetes) and collections
(Docker Swarm) in this equation. Therefore, users with full control access
to a set of resources included in a collection will have all privileges on
them in Docker Swarm. The same will happen if we add resources within
a namespace and the user is included in a fully privileged role in
Kubernetes.

There is also a more advanced role that's assigned to Docker Enterprise administrators.
They will have full control and management privileges for the UCP environment. This can
be managed using the Is Admin checkbox on the user's properties page.

Grants interconnect users and permissions with the set of resources where they should be
applied. The grants management workflow includes their creation, user assignment, the
role that should be applied, and resource association. This way, we ensure that the
appropriate privileges are applied to a collection of resources assigned to a group of users
(or just one user).

Universal Control Plane Chapter 11

[434]

Collections are hierarchical and contain resources. They are represented by using a
directory-like structure and every user has their own private collection, along with the
user's default permissions. Using this, we can nest collections. Once a user has been granted
access to a collection, they will have access to all its hierarchical children. There are three
main collections: /, /System, and /Shared.

Under the /System collection, we will find UCP's manager nodes and UCP's and DTR's
system services. By default, only administrators will have access to this collection. On the
other hand, the /Shared collection will contain all the worker nodes ready for running
workloads. We can add additional collections and move some workers to isolate them and
provide multi-tenant features. Distributing workers on different collections will also
distribute workload execution for different groups or tenants.

Each user has a private collection by default under
/Collections/Swarm/Shared/Private/<USER_NAME>. This ensures
that users' workloads are secure by default and only administrators will
have access. Therefore, users have to deploy workloads on their team-
shared collections.

Labels associated with collections manage users' access to resources, which makes it easy to
allow or disallow a user's visibility dynamically.

Let's review these concepts with a short example.

We have two projects in our organization (myorganization): projectA and projectB.
We will also assume that we have three teams in our organization: developers, quality and
assurance, and DevOps. Let's describe some users and their roles within our organization:

Developers: dev1 and dev2
Quality and assurance: qa1 and qa2
DevOps: devops1 and devops2
UCP Admin

Universal Control Plane Chapter 11

[435]

The following image shows some screenshots of the user creation process. First, we create
an organization and then teams and users inside the previously created organization:

Each user will have their own user account in UCP. We will create developers, quality and
assurance, and DevOps teams and we will add their users. We will also create three main
collections as stages and child collections for each project. Therefore, we will have the
following:

development/projectA and development/projectB
certification/projectA and certification/projectB
production/projectA and production/projectB

Let's suppose that each developer works on one project at a time. They should have full
access to their projects during the development stage but they should have view-only
access in the certification stage. Quality and assurance users will only have access to create
and modify their deployments in the certification stage. DevOps will have access to create
and modify resources in production and they will allow view-only access to developers,
but only on projectA. In fact, projectB should be secure and only a devops2 user should
be able to modify resources for this project.

Universal Control Plane Chapter 11

[436]

The following screenshots show the process of adding grants to allow a user access to
collections. First, we create a collection, and then we add that collection to a new role:

We will launch two deployments with different users and will review how they view these
deployments.

Universal Control Plane Chapter 11

[437]

We will assume that all the required users have been created and that each user's ucp-
bundle has been downloaded. As user dev1, we will create a simple nginx deployment for
projectB, using com.docker.ucp.access.label=/development/projectB as the
label:

(as user dev1)$ source env.sh
Cluster "ucp_192.168.56.11:6443_dev1" set.
User "ucp_192.168.56.11:6443_dev1" set.
Context "ucp_192.168.56.11:6443_dev1" modified.

(as user dev1)$ docker service create --name nginx-dev --label
com.docker.ucp.access.label=/development/projectB nginx
k7hsizrvlc0cmy9va78bri06k
overall progress: 1 out of 1 tasks
1/1: running [==>]
verify: Service converged

(as user dev1)$ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
k7hsizrvlc0c nginx-dev replicated 1/1 nginx:latest

If we now impersonate user qa1, we will get different results:

(as user qa1)$ source env.sh
Cluster "ucp_192.168.56.11:6443_qa1" set.
User "ucp_192.168.56.11:6443_qa1" set.
Context "ucp_192.168.56.11:6443_qa1" modified.

(as user qa1)$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

User qa1 will not list any services because it does not have access to the dev1 collection.
But if we review this list with the devops2 user, we will obtain a list that includes the dev1
user's services:

(as user devops2)$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
k7hsizrvlc0c nginx-dev replicated 1/1 nginx:latest

If we try to modify this resource (the nginx-dev service), we will obtain an access error
because we only have view authorization. On the other hand, the dev2 user can scale up
the number of replicas because they are in the developer group:

(as user devops2)$ docker service update --replicas 2 nginx-dev
Error response from daemon: access denied:
no access to Service Create, Service Update, on collection
8185981a-5e15-4906-9fbf-465e9f712918

Universal Control Plane Chapter 11

[438]

no access to Service Create, Service Update, on collection
8185981a-5e15-4906-9fbf-465e9f712918
no access to Service Update, on collection
8185981a-5e15-4906-9fbf-465e9f712918

(as user dev2)$ docker service update --replicas 2 nginx-dev
nginx-dev
overall progress: 2 out of 2 tasks
1/2: running [==>]
2/2: running [==>]
verify: Service converged

To finish off this example, we will create two different services as user devops2. We will
deploy secure and unsecured services from projectB and projectA, respectively:

(as user devops2)$ docker service create --quiet --name nginx-prod-secure \
--label com.docker.ucp.access.label=/production/projectB nginx

4oeuld63v96ck26efype57320

(as user devops2)$ docker service create --quiet --name nginx-prod-unsecure
\
--label com.docker.ucp.access.label=/production/projectA nginx

txmuqfcr751n8cb445hqu73td

(as user devops2)$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
k7hsizrvlc0c nginx-dev replicated 2/2 nginx:latest
4oeuld63v96c nginx-prod-secure replicated 1/1 nginx:latest
txmuqfcr751n nginx-prod-unsecure replicated 1/1 nginx:latest

In this case, the devops1 user should only be able to manage nginx-prod-unsecure,
which is associated with projectA:

(as user devops1)$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
k7hsizrvlc0c nginx-dev replicated 2/2 nginx:latest
txmuqfcr751n nginx-prod-unsecure replicated 1/1 nginx:latest

This was a simple example of authorization management using labels. In this case, we
manually added these labels, but we can set a default collection for each user if we wish.
This will provide a default label associated with their workflows, instead of us using the
out-of-the-box /Collections/Swarm/Shared/Private/<USER> collection. We can also
associate constraints with collections to ensure specific locations. This is very important in
multi-tenant environments.

Universal Control Plane Chapter 11

[439]

UCP's Kubernetes integration
As we have learned, Kubernetes is deployed alongside Docker Swarm when installing
UCP. If we take a look at all the required Kubernetes components, we will notice that all of
them run as containers within our cluster. The required key-value store will also be
provided. Port 6443 (by default) will provide Kubernetes access, and users and
administrators will use this port to manage the cluster or execute their workloads.

We will use the Docker bundle's certificates and configuration file, kube.yml. As we
learned in this chapter, we will load our user's bundle environment and then get access to
the Kubernetes cluster using the kubectl command line.

Once env.sh has been loaded using source env.sh, we will have the required
environment variables and access to our certificates. If we get Kubernetes cluster nodes
using kubectl get nodes, we will obtain their status:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready master 4d13h v1.14.8-docker-1
node2 Ready master 4d13h v1.14.8-docker-1
node3 Ready master 4d13h v1.14.8-docker-1
node4 Ready <none> 4d12h v1.14.8-docker-1

If we review the running Pods in the kube-system namespace using kubectl get pods
-n kube-system, we will notice that calico and compose for Kubernetes are also
deployed:

$ kubectl get pods -n kube-system
 NAME READY STATUS RESTARTS AGE
 calico-kube-controllers-5c48d7d966-cncw2 1/1 Running 3 4d13h
 calico-node-8sxh2 2/2 Running 6 4d13h
 calico-node-k2fgh 2/2 Running 6 4d13h
 calico-node-nrk62 2/2 Running 6 4d13h
 calico-node-wgl9c 2/2 Running 6 4d13h
 compose-779494d49d-wk8m4 1/1 Running 3 4d13h
 compose-api-85c67b79bd-7sbhj 1/1 Running 4 4d13h
 kube-dns-6b8f7bdd9-g6tfq 3/3 Running 9 4d13h
 kube-dns-6b8f7bdd9-ls2z2 3/3 Running 9 4d13h
 ucp-metrics-6nfz4 3/3 Running 9 4d13h
 ucp-metrics-hnsfb 3/3 Running 9 4d13h
 ucp-metrics-xdl24 3/3 Running 9 4d13h

Universal Control Plane Chapter 11

[440]

These components are very important because Calico is the default CNI deployed with
UCP. This allows us to deploy applications distributed cluster-wide. Pods and services are
able to communicate within the cluster even if they do not run on the same host. This is not
required in Docker Swarm because overlay networking is included by default. Calico
allows us also to improve Kubernetes security because it can deploy network policies to
isolate and manage Pods' and services' communications.

On the other hand, Compose for Kubernetes provides a standard interface for Docker
Swarm and Kubernetes. Docker stacks could be deployed either on Docker Swarm or
Kubernetes.

We can also notice that ucp-metrics also runs Kubernetes workloads as other system-
related deployments, obtained using kubectl get deployments -A:

$ kubectl get deployments -A
NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE
kube-system calico-kube-controllers 1/1 1 1 4d14h
kube-system compose 1/1 1 1 4d14h
kube-system compose-api 1/1 1 1 4d14h
kube-system kube-dns 2/2 2 2 4d14h

Kubernetes roles and role bindings are managed from the command line and the web UI.
All Kubernetes features from the 1.14.8 release are available. This is also very important.
Docker Enterprise provides a vanilla Kubernetes release and product releases also upgrade
Kubernetes, but you cannot upgrade Kubernetes manually.

In the next section, we will review the main administration tasks and security
improvements.

UCP administration and security
UCP administrators manage Docker Swarm and Kubernetes clusters. They integrate
external LDAP/AD authentication. Authentication can be delegated but UCP manages
authorizations, as we learned in the Role-based access control and isolation section.

Universal Control Plane Chapter 11

[441]

The following screenshot shows the Admin Settings endpoint:

Universal Control Plane Chapter 11

[442]

Docker Enterprise license can be introduced during installation, but it also can be manage
from the web UI in Admin Settings. This endpoint also allow us to do the following
administration tasks:

Rotate Docker Swarm's tokens to improve a cluster's security. Tokens are only
used to join nodes to the cluster; we can change them whenever we need to.
Manage Interlock's ports and enable publishing applications using this feature.
We will talk about Interlock in Chapter 12, Publishing Applications in Docker
Enterprise.
Configure some cluster configurations such as UCP's port and key-value
database snapshots.
Integrate external LDAP and configure the default role to apply for new users
and some session settings. This option delegates authentication to external
LDAP/AD systems and UCP will just be used as an authentication cache if it is
not available. We set user filters using attributes to only integrate subsets of users
in the UCP environment. UCP synchronizes LDAP changes periodically.
Change UCP's application and audit logging levels.
Execute and configure backups from the web UI.
Integrate Docker Trusted Registry and Docker Content Trust to allow only
signed images. This will be applied to all the nodes within the cluster.
Set the default orchestrator for new nodes. We can choose between Docker
Swarm, Kubernetes, and mixed mode.
Authorize administrators or users to execute workloads on UCP managers or
worker nodes running DTR. We will decide who can run workloads on
management nodes. It is recommended to avoid any non-control-plane workload
on managers.
Customize and launch platform upgrades. This will allow us to decide between a
completely automated process and deploying manual upgrades to worker nodes
to avoid impacting an application's service.

It is recommended to disallow application workloads on UCP managers. These nodes
should only run on the UCP system and DTR containers. This will avoid any application
performance issues due to UCP's control plane. On the other hand, if any application
component consumes too many resources, this will not affect the control plane.

Universal Control Plane Chapter 11

[443]

Allowing only signed images in production is key. This will ensure image
provenance and a CI/CD workflow. It is also possible to require some
specific signs for images. For example, we can ensure that only images
signed by Operations Team, Developer's Chief, and IT manager
will run in production. This will apply to all the nodes in the cluster.

Many of UCP's and Kubernetes' features can be queried or modified via UCP's REST API.
We should review the documentation at https://<UCP_FQDN>[:443]/apidocs/ and
https://<UCP_FQDN>[:443]/kubernetesdocs/.

UCP also provides some Pod security policies that are applied by default on a Kubernetes
cluster. These Pod security policies will do the following:

Manage privileged containers
Configure the host's namespaces (IPC, PID, network, and ports)
Manage the host's paths and their permissions and volume types
Manage users and groups for the container process execution and setuid
capabilities inside the container
Change the default container's capabilities
Integrate Linux security modules
Allow host kernel configurations using sysctl

By default, only administrators will be able to deploy privileged containers in UCP's
Kubernetes. This is configured on a privileged Pod security policy. By default, UCP just
provides two special policies, as we can see in the kubectl get PodSecurityPolicies
output:

$ kubectl get PodSecurityPolicies
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS VOLUMES
privileged true * RunAsAny RunAsAny RunAsAny RunAsAny false *
unprivileged false RunAsAny RunAsAny RunAsAny RunAsAny false *

You can read more about the Pod security policies included with Docker Enterprise and
how to create new ones in the Kubernetes documentation or by going to this blog
post: https://www. mirantis. com/ blog/ understanding- kubernetes- security- on- docker-
enterprise-3-0/.

https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/
https://www.mirantis.com/blog/understanding-kubernetes-security-on-docker-enterprise-3-0/

Universal Control Plane Chapter 11

[444]

Admission controllers are other valuable pieces in Kubernetes' security. They intercept
Kubernetes API requests to allow or modify them before scheduling or executing any
action. This allows us to enforce default security on resources, even if users try to execute
an action that isn't allowed. Admission controllers are applied to the Kubernetes API
process. Therefore, we should inspect the ucp-kube-apiserver container's command-line
options to verify which admission controllers have been applied to our environment. As
Kubernetes is not part of the DCA exam yet, we will stop here regarding this topic. But it is
important to understand that Docker Enterprise applies security in Kubernetes using well-
known Kubernetes mechanisms. UCP applies three special admission controllers to prevent
anyone from removing core Kubernetes roles required by UCP, to ensure image signing if
required, and to manage the execution of non-system Kubernetes Pods only on non-mixed
nodes.

In the next section, we will review how to create and restore UCP's backups.

Backup strategies
In this section, we will learn how to backup and restore the Docker Enterprise UCP
platform.

As UCP runs on top of Docker Swarm, this is the first component to review when
preparing a good backup strategy.

We should run periodic backups of Docker Swarm. These backups will allow us to recover
cluster configuration and workloads.

Docker Swarm's backup
We introduced how to execute a Docker Swarm backup in Chapter 8, Orchestration Using
Docker Swarm. In that chapter, we described the content we should take care of. Let's learn
about the steps to follow to implement a production-ready backup of Docker Swarm for the
Docker Enterprise platform.

Make sure you have applied the auto-lock feature to improve secure access to Docker
Swarm data as we will need it. The lock key will not be stored with a backup. You should
store it in a safe place.

Universal Control Plane Chapter 11

[445]

We will execute the backup steps on all non-leader manager nodes. This will ensure that
any of the managers except the leader (at that moment) can be restored. In fact, it should
not be easy to completely destroy a cluster, so backing up just a node should be fine. If all
the clusters are completely lost, we will recover that node and then add others, as we did
during the installation process. Your cluster health should not rely on backup-restore
features. That is why we run the Raft protocol for cluster components syncing and running
more than one manager node.

Application deployments and their configuration should be stored in code repositories, as
we have recommended a couple of times in this book. Sometimes, it is even easier to deploy
a new cluster and launch all the applications again using automation tools.

The following steps are recommended to create a good backup of Docker Swarm
orchestrator data:

Verify that the platform is healthy before executing this backup procedure.1.
We will stop Docker Engine on the non-leader manager by executing systemctl2.
stop docker.
Create a .tar file with /var/lib/docker/swarm directory content: tar -cvzf3.
"<DIRECTORY_FOR_YOUR_BACKUPS>/swarm-backup-$(hostname -s)-

$(date +%y%m%d).tgz" /var/lib/docker/swarm/.
Start Docker Engine again executing systemctl start docker.4.
We can execute this procedure on other non-leader manager nodes, although we5.
will be able to restore Docker Swarm with one node only if the backup was
successful.

UCP runs on top of Docker Swarm. Let's review the required steps for backing up UCP.

Backing up UCP
Unlike in Docker Swarm, in UCP, there is no need to pause or stop any platform
components to execute a backup. This feature is quite new. In older releases, components
had to be paused on nodes while performing a backup. We will just execute this backup on
a single node because UCP data will allow us to recover the entire cluster. But there are a
few important notes about this backup:

This backup does not include Docker Swarm deployed workloads, networks,
configurations, or secrets.
We cannot recover an updated UCP using a backup from an older release.
Neither ucp-metrics-data nor ucp-node-certs volumes are included.

Universal Control Plane Chapter 11

[446]

Kubernetes data will be covered in a UCP backup.
Neither Router Mesh's nor Interlock settings will be stored. Once the restored
components have been redeployed, configurations will also be recovered.
Backup content will be stored in a .tar file in a user-defined location. It can be
secured using a passphrase.

We can create UCP backups using the web UI, command line, or its API (on the latest
releases).

Using the command line, we will need to use the ucp release container. For the current
version at the time of writing this book, we will use the docker/ucp:3.2.4 image. To
create a backup from the command line, we will execute docker container run
docker/ucp:<RELEASE> backup:

$ docker container run \
 --rm \
 --interactive \
 --log-driver none \
 --name ucp \
 --volume /var/run/docker.sock:/var/run/docker.sock \
 --volume <FULL_PATH_FOR_UCP_BACKUP_DIRECTORY>:/backup \
 docker/ucp:3.2.4 backup \
 --file <BACKUP_FILENAME>.tar \
 --passphrase "<PASSPHRASE>" \
 --include-logs=false

In this example, we are not including UCP platform logs (they will be included by default).
If SELinux is enabled, which is recommended, we will also add --security-opt
label=disable.

Using the web UI, we will first navigate to Admin Settings. Then, we'll select Backup
Admin, and finally, we'll click on Backup Now to immediately launch the backup
execution.

We will not cover the API method in this book and how to verify backup content when the
process has finished, but it is described on the Docker documentation website. It is also
recommended to review the latest backup information provided at https:/ /docs. docker.
com/ee/admin/backup/ back- up- ucp/ .

https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/
https://docs.docker.com/ee/admin/backup/back-up-ucp/

Universal Control Plane Chapter 11

[447]

To restore a UCP backup, we can start from one of these situations:

We can start from scratch, restoring a UCP backup on a new, recently installed
Docker Enterprise Engine.
We can also recover a UCP backup on an initiated Docker Swarm, restoring UCP
so that it has a new, fully functional cluster.
We can restore UCP on the Docker Swarm cluster where it was created. We will
just choose one of its manager nodes and run the recovery process after the
previous UCP deployment is completely uninstalled. This is the only case where
the previously created user's bundle will continue to work.

If recovery is started from scratch or using a new Docker Swarm cluster,
the IP addresses and SAN that were used will not be valid. Therefore, we
will need to regenerate server certificates after the UCP restore.

After you have successfully restored UCP, you can add new managers
and workers the same way you would after a fresh installation.

To restore a previously created backup, we will execute docker container run
docker/ucp:<RELEASE> restore. We need to use the same image release that was used
to create the backup. This is very important because we cannot restore from a different
release:

$ docker container run \
 --rm \
 --interactive \
 --name ucp \
 --volume /var/run/docker.sock:/var/run/docker.sock \
 docker/ucp:3.2.4 restore \
--passphrase "<PASSPHRASE>" <
<FULL_PATH_FOR_UCP_BACKUP_DIRECTORY>/<BACKUP_FILENAME>.tar

It is important to know that backup and restore are processes that you should execute when
everything else is not working. We deploy UCP environments with high availability to
avoid unexpected situations. You have to actively monitor your cluster environments and
not leave unattended errors or alarms on monitoring systems. In the event of a manager
node failure, a cluster will continue working, but we must reestablish a healthy status as
soon as possible. From my experience, most of the issues found in production Docker
Enterprise environments are related to filesystems growing without control, processes
eating all the resources, or communication problems. Take care of these possible issues,
monitor cluster health, and do periodic backups (and update their processes) to ensure you
are able to recover your environment if everything fails.

Universal Control Plane Chapter 11

[448]

In the next section, we will learn what to monitor and how to check different components'
statuses to avoid unnoticed failures.

Upgrades, monitoring, and troubleshooting
In this section, we will review how cluster upgrades must be deployed. We will work in a
cluster environment. There are some steps to follow in order to execute platform updates
without service interruption. Monitoring and troubleshooting are critical in production. We
will learn about what important keys and values we should review to ensure a cluster's
health and what steps we should follow to troubleshoot a degraded or faulty environment.

Upgrading your environment
We must review the Docker UCP release notes and upgrade procedure for each version. At
the time of writing this book, the current release documentation is available on Docker's
website: https://docs. docker. com/ reference/ ucp/ 3.2/cli/ upgrade.

We should always perform a backup before any procedure, and we usually start by
upgrading Docker Engine. You should review the Docker documentation to ensure that
these steps are not changed between releases. Node upgrades should be done one at time.
We will begin with non-leader manager nodes. Once all the managers have been upgraded,
we will move the running services between different worker nodes to ensure minimal
service interruption between upgrades.

Once all the Docker Engine instances have been updated, we will start with the UCP
upgrade. We can execute this process from the web UI and from the command line. We
recommend following the command-line steps because the process will give you more
information. We can execute this process offline if all the required images have been
previously downloaded on all the nodes. We can check the required images at this
link: https://docs. docker. com/ ee/ ucp/ admin/ install/ upgrade- offline/ . We will pre-
load all the images using docker image load -i
<PACKAGE_WITH_ALL_IMAGES>.tar.gz.

We will run docker container run docker/ucp upgrade with the appropriate
arguments to upgrade our UCP environment. Docker Engine should be upgraded before
executing this command:

docker container run --rm -it \
 --name ucp \
 -v /var/run/docker.sock:/var/run/docker.sock \

https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/reference/ucp/3.2/cli/upgrade
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/
https://docs.docker.com/ee/ucp/admin/install/upgrade-offline/

Universal Control Plane Chapter 11

[449]

 docker/ucp:3.2.X \
 upgrade --interactive

If your nodes work with more than one interface, we will also add --host-address with
an appropriate IP address.

We can run and upgrade the process with the debug option, --debug,
which is very useful for identifying errors if something goes wrong.

There is an interesting option on the current release because we can upgrade workers
manually using --manual-worker-upgrade. This helps us control the impact we have on
services that are deployed in the environment.

All UCP processes will be upgraded in all nodes unless the --manual-worker-upgrade
option is used. Once the upgrade process ends, the environment will be completely
upgraded to the new release. At that moment, it is important to verify the health of the
cluster.

Monitoring a cluster's health
We can use either the command line or the web UI to review the environment's health. We
will use common Docker Swarm commands because we are running the environment on
top of this orchestrator. We can review the node status with docker node ls. If we use
the Docker UCP bundle to connect to the environment, we might miss some components.
Make sure you are using an administrator user in the environment to be able to retrieve its
health. Using the bundle, we can list all the control plane processes and use docker
container ls to verify their statuses.

We can retrieve a manager's status from the https://<ucp-manager-url>/_ping
endpoint, on each manager node's IP address or FQDN name. Requests to this URL can
give us a 200 code if a node is healthy and a 500 code if there are some faulty components.

It is important to understand that this endpoint must be verified on each
node because we are accessing the cluster through a load balancer to each
manager. This configuration helps us provide high availability to the
environment.

Universal Control Plane Chapter 11

[450]

The web UI also provides cluster status information. The Dashboard page shows us a clear
status overview of the environment. This page includes counters for errors, warnings, or
pending states for managers and workers. We will quickly notice errors on platform nodes.
A performance summary for managers and worker nodes allows us to verify cluster sizing
and its usage. We will also see information about deployed services on Docker Swarm and
Kubernetes. This way, we can drill down to different UCP sections to deep dive into
encountered errors. The following screenshot shows how the UCP Dashboard looks when
showing the described platform overview:

Universal Control Plane Chapter 11

[451]

In each UCP resource section, we will see the resources' statuses, along with their
properties. To monitor the cluster node's health, we will review the Nodes section, which
can be found under Shared Resources. In this section, we will review the CPU and memory
usage per node. This view will also help us find possible service degradation when node
resource usage is too high.

Troubleshooting UCP
Throughout this chapter, we have been reviewing the main monitoring endpoints for UCP
components. There are some critical endpoints in the cluster. We also described some
database processes that manage important clusters' persistent data. These components run
on managers and they replicate their data between them. It should be enough for the UCP
environment, but sometimes, things can go wrong and they lose node synchronization.
Network latency and performance problems can lead to these situations.

Troubleshooting UCP-KV
If we lose some manager nodes, ucp-kv can show the incorrect number of nodes. We can
check the number of configured nodes with etcdctl. We can execute etcdctl on
the ucp-kv container directly:

$ docker exec -it ucp-kv etcdctl \
 --endpoint https://127.0.0.1:2379 \
 --ca-file /etc/docker/ssl/ca.pem \
 --cert-file /etc/docker/ssl/cert.pem \
 --key-file /etc/docker/ssl/key.pem \
 cluster-health

This will show us cluster is healthy messages if the configured number of managers
are healthy. If ucp-kv is unhealthy, we should review whether all the manager nodes are
fine. If we deleted one manager but this change was not correctly updated on the other
nodes, we could end up with an unhealthy cluster. To recover from this situation, we
would need to remove the deleted node from the etcd database using etcdctl member
remove (check the etcd documentation at https:/ /etcd. io/ docs/ v3.4. 0/op- guide/
runtime-configuration/).

Update the component configurations and their states (deleting nodes, for
example) one by one. Wait until the changes are synced in the cluster
before executing a new update command.

https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/

Universal Control Plane Chapter 11

[452]

We can also have problems with the authentication database. In the next section, we will
learn how to correct the number of nodes if we lose one manager node.

Troubleshooting UCP-Auth
First, we will review the current number of healthy manager nodes. If some of them are still
unhealthy, we should correct that situation first. Once the managers are healthy, if the
authentication database continues to be in an inconsistent state, we will follow this
procedure:

$ docker container run --rm -v ucp-auth-store-certs:/tls \
docker/ucp-auth:<RUNNING_VERSION> \
--db-addr=<HEALTHY_MANAGER_IP_ADDRESS>:12383 \
--debug reconfigure-db --num-replicas <NUMBER_OF_MANAGERS>

This command will run a docker/ucp-auth container using the
RethinkDB reconfigure-db command to fix the right number of managers.

Troubleshooting nodes
As we mentioned previously, network latency and performance can lead you to
problematic situations. Take care of node resources and filesystems. If manager nodes
become exhausted, the cluster will end up in an unhealthy state.

We can observe heartbeat failures if nodes cannot be contacted in 10 seconds. Worker nodes
will reach a pending state if they cannot contact a manager node. We check these nodes
locally. We also take a look at possible network or performance issues.

Managers can also become unhealthy. If other managers cannot reach them, ucp-
controller processes will be impacted. We can check container logs for network issues.

These are some of the most common issues found on the Docker UCP platform. We usually
start by reviewing the web UI dashboard and the ucp-controller container logs. If any
other component seems unhealthy, we review its logs.

In the next chapter, we will learn how to publish applications deployed within the Docker
Enterprise platform using the Interlock feature.

Universal Control Plane Chapter 11

[453]

Summary
This chapter covered the main Docker UCP features. We learned how to deploy a cluster
with high availability and how to manage and deploy workloads using either UCP's web
UI or the user bundle with the Docker and Kubernetes command line. We also introduced
UCP's role-based access control, which helps us provide fine-grained access to cluster
resources. We also took a look at the web UI and the main configurations available for
managing Docker Enterprise's control plane.

We also learned about UCP's components and how to deploy and manage Docker
Enterprise's control plane and user resources in production. Finally, we learned how to
ensure platform availability by verifying a cluster's components' status and executing
backups.

In the next chapter, we will learn how to publish a deployed application using Docker's
integrated tools and features.

Questions
Which of these sentences are true?1.

a) The Docker UCP installation process will also install the Docker Enterprise
Engine on our hosts.
b) UCP provides an integrated RBAC system that will help us to authenticate
and authorize our users against its database.
c) Docker UCP provides two kinds of access: the web UI and the UCP
bundle.
d) All of the above sentences are true.

Which of these sentences is not true about a docker/ucp image?2.

a) This image will provide UCP's backup and restore.
b) We should always use the latest docker/ucp release version in our
environment.
c) Docker UCP can be completely removed using a docker/ucp image.
d) The upgrade process must be executed manually on each cluster's node.

Universal Control Plane Chapter 11

[454]

What have we learned about the UCP installation process (which of the following3.
is true)?

a) We can change the UCP controller and Kubernetes ports using special
arguments.
b) We can isolate the control plane using --data-path-addr to specify an
interface or an IP address for the data plane.
c) We can only have one subject alias name for the UCP environment and, by
default, this will be the manager's IP address.
d) We will install UCP on the manager using the docker/ucp install
procedure and then we will join worker nodes.

Which of the following is true about high availability in UCP?4.

a) UCP is deployed on top of a Docker Swarm cluster, so we will need an
odd number of nodes to provide high availability.
b) We will need to deploy Kubernetes with high availability once UCP is
installed.
c) An external load balancer is required to distribute client requests between
different nodes using a transparent-proxy (passthrough) to allow managers
to provide end-to-end TLS tunnels.
d) We can check a manager's availability using
the https://<ucp-manager-url>/_ping endpoint.

Which one of these roles is not included in UCP by default?5.

a) Privileged
b) Full Control
c) Administrator
d) Scheduler

Further reading
Refer to the following links for more information regarding the topics that were covered in
this chapter:

Universal Control Plane overview: https:/ / docs. docker. com/ ee/ucp/

Docker Enterprise architecture: https:/ /docs. docker. com/ ee/ docker- ee-
architecture/

Docker Enterprise products: https:/ /docs. docker. com/ ee/ supported-
platforms/

https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/ucp/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/docker-ee-architecture/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/
https://docs.docker.com/ee/supported-platforms/

Universal Control Plane Chapter 11

[455]

UCP's access control mode: https:/ /docs. docker. com/ ee/ ucp/ authorization/

Deploying applications on UCP's Kubernetes: https:/ /docs. docker. com/ ee/
ucp/kubernetes/

UCP access using the command line: https:/ /docs. docker. com/ ee/ ucp/user-
access/cli/

Troubleshooting UCP node states: https:/ /docs. docker. com/ee/ ucp/ admin/
monitor- and- troubleshoot/ troubleshoot- node- messages/

Docker UCP's API: https:/ /docs. docker. com/ reference/ ucp/ 3.2/api/

Docker Enterprise best practices and design considerations: https:/ /success.
docker.com/ article/ docker- enterprise- best- practices

Designing a disaster recovery strategy: https:/ /success. docker. com/ article/
dr-failover- strategy

https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/authorization/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/kubernetes/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/ee/ucp/admin/monitor-and-troubleshoot/troubleshoot-node-messages/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://docs.docker.com/reference/ucp/3.2/api/
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/docker-enterprise-best-practices
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy
https://success.docker.com/article/dr-failover-strategy

12
Publishing Applications in

Docker Enterprise
The previous chapter helped us to understand Docker Enterprise's control plane
components. Docker UCP deploys Docker Swarm and Kubernetes clusters over the same
nodes. Both orchestrators share host components and devices. Each orchestrator will
manage its own hardware resources. Information such as available memory and CPU is not
shared between orchestrators. Therefore, we have to take care if we use both on a host
simultaneously.

But what about publishing applications deployed on them? We learned how to publish
applications on Docker Swarm and Kubernetes, but working on enterprise environments
must be secure. In this chapter, we will learn how to publish applications on Docker
Enterprise environments using either UCP-provided or community tools.

This chapter will show us the main publishing resources and features provided by UCP for
Docker Swarm and Kubernetes. These components will help us to publish only front
services, thereby ensuring an application's security. We will learn about ingress controllers,
which is the preferred solution for publishing applications in Kubernetes, and Interlock, an
enterprise-ready solution provided by UCP to publish applications in Docker Swarm.

We will cover the following topics in this chapter:

Understanding publishing concepts and components
Deep diving into your application's logic
Ingress controllers
Interlock
Chapter labs

We will begin this chapter by reviewing some of the concepts learned in connection with
Docker Swarm and Kubernetes deployments.

Publishing Applications in Docker Enterprise Chapter 12

[457]

Technical requirements
You can find the code for this chapter in the GitHub repository: https:/ /github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. git

Check out the following video to see the Code in Action:

"https://bit.ly/2EHobBy"

Understanding publishing concepts and
components
Chapter 8, Orchestration Using Docker Swarm, showed us how applications work when
deployed on top of a Docker Swarm cluster.

We will use service objects to deploy applications in Docker Swarm. Internal
communication between services is always allowed if they run in the same network.
Therefore, we will deploy an application's components in the same network and they will
interact with other published applications. If two applications have to interact, they should
share the network or be published.

Publishing applications is easy; we will just specify the ports that should be listening on the
host where the process is running. However, we learned that Docker Swarm will publish
an application's ports on all cluster hosts, and Router Mesh will route internal traffic to
reach an appropriate service's tasks. Let's go back to these topics relating to containers and
services before reviewing multi-service applications.

We have different options to publish container applications, as we learned in Chapter 4,
Container Persistency and Networking. To make processes visible out of a container's isolated
network namespace, we will use different network strategies:

Bridge networking: This is the default option. A container's processes will be
exposed using the host's Network Address Translation (NAT) features.
Therefore, a container's process listening on a port will be attached to a host's
port. NAT rules will be applied either to Linux or Microsoft Windows containers.
This allows us to execute more than one container's instances using different
hosts' ports.

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/2EHobBy

Publishing Applications in Docker Enterprise Chapter 12

[458]

We will publish container processes using the --publish or -p (or even --
publish-all or -P to publish all image-declared exposed ports) option with the
optional Docker host's IP address and port alongside the published port and
protocol (TCP/UDP): docker container run -p
[HOST_IP:HOST_PORT:]<CONTAINER_PORT>[/PROTOCOL]. By default, all the
host's IP addresses and random ports within the 32768-65000 range will be used.

The host's network namespace: In this situation, we will use the host's network
namespace. Processes will be directly available, listening on the host's ports. No
port translation will be used between the container and the host. Since the
process port is attached directly, only one container's instance is allowed per
host. We will use docker container run --net=host to associate a new
container with the host's network namespace.
MacVLAN: This is a special case where a container will use its own namespace,
but it will be available at the host's network level. This allows us to attach
VLANs (Virtual LANs) directly to containers and make them visible within an
actual network. Containers will receive their own MACs; hence, services will be
available in the network as if they were nodes.

These were the basic options. We will use external DNS to announce how they will be
reached. We can also deploy containers on customized bridge networks. Custom networks
have their own DNS namespace and containers will reach one another within the same
network through their names or aliases. Services won't be published for other services
running in the same network. We will just publish them for other networks or user access.
In these cases, we will use NAT (common bridge networking), a host's namespace, or
MacVLAN.

These will work on standalone hosts, but things will change if we distribute our workloads
cluster-wide. We will now introduce the Kubernetes network model. This model must
cover these situations:

Pods running on a node should be able to communicate with others running on
other hosts without NAT.
System components (kubelet and control plane daemons) should be able to
communicate with pods running on a host.
Pods running in the host network of a node can communicate with all pods
running on other hosts without NAT.

As we have learned, all containers within a pod share its IP address and all pods run on a
flat network. We do not have network segmentation in Kubernetes, so we need other tools
to isolate them. We will use network policies to implement firewall-like or network ACL-
like rules. These rules are also applied to publishing services (ingress traffic).

Publishing Applications in Docker Enterprise Chapter 12

[459]

Docker's network model is based on the Container Network Model (CNM) standard,
while Kubernetes' network model is implemented using the Container Network
Interface (CNI) model.

Docker's CNM manages Internet Protocol Address Management (IPAM) and network
plugins. IPAM will be used to manage address pools and containers' IP addresses, while
network plugins will be responsible for managing networks on each Docker Engine. CNM
is implemented on Docker Engine via its libnetwork library, although we can add third-
party plugins to replace this built-in Docker driver.

On the other hand, CNI modes expose an interface for managing a container's network.
CNI will assign IP addresses to pods, although we can also add external IPAM interfaces,
describing its behavior using JSON format. These describe how any CNI plugin must
provide cluster and standalone networking when we add third-party plugins. As
mentioned previously, Docker Enterprise's default CNI plugin is Calico. It provides cluster
networking and security features using IP in IP encapsulation (although it also provides
VXLAN mode).

Let's move on. Docker Engine provides all the networking features for hosts, and
Kubernetes will also provide cluster-wide networking using CNI. Docker Swarm includes
cluster-wide networking out of the box using VXLAN. An overlay network driver creates a
distributed network between all hosts using their bridge network interfaces. We will just
initialize a Docker Swarm cluster and no additional operations will be required. An ingress
overlay network and a docker_gwbridge bridge network will be created. The former will
manage control and data traffic related to Swarm services, while docker_gwbridge will be
used to interconnect Docker hosts within Docker Swarm overlay networks.

We improved cluster's security by encrypting overlay networks, but we will expect some
overhead and a minor negative impact on performance. As demonstrated in standalone
networking and containers sharing networks, all services connected to the same overlay
network will be able to talk to one another, even if we have not published any ports. Ports
that should be accessible outside of a service's network must be explicitly published using -
p [HOSTS_PORT:]<CONTAINER_PORT>[/PROTOCOL].

There is a long format for publishing a service's ports. Although you have
to write more, it is clearer. We will write -p
published=<HOSTS_PORT>,target=<CONTAINER_PORT>,protocol=<

PROTOCOL>.

Publishing Applications in Docker Enterprise Chapter 12

[460]

Publishing services within Docker Swarm will expose a defined service's port on all hosts in
the cluster. This feature is Router Mesh. All hosts will publish this service even if they do
not really run any service's processes. Docker will guide traffic to a service's tasks within
the cluster using an internal ingress overlay network.

Remember that all services received a virtual IP address. This IP address will be fixed
during a service's lifetime. Each service is composed of tasks associated with the containers.
Docker will run as many tasks, and thus containers, as are required for this service to work.
Each task will run just one container, with its IP address. As containers can run everywhere
in the cluster and they are ephemeral (between different hosts), they will receive different
IP addresses. A service's IP addresses are fixed and will create a DNS entry in Docker
Swarm's embedded DNS. Therefore, all services within an overlay network will be
reachable and known by their names (and aliases).

A similar approach is present in Kubernetes. In this case, services are just a grouping of
pods. Pods will get different dynamic IP addresses because resilience will manage their life
cycle, creating new ones if they die. But services will always have a fixed IP address during
their life. This is also true for Docker Swarm. Therefore, we will publish services and
internal routing and load balancing will guide traffic to pods or tasks' containers.

Both orchestrators will allow us to bypass these default behaviors, but we are not going to
dive deep into these ideas because we have covered them in Chapter 8, Orchestration Using
Docker Swarm, and Chapter 9, Orchestration Using Kubernetes.

Now that we have a basic understanding, we can introduce ingress controllers. These are
pieces of software that will allow us to publish fewer ports within our cluster. They will
help us to ensure security by default access, publishing fewer ports and only specific
application routes. Ingress controllers will provide reverse proxy with load balancing
capacities to help us publish an application's backends running as services inside a
container's infrastructure. We will use internal networking instead of publishing an
application's services. We will just publish the ingress controller and all the application's
traffic will become internal from this endpoint.

The ingress controller concept can be applied to both Kubernetes and Docker Swarm.
Kubernetes has special resources for this to work, but Docker Swarm has nothing already
prepared. In this case, we will have to use external applications. Docker Enterprise does
provide an out-of-the-box solution for Docker Swarm services. Interlock integrates the
ingress controller features described but applied to Docker Swarm's behavior.

In the next section, we will talk a little about application logic and expected behavior on
container platforms.

Publishing Applications in Docker Enterprise Chapter 12

[461]

Understanding an application's logic
We have reviewed how publishing will work for our application's components, but should
they all be published? The short answer is probably no. Imagine a three-layer application.
We will have a middle layer for some kind of backend that will consume a database and
should be accessed through a frontend. In a legacy data center, this layered application will
probably run each service on a separate node. These nodes will run on different subnets to
isolate accesses between them with firewalls. This architecture is quite common. Backend
components will be in the middle, between the database and the frontend. The frontend
should not access the database. In fact, the database should only be accessible from the
backend component. Therefore, should we publish the database component service? The
frontend component will access the backend, but do we have to publish the backend
component? No, but the frontend should be able to access the backend service. Users and
other applications will use frontend components to consume our application. Therefore,
only frontend components should be published. This guarantees security by using a
container's features instead of firewalls and subnets, but the final outcome is the same.

Docker Swarm allows us to implement multi-networking applications using overlay
custom networks. These will allow us to interconnect components of applications from
different applications sharing some networks. This can become complex if many services
from different applications have to consume one service. This many-to-one networking
behavior may not work correctly in your environment. To avoid this complexity, you have
two options:

Use flat networks, either moving to Kubernetes or defining large overlay subnets.
The first option is better in this case as Kubernetes provides network policies to
improve flat network security. Large networks in Docker Swarm do not provide
any security for their components. It is up to you to improve it with external
tools.
Publish this common service and allow other applications to consume it as if they
were cluster-external. We will use DNS entries for our service and other
applications will know how to access it. We will use load balancers and/or API
managers to improve availability and security. These external components are
beyond the scope of this book, but they will provide non-container-based
application behavior.

Now that we understand how applications can be deployed and published, we will
introduce the concept of ingress controllers and their components before getting into
Docker Enterprise's Interlock.

Publishing Applications in Docker Enterprise Chapter 12

[462]

Publishing applications in Kubernetes using
ingress controllers
As mentioned previously, ingress controllers are special Kubernetes components that are
deployed to publish applications and services.

Ingress resources will define rules and routes required to expose HTTP and HTTPS
deployed services.

An ingress controller will complete this equation as a reverse proxy, adding load-balancing
capabilities. These features can be arranged by an external edge router or a cluster-
deployed software proxy. Any of these will manage traffic using dynamic configurations
built using ingress resource rules.

We can also use ingress for TCP and UDP raw services. This will depend on which ingress
reverse proxy has been deployed. It is customary to publish an application's services using
protocols other than HTTP and HTTPS. In this case, we can use either Router Mesh on
Docker Swarm or NodePort/LoadBalancer on Kubernetes.

An ingress resource may look like the following YAML file:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 pathType: Prefix
 backend:
 serviceName: test
 servicePort: 80

Publishing Applications in Docker Enterprise Chapter 12

[463]

Ingress rules contain an optional host key used to associate this resource with a proxied
host header for inbound traffic. All subsequent rules will be applied to this host.

It will also contain a list of paths, associated with different services, defined as proxied
backends. All requests matching the host and path keys will be redirected to listed
backends. Deployed services and ports will define each backend for an application.

We will define a default backend to route any request not matching any
ingress resource's rules.

As mentioned, ingress controllers will deploy ingress rules on different proxy services. We
will either use existing external hardware or software load balancers or we will deploy
these components within the cluster. As these pieces are interchangeable, different
deployments will provide different behaviors, although ingress resource configurations
will be similar. These deployments should be published, but backend services do not
require direct external access. Ingress controller pieces will manage routes and rules
required to access services.

Ingress controllers will be published using any of this chapter's described methods,
although we will usually use NodePort- and LoadBalancer-type services.

We can deploy multiple ingress controllers on any Kubernetes cluster.
This is important because we can improve isolation on multi-tenant
environments using specific ingress controllers for each customer.

We have described a layer 7 routing architecture for Kubernetes. The following diagram
shows an example of ingress controller deployment. An external load balancer will route a
user's requests to the ingress controller. This component will review ingress resource tables
and route traffic to the appropriate internal service's ClusterIP. Then, Kubernetes will
manage internal service-to-pod communications to ensure that a user's requests reach the
service's associated pods:

Publishing Applications in Docker Enterprise Chapter 12

[464]

In the next section, we will learn how Docker Enterprise deploys this publishing logic for
Docker Swarm services.

Using Interlock to publish applications
deployed in Docker Swarm
Interlock is based on the ingress controller's logic described previously. Docker Swarm
architecture is different. Its differences are even more pronounced when we talk about
Kubernetes and Docker Swarm networking implementations. Kubernetes provides a flat
network architecture, as we have seen. Multiple networks within the cluster will add
additional security features, but also more complexity.

Interlock substitutes the previous Docker Enterprise's router mesh L7
routing implementation. Router mesh was available in previous UCP
releases. Interlock appeared in the 2.0 release of Docker Enterprise.

Publishing Applications in Docker Enterprise Chapter 12

[465]

Interlock will integrate Docker Swarm and Docker Remote API features to isolate and
configure dynamically an application proxy such as NGINX or HA-Proxy using extensions.
Interlock will use Docker Swarm's well-known objects, such as configs and secrets, to
manage proxy required configurations. We will be able to manage TLS tunnels and
integrate rolling updates (and rollbacks) and zero-downtime reconfigurations.

Interlock's logic is distributed in three main services:

The Interlock service is the main process. It will interact with the Docker Remote
API to monitor Docker Swarm events. This service will create all the
configurations required by a proxy to route requests to an application's
endpoints, including headers, routes, and backends. It will also manage
extensions and proxy services. The Interlock service will be consumed via its
gRPC API. Other Interlock services and extensions will access Interlock's API to
get their prepared configurations.
The Interlock-extension service will query Interlock's API for the configurations
created upstream. Extensions will use this pre-configuration to prepare real
configurations for the extension-associated proxy. For proxy services such as
NGINX or HA-Proxy, deployed within the cluster, the Interlock-extension
service will create its configurations and then these will be sent to the Interlock
service via its API. The Interlock service will then create a config object within
the Docker Swarm cluster for the deployed proxy services.
The Interlock-proxy is the proxy service. It will use configurations stored in
config objects to route and manage HTTP and HTTPS requests.

Docker Enterprise deploys NGINX as the Interlock-proxy. Docker Swarm cluster changes
affecting published services will be updated dynamically.

Interlock allows DevOps groups to implement Blue-Green and Canary
service deployment. These will help DevOps to deploy application
upgrades without impacting access on the part of users.

The following diagram shows a basic Interlock schema. As mentioned, Interlock looks like
an ingress controller. The following schema represents common applications' traffic. User
requests will be forwarded by the external load balancer to the Interlock proxy instances.
This component will review its rules and forward requests to the configured service's IP
address. Then, Docker Swarm will use internal routing and load balancing to forward
requests to the service's tasks:

Publishing Applications in Docker Enterprise Chapter 12

[466]

Interlock's layer 7 routing supports the following features:

Since Interlock services run as Docker Swarm services, high availability based on
resilience is granted.
Interlock interacts with the Docker API, hence, dynamic and automatic
configuration is provided.
Automatic configuration: Interlock uses the Docker API for configuration. You
do not have to manually update or restart anything to make services available.
UCP monitors your services and automatically reconfigures proxy services.
We can scale a proxy service up and down because it is deployed as a separate
component.
Interlock provides TLS tunneling, either for TLS termination or TCP
passthrough. Certificates will be stored using Docker Swarm's secret objects.
Interlock supports request routing by context or paths.
We can deploy multiple extensions and proxy configurations simultaneously to
isolate accesses on multi-tenant or multi-region environments.

Interlock-proxy and Interlock-extension services' instances run on worker nodes. This will
improve security, isolating the control plane from publishing services.

We can use host mode networking to bypass default routing mesh
services' behavior for the Interlock-proxy service. This will improve
network performance.

Publishing Applications in Docker Enterprise Chapter 12

[467]

Publishing services using Interlock are based on label customization. We will require at
least the following:

com.docker.lb.hosts: This label will manage the host header, hence the
service's published name.
com.docker.lb.port: The internal service's port is also required and associated
using this label. Remember that this port should not be published.
com.docker.lb.network: This defines which network the Interlock-proxy
service should attach to in order to be able to communicate with the defined
service.

Other labels will allow us to modify configured-proxy behavior and features. This is a list
of some other important labels:

Labels Description
com.docker.lb.ssl_cert and
com.docker.lb.ssl_key

These keys allow us to integrate the backend's
certificate and key.

com.docker.lb.sticky_session_cookie
We will set a cookie to allow sticky sessions to define
a service instance's backends.

com.docker.lb.backend_mode
This stipulates how requests reach different backends
(it defaults to vip, which is also the default mode for
Docker Swarm services).

com.docker.lb.ssl_passthrough
We can close tunnels on application backends,
thereby enabling SSL passthrough.

com.docker.lb.redirects
This key allows us to redirect requests to different
FQDNs using host header definitions.

You can review all the available labels in Docker Enterprise's documentation (https:/ /
docs.docker.com/ ee/ ucp/ interlock/ usage/ labels- reference).

If a service is isolated on just one network, we don't need to add
com.docker.lb.network, but it will be required if it is combined with
com.docker.lb.ssl_passthrough. If we publish services using stacks,
we will use the stack's name.

There are many options and configurations available for Interlock's described components.
We will be allowed to change the proxy's default port, the Docker API socket, and the
polling interval, among other things. Extensions will have many features and
configurations depending on external load balancing integrations. We recommend that you
review all the available keys and configurations in Docker Enterprise's documentation
(https://docs.docker. com/ ee/ ucp/ interlock/ config).

https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/usage/labels-reference
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config
https://docs.docker.com/ee/ucp/interlock/config

Publishing Applications in Docker Enterprise Chapter 12

[468]

We recommend reviewing this link, https:/ /success. docker. com/ article/ how- to-
troubleshoot-layer- 7- loadbalancing, to get some interesting tips regarding the
troubleshooting of Interlock-related issues.

In the next chapter, we will introduce Docker Trusted Registry. This tool provides a secure
image store, integrating image signing features and vulnerability scanning. These features,
among others, provide a production-ready image store solution.

Reviewing Interlock usage
We will now review some examples of Interlock usage.

We will need to enable Interlock in Docker Enterprise. It is disabled by default and is part
of the Admin Settings section. We can change the default ports (8080 for HTTP and 8443
for secure access using HTTPS), as shown in the following screenshot:

https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing
https://success.docker.com/article/how-to-troubleshoot-layer-7-loadbalancing

Publishing Applications in Docker Enterprise Chapter 12

[469]

Once enabled, Interlock's services are created, which we can verify by using the admin's
UCP bundle and executing docker service ls:

$ docker service ls --filter name=ucp-interlock
ID NAME MODE REPLICAS IMAGE PORTS
onf2z2i5ttng ucp-interlock replicated 1/1 docker/ucp-interlock:3.2.5
nuq8eagch4in ucp-interlock-extension replicated 1/1 docker/ucp-interlock-
extension:3.2.5
x2554tcxb7kw ucp-interlock-proxy replicated 2/2 docker/ucp-interlock-
proxy:3.2.5 *:8080->80/tcp, *:8443->443/tcp

It is important to observe that, by default, Interlock-proxy will not be isolated on worker
nodes if there are not enough nodes to run the required number of instances. We can
change this behavior by using simple location constraints (https:/ /docs. docker. com/ ee/
ucp/interlock/deploy/ production).

For this example, we will use the colors application again. We used this simple
application in Chapter 5, Deploying Multi-Container Applications. This is a simple docker-
compose file prepared to deploy a colors service. We will use a random color, leaving
the COLORS variable empty. We will create a colors-stack.yml file with the following
content:

version: "3.2"

services:
 colors:
 image: codegazers/colors:1.16
 deploy:
 replicas: 3
 labels:
 com.docker.lb.hosts: colors.lab.local
 com.docker.lb.network: colors-network
 com.docker.lb.port: 3000
 networks:
 - colors-network

networks:
 colors-network:
 driver: overlay

https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production
https://docs.docker.com/ee/ucp/interlock/deploy/production

Publishing Applications in Docker Enterprise Chapter 12

[470]

We will connect to Docker Enterprise with a valid user using their bundle. For this lab, we
will use the admin user that we created during installation. We will download the user's
ucp bundle using any of the procedures described in Chapter 11, Universal Control Plane.
Once downloaded and unzipped, we will just load UCP's environment using source
env.sh:

$ source env.sh
Cluster "ucp_<UCP_FQDN>:6443_admin" set.
User "ucp_<UCP_FQDN>:6443_admin" set.
Context "ucp_<UCP_FQDN>:6443_admin" modified.

Once the UCP environment is loaded, we will use the book's Git repository (https:/ /
github.com/frjaraur/ dca- book- code. git). Interlock's labs can be found under
the interlock-lab directory. We will deploy the colors stack using docker stack
deploy -c colors-stack.yml lab:

interlock-lab$ docker stack deploy -c colors-stack.yml lab
Creating network lab_colors-network
Creating service lab_colors

We will review how colors instances are distributed within the cluster by using docker
stack ps:

$ docker stack ps lab
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
ksoie4oin10e lab_colors.1 codegazers/colors:1.16 node4 Running Running 8
seconds ago
b0dykjgp8ack lab_colors.2 codegazers/colors:1.16 node2 Running Preparing 9
seconds ago
m13tvfbw5cgb lab_colors.3 codegazers/colors:1.16 node3 Running Preparing 9
seconds ago

We enabled Interlock on UCP's Admin Settings section. We used the default port, so we
should access our deployed service on the 8080 port (because we are using HTTP in this
lab). Notice that we have not used any port key in the docker-compose file. We have not
published any service's port. Let's check whether Interlock is working by specifying the
required host header, colors.lab.local:

$ curl -H "host: colors.lab.local" http://<UCP_NODE>:8080/text
APP_VERSION: 1.15
COLOR: black
CONTAINER_NAME: e69a7ca3b74f
CONTAINER_IP: 10.0.5.15 172.18.0.4
CLIENT_IP: 10.0.0.2
CONTAINER_ARCH: linux
$ curl -H "host: colors.lab.local" http://<UCP_NODE>:8080/text

https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git
https://github.com/frjaraur/dca-book-code.git

Publishing Applications in Docker Enterprise Chapter 12

[471]

APP_VERSION: 1.15
COLOR: yellow
CONTAINER_NAME: 69ebb6f349f6
CONTAINER_IP: 10.0.5.14 172.18.0.3
CLIENT_IP: 10.0.0.2
CONTAINER_ARCH: linux

The output may change and we will launch some requests to ensure that we get different
backends (we deployed three instances). If we do not specify any host header, a default one
will be used. If none was configured (default behavior), we will get a proxy error. As we are
using NGINX (default), we will get a 503 error:

$ curl -I http://<UCP_NODE>:8080/text
HTTP/1.1 503 Service Temporarily Unavailable
Server: nginx/1.14.2
Date: Tue, 31 Mar 2020 19:51:05 GMT
Content-Type: text/html
Content-Length: 537
Connection: keep-alive
ETag: "5cad421a-219"

We can change the default Interlock's backend using the special label
com.docker.lb.default_backend: "true", associated with one of our services. This
will act as a default site when headers don't match any configured service.

Let's remove this lab before continuing. We will use docker stack rm. We will probably
get an error because stacks will now have to be removed carefully:

$ docker stack rm lab
Removing service lab_colors
Removing network lab_colors-network
Failed to remove network 97bgcu0eo445sz8ke10bacbge: Error response from
daemon: Error response from daemon: rpc error: code = FailedPrecondition
desc = network 97bgcu0eo445sz8ke10bacbge is in use by service
x2554tcxb7kwv0wzsasvfjh6dFailed to remove some resources from stack: lab

This error is normal. The Interlock-proxy component is attached to our application's
network, hence it cannot be removed. Interlock will refresh configurations every few
seconds (Docker API polls will be launched every 3 seconds and, after these intervals,
Interlock will manage the required changes). If we just wait a few seconds and launch the
removal command again, it will delete the stack's remaining components (network):

$ docker stack rm lab
Removing network lab_colors-network

We will now test a simple redirection using the com.docker.lb.redirects key.

Publishing Applications in Docker Enterprise Chapter 12

[472]

Simple application redirection
In this example, we will review how we can redirect requests from one service to another.
This can be interesting when we want to migrate users from an old application to a newer
release, at application level. We are not talking about an image upgrade in this case. We
will simply create a new overlay network using docker network create:

$ docker network create -d overlay redirect

We will now create a simple web server application service (the smallest NGINX image,
nginx:alpine). Notice that we will add to host headers inside the
com.docker.lb.hosts label. We have also added com.docker.lb.redirects to ensure
that all requests sent to http://old.lab.local will be redirected to
http://new.lab.local. This is how this service definition will appear:

$ docker service create --name redirect --network redirect \
--label com.docker.lb.hosts=old.lab.local,new.lab.local \
--label com.docker.lb.port=80 \
--label com.docker.lb.redirects=http://old.lab.local,http://new.lab.local
nginx:alpine

If we test access to one of our UCP nodes on port 8080, using old.lab.local as the host
header, we will be redirected to http://new.lab.local. We added -L to the curl
command to allow the required redirection:

$ curl -vL http://<UCP_NODE>:8080/ -H Host:old.lab.local
* Trying <UCP_NODE>...
* TCP_NODELAY set
* Connected to <UCP_NODE> (<UCP_NODE>) port 8080 (#0)
> GET / HTTP/1.1
> Host:old.lab.local
> User-Agent: curl/7.58.0
> Accept: */*
>
< HTTP/1.1 302 Moved Temporarily
< Server: nginx/1.14.2
< Date: Tue, 31 Mar 2020 22:21:26 GMT
< Content-Type: text/html
< Content-Length: 161
< Connection: keep-alive
< Location: http://new.lab.local/
< x-request-id: d4a9735f8880cfdc99e0478b7ea7d583
< x-proxy-id: 1bfde5e3a23e
< x-server-info: interlock/v3.0.0 (27b903b2) linux/amd64
<
* Ignoring the response-body

Publishing Applications in Docker Enterprise Chapter 12

[473]

* Connection #0 to host <UCP_NODE> left intact
* Issue another request to this URL: 'http://new.lab.local/'
* Could not resolve host: new.lab.local
* Closing connection 1
curl: (6) Could not resolve host: new.lab.local

Notice that new.lab.local was a dummy FQDN, hence we cannot resolve it, but the test
request was forwarded to this new application site.

We will now deploy an example service that is protected using TLS certificates. Interlock
will manage its certificates and access will be secure.

Publishing a service securely using Interlock with
TLS
In this example, we will deploy a service that should be published securely using TLS. We
can create tunnels from users directly to our service, configuring Interlock as a transparent
proxy, or we can allow Interlock to manage tunnels. In this case, a service can be deployed
using HTTP, but HTTPS will be required from the user's perspective. Users will interact
with the Interlock-proxy component before reaching the defined service's backends.

For this example, we will use the colors application again with random configuration. We
will use the colors-stack-https.yml file with the following content:

version: "3.2"

services:
 colors:
 image: codegazers/colors:1.16
 deploy:
 replicas: 1
 labels:
 com.docker.lb.hosts: colors.lab.local
 com.docker.lb.network: colors-network
 com.docker.lb.port: 3000
 com.docker.lb.ssl_cert: colors_colors.lab.local.cert
 com.docker.lb.ssl_key: colors_colors.lab.local.key
 networks:
 - colors-network

networks:
 colors-network:
 driver: overlay
secrets:

Publishing Applications in Docker Enterprise Chapter 12

[474]

 colors.lab.local.cert:
 file: ./colors-lab-local.cert
 colors.lab.local.key:
 file: ./colors-lab-local.key

We will create a sample key and an associated certificate and these will be integrated inside
Interlock's configuration automatically.

It is always relevant to review Interlock's component logs using Docker
service logs; for example, we will detect configuration errors using
docker service logs ucp-interlock.

We will use openssl to create a certificate that is valid for 365 days:

$ openssl req \
 -new \
 -newkey rsa:4096 \
 -days 365 \
 -nodes \
 -x509 \
 -subj "/C=US/ST=CA/L=SF/O=colors/CN=colors.lab.local" \
 -keyout colors.lab.local.key \
 -out colors.lab.local.cert

Once these keys and certificates are created, we will connect to Docker Enterprise using
the admin user again. Although the admin's environment will probably already be loaded
(if you are following these labs one by one), we will load the ucp environment using
source env.sh:

$ source env.sh
Cluster "ucp_<UCP_FQDN>:6443_admin" set.
User "ucp_<UCP_FQDN>:6443_admin" set.
Context "ucp_<UCP_FQDN>:6443_admin" modified.

Once the UCP environment is loaded, we will use this book's example colors-stack-
ssl.yaml file. We will deploy the colors stack with HTTPS using docker stack
deploy -c colors-stack-https.yml lab. This directory also contains a prepared
certificate and key:

interlock-lab$ $ docker stack deploy -c colors-stack-https.yml colors
Creating network colors_colors-network
Creating secret colors_colors.lab.local.cert
Creating secret colors_colors.lab.local.key
Creating service colors_colors

Publishing Applications in Docker Enterprise Chapter 12

[475]

We will review how colors instances are distributed within the cluster using docker
stack ps:

$ docker stack ps colors
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
xexbvl18d454 colors_colors.1 codegazers/colors:1.16 node4 Running Running 4
minutes ago

We enabled Interlock on UCP's Admin Settings section. We used the default port, hence
we should access our deployed service on the 8443 port (because we are using HTTPS).
Notice that we have not used any port key on the docker-compose file. We have not
published any service's port.

We can review Interlock's proxy configuration by reading the associated
com.docker.interlock.proxy.<ID> configuration object. We can use docker config
inspect and filter its output. First, we will obtain the current ucp-interlock-proxy
configuration object:

$ export CFG=$(docker service inspect --format '{{(index
.Spec.TaskTemplate.ContainerSpec.Configs 0).ConfigName}}' ucp-interlock-
proxy)

Then, we will just inspect this object:

$ docker config inspect --pretty ${CFG}

Inspecting the Interlock-proxy configuration can be very useful when it comes to
troubleshooting Interlock issues. Try to include one service or stack at a time. This will
avoid the mixing of configurations and help us to follow incorrect configuration issues.

Summary
This chapter covered Docker Enterprise's publishing features. We learned different
publishing strategies for Docker Swarm and Kubernetes and how these tools can be
integrated inside Docker Enterprise.

We have seen how these methods also improve an application's security by isolating
different layers and allowing us to publish only frontend and requisite services.

The next chapter will teach us how Docker Enterprise implements a fully secure and
production-ready image store solution.

Publishing Applications in Docker Enterprise Chapter 12

[476]

Questions
Which labels are required to publish a service using Interlock?1.

a) com.docker.lb.backend_mode
b) com.docker.lb.port
c) com.docker.lb.hosts
d) com.docker.lb.network

Which one of these processes is not part of Interlock?2.

a) ucp-interlock
b) ucp-interlock-controller
c) ucp-interlock-extension
d) ucp-interlock-proxy

Where do Interlock processes run within Docker Enterprise nodes?3.

a) ucp-interlock runs on Docker Swarm's leader.
b) ucp-interlock-extension runs on any manager.
c) ucp-interlock-proxy runs only on workers.
d) None of the above answers are correct.

Which features does Interlock support?4.

a) SSL/TLS endpoint management
b) Transparent proxy or SSL/TLS passthrough
c) Dynamic configuration using the Docker API
d) TCP/UDP publishing

Which of the following statements regarding the publishing of applications on5.
container-orchestrated environments are true?

a) Ingress controllers and Interlock have a common logic using reverse proxy
services for publishing applications.
b) Ingress controllers help us to publish applications securely by exposing
only required services.
c) Interlock requires access to an application's front service networks.
d) None of these premises are true.

Publishing Applications in Docker Enterprise Chapter 12

[477]

Further reading
Refer to the following links for more information regarding the topics covered in this
chapter:

Docker Interlock documentation: https:/ /docs. docker. com/ ee/ ucp/ interlock/

Universal Control Plane Service Discovery and Load Balancing for
Swarm: https:/ /success. docker. com/ article/ ucp-service- discovery- swarm

Universal Control Plane Service Discovery and Load Balancing for
Kubernetes: https:/ / success. docker. com/ article/ ucp- service- discovery-
k8s

https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://docs.docker.com/ee/ucp/interlock/
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-swarm
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s
https://success.docker.com/article/ucp-service-discovery-k8s

13
Implementing an Enterprise-

Grade Registry with DTR
Docker Enterprise is a complete Container as a Service (CaaS) platform. In previous
chapters, we have learned how Universal Control Plane (UCP) provides a complete control
plane solution for the Docker Swarm and Kubernetes orchestrators. We also learned about
how UCP includes publishing features using Interlock. An enterprise-ready platform
should also cover the storage of images. In this chapter, we will learn about Docker
Trusted Registry (DTR), a component of the Docker Enterprise platform designed to
manage and ensure security in Docker images.

In this chapter, we will learn about DTR components and how to deploy and manage a
secure registry with high availability in terms of its components. We will also learn about
how DTR provides an enterprise solution using Role-Based Access Control (RBAC), image
scanning, and other security features. The final topics covered will demonstrate how we
can integrate DTR automation and promotion features in our CI/CD workflow and
strategies to ensure DTR's health. By the end of this series of chapters about Docker
Enterprise, you will have good knowledge of this platform.

We will cover the following topics in this chapter:

Understanding DTR components and features
Deploying DTR with high availability
Learning about RBAC
Image scanning and security features
Integrating and automating image workflow
Backup strategies
Updates, health checks, and troubleshooting

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[479]

Technical requirements
You can find the code for this chapter in the GitHub repository: https:/ /github. com/
PacktPublishing/Docker- Certified- Associate- DCA- Exam- Guide. git

Check out the following video to see the Code in Action:

"https://bit.ly/32tg6sn"

Understanding DTR components and
features
DTR is the Docker Enterprise's platform registry, used to store and manage images. It is
deployed on top of defined UCP worker nodes. DTR will run as a multi-container
application. This means that all containers will run together, associated with just one
defined node. In the case of node failure, no other nodes will take its DTR containers. This
is very important because we need to deploy multiple DTR deployments, on different
nodes.

DTR uses RethinkDB as a database to store and sync data between registry nodes. To
provide high availability to DTR, we need to deploy an odd number of replicas. We will
use three replicas, so we need to deploy DTR workloads on three worker nodes.
Synchronization will be done using overlay networking. DTR installation will create a dtr-
ol overlay network and this will be used internally for replica synchronization.

Each replica will deploy the following processes:

Replica (DTR instance) Process

dtr-api-<replica_id>
This process exposes DTR's API
internally.

dtr-garant-<replica_id>
DTR's authentication is managed by
means of this component.

dtr-jobrunner-<replica_id>
jobrunner is used to schedule
different internal DTR maintenance
tasks.

dtr-nginx-<replica_id>
The nginx process acts as a reverse
proxy, publishing DTR's API and web
UI on ports 80 and 443 (secure).

https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://github.com/PacktPublishing/Docker-Certified-Associate-DCA-Exam-Guide.git
https://bit.ly/32tg6sn

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[480]

dtr-notary-server-<replica_id> and dtr-
notary-signer-<replica_id>

These processes help us to sign and
maintain users' signatures.

dtr-registry-<replica_id>
A community-based registry will be
installed as a core component in DTR.

dtr-rethinkdb-<replica_id>
RethinkDB is the database used to
store DTR's repository information.

dtr-scanningstore-<replica_id>
This component manages and stores
scanning data.

Notice that all processes will have a common suffix to identify each replica within the
cluster. We will deploy different replicas, but their data will be synchronized.

Notary server processes will also receive requests whenever any user
pushes or pulls images using a client with content trust enabled. A notary
signer will execute server-side timestamps and snapshots for image
signatures.

Volumes will be used to persist DTR data. Each node running a DTR replica will manage its
own volumes. If DTR detects their existence, they will be used. This prevents the
destruction of previous installations (we have to use the previous replica_id
identification):

Replica (DTR instance) Process

dtr-ca-<replica_id>
This volume manages the required key and root information to
issue DTR's CA.

dtr-notary-<replica_id> This volume stores notary keys and certificates.
dtr-postgres-<replica_id> This volume is used by images' vulnerability scanning.

dtr-registry-<replica_id> and
dtr-nfs-registry-<replica_id>

A registry's data is stored on this volume. This is the default option,
but we are able to integrate third-party storage. In fact, shared
storage will be required to provide DTR processes with high
availability. dtr-nfs-registry-<replica_id> will be used if
the storage's backend is NFS.

dtr-rethink-<replica_id> This volume stores repository information.

DTR's data storage is key because this is where images will live. Take care of your images'
layers because DTR's backup does not back up their data and meta-information. You have
to deploy your own backup to be able to restore your images' data.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[481]

DTR can be deployed either on-premises or in the cloud. We can use Amazon, Google, or
Microsoft Azure. It supports the following storage backends:

NFS
Amazon S3
Cleversafe
Google Cloud Storage
OpenStack Swift
Microsoft Azure

We can use any S3 object's storage-compatible solution (Minio, for example). Object storage
works great with an image's data if we have big layers with a lot of content.

DTR provides image caching for multi-site environments where communication latency
between users and the registry can become a problem. Image caching will be used to ensure
that users get the required images from the nearest registry node.

RBAC is provided with DTR as it is in UCP. Both applications can be integrated to have a
single sign-on solution, but RBAC is independent. DTR will forward authentication to UCP
and this will verify a user's authentication, but each application will manage different roles
and profiles. This way, a UCP's power user can have limited access to images in DTR.

Security in DTR is based on image security scanning and Docker Content Trust. Image
security scanning will search for an image's content vulnerabilities using binaries' and
libraries' bills of materials (BOMs). A Common Vulnerabilities and Exposures (CVE)
database is used to search for well-known issues in our images.

A BOM is a detailed list of all the files present inside an image. A CVE
database is a public database of well-known vulnerabilities found in files
around the world. It is community-driven and there are many
contributors reporting and looking for vulnerabilities in applications'
code.

DTR also includes image promotion and task scheduling. These features allow us to
monitor image tagging and security to trigger different modifications or interactions with
either external or DTR-integrated tools.

Repository mirroring and caching will help us to integrate DTR in enterprise environments.

We will learn how to deploy DTR with high availability in the next section.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[482]

Deploying DTR with high availability
Deploying DTR with high availability requires more than one replica executing all DTR
components. We will deploy an odd number of replicas to ensure high availability.

DTR should be deployed on dedicated worker nodes. This will ensure that none of the non-
system processes will impact DTR's behavior and vice versa. DTR's processes can take a lot
of CPU during scanning and other procedures. Therefore, we will use three dedicated
worker nodes. We usually admit DHCP on worker nodes, but we will ask for fixed IP
addresses on DTR's worker nodes. We will also require fixed hostnames.

We can deploy the Docker Enterprise platform on-premises or in the cloud. DTR
requirements were described in brief in Chapter 11, Universal Control Plane.

To deploy DTR on dedicated workers, these nodes require at least the following:

16 GB of RAM
2 vCPUs (virtual CPUs)

For production, we will ask for bigger nodes with more resources:

32 GB of RAM
4 vCPUs

This increment of hardware resources is due to image-scanning features. This will take a
bunch of CPU and memory resources because it will load the content of all images and
create all binary and library md5-checksum-hashes to compare these values against the
CVE database.

An image's data will be downloaded by default in the dtr-registry-<REPLICA_ID>
volume. If you deploy a standalone replica for testing, for example, ensure that you have
sufficient space for your images. A minimum of 25 GB is required, but we recommend
having at least 500 GB if you plan to manage Microsoft Windows images.

At the time of writing this book, the latest DTR release is 2.7.6. We will first install a DTR
replica. Once the first replica is installed, we will join two other replicas. We recommend
that you configure the first replica before continuing with others. This will ensure the
synchronization of configuration changes between replicas. This is important for
configuring DTR's data storage.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[483]

If we configured a license on UCP, this will be copied to the DTR. If not,
we will need to configure it in both environments.

As we have seen in Docker's UCP installation, installation-container will have many
actions associated with it, such as backups/restore, install, and join:

Command Action

install

DTR will be installed using the docker/dtr image. We will launch
this process from any UCP node because the UCP URL will be used
and the process will be executed from manager nodes once the
connection is established.

join
We will execute more than one DTR replica to provide high
availability. In this case, we will install the first replica and then we
will join others to this one.

reconfigure
We can modify DTR configurations using the DTR image. Some
configurations require restarting. We will configure DTR replicas to
avoid downtime.

remove

Sometimes, we need to remove a number of DTR replicas. We will
use the remove action, available in the docker/dtr image, to delete
replicas from the DTR environment. This action will neatly remove
replicas, updating other replicas about this change.

destroy

This command will be used to forcefully remove all DTR replicas'
containers and volumes. This procedure should be used with care
because replica removal is forced and does not inform others about
this condition, meaning that a cluster can be left in an unhealthy state.
Use this option to completely remove DTR from your cluster.

backup/restore

This command creates a TAR file with all the information and files
required to restore a DTR replica, including non-image volumes and
configurations. This will not back up an image's data layers. An
image's data must be stored using third-party tools. Take care with
this because you should be able to restore your DTR cluster to a
running state, but you could lose all your images.

upgrade

The upgrade option will help us to automatically deploy platform
upgrades. All DTR components will be updated to a defined upgrade
release. If we have deployed DTR with high availability, this process
should not impact our users.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[484]

images

We can download DTR's required images prior to installation. This is
very useful, for example, when we have to execute an offline
installation. We will download DTR images using a Docker Engine
instance with internet access.

emergency-repair
When all the replicas of DTR are unhealthy, but one replica is
running with healthy core processes, we will use the emergency-
repair action with this replica to recover the cluster.

We will usually have the following common arguments for the majority of the actions:

Arguments Actions

--ucp-url
This should be our valid UCP's URL. We will use the cluster's Fully
Qualified Domain Name (FQDN) and port (443 by default).

--ucp-ca

and --ucp-insecure-tls
We will choose either of these options, using UCP's valid CA or insecure
TLS, avoiding any CA authentication.

--ucp-username

and --ucp-password
These options will provide UCP's user authentication. If none are used,
we will be asked for them during execution. These should be valid and
must have administrator privileges.

Always use the appropriate docker/dtr:<RELEASE> version for all
actions. Do not mix releases unless you are doing a DTR upgrade. The
current release, at the time of writing this book, is 2.7.6.

DTR installation requires UCP's URL and one administrator's username and password. We
can use these interactively, but as we learned in previous sections, it is preferable to include
installation as part of script-like structures. This will help us to provide a reproducible
configuration and installation methodology.

We will now describe DTR's installation process. The first replica will be installed using
docker container run docker/dtr:<RELEASE> install. We will launch the
installation process from any cluster node. In fact, we can deploy DTR from our laptop
because we will include UCP's URL and the administrator's username and password.
Installation can be done using an interactive or automated process. We will also choose
which UCP node will run the first replica's processes using --ucp-node:

$ docker run -it --rm \
 docker/dtr:<RELEASE> install \
 --dtr-external-url <DTR_COMPLETE_URL>\
 --ucp-node <UCP_NODE_TO_INSTALL> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD> \
 --ucp-url <UCP_COMPLETE_URL> \

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[485]

 --ucp-ca "$(curl -s -k <UCP_COMPLETE_URL>/ca)"

INFO[0000] Beginning Docker Trusted Registry installation
INFO[0000] Validating UCP cert
INFO[0000] Connecting to UCP
INFO[0000] health checking ucp
INFO[0000] The UCP cluster contains the following nodes without port
conflicts: <LIST_OF_UCP_CLUSTER_NODES>
INFO[0000] Searching containers in UCP for DTR replicas
...
...
INFO[0000] Creating network: dtr-ol
INFO[0000] Connecting to network: dtr-ol
INFO[0000] Waiting for phase2 container to be known to the Docker daemon
INFO[0001] Setting up replica volumes...
...
...
INFO[0011] License config copied from UCP.
INFO[0011] Migrating db...
...
...
INFO[0004] Migrated database from version 0 to 10
INFO[0016] Starting all containers...
...
...
INFO[0114] Successfully registered dtr with UCP
INFO[0114] Installation is complete
INFO[0114] Replica ID is set to: c8a9ec361fde
INFO[0114] You can use flag '--existing-replica-id c8a9ec361fde' when
joining other replicas to your Docker Trusted Registry Cluster

Since DTR's installation process will connect to UCP's API, TLS will be used, and
certificates will be sent. We added UCP's CA to validate its certificates.

Once the first replica is installed, we will configure and then join other replicas. It is
important to configure shared storage and other settings if you have not changed them
during the installation process.

Notice the last line of the installation's output. It shows the You can use
flag '--existing-replica-id c8a9ec361fde' when joining

other replicas to your Docker Trusted Registry Cluster text
message. Keep this replica's ID; we will use it for reconfiguring it and
joining other replicas.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[486]

We can configure the shared storage we need to execute the reconfigure action. We can
use either filesystem or object storage types:

Filesystem storage types: Network File System (NFS), bind mount, and volume
Object storage (cloud) types: Amazon S3, Openstack's Swift, Microsoft Azure,
and Google Cloud Storage

Object storage and NFS are valid options for shared storage. Each cloud provider will
require its own specifications. Common parameters will be the user or account name,
password, and bucket. Object storage is the preferred option for DTR shared image storage.
There are some on-premises solutions, such as Minio, that are easy to implement in our
data center. NFS is also valid and it is quite common in current data centers. In this case, we
will use the --nfs-storage-url parameter with the reconfigure action. nfs-storage-
url will require the following format: nfs://<ip|hostname>/<mountpoint>.

DTR's storage backend configuration can also be managed using YAML format.

Many DTR options can be set using environment variables. To review
available variables, execute docker container run
docker/dtr:<RELEASE> <ACTION> --help to retrieve an action's help.
Variables will be shown on each argument or option.

Joining replicas will provide high availability to DTR's processes. Replication requires
external storage for sharing images' blobs (data layers) and meta-information. Therefore,
we will reconfigure the first replica's storage if we did not choose shared storage during
installation. We have the first replica's ID and we will use docker/dtr:<RELEASE>
reconfigure --existing-replica-id <FIRST_REPLICA'S_ID> to reconfigure the
storage's backend. In this example, we will just use NFS, which is common in our data
centers.

Before executing the storage's configuration, we will copy the registry volume's data into
our NFS filesystem.

The following lines provide us with a quick example of this migration mounting NFS
endpoint as a local directory on DTR's host (we have used a sample IP address and the ID
of the replica created previously):

$ sudo mount -t nfs 10.10.10.11:/data /mnt
$ sudo cp -pR /var/lib/docker/volumes/dtr-registry-c8a9ec361fde/_data/*
/mnt/

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[487]

This step will guarantee previous data if we use --storage-migrated with
the reconfigure action. If you are using NFS as a local volume, you should guarantee that
it is mounted on reboot using the appropriate line in your fstab file. This was just an
example. We will never use NFS locally mounted for DTR; we can use NFS directly, using
appropriate command-line options, to mount an NFS endpoint as a DTR volume.

The following screenshot shows Amazon's S3 options integrated in DTR's web UI. Each
backend type will integrate different options:

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[488]

We have used variables for command parameters, but we have left the command's output
intact because it is interesting how NFS and the current replica's ID are present:

$ docker container run --rm -it docker/dtr:<RELEASE> reconfigure \
--existing-replica-id <FIRST_REPLICA'S_ID> \
--nfs-storage-url nfs://<NFS_SERVER>/<NFS_SHARED_DIR> \
--storage-migrated \
--ucp-username <UCP_USERNAME> \
--ucp-password <UCP_PASSWORD> \
--ucp-url <UCP_COMPLETE_URL> \
--ucp-insecure-tls
INFO[0000] Starting phase1 reconfigure
INFO[0000] Validating UCP cert
INFO[0000] Connecting to UCP
INFO[0000] health checking ucp
INFO[0000] Searching containers in UCP for DTR replicas
INFO[0000] Cluster reconfiguration will occur on all DTR replicas
...
...
INFO[0000] Connecting to network: dtr-ol
INFO[0000] Waiting for phase2 container to be known to the Docker daemon
INFO[0000] Establishing connection with Rethinkdb
...
...
INFO[0003] Getting container configuration and starting containers...
INFO[0003] Waiting for database to stabilize for up to 600 seconds before
attempting to reconfigure replica c8a9ec361fde
INFO[0003] Establishing connection with Rethinkdb
INFO[0003] Configuring NFS
...
...
INFO[0004] Recreating volume node4/dtr-registry-nfs-c8a9ec361fde
...
...
INFO[0009] Recreating dtr-registry-c8a9ec361fde...
INFO[0013] Recreating dtr-garant-c8a9ec361fde...
INFO[0017] Changing dtr-api-c8a9ec361fde mounts from [dtr-ca-
c8a9ec361fde:/ca dtr-registry-c8a9ec361fde:/storage] to [dtr-ca-
c8a9ec361fde:/ca dtr-registry-nfs-c8a9ec361fde:/storage]
...
...
INFO[0038] Recreating dtr-scanningstore-c8a9ec361fde...
INFO[0042] Trying to get the kv store connection back after reconfigure
INFO[0042] Establishing connection with Rethinkdb
INFO[0042] Verifying auth settings...
INFO[0042] Successfully registered dtr with UCP
INFO[0042] The `--storage-migrated` flag is set. Not erasing tags.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[489]

Notice the --storage-migrated argument. If we migrate storage after the creation of a
number of repositories, all this work will be lost if we do not migrate the registry volume's
data. In this case, we have just copied the volume's content.

Now that we have a shared registry's storage backend, we can join new replicas. We will
use the current replica's ID because new replicas require a base replica to sync with. We
will use the join action on any cluster node because we will select another worker node for
this replica (we have mocked our example using <NEW_UCP_NODE>):

$ docker container run --rm -it docker/dtr:<RELEASE> \
 join \
 --ucp-node <NEW_UCP_NODE> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD> \
 --ucp-url <UCP_COMPLETE_URL> \
 --ucp-insecure-tls \
 --existing-replica-id c8a9ec361fde
 INFO[0000] Beginning Docker Trusted Registry replica join
 INFO[0000] Validating UCP cert
 INFO[0000] Connecting to UCP
 INFO[0000] health checking ucp
 INFO[0000] The UCP cluster contains the following nodes without port
conflicts: <UCP_NODES_AVAILABLE>
 INFO[0000] Searching containers in UCP for DTR replicas
 INFO[0001] Searching containers in UCP for DTR replicas
 INFO[0001] verifying [80 443] ports on node3
 INFO[0012] Waiting for running dtr-phase2 container to finish
 INFO[0012] starting phase 2
 INFO[0000] Validating UCP cert
 ...
 ...
 INFO[0057] Recreating dtr-scanningstore-c8a9ec361fde...
 INFO[0061] Configuring NFS
 INFO[0062] Using NFS storage: nfs://10.10.10.11/data
 INFO[0062] Using NFS options:
 ...
 ...
 INFO[0176] Transferring data to new replica: cc0509711d05
 INFO[0000] Establishing connection with Rethinkdb
 ...
 ...
 INFO[0183] Database successfully copied
 INFO[0183] Join is complete
 INFO[0183] Replica ID is set to: cc0509711d05
 INFO[0183] There are currently 2 replicas in your Docker Trusted Registry
cluster
 INFO[0183] You currently have an even number of replicas which can impact

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[490]

cluster availability
 INFO[0183] It is recommended that you have 3, 5 or 7 replicas in your
cluster

All values apart from the first replica's ID were mocked and the outputs of
the join command have been reduced for this book. Notice that we have used --ucp-
insecure-tls instead of adding UCP's CA. After 183 steps, the new replica was joined.
At least three replicas are required for high availability. All replicas are deployed as multi-
container applications on defined worker nodes.

Starting in DTR 2.6, you should perform a backup before switching
storage drivers. This ensures that your images will be preserved if you
decide to switch back to your current storage driver.

DTR will expose its API securely, using TLS. Therefore, certificates will be used to create
secure tunnels. By default, DTR will create a CA to sign server certificates. We can use our
corporation's private or public certificates. They can be applied during installation using --
dtr-ca and --dtr-cert, but we can change them later in DTR's web UI or by using
the reconfigure action. If you used your custom certificate, your certificate will probably
be included in your system. If Docker created auto-signed certificates for us, these will not
be trusted in your system. Docker created a CA for use to sign DTR certificates and you will
probably get the following error message when you try to execute any registry action from
your command line:

Error response from daemon: Get https://<DTR_FQDN>[:DTR_PORT]/v2/: x509:
certificate signed by unknown authority.

To avoid this issue, we can either avoid SSL verification, define an insecure registry, or add
DTR's CA as trusted on our system:

Insecure registry: To set up an insecure registry for our client, we will add
"insecure-registries" : ["<DTR_FQDN>[:DTR_PORT]"] to our Docker
Engine daemon.json file. This is not recommended and should be avoided in
production because someone could hijack our server's identity.
Adding DTR's CA to our system: This procedure may change depending on the
Docker Engine host's operating system. We will describe procedures for
Ubuntu/Debian and Red Hat/CentOS nodes. They are very common in our data
centers:

CA updating procedure on Ubuntu/Debian nodes:
$ openssl s_client -connect <DTR_FQDN>:<DTR_PORT> -showcerts
</dev/null 2>/dev/null | openssl x509 -outform PEM | sudo tee
/usr/local/share/ca-certificates/<DTR_FQDN>.crt

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[491]

$ sudo update-ca-certificates
$ sudo systemctl restart docker

CA updating procedure on Red Hat/CenOS nodes:
$ openssl s_client -connect <DTR_FQDN>:<DTR_PORT> -showcerts
</dev/null 2>/dev/null | openssl x509 -outform PEM | sudo tee
/etc/pki/ca-trust/source/anchors/<DTR_FQDN>.crt
$ sudo update-ca-trust
$ sudo systemctl restart docker

Including DTR's CA in our client systems is the preferred method because we will still
validate its certificates.

We can log in to DTR's web UI using the defined DTR's URL. Since login is integrated with
UCP by default, redirections will be integrated into this process and UCP will authorize
users.

The following screenshot shows DTR's main interface once we are logged in. Repositories
will be shown in a tree-like structure. Users will only have access to their resources:

DTR's web UI is quite simple. It allows administrators to manage users, teams,
organizations, and RBAC integrations. The following is a screenshot of the system's
endpoint:

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[492]

The system's endpoint provides access to the following resources and configurations:

The General tab:
Allows us to manage DTR's license.
DTR's load-balanced URL.
Integration of corporate proxies to download the required image-
scanning CVE database.
Single sign-on integration within UCP and DTR.
Configures browser cookies for clients. This will help us to
forward requests to specific DTR backends.
Allows us to set whether repositories can be created on push. This
allows users to push images, and repositories will automatically be
created if they do not exist.

The Storage tab: This tab allows us to configure all of DTR's storage backends.
We can choose between filesystem or object storage (cloud), and each backend
will have different options.
The Security tab: Security is key for images. This tab allows us to configure
DTR's image-scanning features.
The Garbage collection tab: Untagged images consume space and will increase
the risk if some use non-referenced layers. This tab allows us to schedule the
automatic removal of untagged images.
The Job logs tab: The logs of internal tasks can be reviewed on this tab. This log
will show us information regarding mirroring and image pruning, among other
internal features.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[493]

The following section will show us how to manage different access to consume images
stored in your DTR repositories.

Learning about RBAC
DTR provides a complete RBAC environment. DTR will authenticate and authorize valid
users. We can integrate third-party authentication solutions as we learned in Chapter 11,
Universal Control Plane. Integrating external Lightweight Directory Access Protocol
(LDAP)/Active Directory (AD) authentication mechanisms will allow us to delegate users'
passwords to them, while UCP and DTR will manage user authorization.

By default, DTR redirects user authentications to UCP because single sign-on is included.
We can change this behavior in the System | General menu. It is recommended to keep this
setting so as to manage users in just one application. All authentication will be delegated to
UCP and this will route users to its integrated third-party authentication mechanism (if
configured).

Once we are authenticated to the DTR environment, we will get different permissions to
allow us to manage images from repositories or just pull different releases from them.

By default, anonymous users will be able to pull images from public
repositories. You must ensure that only allowed images are stored in
public repositories.

We can create users on either UCP or DTR because, by default, we will have a single sign-
on environment and users will be shared between both applications.

Users are managed in teams and organizations, as we also learned in Chapter 11, Universal
Control Plane. These allow us to integrate teams into organizations, while users will be
integrated in those teams:

Organizations will provide a logical level of abstraction and isolation. They
allow us to namespace other resources.
Teams will allow us to assign user access to repositories.

Users will be integrated into organizations and teams. These allow us to restrict access to
images within organizations and with the permissions and allowed actions given using
teams.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[494]

Repositories' accesses are managed by two concepts:

Ownership: Repository creators
Public accessibility: Public or private repositories

Owners of repositories can decide about access for others. As has been mentioned, we can
have public and private images.

Private repositories can only be consumed by owners and DTR administrators. Other users
cannot pull images from these repositories. Only repositories' owners can push images to
them.

Within organizations, we will provide read and write access for specific teams in an
organization's private repositories. These teams will be able to push images to these
repositories. These teams are owners of these repositories and we can provide read-only
access to some teams. They will only be able to pull images. All other teams will not have
any access because we are talking about an organization's private repositories.

Public repositories are different. Users' public repositories allow other users to pull images
from them, while only owners are able to push. They have read-write access. An
organization's public repositories will allow users to also pull images. In these cases, only
teams with read-write access will be allowed to push images.

The following table represents permissions that can be applied to repositories:

Permissions Description

Read-only A user can browse/search and pull images from a repository. Users will
not be able to push to this repository.

Read and write A user can browse/search, pull, and push images to a repository.

Owner
The owner has read-write access to their repositories, but they are also
allowed to manage their permissions and descriptions. They can also set a
repository's privacy level (public/private).

Organizations' members have read-only access to public images within this organization.
Therefore, an organization's users can always pull their public images. Organizations'
members can see other members and view all teams included within their organization. But
we need to integrate users within an organization's teams to provide management and
read-write access.

An organization's members who are not included in any team cannot
manage an organization's repositories. They can only pull its public
images.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[495]

An organization's owners, on the other hand, will be able to manage the organization and
all its repositories. We can include any user within an organization as an owner. These
users can also manage teams within an organization and their level of access.

We will use a simple example to help you understand how permissions and access will be
given to users in different repositories.

Let's imagine an organization named myorganization. Let's include a team for devops and
others for developers and operations. In this example, the devops team will define core
images, while developers will use them for their applications.

devops group members will have read-write access, while developers will have read-only
access. These will just pull images to create their own ones. They will use enterprise-
defined core images, created by the devops team. In this case, the operations team does not
have access to these application core images.

On the other hand, the devops team created a series of images for testing the platform,
under the testing image repository. This repository is public and all users within the
organization will be able to use it on the Docker Enterprise platform. The following
diagram shows the RBAC situation described:

In the next section, we will review image scanning and other security features included in
the DTR platform.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[496]

Image scanning and security features
In this section, we will review DTR's security features, such as security scanning and image
signing.

Security scanning
DTR includes image security scanning as a built-in feature. It will scan each image's layer
for binaries and libraries. A scan report will include the aggregated BOM for each layer. We
now have a complete picture of an image's files and its MD5 hashes. This ensures
the immutability of each layer's content between image releases. If we change a file within a
layer, its hash changes and scanning will be executed against the new layer's content. Image
scanning will also download and manage a CVE database provided by Docker. This will be
used to correlate an image's layer reports with the vulnerability information given.

Scanning will show us a report regarding the health of our image, reporting all detected
well-known vulnerabilities found on the image's layers.

This CVE database should be updated frequently because new threats appear almost daily.
We can use either online synchronization or offline manual updates. In both cases, we
require a valid Docker Enterprise license. Online synchronization requires a valid internet
connection (we can use our corporate's proxies within DTR, configuring the --http-proxy
and/or --https-proxy options either on DTR's installation or by reconfiguring the
environment following the installation process).

Do not forget to use the --no-proxy option to configure all your
enterprise's internal FQDNs.

Image scanning consumes a lot of DTR's hosts' resources. In fact, the first security scan for
each layer requires a lot of resources. Subsequent scans will use previous layers' reports. If
an image's layer size is large, scanning will take a lot of resources to create the layer's
report. All files' hashes should be included in the report to correlate them with the
database's data. If we use common layers in our images, this process will only be executed
once. A layer's report will be updated if we change that layer's content. That layer will
become old and a new scan will be executed. Take care of these processes between image
changes.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[497]

Scanning can be executed whenever an image is updated or created within DTR's registry
automatically. This will be set on each repository using the Scan on push feature. We can
periodically execute images' scans manually, but this could prove hard to maintain without
using DTR's API.

The image's scanning report will be shown on each repository's tag. We will have a report
of the health of the image's vulnerabilities, as can be seen in the following screenshot:

The vulnerability status of the image can be as follows:

Green: No vulnerability was found. The image is secure.
Orange: Some minor or major vulnerabilities were found.
Red: Critical vulnerabilities were found and security could be compromised.

We can dive into each tag's report by clicking on its details. We will be able to review the
full scan results, including the image's metadata, size, owner, and the most recent scan.

We have two different views for a tag's scan details:

The Layers view will show us a list of the image's layers in the order of the
image's construction. We will see each layer with the vulnerabilities identified on
it. We can click on each layer to drill down into its components.
The Components view will list all the image's components. Components will be
sorted according to the number of vulnerabilities identified because a file can
have multiple issues.

We can integrate triggers to inform other processes or applications regarding the scanning
results once they are finished.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[498]

Image immutability
Another interesting feature can be enabled for each image's repository. An image's
immutability will mean that the overwriting of tags will be avoided. This will ensure the
uniqueness of tags. This is interesting in terms of production releases. No one will reuse a
tag that has already been used, so the development life cycle is not compromised because
each release will have a unique ID.

Content trust in DTR
DTR has integration with Docker Content Trust (DCT). We have covered this topic in
Chapter 6, Introduction to Docker Content Trust. We learned that image signing improves
cluster and application security, ensuring image ownership, immutability, and provenance.
If we have a CI/CD pipeline that creates images as application artifacts, we can ensure that
the correct image will run in production. UCP allowed us to run only signed images within
our organization.

DTR provides a notary server and a notary signer. These components are required for DCT.
Both application components will be accessed through an internal proxy and integrated
with UCP's roles and access environment. This integration enables the signing of images
that UCP can trust and execute securely.

The Docker client will allow us to configure content trust for repositories and sign images.
We will use a simple Docker client command line to sign images. The main difference in a
corporate environment is that we need to ensure that images are signed by enterprise users.
We will use our own certificates, included in our user's bundle. We will use key.pem and
cert.pem as private and public keys, respectively.

We will now describe the steps necessary for signing images in the Docker Enterprise
environment:

First, we will download the user's bundle. We have already described this1.
process in Chapter 11, Universal Control Plane. Once we have our bundle in our
system (already decompressed and ready to use), we will add a private key to
our laptop's or Docker client node's trust store. We will use docker trust
load:

$ docker trust key load --name <MY_USERNAME> key.pem
Loading key from "key.pem"...
Enter passphrase for new <MY_USERNAME> key with ID:
Repeat passphrase for new <MY_USERNAME> key with ID:
Successfully imported key from key.pem

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[499]

We will then initialize trust metadata for a specific repository. We should add2.
ourselves as signers on each repository where we will push images. Remember
that repositories should contain the registry's FQDN and port. We will use the
docker trust signer add command:

$ docker trust signer add \
--key cert.pem \
<MY_USERNAME>
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]
Adding signer "<MY_USERNAME>" to
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]...
Initializing signed repository for
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]...
Enter passphrase for root key with ID:
Enter passphrase for new repository key with ID:
Repeat passphrase for new repository key with ID:
Successfully initialized
"<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]"
Successfully added signer: <MY_USERNAME> to
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]

With these few steps, we are ready to sign an image. Let's review a simple3.
example with an alpine image. We will tag our image ready for our registry and
we will sign it using docker trust sign:

$ docker tag alpine
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test
$ docker trust sign
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test
Signing and pushing trust data for local image
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test, may
overwrite remote trust data
The push refers to repository
[<DTR_FQDN>[:DTR_PORT]/myorganization/alpine]
beee9f30bc1f: Layer already exists
signed-test: digest:
sha256:cb8a924afdf0229ef7515d9e5b3024e23b3eb03ddbba287f4a19c6ac90b8
d221 size: 528
Signing and pushing trust metadata
Enter passphrase for <MY_USERNAME> key with ID c7690cd:
Successfully signed
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[500]

Once signed, we can push our image to the registry. Notice that we are using4.
<DTR_FQDN>[:DTR_PORT] as DTR's registry:

$ docker push <DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-
test
The push refers to repository [192.168.56.14/myorganization/alpine-
base]
beee9f30bc1f: Layer already exists
signed-test: digest:
sha256:cb8a924afdf0229ef7515d9e5b3024e23b3eb03ddbba287f4a19c6ac90b8
d221 size: 528

We now have our signed image in the registry, as we can observe in the following
screenshot:

We can review image ownership and its signatures using docker trust5.
inspect:

$ docker trust inspect --pretty
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test

Signatures for <DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-
test

SIGNED TAG DIGEST SIGNERS
signed-test
cb8a924afdf0229ef7515d9e5b3024e23b3eb03ddbba287f4a19c6ac90b8d221
<MY_USERNAME>

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[501]

List of signers and their keys for
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test

SIGNER KEYS
<MY_USERNAME> c7690cd8374b

Administrative keys for
<DTR_FQDN>[:DTR_PORT]/myorganization/alpine:signed-test

Repository Key:
63116fb0f440e1d862e0d2cae8552ab2bcc5a332c26b553d9bfa0a856f15fe91
 Root Key:
69129c50992ecd90cd5be11e3a379f63071c1ffab20d99c45e1c1fa92bfee6ce

We have mocked this output and other output seen in this chapter, but you will
receive similar output. Your user should be shown under the SIGNER KEYS
section (we have <MY_USERNAME> in the previous command's output).

There is also an important topic related to signing. Users can delegate image6.
signing. This concept will allow other users to sign for us or share signing within
a team. If we need to impersonate another user's signing process, we need to
import their key. Therefore, we require the other user's key.pem key file. We will
load this key in keeping with the steps covered previously:

$ docker trust key load --name <MY_TEAMMATE_USERNAME> key.pem
Loading key from "key.pem"...
Enter passphrase for new <MY_TEAMMATE_USERNAME> key with ID:
Repeat passphrase for new <MY_TEAMMATE_USERNAME> key with ID:
Successfully imported key from key.pem

We mocked the users' names and IDs.

We then add our teammate's public key to our repository:7.

$ docker trust signer add --key cert.pem <MY_TEAMMATE_USERNAME>
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]
Adding signer "<MY_TEAMMATE_USERNAME>" to
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]...
Enter passphrase for repository key with ID:
Successfully added signer: <MY_TEAMMATE_USERNAME> to
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY]

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[502]

Now, we can sign using both signatures:8.

$ docker trust sign
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]
Signing and pushing trust metadata for
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]
Existing signatures for tag 1 digest
5b49c8e2c890fbb0a35f6....................
from:
<MY_TEAMMATE_USERNAME>
Enter passphrase for <MY_TEAMMATE_USERNAME> key with ID ...:
Enter passphrase for <MY_USERNAME> key with ID ...:
Successfully signed
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]

Now, we can conduct a further inspection and we will see both signatures:9.

$ docker trust inspect --pretty
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]
Signatures for
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]
SIGNED TAG DIGEST SIGNERS
1 5b49c8e2c890fbb0a35f6050ed3c5109c5bb47b9e774264f4f3aa85bb69e2033
<MY_TEAMMATE_USERNAME>, <MY_USERNAME>
List of signers and their keys for
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]
SIGNER KEYS
<MY_USERNAME> 927f30366699
<MY_TEAMMATE_USERNAME> 5ac7d9af7222
Administrative keys for
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY][:TAG]
Repository Key:
e0d15a24b741ab049470298734397afbea539400510cb30d3b996540b4a2506b
 Root Key:
b74854cb27cc25220ede4b08028967d1c6e297a759a6939dfef1ea72fbdd7b9a

To delete the repository's DCT, we will use notary delete
<DTR_FQDN>[:DTR_PORT][/ORGANIZATION][/USERNAME][/REPOSITORY] --remote.
You will require the notary application's binary in your host.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[503]

Remember that all client actions can be forced to be secure using export
DOCKER_CONTENT_TRUST=1, to enable content trust as regards all the
commands executed in the current shell.

Content trust can be integrated into CI/CD with process orchestrators and other automation
tools. To avoid a user's interaction as regards image signing procedures, we can use the
following variables:

DOCKER_CONTENT_TRUST_ROOT_PASSPHRASE: Will be used for the local root key
passphrase
DOCKER_CONTENT_TRUST_REPOSITORY_PASSPHRASE: Will be used for the
repository passphrase

As we have learned, users will be available to sign their images using their Docker bundle
from UCP. It is also possible to generate keys using docker trust key generate
command, but these will not be included in DTR.

DTR ships with Notary built in so that you can use DCT to sign and verify images. For
more information about managing Notary data in DTR, refer to the DTR-specific notary
documentation.

The following section will show us how we can integrate Docker Enterprise into our CI/CD
pipeline using DTR's built-in features.

Integrating and automating image workflow
DTR provides built-in features aligned with CI/CD pipeline construction logic. We will
have webhooks that can be triggered to inform other applications or processes regarding
certain events, such as a completed image scan or a new image/tag arrival. We also have
image promotions. This feature will retag images between repositories. The following
diagram shows a simple workflow for building, distributing, and executing an application.
We are including some of the features provided by DTR:

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[504]

This workflow represents how to implement DTR in several development stages.
Promoting a scanned image for testing will ensure its security before going to production in
this example. Toward the end of this section, we will also be reviewing image mirroring.
This is a feature used to share images between different DTR environments.

Image promotion
DTR allows us to automatically promote images between repositories. Promotion is based
on repository-defined policies. Therefore, policies are defined at the repository level. When
an image is pushed to this repository, policies are reviewed and, if the rules match, a new
push is done to another registry.

Image promotion is very useful in CI/CD pipeline stages. It is easier to understand with the
help of a quick example. Let's imagine a development repository for a frontend
application's component. Developers will push images to this development/frontend
repository. They manage all the updates in this repository. In fact, no one apart from them
has access to this repository. They will develop new updates with fixes and new features.
When a release has to be deployed to production, they will prepare a release version.
They will include a release string in this image's tag. A policy will match this string and a
new image will be created on the Quality Assurance repository for the application's
component.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[505]

This process creates a new image to be tested by the quality assurance team when
the release image is pushed. These users do not have access to non-release images. Only
those images tagged as release will be available to quality assurance users. We know that
only an image's ID is unique. We can have many tags for each image. Therefore, we are not
duplicating images. We are just adding new tags and names for a defined image.

We can define policies based on the following attributes:

Attributes Description

Tag name
We define a matching string for a repository's image's tags. Matching
tags can be equal, or can start with, end with, contain, or be one of the
image-defined ones.

Component name
This will be used to match if an image has a given component and its
name equals, starts with, ends with, or contains, or is one the specified
ones.

Vulnerabilities

We can define how many critical, major, or minor vulnerabilities (or all
vulnerabilities) will be monitored to promote an image to another
repository. We will use comparison expressions such as "is greater
than," "greater than or equal to," "less than or equal to," "equal," or "not"
with the defined value and the image will only be promoted if the
equation is satisfied.

License This rule will match if the image uses a license. This is usually used in
relation to Microsoft Windows images.

We can apply more than one attribute to this policy's rules. Once we choose which criteria
will be applied, we can set up the new repository and tag. There are a number of templates
for the names of new image tags. These allow us to include an image's source tag or
timestamps.

DTR webhooks
DTR has a series of integrated webhooks that will be triggered under special circumstances.
When some events occur, DTR will be able to send webhooks to third-party applications.
This is vital to integrating DTR in your CI/CD pipelines. DTR webhooks can be secured
using TLS if the receiver backend also has this feature.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[506]

We will cover most of the important webhooks, but this link provides an accurate list of the
current ones: https:/ / docs. docker. com/ ee/ dtr/admin/ manage- webhooks/ :

Webhooks Description

TAG_PUSH, TAG_PULL, and TAG_DELETE
Repositories' tag events will generate webhooks
when someone pushes or pulls on a repository
or when it is removed.

SCAN_COMPLETED

and SCANNER_UPDATE_COMPLETED

Scanning is key to ensuring security. We will
send notifications when the image-scanning
database is updated or when a repository's scan
has ended correctly.

PROMOTION
Whenever a promotion policy is applied, we
will send a webhook. This will help us to follow
DTR images' internal workflow.

We must have administrative privileges on a repository to be able to configure its
webhooks using either DTR's web UI or its API. The web UI allows us to test defined
webhooks by clicking Test.

The following screenshot shows a repository's webhook configuration:

https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/
https://docs.docker.com/ee/dtr/admin/manage-webhooks/

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[507]

The following section will show us how to implement registry mirroring.

Mirror images between registries
Registry mirroring can also help us in our CI/CD. When images get pushed into
repositories and there is some mirroring configuration, DTR will push them into another
defined registry. This helps us to distribute repositories on different registries, with high
availability.

Mirroring configuration is based on the promotion logic covered previously. We will first
configure mirror direction to define which action will be used: pull or push. DTR mirroring
allows us to integrate Docker Hub with the on-premises Docker Enterprise DTR
environment.

We need to understand that DTR's metadata is not synced between registries. Therefore,
image scanning and signing information from the first registry will not be available on the
second one. All these actions must also be executed on the mirror registry. We can integrate
scanning automatically when images are pushed to the second registry. Image signing
requires external integrations. The following screenshot shows the mirroring configurations
for a repository:

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[508]

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[509]

Now that we have learned about the built-in features for automation, we will review
registry caching with a view to improving a developer's work.

Registry caching
Registry caching will help us to manage images on distributed environments. Users from
remote locations can have latency problems and big images can take forever to load. We
can deploy intermediate registry caches to decrease pull times.

Caches are transparent to users because they will use the original DTR's URL. When a user
pulls an image, the DTR will check whether it is authorized and it will then be redirected to
a defined cache. This cache pulls an image's layers from the DTR and keeps a copy for
users. New requests do not require an image's layers to be pulled from DTR again.

To deploy a registry cache service, we will use the docker/dtr-content-
cache:<RELEASE> image.

Registry caching help us to manage distributed environments. Docker clients must be
configured in order to use this feature. We will add "registry-mirrors":
["https://<REGISTRY's_MIRROR_URL>"] to the daemon.json configuration file or
configure users to use it by using the Users Settings page. For this to work, it is necessary
to register the deployed cache with DTR's configuration using DTR's API. Detailed
instructions can be found at the following link: https:/ /docs. docker. com/ ee/ dtr/admin/
configure/deploy- caches/ simple/

We will now learn about DTR's automated garbage deletion.

Garbage collection
Garbage collection will remove unreferenced layers and manifests from DTR. Registry data
can consume a lot of space in our storage backend. This is not only a problem for storage
resources. Security can be compromised if unsecured layers remain. It is recommended to
remove all unused layers (also known as dangling images).

This process runs in two phases:

DTR's garbage collector will search all registry manifests. Those with active1.
content, and image layers included within other images, will not be deleted.
The process will scan all the blobs. Those not included in the first phase's list will2.
be removed.

https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[510]

Garbage collection can be run manually from a registry's container using bin/registry
garbage-collect. We will usually apply scheduled tasks integrated into DTR's web UI.
Garbage collection options will allow us to configure the removal of unreferenced layers
periodically using cron-like logic. We will also establish for how long we will allow the
removal process to run because it can take a significant amount of time. The following
screenshot shows the Garbage collection configuration page:

In the next section, we will learn how to deploy DTR's backup.

Backup strategies
DTR's backup procedure does not result in any service interruption. A backup process can
be executed from any of the cluster nodes. It is recommended to create all backups from the
same replica. This will help us to recover at least this replica. We will be able to recreate the
full DTR's cluster environment using this replica.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[511]

The following list shows which content will be stored as part of your DTR's backup TAR
file:

DTR configurations
Repository metadata
User access control and repository configurations
TLS certificates and keys required for DTR communication
Images' signatures and digests, including the integration of Notary
Images' scan results

The following content will not be included within your backups:

Images' layers
Users, teams, and organizations
The vulnerability database used for image scanning

Take care of the content of images because users, teams, and organizations will be included
in UCP's backup and the vulnerability database (CVE and reports) can be recreated
whenever we need it.

By default, DTR's web UI will show a warning message if we haven't performed any
backup.

We will find the healthy replica's ID by using REPLICA_ID=$(docker inspect -f
'{{.Name}}' $(docker ps -q -f name=dtr-rethink) | cut -f 3 -d '-') &&

echo $REPLICA_ID and we will then execute a backup using this ID:

$ docker container run \
--rm \
--interactive \
--log-driver none \
--ucp-username <UCP_USERNAME> \
--ucp-password <UCP_PASSWORD> \
--ucp-url <UCP_COMPLETE_URL> \
--ucp-ca "$(curl -s -k <UCP_COMPLETE_URL>/ca)" \
--existing-replica-id <REPLICA_ID> > dtr-backup.tar.gz

Remember, this file does not include an image's blobs or meta-information. We need to
include third-party backup solutions for DTR's storage backend.

We can use either --ucp-ca with a valid UCP CA certificate or --ucp-
insecure-tls to connect to UCP.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[512]

To restore DTR, we will use the same docker/dtr image release. We will use docker
container run docker/dtr:<RELEASE> restore:

$ docker container run --rm --ti docker/dtr:<RELEASE> restore \
 --ucp-insecure-tls \
 --ucp-url <UCP_COMPLETE_URL> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD> < PREVIOUS-DTR-BACKUP.tar

This command will not restore images' blobs and meta-information as the backup only
provides information to recover all of DTR's processes and their configurations.

The following section will help us to understand how to monitor DTR's health.

Updates, health checks, and
troubleshooting
DTR application upgrades can sometimes integrate database modifications. Therefore, you
must ensure the correct upgrade path between releases. The upgrade command can be
executed from any node as we will execute this command against all DTR replicas. We will
use the replicas' IDs or interactive mode to upgrade each DTR replica. The upgrade process
will replace all replica containers.

It is recommended to review Docker's documentation relating to updated
procedures at the following link: https:/ / docs. docker. com/ ee/dtr/
admin/ upgrade

DTR uses semantic versioning. This is key for following upgrade paths. Downgrading is
not supported because sometimes, an upgrade can modify database objects.

Upgrades between different patch releases can be skipped if a minor release is applied.
Patches do not modify the database, so CA can be applied without an object's data
changing.

On the other hand, upgrades between minor versions must follow the version number,
although we can skip intermediate patches, as has been mentioned.

Major version upgrades require upgrading to the latest minor/patch release before going to
the next major release. This procedure will implement a host of changes and you must
ensure that you have a valid backup before this upgrade. Remember to verify a valid
image's data backup.

https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade
https://docs.docker.com/ee/dtr/admin/upgrade

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[513]

To monitor DTR, we will use a common container's monitoring procedures. We can also
use UCP's stacks view because DTR is deployed as a multi-container application. All
replicas will be displayed. We can then click on each replica's link and inspect its resources.

DTR exposes the following endpoints for monitoring. We will use them to verify its health:

Endpoints Description

/_ping

This endpoint shows a replica's status. We can verify
status using third-party monitoring tools. If the replica
is fine, we will obtain "Healthy":true:
$ curl -ks https://<DTR_COMPLETE_URL>/_ping
{"Error":"","Healthy":true}

/nginx_status
This shows us the common open source nginx status
and statistics page.

/api/v0/meta/cluster_status

For all replica statuses, we will use this endpoint. This
requires authentication because we will be accessing
DTR's API. We will use any administrator's access. An
overall cluster state and a list of replicas with their
statuses will be shown.

We will also search for errors on DTR's container logs. In this case, we will usually integrate
these logs in third-party logging management applications.

Logging
As standard, DTR's container logs will show all application errors. DTR also includes a
view in its web UI with all job logs. We will have detailed information regarding the many
actions executed within the environment. This log view provides useful audit information
because it contains all images' management actions executed in DTR.

The following section will show us how to recover an unhealthy DTR environment.

DTR disaster recovery
DTR is deployed using a high-availability strategy. Therefore, we have a variety of
situations, depending on how many replicas are unhealthy.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[514]

Some replicas are unhealthy, but we keep the cluster's
quorum's state
In this case, the majority of replicas are healthy, so overall, the cluster's state is healthy. We
will remove unhealthy replicas and add new ones as soon as possible. It is important to
only join replicas after unhealthy ones have been removed. We will execute this procedure
step by step, removing an unhealthy replica, adding a new one, and so on. This will keep
the overall cluster's state intact. We will only remove unhealthy replicas that have been
identified, so we will first need to identify which replicas are in a failing state using docker
ps --format "{{.Names}}" | grep dtr. Once identified, we will execute docker
container run docker/dtr:<RELEASE> remove to delete the replica in question:

$ docker container run --rm --ti docker/dtr:<RELEASE> remove \
 --existing-replica-id <HEALTHY_REPLICA_ID> \
 --replica-ids <HEALTHY_REPLICA_ID> \
 --ucp-insecure-tls \
 --ucp-url <UCP_COMPLETE_URL> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD>

Although the --replica-ids argument will allow us to remove a list of replicas, it is
recommended to follow this procedure on each unhealthy replica, adding a new one with
each removal:

$ docker container run --rm --ti docker/dtr:<RELEASE> join \
 --existing-replica-id <HEALTHY_REPLICA_ID> \
 --ucp-insecure-tls \
 --ucp-url <UCP_COMPLETE_URL> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD>

This will join a new replica. Always wait until synchronization has finished before
continuing with a new one.

The majority of replicas are unhealthy
If the majority of replicas are unhealthy, the cluster's state will be unhealthy because it will
have lost its quorum. However, if we still have at least one healthy node, we can repair the
cluster using this replica. We will execute an emergency repair procedure using docker
container run docker/dtr:<RELEASE> emergency-repair.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[515]

We can find the healthy replica's ID using REPLICA_ID=$(docker inspect -f
'{{.Name}}' $(docker ps -q -f name=dtr-rethink) | cut -f 3 -d '-') &&

echo $REPLICA_ID and we will then execute the emergency repair procedure:

$ docker container run --rm --ti docker/dtr:<RELEASE> emergency-repair \
 --existing-replica-id <HEALTHY_REPLICA_ID> \
 --ucp-insecure-tls \
 --ucp-url <UCP_COMPLETE_URL> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD>

This process should recover a replica completely and we will then add new replicas to
recover a cluster's consensus.

All replicas are unhealthy
In this situation, we cannot recover the cluster without an existing backup. We will use
docker container run docker/dtr:<RELEASE> restore. It is critical to have a valid
DTR backup:

$ docker container run --rm --ti docker/dtr:<RELEASE> restore \
 --ucp-insecure-tls \
 --ucp-url <UCP_COMPLETE_URL> \
 --ucp-username <UCP_USERNAME> \
 --ucp-password <UCP_PASSWORD> < PREVIOUS-DTR-BACKUP.tar

This command will not restore Docker images. We have to implement a separate procedure
for this data. We will use the normal filesystem's backup and restore procedures. Once we
have a healthy replica, we will be able to join new ones in keeping with the procedure
described previously.

Summary
This chapter covered DTR's features and components. We learned how to implement DTR
in production using a high-availability strategy. We reviewed different solutions available
for storing images securely.

We also covered image scanning and signing. Both options allow us to improve image
security by integrating with UCP's application deployment platform. Users within
organizations will have different levels of access to images thanks to DTR's integrated
RBAC system.

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[516]

CI/CD environments have changed the way we create and deploy applications nowadays.
We have reviewed different features built using DTR that help us to integrate image
building, sharing, and security in CI/CD pipelines. We also learned how to mirror
repositories and improve users' experiences with registry caching.

Knowledge of DTR and UCP is required for the exam. We need to know their component
distributions on cluster nodes and how they work. We also need to understand their
installation processes and how we can ensure their health.

This is the last chapter related to the Docker Enterprise platform. Later chapters will cover
the content that is required for the exam, with some quick topic reviews and further
questions and answers.

Questions
Which features are included in DTR?1.

a) Repository load balancing
b) Repository mirroring
c) Repository signing
d) All of the above

How many DTR replicas do we need in order to provide high availability for2.
Docker images' layers?

a) We will need at least three DTR replicas to provide high availability.
b) DTR does not manage the high availability of data. We need to provide
third-party solutions for DTR storage.
c) DTR manages volume synchronization when we deploy more than one
replica.
d) All of the above statements are true.

Which processes are part of DTR?3.

a) garant
b) jobrunner
c) notary-client
d) auth-store

Implementing an Enterprise-Grade Registry with DTR Chapter 13

[517]

Which of these statements are true in terms of how to deploy DTR with high4.
availability?

a) Configure a load balancer as a transparent reverse proxy. We will forward
all requests for DTR's FQDN to any of the replicas.
b) Deploy shared storage to allow all DTR replicas to store an image's data
and meta-information at the same location.
c) Deploy the first DTR replica with previously created shared storage on
one node. Then, add at least two more replicas on different nodes.
d) All of the above statements are true.

Which content is not included in DTR's backup?5.

a) Repository metadata and images' layers.
b) RBAC configurations.
c) Image signatures.
d) All of the above statements are true.

Further reading
The following links will help us to understand some of the topics covered in this chapter:

Content trust integration in DTR: https:/ /docs. docker. com/ engine/ security/
trust/content_ trust/

Deploying the registry cache: https:/ / docs. docker. com/ ee/dtr/ admin/
configure/ deploy- caches/ simple/

Authentication and authorization in DTR: https:/ /docs. docker. com/ ee/dtr/
admin/manage- users/

https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/configure/deploy-caches/simple/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/
https://docs.docker.com/ee/dtr/admin/manage-users/

4
Section 4 - Preparing for the

Docker Certified Associate
Exam

This section will focus on the DCA exam. This book covers all the exam topics and this
section will summarize the book's content to help you understand what you need to know
in order to pass the DCA exam.

This section comprises the following chapters:

Chapter 14, Summarizing Important Concepts
Chapter 15, Mock Exam Questions and Final Notes

14
Summarizing Important

Concepts
In this chapter, you will learn which topics are most important for the exam and you will
get a good idea of the knowledge required to pass the Docker Certified Associate (DCA)
exam.

We will recap all the topics we have learned regarding orchestration, image management,
Docker platform component installation and configuration, networking implementations
for standalone and cluster environments, and security features and data management
strategies in container-based applications. All these concepts were already covered in
different chapters.

We will summarize the following topics in this chapter:

Reviewing orchestration concepts
A brief summary of Docker image concepts
A summary of the Docker architecture, installation, and configuration topics
A summary of the networking topics
Understanding security concepts and related Docker features
Quickly summarizing Docker storage and volumes

By the end of this chapter, you will be ready for some exam-like questions, which have
been prepared for you in the next chapter. Before looking at some sample questions, let's
start talking about the orchestration concepts we have learned.

Summarizing Important Concepts Chapter 14

[520]

Reviewing orchestration concepts
Orchestration is an important topic for the DCA exam. It represents 25% of the questions
you have to pass to get this certification. In the second section of the book, we introduced
orchestration and we covered Docker Swarm and Kubernetes.

Orchestration concepts were covered in Chapter 7, Introduction to Orchestration, Chapter 8,
Orchestration Using Docker Swarm, Chapter 9, Orchestration Using Kubernetes, Chapter 10,
Introduction to the Docker Enterprise Platform, and Chapter 11, Universal Control Plane.

This is a quick summary of the Docker Swarm features. We recommend you read this
summary to remember the concepts we have learned:

We started talking about multi-container applications before introducing
orchestration because it is the first approach to container orchestration. They
work locally, using Docker Compose (the docker-compose tool) and application
components, and their interaction is described using docker-compose.yml
YAML files. Multi-container applications run all of their components together on
a Docker host, but we can scale their components up and down, as well as
interacting with them and reviewing their logs.
Docker Swarm orchestrates Docker services to provide them with resilience,
internal discovery, and load balancing in cluster environments. Our applications'
workloads will be distributed cluster-wide.
We will use two kinds of node roles within Docker Swarm—managers and
workers—which can be modified.
We will deploy more than one manager and more than one worker to provide
high availability to the cluster and workloads deployed on top of it.
One of the managers is also the leader of the cluster and will update all cluster
resource changes in an internal database, synced between manager nodes.
Docker Swarm uses the Raft algorithm to update changes, hence a quorum
between managers is required before changes are committed.
Docker Swarm has a management plane, a control plane, and a data plane. The
management and control planes can be isolated from the data plane, and they
work encrypted out of the box. The data plane can also be encrypted but not by
default (we have to encrypt each custom network).
Docker Swarm issues and maintains an internal Certificate Authority (CA) and
manages certificates for all cluster components. We can lock this information to
keep it safe.

Summarizing Important Concepts Chapter 14

[521]

A minimum of (number of managers / 2 + 1) healthy manager nodes is required to
maintain the cluster health. If we have less than the required number, no changes
can be made within the cluster but application workloads will continue working.
If a service fails, it will not be recovered if the cluster is unhealthy.
Docker Swarm uses the Raft log to maintain internal key-value store
synchronization between nodes. Therefore, an odd number of managers is
required to keep a quorum. This also applies to Kubernetes, but it uses etcd as a
key-value store.
All nodes can run application workloads, but we can change this behavior
whenever we need draining nodes or to disallow new workloads without
interrupting already-running ones.
Cluster workloads are declared as services, with a required number of instances
or replicas to be healthy. These resources are tasks and they will run one
container.
Docker Swarm does not manage containers; it only manages services. Therefore,
we deploy applications based on services. We do not deploy standalone
containers.
Services receive one virtual IP address by default and this address does not
change during their lifetime. Tasks run only one container; they do not have an
associated IP address, and they always keep their names. If a task's container dies
or needs to be modified with some updates, a new task will be created with the
original name. The container will receive a new IP, but the internal load balancer
will associate it as a backend endpoint for the service.
We can scale up or down the number of tasks required for a service whenever we
need to. However, Docker will not manage our application behavior under these
circumstances.
Tasks are scheduled automatically on healthy nodes if they have enough
resources to run associated services' tasks, but we can force a task location on
specific nodes.
Docker provides some template tools to help us format, filter, and create unique
resources using Docker Swarm variables.
Networking in Docker Swarm uses bridged interfaces, as we also learned with
Docker containers. We deploy overlay networks distributed cluster-wide using
VXLAN technology to provide communication between containers running on
different hosts and other network features.

Summarizing Important Concepts Chapter 14

[522]

Docker Swarm provides a router mesh as a default strategy to publish cluster
services for users and other applications. By default, services' ports will be
published on all cluster nodes even if they do not run any services' tasks. Internal
routing guides service requests to appropriate backend containers. We can
change these behaviors with common Docker Swarm command options.
As we learned with Docker Engine, services are not published to be consumed by
default. We need to manually publish service ports and processes.
Publishing applications to the world can be done using the router mesh on
Docker Swarm, or Interlock in Docker Enterprise. Interlock provides an
integrated and automated reverse-proxy solution to secure your application's
backends. We just publish the interlock-proxy component while the Docker
Swarm services receive requests internally. Hence, no additional publishing is
required for services; just configure a few labels to inform Interlock about the
required forwarding for an application.
We can create as many overlay networks as required and they will be isolated
from each other, as we also learned with custom bridge networks.
Orchestration introduced some new concepts, such as secrets and configurations,
to provide stored information that is distributed cluster-wide. Secrets are secured
and encrypted by Docker Swarm and we use them to configure passwords,
certificates, or tokens using on-memory filesystems. Configuration objects help
us to distribute configurations on containers running on different hosts without
having to sync files between nodes manually.
In Docker Swarm, we deploy an application using Docker stacks. These resources
allow us to deploy multi-service applications that are distributed cluster-wide.
We will define all the required application resources (services, secrets, networks,
configurations, volumes, and so on) in a docker-compose-like file and we will
use these files to deploy the complete application. All changes or updates in
application components should be written in these files because it allows us to
manage the application's deployments as code.
Application component updates are managed using rolling updates. We can
deploy changes manually or using Docker stacks. In both cases, we can deploy
changes smoothly, avoiding service interruption and user impact. If an update
goes bad, we can easily execute a rollback to run the previous service
configuration.
We also reviewed the Kubernetes orchestrator because it is included in Docker
Enterprise. This orchestrator has many differences from Docker Swarm, although
both manage containers at the end. We learned all about Kubernetes components
and their interactions.

Summarizing Important Concepts Chapter 14

[523]

Docker Enterprise deploys full vanilla (non-customized) Kubernetes for us out of
the box, including Calico as a Container Network Interface (CNI) by default. All
worker nodes (DTR requires dedicated workers) can be set to run either Docker
Swarm, Kubernetes workloads, or even both orchestrator workloads.
Pods are the smallest scheduling unit in Kubernetes but they do not provide
resilience. We need to integrate them on orchestrated templated resources, such
as ReplicaSets, DaemonSets, or deployments.
Kubernetes provides a flat network. This means that all pods that are deployed
will see each other. Service-to-service communications are always allowed by
default. To ensure security in this situation, we need to deploy NetworkPolicy
resources to allow only specific component communications.

Although Docker stacks and multi-container applications using docker-
compose use the same type of YAML files, some keys are only valid for
one of them. For example, keys such as depends_on, build, or
volumes_from are only available for Docker Compose multi-container
applications; therefore, we will receive a warning message indicating this
issue when we try to use them for Docker stacks.

Let's review the required topics for the exam.

Required knowledge for the exam
The exam will verify our knowledge of the following topics, among others:

Completing the setup of a Swarm mode cluster, with managers and worker
nodes
Describing and demonstrating how to extend the instructions to run individual
containers into running services under Swarm
Describing the importance of a quorum in a Swarm cluster
Describing the difference between running a container and running a service
Interpreting the output of the docker inspect commands
Converting an application deployment into a stack file using a YAML compose
file with docker stack deploy
Manipulating a running stack of services
Describing and demonstrating orchestration activities
Increasing the number of replicas

Summarizing Important Concepts Chapter 14

[524]

Adding networks and publishing ports
Mounting volumes
Describing and demonstrating how to run replicated and global services
Applying node labels to demonstrate the placement of tasks
Describing and demonstrating how to use templates with docker service
create

Identifying the steps needed to troubleshoot a service that is not deploying
Describing how a Dockerized application communicates with legacy systems
Describing how to deploy containerized workloads as Kubernetes pods and
deployments
Describing how to provide configuration for Kubernetes pods using ConfigMap
and secret resources.

These topics are extracted from Docker's official study guide, which can be found
at https://success. docker. com/ certification.

A brief summary of Docker image concepts
Images are fundamental to creating containers, and this topic represents around 20% of the
DCA exam questions. We covered Docker images in depth in Chapter 2, Building Docker
Images, but we also talked about them in Chapter 3, Running Docker Containers, Chapter 6,
Introduction to Docker Content Trust, and Chapter 13, Implementing an Enterprise-Grade
Registry with DTR. In this chapter, we will quickly review all of the concepts seen in those
chapters as a summary.

Let's review the most important concepts, features, and actions associated with Docker
images before getting into the required knowledge section:

Images are based on copy-on-write filesystem strategies. They are based on
different overlapping layers, applied using different union filesystems and
storage drivers. Currently, the most used filesystem driver for containers is
overlay2. Docker Engine chooses the most adequate graph driver for our
system, although we can change it.
Containers are just isolated processes running on Docker hosts. We use images as
templates to provide a root filesystem and meta-information to control processes'
behavior.

https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification

Summarizing Important Concepts Chapter 14

[525]

There are three methods for creating images:
Using a Dockerfile: This file contains all the steps required to
install our application with all its dependencies, as well as how it
should be started. We also provide which ports and protocols
should be used to communicate with the container's processes.
This method is reproducible and it provides infrastructure-as-code
behavior.
Running containers and committing: In this case, we run a
container, and inside, we run commands to install and configure
our applications. When all the changes are made in the container's
filesystem, we commit those changes to make an image. This
method is not reproducible. We usually use this workflow when
application installation cannot be automated, for example.
Images from scratch: In this case, images are lightweight because
they just include an empty root filesystem with application
binaries and dependencies. This root filesystem does not include
any non-required operating system files. We add our binaries
using Dockerfile copy keys.

Multi-stage building can also be included as an alternative method for creating
images. In this case, we declare different build processes in just one Dockerfile.
We define a descriptive name for each one and we define a workflow, copying
files from different builds. This allows us to define a phase to compile an
application using the required compilers, headers, or libraries on an application-
development image and just copy the final development product to another
phase, with a runtime environment. As a result, the runtime image is much
smaller than the development one.
Dockerfiles create images by executing containers. Each container makes changes
in its root filesystem and these changes will be committed (stored) for subsequent
containers, using the previous container's layers for execution.
Smaller images are more secure because having non-required binaries, libraries,
and configurations inside images is risky. Images should only contain the
required content for our application.
There are a few important practices to follow to build better images:

Never add debugging tools or compilers to production images.
Declare all required resources on your images, such as exposed
ports, the user required for the main process execution, and the
directories that will be used as volumes. These will help other
users to easily understand how your application works and should
be used.

Summarizing Important Concepts Chapter 14

[526]

Do not use root on your application's images unless it is strictly
required by processes to work.
Build your images to run just one process per container. With
many processes per container, it is hard to maintain and verify
their health.
We always have to choose between the portability of layers
between images and the images' sizes. There are cases where it is
better to have fewer layers, while at other times it is better to have
more layers because others will reuse them. Image layer caching is
key to speeding up the image building process.
Always add health checks inside your Dockerfiles to help Docker
Engine verify the container's health.

Docker provides all of the required commands for building and shipping Docker
images. We can also inspect their content or build history to help us debug their
processes or create new images.
It is key to understand that dangling images, unreferenced layers from previous
builds, will stay in your Docker hosts until you remove them. Administrators
should keep the Docker platform clean to avoid hosts degrading due to disk
space being lost.
Good image tagging is fundamental on container platforms. We can also use
labels on Dockerfiles to add meta-information to Docker images. You should try
to uniquely identify images by their tags, but remember that only an image's ID
will really identify an image uniquely. An image can have many names and tags,
but only one ID.
We can include variables inside Dockerfiles. This will help us to build images
with special features for different stages. We can deliver a production-ready
image into production systems while having debugging and instrumentation
tools on testing images. They will still have common application binaries but we
will use a debugging version to review some specific problems. Variables can
also be modified as arguments for the docker build command line.

Let's get an idea of the topics required for the exam.

Summarizing Important Concepts Chapter 14

[527]

Required image management knowledge for the
exam
The exam will verify our knowledge of the following topics, among others:

Describing the use of a Dockerfile
Describing options, such as add, copy, volumes, expose, and entrypoint
Identifying and displaying the main parts of a Dockerfile
Describing and demonstrating how to create an efficient image via a Dockerfile
Describing and demonstrating how to use CLI commands to manage images,
such as list, delete, prune, and rmi
Describing and demonstrating how to inspect images and report specific
attributes using filter and format
Describing and demonstrating how to tag an image
Describing and demonstrating how to apply a file to create a Docker image
Describing and demonstrating how to display the layers of a Docker image
Describing and demonstrating how to modify an image to a single layer
Describing and demonstrating registry functions
Deploying a registry
Logging into a registry
Utilizing search in a registry
Pushing an image to a registry
Signing an image in a registry
Pulling and deleting images from a registry

These topics are extracted from Docker's official study guide, which can be found
at https://success. docker. com/ certification.

https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification

Summarizing Important Concepts Chapter 14

[528]

A summary of the Docker architecture,
installation, and configuration topics
The installation and configuration of the Docker platform are key to every Docker
Enterprise administrator. These topics represent 15% of the exam content. They were
covered in multiple chapters for standalone and cluster environments. We learned about
these concepts in Chapter 1, Modern Infrastructures and Applications with Docker, Chapter 8,
Orchestration Using Docker Swarm, Chapter 10, The Docker Enterprise Platform, Chapter 11,
Universal Control Plane, and Chapter 13, Implementing an Enterprise-Grade Registry with DTR.

This is a quick summary of special characteristics and tips for the installation and
configuration of the Docker platform. We recommend that you read this summary to
ensure you remember the concepts learned:

Docker components on standalone and cluster environments: We should have
a good idea of Docker Enterprise component distribution and features.
The installation processes for each component on different platforms: We have
seen that installation is easy in both the Docker Community and Docker
Enterprise environments. Review the installation processes for the different
platforms and ensure that you have a good idea of the configuration file
locations.
You must know all the components' requirements and the steps required to
deploy a Container-as-a-Service (CaaS) enterprise-ready solution, with high
availability on core components.
Chapter 1, Modern Infrastructures and Applications with Docker, showed many
configuration procedures for Docker Engine. By default, Docker will choose the
best storage driver for your Docker layers. Remember that we used overlay2
because we should be able to change it if our installation has different
requirements.
Ensure that you have a good understanding of what files are under
the /var/lib/docker directory (or the one configured) and what should be
stored in your Docker Engine's backups. You also learned about the procedures
to create Universal Control Plane (UCP) and Docker Trusted Registry (DTR)
backups and the steps and cases where restoration is required.
Only Docker Enterprise and Kubernetes provide role-based access. We covered
basic Docker Enterprise permissions and configurations for UCP and DTR
in Chapter 11, Universal Control Plane, and Chapter 13, Implementing an
Enterprise-Grade Registry with DTR, respectively.

Summarizing Important Concepts Chapter 14

[529]

Review how we configured TLS communications for client authentication when
we do not need different levels of authorization. This was covered in Chapter 1,
Modern Infrastructures and Applications with Docker.
Cgroups and kernel namespaces provide container isolation. These are key to
ensuring processes have enough resources without any non-authorized
communication with other processes running on the same host.

We will now review which topics should be known about for the exam.

The knowledge required about the Docker
platform for the exam
The exam will verify our knowledge of the following topics, among others:

Describing sizing requirements for installation
Describing and demonstrating the setup of a repo, the selection of a storage
driver, and the installation of the Docker engine on multiple platforms
Describing and demonstrating the configuration of logging drivers (splunk,
journald, and so on)
Describing and demonstrating how to set up Swarm, configure managers, add
nodes, and set up the backup schedule
Describing and demonstrating how to create and manage users and teams
Describing and demonstrating how to configure the Docker daemon to start on
boot
Describing and demonstrating how to use certificate-based client-server
authentication to ensure a Docker daemon has the right to access images on a
registry
Describing the use of namespaces, cgroups, and certificate configuration
Describing and interpreting errors to troubleshoot installation issues without
assistance
Describing and demonstrating the steps to deploy Docker Engine, UCP, and DTR
on Amazon Web Services (AWS) and on-premises with high availability
Describing and demonstrating how to configure backups for UCP and DTR

These topics are extracted from Docker's official study guide, which can be found
at https://success. docker. com/ certification.

https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification

Summarizing Important Concepts Chapter 14

[530]

A summary of the networking topics
Networking is one of the core components of microservice application architecture. Faster
networks allowed the evolution of distributed architectures. High availability and resilience
can be provided using modern infrastructures, even on cloud or cloud-hybrid architectures.
Containers work like small virtual nodes and they get virtual interfaces. We learned that
network namespaces allow us to isolate processes on the same host, even if they use the
same bridge interface to communicate with the real network, out of the host's network
namespaces. Distributed networking on clusters is also simple because Docker Swarm
manages all the internal infrastructures and processes required to allow communication
between containers on different hosts. Overlay networks in Docker Swarm, distributed
cluster-wide, use VXLAN to encapsulate traffic and can even be encrypted. By default, the
Docker Swarm control plane's components are secured using Mutual TLS (MTLS)
communication and we can isolate application data from network management.

All of these topics were covered in multiple chapters on Docker Engine, Docker Swarm,
and Kubernetes. We learned about these topics in Chapter 4, Container Persistency and
Networking, Chapter 8, Orchestration Using Docker Swarm, Chapter 9, Orchestration Using
Kubernetes, Chapter 11, Universal Control Plane, and Chapter 12, Publishing Applications in
Docker Enterprise.

In Chapter 9, Orchestration Using Kubernetes, we learned how Kubernetes implements
network features cluster-wide. We also reviewed these features side by side against Docker
Swarm implementations to have a good idea of how we can use both or make container
workloads that can run on any of them.

We also learned that containers can expose their application processes internally. Other
containers can consume their services but we need to publish their ports for external users
and applications. This is very important because security is ensured in Docker Swarm for
containers working in the same network. They are isolated, hence we can publish only
frontend applications' components.

Let's look at some network topics as a summary:

Docker Engine networking is based on bridge networking, although we can use
MacVLAN interfaces (with real IP addresses), underlying the host's networking
(using its network namespace), and can even extend default behavior using
plugins. We can use default or custom bridge networking. Custom networks also
deploy internal DNS facilities, hence, containers running on these networks will
know each other by their names. In some special cases, it is useful to deploy
containers without networking features.

Summarizing Important Concepts Chapter 14

[531]

Networking in Docker Swarm is easy because Docker creates new virtual
networks (overlay networks) and deploys VXLAN tunnels to encapsulate all
hosts' traffic. Containers deployed for services' tasks can see each other if they are
working on the same overlay network.
The Kubernetes network model is even easier. It is based on a flat network where
services and pods are always reachable by default. For this to work, we need to
integrate a CNI. Each CNI has its own implementation of this flat network model
and Docker Enterprise deploys Calico (https:/ /www. projectcalico. org/) by
default.
A flat network is unsecured by default because applications' components are not
isolated. We will use network policies to isolate applications, grouping them by
namespaces, labels, and so on. NetworkPolicy resources manage connection rules
to allow or disallow specific pods' connections and hence their traffic.
Docker Swarm nodes use encrypted TLS communications by default (mutual
TLS). Docker manages all of the required certificates. Users' communications
with the cluster are not secure, but we can also create secure communications
manually (we have a complete example explaining all of the required steps in
Chapter 8, Orchestration Using Docker Swarm) or use UCP-integrated Role-Based
Access Control (RBAC). UCP provides users with bundles, containing all the
required files to create secure TLS tunnels.
Kubernetes also encrypts its control plane. Docker Enterprise does all the
deployment work for us and a fully functional Kubernetes cluster will be up and
running after its installation. Certificates will be used to deploy TLS tunnels
between Kubernetes components and users by default.
Internal DNS is deployed for local custom bridge and overlay networks.
Therefore, containers and services can be discovered by their names. Containers
use an internal DNS and an external resolution will be forwarded to a specific
external DNS. By default, containers receive the host's DNS configuration, but we
can change this behavior.
Kubernetes also integrates an internal DNS. In this case, the kube-dns
component will manage all service entries.
Internal load balancing is also deployed in overlay networks. Remember that
services can be replicated or global. In both cases, vip mode is used by default,
and services get an IP address in the special ingress network. This IP address is
registered and the internal load balancer will route requests to all available
services' replicas. We can avoid this behavior using the dns-round-robin
mode.

https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/
https://www.projectcalico.org/

Summarizing Important Concepts Chapter 14

[532]

Kubernetes' internal load balancing has similar behavior. All services will receive
an internal virtual IP address by default (a ClusterIP). Services in Kubernetes are
logical groups of pods and services' requests will be forwarded by default to all
associated pods.
As mentioned before, an application deployed within containers will not publish
their ports unless we declare this behavior. Publishing ports on Docker Engine is
easy and we can ensure that only specific IP addresses will listen on a published
port on multi-homed nodes. Bridge networking uses NAT for publishing an
application's ports. Docker creates all of the required hosts' firewall rules to allow
and route this traffic. If we use the host's networking, all container-exposed ports
will be published and applications will be directly accessible.
We also learned that services in Docker Swarm will be published by default in all
nodes, even if they do not run any services' tasks. This feature is known as a
router mesh and application ports will be available in all of the clusters' hosts.
Internal load balancing will also be applied using an ingress overlay network and
instances in different hosts will be reachable. This can be insecure because all
application ports will be accessible on all hosts.
Kubernetes' NodePort services have equivalent behavior to Docker Swarm's
router mesh. Services declared as NodePort will publish their ports on all cluster
nodes. However, Kubernetes also has the LoadBalancer service type. These
services will be published directly using infrastructure load balancers. This
integration only works on some cloud providers.
UCP provides Interlock as a solution to avoid unsecured router mesh publishing.
We have learned about Interlock's components and deployment and how we
publish applications using this tool. Interlock's ports must be published, but all
other applications' services can be accessed through Interlock. Therefore, we do
not need to publish applications' ports. This improves security because Interlock
acts as a reverse proxy, providing TLS security, host- and content-based services
routing, and sticky sessions, among others. The Interlock proxy component will
be updated using services' labels; therefore, only services with specific labels will
be published. We have learned about these required labels and reviewed a few
examples of their usage.
Kubernetes can integrate ingress controllers to avoid NodePort cluster-wide
application publishing. Ingress controllers deploy reverse-like proxy features to
route requests to appropriate services matching specific headers or content rules.
This improves security because services should not be published. We just publish
ingress controllers (using service strategies, for example), and ingress resources
manage the necessary rules for reaching out to the desired services, although
they are not externally published.

Summarizing Important Concepts Chapter 14

[533]

As mentioned, networking is critical in cluster environments. Let's review some of the
topics required to pass the exam.

The Docker networking knowledge required for
the exam
The exam will verify our knowledge of the following topics, among others:

Describing the container network model and how it interfaces with Docker
Engine and network and IPAM drivers
Describing the different types and use cases for built-in network drivers
Describing the types of traffic that flow between Docker Engine, registry, and
UCP controllers
Describing and demonstrating how to create a Docker bridge network for
developers to use for their containers
Describing and demonstrating how to publish a port so that an application is
accessible externally
Identifying which IP and port a container is externally accessible on
Comparing and contrasting host and ingress publishing modes
Describing and demonstrating how to configure Docker to use an external DNS
Describing and demonstrating how to use Docker to load balance HTTP/HTTPS
traffic to an application (configuring L7 load balancing with Docker EE).
Understanding and describing the types of traffic that flow between Docker
Engine, registry, and UCP controllers
Describing and demonstrating how to deploy a service on a Docker overlay
network
Describing and demonstrating how to troubleshoot container and engine logs to
resolve connectivity issues between containers
Describing how to route traffic to Kubernetes pods using the ClusterIP and
NodePort services
Describing the Kubernetes container network model.

These topics are extracted from Docker's official study guide, which can be found
at https://success. docker. com/ certification.

The next section will help you by presenting the required knowledge in relation to security
on the Docker platform.

https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification

Summarizing Important Concepts Chapter 14

[534]

Understanding security concepts and
related Docker features
Security is crucial when you are running applications in production. We have learned
about many security features provided by Docker and its components. We started by
reviewing how containers are isolated from other host processes and we also learned how
we can ensure security in Docker Engine. Then, we moved on to Docker Swarm, where
security must be applied cluster-wide. Users' access must also be managed and we need to
provide authentication and authorization mechanisms. Docker Enterprise provides a higher
level of security. It includes a complete RBAC environment, which allows us to manage
fine-grained permissions to objects and cluster resources.

All of these topics were covered in multiple chapters on Docker Engine, Docker Swarm,
Kubernetes, and the Docker Enterprise platform. We learned about security in Chapter 1,
Modern Infrastructures and Applications with Docker, Chapter 2, Building Docker Images,
Chapter 4, Container Persistency and Networking, Chapter 6, Introduction to Docker Content
Trust, Chapter 8, Orchestration Using Docker Swarm, Chapter 9, Orchestration Using
Kubernetes, Chapter 11, Universal Control Plane, Chapter 12, Publishing Applications in
Docker Enterprise, and Chapter 13, Implementing an Enterprise-Grade Registry with DTR.

We have to remember that containers are created using images, so securing images is also
critical. Following good practices is key to developing safe images. Docker Enterprise
provides several strategies to validate image precedence, immutability, and content
security.

Let's review some of these security topics:

Docker is a client-server application. The server will publish its API on local (by
default) and remotely accessible sockets. We can limit Docker Engine access by
limiting access to these sockets. Locally, only users with filesystem permissions
to a defined socket file will be allowed to run Docker commands on the local
Docker engine.
Docker Engine can be integrated with operating system-provided security
modules, such as SELinux or AppArmor. Docker provides integration and
default profiles to use with our containers. Docker also integrates with the Linux
kernel to allow the adding or removing of specific system calls using capabilities.
There are also simpler security tips, such as using read-only root filesystems and
non-root users within containers, that will also help us to provide secure
applications.

Summarizing Important Concepts Chapter 14

[535]

Images should be secure to create secure containers. Images should only contain
the required binaries, libraries, and configurations for our processes. Everything
irrelevant to the application should be avoided. Docker Enterprise provides an
image's content security scanner. It compares relevant content file hashes against
a database of well-known published vulnerabilities and exploits (internet
Common Vulnerabilities and Exposures (CVE)). We learned how this process
works and how we can integrate tag promotions to ensure that only allowed
users get the appropriate access to their images. These are some of the DTR
features.
We can also sign images. This process ensures image content immutability and
ownership. If we integrate image building into our continuous integration and
continuous deployment, we can ensure that images were created using an
appropriate workflow. We can also improve our CaaS security, allowing only
containers based on images signed by specific teams or users within your
organization.
We learned about all the automatic steps to be followed to sign an image and all
the keys integrated into the process. Image signing is based on Content Trust
logic, and we learned how it is integrated in Docker in Chapter 6, Introduction to
Docker Content Trust.
We mentioned some simple practices that increase security in our workloads,
such as running read-only root filesystems or using non-root users for
applications (or user namespaces). We should review an image's specifications
using docker image inspect to have a good idea of exposed ports,
applications' users, and commands that will be executed inside containers.
As mentioned in this chapter, neither Docker Engine nor Docker Swarm have
any RBAC integration. On the other hand, Docker Enterprise components have
integrated role-based access. UCP provides different accesses to Docker Swarm
resources based on roles, grants, and collections. We can configure fine-grained
access to volumes, secrets, configs, networks, and so on, so users will only be able
to execute allowed actions on their resources. Users will connect to the cluster to
execute, review, and modify their resources by using either the provided web UI
or their Docker command line, using their Docker client software and their UCP's
bundle. This compressed file contains user certificates and environment scripts
prepared to help users connect easily to the cluster.
DTR has its own RBAC environment, isolated from that of UCP. DTR is a
registry, therefore its RBAC environment is dedicated to managing access to the
images stored within your CaaS. We have fine-grained permissions to allow a
group of users to use or modify images, while other images are public within
teams or the full organization.

Summarizing Important Concepts Chapter 14

[536]

DTR and UCP are integrated by default in a single sign-on solution, although we
can change this behavior. We can also integrate them into our organization user
management solution, Active Directory, or any compatible Lightweight
Directory Access Protocol (LDAP).
We learned how to deploy Docker Enterprise components and how to manage
users, roles, and different levels of access to resources and images. They will be
deployed with high availability using an odd number of software nodes and we
will require an external load balancer to provide users' access. We can integrate
our corporate certificates, but we can also use autogenerated ones. In this case,
we will need to integrate DTR's CA in our organization server and client hosts.
Although Docker Swarm requires UCP to integrate user management,
Kubernetes implements its own RBAC system. We will be allowed to
authenticate and authorize users using tokens and certificates. Kubernetes RBAC
will work for applications and users and it is integrated into Docker Enterprise.
Docker Swarm and Kubernetes provide secure storage for certificates,
passwords, tokens, and so on. Both provide secret resources to manage any file
(or variable) that should be protected from suspicious users. But while secrets are
encrypted in Docker Swarm, they are not encrypted in Kubernetes by default.
Secret resources are encoded using Base64 in Kubernetes, and additional
configuration must be performed to encrypt them.
Kubernetes has advanced features regarding security, such as PodSecurityPolicy
resources, which allow us to force security on pods, allowing or disallowing
specific behaviors (root processes and read-only filesystems). Admission
controllers can also be implemented (there are a few already configured by
default in UCP's Kubernetes deployment) to force pod security policies and other
security features by default to any workload deployed in our Kubernetes cluster.
We will use RBAC for either UCP and DTR user accesses. First, we will ensure
only authorized users will be able to manage and use cluster resources for their
applications. DTR's RBAC will protect images, allowing only authorized users to
manipulate and update their content.

The next section will highlight the knowledge required to pass the exam.

Summarizing Important Concepts Chapter 14

[537]

The knowledge of Docker security required for
the exam
The exam will verify our knowledge of the following topics, among others:

Describing security administration and tasks
Describing the process of signing an image
Describing default engine security
Describing Swarm default security
Describing MTLS
Describing identity roles
Comparing and contrasting UCP workers and managers
Describing the process of using external certificates with UCP and DTR
Describing and demonstrating how an image passes a security scan
Describing and demonstrating how to enable Docker Content Trust
Describing and demonstrating how to configure RBAC with UCP
Describing and demonstrating how to integrate UCP with LDAP/AD
Describing and demonstrating how to create UCP client bundles

These topics are extracted from Docker's official study guide, which can be found
at https://success. docker. com/ certification.

Quickly summarizing Docker storage and
volumes
Using Docker containers requires different storage solutions, as we have learned through
this book. Images and containers are created using multiple-layer filesystem strategies.
However, we also have to manage persistence in our container-based applications. This
persistence can be associated with application data, but we also have to be able to manage
configurations and states cluster-wide.

We learned about security in Chapter 1, Modern Infrastructures and Applications with Docker,
Chapter 2, Building Docker Images, Chapter 4, Container Persistency and Networking,
and Chapter 13, Implementing an Enterprise-Grade Registry with DTR.

https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification

Summarizing Important Concepts Chapter 14

[538]

This is a quick summary of the topics looked at in this book regarding storage and volume
management within containers. We recommend you read through this summary to ensure
you remember the concepts learned:

We learned that containers are based on different filesystems and solutions with
a common feature – copy-on-write. This allows us to create multiple immutable
layers to group files. Each layer is the base for another, and file modifications will
be stored in the last layer where they were changed. All immutable layers are
considered as the image for the creation of new containers. We will add a new
read-and-write layer for the container. These layers rely on host storage. This
storage is known as graph storage and we will use different strategies to manage
it, depending on the host operating system. Docker will choose the best driver for
your host according to your kernel features and installed drivers. The most
popular and most widely used today is overlay2, which is the default graph
driver for many Linux distributions. docker info provides information about
the driver used.
We have also learned that images are stored locally for fast usage on your host.
When these images must be shared with cluster nodes, things get difficult,
although we can export and import image layers. We will use image registries to
store images and share their content with hosts and users. We learned how to
deploy Docker Registry (Community Edition) as well as DTR, which is
recommended for enterprise environments. We can use different storage
solutions for registry volumes, depending on whether we are using cloud
environments or on-premises installations. As reviewed in Chapter 13,
Implementing an Enterprise-Grade Registry with DTR, object storage is quite good
for storing images based on big layers, which is the most common way of
creating images.
Images can occupy a lot of space in your host. We should take care of this and
review dead containers and unused images that are consuming space with
docker system df. We should remove dangling images not used as a layer
within any other images. We also have to take care of the space on our registries.
Only keep required images, but remember to verify which containers or
applications will use different old image versions. We learned how to filter this
information in Chapter 2, Building Docker Images.
Volumes, on the other hand, are different from image and container storage.
They are used to bypass container storage. These help us to improve
performance when a lot of disk I/O is required, and also allow us to store
persistent data. By default, we can use on-memory filesystems, a host's local
directories (bind mounts), NFS, and Docker volumes for storage. Docker
volumes are associated with a container's life cycle when they are created during
their execution.

Summarizing Important Concepts Chapter 14

[539]

As mentioned, Docker provides some volume solutions by default. We can
extend them using plugins and third-party integrations. Using distributed
storage with Docker Swarm and UCP is critical if we need to provide high
availability to our applications using resilience. If one cluster host dies, another
will take its workloads by default, but storage must follow this behavior.
Kubernetes has a different approach to persistent data. We talked about volumes
and persistent volumes (persistentVolumes). The former are used to share
and manage data associated with pods' containers. On the other hand, persistent
volumes are used to manage and persist data cluster-wide. There are different
retention policies to manage their recycling cycles. Persistent volume claims
(persistentVolumeClaims) are used to link pods with volumes using labels
and required space among other parameters. Therefore, instead of using
persistent volumes directly attached to pods, we will use
persistentVolumeClaims inside pods' configurations as volumes.
Administrators should create these resources, but they can avoid this behavior by
using storageClass resources. They will just configure
storageClass resources using labels, storage providers, and other advanced
profiles to allow dynamic storage allocation for persistent volumes.
We learned that Docker provides Config and Secret objects to allow us to
manage information in cluster nodes. These help us to configure applications and
ensure that applications' containers receive appropriate configurations,
passwords, certificates, and so on. Kubernetes has its own configuration and
secret resources. To manage configurations, we will use ConfigMaps for storing
an application's configuration files and managing environment variables. Secret
resources are used to store secured data, but they are not encrypted by default in
Kubernetes. They are stored using the Base64 format and can be used for either
storing keys and values or files.

Storing data and states is quite important and is part of the exam. Let's review what
concepts you are required to understand to pass the exam.

The storage and volume knowledge required for
the exam
The exam will verify our knowledge of the following topics, among others:

Identifying the correct graph drivers to use with various operating systems
Describing and demonstrating how to configure a device mapper

Summarizing Important Concepts Chapter 14

[540]

Comparing and contrasting object and block storage and when they should be
used
Describing how an application is composed of layers and where those layers
reside on the filesystem
Describing the use of volumes with Docker for persistent storage
Identifying the steps to take to clean up unused images on a filesystem and DTR
Describing and demonstrating how storage can be used across cluster nodes
Describing how to provision persistent storage to a Kubernetes pod using
persistentVolume resources.
Describing the relationship between container storage interface drivers,
storageClass, persistentVolumeClaim, and volume objects in Kubernetes.

We will look at some final notes and sample exam questions to help us prepare for the DCA
exam in the next chapter.

Summary
This chapter was a summary of the topics required to pass the exam. We reviewed the topic
distribution and their approximate value in the exam. This should give you a good idea of
what sections are more important than others. We recommend that you review this chapter
before reading all the exam-like questions set out in the next chapter.

We covered a brief summary of orchestration's most important topics. We also
reviewed some of the installation and configuration tips required for Docker Engine,
Docker Swarm, and Enterprise components. We looked at a summary of the features and
processes involved in the creation of images. Security is always critical and we looked at a
summary of the features provided by different Docker components that help us to provide
a CaaS platform in production. Container networking and the different storage
implementations for containers and images and for data management were also reviewed.
It is recommended that you review any chapters that were not clear in these summaries and
review the labs provided in this book to reinforce your knowledge of all the exam topics.

The next chapter provides some exam-like questions that will prepare you for the exam.

15
Mock Exam Questions and

Final Notes
This chapter presents some final notes with some mock questions. We will look at a brief
summary of the exam specification, how it is delivered to you, and what topics are more
relevant than others.

The mock questions prepared for this book are similar to the ones you will get during the
exam. Please read them carefully because some are multiple-choice. Multiple-choice
questions will appear in the exam and you should know how to answer them.

By the end of these questions, you will have a good idea of the format of the exam, what
kind of questions you will get, and what topics are more relevant than others.

Docker Certified Associate exam details
At the time of writing this book, the exam is based on the Docker Enterprise platform.
Please refer to Docker's site, https:/ /success. docker. com/certification, to obtain the
latest information.

The Docker Certified Associate exam will validate your Docker Enterprise professional
skills and usually requires a minimum of 6 to 12 months of platform experience. This book
teaches these required skills with labs that help you understand the platform's concepts and
usage.

You can pay for and take this exam online, but it is only available in English. Although the
Docker site shows that results will be delivered immediately, sometimes results can take
24–48 hours to be delivered.

https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification
https://success.docker.com/certification

Mock Exam Questions and Final Notes Chapter 15

[542]

The exam consists of 55 questions and the topics covered in this book have different values.
We recommend you use the Docker Enterprise platform's 30-day free-trial, as there will be
many exam questions about Docker Enterprise components and management. It is also
recommended that you have good knowledge of Docker's command-line actions and
options, including how to obtain and filter information about Docker resources. These are
the topic weights at the time of writing this book:

Orchestration: 25%
Image creation, management, and registry: 20%
Installation and configuration: 15%
Networking: 15%
Security: 15%
Storage and volumes: 10%

This gives you an idea of each topic's importance and the question distribution. In the next
section, we will provide some questions to help you prepare for the exam. They are exam-
like questions. Take care because many of them have more than one correct answer and
you should choose all the right ones. The answers to all these questions can be found at the
end of this book, in the Assessments section.

Mock exam questions
How can we limit the number of CPUs provided to a container?1.

a) Using --cap-add CPU.
b) Using --cpuset-cpus.
c) Using --cpus.
d) It is not possible to specify the number of CPUs; we have to use --cpu-
shares and define the CPU slices.

How can we limit the amount of memory available to a container?2.

a) It is not possible to limit the amount of memory available to a container.
b) Using --cap-drop MEM.
c) Using --memory.
d) Using --memory-reservation.

Mock Exam Questions and Final Notes Chapter 15

[543]

What environment variables should be exported to start using a trusted3.
environment with the Docker client?

a) export DOCKER_TRUSTED_ENVIRONMENT=1
b) export DOCKER_CONTENT_TRUST=1
c) export DOCKER_TRUST=1
d) export DOCKER_TRUSTED=1

How can we increase the number of replicas of a service running one instance4.
(mark all the correct answers)?

a) This is not possible for global services.
b) By updating the number of replicas with docker service update --
replicas <NUMBER_OF_REPLICAS> <SERVICE>.
c) The number of replicas can be increased using docker service scale
<SERVICE>=<NUMBER_OF_REPLICAS>.
d) We can use docker service scale up to create a new replica.

How many replicas does a global service run on nodes if we specify5.
the node.role!=worker constraint?

a) Worker and manager nodes will run one replica.
b) Only workers will run one replica.
c) Only manager nodes will run one replica.
d) No nodes will run any replicas.

How do we stop all replicas of the service web server, which is currently6.
executing three replicas?

a) Using docker service stop webserver.
b) Using docker rm service webserver.
c) Using docker service update --replicas 0 webserver.
d) None of the preceding answers are correct.

If we publish a service on port 8080 using -P, which nodes will expose port7.
8080?

a) No node will expose a service on port 8080.
b) All nodes will publish port 8080.
c) We should use privileged containers to expose port 8080.
d) We must use --network=host to publish ports below port 30000.

Mock Exam Questions and Final Notes Chapter 15

[544]

What step should we follow to remove the leader node from the cluster?8.

a) Ensure all tasks run on other nodes by executing docker node update
--availability=drain <LEADER_NODE>.
b) Remove the node from the cluster as the leader by executing docker
swarm leave on the node.
c) Demote the leader node to a worker and then execute docker swarm
leave on the node.
d) Once the node is out of the cluster, we can remove it completely using
docker node rm <OLD_LEADER_NODE> from any available manager.

Where do we specify that DevOps users can run a container using only images9.
signed by the admin group from our Docker Enterprise registry?

a) On Universal Control Plane's (UCP's) RBAC, we allow DevOps users to
run their images.
b) On DTR's image repository, we add image pulling access to DevOps.
c) Image access should be configured on Docker Trusted Registry (DTR),
and DevOps users should be able to at least read this repository. On UCP,
we allow only images signed by the admin group on the cluster and add at
least scheduler access for DevOps users to their private collection.
d) This is not possible on Docker Enterprise.

What step is required to access images stored on a secure registry that is using a10.
self-signed certificate?

a) We can configure our registry as "insecure" in Docker Engine's
daemon.json file.
b) We should disable Content Trust to allow image pulling from unsecured
registries.
c) The best option is to trust self-signed certificates. We will add DTR's
created Certificate Authority (CA) into our system's trusted-CA list.
d) We cannot use self-signed certificates, therefore we always require an
Enterprise-signed certificate.

Mock Exam Questions and Final Notes Chapter 15

[545]

User A executed docker service scale --replicas 5 webserver, while11.
user B executed docker service update --replicas 3 webserver. How
many replicas will be running after both executions?

a) None of the commands will work.
b) The webserver service will run three replicas.
c) The webserver service will run five replicas.
d) The webserver service will run eight replicas.

Which of these lines creates a volume named DATA?12.

a) docker volume create --driver local DATA.
b) docker create --volume DATA.
c) Volumes must be created during container execution.
d) None of the options are valid.

How can we ensure that a minimum of memory is available to run a container13.
using soft limits?

a) We cannot ensure a minimum of memory is available for a container.
b) Using --memory.
c) This must be configured on your operating system.
d) We use --memory-reservation.

What is true about Swarm networking?14.

a) All overlay networks are encrypted by default.
b) Control Plane nodes use mutual TLS encryption to secure traffic.
c) An internal DNS can be consumed externally exposing its service.
d) All of the preceding options are true.

Which concept routes requests to containers running for a deployed service?15.

a) An ingress overlay network is used to route requests to different
services' backends using a round-robin endpoint by default.
b) A docker_gwbridge network is used to communicate with containers on
different hosts.
c) An ingress overlay network is used to route requests to different
services' backends using the service's virtual IP by default.
d) We must use a host network to route requests to containers.

Mock Exam Questions and Final Notes Chapter 15

[546]

Which of these sentences are true about signing images?16.

a) Image signing ensures image ownership.
b) Images can be signed using docker trust sign <IMAGE>.
c) All images will be signed if we set the Docker client to use Docker Content
Trust on every command.
d) Image signing is based on the following keys: the owner key, the
repository key, the snapshot key, and the timestamp.

What happens if we have a cluster where nodes have myapplication images17.
locally but images have different hashes?

a) If we do not specify the image hash, each node will run tasks with its own
image.
b) To ensure all nodes run the same image version, we will need to use --
with-registry-auth for remote registries.
c) We will use signed images and Docker Engine on nodes that will use
trusted content.
d) It is not possible to ensure that nodes will use the right image version.

Which of the following is true about global services?18.

a) Global services will only run one replica of the defined service on each
node.
b) Global services will not provide high availability based on resilience.
c) Draining a node will not remove global services.
d) All of the preceding sentences are true.

Which of the following sentences are true about replicated services?19.

a) We need to specify the number of instances during service creation
because it cannot be changed later.
b) Replicated services are the default service mode and they will run one
instance if none was specified.
c) Replicated services can be stopped by setting the number of replicas to 0.
d) All of the preceding options are true.

Mock Exam Questions and Final Notes Chapter 15

[547]

Which of the following steps are required to create a Swarm backup?20.

a) Stop Docker Engine on any manager to ensure files are static.
b) Copy the /var/lib/docker/swarm directory content for backing up
Swarm.
c) Raft logs should be backed up apart from normal files.
d) All of the preceding steps are required.

What have you learned about Swarm networking?21.

a) Overlay networks are deployed using UDP VXLAN tunnels.
b) By default, all service replicas will be equally reachable by an internal load
balancer.
c) The internal DNS will allow all services to reach each other running on the
same overlay network.
d) All of the preceding options are true.

We tried to create a service with five replicas but it is not working. We cannot22.
reach the reconciliation phase because we get the following error: 1/1: no
suitable node (scheduling constraints not satisfied on 5

nodes). What could be wrong?

a) The service's image does not exist.
b) We were using a private image and we did not provide authentication
credentials.
c) We used constraints for deploying the service's tasks on specific nodes but
none of them have the required labels.
d) None of the preceding options are true.

Which of the following is true about locking a Docker Swarm cluster?23.

a) The control, management, and data planes are secure.
b) A passphrase is required to unlock the /var/lib/docker/swarm data.
c) Executing systemctl restart docker will require the locking
passphrase.
d) If a node reboots, Docker Engine will not restart automatically, hence we
have lost the Docker Swarm quorum.

Mock Exam Questions and Final Notes Chapter 15

[548]

Which of the following is true about replicated services?24.

a) They will run one instance on each node.
b) Only replicated services can be upgraded using the rolling update feature.
c) They can be stopped using the Docker service update: --replicas 0
<SERVICENAME>.
d) We will use Go templates to be able to provide unique resources, such as
volumes or hostnames, inside containers to ensure all replicas use their own
resources.

Which methods are allowed to publish applications on Docker Enterprise?25.

a) We can use Interlock.
b) We can use an Ingress Controller.
c) We will publish each application container.
d) We can use the host mode to publish applications as if they were running
directly at the host level.

Which of the following is true about Kubernetes' integration with Docker26.
Enterprise?

a) Docker Enterprise provides Kubernetes out of the box.
b) We must choose which orchestrator to use in cluster nodes because only
one is allowed at once.
c) We can run hosts in mixed mode to allow Kubernetes and Docker Swarm
workloads, although it is not recommended for production.
d) We can upgrade Kubernetes components with common Kubernetes
installation commands.

What is the difference between docker image import and docker image27.
load for uploading an image to a Docker host?

a) There is no difference between the commands.
b) Both import the same image content.
c) docker image import will only retrieve image layers containing
binaries, libraries, and configurations for the process but without any meta-
information about how to launch the process, what volumes to use, what
ports should be used, and so on.
d) We can only use docker image import to create new images.

Mock Exam Questions and Final Notes Chapter 15

[549]

How can docker build avoid the use of cached image layers?28.

a) Docker will always use cached information. It is not possible to avoid
using image caching.
b) By default, image caching is disabled, therefore we need to apply --use-
caching to ensure caching is enabled as it will speed up the building
process.
c) To avoid image caching, we can use --no-cache. This way, the build will
not use any previously saved layers.
d) All of the preceding sentences are wrong.

How can we download all of the images from a repository?29.

a) It is not possible. We need to make a list of all the images with their tags
and retrieve them one by one.
b) Every time we execute docker image pull, we download all the images
and their layers, regardless of whether we are going to use them or not.
c) We can use docker image pull --all-tags to retrieve all repository-
associated images.
d) None of the preceding sentences are right.

How can we filter running containers based on a specific image?30.

a) There is no option for this. We use the Linux grep command to filter
specific base images for containers.
b) We will use the ancestor key to list all the running containers using a
specific image.
c) We will use the image key to list all the running containers using a specific
image.
d) None of the preceding sentences are right.

How can we push a locally built image to a remote registry?31.

a) We need to know the registry's fully qualified domain name (FQDN) or
its IP address.
b) We tag the image with the registry FQDN or IP, the username or group,
and the repository where the image will be stored.
c) If the registry uses TLS/SSL certificates, we load its CA in our system to be
able to trust them or we can configure it using the insecure-registries
key.
d) All of the preceding sentences are correct.

Mock Exam Questions and Final Notes Chapter 15

[550]

Which option will bind an already-created DATA volume inside a container,32.
under the /data directory?

a) -v DATA:/data
b) --mount type=volume,source=DATA,target=/data
c) --mount DATA:/data
d) --volume type=volume,source=DATA,target=/data

How do we expose a web server container on the host's port 8033.
(the nginx:alpine image exposes port 80)?

a) docker container run --cap-add NET_ADMIN -p 80:80 -d
nginx:alpine

b) docker container run --net=host -d nginx:alpine
c) docker container run -P nginx:alpine
d) docker container run -d -P 80:80 nginx:alpine

Which of these keys requires a passphrase to unlock it while signing images?34.

a) Timestamp
b) Target
c) Snapshot
d) Root

What is a Docker bundle and what is included inside those ZIP files?35.

a) A Docker bundle provides client binaries and configurations for
administrators.
b) All users have their own Docker bundle and it includes all the
environment files required for the user.
c) A Docker bundle includes only environment scripts and we will ask
administrators for certificates.
d) A user's Docker bundle includes all the environment files and certificates
required for using the CaaS platform.

Which is the best node distribution if we have to deploy a cluster with seven36.
managers with distributed high availability?

a) Four manager nodes in a data center and three manager nodes on a
different one.
b) Two managers in a data center, two managers in a second one, and three
in another.

Mock Exam Questions and Final Notes Chapter 15

[551]

c) All managers should be in the same data center.
d) We cannot manage distributed availability with 7 nodes; we need at least
9.

Which concept is responsible for managing external to internal load balancing for37.
Docker Swarm services?

a) Router Mesh
b) Ingress Controller
c) nodePort
d) clusterIP

What are the differences between the COPY and ADD Dockerfile primitives?38.

a) COPY adds files in read-only mode.
b) COPY can be used to download files from external services.
c) ADD can be used with packaged and compressed files and they will be
decompressed in the layer's root filesystem.
d) ADD and COPY are completely equal, but ADD is newer.

How can we deploy two applications using the same docker-39.
compose.yaml file?

a) We cannot deploy two applications using the same docker-
compose.yaml file.
b) Docker Compose can deploy two applications using projects to ensure
applications run using different volumes and ports.
c) We can use environment variables for fixed resources to avoid any
resource usage conflicts.
d) The only option to avoid application component conflicts is to deploy
applications on different clusters.

What is required to deploy DTR?40.

a) A Docker Enterprise license from Docker Hub and an appropriate
repository URL
b) Docker Enterprise Engine and Docker UCP
c) Docker Engine, a DTR license, and Docker Content Trust
d) All of the preceding options

Mock Exam Questions and Final Notes Chapter 15

[552]

How do we enable debugging on Docker Engine?41.

a) By executing the Docker daemon with the -D argument
b) By setting the debug key to true in the config.json file
c) By enabling experimental features in daemon.json
d) None of the preceding options

How do we only list containers created from an alpine:3.10 image?42.

a) docker container ls image=alpine:3.10
b) docker ps --format ancestor=alpine:3.10
c) docker container ls --filter ancestor=alpine:3.10
d) docker container ls --filter image=alpine:3.10

Which of the following is true about privileged containers?43.

a) Resource limits will be avoided (CPU, memory, and disk I/O).
b) They always run the container as the root user.
c) These containers run with all available capabilities.
d) They run using the host's kernel namespaces.

Which of the following is true about Swarm join tokens?44.

a) Once created, we have to store them in a secure place because they are not
recoverable.
b) We can generate new ones to get new values for new nodes if we lose
them using docker swarm join-token recreate.
c) We can recover them whenever we need them using docker swarm
join-token.
d) Join tokens will be automatically updated on all nodes once they are
regenerated.

Which endpoints are provided to verify DTR and UCP nodes' health?45.

a) DTR provides /_ping, /nginx_status, and
/api/v0/meta/cluster_status.
b) DTR and UCP provide /status.
c) DTR and UCP provide /_ping.
d) DTR provides /status and UCP provides /_ping.

Mock Exam Questions and Final Notes Chapter 15

[553]

Which command allows us to review and recover lost space due to "dangling46.
images" and dead containers?

a) docker system rm
b) docker system prune
c) docker image rm --filter="dangling"
d) docker container rm -a

Which primitive combination creates the command line that will effectively47.
finally run inside a container?

a) ENTRYPOINT will set the script or binary to be launched and CMD will be
used if ENTRYPOINT is not defined.
b) CMD always overwrites the ENTRYPOINT definition.
c) Using a combination of ENTRYPOINT to define the script or binary to be
launched and RUN as arguments.
d) CMD will add arguments to the defined ENTRYPOINT only if ENTRYPOINT
is configured using the exec format.

Which of the following is true about secrets?48.

a) They will only be available on manager nodes, so workloads with secrets
must run on these nodes.
b) They are ephemeral and deployed on on-memory filesystems.
c) They are encrypted even for administrators, so they cannot be recovered
from the control plane.
d) If we need to change a secret, we need to create a new secret and update
the service with this new one.

How can we ensure that a specific image is deployed in production?49.

a) By using the image's hash for deploying containers.
b) Signing images will ensure their tagging and provenance.
c) Specifying the right tag is enough to ensure its content.
d) By using docker image history to review commands used to generate
the image.

Mock Exam Questions and Final Notes Chapter 15

[554]

Which of the following sentences about container isolation are true?50.

a) The host's hardware resources, such as memory and CPU, are granted
using cgroups.
b) To ensure a container's limits, we need to use operating system security
modules.
c) Only the root user is allowed to deploy containers with unlimited
resources.
d) Privileged containers will avoid defined process' capabilities and
execution user.

How can we ensure an image's content immutability?51.

a) By using signed images.
b) Defining immutable tags in DTR.
c) By using image scanning.
d) Images cannot be immutable.

Which of the following sentences are true about overlay networks?52.

a) DTR deploys an overlay network, dtr-ol, to route a cluster's internal
communications.
b) Overlay-defined networks are only present on manager nodes when there
is not a task connected to them.
c) interlock-extension connects to services' defined networks to route
requests to appropriate backends.
d) Docker Swarm overlay networks are encrypted and deployed using
VXLAN.

What does the HEALTHCHECK --start-period=15s CMD curl --fail53.
https://localhost:8080 | exit 1 line in a Dockerfile do?

a) It will execute the defined curl command every 15 seconds, and if it fails
three consecutive times, it will mark the container as unhealthy.
b) It will wait 15 seconds for the first execution and then Docker Engine will
run the defined curl command every 30 seconds, and if it fails three
consecutive times, it will mark the container as unhealthy.
c) This line does not do anything; health checks must be configured for each
container.
d) Docker Engine will run this probe every 15 seconds and if it fails, it will
restart the container.

Mock Exam Questions and Final Notes Chapter 15

[555]

Which of the following is true about Docker Engine access?54.

a) By default, only owners of a Docker socket are allowed to run containers
on a standalone host.
b) We can allow users to run containers allowing their access to either
Docker Engine's Unix socket or the API's TCP port (enabled by default).
c) Anyone allowed to log in to the host is also allowed to run containers.
d) Only the root user is allowed to run privileged containers on a host.

How can we modify ports published on an already-deployed service?55.

a) It is not possible; we have to remove the service and create it again.
b) We can only change ports if the service is running using the host's
network (--net=host).
c) We use docker service update --publish-add <NEW_PORT> --
publish-rm <OLD_PORT>.
d) None of the preceding answers are correct.

How can we ensure that the web server Docker service runs one instance of56.
NGINX on all cluster nodes?

a) By using docker service create --type=global --instances=1
--name=webserver --image=nginx:alpine.
b) By using docker service create --mode=global --
name=webserver nginx:alpine.
c) UCP can ensure that administrators run any service on all nodes in the
cluster with a tick on allow run on manager nodes.
d) docker service create --name=webserver --
image=nginx:alpine is enough for executing one instance on all nodes.

How do we set a repository named57.
myregistry/myorganization/baseimages, available for internal users,
where images are owned and managed by DevOps group users?

a) We need to create an organization with the name myorganization.
b) We will create myregistry/myorganization/baseimages as a public
repository.
c) We configure DevOps team users as admins of
the myregistry/myorganization/baseimages repository.
d) The myregistry/myorganization/baseimages repository will be
created as private for myorganization users.

Mock Exam Questions and Final Notes Chapter 15

[556]

How can we review ports published for a container named webserver?58.

a) Using docker container ls --filter name=webserver.
b) Using docker container port webserver.
c) Using docker container inspect webserver --format="{{
.NetworkSettings.Ports }}".
d) All of the preceding answers are correct.

Which concept is responsible for managing internal load balancing for59.
Kubernetes?

a) Router Mesh
b) Ingress Controller
c) Interlock
d) clusterIP

Which resources are used to link pods with Kubernetes' defined volumes?60.

a) persistentVolume
b) persistentVolumeClaim
c) storageClass
d) persistentDataVolume

Which labels are required to deploy a service with Interlock?61.

a) com.docker.lb.port
b) com.docker.interlock.port
c) com.docker.interlock.hosts
d) com.docker.lb.backend

How can we publish services externally in Kubernetes?62.

a) Using Interlock
b) Using Ingress Controllers
c) Using the nodePort service
d) Using a clusterIP resource

Mock Exam Questions and Final Notes Chapter 15

[557]

How do we know how much space is used by containers and volumes in our63.
system?

a) By using docker system prune
b) By using docker system df
c) By using docker container df
d) By using docker volume df

Which role should be set in UCP for the DBA team to allow them to create their64.
own volumes?

a) Scheduler.
b) View Only.
c) Only UCP administrators can create volumes and other cluster resources.
d) Restricted Control is enough to create volumes on their private
collection.

Which flag should be used to configure all available FQDNs for UCP?65.

a) --san
b) --external-name
c) --external-url
d) --ucp-url

A user cannot push images to our DTR internal registry. What should we verify?66.

a) Docker login access.
b) That the DTR CA certificate should be trusted.
c) We should verify whether the image's repository does exist.
d) That the image has vulnerabilities and DTR's image scanning rejects the
user's image.

Which internal networks are deployed for DTR?67.

a) docker_gwbridge
b) dtr-ol
c) ingress
d) dtr-internal

Mock Exam Questions and Final Notes Chapter 15

[558]

Which Kubernetes resources provide an application's resilience?68.

a) Deployment
b) ReplicaSet
c) Pod
d) Replicated

What does the docker swarm --force-new-cluster command do?69.

a) It is used to recover a cluster in failure situations. It will set all managers
as workers, leaving just one manager node.
b) This command will destroy the cluster. It is used to remove the entire
cluster.
c) --force-new-cluster should be used to stop all services deployed on
worker nodes.
d) An application's services will not be impacted by this command. This
command just affects the control plane.

Which sentences are true about Docker Swarm and Kubernetes networking?70.

a) An ingress overlay network will be encrypted by default.
b) Mutual TLS communications ensure control-plane security in Docker
Swarm.
c) A Kubernetes network is isolated with networkPolicy resources out of
the box.
d) Kubernetes uses certificates to ensure security for user access and the
internal control plane.

For some mock questions there is more than one correct answer.

Mock Exam Questions and Final Notes Chapter 15

[559]

Summary
This was the final chapter on our journey to becoming a Docker Certified Associate. We
covered all the topics learned in previous chapters with some mock exam questions. As
mentioned before, some of these questions are real questions posed in old exams.

The journey to becoming a Docker Certified Associate is not easy. We started this book
from the very beginning, understanding why containers are so popular these days when
we talk about microservices architectures. Then, we described how containers are executed
using Docker Engine, integrating various isolation strategies to ensure security between
container-embedded processes. As containers are based on images, we learned how to
build and maintain them using Docker tools. We learned about different Docker objects and
how to deploy applications using different networking methods, volumes, or security
approaches. We learned how to deploy microservices applications, where every component
is running containers. We learned the differences between running all components on
standalone and cluster-wide distributed environments. Orchestrators are key in distributed
environments. They keep applications healthy and help us develop microservices faster to
provide features to update applications' components without service interruption. We
studied Docker Swarm and Kubernetes because both are part of the Docker Enterprise
platform. Finally, we introduced Docker's enterprise-ready CaaS platform, Docker
Enterprise. We learned about all its components and features and how they help us to
deploy applications, as well as improving their security.

This was a brief summary of all the topics covered in this book. If you followed this
workflow, you are ready to take the Docker Certified Associate exam. This book should
also be used as a command reference, although we know that technology changes quite fast
these days. Now that you are ready to take the exam, take a deep breath and schedule your
exam at https:// prod. examity. com/ docker. Good luck!

https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker
https://prod.examity.com/docker

Assessments

Chapter 1
b and c: We can run more than one process per container, but it is not1.
recommended because Docker Engine will only manage the main container
process. We will need to manage additional logic between processes to start and
stop everything at once. It is not easy and you can leave "zombie" processes in
your hosts. Microservices are based on minimal functionality for each application
component, which fits with containers very well.
b: Control groups, or cgroups, will manage the host resources provided to each2.
container, but it is very important to understand that, by default, containers will
run with unlimited resources.
a and b: Containers will run as root unless the source image has a non-root user3.
definition or we specify a non-root user upon container creation. User
namespaces allow us to use the root inside containers, although a real user
outside the container can have a non-root ID. This is useful when processes
require UID 0 to work.
d. All of the above sentences are true: Windows hosts will run two different4.
types of isolation. We can run Linux containers on Windows, but this is not true
in reverse.
a, b, and c: We can use systemd unit files or /etc/docker/daemon.json to5.
configure the Docker daemon on Linux. On Windows hosts, daemon.json is
located in the %programdata%\docker\config\ directory. In both cases,
Docker daemon remote access is not secure by default.

Chapter 2
b: The image ID is the only identification of uniqueness when listing or managing1.
images. We can have one ID with many names, including the registry part, and
tags.
d: All the methods described are valid.2.

Assessments

[561]

b: Using a Dockerfile is a reproducible method as we describe all actions to add3.
software, execute commands, add files, and more, in order to build a new image.
We can automate and use templates to build images with Dockerfiles and this is
the preferred method.
a and c: Only RUN, CMD, and ENTRYPOINT instructions admit shell and exec4.
formats.
a: Using the shell format, the container main process, as defined by the5.
ENTRYPOINT key, cannot be modified with arguments.

Chapter 3
a and c: build is only available for image objects, and destroy does not exist for1.
any object.
b: This is not true. The Docker daemon will wait a defined amount of time (102.
seconds, by default) before issuing a SIGKILL signal to the container's main
process.
b: docker kill will immediately send a SIGKILL signal to the container's main3.
process. Not all processes will be killed if they were executed in the background;
for example, inside the container. It can leave zombie processes if they do not
have parent-child dependencies. As we learned, containers must be removed by
hand and docker kill will not remove them.

b: docker container update will only change the container restart policy and4.
its access to host resources.

c: We have launched a privileged container; therefore no resource limits will be5.
applied, although we have used -memory to confine memory usage. The
privileged mode does not affect the filesystem. It will only modify the main
process behavior, but in this case, we used a non-root user to create a new file on
a directory owned by root and, as a result, it could not be created.

Chapter 4
c: Each container will use its own filesystem unless we declare a shared volume1.
for them.
a, b, and c: There are different types of volumes and it is not only allowed on2.
container creation or execution.

Assessments

[562]

b: Docker volumes can be removed along with their associated container using3.
the --volumes (or -v) option. A Docker volume purge will remove all unused
volumes; those not associated to any container. But Docker will never remove a
bind mount volume content (a local directory mounted on a container).
c: Only custom bridge networks are attachable after container creation. If we4.
create or start a container and we want it to be connected to the default bridge
network, we need to recreate it and attach it to that network on container
creation.
b: Using --publish-all or -P will associate a random port between 32768 and5.
65535 to internal container port 80. A NAT rule will automatically be created by
the Docker daemon to allow this communication. You can disable the Docker
daemon iptables management, but it is enabled by default.

Chapter 5
a: Docker Compose will run all application components just in one host. We will1.
also use docker-compose files for deploying Swarm orchestrated applications
with their components distributed on different hosts, but that requires a cluster
running. In that case, we will not use the docker-compose binary to deploy the
application; only the definition file will be valid and we will use it with
the docker stack action. In Docker Swarm, we deploy swarm services, not
containers.
d: Docker Compose provides all required actions to build, share, and deploy2.
multi-container applications.
a and c: Docker Compose will review whether project images are present in the3.
host. If they are not, the Docker daemon will try to download all not-present
ones. Once the Docker daemon has all the required images, it will start all project
containers and our terminal will be attached to containers' standard and error
output unless the --detach or -d argument is used.
a: Docker Compose will allow us to scale the number of containers associated4.
with a service. By default, Docker Compose will create a bridge network for our
deployment, therefore an internal DNS will be associated and will manage all
application IP addresses and names. In scaled services, we will receive one of the
IP addresses of the replicas each time we ask for the defined service name. It uses
round-robin DNS resolution.

Assessments

[563]

d: In this case, we could say that answer c is almost right, but it is incomplete.5.
Docker Compose will remove all containers. If containers were running, they will
be stopped before they are deleted. All associated resources created during the
application execution will also be removed.

Chapter 6
c: Docker Content Trust is based on The Update Framework (TUF) and this1.
framework was created to ensure the release of content between updates using
different keys. It is possible to validate the trustfulness of a package or any other
content using TUF.
a and d: Docker Content Trust will use Root, Targets, Snapshot, and Timestamp2.
keys to ensure content.
c: We ensure image freshness using Content Trust, but it is true that we cannot3.
ensure that the image tagged as "latest" in a given repository is actually the latest
one created. We can only ensure that the image tagged as "latest" will be used. It
is always recommended to use tags avoiding the use of "latest".
b: We tried to sign a version of a non-public write repository. We are not allowed4.
to modify root repositories at docker.io.
d: We can recover the key if we have a backup. If it is not possible, we can5.
generate a new one or let Docker generate one for us on first signing. Although
we will be able to sign images after the new key has been generated, all our
previously signed images will be untrusted because we changed our signature.

Chapter 7
a: Orchestrators will not know anything about your application logic. On the1.
other hand, we have quickly reviewed the interfaces that use orchestration to
ensure that containers get the appropriate volumes of data on distributed
environments.
c: Orchestrators will not manage application data, nor do they know anything2.
about your application logic. The orchestrator will take care of the application
components' health and will run a new instance if one of the required instances
dies.
a and b: Distributed environments will help us to deploy applications with high3.
availability and improved performance. But on the other hand, we will have new
challenges because we need to be able to distribute application logic and
components' interactions on different nodes.

Assessments

[564]

a and b: Answers a and b are correct, while c is not, because application4.
components can be managed one at a time. Therefore, upgrades will only impact
one application component if the application logic knows how to manage the
situation.
c: All sentences are correct. We learned that we can define container limits and5.
the required resources. Orchestrators will review these specifications and will
deploy them on nodes with enough resources to ensure their correct
execution. We can guide orchestration to choose labeled nodes, for example, to
ensure application disk I/O, along with many other features. Each orchestrator
will manage different rules and workflows to choose the best node for each
workload.

Chapter 8
a: Docker Swarm is built into Docker Engine, but we have to enable Swarm mode1.
for it to work. We can deploy other orchestrators such as Kubernetes, but it will
involve extra work to deploy them. Orchestrators allow us to deploy applications
on clusters, hence Swarm will deploy distributed applications.
d: Docker Swarm provides service discovery via DNS, internal load balancing for2.
services and their tasks, and overlay networking for services and containers
distributed on different nodes.
b: Each cluster has only one leader node. The leader is elected from the available3.
managers. When we initialize a cluster, the first node will be the leader until a
new election is required. All managers will run workloads unless we specifically
avoid them using service constraints.
d: Roles can be changed as we require, such as for maintenance, for example. We4.
need to always maintain the defined number of odd managers to avoid cluster
instability.
a and b: By default, Docker Swarm will deploy stacks on its own network, unless5.
others are specified. Everything related to the application to be deployed must be
configured in the Docker Compose stack file. We can add externally created
components, but they must exist before the stack is deployed and we will set
them as external in the infrastructure-as-code stack file.

Assessments

[565]

Chapter 9
a and b: Kubernetes requires etcd to work. Most of the Kubernetes deployment1.
solutions will deploy etcd for you, but it is an external application and therefore
it is up to you to manage and ensure that the key-value solution provides high
availability. Kubernetes internal networking will work out of the box, but
communications between components deployed on different hosts rely on
external plugins (the CNI standard). Therefore, we will need to choose and
deploy ourselves a solution to provide this kind of communication.
b and c: We will deploy pods in Kubernetes, hence these are the minimum unit of2.
deployment. We can deploy more than one container in a pod. The container
density is higher in Kubernetes. Scaling pods will replicate all their components
at once.
d: All sentences are true. All containers in a pod share the same IP address and3.
localhost. They also share pod volumes. Container Network Interface (CNI) is
not required for connections between pods running on the same host. They all
are accessible using their virtual IP addresses.
a, b, and c: ReplicaSets allow us to manage replicated environments.4.
Deployments create ReplicaSets and allow us to scale application pods both up
and down. They will also maintain the application health based on the required
running pods. DaemonSets will ensure one replica on each cluster node.
a: The ClusterIP service type will only provide internal access to a service. The5.
assigned IP is not available from the cluster nodes.

Chapter 10
c: Docker Machine is maintained by the Docker community.1.
a: Docker Enterprise provides a supported and enterprise-ready CaaS platform,2.
with supported Kubernetes, Universal Control Plane (UCP), and Docker
Trusted Registry (DTR, based on the Docker Registry community). We can
deploy Docker Swarm in production even with Docker support using Docker
Enterprise Engine.
a, b, and d: Docker Enterprise provides Kubernetes out of the box when we3.
deploy UCP – we do not need to install Kubernetes manually.

Assessments

[566]

d: We will use fixed IP addresses for all components. We will use an external4.
load balancer to forward traffic to all manager nodes for UCP and all worker
nodes with DTR running for the registry. Forwarding traffic to just one node will
not provide high availability if it fails. The Docker UCP installation will deploy
Calico by default for Kubernetes, but we will need to review pod-cidr and
service-cidr to ensure that the subnets defined by default will be valid in our
environment.
c: To provide high availability for workloads, we will deploy at least two Linux5.
nodes. Although it is possible to run DTR on UCP managers, it is not
recommended because managers need to have enough resources for control
plane tasks and image scanning can affect cluster stability. We will also need to
choose different ports for the applications' frontends because both use port 443.

Chapter 11
b: As we have learned, Docker Enterprise Engine is required to install UCP. It1.
will not be installed automatically for us. We can use Web UI, the UCP bundle,
and the UCP API to manage our workloads and cluster configurations. UCP's
RBAC system will manage authorizations, but it is true that it will also
authenticate users if no external authorization source is configured or it is not
available.
b and d: Docker provides a complete UCP backup and restore solution with2.
the docker/ucp image, but remember that we should take care of Docker
Swarm's filesystem because it is not part of UCP's backup. We should use the
appropriate docker/ucp image release for our environment. In fact, we will use
the same installed release for any action other than upgrading. UCP removal can
be executed from the docker/ucp image and this will remove UCP components
from all nodes in the cluster. We should then remove the docker/ucp image.
The upgrade process can be achieved automatically using the docker/ucp
image, but this may impact your users. We will usually upgrade UCP managers
automatically and then execute upgrade steps manually on worker nodes.
a and b: We can use --controller-port and:-kube-apiserver-port to3.
modify the UCP controller and Kubernetes' API server ports. We can also isolate
the control plane from the data plane by choosing different interfaces in
multihomed hosts using --data-path-addr. Subject Alias Names (SANs) will
add alias names to UCP's certificate. We can add all required aliases for our
environment using --san multiple times.

Assessments

[567]

a, c, and d: UCP deploys a Kubernetes cluster with high availability on top of4.
Docker Swarm. As UCP is deployed on Docker Swarm, we will need at least
three nodes to provide high availability. All managers will run the same control
plane processes and an external load balancer is required to distribute access
between them. This requires a transparent proxy configuration to allow
managers to manage encrypted communications. We will use the /_ping
endpoint to verify manager nodes' health and it can be used on load balancers as
a backend health check.
a and c: UCP provides None, View Only, Restricted Control, Scheduler, and5.
Full Control. We can create new roles, but there are no privileged or
administrator roles by default. Docker Enterprise administrators are not defined
as roles. There is a checkbox in the user's properties to enable this feature. Only
administrators can create grants, users, teams, organizations, and collections.

Chapter 12
b and c: There are two labels that are always required. We will need to ensure1.
Interlock forwards the service's requests using com.docker.lb.hosts and
com.docker.lb.port. These will have all the required information, but
com.docker.lb.network is recommended and required if the service's
instances are attached to more than one network. We need to specify which
network should be used as an ingress.
b: The Interlock solution is based on a main process named interlock, a process2.
for managing external proxy services and configurations, and an interlock-
proxy service that will run inside the Docker Enterprise environment if no
external load balancer is specified. These three processes run as services within
Docker Swarm and they are prefixed with ucp-. ucp-interlock-
controller does not exist.
d: By default, only the ucp-interlock service will be located by the node's3.
roles. All other components can run anywhere. We will use location constraints
to run the ucp-interlock-proxy and ucp-interlock-extension
components on worker nodes.
a, b, and c: Interlock allows us to either manage SSL/TLS tunnels on ucp-4.
interlock-proxy or configure it as a transparent proxy. In this case, our
services' backends should manage SSL/TLS certificates. Interlock interacts with
the Docker API and all changes will be updated automatically on Interlock's
proxy component. Interlock is a Layer 7 load balancer; reverse proxy, TCP, and
UDP protocols should be published using a routing mesh or host mode.

Assessments

[568]

a and b: Ingress controllers and Interlock have a common logic, using a few5.
published ports. They will manage all ingress traffic using load balancing and
reverse proxy features. We will not publish applications directly. No
application's service has to be exposed directly. The ingress controllers (and
Interlock) will be exposed and they will route requests to the application's
defined services. Interlock has to interact with the application's services, hence it
has to connect to their networks. This will happen automatically. Docker
Enterprise will connect the interlock-proxy service to our application's
networks.

Chapter 13
b: This list only shows one valid feature. DTR provides repository mirroring.1.
Neither repository load balancing nor repository signing are valid features. We
do not sign repositories. We sign repositories' images/tags.
b: DTR does not manage images' data with high availability. Deploying more2.
than one replica will provide high availability for DTR's processes. DTR
replication requires data sharing between replicas, but we must include third-
party solutions to provide high availability for our storage.
a and b: The DTR installation runs the dtr-garant and dtr-jobrunner3.
containers. The first will manage user authentication, while jobrunner will
execute DTR's maintenance tasks to remove unreferenced layers. dtr-notary-
server and dtr-notary-signer will be deployed within DTR to manage
Docker Content Trust metadata.
d: All the question's sentences describe required steps for deploying DTR with4.
high availability.
a: DTR backups do not include images' layers. This can constitute a great amount5.
of data and is the key to recovering your images. You should prepare third-party
solutions for this data. On the other hand, repository metadata, RBAC
configurations, and images' signatures will be stored within your backup TAR
file.

Assessments

[569]

Exam answers
1 - b and c

2 - c

3 - b

4 - a, b, and c

5 - b

6 - c

7 - a

8 - a, c, and d

9 - c

10 - a and c

11 - b

12 - a

13 - d

14 - b

15 - c

16 - a, b, and c

17 - a, b, and c

18 - a

19 - b and c

20 - a and b

21 - d

22 - c

23 - b, c, and d

Assessments

[570]

24 - c and d

25 - a, c, and d

26 - a and c

27 - c

28 - c

29 -c

30 - b

31 - d

32 - a and b

33 - d

34 - b and c

35 - d

36 - b

37 - a

38 - c

39 - c

40 - a and b

41 - a and b

42 - b and c

43 - a and c

44 - c

45 - a and c

46 - b

47 - d

Assessments

[571]

48 - b, c, and d

49 - a and b

50 - a

51 - a

52 - a, b, and c

53 - b

54 - a

55 - c

56 - b

57 - c and d

58 - d

59 - d

60 - b

61 - a

62 - b and c

63 - b

64 - b

65 - a

66 - a, b, and c

67 - b

68 - a and b

69 - a

70 - b and d

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Docker – Fundamentals of Docker 19.x
Gabriel N. Schenker

ISBN: 978-1-83882-747-2

Containerize your traditional or microservice-based applications
Develop, modify, debug, and test an application running inside a container
Share or ship your application as an immutable container image
Build a Docker Swarm and a Kubernetes cluster in the cloud
Run a highly distributed application using Docker Swarm or Kubernetes
Update or rollback a distributed application with zero downtime
Secure your applications with encapsulation, networks, and secrets
Troubleshoot a containerized, highly distributed application in the cloud

https://www.packtpub.com/product/learn-docker-fundamentals-of-docker-19-x-second-edition/9781838827472

Other Books You May Enjoy

[573]

Continuous Delivery with Docker and Jenkins
Rafał Leszko

ISBN: 978-1-83855-218-3

Get to grips with docker fundamentals and how to dockerize an application for
the CD process
Learn how to use Jenkins on the Cloud environments
Scale a pool of Docker servers using Kubernetes
Create multi-container applications using Docker Compose
Write acceptance tests using Cucumber and run them in the Docker ecosystem
using Jenkins
Publish a built Docker image to a Docker Registry and deploy cycles of Jenkins
pipelines using community best practices

https://www.packtpub.com/product/continuous-delivery-with-docker-and-jenkins-second-edition/9781838552183

Other Books You May Enjoy

[574]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Active Directory (AD) 493
Amazon Web Services (AWS) 529
application components
 scaling 274
 updating 274
applications cluster-wide
 scheduling 272, 273
applications
 concepts and components, publishing 457, 458,

459, 460
 creating, on trusted environment 258
 evolution 10, 11, 12
 executing, on trusted environment 258
 publishing, in Kubernetes using ingress

controllers 462, 463, 464
 publishing, with ingress controller 367, 368
 publishing, with ingress resources 366, 368
autoscaling 357
Azure Kubernetes Service (AKS) 399

B
Berkeley Software Distribution (BSD) 14
bills of materials (BOMs) 481
Border Gateway Protocol (BGP) 360

C
CaaS platform 398
CaaS platform, functionalities
 authentication 399
 authorization 399
 integrations 399
 publishing 399
 registry 399
 runtime 399
 status 399

CentOS Linux host
 using, with Docker engine 178
certificate authority (CA) 42, 282, 520
Cloud Native Computing Foundation (CNCF) 30,

250, 342
cluster's health
 monitoring 449, 450, 451
color application
 adding 238, 239, 240
colors application lab 230, 232, 233
command line
 used, for deploying Docker Swarm cluster 282,

283, 284, 285
Common Vulnerabilities and Exposures (CVE)

403, 481, 535
compatibility matrix
 reference link 416
Components view 497
Compose file version 3
 reference link 207
config objects
 used, for deploying applications 304
ConfigMaps
 about 350
 secrets 350
container actions
 create 113
 kill 114
 pause/unpause 113
 prune 114
 rename 114
 restart 114
 rm 114
 run 113
 start 113
 stop 113
 update 114

[576]

container interactions
 communications, with external world 174
 DNS, on custom bridge networks 175
 inter-container communications 175
 learning 174
container list output
 filtering 146, 147
 formatting 146, 147
container network interface (CNI) 360, 401, 459,

523

Container Network Model (CNM) 459
container objects
 filtering 135
container orchestration 270, 271
container resources
 limiting 143, 145, 146
Container Runtime Interface Optimized (CRI-O)

400

container, kernel namespaces
 about 25
 IPC 26
 mounts 26
 network 25
 processes 25
 users 26
 UTS 26
Container-as-a-Service (CaaS) 528
containers, concepts
 about 20
 images 21, 22
 orchestration 27, 28
 process isolation 25, 27
 registry 28
 runtime 21
containers
 about 17, 18, 19, 20, 22, 23, 24, 25
 actions 113, 114
 behavior definition 116, 117
 converting, into images 132, 133
 executing 118, 119, 120, 121, 122, 140, 141,

143

 features 270, 271
 formatting 135
 interacting with 126, 128
 network properties 115, 116
 running 112

 security options 123, 124
 used, for executing docker-compose 200
Continuous Integration/Continuous Deployment

(CI/CD)
 about 228
 automating, with Docker Compose 228
control groups (cgroups) 14
copy-on-write (CoW) filesystems 69, 70
custom bridge networks
 creating 170, 172, 173
 custom bridge isolation 170
 DNS 175
 internal DNS 170
 on-the-fly container attachment 171

D
Daemon arguments 38
dangling images 80, 100, 509
data
 managing 273, 274
default bridge network
 using 164, 166, 167
desktop
 automating, with Docker Compose 228
devicemapper
 reference link 24
devices
 managing 135, 136
disaster recovery, DTR
 unhealthy replicas 515
 unhealthy replicas, repairing 514
 unhealthy replicas, replacing 514
distributed Docker Swarm cluster objects
 nodes 112
 services 112
 stacks 112
 Swarm 112
DNS
 on custom bridge networks 175
Docker architecture
 summary 528
Docker capabilities 57
Docker Certification
 reference link 524
Docker Certified Associate exam

[577]

 about 90
 Docker build, caching 91, 92, 94
 image templating, with Dockerfiles 102, 103,

104

 local registry, deploying 99, 100, 101
 multistage, building 96, 97, 98
 volumes, using in Dockerfiles 94, 95, 96
Docker client-server security 41, 42, 43, 44
Docker client
 about 31
 customizing 40, 41
Docker command line
 reviewing 108, 109, 110
Docker command-line object options
 reviewing 138, 139
Docker Community 395
Docker components 29, 30
Docker Compose command-line interface
 using 207, 208, 210, 211, 212, 213, 215, 216,

217, 219, 221, 223, 224
Docker Compose
 CI/CD, automating 228
 desktop, automating 228
 installing 198
 reference link 198
 using 198
Docker configuration
 summary 528
Docker Content Trust (DCT)
 about 49, 498
 integrating, in DTR 498, 499, 500, 501, 503
Docker daemon component 30
Docker daemon security
 about 45
 Kernel capabilities (Seccomp) 47, 48
 Linux security modules 48, 49
 namespaces 45, 46
 user namespace 46
Docker daemon, configuration files
 daemon.json 37
 key.json 37
Docker daemon, variables
 environment variables 37
Docker daemon
 customizing 37, 40

Docker Desktop 395
Docker editions
 reviewing 394
Docker Engine
 about 29, 400
 CentOS Linux host, using 178
 Kubernetes, deploying with 341, 342, 343, 344,

345

Docker Enterprise 395, 396, 400
Docker Enterprise deployment
 planning 404, 405, 406
Docker Enterprise Desktop 397
Docker Enterprise Engine 396
Docker Enterprise's documentation
 reference link 467
Docker Forums
 reference link 395
Docker Hub
 URL 52
 used, for signing images 261, 263, 264
Docker image concepts
 image management knowledge, verifying 527
 summary 524, 525, 526
Docker images
 about 19
 building 62, 63
 building, with Dockerfile quick reference 71, 72,

73, 74, 75
 building, with Dockerfile reference 71
 caching 88
 categories 76
 creating 68
 creating, interactively 65, 67, 68
 creating, with Dockerfiles 63, 64, 65
 listing 84
 managing 83, 84
 process actions, building 76, 77, 78, 79
 releases and updates 90
 securing 82, 83
 sharing, with registries 85, 86, 87
 tagging 79, 80
 templating 89
Docker installation
 summary 528
Docker Machine 395

[578]

Docker networking
 knowledge, verifying 533
 topics, summary 530, 531, 532
Docker objects
 about 31, 32, 111, 112
 containers 111
 images 111
 networks 111
 plugins 111
 volumes 111
Docker platform
 knowledge, verifying 529
Docker Registry 397
Docker runtime
 installing 51, 53
 processes 53, 55, 56
Docker security
 about 41
 concepts 534
 features 534
 knowledge, verifying 537
 topics, reviewing 534, 535, 536
Docker Stacks
 applications, deploying as 328, 329, 330, 331,

332, 333
Docker storage
 knowledge, verifying 539
 summarizing 537, 538, 539
Docker Swarm cluster
 backing up 294
 creating 288, 290, 292, 293, 314, 315, 316,

317, 318, 319
 deploying, with command line 282, 283, 284,

285

 features 278, 279
 recovering 294
 services 295, 296, 297, 299, 300, 301
 tasks 295, 296, 297, 299, 300, 301
 workloads, scheduling 295, 296, 297, 299, 300,

301

Docker Swarm resources
 used, for deploying applications 302
Docker Swarm, node roles
 managers 280
 workers 280

Docker Swarm
 architecture 280
 backing up 444, 445
 deployed applications, publishing with Interlock

464, 465, 466, 467, 468
 deploying 278, 279
 deploying, with high availability 286, 288
 features 520
 versus Kubernetes 370, 371, 372, 373
Docker ToolBox 395
Docker Trusted Content 397
Docker Trusted Registry (DTR)
 about 397, 403, 423, 528
 deploying, with high availability 482, 484, 485,

486, 488, 489, 490, 491, 492
 disaster recovery 513
 health checks, monitoring 512, 513
 logging 513
 troubleshooting 512, 513
 updates, monitoring 512, 513
Docker UCP environment
 reviewing 426
Docker Universal Control Plane 397
Docker volumes
 knowledge, verifying 539
 summarizing 537, 538, 539
docker-ce 395
docker-compose.yaml file 201, 202, 203, 204
docker-compose
 executing, container used 200
 images, customizing 224, 225, 227, 228
 installing, as Python module 198
 installing, downloaded binaries used 199
 installing, on Windows servers 200
Docker
 application's logic 461
 customizing 36
 registries and repositories 81, 82
Dockerfile reference
 used, for building Docker images 71
Dockerfiles
 used, for creating Docker images 63, 64, 65
Domain Name System (DNS) 309
downloaded binaries
 used, for installing docker-compose 199

[579]

DTR components 479, 480, 481
DTR features 479, 480, 481
DTR webhooks 505, 507
DTR's backup strategies
 deploying 510, 511
DTR's CA
 adding, to system 490
DTR's image scanning
 reviewing 496
DTR's security features
 Docker Content Trust (DCT), integrating in DTR

498, 499, 500, 501, 503
 image immutability 498
 reviewing 496
 security scanning 496, 497
DTR's, system's endpoint
 Garbage collection tab 492
 General tab 492
 Job logs tab 492
 Security tab 492
 Storage tab 492

E
Elastic Kubernetes Service (EKS) 399
ELK framework, example
 reference link 40
environments/standalone-environment
 deploying 229

F
faulty Docker Swarm cluster
 recovering 293
filesystem storage types 486
fully qualified domain name (FQDN) 256, 289,

344, 406, 417, 484

G
Garbage collection 509
global services
 about 400
 deploying 323, 324, 325
Google Kubernetes Service (GKS) 399
graph storage 538
graph-driver 23

H
hello world container
 executing 51, 53
host namespaces
 using 125, 126
host network 168, 170
host resources
 limiting 129, 130, 131

I
image creating, methods
 containers, committing 525
 containers, executing 525
 Dockerfile, using 525
 images, from scratch 525
image immutability 498
image management knowledge
 verifying 527
image promotion 504
image workflow
 automating 503
 DTR webhooks 505, 507
 Garbage collection 509
 image promotion 504
 integrating 503
 mirror images, between registries 507
 registry caching 509
images
 containers, converting 132, 133
 customizing, with docker-compose 224, 225,

227, 228
 signing 252, 253, 254, 255, 256
 signing, for Docker Hub 261, 263, 264
information
 filtering 133, 134, 135
 formatting 133, 134
 formatting, options 134
Infrastructure as a Service (IaaS) 14
Infrastructure-as-Code (IaC) 229, 305, 425
infrastructures 13, 14, 15
ingress controllers
 about 367
 used, for publishing applications 367, 368
 used, for publishing applications in Kubernetes

[580]

462, 463, 464
ingress resources
 used, for publishing applications 366, 367, 368
insecure registry
 defining 490
inter-container communications 175
Interlock
 logic 465
 usage, reviewing 468, 469, 470, 471
 used, for publishing deployed applications in

Docker Swarm 464, 465, 466, 467, 468
 used, for publishing service securely with TLS

473, 474, 475
 using, for application redirection 472, 473
Internet Protocol Address Management (IPAM)

309, 371, 459
Internet Protocol Security (IPSEC) 307
IP forwarding 174
iptables 174

J
jq
 reference link 134
JSON keys 38

K
kernel space 16
Kubernetes as a Service 398
Kubernetes cluster
 deploying, with high availability 345, 346
Kubernetes networking
 about 357, 358, 360
 load balancing 364
 policies 365, 366
 service discovery 361, 363
Kubernetes resources
 about 347
 ConfigMaps 350
 namespaces 350
 Persistent Volumes (PVs) 351, 352
 pods 347
 secrets 350
 service resources 348, 349
Kubernetes
 applications, deploying 375, 376, 377, 378,

379, 380, 381
 applications, publishing with ingress controllers

462, 463, 464
 deploying, with Docker Engine 341, 342, 343,

344, 345
 security components 368, 369
 security features 368, 369
 URL 357
 versus Docker Swarm 370, 371, 372, 373

L
Layers view 497
Legacy Swarm 278
Lightweight Directory Access Protocol (LDAP)

402, 493, 536
Linux Containers (LXC) 15
load balancing 309, 310, 311
local persistence 161

M
macvlan modes
 802.1q trunk bridge mode 173
 bridge mode 173
MacVLAN network 173
maintenance life cycle
 reference link 416
meta-information 79, 80
microservices
 about 12
 associating, with processes 16
 features 12
minions 342
mirror images
 between registries 507
modern application
 features 13
monolithic applications 10
MS Windows container isolation
 types 36
multi-container applications
 about 400
 versus multi-service applications 197, 198
multi-homed containers 186, 187, 188
multi-service application, workflow
 about 33

[581]

 applications, building with containers 33
 artifacts, creating 33
 created artifacts, sharing with containers 34
 images, creating 33
 shared artifacts, running 34
multistage building 88
Mutual TLS (MTLS) 530

N
namespace isolation 53, 55, 56
namespaces 350
Network Address Translation (NAT) 457
Network File System (NFS) 161, 486
networking, Docker Swarm
 about 306, 307, 308
 load balancing 309, 310, 311
 router mesh, bypassing 311
 service discovery 309, 310, 311
networking, in containers
 about 162, 163, 164
 custom bridge networks, creating 170, 172, 173
 default bridge network, using 164, 166, 167
 host network 168, 170
 MacVLAN network 173
 null networks 168
Node Package Manager (NPM) 249
nodes
 troubleshooting 452
null networks 168

O
object storage types 486
oom-killer 130
Open Containers Initiative – OCI 30
orchestrated resources
 deploying 352, 353, 354, 355, 357
orchestration
 concepts 269
 concepts, reviewing 520, 521, 522, 523
 knowledge 523
out-of-memory (oom) 129
Overlay2 23

P
Package Installer for Python (PIP) 249
persistence strategies
 distributed or remote volumes 161
 learning 161
 local persistence 161
persistency
 managing 273, 274
Persistent Volume Claims (PVCs) 351
Persistent Volumes (PVs) 351, 352
Platform as a Service (PaaS) 400
pods 28, 347
privileged mode 170
processes
 about 15, 16
 microservices, associating with 16
publishing application 176, 177, 178, 189, 190
Python module
 docker-compose, installing as 198

R
red application
 backend, scaling 235, 237
 executing 234, 235
registry caching 509
replicas 198
replicated service
 deploying 319, 320, 321, 322, 323
repository names 77
Representational State Transfer (REST) 12
retail reclaim policy 351
RethinkDB 404
role-based access control (RBAC)
 about 369, 395, 432, 433, 434, 435, 436, 437,

438, 531
 concepts 432
 learning 493, 494, 495
Round-Robin DNS (RRDNS) 311
router mesh
 about 460, 532
 bypassing 311
 bypassing, with host mode 312
 bypassing, with Round-Robin DNS mode 312

[582]

S
secrets
 about 350
 used, for deploying applications 302, 303
security scanning 496, 497
service 27
service discovery 309, 310, 311, 336, 337
service resources
 about 348, 349
 ClusterIP service 348
 ExternalName service 349
 headless services 348
 LoadBalancer service 349
 NodePort service 348
service's base image
 updating 326, 327
SIGKILL signal 113
signatures
 reviewing 256, 257, 258
SIGTERM signal 113
simple load balancer
 adding, to color backends 240, 241, 242, 243,

244

Simple Object Access Protocol (SOAP) 11
software-defined storage (SDS) 273
SSHFS
 mounting 183, 184, 185
stacks
 used, for deploying applications 305, 306
stateful containers 152
stateless containers 152
Subject Alternative Names (SANs) 417
Swarm ingress internal load balancing 334, 335
Swarm orchestrator, architecture
 about 281
 control plane 281
 data plane 282
 management plane 281

T
The Update Framework (TUF)
 about 249, 251
 library package managers 249
 operating system component updates 249

 software update system 249
Transport Layer Security (TLS)
 about 279
 Interlock, used for publishing service securely

with 473, 474, 475
trusted environment
 application, creating 259
 application, executing 259
TUF metadata
 Root metadata (root.json) and role 250
 Snapshot metadata (snapshot.json) and role 250
 Targets metadata (targets.json) and role 250
 Timestamp metadata (timestamp.json) and role

250

U
UCP bundle
 command line, using 430, 431, 432
UCP environment
 upgrading 448, 449
UCP's Kubernetes integration 439, 440
UCP-Auth
 troubleshooting 452
UCP-KV
 troubleshooting 451, 452
Universal Control Plane (UCP)
 about 345, 401, 402, 528
 administration and security 440, 442, 444
 backing up 445, 446, 447, 448
 components 410, 411
 components, on manager nodes 411, 412, 413
 components, on worker nodes 414, 415
 deploying, with high availability 416, 417, 418,

419, 420, 421, 422, 423, 424, 425
 features 410, 411
 troubleshooting 451
unnamed volume 154
untagged images 80
User Datagram Protocol (UDP) 306

V
vagrant status
 using 260
views, for tag's scan
 Components view 497

 Layers view 497
virtual 70
virtual machines 17
volume plugins
 reference link 162
volume types, on Docker
 localhost directories/files 154
 named volumes 154
 tmpfs volumes 155
 unnamed volumes 154
volumes
 object actions, learning 155

 using 383, 384, 386, 387, 388, 389, 390
 using, in containers 156, 157, 158, 159, 160
 using, to code on laptop 180, 181, 182, 183
 working 153, 155

W
web UI 426, 428, 429, 430
Windows containers 35, 36
Windows Server Containers (WSC) 35
Windows servers
 docker-compose, installing on 200

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1 - Key Container Concepts
	Chapter 1: Modern Infrastructures and Applications with Docker
	Technical requirements
	Understanding the evolution of applications
	Infrastructures
	Processes
	Microservices and processes
	What are containers?
	Learning about the main concepts of containers
	Container runtime
	Images
	Containers
	Process isolation
	Orchestration
	Registry

	Docker components
	Docker daemon
	Docker client
	Docker objects

	Building, shipping, and running workflows
	Building
	Shipping
	Running

	Windows containers
	Customizing Docker
	Customizing the Docker daemon
	Docker client customization

	Docker security
	Docker client-server security
	Docker daemon security
	Namespaces
	User namespace
	Kernel capabilities (seccomp)
	Linux security modules
	Docker Content Trust

	Chapter labs
	Installing the Docker runtime and executing a "hello world" container
	Docker runtime processes and namespace isolation
	Docker capabilities

	Summary
	Questions
	Further reading

	Chapter 2: Building Docker Images
	Technical requirements
	Building Docker images
	Creating images with Dockerfiles
	Creating images interactively
	Creating images from scratch

	Understanding copy-on-write filesystems
	Building images with a Dockerfile reference
	Dockerfile quick reference
	Building process actions

	Image tagging and meta-information
	Docker registries and repositories
	Securing images
	Managing images and other related objects
	Listing images
	Sharing images using registries

	Multistage building and image caches
	Templating images
	Image releases and updates
	Chapter labs
	Docker build caching
	Where to use volumes in Dockerfiles
	Multistage building
	Deploying a local registry
	Image templating using Dockerfiles

	Summary
	Questions
	Further reading

	Chapter 3: Running Docker Containers
	Technical requirements
	Reviewing the Docker command line in depth
	Learning about Docker objects
	Running containers
	Main container actions
	Container network properties
	Container behavior definition
	Executing containers
	Container security options
	Using host namespaces

	Interacting with containers
	Limiting host resources
	Converting containers into images
	Formatting and filtering information
	Managing devices
	Chapter labs
	Reviewing Docker command-line object options
	Executing containers
	Limiting container resources
	Formatting and filtering container list output

	Summary
	Questions
	Further reading

	Chapter 4: Container Persistency and Networking
	Technical requirements
	Understanding stateless and stateful containers
	Learning how volumes work
	Learning about volume object actions
	Using volumes in containers

	Learning about different persistence strategies
	Local persistence
	Distributed or remote volumes

	Networking in containers
	Using the default bridge network
	Understanding null networks
	Understanding the host network
	Creating custom bridge networks
	The MacVLAN network – macvlan

	Learning about container interactions
	Communication with the external world
	Inter-container communications
	DNS on custom bridge networks

	Publishing applications
	Chapter labs
	Using volumes to code on your laptop
	Mounting SSHFS
	Multi-homed containers
	Publishing applications

	Summary
	Questions
	Further reading

	Chapter 5: Deploying Multi-Container Applications
	Technical requirements
	Installing and using Docker Compose
	Installing docker-compose as a Python module
	Installing docker-compose using downloaded binaries
	Executing docker-compose using a container
	Installing docker-compose on Windows servers

	Understanding the docker-compose.yaml file
	Using the Docker Compose command-line interface
	Customizing images with docker-compose
	Automating your desktop and CI/CD with Docker Compose
	Chapter labs
	Colors application lab
	Executing a red application
	Scaling the red application's backends
	Adding more colors
	Adding a simple load balancer

	Summary
	Questions
	Further reading

	Chapter 6: Introduction to Docker Content Trust
	Technical requirements
	The Update Framework
	Signing images
	Reviewing signatures
	Creating and running applications in trusted environments
	Chapter labs
	Signing images for Docker Hub

	Summary
	Questions
	Further reading

	Section 2 - Container Orchestration
	Chapter 7: Introduction to Orchestration
	Introducing orchestration concepts
	Learning about container orchestration
	Scheduling applications cluster-wide
	Managing data and persistency
	Scaling and updating application components
	Summary
	Questions
	Further reading

	Chapter 8: Orchestration Using Docker Swarm
	Technical requirements
	Deploying Docker Swarm
	Docker Swarm overall architecture
	Management plane
	Control plane
	Data plane

	Deploying a Docker Swarm cluster using the command line
	Deploying Docker Swarm with high availability

	Creating a Docker Swarm cluster
	Recovering a faulty Docker Swarm cluster
	Backing up your Swarm
	Recovering your Swarm

	Scheduling workloads in the cluster – tasks and services
	Deploying applications using Stacks and other Docker Swarm resources
	Secrets
	Config
	Stacks

	Networking in Docker Swarm
	Service discovery and load balancing
	Bypassing the router mesh
	Using host mode
	Using Round-Robin DNS mode

	Chapter labs
	Creating a Docker Swarm cluster
	Deploying a simple replicated service
	Deploying a global service
	Updating a service's base image
	Deploying using Docker Stacks
	Swarm ingress internal load balancing
	Service discovery

	Summary
	Questions
	Further reading

	Chapter 9: Orchestration Using Kubernetes
	Technical requirements
	Deploying Kubernetes using Docker Engine
	Deploying a Kubernetes cluster with high availability
	Pods, services, and other Kubernetes resources
	Pods
	Services
	ConfigMaps and secrets
	Namespaces
	Persistent volumes

	Deploying orchestrated resources
	Kubernetes networking
	Service discovery
	Load balancing
	Network policies

	Publishing applications
	Kubernetes security components and features
	Comparing Docker Swarm and Kubernetes side by side
	Chapter labs
	Deploying applications in Kubernetes
	Using volumes

	Summary
	Questions
	Further reading

	Section 3 - Docker Enterprise
	Chapter 10: Introduction to the Docker Enterprise Platform
	Reviewing the Docker editions
	Docker Community
	Docker Enterprise

	Understanding CaaS
	The Docker Enterprise platform
	Docker Engine
	Universal Control Plane
	Docker Trusted Registry

	Planning your Docker Enterprise deployment
	Summary
	Questions
	Further reading

	Chapter 11: Universal Control Plane
	Technical requirements
	Understanding UCP components and features
	UCP components on manager nodes
	UCP components on worker nodes

	Deploying UCP with high availability
	Reviewing the Docker UCP environment
	The web UI
	The command line using the UCP bundle

	Role-based access control and isolation
	UCP's Kubernetes integration
	UCP administration and security
	Backup strategies
	Docker Swarm's backup
	Backing up UCP

	Upgrades, monitoring, and troubleshooting
	Upgrading your environment
	Monitoring a cluster's health
	Troubleshooting UCP
	Troubleshooting UCP-KV
	Troubleshooting UCP-Auth
	Troubleshooting nodes

	Summary
	Questions
	Further reading

	Chapter 12: Publishing Applications in Docker Enterprise
	Technical requirements
	Understanding publishing concepts and components
	Understanding an application's logic
	Publishing applications in Kubernetes using ingress controllers
	Using Interlock to publish applications deployed in Docker Swarm
	Reviewing Interlock usage
	Simple application redirection
	Publishing a service securely using Interlock with TLS

	Summary
	Questions
	Further reading

	Chapter 13: Implementing an Enterprise-Grade Registry with DTR
	Technical requirements
	Understanding DTR components and features
	Deploying DTR with high availability
	Learning about RBAC
	Image scanning and security features
	Security scanning
	Image immutability
	Content trust in DTR

	Integrating and automating image workflow
	Image promotion
	DTR webhooks
	Mirror images between registries
	Registry caching
	Garbage collection

	Backup strategies
	Updates, health checks, and troubleshooting
	Logging
	DTR disaster recovery
	Some replicas are unhealthy, but we keep the cluster's quorum's state
	The majority of replicas are unhealthy
	All replicas are unhealthy

	Summary
	Questions
	Further reading

	Section 4 - Preparing for the Docker Certified Associate Exam
	Chapter 14: Summarizing Important Concepts
	Reviewing orchestration concepts
	Required knowledge for the exam

	A brief summary of Docker image concepts
	Required image management knowledge for the exam

	A summary of the Docker architecture, installation, and configuration topics
	The knowledge required about the Docker platform for the exam

	A summary of the networking topics
	The Docker networking knowledge required for the exam

	Understanding security concepts and related Docker features
	The knowledge of Docker security required for the exam

	Quickly summarizing Docker storage and volumes
	The storage and volume knowledge required for the exam

	Summary

	Chapter 15: Mock Exam Questions and Final Notes
	Docker Certified Associate exam details
	Mock exam questions
	Summary

	Assessments
	Other Books You May Enjoy
	Index

