
Cookbook

Kubernetes
A Complete DevOps Cookbook

Kubernetes is a popular open source
orchestration platform for managing
containers in a cluster environment. With
this Kubernetes cookbook, you’ll learn
how to implement Kubernetes using
a recipe-based approach. The book will
prepare you to create highly available
Kubernetes clusters on multiple clouds
such as Amazon Web Services (AWS), Google
Cloud Platform (GCP), Azure, Alibaba,
and on-premises data centers.
Starting with recipes for installing and
confi guring Kubernetes instances, you’ll
discover how to work with Kubernetes
clients, services, and key metadata. You’ll
then learn how to build continuous
integration/continuous delivery

(CI/CD) pipelines for your applications, and
understand various methods to manage
containers. As you advance, you’ll delve into
Kubernetes' integration with Docker and
Jenkins, and even perform a batch processing
and confi gure data volumes. You’ll get to grips
with methods for scaling, security, monitoring,
logging, and troubleshooting. Additionally,
the is book will take you through the latest
updates in Kubernetes, including volume
snapshots, creating high availability clusters
with kops, running workload operators, new
inclusions around kubectl and more.
By the end of this book, you’ll have
developed the skills required to implement
Kubernetes in production and manage
containers profi ciently.

Things you will learn:

• Deploy cloud-native applications
on Kubernetes

• Automate testing in the DevOps workfl ow

• Discover and troubleshoot common
storage issues

• Dynamically scale containerized services
to manage fl uctuating traffi c needs

• Understand how to monitor your
containerized DevOps environment

• Build DevSecOps into CI/CD pipelines

K
ubernetes – A

 Com
plete D

evO
ps Cookbook

M
urat Karslioglu

www.packt.comwww.packt.com

Build and manage your applications, orchestrate containers,
and deploy cloud-native services

Kubernetes
A Complete DevOps

Murat Karslioglu

Kubernetes A Complete
DevOps Cookbook

Build and manage your applications, orchestrate containers,
and deploy cloud-native services

Murat Karslioglu

BIRMINGHAM - MUMBAI

Kubernetes A Complete DevOps Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Alokita Amanna
Senior Editor: Rahul Dsouza
Technical Editor: Dinesh Pawar
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Deepika Naik

First published: March 2020

Production reference: 1130320

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-804-2

www.packt.com

http://www.packt.com

 To my wife, Svetlana, for being my loving partner throughout our joint life journey.
And to my incredible daughters, Melissa and Aylin, for making world a brighter place.

Never stop reaching for your dreams...

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Murat Karslioglu is a distinguished technologist with years of experience in the Agile and
DevOps methodologies. Murat is currently a VP of Product at MayaData, a start-up
building a data agility platform for stateful applications, and a maintainer of open source
projects, namely OpenEBS and Litmus. In his free time, Murat is busy writing practical
articles about DevOps best practices, CI/CD, Kubernetes, and running stateful applications
on popular Kubernetes platforms on his blog, Containerized Me. Murat also runs a cloud-
native news curator site, The Containerized Today, where he regularly publishes updates on
the Kubernetes ecosystem.

I want to thank my wife, Svetlana, and the rest of my family for their continuous support,
patience, and encouragement throughout the whole tedious process of book-writing.

About the reviewer
Scott Surovich, CKA, CKAD, Mirantis MKP, (New Google Certification)
is the container engineering lead for a G-SIFI global bank where he is focused on global
design and standards for Kubernetes on-premises clusters. An evangelist for containers and
Kubernetes, he has presented GKE networking in the enterprise at Google Next and multi-
tenant Kubernetes clusters in the enterprise at Kubecon. He is an active member of the
CNCF's Financial Services working group, he worked with the Kubernetes multi-tenancy
working group, and he has been a developer advocate for Tremolo Security's OIDC
provider, OpenUnison. Recently, he also achieved the Google Cloud Certified Fellow:
Hybrid Multi-Cloud certification.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Building Production-Ready Kubernetes Clusters 7
Technical requirements 7
Configuring a Kubernetes cluster on Amazon Web Services 8

Getting ready 8
How to do it… 9

Installing the command-line tools to configure AWS services 9
Installing kops to provision a Kubernetes cluster 10
Provisioning a Kubernetes cluster on Amazon EC2 10
Provisioning a managed Kubernetes cluster on Amazon EKS 12

How it works... 13
There's more… 14

Using the AWS Shell 14
Using a gossip-based cluster 15
Using different regions for an S3 bucket 15
Editing the cluster configuration 16
Deleting your cluster 16
Provisioning an EKS cluster using the Amazon EKS Management Console 16
Deploying Kubernetes Dashboard 17

See also 19
Configuring a Kubernetes cluster on Google Cloud Platform 20

Getting ready 20
How to do it… 20

Installing the command-line tools to configure GCP services 21
Provisioning a managed Kubernetes cluster on GKE 22
Connecting to Google Kubernetes Engine (GKE) clusters 22

How it works… 22
There's more… 23

Using Google Cloud Shell 23
Deploying with a custom network configuration 24
Deleting your cluster 25
Viewing the Workloads dashboard 25

See also 25
Configuring a Kubernetes cluster on Microsoft Azure 25

Getting ready 25
How to do it… 26

Installing the command-line tools to configure Azure services 26
Provisioning a managed Kubernetes cluster on AKS 27
Connecting to AKS clusters 27

How it works… 28
There's more… 28

Table of Contents

[ii]

Deleting your cluster 29
Viewing Kubernetes Dashboard 29

See also 29
Configuring a Kubernetes cluster on Alibaba Cloud 30

Getting ready 30
How to do it… 31

Installing the command-line tools to configure Alibaba Cloud services 31
Provisioning a highly available Kubernetes cluster on Alibaba Cloud 32
Connecting to Alibaba Container Service clusters 34

How it works… 35
There's more… 37

Configuring and managing Kubernetes clusters with Rancher 37
Getting ready 38
How to do it… 38

Installing Rancher Server 38
Deploying a Kubernetes cluster 39
Importing an existing cluster 40
Enabling cluster and node providers 42

How it works… 43
There's more… 43

Bind mounting a host volume to keep data 43
Keeping user volumes persistent 44
Running Rancher on the same Kubernetes nodes 44

See also 45
Configuring Red Hat OpenShift 45

Getting ready 45
How to do it… 45

Downloading OpenShift binaries 46
Provisioning an OpenShift cluster 46
Connecting to OpenShift clusters 47

How it works… 48
There's more… 48

Deleting your cluster 49
See also 49

Configuring a Kubernetes cluster using Ansible 49
Getting ready 49
How to do it… 50

Installing Ansible 50
Provisioning a Kubernetes cluster using an Ansible playbook 50
Connecting to the Kubernetes cluster 51

See also 52
Troubleshooting installation issues 52

How to do it… 52
How it works… 53
There's more… 54

Setting log levels 54
See also 55

Table of Contents

[iii]

Chapter 2: Operating Applications on Kubernetes 56
Technical requirements 56
Deploying workloads using YAML files 57

Getting ready 57
How to do it… 57

Creating a Deployment 57
Verifying a Deployment 58
Editing a Deployment 59
Rolling back a deployment 61
Deleting a Deployment 62

How it works... 62
See also 63

Deploying workloads using Kustomize 63
Getting ready 63
How to do it… 63

Validating the Kubernetes cluster version 64
Generating Kubernetes resources from files 64
Creating a base for a development and production Deployment 66

How it works... 69
See also 70

Deploying workloads using Helm charts 70
Getting ready 70
How to do it… 70

Installing Helm 2.x 71
Installing an application using Helm charts 72
Searching for an application in Helm repositories 73
Upgrading an application using Helm 74
Rolling back an application using Helm 75
Deleting an application using Helm 76
Adding new Helm repositories 76
Building a Helm chart 78

How it works... 79
See also 80

Deploying and operating applications using Kubernetes operators 80
Getting ready 80
How to do it… 81

Installing KUDO and the KUDO kubectl plugin 81
Installing the Apache Kafka Operator using KUDO 82
Installing Operator Lifecycle Manager 83
Installing the Zalando PostgreSQL Operator 83

See also 84
Deploying and managing the life cycle of Jenkins X 85

Getting ready 85
How to do it... 86

Installing the Jenkins X CLI 86
Creating a Jenkins X Kubernetes cluster 87
Verifying Jenkins X components 88

Table of Contents

[iv]

Switching Kubernetes clusters 89
Validating cluster conformance 90

How it works... 90
There's more… 91

Importing an application 91
Upgrading a Jenkins X application 91
Deleting a Jenkins X Kubernetes cluster 92

See also 92
Deploying and managing the life cycle of GitLab 93

Getting ready 93
How to do it... 93

Installing GitLab using Helm 94
Connecting to the GitLab dashboard 95
Creating the first GitLab user 95
Upgrading GitLab 96

How it works... 97
There's more… 98

Using your own wildcard certificate 98
Using autogenerated self-signed certificates 98
Enabling the GitLab Operator 99
Deleting GitLab 99

See also 100

Chapter 3: Building CI/CD Pipelines 101
Technical requirements 101
Creating a CI/CD pipeline in Jenkins X 102

Getting ready 102
How to do it… 102

Connecting to Jenkins Pipeline Console 102
Importing an application as a pipeline 104
Checking application status 105
Promoting an application to production 106
Creating a pipeline using a QuickStart application 107

How it works... 108
Creating a CI/CD pipeline in GitLab 109

Getting ready 109
How to do it… 110

Creating a project using templates 110
Importing an existing project from GitHub 112
Enabling Auto DevOps 115
Enabling Kubernetes cluster integration 117
Creating a pipeline using Auto DevOps 120
Incrementally rolling out applications to production 122

How it works... 124
There's more... 125

GitLab Web IDE 125
Monitoring environments 126

See also 128

Table of Contents

[v]

Creating a CI/CD pipeline in CircleCI 128
Getting ready 128
How to do it... 129

Getting started with CircleCI 129
Deploying changes to a Kubernetes cluster on EKS 130

How it works... 131
See also 132

Setting up a CI/CD pipeline using GitHub Actions 132
Getting ready 133
How to do it... 133

Creating a workflow file 133
Creating a basic Docker build workflow 135
Building and publishing images to Docker Registry 136
Adding a workflow status badge 137

See also 138
Setting up a CI/CD pipeline on Amazon Web Services 138

Getting ready 138
How to do it... 138

Creating an AWS CodeCommit code repository 139
Building projects with AWS CodeBuild 143
Creating an AWS CodeDeploy deployment 148
Building a pipeline with AWS CodePipeline 148

How it works... 151
See also 152

Setting up a CI/CD pipeline with Spinnaker on Google Cloud Build 152
Getting ready 152
How to do it... 153

Installing and configuring the Spin CLI 153
Configuring a service account for the CI/CD 154
Configuring events to trigger a pipeline 155
Deploying Spinnaker using Helm 156
Creating a Google Cloud Source code repository 157
Building projects with Google Cloud Build 159
Configuring a Spinnaker pipeline 162
Rolling out an application to production 162

See also 166
Setting up a CI/CD pipeline on Azure DevOps 166

Getting ready 166
How to do it... 166

Getting started with Azure DevOps 167
Configuring Azure Pipelines 168
Deploying changes to an AKS cluster 172

How it works... 176
See also 177

Chapter 4: Automating Tests in DevOps 178
Technical requirements 178

Table of Contents

[vi]

Building event-driven automation with StackStorm 179
Getting ready 179
How to do it… 179

Installing StackStorm 179
Accessing the StackStorm UI 180
Using the st2 CLI 182
Defining a rule 183
Deploying a rule 185

See also 186
Automating tests with the Litmus framework 186

Getting ready 186
How to do it… 187

Installing the Litmus Operator 187
Using Chaos Charts for Kubernetes 188
Creating a pod deletion chaos experiment 190
Reviewing chaos experiment results 192
Viewing chaos experiment logs 193

How it works... 194
See also 195

Automating Chaos Engineering with Gremlin 195
Getting ready 195
How to do it… 195

Setting up Gremlin credentials 196
Installing Gremlin on Kubernetes 197
Creating a CPU attack against a Kubernetes worker 198
Creating a node shutdown attack against a Kubernetes worker 202
Running predefined scenario-based attacks 205
Deleting Gremlin from your cluster 206

How it works... 207
See also 207

Automating your code review with Codacy 207
Getting ready 207
How to do it… 207

Accessing the Project Dashboard 208
Reviewing commits and PRs 210
Viewing issues by category 212
Adding a Codacy badge to your repository 214

See also 215
Detecting bugs and anti-patterns with SonarQube 215

Getting ready 215
How to do it… 216

Installing SonarQube using Helm 216
Accessing the SonarQube Dashboard 217
Creating a new user and tokens 219
Enabling quality profiles 221
Adding a project 224
Reviewing a project's quality 226
Adding marketplace plugins 227

Table of Contents

[vii]

Deleting SonarQube from your cluster 229
How it works... 229
See also 229

Detecting license compliance issues with FOSSA 230
Getting ready 230
How to do it… 230

Adding projects to FOSSA 231
Triaging licensing issues 233
Adding a FOSSA badge to your project 235

Chapter 5: Preparing for Stateful Workloads 237
Technical requirements 237
Managing Amazon EBS volumes in Kubernetes 238

Getting ready 238
How to do it… 238

Creating an EBS storage class 239
Changing the default storage class 240
Using EBS volumes for persistent storage 241
Using EBS storage classes to dynamically create persistent volumes 242
Deleting EBS persistent volumes 244
Installing the EBS CSI driver to manage EBS volumes 246

See also 248
Managing GCE PD volumes in Kubernetes 249

Getting ready 249
How to do it… 249

Creating a GCE persistent disk storage class 250
Changing the default storage class 251
Using GCE PD volumes for persistent storage 253
Using GCE PD storage classes to create dynamic persistent volumes 255
Deleting GCE PD persistent volumes 256
Installing the GCP Compute PD CSI driver to manage PD volumes 257

How it works... 259
See also 260

Managing Azure Disk volumes in Kubernetes 260
Getting ready 260
How to do it… 260

Creating an Azure Disk storage class 261
Changing the default storage class to ZRS 262
Using Azure Disk storage classes to create dynamic PVs 263
Deleting Azure Disk persistent volumes 264
Installing the Azure Disk CSI driver 265

See also 267
Configuring and managing persistent storage using Rook 267

Getting ready 268
How to do it… 268

Installing a Ceph provider using Rook 268
Creating a Ceph cluster 269
Verifying a Ceph cluster's health 269

Table of Contents

[viii]

Create a Ceph block storage class 270
Using a Ceph block storage class to create dynamic PVs 272

See also 273
Configuring and managing persistent storage using OpenEBS 273

Getting ready 274
How to do it… 274

Installing iSCSI client prerequisites 274
Installing OpenEBS 275
Using ephemeral storage to create persistent volumes 275
Creating storage pools 277
Creating OpenEBS storage classes 278
Using an OpenEBS storage class to create dynamic PVs 280

How it works... 281
See also 282

Setting up NFS for shared storage on Kubernetes 282
Getting ready 282
How to do it… 282

Installing NFS prerequisites 283
Installing an NFS provider using a Rook NFS operator 283
Using a Rook NFS operator storage class to create dynamic NFS PVs 285
Installing an NFS provisioner using OpenEBS 286
Using the OpenEBS NFS provisioner storage class to create dynamic NFS PVs 286

See also 287
Troubleshooting storage issues 287

Getting ready 287
How to do it… 288

Persistent volumes in the pending state 288
A PV is stuck once a PVC has been deleted 289

Chapter 6: Disaster Recovery and Backup 290
Technical requirements 290
Configuring and managing S3 object storage using MinIO 291

Getting ready 291
How to do it… 291

Creating a deployment YAML manifest 292
Creating a MinIO S3 service 293
Accessing the MinIO web user interface 294

How it works... 295
See also 296

Managing Kubernetes Volume Snapshots and restore 296
Getting ready 296
How to do it… 297

Enabling feature gates 297
Creating a volume snapshot via CSI 297
Restoring a volume from a snapshot via CSI 299
Cloning a volume via CSI 301

How it works... 301

Table of Contents

[ix]

See also 302
Application backup and recovery using Velero 302

Getting ready 303
How to do it… 303

Installing Velero 304
Backing up an application 305
Restoring an application 307
Creating a scheduled backup 307
Taking a backup of an entire namespace 308
Viewing backups with MinIO 309
Deleting backups and schedules 310

How it works... 311
See also 311

Application backup and recovery using Kasten 311
Getting ready 312
How to do it… 312

Installing Kasten 312
Accessing the Kasten Dashboard 314
Backing up an application 315
Restoring an application 319

How it works... 321
See also 321

Cross-cloud application migration 321
Getting ready 322
How to do it… 322

Creating an export profile in Kasten 322
Exporting a restore point in Kasten 323
Creating an import profile in Kasten 325
Migrating an application in Kasten 325
Importing clusters into OpenEBS Director 327
Migrating an application in OpenEBS Director 330

See also 333

Chapter 7: Scaling and Upgrading Applications 334
Technical requirements 334
Scaling applications on Kubernetes 335

Getting ready 335
How to do it… 335

Validating the installation of Metrics Server 335
Manually scaling an application 336
Autoscaling applications using a Horizontal Pod Autoscaler 338

How it works... 341
See also 342

Assigning applications to nodes 342
Getting ready 342
How to do it… 342

Labeling nodes 343

Table of Contents

[x]

Assigning pods to nodes using nodeSelector 344
Assigning pods to nodes using node and inter-pod Affinity 346

How it works... 350
See also 352

Creating an external load balancer 352
Getting ready 353
How to do it… 353

Creating an external cloud load balancer 353
Finding the external address of the service 355

How it works... 356
See also 356

Creating an ingress service and service mesh using Istio 357
Getting ready 357
How to do it… 357

Installing Istio using Helm 358
Verifying the installation 358
Creating an ingress gateway 360

How it works... 361
There's more… 362

Deleting Istio 362
See also 362

Creating an ingress service and service mesh using Linkerd 363
Getting ready 363
How to do it… 363

Installing the Linkerd CLI 364
Installing Linkerd 364
Verifying a Linkerd deployment 365
Adding Linkerd to a service 365

There's more… 366
Accessing the dashboard 366
Deleting Linkerd 367

See also 367
Auto-healing pods in Kubernetes 368

Getting ready 368
How to do it… 368

Testing self-healing pods 368
Adding liveness probes to pods 369

How it works... 371
See also 371

Managing upgrades through blue/green deployments 372
Getting ready 372
How to do it… 372

Creating the blue deployment 373
Creating the green deployment 374
Switching traffic from blue to green 374

See also 375

Table of Contents

[xi]

Chapter 8: Observability and Monitoring on Kubernetes 376
Technical requirements 376
Monitoring in Kubernetes 377

Getting ready 377
How to do it… 377

Adding metrics using Kubernetes Metrics Server 378
Monitoring metrics using the CLI 378
Monitoring metrics using Kubernetes Dashboard 379
Monitoring node health 382

See also 383
Inspecting containers 383

Getting ready 383
How to do it… 384

Inspecting pods in Pending status 384
Inspecting pods in ImagePullBackOff status 386
Inspecting pods in CrashLoopBackOff status 388

See also 390
Monitoring using Amazon CloudWatch 390

Getting ready 391
How to do it… 391

Enabling Webhook authorization mode 391
Installing Container Insights Agents for Amazon EKS 394
Viewing Container Insights metrics 395

See also 399
Monitoring using Google Stackdriver 399

Getting ready 400
How to do it… 400

Installing Stackdriver Kubernetes Engine Monitoring support for GKE 400
Configuring a workspace on Stackdriver 401
Monitoring GKE metrics using Stackdriver 404

See also 409
Monitoring using Azure Monitor 410

Getting ready 410
How to do it… 410

Enabling Azure Monitor support for AKS using the CLI 410
Monitoring AKS performance metrics using Azure Monitor 411
Viewing live logs using Azure Monitor 417

See also 423
Monitoring Kubernetes using Prometheus and Grafana 424

Getting ready 424
How to do it… 424

Deploying Prometheus using Helm charts 424
Monitoring metrics using Grafana dashboards 425
Adding a Grafana dashboard to monitor applications 430

See also 434
Monitoring and performance analysis using Sysdig 435

Table of Contents

[xii]

Getting ready 435
How to do it… 435

Installing the Sysdig agent 435
Analyzing application performance 438

See also 442
Managing the cost of resources using Kubecost 442

Getting ready 443
How to do it… 443

Installing Kubecost 443
Accessing the Kubecost dashboard 444
Monitoring Kubernetes resource cost allocation 446

See also 450

Chapter 9: Securing Applications and Clusters 451
Technical requirements 451
Using RBAC to harden cluster security 452

Getting ready 452
How to do it… 452

Viewing the default Roles 453
Creating user accounts 454
Creating Roles and RoleBindings 456
Testing the RBAC rules 458

How it works... 458
See also 459

Configuring Pod Security Policies 459
Getting ready 460
How to do it… 460

Enabling PSPs on EKS 460
Enabling PSPs on GKE 461
Enabling PodSecurityPolicy on AKS 462
Creating a restricted PSPs 463

There's more… 464
Restricting pods to access certain volume types 464
Using Kubernetes PodSecurityPolicy advisor 466

See also 466
Using Kubernetes CIS Benchmark for security auditing 467

Getting ready 467
How to do it… 467

Running kube-bench on Kubernetes 468
Running kube-bench on managed Kubernetes services 471
Running kube-bench on OpenShift 473

How it works... 474
See also 474

Building DevSecOps into the pipeline using Aqua Security 475
Getting ready 475
How to do it… 476

Scanning images using Trivy 476

Table of Contents

[xiii]

Building vulnerability scanning into GitLab 478
Building vulnerability scanning into CircleCI 479

See also 481
Monitoring suspicious application activities using Falco 482

Getting ready 482
How to do it… 482

Installing Falco on Kubernetes 482
Detecting anomalies using Falco 484
Defining custom rules 485

How it works... 487
See also 488

Securing credentials using HashiCorp Vault 488
Getting ready 489
How to do it… 489

Installing Vault on Kubernetes 489
Accessing the Vault UI 491
Storing credentials on Vault 493

See also 495

Chapter 10: Logging with Kubernetes 496
Technical requirements 496
Accessing Kubernetes logs locally 497

Getting ready 497
How to do it… 497

Accessing logs through Kubernetes 497
Debugging services locally using Telepresence 500

How it works... 502
See also 503

Accessing application-specific logs 503
Getting ready 503
How to do it… 504

Getting shell access in a container 504
Accessing PostgreSQL logs inside a container 505

Building centralized logging in Kubernetes using the EFK stack 506
Getting ready 507
How to do it… 507

Deploying Elasticsearch Operator 507
Requesting the Elasticsearch endpoint 509
Deploying Kibana 509
Aggregating logs with Fluent Bit 510
Accessing Kubernetes logs on Kibana 511

See also 517
Logging Kubernetes using Google Stackdriver 518

Getting ready 518
How to do it… 518

Installing Stackdriver Kubernetes Engine Monitoring support for GKE 519
Viewing GKE logs using Stackdriver 521

Table of Contents

[xiv]

See also 524
Using a managed Kubernetes logging service 525

Getting ready 525
How to do it… 525

Connecting clusters to Director Online 525
Accessing logs using Director Online 529

Logging for your Jenkins CI/CD environment 530
Getting ready 531
How to do it… 531

Installing the Fluentd plugin 531
Streaming Jenkins logs to Elasticsearch using Fluentd 533

There's more… 534
Installing the Logstash plugin 534
Streaming Jenkins logs to Elasticsearch using Logstash 536

See also 537

Other Books You May Enjoy 538

Index 541

Preface
Kubernetes is an open source container orchestration platform originally developed by
Google and made available to the public in 2014. It has made the deployment of container-
based, complex, distributed systems simpler for developers. Since its inception, the
community has built a large ecosystem around Kubernetes with many open source projects.
This book is specially designed to quickly help Kubernetes administrators and site
reliability engineers (SREs) to find the right tools and get up to speed with Kubernetes.
The book covers everything from getting Kubernetes clusters up on most popular cloud
and on-premises solutions to recipes that help you automate testing and move your
applications out to production environments.

Kubernetes – A Complete DevOps Cookbook gives you clear, step-by-step instructions to install
and run your private Kubernetes clusters successfully. It is full of practical and applicable
recipes that enable you to use the latest capabilities of Kubernetes, as well as other third-
party solutions, and implement them.

Who this book is for
This book targets developers, IT professionals, SREs, and DevOps teams and engineers
looking to manage, scale, and orchestrate applications in their organizations using
Kubernetes. A basic understanding of Linux, Kubernetes, and containerization is required.

What this book covers
Chapter 1, Building Production-Ready Kubernetes Clusters, teaches you how to configure
Kubernetes services on different public clouds or on-premises using the popular options
available today.

Chapter 2, Operating Applications on Kubernetes, teaches you how to deploy DevOps tools
and continuous integration/continuous deployment (CI/CD) infrastructure on Kubernetes
using the most popular life cycle management options.

Chapter 3, Building CI/CD Pipelines, teaches you how to build, push, and deploy
applications from development to production and also ways to detect bugs, anti-patterns,
and license concerns during the process.

Preface

[2]

Chapter 4, Automating Tests in DevOps, teaches you how to automate testing in a DevOps
workflow to accelerate time to production, reduce loss-of-delivery risks, and detect service
anomalies using known test automation tools in Kubernetes.

Chapter 5, Preparing for Stateful Workloads, teaches you how to protect the state of
applications from node or application failures, as well as how to share data and reattach
volumes.

Chapter 6, Disaster Recovery and Backup, teaches you how to handle backup and disaster
recovery scenarios to keep applications in production highly available and quickly recover
service during cloud-provider or basic Kubernetes node failures.

Chapter 7, Scaling and Upgrading Applications, teaches you how to dynamically scale
containerized services on running on Kubernetes to handle the changing traffic needs of
your service.

Chapter 8, Observability and Monitoring on Kubernetes, teaches you how to monitor metrics
for performance analysis and also how to monitor and manage the real-time cost of
Kubernetes resources.

Chapter 9, Securing Applications and Clusters, teaches you how to build DevSecOps into
CI/CD pipelines, detect metrics for performance analysis, and securely manage secrets and
credentials.

Chapter 10, Logging on Kubernetes, teaches you how to set up a cluster to ingest logs, as well
as how to view them using both self-managed and hosted solutions.

To get the most out of this book
To use this book, you will need access to computers, servers, or cloud-provider services
where you can provision virtual machine instances. To set up the lab environments, you
may also need larger cloud instances that will require you to enable billing.

We assume that you are using an Ubuntu host (18.04, codename Bionic Beaver at the time
of writing); the book provides steps for Ubuntu environments.

Software/Hardware covered in the book OS Requirements
GitLab, Jenkins X, OpenShift, Rancher, kops, cURL, Python,
Vim or Nano, kubectl, helm Ubuntu/Windows/macOS

Preface

[3]

You will need AWS, GCP, and Azure credentials to perform some of the recipes in this
book.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/k8sdevopscookbook/src and https:/ /github. com/
PacktPublishing/Kubernetes- A- Complete- DevOps- Cookbook. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/k8sdevopscookbook/src
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/Kubernetes-A-Complete-DevOps-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781838828042_ ColorImages. pdf.

Code in Action
Visit the following link to check out videos of the code being run:
http://bit.ly/2U0Cm8x

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838828042_ColorImages.pdf
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x
http://bit.ly/2U0Cm8x

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows.

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Preface

[6]

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Building Production-Ready

Kubernetes Clusters
This chapter proposes the most common deployment methods that are used on popular
cloud services as well as on-premises, although you will certainly find a number of other
tutorials on the internet explaining other approaches. This chapter explains the differences
between managed/hosted cloud services versus self-managed cloud or on-premises
Kubernetes deployments and the advantages of one vendor over another.

In this chapter, we will be covering the following recipes:

Configuring a Kubernetes cluster on Amazon Web Services
Configuring a Kubernetes cluster on Google Cloud Platform
Configuring a Kubernetes cluster on Microsoft Azure
Configuring a Kubernetes cluster on Alibaba Cloud
Configuring and managing Kubernetes clusters with Rancher
Configuring Red Hat OpenShift
Configuring a Kubernetes cluster using Ansible
Troubleshooting installation issues

Technical requirements
It is recommended that you have a fundamental knowledge of Linux containers and
Kubernetes in general. For preparing your Kubernetes clusters, using a Linux host is
recommended. If your workstation is Windows-based, then we recommend that you use
Windows Subsystem for Linux (WSL). WSL gives you a Linux command line on Windows
and lets you run ELF64 Linux binaries on Windows.

Building Production-Ready Kubernetes Clusters Chapter 1

[8]

It's always good practice to develop using the same environment (which means the same
distribution and the same version) as the one that will be used in production. This will
avoid unexpected surprises such as It Worked on My Machine (IWOMM). If your
workstation is using a different OS, another good approach is to set up a virtual machine on
your workstation. VirtualBox (https:/ /www.virtualbox. org/) is a free and open source
hypervisor that runs on Windows, Linux, and macOS.

In this chapter, we'll assume that you are using an Ubuntu host (18.04, code name Bionic
Beaver at the time of writing). There are no specific hardware requirements since all the
recipes in this chapter will be deployed and run on cloud instances. Here is the list of
software packages that will be required on your localhost to complete the recipes:

cURL
Python
Vim or Nano (or your favorite text editor)

Configuring a Kubernetes cluster on
Amazon Web Services
The recipes in this section will take you through how to get a fully functional Kubernetes
cluster with a fully customizable master and worker nodes that you can use for the recipes
in the following chapters or in production.

In this section, we will cover both Amazon EC2 and Amazon EKS recipes so that we can
run Kubernetes on Amazon Web Services (AWS).

Getting ready
All the operations mentioned here require an AWS account and an AWS user with a policy
that has permission to use the related services. If you don't have one, go to https:/ /aws.
amazon.com/account/ and create one.

AWS provides two main options when it comes to running Kubernetes on it. You can
consider using the Amazon Elastic Compute Cloud (Amazon EC2) if you'd like to manage
your deployment completely and have specific powerful instance requirements. Otherwise,
it's highly recommended to consider using managed services such as Amazon Elastic
Container Service for Kubernetes (Amazon EKS).

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/

Building Production-Ready Kubernetes Clusters Chapter 1

[9]

How to do it…
Depending on whether you want to use AWS EC2 service or EKS, you can follow the
following recipes to get your cluster up and running using either kops or eksctl tools:

Installing the command-line tools to configure AWS services
Installing kops to provision a Kubernetes cluster
Provisioning a Kubernetes cluster on Amazon EC2
Provisioning a managed Kubernetes cluster on Amazon EKS

Installing the command-line tools to configure AWS
services
In this recipe, we will get the AWS Command-Line Interface (CLI) awscli and
the Amazon EKS CLI eksctl to access and configure AWS services.

Let's perform the following steps:

Install awscli on your workstation:1.

$ sudo apt-get update && sudo apt-get install awscli

Configure the AWS CLI so that it uses your access key ID and secret access key:2.

$ aws configure

Download and install the Amazon EKS command-line interface, eksctl:3.

$ curl --silent --location
"https://github.com/weaveworks/eksctl/releases/download/latest_rele
ase/eksctl_$(uname -s)_amd64.tar.gz" | tar xz -C /tmp
$ sudo mv /tmp/eksctl /usr/local/bin

Verify its version and make sure eksctl is installed:4.

$ eksctl version

To be able to perform the following recipes, the eksctl version should be
0.13.0 or later.

Building Production-Ready Kubernetes Clusters Chapter 1

[10]

Installing kops to provision a Kubernetes cluster
In this recipe, we will get the Kubernetes Operations tool, kops, and Kubernetes command-
line tool, kubectl, installed in order to provision and manage Kubernetes clusters.

Let's perform the following steps:

Download and install the Kubernetes Operations tool, kops:1.

$ curl -LO
https://github.com/kubernetes/kops/releases/download/$(curl -s
https://api.github.com/repos/kubernetes/kops/releases/latest | grep
tag_name | cut -d '"' -f 4)/kops-linux-amd64
$ chmod +x kops-linux-amd64 && sudo mv kops-linux-amd64
/usr/local/bin/kops

Run the following command to make sure kops is installed and confirm that the2.
version is 1.15.0 or later:

$ kops version

Download and install the Kubernetes command-line tool, kubectl:3.

$ curl -LO
https://storage.googleapis.com/kubernetes-release/release/$(curl -s
https://storage.googleapis.com/kubernetes-release/release/stable.tx
t)/bin/linux/amd64/kubectl
$ chmod +x ./kubectl && sudo mv ./kubectl /usr/local/bin/kubectl

Verify its version and make sure kubectl is installed:4.

$ kubectl version --short

To be able to perform the following recipes, the kubectl version should be
v1.15 or later.

Provisioning a Kubernetes cluster on Amazon EC2
This recipe will take you through how to get a fully functional Kubernetes cluster with fully
customizable master and worker nodes that you can use for the recipes in the following
chapters or in production.

Building Production-Ready Kubernetes Clusters Chapter 1

[11]

Let's perform the following steps:

Create a domain for your cluster.1.

It is a cloud management best practice to have subdomains and to divide
your clusters with logical and valid DNS names for kops to successfully
discovery them.

As an example, I will use the k8s.containerized.me subdomain as our hosted
zone. Also, if your domain is registered with a registrar other than Amazon
Route 53, you must update the name servers with your registrar and add Route
53 NS records for the hosted zone to your registrar's DNS records:

$ aws route53 create-hosted-zone --name k8s.containerized.me \
--caller-reference k8s-devops-cookbook \
--hosted-zone-config Comment="Hosted Zone for my K8s Cluster"

Create an S3 bucket to store the Kubernetes configuration and the state of the2.
cluster. In our example, we will use s3.k8s.containerized.me as our bucket
name:

$ aws s3api create-bucket --bucket s3.k8s.containerized.me \
--region us-east-1

Confirm your S3 bucket by listing the available bucket:3.

$ aws s3 ls
2019-07-21 22:02:58 s3.k8s.containerized.me

Enable bucket versioning:4.

$ aws s3api put-bucket-versioning --bucket s3.k8s.containerized.me
\
--versioning-configuration Status=Enabled

Set environmental parameters for kops so that you can use the locations by5.
default:

$ export KOPS_CLUSTER_NAME=useast1.k8s.containerized.me
$ export KOPS_STATE_STORE=s3://s3.k8s.containerized.me

Create an SSH key if you haven't done so already:6.

$ ssh-keygen -t rsa

Building Production-Ready Kubernetes Clusters Chapter 1

[12]

Create the cluster configuration with the list of zones where you want your7.
master nodes to run:

$ kops create cluster --node-count=6 --node-size=t3.large \
 --zones=us-east-1a,us-east-1b,us-east-1c \
 --master-size=t3.large \
 --master-zones=us-east-1a,us-east-1b,us-east-1c

Create the cluster:8.

$ kops update cluster --name ${KOPS_CLUSTER_NAME} --yes

Wait a couple of minutes for the nodes to launch and validate:9.

$ kops validate cluster

Now, you can use kubectl to manage your cluster:10.

$ kubectl cluster-info

By default, kops creates and exports the Kubernetes configuration
under ~/.kube/config. Therefore, no additional steps are required to connect
your clusters using kubectl.

Provisioning a managed Kubernetes cluster
on Amazon EKS
Perform the following steps to get your managed Kubernetes-as-a-service cluster up and
running on Amazon EKS using eksctl:

Create a cluster using the default settings:1.

$ eksctl create cluster
...
[√] EKS cluster "great-outfit-123" in "us-west-2" region is ready

By default, eksctl deploys a cluster with workers on two m5.large instances
using the AWS EKS AMI in the us-west-2 region. eksctl creates and exports
the Kubernetes configuration under ~/.kube/config. Therefore, no additional
steps are required to connect your clusters using kubectl.

Building Production-Ready Kubernetes Clusters Chapter 1

[13]

Confirm the cluster information and workers:2.

$ kubectl cluster-info && kubectl get nodes
Kubernetes master is running at
https://gr7.us-west-2.eks.amazonaws.com
CoreDNS is running at
https://gr7.us-west-2.eks.amazonaws.com/api/v1/namespaces/kube-syst
em/services/kube-dns:dns/proxy
NAME STATUS ROLES AGE VERSION
ip-1-2-3-4.us-west-2.compute.internal Ready <none> 5m42s v1.13.8-
eks-cd3eb0
ip-1-2-3-4.us-west-2.compute.internal Ready <none> 5m40s v1.13.8-
eks-cd3eb0

Now, you have a two-node Amazon EKS cluster up and running.

How it works...
The first recipe on Amazon EC2 showed you how to provision multiple copies of master
nodes that can survive a master node failure as well as single AZ outages. Although it is
similar to what you get with the second recipe on Amazon EKS with Multi-AZ support,
clusters on EC2 give you higher flexibility. When you run Amazon EKS instead, it runs a
single-tenant Kubernetes control plane for each cluster, and the control plane consists of at
least two API server nodes and three etcd nodes that run across three AZs within a region.

Let's take a look at the cluster options we used in step 7 with the kops create
cluster command:

--node-count=3 sets the number of nodes to create. In our example, this
is 6. This configuration will deploy two nodes per zone defined with--
zones=us-east-1a,us-east-1b,us-east-1c, with a total of three master
nodes and six worker nodes.
--node-size and --master-size set the instance size for the worker and
master nodes. In our example, t2.medium is used for worker nodes
and t2.large is used for master nodes. For larger clusters, t2.large is
recommended for a worker.
--zones and --master-zones set the zones that the cluster will run in. In our
example, we have used three zones called us-east-1a, us-east-1b, and us-
east-1c.

Building Production-Ready Kubernetes Clusters Chapter 1

[14]

For additional zone information, check the AWS Global Infrastructure link in the See
also section.

AWS clusters cannot span across multiple regions and all the zones that
have been defined for the master and worker nodes should be within the
same region.

When deploying multi-master clusters, an odd number of master instances should be
created. Also, remember that Kubernetes relies on etcd, a distributed key/value store. etcd
quorum requires more than 51% of the nodes to be available at any time. Therefore, with
three master nodes, our control plane can only survive a single master node or AZ outages.
If you need to handle more than that, you need to consider increasing the number of master
instances.

There's more…
It is also useful to have knowledge of the following information:

Using the AWS Shell
Using a gossip-based cluster
Using different regions for an S3 bucket
Editing cluster configuration
Deleting your cluster
Provisioning an EKS cluster using the Amazon EKS dashboard
Deploying Kubernetes Dashboard

Using the AWS Shell
Another useful tool worth mentioning here is aws-shell. It is an integrated shell that
works with the AWS CLI. It uses the AWS CLI configuration and improves productivity
with an autocomplete feature.

Install aws-shell using the following command and run it:

$ sudo apt-get install aws-shell && aws-shell

Building Production-Ready Kubernetes Clusters Chapter 1

[15]

You will see the following output:

You can use AWS commands with aws-shell with less typing. Press the F10 key to exit
the shell.

Using a gossip-based cluster
In this recipe, we created a domain (either purchased from Amazon or another registrar)
and a hosted zone, because kops uses DNS for discovery. Although it needs to be a valid
DNS name, starting with kops 1.6.2, DNS configuration became optional. Instead of an
actual domain or subdomain, a gossip-based cluster can be easily created. By using a
registered domain name, we make our clusters easier to share and accessible by others for
production use.

If, for any reason, you prefer a gossip-based cluster, you can skip hosted zone creation and
use a cluster name that ends with k8s.local :

$ export KOPS_CLUSTER_NAME=devopscookbook.k8s.local
$ export KOPS_STATE_STORE=s3://devops-cookbook-state-store

Setting the environmental parameters for kops is optional but highly recommended since it
shortens your CLI commands.

Using different regions for an S3 bucket
In order for kops to store cluster configuration, a dedicated S3 bucket is required.

An example for the eu-west-1 region would look as follows:

$ aws s3api create-bucket --bucket s3.k8s.containerized.me \
--region eu-west-1 --create-bucket-configuration \
LocationConstraint=eu-west-1

Building Production-Ready Kubernetes Clusters Chapter 1

[16]

This S3 bucket will become the source of truth for our Kubernetes cluster configuration. For
simplicity, it is recommended to use the us-east-1 region; otherwise, an
appropriate LocationConstraint needs be specified in order to create the bucket in the
desired region.

Editing the cluster configuration
The kops create cluster command, which we used to create the cluster
configuration, doesn't actually create the cluster itself and launch the EC2 instances;
instead, it creates the configuration file in our S3 bucket.

After creating the configuration file, you can make changes to the configuration using
the kops edit cluster command.

You can separately edit your node instance groups using the following command:

$ kops edit ig nodes
$ kops edit ig master-us-east-1a

The config file is called from the S3 bucket's state store location. If you prefer a different
editor you can, for example, set $KUBE_EDITOR=nano to change it.

Deleting your cluster
To delete your cluster, use the following command:

$ kops delete cluster --name ${KOPS_CLUSTER_NAME} --yes

This process may take a few minutes and, when finished, you will get a confirmation.

Provisioning an EKS cluster using the Amazon EKS
Management Console
In the Provisioning a managed Kubernetes cluster on Amazon EKS recipe, we used eksctl to
deploy a cluster. As an alternative, you can also use the AWS Management Console web
user interface to deploy an EKS cluster.

Building Production-Ready Kubernetes Clusters Chapter 1

[17]

Perform the following steps to get your cluster up and running on Amazon EKS:

Open your browser and go to the Amazon EKS console at https:/ / console. aws.1.
amazon.com/ eks/ home#/ clusters.
Enter a cluster name and click on the Next Step button.2.
On the Create Cluster page, select Kubernetes Version, Role name, at least two3.
or more availability zones from the subnets list, and Security groups.
Click on Create.4.

Cluster creation with EKS takes around 20 minutes. Refresh the page in 15-205.
minutes and check its status.
Use the following command to update your kubectl configuration:6.

$ aws eks --region us-east-1 update-kubeconfig \
--name K8s-DevOps-Cookbook

Now, use kubectl to manage your cluster:7.

$ kubectl get nodes

Now that your cluster has been configured, you can configure kubectl to manage it.

Deploying Kubernetes Dashboard
Last but not least, to deploy the Kubernetes Dashboard application on an AWS cluster, you
need to follow these steps:

At the time I wrote this recipe, Kubernetes Dashboard v.2.0.0 was still in beta.1.
Since v.1.x version will be obsolete soon, I highly recommend that you install the
latest version, that is, v.2.0.0. The new version brings a lot of functionality and
support for Kubernetes v.1.16 and later versions. Before you deploy Dashboard,
make sure to remove the previous version if you have a previous version. Check
the latest release by following the link in the following information box and
deploy it using the latest release, similar to doing the following:

$ kubectl delete ns kubernetes-dashboard
Use the latest version link from
https://github.com/kubernetes/dashboard/releases
$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta5
/aio/deploy/recommended.yaml

https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters

Building Production-Ready Kubernetes Clusters Chapter 1

[18]

As the Kubernetes version gets upgraded, the dashboard application also
gets frequently updated. To use the latest version, find the latest link to
the YAML manifest on the release page at https:/ /github. com/
kubernetes/ dashboard/ releases. If you experience compatibility issues
with the latest version of Dashboard, you can always deploy the previous
stable version by using the following command:
$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes/dashboard/v1
.10.1/src/depl
oy/recommended/kubernetes-dashboard.yaml

By default, the kubernetes-dashboard service is exposed using2.
the ClusterIP type. If you want to access it from outside, edit the service using
the following command and replace the ClusterIP type with LoadBalancer;
otherwise, use port forwarding to access it:

$ kubectl edit svc kubernetes-dashboard -n kubernetes-dashboard

Get the external IP of your dashboard from the kubernetes-dashboard service:3.

$ kubectl get svc kubernetes-dashboard -n kubernetes-dashboard
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
kubernetes-dashboard LoadBalancer 100.66.234.228 myaddress.us-
east-1.elb.amazonaws.com 443:30221/TCP 5m46s

Open the external IP link in your browser. In our example, it4.
is https://myaddress.us-east-1.elb.amazonaws.com.

We will use the token option to access Kubernetes Dashboard. Now, let's find the5.
token in our cluster using the following command. In this example, the command
returns kubernetes-dashboard-token-bc2w5 as the token name:

$ kubectl get secrets -A | grep dashboard-token
kubernetes-dashboard kubernetes-dashboard-token-bc2w5
kubernetes.io/service-account-token 3 17m

Replace the secret name with yours from the output of the previous command.6.
Get the token details from the description of the Secret:

$ kubectl describe secrets kubernetes-dashboard-token-bc2w5 -
nkubernetes-dashboard

https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases
https://github.com/kubernetes/dashboard/releases

Building Production-Ready Kubernetes Clusters Chapter 1

[19]

Copy the token section from the output of the preceding command and paste it7.
into Kubernetes Dashboard to sign in to Dashboard:

Now, you have access to Kubernetes Dashboard to manage your cluster.

See also
Kops documentation for the latest version and additional create cluster
parameters:

https:/ / github. com/ kubernetes/ kops/ blob/ master/ docs/ aws.
md

https:/ / github. com/ kubernetes/ kops/ blob/ master/ docs/ cli/
kops_ create_ cluster. md

AWS Command Reference S3 Create Bucket API: https:/ /docs. aws. amazon.
com/cli/ latest/ reference/ s3api/ create- bucket. html

AWS Global Infrastructure Map: https:/ /aws. amazon. com/ about- aws/ global-
infrastructure/

Amazon EKS FAQ: https:/ / aws. amazon. com/ eks/ faqs/

The AWS Fargate product, another AWS service, if you would prefer to run
containers without managing servers or clusters: https:/ /aws. amazon. com/
fargate/

https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://github.com/kubernetes/kops/blob/master/docs/cli/kops_create_cluster.md
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/create-bucket.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/eks/faqs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/

Building Production-Ready Kubernetes Clusters Chapter 1

[20]

A complete list of CNCF-certified Kubernetes installers: https:/ /landscape.
cncf.io/ category= certified- kubernetes- installer format= card- mode
grouping= category.

Other recommended tools for getting highly available clusters on AWS:
Konvoy: https:/ /d2iq. com/ solutions/ ksphere/ konvoy

KubeAdm: https:/ /github. com/ kubernetes/ kubeadm

KubeOne: https:/ /github. com/kubermatic/ kubeone

KubeSpray: https:/ /github. com/ kubernetes- sigs/ kubespray

Configuring a Kubernetes cluster on Google
Cloud Platform
This section will take you through step-by-step instructions to configure Kubernetes
clusters on GCP. You will learn how to run a hosted Kubernetes cluster without needing to
provision or manage master and etcd instances using GKE.

Getting ready
All the operations mentioned here require a GCP account with billing enabled. If you don't
have one already, go to https:/ / console. cloud. google. com and create an account.

On Google Cloud Platform (GCP), you have two main options when it comes to running
Kubernetes. You can consider using Google Compute Engine (GCE) if you'd like to
manage your deployment completely and have specific powerful instance requirements.
Otherwise, it's highly recommended to use the managed Google Kubernetes Engine
(GKE).

How to do it…
This section is further divided into the following subsections to make this process easier to
follow:

Installing the command-line tools to configure GCP services
Provisioning a managed Kubernetes cluster on GKE
Connecting to GKE clusters

https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-installer&format=card-mode&grouping=category
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://d2iq.com/solutions/ksphere/konvoy
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubermatic/kubeone
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

Building Production-Ready Kubernetes Clusters Chapter 1

[21]

Installing the command-line tools to configure GCP
services
In this recipe, we will get the primary CLI for Google Cloud
Platform, gcloud, installed so that we can configure GCP services:

Run the following command to download the gcloud CLI: 1.

$ curl https://sdk.cloud.google.com | bash

Initialize the SDK and follow the instructions given:2.

$ gcloud init

During the initialization, when asked, select either an existing project that you3.
have permissions for or create a new project.
Enable the Compute Engine APIs for the project:4.

$ gcloud services enable compute.googleapis.com
Operation "operations/acf.07e3e23a-77a0-4fb3-8d30-ef20adb2986a"
finished successfully.

Set a default zone:5.

$ gcloud config set compute/zone us-central1-a

Make sure you can start up a GCE instance from the command line:6.

$ gcloud compute instances create "devops-cookbook" \
--zone "us-central1-a" --machine-type "f1-micro"

Delete the test VM:7.

$ gcloud compute instances delete "devops-cookbook"

If all the commands are successful, you can provision your GKE
cluster.

Building Production-Ready Kubernetes Clusters Chapter 1

[22]

Provisioning a managed Kubernetes cluster on GKE
Let's perform the following steps:

Create a cluster:1.

$ gcloud container clusters create k8s-devops-cookbook-1 \
--cluster-version latest --machine-type n1-standard-2 \
--image-type UBUNTU --disk-type pd-standard --disk-size 100 \
--no-enable-basic-auth --metadata disable-legacy-endpoints=true \
--scopes compute-rw,storage-ro,service-management,service-
control,logging-write,monitoring \
--num-nodes "3" --enable-stackdriver-kubernetes \
--no-enable-ip-alias --enable-autoscaling --min-nodes 1 \
--max-nodes 5 --enable-network-policy \
--addons HorizontalPodAutoscaling,HttpLoadBalancing \
--enable-autoupgrade --enable-autorepair --maintenance-window
"10:00"

Cluster creation will take 5 minutes or more to complete.

Connecting to Google Kubernetes Engine (GKE)
clusters
To get access to your GKE cluster, you need to follow these steps:

Configure kubectl to access your k8s-devops-cookbook-1 cluster:1.

$ gcloud container clusters get-credentials k8s-devops-cookbook-1

Verify your Kubernetes cluster:2.

$ kubectl get nodes

Now, you have a three-node GKE cluster up and running.

How it works…
This recipe showed you how to quickly provision a GKE cluster using some default
parameters.

In Step 1, we created a cluster with some default parameters. While all of the parameters are
very important, I want to explain some of them here.

Building Production-Ready Kubernetes Clusters Chapter 1

[23]

--cluster-version sets the Kubernetes version to use for the master and nodes. Only
use it if you want to use a version that's different from the default. To get the available
version information, you can use the gcloud container get-server-
config command.

We set the instance type by using the --machine-type parameter. If it's not set, the default
is n1-standard-1. To get the list of predefined types, you can use the gcloud compute
machine-types list command.

The default image type is COS, but my personal preference is Ubuntu, so I used --image-
type UBUNTU to set the OS image to UBUNTU. If this isn't set, the server picks the default
image type, that is, COS. To get the list of available image types, you can use the gcloud
container get-server-config command.

GKE offers advanced cluster management features and comes with the automatic scaling of
node instances, auto-upgrade, and auto-repair to maintain node availability. --enable-
autoupgrade enables the GKE auto-upgrade feature for cluster nodes and --enable-
autorepair enables the automatic repair feature, which is started at the time defined with
the --maintenance-window parameter. The time that's set here is the UTC time zone and
must be in HH:MM format.

There's more…
The following are some of the alternative methods that can be employed besides the recipe
described in the previous section:

Using Google Cloud Shell
Deploying with a custom network configuration
Deleting your cluster
Viewing the Workloads dashboard

Using Google Cloud Shell
As an alternative to your Linux workstation, you can get a CLI interface on your browser to
manage your cloud instances.

Go to https://cloud. google. com/ shell/ to get a Google Cloud Shell.

https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/
https://cloud.google.com/shell/

Building Production-Ready Kubernetes Clusters Chapter 1

[24]

Deploying with a custom network configuration
The following steps demonstrate how to provision your cluster with a custom network
configuration:

Create a VPC network:1.

$ gcloud compute networks create k8s-devops-cookbook \
--subnet-mode custom

Create a subnet in your VPC network. In our example, this is 10.240.0.0/16:2.

$ gcloud compute networks subnets create kubernetes \
--network k8s-devops-cookbook --range 10.240.0.0/16

Create a firewall rule to allow internal traffic:3.

$ gcloud compute firewall-rules create k8s-devops-cookbook-allow-
int \
--allow tcp,udp,icmp --network k8s-devops-cookbook \
--source-ranges 10.240.0.0/16,10.200.0.0/16

Create a firewall rule to allow external SSH, ICMP, and HTTPS traffic:4.

$ gcloud compute firewall-rules create k8s-devops-cookbook-allow-
ext \
--allow tcp:22,tcp:6443,icmp --network k8s-devops-cookbook \
--source-ranges 0.0.0.0/0

Verify the rules:5.

$ gcloud compute firewall-rules list
 NAME NETWORK DIRECTION
PRIORITY ALLOW DENY DISABLED
 ...
 k8s-devops-cookbook-allow-ext k8s-devops-cookbook INGRESS 1000
tcp:22,tcp:6443,icmp False
 k8s-devops-cookbook-allow-int k8s-devops-cookbook INGRESS 1000
tcp,udp,icmp False

Add the --network k8s-devops-cookbook and --subnetwork6.
kubernetes parameters to your container clusters create command and
run it.

Building Production-Ready Kubernetes Clusters Chapter 1

[25]

Deleting your cluster
To delete your k8s-devops-cookbook-1 cluster, use the following command:

$ gcloud container clusters delete k8s-devops-cookbook-1

This process may take a few minutes and when finished, you will get a confirmation
message.

Viewing the Workloads dashboard
On GCP, instead of using the Kubernetes Dashboard application, you can use the built-in
Workloads dashboard and deploy containerized applications through Google Marketplace.
Follow these steps:

To access the Workload dashboard from your GCP dashboard, choose your GKE1.
cluster and click on Workloads.
Click on Show system workloads to see the existing components and containers2.
that have been deployed in the kube-system namespace.

See also
The GCP documentation: https:/ /cloud. google. com/ docs/

GKE on-prem installation: https:/ /cloud. google. com/gke- on- prem/ docs/ how-
to/install- overview- basic

Configuring a Kubernetes cluster on
Microsoft Azure
In this section, we will cover a recipe using Microsoft Azure Kubernetes Service (AKS) in
order to create a Kubernetes cluster on the Microsoft Azure Cloud.

Getting ready
All the operations mentioned here require a Microsoft Azure subscription. If you don't have
one already, go to https:/ / portal. azure. com and create a free account.

https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/docs/
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://cloud.google.com/gke-on-prem/docs/how-to/install-overview-basic
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

Building Production-Ready Kubernetes Clusters Chapter 1

[26]

How to do it…
This section will take you through how to configure a Kubernetes cluster on Microsoft
Azure. This section is further divided into the following subsections to make this process
easier:

Installing the command-line tools to configure Azure services
Provisioning a managed Kubernetes cluster on AKS
Connecting to AKS clusters

Installing the command-line tools to configure Azure
services
In this recipe, we will get the Azure CLI tool called az and kubectl installed.

Let's perform the following steps:

Install the necessary dependencies:1.

$ sudo apt-get update && sudo apt-get install -y libssl-dev \
libffi-dev python-dev build-essential

Download and install the az CLI tool: 2.

$ curl -L https://aka.ms/InstallAzureCli | bash

Verify the az version you're using:3.

$ az --version

Install kubectl, if you haven't installed it already:4.

$ az aks install-cli

If all commands were successful, you can start provisioning your AKS
cluster.

Building Production-Ready Kubernetes Clusters Chapter 1

[27]

Provisioning a managed Kubernetes cluster on AKS
Let's perform the following steps:

Log in to your account:1.

$ az login

Create a resource group named k8sdevopscookbook in your preferred region:2.

$ az group create --name k8sdevopscookbook --location eastus

Create a service principal and take note of your appId and password for the3.
next steps:

$ az ad sp create-for-rbac --skip-assignment
{
 "appId": "12345678-1234-1234-1234-123456789012",
 "displayName": "azure-cli-2019-05-11-20-43-47",
 "name": "http://azure-cli-2019-05-11-20-43-47",
 "password": "12345678-1234-1234-1234-123456789012",
 "tenant": "12345678-1234-1234-1234-123456789012"

Create a cluster. Replace appId and password with the output from the4.
preceding command:

$ az aks create --resource-group k8sdevopscookbook \
 --name AKSCluster \
 --kubernetes-version 1.15.4 \
 --node-vm-size Standard_DS2_v2 \
 --node-count 3 \
 --service-principal <appId> \
 --client-secret <password> \
 --generate-ssh-keys

Cluster creation will take around 5 minutes. You will see
"provisioningState": Succeeded" when it has successfully completed.

Connecting to AKS clusters
Let's perform the following steps:

Gather some credentials and configure kubectl so that you can use them:1.

$ az aks get-credentials --resource-group k8sdevopscookbook \
--name AKSCluster

Building Production-Ready Kubernetes Clusters Chapter 1

[28]

Verify your Kubernetes cluster:2.

$ kubectl get nodes

Now, you have a three-node GKE cluster up and running.

How it works…
This recipe showed you how to quickly provision an AKS cluster using some common
options.

In step 3, the command starts with az aks create, followed by -g or --resource-
group, so that you can select the name of your resource group. You can configure the
default group using az configure --defaults group=k8sdevopscookbook and skip
this parameter next time.

We used the --name AKSCluster parameter to set the name of the managed cluster to
AKSCluster. The rest of the parameters are optional; --kubernetes-version or -k sets
the version of Kubernetes to use for the cluster. You can use the az aks get-versions -
-location eastus --output table command to get the list of available options.

We used --node-vm-size to set the instance type for the Kubernetes worker nodes. If this
isn't set, the default is Standard_DS2_v2.

Next, we used --node-count to set the number of Kubernetes worker nodes. If this isn't
set, the default is 3. This can be changed using the az aks scale command.

Finally, the --generate-ssh-keys parameter is used to autogenerate the SSH public and
private key files, which are stored in the ~/.ssh directory.

There's more…
Although Windows-based containers are now supported by Kubernetes, to be able to run
Windows Server containers, you need to run Windows Server-based nodes. AKS nodes
currently run on Linux OS and Windows Server-based nodes are not available in AKS.
However, you can use Virtual Kubelet to schedule Windows containers on container
instances and manage them as part of your cluster. In this section, we will take a look at the
following:

Deleting your cluster
Viewing Kubernetes Dashboard

Building Production-Ready Kubernetes Clusters Chapter 1

[29]

Deleting your cluster
To delete your cluster, use the following command:

$ az aks delete --resource-group k8sdevopscookbook --name AKSCluster

This process will take a few minutes and, when finished, you will receive confirmation of
this.

Viewing Kubernetes Dashboard
To view Kubernetes Dashboard, you need to follow these steps:

To start Kubernetes Dashboard, use the following command:1.

$ az aks browse --resource-group k8sdevopscookbook --name
AKSCluster

If your cluster is RBAC-enabled, then create Clusterrolebinding:2.

$ kubectl create clusterrolebinding kubernetes-dashboard \
--clusterrole=cluster-admin \
--serviceaccount=kube-system:kubernetes-dashboard

Open a browser window and go to the address where the proxy is running. In3.
our example, this is http://127.0.0.1:8001/.

See also
Microsoft AKS FAQ: https:/ / docs.microsoft. com/ en- us/azure/ aks/faq

Repository of the open source core of AKS on GitHub: https:/ /github. com/
Azure/aks- engine

https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://docs.microsoft.com/en-us/azure/aks/faq
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine
https://github.com/Azure/aks-engine

Building Production-Ready Kubernetes Clusters Chapter 1

[30]

Configuring a Kubernetes cluster on Alibaba
Cloud
Alibaba Cloud (also known as Aliyun) offers multiple templates that you can use to
provision a Kubernetes environment. There are four main service categories:

Kubernetes: Self-managed Kubernetes deployed with three masters on ECS
instances within a single zone. Worker nodes can be on either ECS or bare-metal.
Managed Kubernetes: Similar to the Kubernetes cluster option, except master
nodes are managed by Alibaba Cloud.
Multi-AZ Kubernetes: Similar to the Kubernetes cluster option, except the self-
managed master and worker instances can be deployed in separate availability
zones.
Serverless Kubernetes: A Kubernetes service offering where you deploy
container applications without having to manage and maintain clusters
instances:

In this section, we will cover how to provision a highly available Multi-AZ Kubernetes
cluster without needing to provision or manage master and etcd instances.

Getting ready
All the operations mentioned here require an Alibaba Cloud account (also known as
Aliyun) with an AccessKey. If you don't have one already, go to https:/ /account.
alibabacloud.com and create an account.

https://account.alibabacloud.com
https://account.alibabacloud.com
https://account.alibabacloud.com
https://account.alibabacloud.com
https://account.alibabacloud.com
https://account.alibabacloud.com
https://account.alibabacloud.com
https://account.alibabacloud.com

Building Production-Ready Kubernetes Clusters Chapter 1

[31]

How to do it…
This section will take you through how to configure a Kubernetes cluster on Alibaba Cloud.
This section is further divided into the following subsections to make this process easier:

Installing the command-line tools to configure Alibaba Cloud services
Provisioning a highly available Kubernetes cluster on Alibaba Cloud
Connecting to Alibaba Container Service clusters

Installing the command-line tools to configure Alibaba
Cloud services
For this recipe, we will use the Alibaba Cloud console and generate the API
request parameters from the dashboard that will be used with the CLI. You will
also need the Alibaba Cloud CLI, aliyun, and kubectl installed.

Run the following command to download the aliyun tool:1.

$ curl -O
https://aliyuncli.alicdn.com/aliyun-cli-linux-3.0.15-amd64.tgz

You can find the link to the latest version here: https:/ /github. com/
aliyun/ aliyun- cli.

Extract the files and install them:2.

$ tar –zxvf aliyun-cli*.tgz && sudo mv aliyun /usr/local/bin/.

Verify the aliyun CLI version you're using:3.

$ aliyun --version

 If you haven't created an AccessKey, go to Security Management in your4.
account and create one (https:/ /usercenter. console. aliyun. com/#/ manage/
ak).

https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://github.com/aliyun/aliyun-cli
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf
https://account.alibabacloud.com/login/login.htm?spm=a2c44.11131515.0.0.4e57525cYlZEdf

Building Production-Ready Kubernetes Clusters Chapter 1

[32]

Complete the CLI configuration by entering your AccessKey ID, AccessKey5.
Secret, and region ID:

$ aliyun configure
Configuring profile '' in '' authenticate mode...
Access Key Id []: <Your AccessKey ID>
Access Key Secret []: <Your AccessKey Secret>
Default Region Id []: us-west-1
Default Output Format [json]: json (Only support json))
Default Language [zh|en] en: en
Saving profile[] ...Done.

Enable bash/zsh autocompletion:6.

$ aliyun auto-completion

Go to the Container Service console (https:/ /cs.console. aliyun. com) to give7.
permissions to the container service to access cloud resources. Here,
select AliyunCSDefaultRole, AliyunCSServerlessKuberentesRole, Aliyu
nCSClusterRole, and AliyunCSManagedKubernetesRole and click
on Confirm Authorization Policy.

Make sure you have the Resource Orchestration Service (ROS) and
Autoscaling services enabled since they are required to get Kubernetes
clusters deployed. ROS is used to automatically provision and
configure resources for auto-deployment, operation, and maintenance
based on your template, while Autoscaling is used to adjust compute
resources based on demand.

Provisioning a highly available Kubernetes cluster on
Alibaba Cloud
Let's perform the following steps:

Open a browser window and go to the Alibaba Cloud Virtual Private Cloud1.
console at https:/ /vpc. console. aliyun. com.
Make sure you select a region with at least three zones (most of the regions in2.
mainland China have more than three zones) and click on Create VPC.
Give a unique name to your VPC and select an IPv4 CIDR block. In our3.
example, this is 10.0.0.0/8.

https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com
https://vpc.console.aliyun.com

Building Production-Ready Kubernetes Clusters Chapter 1

[33]

Enter a name for your first VSwitch (k8s-1), and select a zone (Beijing Zone4.
A).
Set an IPv4 CIDR block. In our example, we used 10.10.0.0./16.5.
Click on the Add button and repeat steps 4 and 5 to get different zones. Use the6.
following CIDR block information:

VSwitch 2 VSwitch 3
Name: k8s-2 k8s-3
Zone: Beijing Zone B Beijing Zone E
IPv4 CIDR Block: 10.20.0.0/16 10.30.0.0/16

Click OK to create your VPC and VSwitches.7.
Open the Aliyun Web console on your web browser (https:/ /cs.console.8.
aliyun.com.).
Click on Create Kubernetes Cluster.9.
Select Standard Managed Cluster.10.
Click on the Multi-AZ Kubernetes tab, give your cluster a name, and select the11.
same region that you used to create your VPCs and VSwitches.
If you have selected the same region, the VPC dropdown will be populated12.
with k8s-devops-cookbook-vpc. Now, select all three VSwitches that we've
created:

Set the instance types for the Master node configuration in each zone.13.
Set the instance type for the Worker node configuration in each zone and the14.
number of nodes in every zone to 3. Otherwise, use the defaults.
Select the Kubernetes version (1.12.6-aliyun.1, at the time of writing).15.

https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com
https://cs.console.aliyun.com

Building Production-Ready Kubernetes Clusters Chapter 1

[34]

Select Key Pair Name from the drop-down menu, or create one by16.
clicking Create a new key pair:

Alibaba offers two CNI options: Flannel and Terway. The difference is explained17.
in the There's more… section of this recipe. Leave the default network options
using Flannel. The default parameters support up to 512 servers in the cluster.
Monitoring and logging will be explained in Chapter 8, Observability and18.
Monitoring on Kubernetes, and Chapter 10, Logging on Kubernetes. Therefore, this
step is optional. Check the Install cloud monitoring plug-in on your
ECS and Using Log Service options to enable monitoring and logging.
Now, click on Create to provision your Multi-AZ Kubernetes cluster. This step19.
may take 15-20 minutes to complete.

Connecting to Alibaba Container Service clusters
To get access to your cluster on Alibaba Cloud, you need to follow these steps:

To get the cluster's credentials, go to the Clusters menu and click on the cluster1.
name you want to access:

Building Production-Ready Kubernetes Clusters Chapter 1

[35]

Copy the content displayed in the KubeConfig tab to your local2.
machine's $HOME/.kube/config file:

Verify your Kubernetes cluster:3.

$ kubectl get nodes

As an alternative, see the Viewing the Kubernetes Dashboard instructions under
the There's more... section to manage your cluster.

How it works…
This recipe showed you how to provision a managed Kubernetes cluster on Alibaba Cloud
using a cluster template.

Building Production-Ready Kubernetes Clusters Chapter 1

[36]

Under the Container Service menu, Alibaba Cloud provides a few Kubernetes cluster,
where you are offered seven cluster templates. We used the Standard Managed Cluster
here. This option lets you manage the worker nodes only and saves you the cost of
resources and management for the master nodes:

By default, accounts support up to 20 clusters and 40 nodes in each cluster. You can request
a quota increase by submitting a support ticket.

Building Production-Ready Kubernetes Clusters Chapter 1

[37]

There's more…
As an alternative way of using the Alibaba Cloud console, you can use REST API calls
through aliyuncli to create the ECS instances and your cluster. Follow these steps to do
so:

After you've configured your cluster options on your Alibaba Cloud console,1.
click on Generate API request Parameters right under the Create button to
generate POST request body content to be used with the aliyun CLI.
Save the content in a file. In our case, this file is called cscreate.json.2.
For an explanation of the additional parameters listed in this section, please refer3.
to the Create a Kubernetes section at https:/ /www. alibabacloud. com/ help/ doc-
detail/87525. htm.
Use the following command to create your cluster:4.

$ aliyun cs POST /clusters --header "Content-Type=application/json"
\
--body "$(cat cscreate.json)"

The Alibaba Cloud Container Service provides two network plugin options for
their Kubernetes clusters: Terway and Flannel.

Flannel is based on the community Flannel CNI plugin. Flannel is a very common
and stable networking plugin that provides basic networking functionality. It is
the recommended option for most use cases, except it does not support the
Kubernetes NetworkPolicy. Terway is a network plugin developed by Alibaba
Cloud CS. It is fully compatible with Flannel. Terway can define access policies
between containers based on the Kubernetes NetworkPolicy. Terway also
supports bandwidth limiting for containers.

Configuring and managing Kubernetes
clusters with Rancher
Rancher is a container management platform with the flexibility to create Kubernetes
clusters with Rancher Kubernetes Engine (RKE) or cloud-based Kubernetes services, such
as GKE, AKS, and EKS, which we discussed in the previous recipes.

In this section, we will cover recipes for configuring Rancher so that we can deploy and
manage Kubernetes services.

https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm
https://www.alibabacloud.com/help/doc-detail/87525.htm

Building Production-Ready Kubernetes Clusters Chapter 1

[38]

Getting ready
Rancher can be installed on Ubuntu, RHEL/CentOS, RancherOS, or even on Windows
Server. You can bring up Rancher Server in a high availability configuration or a single
node. Refer to the See also... section for links to the alternative installation instructions. In
this recipe, we will run Rancher on a single node.

How to do it…
This section will take you through how to configure and manage Kubernetes clusters with
Rancher. To that end, this section is further divided into the following subsections to make
this process easier:

Installing Rancher Server
Deploying a Kubernetes cluster
Importing an existing cluster
Enabling cluster and node providers

Installing Rancher Server
Follow these steps to install Rancher Server:

Install a supported version of Docker. You can skip this step if you have Docker1.
installed already:

$ sudo apt-get -y install apt-transport-https ca-certificates curl
\
software-properties-common
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo
apt-key add -
$ sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
$ sudo apt-get -y install docker-ce && docker --version

Add a user to a Docker group:2.

$ sudo usermod -a -G docker $USER

To install Rancher Server, run the following command: 3.

docker run -d --restart=unless-stopped \
-p 80:80 -p 443:443 rancher/rancher:latest

Building Production-Ready Kubernetes Clusters Chapter 1

[39]

Open a browser window and go to https://localhost.4.
Replace localhost with your host's IP if necessary.
Set a new password and click on Continue.5.
Set the public IP address of Rancher server and click on Save URL. This IP needs6.
to be externally accessible from your clusters.

Deploying a Kubernetes cluster
To deploy a new cluster, you need to follow these steps:

Click on Add Cluster.1.
Choose a provider. In our example, we will use GKE. Some settings for other2.
providers might be slightly different:

Enter a cluster name.3.

If you have your GCP service account JSON file that we saved previously, skip to
step 10.

From the GCP navigation menu, go to IAM and click on the Service4.
accounts link.
Click on Create Service Account.5.
Enter a service account name and click Create.6.
Add the required minimum permissions; that is, Compute7.
Viewer, Viewer, Kubernetes Engine Admin, and Service Account User, and
click Continue.

Building Production-Ready Kubernetes Clusters Chapter 1

[40]

Click on Create Key. Use JSON as the key type in order to save your service8.
account.
On the Rancher UI, click on Read from a file and load the service account JSON9.
file you saved previously.
Customize the Cluster Options as needed; otherwise, use the default settings10.
and click on Create to deploy your Kubernetes cluster:

Your cluster will be listed and ready to be managed immediately on your Rancher
dashboard.

Importing an existing cluster
To import an existing cluster, you need to follow these steps:

Click on Add Cluster1.
Click on Import:2.

Building Production-Ready Kubernetes Clusters Chapter 1

[41]

Enter a cluster name and click on Create.3.
Follow the instructions shown and copy and run the kubectl command4.
displayed on the screen to an existing Kubernetes cluster. This command will
look similar to the following if you are running with an untrusted/self-signed
SSL certificate:

By clicking on Done, your cluster will be listed and ready to manage5.
immediately on your Rancher dashboard:

The last step may take a minute to complete. Eventually, the state of your cluster
will turn from Pending to Active when it is ready.

Building Production-Ready Kubernetes Clusters Chapter 1

[42]

Enabling cluster and node providers
To be able to support multiple providers, Rancher uses cluster and node drivers. If you
don't see your provider on the list, then it is most likely not enabled.

To enable additional providers, follow these steps:

From Tools, click on Drivers.1.
Find your provider on the list and click Activate:2.

Building Production-Ready Kubernetes Clusters Chapter 1

[43]

From the same page, you can also deactivate the providers you don't intend to use.

How it works…
This recipe showed you how to quickly run Rancher Server to manage your Kubernetes
clusters.

In step 1, we used a single node installation using a default self-signed certificate
method. For security purposes, SSL is required to interact with the clusters. Therefore, a
certificate is required.

If you prefer to use your own certificate signed by a recognized CA instead, you can use the
following command and provide the path to your certificates to mount them in your
container by replacing the FULLCHAIN.pem and PRIVATEKEY.pem files with your signed
certificates:

$ docker run -d --restart=unless-stopped \
 -p 80:80 -p 443:443 \
 -v /<CERTDIRECTORY>/<FULLCHAIN.pem>:/etc/rancher/ssl/cert.pem \
 -v /<CERTDIRECTORY>/<PRIVATEKEY.pem>:/etc/rancher/ssl/key.pem \
 rancher/rancher:latest --no-cacerts

Using a recognized certificate will eliminate the security warning on the login page.

There's more…
It is also useful to have knowledge of the following information:

Bind mounting a host volume to keep data
Keeping user volumes persistent
Keeping data persistent on a host volume
Running Rancher on the same Kubernetes nodes

Bind mounting a host volume to keep data
When using the single node installation?, the persistent data is kept on
the /var/lib/rancher path in the container.

Building Production-Ready Kubernetes Clusters Chapter 1

[44]

To keep data on the host, you can bind mount a host volume to a location using the
following command:

$ docker run -d --restart=unless-stopped \
 -p 80:80 -p 443:443 \
 -v /opt/rancher:/var/lib/rancher \
 -v /var/log/rancher/auditlog:/var/log/auditlog \
 rancher/rancher:latest

Bind mounts have limited functionality compared to volumes. When Rancher is started
using the bind mount, a directory on the host machine will be mounted to the specified
directory in the container.

Keeping user volumes persistent
When using RancherOS, only specific directories keep the data defined by the user-
volumes parameter persistent.

To add additional persistent user-volumes, for example, add
the /var/openebs directory:

$ ros config set rancher.services.user-volumes.volumes
\[/home:/home,/opt:/opt,/var/lib/kubelet:/var/lib/kubelet,/etc/kubernet
es:/etc/kubernetes,/var/openebs]
$ system-docker rm all-volumes
$ reboot

After rebooting, data in the specified directories will be persistent.

Running Rancher on the same Kubernetes nodes
To add the node where you run Rancher Server on a cluster, replace the default ports -p
80:80 -p 443:443 as follows and use the following command to start Rancher:

$ docker run -d --restart=unless-stopped \
 -p 8080:80 -p 8443:443 rancher/rancher:latest

In this case, Rancher Server will be accessible through https://localhost:8443 instead
of the standard 443 port.

Building Production-Ready Kubernetes Clusters Chapter 1

[45]

See also
The Rancher 2.x Documentation: https:/ /rancher. com/docs/ rancher/ v2. x/en/

K3s, a lightweight Kubernetes from Rancher Labs: https:/ /k3s. io/

Rio, an application deployment engine for Kubernetes from Rancher
Labs: https:/ /rio. io/

Configuring Red Hat OpenShift
In this recipe, we will learn how to deploy Red Hat OpenShift on AWS, bare-metal, or
VMware vSphere VMs.

The steps in the Provisioning an OpenShift cluster recipe can be applied to deploy OpenShift
on either VMs running on a virtualized environment or bare-metal servers.

Getting ready
All the operations mentioned here require a Red Hat account with active Red Hat
Enterprise Linux and OpenShift Container Platform subscriptions. If you don't have one
already, go to https:/ / access. redhat. com and create an account.

When you deploy on VMs, make sure to plan that the zones you create on
Kubernetes nodes are actually physically located on separate hypervisor
nodes.

For this recipe, we need to have a minimum of six nodes with Red Hat Enterprise CoreOS
installed on them. These nodes can be either bare-metal, VMs, or a mix of bare-metal and
VMs.

How to do it…
This section will take you through how to configure Red Hat OpenShift. To that end, this
section is further divided into the following subsections to make this process easier:

Downloading OpenShift binaries
Provisioning an OpenShift cluster
Connecting to OpenShift clusters

https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://rancher.com/docs/rancher/v2.x/en/
https://k3s.io/
https://k3s.io/
https://k3s.io/
https://k3s.io/
https://k3s.io/
https://k3s.io/
https://k3s.io/
https://k3s.io/
https://rio.io/
https://rio.io/
https://rio.io/
https://rio.io/
https://rio.io/
https://rio.io/
https://rio.io/
https://rio.io/
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com

Building Production-Ready Kubernetes Clusters Chapter 1

[46]

Downloading OpenShift binaries
Make sure you are on the Terminal of your first master and that you have an account with
root access, or you are running as a superuser. Follow these steps:

Go to https:/ /cloud. redhat. com/openshift/ install and download the1.
latest OpenShift Installer:

Extract the installer files on your workstation:2.

$ tar -xzf openshift-install-linux-*.tar.gz

The preceding command will create a file called openshift-install in the
same folder.

Provisioning an OpenShift cluster
In this recipe, we will use the AWS platform to deploy OpenShift:

To get your OpenShift cluster up, use the following command:1.

$./openshift-install create cluster

Choose aws as your platform and enter your AWS Access Key ID and Secret2.
Access Key.
Choose your region. In our example, this is us-east-1.3.
Select a base domain. In our example, this is k8s.containerized.me.4.
Enter a cluster name.5.
Copy Pull Secret from the Red Hat site and paste it onto the command line:6.

https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install

Building Production-Ready Kubernetes Clusters Chapter 1

[47]

After the installation is complete, you will see the console URL and credentials7.
for accessing your new cluster, similar to the following:

INFO Install complete!
INFO To access the cluster as the system:admin user when using
'oc', run 'export KUBECONFIG=/home/ubuntu/auth/kubeconfig'
INFO Access the OpenShift web-console here:
https://console-openshift-console.apps.os.k8s.containerized.me
INFO Login to the console with user: kubeadmin, password: ABCDE-
ABCDE-ABCDE-ABCDE

Switch to the Red Hat site and click on the Download Command-Line8.
Tools link to download openshift-client.
Extract the openshift-client files in your workstation:9.

$ tar -xzf openshift-client-linux-*.tar.gz && sudo mv oc
/usr/local/bin

The preceding command will create the kubectl and oc files on the same folder
and move the oc binary to PATH.

Connecting to OpenShift clusters
To connect to OpenShift clusters, follow these steps:

To get access to your OpenShift cluster, use the following command:1.

$ export KUBECONFIG=~/auth/kubeconfig

Log in to your OpenShift cluster after replacing password and cluster2.
address:

$ oc login -u kubeadmin -p ABCDE-ABCDE-ABCDE-ABCDE \
https://api.openshift.k8s.containerized.me:6443 \
--insecure-skip-tls-verify=true

If you prefer to use the web console instead, open the web console URL address
from the Provisioning an OpenShift cluster recipe, in step 7.

Building Production-Ready Kubernetes Clusters Chapter 1

[48]

How it works…
This recipe showed you how to quickly deploy an OpenShift cluster on AWS.

In step 1, we created a cluster using the default configuration of the installer-provisioned
infrastructure.

The installer asked a series of questions regarding user information and used mostly
default values for other configuration options. These defaults can be edited and customized
if needed using the install-config.yaml file.

To see the defaults that were used for the deployment, let's create an install-
config.yaml file and view it:

$./openshift-install create install-config && cat install-config.yaml

As you can see from the following output, the file's default configuration creates a cluster
consisting of three master and three worker nodes:

apiVersion: v1
baseDomain: k8s.containerized.me
compute:
- hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform: {}
 replicas: 3
...

Edit install-config.yaml as needed. Next time you create the cluster, new parameters
will be used instead.

There's more…
It is also useful to have knowledge of the following information:

Deleting your cluster

Building Production-Ready Kubernetes Clusters Chapter 1

[49]

Deleting your cluster
To delete your cluster, use the following command:

$./openshift-install destroy cluster

This process will take a few minutes and, when finished, you will get a confirmation
message.

See also
The OpenShift Container Platform 4.3 Documentation: https:/ /docs.
openshift. com/ container- platform/ 4.3/ welcome/ index. html

Configuring a Kubernetes cluster using
Ansible
Powerful IT automation engines such as Ansible can be used to automate pretty much any
day-to-day IT task, including the deployment of Kubernetes clusters on bare-metal
clusters. In this section, we will learn how to deploy a simple Kubernetes cluster using
Ansible playbooks.

Getting ready
In this recipe, we will use an Ansible playbook. The examples that will be used in these
recipes are accessible through the k8sdevopscookbook GitHub repository.

Before you start executing the commands in this section's recipes, clone the Ansible
playbook examples using the following command:

$ git clone https://github.com/k8sdevopscookbook/src.git

You will find the examples stored under the k8sdevopscookbook/src directory.

https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html
https://docs.openshift.com/container-platform/4.3/welcome/index.html

Building Production-Ready Kubernetes Clusters Chapter 1

[50]

How to do it…
This section will take you through how to configure a Kubernetes cluster using Ansible. To
that end, this section is further divided into the following subsections to make this process
easier:

Installing Ansible
Provisioning a Kubernetes cluster using an Ansible playbook
Connecting to the Kubernetes cluster

Installing Ansible
In order to provision a Kubernetes cluster using an Ansible playbook, follow these steps:

To install Ansible on your Linux workstation, first, we need to add the necessary1.
repositories:

$ sudo apt-get install software-properties-common
$ sudo apt-add-repository --yes --update ppa:ansible/ansible

Install Ansible using the following command:2.

$ sudo apt-get update && sudo apt-get install ansible -y

Verify its version and make sure Ansible is installed:3.

$ ansible --version

At the time this recipe was written, the latest Ansible version was 2.9.4.

Provisioning a Kubernetes cluster using an Ansible
playbook
In order to provision a Kubernetes cluster using an Ansible playbook, follow these steps:

Edit the hosts.ini file and replace the master and node IP addresses with your1.
node IPs where you want Kubernetes to be configured:

$ cd src/chapter1/ansible/ && vim hosts.ini

Building Production-Ready Kubernetes Clusters Chapter 1

[51]

The hosts.ini file should look as follows:2.

[master]
192.168.1.10
[node]
192.168.1.[11:13]
[kube-cluster:children]
master
node

Edit the groups_vars/all.yml file to customize your configuration. The3.
following is an example of how to do this:

kube_version: v1.14.0
token: b0f7b8.8d1767876297d85c
init_opts: ""
kubeadm_opts: ""
service_cidr: "10.96.0.0/12"
pod_network_cidr: "10.244.0.0/16"
calico_etcd_service: "10.96.232.136"
network: calico
network_interface: ""
enable_dashboard: yes
insecure_registries: []
systemd_dir: /lib/systemd/system
system_env_dir: /etc/sysconfig
network_dir: /etc/kubernetes/network
kubeadmin_config: /etc/kubernetes/admin.conf
kube_addon_dir: /etc/kubernetes/addon

Run the site.yaml playbook to create your cluster:4.

$ ansible-playbook site.yaml

Your cluster will be deployed based on your configuration.

Connecting to the Kubernetes cluster
To get access to your Kubernetes cluster, you need to follow these steps:

Copy the configuration file from the master1 node:1.

$ scp root@master:/etc/kubernetes/admin.conf ~/.kube/config

Now, use kubectl to manage your cluster.2.

Building Production-Ready Kubernetes Clusters Chapter 1

[52]

See also
The Ansible module for working with Kubernetes: https:/ /docs. ansible. com/
ansible/ latest/ modules/ k8s_ module. html

Kubernetes Operators examples using Ansible and the Operator SDK: https:/ /
github.com/ operator- framework/ operator- sdk/ blob/ master/ doc/ ansible/
user-guide. md

Troubleshooting installation issues
Kubernetes consists of many loosely coupled components and APIs. Based on
environmental differences, you may run into problems where a little bit more attention is
required to get everything up and running. Fortunately, Kubernetes provides many ways
to point out problems.

In this section, we will learn how to get cluster information in order to troubleshoot
potential issues.

How to do it…
Follow these steps to gather cluster information in order to troubleshoot potential issues:

Create a file dump of the cluster state called cluster-state:1.

$ kubectl cluster-info dump --all-namespaces \
 --output-directory=$PWD/cluster-state

Display the master and service addresses:2.

$ kubectl cluster-info
Kubernetes master is running at https://172.23.1.110:6443
Heapster is running at
https://172.23.1.110:6443/api/v1/namespaces/kube-system/services/he
apster/proxy
KubeDNS is running at
https://172.23.1.110:6443/api/v1/namespaces/kube-system/services/ku
be-dns:dns/proxy

https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md
https://github.com/operator-framework/operator-sdk/blob/master/doc/ansible/user-guide.md

Building Production-Ready Kubernetes Clusters Chapter 1

[53]

Show the resource usage of the us-west-2.compute.internal node:3.

$ kubectl top node us-west-2.compute.internal
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
us-west-2.compute.internal 42m 2% 1690Mi 43%

Mark the us-west-2.compute.internal node as unschedulable:4.

$ kubectl cordon us-west-2.compute.internal

Safely evict all the pods from the us-west-2.compute.internal node for5.
maintenance:

$ kubectl drain us-west-2.compute.internal

Mark the us-west-2.compute.internal node as schedulable after6.
maintenance:

$ kubectl uncordon us-west-2.compute.internal

How it works…
This recipe showed you how to quickly troubleshoot common Kubernetes cluster issues.

In step 1, when the kubectl cluster-info command was executed with the --output-
directory parameter, Kubernetes dumped the content of the cluster state under a
specified folder. You can see the full list using the following command:

$ tree ./cluster-state
./cluster-state
├── default
│ ├── daemonsets.json
│ ├── deployments.json
│ ├── events.json
│ ├── pods.json
│....

In step 4, we marked the node as unavailable using the kubectl cordon command.
Kubernetes has a concept of scheduling applications, meaning that it assigns pods to nodes
that are available. If you know in advance that an instance on your cluster will be
terminated or updated, you don't want new pods to be scheduled on that specific node.
Cordoning means patching the node with node.Spec.Unschedulable=true. When a
node is set as unavailable, no new pods will be scheduled on that node.

Building Production-Ready Kubernetes Clusters Chapter 1

[54]

In step 5, we use, the kubectl drain command to evict the existing pods, because
cordoning alone will not have an impact on the currently scheduled pods. Evict APIs take
disruption budgets into account. If set by the owner, disruption budgets limit the number
of pods of a replicated application that are down simultaneously from voluntary
disruptions. If this isn't supported or set, Evict APIs will simply delete the pods on the node
after the grace period.

There's more…
It is also useful to have knowledge of the following information:

Setting log levels

Setting log levels
When using the kubectl command, you can set the output verbosity with the --v flag,
followed by an integer for the log level, which is a number between 0 and 9. The general
Kubernetes logging conventions and the associated log levels are described in the
Kubernetes documentation at https:/ / kubernetes. io/ docs/ reference/ kubectl/
cheatsheet/#kubectl- output- verbosity- and-debugging.

It is useful to get the output details in a specific format by adding one of the following
parameters to your command:

-o=wide is used to get additional information on a resource. An example is as
follows:

$ kubectl get nodes -owide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME
ip-192-168-41-120.us-west-2.compute.internal Ready <none> 84m
v1.13.8-eks-cd3eb0 192.168.41.120 34.210.108.135 Amazon Linux 2
4.14.133-113.112.amzn2.x86_64 docker://18.6.1
ip-192-168-6-128.us-west-2.compute.internal Ready <none> 84m
v1.13.8-eks-cd3eb0 192.168.6.128 18.236.119.52 Amazon Linux 2
4.14.133-113.112.amzn2.x86_64 docker://18.6.1

-o=yaml is used to return the output in YAML format. An example is as follows:

$ kubectl get pod nginx-deployment-5c689d88bb-qtvsx -oyaml
apiVersion: v1
kind: Pod
metadata:

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-output-verbosity-and-debugging

Building Production-Ready Kubernetes Clusters Chapter 1

[55]

 annotations:
 kubernetes.io/limit-ranger: 'LimitRanger plugin set: cpu
request for container
 nginx'
 creationTimestamp: 2019-09-25T04:54:20Z
 generateName: nginx-deployment-5c689d88bb-
 labels:
 app: nginx
 pod-template-hash: 5c689d88bb
 name: nginx-deployment-5c689d88bb-qtvsx
 namespace: default
...

As you can see, the output of the -o=yaml parameter can be used to create a manifest file
out of an existing resource as well.

See also
An overview and detailed uses of the kubectl command: https:/ /kubernetes.
io/docs/ reference/ kubectl/ overview/

kubectl cheat sheet: https:/ / kubernetes. io/docs/ reference/ kubectl/
cheatsheet/

A visual guide on troubleshooting Kubernetes deployments: https:/ /learnk8s.
io/a/troubleshooting- kubernetes. pdf

K9s – the Kubernetes CLI to manage your clusters in style: https:/ /github. com/
derailed/ k9s

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://learnk8s.io/a/troubleshooting-kubernetes.pdf
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://github.com/derailed/k9s

2
Operating Applications on

Kubernetes
In this chapter, we will discuss the provisioning tools available to deploy cloud-native
applications on Kubernetes. You will learn how to deploy DevOps tools and CI/CD (short
for continuous integration/continuous delivery or continuous deployment) infrastructure
on Kubernetes using the most popular life cycle management options. You will gain the
skills to perform Day 1 and some Day 2 operations, such as installing, upgrading, and
version controlling Deployments, ruling out a new application, and removing Deployments
when they are no longer needed.

In this chapter, we will be covering the following topics:

Deploying workloads using YAML files
Deploying workloads using Customize
Deploying workloads using Helm charts
Deploying and operating applications using Kubernetes operators
Deploying and managing the life cycle of Jenkins X
Deploying and managing the life cycle of GitLab

Technical requirements
Recipes in this section assume that you have a functional Kubernetes cluster deployed
following one of the recommended methods described in Chapter 1, Building Production-
Ready Kubernetes Clusters.

The Kubernetes Operations tool kubectl will be used for the rest of the recipes in this
section since it's the main command-line interface for running commands against
Kubernetes clusters. If you are using a Red Hat OpenShift cluster, you can replace kubectl
with oc and all commands are expected to function similarly.

Operating Applications on Kubernetes Chapter 2

[57]

Deploying workloads using YAML files
In this section, we will create the resource configurations required to deploy your
applications in Kubernetes. You will learn how to create a Kubernetes manifest, deploy a
workload, and roll out a new version using Yet Another Markup Language (YAML) files.

Getting ready
Before you start, clone the repository of the examples used in this chapter:

$ git clone https://github.com/k8sdevopscookbook/src.git

Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

How to do it…
 This section is further divided into the following subsections to ease the process:

Creating a Deployment
Verifying a Deployment
Editing a Deployment
Rolling back a Deployment
Deleting a Deployment

Creating a Deployment
This recipe will take you through instructions to create a Deployment using a manifest file
that keeps a set of pods running. Deployments are used to declare how many replicas of a
pod should be running. A Deployment can be scaled up and down; we will see more on
that topic later in Chapter 7, Scaling and Upgrading Applications.

Let's perform the following steps:

Change directory to src/chapter2/yaml/, where the example files for this1.
recipe are located:

$ cd src/chapter2/yaml/

Operating Applications on Kubernetes Chapter 2

[58]

Review the Deployment manifest:2.

$ cat deployment-nginx.yaml
apiVersion: apps/v1
kind: deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
actual file is longer, shortened to show structure of the file
only

YAML is white space sensitive. Review the example file to understand the
structure of the file. You will see that YAML files do not use tabs instead
of a space character.
If in doubt, use a linter for your YAML files.

Create a Deployment by applying the YAML manifest:3.

$ kubectl apply -f deployment-nginx.yaml

After you run the preceding command, the container image mentioned in the
YAML manifest will be pulled from the container registry and the application will
be scheduled in your Kubernetes cluster as defined in the Deployment manifest.
Now you should be able to verify the Deployment by following the next recipe.

Verifying a Deployment
This recipe will take you through the instructions to verify the status of the Deployment
and troubleshoot it if needed.

Let's perform the following steps:

Confirm that the Deployment status shows a successfully rolled1.
out message by watching the rollout status:

$ kubectl rollout status deployment nginx-deployment
deployment "nginx-deployment" successfully rolled out

Operating Applications on Kubernetes Chapter 2

[59]

Verify that the number of DESIRED and CURRENT values is equal, in our case 2:2.

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 2 2 2 2 2m40s

Finally, also check the ReplicaSets (rs) and pods deployed as part of the3.
Deployment:

$ kubectl get rs,pods
NAME DESIRED CURRENT READY AGE
nginx-deployment-5c689d88bb 2 2 2 28m
NAME READY STATUS RESTARTS AGE
nginx-deployment-5c689d88bb-r2pp9 1/1 Running 0 28m
nginx-deployment-5c689d88bb-xsc5f 1/1 Running 0 28m

Now you have verified that the new Deployment is successfully deployed and running. In
a production environment, you will also need to edit, update, and scale an existing
application. In the next recipe, you will learn how to perform these modify operations on
an existing Deployment.

Editing a Deployment
This recipe will take you through the instructions to edit an existing Kubernetes object, and
you will learn how to change a Deployment object's parameters when needed.

Let's perform the following steps:

Edit the Deployment object and change the container image from image nginx1.
1.7.9 to image nginx 1.16.0:

$ kubectl edit deployment nginx-deployment

You can see that the Deployment first goes into pending termination and later2.
the rollout status shows a successfully rolled out message after you run
the following command:

$ kubectl rollout status deployment nginx-deployment
Waiting for deployment "nginx-deployment" rollout to finish: 1 old
replicas are pending termination...
deployment "nginx-deployment"

Operating Applications on Kubernetes Chapter 2

[60]

Confirm that your Deployment spins up the new pods by creating a new3.
ReplicaSet and scaling down the old one from 2 to 0:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-5c689d88bb 0 0 0 36m
nginx-deployment-f98cbd66f 2 2 2 46s

We will create a change cause annotation. The following command will add the4.
description defined in the kubernetes.io/change-cause parameter to your
current Deployment:

$ kubectl annotate deployment nginx-deployment
kubernetes.io/change-cause="image updated to 1.16.0"

Now, as an alternative way to edit a Deployment, edit the deployment-5.
nginx.yaml file and change the replicas from replicas: 2 to replicas:
3 and nginx:1.7.9 to image: nginx:1.17.0:

$ nano deployment-nginx.yaml

Update the Deployment by applying the updated YAML manifest with your6.
changes. This step will apply the change of image tag used for the Deployment
and the number of replicas we increased in step 5:

$ kubectl apply -f deployment-nginx.yaml

Confirm that your Deployment spins up the new pods by creating a new7.
ReplicaSet and scaling down the old pods:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-5c689d88bb 0 0 0 56m
nginx-deployment-5d599789c6 3 3 3 15s
nginx-deployment-f98cbd66f 0 0 0 20m

Create another change cause annotation by defining the changes we made using8.
the kubernetes.io/change-cause parameter:

$ kubectl annotate deployment nginx-deployment
kubernetes.io/change-cause="image updated to 1.17.0 and scaled up
to 3 replicas"

Now you have learned how to edit, scale up, and also roll out a new version of
the application using a ReplicaSet.

Operating Applications on Kubernetes Chapter 2

[61]

Rolling back a deployment
This recipe will take you through the instructions for reviewing changes made by
comparing the annotations and rolling back the Deployment to an older revision when
needed.

Let's perform the following steps:

Check the details and events for the Deployment and note recent1.
ScalingReplicaSet events:

$ kubectl describe deployments

Now, display the rollout history for the Deployment. The output will show the2.
revisions along with the annotations we have created:

$ kubectl rollout history deployment nginx-deployment
deployment.extensions/nginx-deployment
REVISION CHANGE-CAUSE
1 <none>
2 image updated to 1.16.0
3 image updated to 1.17.0 and scaled up to 3 replicas

Roll back the last rollout. This command will take your Deployment to the3.
previous revision, in this recipe, revision 2:

$ kubectl rollout undo deployment nginx-deployment
deployment.apps/nginx-deployment rolled back

Confirm that the Deployment has rolled back to the previous version:4.

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-deployment-5c689d88bb 0 0 0 69m
nginx-deployment-5d599789c6 0 0 0 12m
nginx-deployment-f98cbd66f 3 3 3 33m

Notice that the rollback command only takes the Deployments back to
different image version rollouts, and does not undo the other spec
changes, such as the number of replicas.

Now, roll back to a specific revision. This command will take your Deployment5.
to a specific revision defined using the --to-revision parameter:

$ kubectl rollout undo deployment nginx-deployment --to-revision=1

Operating Applications on Kubernetes Chapter 2

[62]

Now you have learned how to review the rollout history and roll back a change
when required.

Deleting a Deployment
Kubernetes schedules resources on the worker nodes based on the availability of resources.
If you are using a small cluster with limited CPU and memory resources, you may easily
run out of resources, which would cause new Deployments to fail to get scheduled on
worker nodes. Therefore, unless it is mentioned in the requirement of the recipe, always
clean up the old Deployments before you move onto the next recipe.

Let's perform the following step to remove nginx-deployment:

Delete the Deployment before moving onto the next recipes:1.

$ kubectl delete deployment nginx-deployment

The preceding command will immediately terminate the Deployment and remove
the application from your cluster.

How it works...
The Creating a Deployment recipe showed you how to apply the desired state of your pods
and ReplicaSets to the Deployment controller using YAML manifest files.

In step 2, we used the kubectl apply command, which is a part of the declarative
management approach and makes incremental changes rather than overwriting them. The
first time you create a resource intent, you could instead use the kubectl create
command, which is considered an imperative management method.

I prefer to use the apply command, where declarative patterns are allowed, instead of
create since it is better for creating the CI script and does not raise an error if the resource
already exists.

Now you have learned the fundamental steps to get a single Deployment running in
Kubernetes, we can move on to more complex Deployment use cases to compose
a collection of objects using Kustomize, Helm, and Operator frameworks.

Operating Applications on Kubernetes Chapter 2

[63]

See also
A linter for YAML files: https:/ /github. com/ adrienverge/ yamllint

Online Kubernetes YAML validator: https:/ /kubeyaml. com/

Read more on the declarative management of Kubernetes objects using
configuration files: https:/ /kubernetes. io/docs/ tasks/ manage- kubernetes-
objects/ declarative- config/

Authoring Kubernetes manifests guide: https:/ / github. com/ bitnami/ charts/
blob/master/ _ docs/ authoring- kubernetes- manifests. md

Deploying workloads using Kustomize
In this section, we will show you how to generate resources from files and compose and
customize collections of resources in Kubernetes. You will learn about the declarative
management of Kubernetes objects using Kustomize.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

The source files created in this section can be found on my GitHub repository located at
https://github.com/ k8sdevopscookbook/ src/tree/ master/ chapter2/ kustomize. It is
recommended that you follow the instructions to create and edit them and only use the files
in the repository to compare with your files if you run into an issue.

How to do it…
 This section is further divided into the following subsections to ease the process:

Validating the Kubernetes cluster version
Generating Kubernetes resources from files
Creating a base for a development and production Deployment

https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://kubeyaml.com/
https://kubeyaml.com/
https://kubeyaml.com/
https://kubeyaml.com/
https://kubeyaml.com/
https://kubeyaml.com/
https://kubeyaml.com/
https://kubeyaml.com/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/bitnami/charts/blob/master/_docs/authoring-kubernetes-manifests.md
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize
https://github.com/k8sdevopscookbook/src/tree/master/chapter2/kustomize

Operating Applications on Kubernetes Chapter 2

[64]

Validating the Kubernetes cluster version
For Kustomize to function, Kubernetes cluster version 1.14.0 or later is required, since
Kustomize support is only included with kubectl v.1.14.0 and later.

List the nodes to confirm your Kubernetes cluster version and make sure that it is1.
1.14.0 or later:

$ kubectl get nodes
 NAME STATUS ROLES AGE VERSION
 ip-172-20-112-25.ec2.internal Ready master 7h19m v1.15.0
 ip-172-20-126-108.ec2.internal Ready node 7h18m v1.15.0
 ip-172-20-51-209.ec2.internal Ready node 7h18m v1.15.0
 ip-172-20-92-89.ec2.internal Ready node 7h19m v1.15.0

In the preceding example, the version shows v1.15.0.

Generating Kubernetes resources from files
Let's learn how to customize the nginx rollout we did in the previous recipe using
Kustomize this time:

Create a directory named nginx:1.

$ mkdir nginx

Copy the deployment-nginx.yaml file you created in the Deploying workload2.
using YAML files recipe under the nginx directory. This file still uses image:
nginx:1.7.9 as the container image:

$ cp deployment-nginx.yaml ./nginx/

Create a kustomization.yaml file by specifying a new image version:3.

$ cat <<EOF >./nginx/kustomization.yaml
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- deployment-nginx.yaml
images:
 - name: nginx
 newName: nginx
 newTag: 1.16.0
commonAnnotations:
 kubernetes.io/change-cause: "Initial deployment with 1.16.0"
EOF

Operating Applications on Kubernetes Chapter 2

[65]

Check that the new version is injected into your Deployment by running the4.
following command. In the output, you will see image: nginx:1.16.0 instead
of the original image version nginx:1.7.9 that we have previously used in
the deployment-nginx.yaml file:

$ kubectl kustomize ./nginx/

Apply the Deployment with customizations using the -k parameter:5.

$ kubectl apply -k nginx

Create a new kustomization.yaml file by specifying a newer image version:6.

$ cat <<EOF > nginx/kustomization.yaml
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - deployment-nginx.yaml
images:
 - name: nginx
 newName: nginx
 newTag: 1.17.0
commonAnnotations:
 kubernetes.io/change-cause: "image updated to 1.17.0"
EOF

Apply the customized Deployment using the -k parameter:7.

$ kubectl apply -k nginx

Now, display the rollout history for the Deployment:8.

$ kubectl rollout history deployment nginx-deployment
deployment.extensions/nginx-deployment
REVISION CHANGE-CAUSE
1 Initial deployment with 1.16.0
2 image updated to 1.17.0

Now you have learned how to edit, scale up, and also roll out a new version of
the application using Kustomize.

Operating Applications on Kubernetes Chapter 2

[66]

Creating a base for a development and production
Deployment
Let's perform the following steps to create a base for a local Docker image registry
Deployment that we will use later in this chapter:

Create a directory named registry and another one underneath called base:1.

$ mkdir registry && mkdir registry/base

Under registry/base, download the Deployment file named deployment-2.
registry.yaml from the example repository:

$ cd registry/base/
$ wget
https://raw.githubusercontent.com/k8sdevopscookbook/src/master/chap
ter2/kustomize/registry/base/deployment-registry.yaml

Review the file to understand its structure. You will see that it is3.
a Deployment manifest consisting of two containers named registry and
registryui. You will see that the registry container has a volumeMount named
registry-storage and this volume is provided by a persistent volume claim
named registry-pvc:

$ cat deployment-registry.yaml
apiVersion: extensions/v1beta1
kind: Deployment
actual file is longer, shortened to highlight important structure
of the file only
 - image: registry:2
#....#
 - name: registry-storage
 mountPath: /var/lib/registry
#....#
 - name: registryui
 image: hyper/docker-registry-web:latest
#....#
 - name: registry-storage
 persistentVolumeClaim:
 claimName: registry-pvc

Operating Applications on Kubernetes Chapter 2

[67]

Under the same registry/base, download the service manifest file4.
named service-registry.yaml from the example repository:

$ wget
https://raw.githubusercontent.com/k8sdevopscookbook/src/master/chap
ter2/kustomize/registry/base/service-registry.yaml

Review the file to understand its structure. You will see that it is a service5.
manifest that exposes the service on each Node's IP at a static port; in this recipe,
port 5000 for the registry service and port 80 for the registry-ui:

$ cat <<EOF > registry/base/service-registry.yaml
kind: Service
actual file is longer, shortened to highlight important structure
of the file only
 type: NodePort
 ports:
 - name: registry
 port: 5000
 protocol: TCP
 nodePort: 30120
 - name: registry-ui
 port: 80
 protocol: TCP
 nodePort: 30220
#....#

Create a PersistentVolumeClaim manifest file named pvc-registry.yaml6.
with the following content:

$ cat <<EOF > registry/base/pvc-registry.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: registry-pvc
 labels:
 app: kube-registry-pv-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10G
EOF

Operating Applications on Kubernetes Chapter 2

[68]

At this point, you can deploy the workload using all the resource files
under the registry directory, by using kubectl apply -f
registry/base. But every time you need to change a parameter in
resources, such as app or label, you need to edit the files. The whole
point of using Kustomize is to take advantage of reusing the files without
modifying the source of the files.

And finally, create the kustomization.yaml file. The following command will7.
create the Kustomize resource content with the three separate manifest files we
created previously:

$ cat <<EOF >./registry/base/kustomization.yaml
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - deployment-registry.yaml
 - service-registry.yaml
 - pvc-registry.yaml
EOF

Now, create two overlays to be used for development and8.
production Deployments. The first one is for development:

$ mkdir registry/overlays && mkdir registry/overlays/dev
$ cat <<EOF >./registry/overlays/dev/kustomization.yaml
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
bases:
 - ../../base
namePrefix: dev-
commonAnnotations:
 note: Hello, I am development!
EOF

And the second manifest will create the overlay for production:9.

$ mkdir registry/overlays/prod
$ cat <<EOF >./registry/overlays/prod/kustomization.yaml
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
bases:
 - ../../base
namePrefix: prod-
commonAnnotations:
 note: Hello, I am production!
EOF

Operating Applications on Kubernetes Chapter 2

[69]

Check that dev and prod prefixes are injected into your Deployment. When you 10.
point to the prod folder, the annotation note will display "Hello, I am
production!":

$ kubectl kustomize ./registry/overlays/prod/
result shortened to highlight the annotation
metadata:
 annotations:
 note: Hello, I am production!
 labels:
 app: kube-registry-pv-claim
 name: prod-registry-pvc
#...#

When you point to the dev folder, the annotation note will display "Hello, I11.
am development!":

$ kubectl kustomize ./dev/
... # removed
metadata:
 annotations:
 note: Hello, I am development!
 labels:
 app: kube-registry-pv-claim
 name: dev-registry-pvc
... # removed

Now, deploy the dev version of your application:12.

$ kubectl apply -k ./registry/overlays/dev

Similarly, you can inject labels, patch image versions, change the number of
replicas, and deploy resources into a different namespace.

How it works...
This recipe showed you how to manage and implement basic version control of your
configuration files using Git.

In the Creating a base for a development and production Deployment recipe, the resources we
created between step 2 and step 6 under the base directory represents an upstream
repository of the application/workload, and the customizations we created between step 8
and step 10 under the overlay directory are the changes you control and store in your
repository.

Operating Applications on Kubernetes Chapter 2

[70]

Later, if you need to see the difference of a variant, you can use the diff parameter as
follows:

$ kubectl diff -k registry/overlays/prod/

By separating the changes from the base, we were able to customize template-free YAML
files for multiple purposes, leaving the original YAML files unchanged, making the version
controlling of source and changes possible.

See also
Kustomize concepts overview slides: https:/ /speakerdeck. com/ spesnova/
introduction- to- kustomize

Declarative application management in Kubernetes background whitepaper –
a highly recommended read: https:/ /goo. gl/ T66ZcD

Common terms in Kustomize: https:/ /github. com/ kubernetes- sigs/
kustomize/ blob/ master/ docs/ glossary. md

Additional Kustomize examples: https:/ / github. com/ kubernetes- sigs/
kustomize/ tree/ master/ examples

Deploying workloads using Helm charts
In this section, we will show you how to use Helm charts in Kubernetes. Helm is the
package manager for Kubernetes, which helps developers and SREs to easily package,
configure, and deploy applications.

You will learn how to install Helm on your cluster and use Helm to manage the life cycle of
third-party applications.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://speakerdeck.com/spesnova/introduction-to-kustomize
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://goo.gl/T66ZcD
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples
https://github.com/kubernetes-sigs/kustomize/tree/master/examples

Operating Applications on Kubernetes Chapter 2

[71]

How to do it…
 This section is further divided into the following subsections to ease the process:

Installing Helm 2.x
Installing an application using Helm charts
Searching for an application in Helm repositories
Updating an application using Helm
Rolling back an application using Helm
Adding new Helm repositories
Deleting an application using Helm
Building a Helm chart

Installing Helm 2.x
Let's perform the following steps to configure the prerequisites and install Helm:

Create a ServiceAccount by using the following command:1.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: tiller
 namespace: kube-system
EOF

Create a ClusterRoleBinding by using the following command:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tiller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
 - kind: ServiceAccount
 name: tiller
 namespace: kube-system
EOF

Operating Applications on Kubernetes Chapter 2

[72]

Download the Helm installation script. This install-helm.sh script will detect3.
the architecture of your system and get the latest correct binaries to install Helm:

$ curl
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/ge
t > install-helm.sh

Run the script to install Helm. The following command will install the two4.
important binaries, Helm and Tiller, required to run Helm:

$ chmod u+x install-helm.sh && ./install-helm.sh

Run the init parameter to configure Helm with the service account we created5.
in step 1. The --history-max parameter is used to purge and limit the Helm
history, since without this setting the history can grow indefinitely and cause
problems:

$ helm init --service-account tiller --history-max 200

This process with install the Helm server-side component Tiller in your cluster.

If you get a message complaining that Tiller is already installed
in the cluster., you can run the same command by adding the --
upgrade parameter to the end of the command and force-upgrading the
existing version.

Confirm the Helm version by running the following command:6.

$ helm version --short

At the time of writing this recipe, the latest stable version of Helm was v2.15.1
and the next version, Helm 3, was still in beta. In the following chapters and
recipes, we will base our instruction on the Helm 2.x version.

Installing an application using Helm charts
Let's perform the following steps to install a Helm chart from the official Helm repository
location:

Before you install a chart, always sync the repository to pull the latest content.1.
Otherwise, you may end up with the old version of the Helm charts:

$ helm repo update

Operating Applications on Kubernetes Chapter 2

[73]

Install an example chart, in this case, stable/mysql:2.

$ helm install --name my-mysqlrelease stable/mysql

Similarly, you can install other applications from the Helm charts stable
repository or add your own repositories for custom charts.

Every time you install a chart, a new release with a random name is created
unless specified with the --name parameter. Now, list the releases:

$ helm ls
NAME REVISION UPDATED STATUS CHART
APP VERSION NAMESPACE
my-mysqlrelease 1 Thu Aug 8 02:30:27 2019 DEPLOYED
mysql-1.3.0 5.7.14 default

Check the status in the release, in our example, my-mysqlrelease:3.

$ helm status my-mysqlrelease

You will get the Deployment status and information on all resources.

Searching for an application in Helm repositories
Let's perform the following steps to search for an application you would like to deploy on
Kubernetes from the Helm chart repositories:

Search for a chart in the repository. The following command will look for your1.
search words in the Helm repositories that you have access to:

$ helm search redis
NAME CHART VER APP VER DESCRIPTION
stable/prometheus-redis-exporter 3.0.0 1.0.3 Prometheus export
stable/redis 9.0.1 5.0.5 Open source, adva
stable/redis-ha 3.6.2 5.0.5 Highly available
stable/sensu 0.2.3 0.28 Sensu monitoring

You can find the complete list of workloads in helm/stable and the source
of the repository at the following GitHub link: https:/ /github. com/
helm/ charts/ tree/ master/ stable

https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable

Operating Applications on Kubernetes Chapter 2

[74]

Your search keyword doesn't have to be the exact name of the project. You can2.
also search for keywords such as Storage, MQ, or Database:

$ helm search storage
NAME CHART VERSION APP VERSION DESCRIPTION ...
stable/minio 2.5.4 RELEASE.2019-07-17T22-54-12Z MinIO is a
hi
stable/nfs-server-pr 0.3.0 2.2.1-k8s1.12 nfs-server-provisioner is
an
stable/openebs 1.0.0 1.0.0 Containerized Storage for
Containers

By default, your repository list is limited to the helm/stable location but later,
in the Adding new Helm repositories recipe, you will also learn how to add new
repositories to extend your search coverage to other repositories.

Upgrading an application using Helm
There are a couple of ways to use an upgrade. Let's perform the following steps:

Upgrade the release, in our case, my-mysqlrelease, with a newer chart version1.
when available:

$ helm upgrade my-mysqlrelease stable/mysql

In the future, you may find a specific version of the application that is more2.
stable in your environment or keep the installations identical in multiple clusters.
In that case, you can update the chart version with your preferred chart version
using the following command:

$ helm upgrade my-mysqlrelease stable/mysql --version 1.2.0

Confirm the chart version change using the following command. After3.
upgrading the version in step 2, you should expect to see mysql --version
1.2.0:

$ helm ls
NAME REVISION UPDATED STATUS CHART
APP VERSION NAMESPACE
my-mysqlrelease 3 Tue Jul 30 22:44:07 2019 DEPLOYED
mysql-1.2.0 5.7.14 default

Operating Applications on Kubernetes Chapter 2

[75]

See the history of revisions using the following command. Since we recently4.
updated the chart version, you should see at least two revisions in the history:

$ helm history my-mysqlrelease stable/mysql
REV UPDATED STATUS CHART DESCRIPTION
1 Oct 1 22:47:37 2019 SUPERSEDED mysql-1.3.3 Install complete
2 Oct 1 22:57:32 2019 SUPERSEDED mysql-1.3.3 Upgrade complete
3 Oct 1 23:00:44 2019 DEPLOYED mysql-1.2.0 Upgrade complete

Use the helm upgrade function to update a parameter on an existing release by5.
specifying a parameter using the --set key=value[,key=value] argument.
The following command will set two MySQL password using the --set
mysqlRootPassword parameter:

$ helm upgrade my-mysqlrelease stable/mysql --version 1.2.0 --set
mysqlRootPassword="MyNevvPa55w0rd"

Confirm that the password is actually updated. You should expect to get the6.
same password you set in step 4:

$ kubectl get secret --namespace default my-mysqlrelease -o
jsonpath="{.data.mysql-root-password}" | base64 --decode; echo
MyNevvPa55w0rd

Now you have learned how to upgrade a Helm release with new parameters.

Rolling back an application using Helm
Let's perform the following steps to recall an upgrade and bring your application status to a
previous revision:

List the revision history for your release, in our example, coy-jellyfish:1.

$ helm history my-mysqlrelease
REV UPDATED STATUS CHART DESCRIPTION
1 Tue Oct 1 22:47:37 2019 SUPERSEDED mysql-1.3.3 Install complete
2 Tue Oct 1 22:57:32 2019 SUPERSEDED mysql-1.3.3 Upgrade complete
3 Tue Oct 1 23:00:44 2019 SUPERSEDED mysql-1.2.0 Upgrade complete
4 Tue Oct 1 23:07:23 2019 SUPERSEDED mysql-1.3.3 Upgrade complete
5 Tue Oct 1 23:10:39 2019 DEPLOYED mysql-1.2.0 Upgrade complete

Let's say you need to roll back from the last upgrade to revision 4. Roll back to a2.
specific revision:

$ helm rollback my-mysqlrelease 4
Rollback was a success.

Operating Applications on Kubernetes Chapter 2

[76]

The revision history will be updated to reflect your rollback:3.

$ helm history my-mysqlrelease
 REV UPDATED STATUS CHART DESCRIPTION
...
 5 Tue Jul 30 22:44:07 2019 SUPERSEDED mysql-1.2.0 Upgrade
complete
 6 Tue Jul 30 23:11:52 2019 DEPLOYED mysql-1.3.0 Rollback to 4

Now you have learned how to review the release history and roll back a Helm
release when needed.

Deleting an application using Helm
Let's perform the following steps to remove an application deployed with Helm from your
Kubernetes cluster:

Use the helm ls command with the --all parameter to list all the releases,1.
including deleted revisions:

helm ls --all
NAME REVISION UPDATED STATUS CHART APP VERSION NAMESPACE
my-mysqlrelease 6 Thu Aug 8 02:34:13 2019 DEPLOYED mysql-1.3.0
5.7.14 default

Delete a release using the --purge parameter. The following command will2.
completely remove the application from your cluster:

helm delete --purge my-mysqlrelease

The preceding command will immediately terminate the Deployment and remove
the Helm release from your cluster.

Adding new Helm repositories
By default, Helm only uses the official Helm/stable repository for lookups and often in the
following chapters, we will need to add additional repositories from third-party vendors
using the method explained in this recipe.

Operating Applications on Kubernetes Chapter 2

[77]

Let's perform the following steps to add additional Helm repositories to your source list:

Check the list of existing repositories. You should only see stable and local on1.
the list:

$ helm repo list
 NAME URL
 stable https://kubernetes-charts.storage.googleapis.com
 local http://127.0.0.1:8879/charts

We need a persistent volume and authentication configured for our repository2.
server. Create a file called customhelmrepo.yaml using the following content:

cat <<EOF >customhelmrepo.yaml
env:
 open:
 STORAGE: local
persistence:
 enabled: true
 accessMode: ReadWriteOnce
 size: 10Gi
 secret:
 BASIC_AUTH_USER: helmcurator
 BASIC_AUTH_PASS: myhelmpassword
EOF

Create a repository server using a persistent volume:3.

$ helm install --name my-chartmuseum -f customhelmrepo.yaml
stable/chartmuseum

Get the service IP for chartmuseum. The following command will return an IP4.
address, in our example, 10.3.0.37:

$ kubectl get svc --namespace default -l "app=chartmuseum" -l \
"release=my-chartmuseum" -o jsonpath="{.items[0].spec.clusterIP}";
echo
10.3.0.37

Add the new Helm repository to your list of repositories; in our case, the IP is5.
10.3.0.37:

$ helm repo add chartmuseum http://10.3.0.37:8080

Operating Applications on Kubernetes Chapter 2

[78]

Check the list of existing repositories:6.

$ helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
chartmuseum http://10.3.0.37:8080

There are many options available to host your chart repository. You can deploy a local
repository using an open source Helm repository server called ChartMuseum, on an S3
bucket, GitHub pages, or a classic web server. For simplicity, we used Helm itself to deploy
a server. You can find alternative hosting methods for Helm charts under the See also
section.

Building a Helm chart
Let's perform the following steps to build a custom Helm chart to be published in your
local chartmuseum repository:

Create a chart called mychart:1.

$ helm create mychart

Edit your chart structure as you like and test the templates for possible errors:2.

$ helm lint ./mychart
==> Linting ./mychart
[INFO] Chart.yaml: icon is recommended
1 chart(s) linted, no failures

Test your application using --dry-run:3.

$ helm install ./mychart --debug --dry-run

4. Build the Helm chart. By running the following command, you will generate a
tarball package of your Helm repository from the mychart location:

$ helm package .

Replace the Helm repository server address with your Helm server and upload5.
this Helm chart package using a URL:

$ cd mychart && curl --data-binary "@mychart-0.1.0.tgz"
http://10.3.0.37:8080/api/charts

Operating Applications on Kubernetes Chapter 2

[79]

Now you have learned how to create, lint, test, package, and upload your new
chart to your local ChartMuseum-based Helm repository.

How it works...
This recipe showed you how to install the Helm package manager and build your first
Helm chart.

When we built the Helm chart in the Building a Helm chart recipe, in step 1, the helm
create command created a couple of files as a template under the chart folder. You can
start by editing these files or create them from scratch when you become more comfortable
with the structure.

The helm create command creates the templates that construct our Helm chart. The
contents and their functionality are explained here:

mychart
├── Chart.yaml --> Description of the chart
├── charts --> Directory for chart dependencies
├── mychart-0.1.0.tgz --> Packaged chart following the SemVer 2
standard
├── templates --> Directory for chart templates
│ ├── NOTES.txt --> Help text displayed to users
│ ├── _helpers.tpl --> Helpers that you can re-use
│ ├── deployment.yaml --> Application - example deployment
│ ├── service.yaml --> Application - example service endpoint
└── values.yaml --> Default values for a chart

In the Building a Helm chart recipe, in step 3, helm install, when used along with the --
dry-run parameter, sends the chart to the server and returns the rendered template only
instead of installing it. This is usually used for testing Helm charts.

In the same recipe, in step 4, the helm package command packages your complete chart
into a chart archive, basically a tarball.

In step 5, we used the curl command to send the packaged tarball binary to our
ChartMuseum server, an HTTP server, so it can serve our Helm chart archives when it
receives GET requests from the helm command.

Now you have learned how to install Helm charts and create your Helm charts in your
local repositories, you will be able to install the third-party charts required in the next
chapters, as well as building your own artifacts in your CI/CD pipelines.

Operating Applications on Kubernetes Chapter 2

[80]

See also
The Helm documentation: https:/ /docs. helm. sh

Alternative hosting methods for Helm
charts: https://v2.helm.sh/docs/chart_repository/
Getting started with a chart template: https:/ / helm. sh/docs/ chart_ template_
guide/

Fields required to build the Chart.yaml file: https:/ /v2. helm. sh/ docs/ chart_
template_ guide/

J-Frog Container Registry, a powerful Hybrid Docker and Helm registry: https:/
/jfrog.com/ container- registry/

Deploying and operating applications using
Kubernetes operators
Kubernetes operators are another method of bundling, deploying, and
managing application for Kubernetes. Operators are a bit more complex than a package
manager like Helm. An operator helps to remove manual steps, application-specific
preparation, and post-deployment steps, and even automates second-day operations such
as scaling or upgrading them for the user.

As an example, an application's requirements might be validated differently based on the
platform on which it is installed or may require changes to its configuration and interaction
with external systems.

In this section, we will deploy two operators for popular stateful applications based on two
different operator frameworks and learn what functionalities they offer.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://docs.helm.sh
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://v2.helm.sh/docs/chart_template_guide/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/
https://jfrog.com/container-registry/

Operating Applications on Kubernetes Chapter 2

[81]

How to do it…
This section is further divided into the following subsections to ease the process:

Installing KUDO (short for Kubernetes Universal Declarative Operator) and the
KUDO kubectl plugin
Installing the Apache Kafka operator using KUDO
Installing Operator Lifecycle Manager
Installing the Zalando PostgreSQL operator

Installing KUDO and the KUDO kubectl plugin
Before you can install applications using KUDO operators, you need to install KUDO. We
will install KUDO using brew, a package manager used in Linux for the simple installation
of binaries on Linux; therefore, you will also need brew installed if you haven't done it
already:

Follow the Helm instructions in the Deploying workloads using Helm charts recipe1.
to get Helm running.
Install brew by using the following commands:2.

$ sh -c "$(curl -fsSL
https://raw.githubusercontent.com/Linuxbrew/install/master/install.
sh)"
$ PATH=/home/linuxbrew/.linuxbrew/bin/:$PATH

Install KUDO and the kudo kubectl plugin using brew install by running3.
the following command:

$ brew tap kudobuilder/tap && brew install kudo-cli

Install KUDO as follows:4.

$ kubectl kudo init

It is worth mentioning that Kubernetes operators are a developing concept
in the Kubernetes community. There are multiple operator frameworks,
such as the Red Hat Operator Framework, D2iQ's KUDO, and many
others out there. Also, for each workload, you will find a number of
operators developed by the community. I recommend testing a few
flavors before you decide to use an operator to find the operator that fits
your use case.

Operating Applications on Kubernetes Chapter 2

[82]

Now you have the KUDO controller installed to test some stateful running applications
using Kubernetes Operators.

Installing the Apache Kafka Operator using KUDO
There are multiple Kafka operators listed in the See also section, such as Strimzi, Banzai
Cloud, Confluent, krallistic, and others. Although I don't have any preference in this recipe,
as an example, we will deploy the Apache Kafka Operator based on the KUDO Operator.

Let's perform the following steps:

Kafka requires ZooKeeper. Let's create a ZooKeeper cluster:1.

$ kubectl kudo install zookeeper --instance=zk

Create a Kafka cluster using the KUDO Kafka Operator:2.

$ kubectl kudo install kafka --instance=kafka

List KUDO Operators by querying the Operators CRD APIs as follows. After3.
deploying Kafka, which also has a ZooKeeper dependency, you should see both
kafka and zookeeper operators:

$ kubectl get Operators
NAME AGE
kafka 9s
zookeeper 17s

List KUDO instances:4.

$ kubectl get instances
NAME AGE
kafka 25s
zk 33s

Now you have learned how to deploy both ZooKeeper and Kafka using the KUDO
Operator.

Operating Applications on Kubernetes Chapter 2

[83]

Installing Operator Lifecycle Manager
Before you can install applications using Red Hat Operator Framework Operators, you
need to install Operator Lifecycle Manager (OLM). Note that OLM is installed by default
in OpenShift 4.0 and precedent.

Install OLM. It is required for our next recipe, Installing the Zalando PostgreSQL1.
Operator:

$ kubectl create -f
https://raw.githubusercontent.com/Operator-framework/Operator-lifec
ycle-manager/master/deploy/upstream/quickstart/crds.yaml
$ kubectl create -f
https://raw.githubusercontent.com/Operator-framework/Operator-lifec
ycle-manager/master/deploy/upstream/quickstart/olm.yaml

Now you have OLM installed to test some stateful running applications using an Operator
Framework.

Installing the Zalando PostgreSQL Operator
There are multiple PostgreSQL Operators listed in the See also section, such as CrunchyDB
and Zalando. In this recipe, as an example, we will deploy the Zalando PostgreSQL
Operator to manage the life cycle of PostgreSQL Deployments in your Kubernetes cluster.

Let's perform the following steps to get the Zalando PostgreSQL Operator deployed using
the Operator Hub:

Install the postgres-Operator from the Operator Hub:1.

$ kubectl create -f
https://Operatorhub.io/install/postgres-Operator.yaml

Verify that postgres-Operator is running:2.

$ kubectl get pods -n Operators
NAME READY STATUS RESTARTS AGE
postgres-Operator-5cd9d99494-5nl5r 1/1 Running 0 3m56s

Now that the PostgreSQL Operator is up and running, let's deploy the Postgres3.
Operator UI:

$ kubectl apply -f
https://raw.githubusercontent.com/k8sdevopscookbook/src/master/chap
ter2/postgres-Operator/ui/postgres-ui.yaml

Operating Applications on Kubernetes Chapter 2

[84]

Deploy PostgreSQL. The following command will create a small two-instance4.
PostgreSQL cluster:

$ kubectl create -f
https://raw.githubusercontent.com/zalando/postgres-Operator/master/
manifests/minimal-postgres-manifest.yaml

List PostgreSQL instances that are managed by the Zalando Operator. It will6.
show a cluster named acid-minimal-cluster:

$ kubectl get postgresql
NAME TEAM VERSION PODS VOLUME CPU-REQUEST MEMORY-
REQUEST AGE STATUS
acid-minimal-cluster acid 11 2 1Gi
7s

First get your cluster credentials and connect to your PostgreSQL using the7.
psql interactive PostgreSQL terminal as follows:

$ export PGPASSWORD=$(kubectl get secret postgres.acid-minimal-
cluster.credentials -o 'jsonpath={.data.password}' | base64 -d)
$ export PGSSLMODE=require
$ psql -U postgres

Delete your PostgreSQL cluster:8.

$ kubectl delete postgresql acid-minimal-cluster

Now you have learned how to simply use popular Kubernetes Operators to
deploy and manage workloads on Kubernetes. You can apply this knowledge
later to simplify the life cycle management of stateful workloads you use in the
development and production environment.

See also
Deep dive on the Kubernetes Operators at KubeCon 2018: https:/ /developers.
redhat.com/ blog/ 2018/ 12/ 18/ kubernetes- Operators- in-depth/

List of Kubernetes Operators by community: https:/ /github. com/ Operator-
framework/ awesome- Operators

List of Kubernetes Operators build using the Red Hat Operator SDK: https:/ /
Operatorhub. io/

The Kubernetes Universal Declarative Operator (KUDO): https:/ / kudo. dev/

https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://developers.redhat.com/blog/2018/12/18/kubernetes-operators-in-depth/
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://operatorhub.io/
https://kudo.dev/
https://kudo.dev/
https://kudo.dev/
https://kudo.dev/
https://kudo.dev/
https://kudo.dev/
https://kudo.dev/
https://kudo.dev/

Operating Applications on Kubernetes Chapter 2

[85]

Repository for KUDO-based Operators: https:/ /github. com/kudobuilder/
Operators

A Python framework to write Kubernetes Operators in just a few lines of
code: https:/ / github. com/ zalando- incubator/ kopf

A list of alternative Kafka Operators:
Apache Kafka Operator running on OpenShift: http:/ /strimzi.
io/

KUDO Kafka Operator: https:/ / github. com/ kudobuilder/
Operators/ tree/ master/ repository/ kafka

Yet another Kafka Operator for Kubernetes: https:/ / github. com/
banzaicloud/ kafka- Operator

Istio Operator: https:/ / github. com/ banzaicloud/ istio- Operator

A list of alternative PostgreSQL Operators:
Crunchy Data PostgreSQL Operator: https:/ / github. com/
CrunchyData/ postgres- Operator

Zalando PostgreSQL Operator: https:/ /github. com/ zalando/
postgres- Operator

Deploying and managing the life cycle of
Jenkins X
Jenkins X is an open source solution that offers software developers pipeline automation,
built-in GitOps, CI, automated testing, and CD, known as CI/CD, in Kubernetes. Jenkins X
is highly focused on accelerating software delivery at a large scale using the Kubernetes
ecosystem.

In this section, we will focus on Jenkins X recipes and create a Kubernetes cluster with
CI/CD capabilities on your cloud provider.

Getting ready
In the following recipes, you will learn how to create a static Jenkins Server to deploy
Kubernetes clusters with pipeline automation and automated CI/CD with GitOps
promotion and preview environments.

https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/kudobuilder/operators
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
https://github.com/zalando-incubator/kopf
http://strimzi.io/
http://strimzi.io/
http://strimzi.io/
http://strimzi.io/
http://strimzi.io/
http://strimzi.io/
http://strimzi.io/
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/kudobuilder/operators/tree/master/repository/kafka
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/kafka-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/banzaicloud/istio-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator

Operating Applications on Kubernetes Chapter 2

[86]

This recipe requires kubectl and Helm. For this recipe, we will use GKE (short for Google
Kubernetes Engine), therefore the gcloud CLI tool needs to be installed as well. You also
need to have a proper GitHub organization and GitHub account created.

How to do it...
 This section is further divided into the following subsections to ease the process:

Installing the Jenkins X CLI
Creating a Jenkins X Kubernetes cluster
Verifying Jenkins X components
Switching Kubernetes clusters
Validating cluster conformance

Installing the Jenkins X CLI
The Jenkins X CLI jx is used along with your preferred cloud provider CLI to orchestrate
the Deployment of the Kubernetes cluster. Jenkins X supports Azure, AWS, GCP (short
for Google Cloud Platform), IBM Cloud, Oracle Cloud, Minikube, Minishift, and
OpenShift as the provider for the Deployment. For this recipe, we will use GKE. See the
Jenkins X documentation for other vendor instructions.

Let's perform the following steps to install Jenkins X CLI tool:

Visit the JX release site (https:/ /github. com/jenkins- x/jx/ releases) and note1.
the latest release version. At the time of writing, the latest release was v2.0.905.
Update the release version in the following command. Download and install the2.
latest version of the Jenkins X CLI:

$ curl -L
https://github.com/jenkins-x/jx/releases/download/v2.0.905/jx-linux
-amd64.tar.gz | tar xzv
$ sudo mv jx /usr/local/bin

Now you have the Jenkins X CLI installed, you can move on to the next recipe.

https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases
https://github.com/jenkins-x/jx/releases

Operating Applications on Kubernetes Chapter 2

[87]

Creating a Jenkins X Kubernetes cluster
You may prefer other cloud vendors or on-premises deployment. For this recipe, we will
use GKE. See the Jenkins X documentation for other vendor instructions.

Let's perform the following steps to create your first Jenkins X Kubernetes cluster using jx:

Create a Kubernetes cluster with GKE using the jx command with the gke1.
parameter as follows:

$ jx create cluster gke --skip-login

Select your Google Cloud project; in our example, devopscookbook.2.
Select us-central1-a when asked to pick a Google Cloud zone.3.
Select Static Jenkins Server and Jenkinsfiles as the installation type.4.
Enter your GitHub username:5.

Creating a local Git user for GitHub server
? GitHub username:

Enter your GitHub API token. Go to the GitHub Token page at https:/ /github.6.
com/settings/ tokens/ new? scopes=
repo,read:user,read:org,user:email,write:repo_ hook,delete_ repo to get
your API token:

Please click this URL and generate a token
https://github.com/settings/tokens/new?scopes=repo,read:user,read:o
rg,user:email,write:repo_hook,delete_repo
Then COPY the token and enter it following:
? API Token:

By default, Jenkins X will set the ingress rules to use the magic DNS nip.io7.
domain:

? Domain [? for help] (your_IP.nip.io)

Enter Yes to the following question:8.

? Do you wish to use GitHub as the pipelines Git server: (Y/n)

Select the GitHub organization where you want to create the environment9.
repository; in our case, k8devopscookbook.

https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,user:email,write:repo_hook,delete_repo

Operating Applications on Kubernetes Chapter 2

[88]

You will see a message similar to the following when your Deployment is10.
successful:

Jenkins X installation completed successfully
 **
 NOTE: Your admin password is: your_password
 **
...
Context "gke_devopscookbook_us-central1-a_slayersunset" modified.
NAME HOSTS ADDRESS PORTS AGE
chartmuseum chartmuseum.jx.your_IP.nip.io your_IP 80
7m43s
docker-registry docker-registry.jx.your_IP.nip.io your_IP 80
7m43s
jenkins jenkins.jx.your_IP.nip.io your_IP 80
7m43s
nexus nexus.jx.your_IP.nip.io your_IP 80
7m43s

You can also find your admin password in the preceding output.

Verifying Jenkins X components
Let's perform the following steps to verify that all Jenkins X components are running as
expected:

Confirm that all pods are running. All pods in the jx namespace should be in a1.
running state:

$ kubectl get pods -n jx
NAME READY STATUS
RESTARTS AGE
jenkins-956c58866-pz5vl 1/1 Running 0
11m
jenkins-x-chartmuseum-75d45b6d7f-5bckh 1/1 Running 0
11m
jenkins-x-controllerrole-bd4d7b5c6-sdkbg 1/1 Running 0
11m
jenkins-x-controllerteam-7bdd76dfb6-hh6c8 1/1 Running 0
11m
jenkins-x-controllerworkflow-7545997d4b-hlvhm 1/1 Running 0
11m
jenkins-x-docker-registry-6d555974c7-sngm7 1/1 Running 0
11m
jenkins-x-heapster-7777b7d7d8-4xgb2 2/2 Running 0
11m

Operating Applications on Kubernetes Chapter 2

[89]

jenkins-x-nexus-6ccd45c57c-btzjr 1/1 Running 0
11m
maven-brcfq 2/2 Running 0
63s
maven-qz0lc 2/2 Running 0
3m
maven-vqw9l 2/2 Running 0
32s

Get the list of Jenkins X service URLs that we will need to connect. You will have2.
a list of jenkins, chartmuseum, docker-registry, and nexus URLs similar to
the following:

$ jx get urls
NAME URL
jenkins http://jenkins.jx.your_IP.nip.io
jenkins-x-chartmuseum http://chartmuseum.your_IP.nip.io
jenkins-x-docker-registry http://docker-registry.jx.your_IP.nip.io
nexus http://nexus.jx.your_IP.nip.io

Now you can connect to the Jenkins UI by visiting the first URL from the preceding output
of the jx get urls command.

Switching Kubernetes clusters
Let's perform the following steps to switch between the Kubernetes clusters that you have
access to using Jenkins X:

Get the existing Kubernetes clusters by listing the contexts:1.

$ jx context

Select the cluster you would like to use. In our case, we switch to2.
the gke_devopscookbook cluster that we created using Jenkins X:

Change Kubernetes context: [Use arrows to move, space to select,
type to filter]
> gke_devopscookbook_us-central1-a_slayersunset
eks_devopscookbook_us-west
openshift_cluster

Now you know how to switch context using the Jenkins X CLI.

Operating Applications on Kubernetes Chapter 2

[90]

Validating cluster conformance
If you switch between the existing Kubernetes clusters, it is suggested that you validate the
cluster configuration before you run your pipelines. Let's perform the following steps:

Validate that your cluster is compliant. These tests will typically take an hour:1.

jx compliance run

Check the status. This command will return a Compliance tests2.
completed message only after tests are completed:

$ jx compliance status
Compliance tests completed.

Review the results. If your cluster is compliant all executed test results should be3.
displayed as PASSED:

$ jx compliance results

Now you know how to check cluster conformance results.

How it works...
The Creating a Jenkins X Kubernetes cluster recipe showed you how to provision the
Kubernetes cluster for pipeline automation and automated CI/CD.

In the Creating a Jenkins X Kubernetes cluster recipe, in step 1, we created the cluster using the
Jenkins X CLI. By default, Jenkins X uses n1-standard-2 as the machine type on GKE and
creates a cluster with a minimum of three and a maximum of five nodes settings.
Remember that you could also use an existing Kubernetes cluster instead of creating a new
one. Most of the settings will be saved and remembered next time you run the create
cluster command.

Jenkins X deploys a couple of services, including Jenkins, a private Docker registry, a
private Helm repository ChartMuseum, Monocular to manage Helm charts, and a Maven
and npm repository called Nexus.

As you will find in your repository after the installation, Jenkins X creates two Git
repositories, one for your staging environment and one for production. Jenkins X uses the
GitOps approach to promote code from one repo to another through Git pull requests
(PRs). Therefore each repo contains a Jenkins pipeline to handle promotions.

Operating Applications on Kubernetes Chapter 2

[91]

In the Creating a Jenkins X Kubernetes cluster recipe, in step 7, Jenkins X uses the magic DNS
service and converts the IP address of your GKE cluster into a DNS discoverable hostname
using a service via nip.io. If you have your own domain and the DNS is configured to
point to your cluster, you can update the settings later using the jx upgrade ingress --
cluster command.

Later, in step 10, you will get the default password assigned to your admin user. You will
be asked to change this password when you first connect to the Jenkins UI via the URL
provided in this step.

There's more…
It is also useful to have knowledge of the following information:

Importing an application
Upgrading Jenkins X
Deleting a Jenkins X Kubernetes cluster

Importing an application
Let's perform the following steps to import an existing application into the Jenkins X
environment:

Clone or use an existing application. As an example, we will create a clone of the1.
hello-world example:

$ mkdir import && cd import
$ git clone https://github.com/k8sdevopscookbook/hello-world.git

Remove the Git files from the cloned directory. This will remove the Git history2.
from the directory:

$ cd hello-world & sudo rm -r .git/

Run the following command in the folder to import the source code into Jenkins3.
X:

$ jx import

Operating Applications on Kubernetes Chapter 2

[92]

Upgrading a Jenkins X application
Let's perform the following steps to upgrade a Jenkins X application and its components:

First, upgrade the jx CLI. This command will upgrade the application if there is1.
a new version available in the remote repository:

$ jx upgrade cli

Once you are on the latest CLI, upgrade the platform using the2.
following command. The new jx CLI command will upgrade the platform
components if a new version exists:

$ jx upgrade platform

Deleting a Jenkins X Kubernetes cluster
Removing managed Kubernetes clusters may be tricky, especially if you are not the one
who created them. Since we used GKE to create them, it is faster to use the gcloud CLI tool
to delete them. Let's perform the following steps to delete the Kubernetes cluster we created
with Jenkins X:

Use your cloud provider's instructions to delete the Kubernetes cluster. In our1.
case, we used GKE for the recipe. First, list the clusters:

$ gcloud container clusters list
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION
NUM_NODES STATUS
clustername us-central1-a 1.12.8-gke.10 your_IP n1-standard-2
1.12.8-gke.10 3 RUNNING

Delete the cluster using the clustername from the output of step 1:2.

$ gcloud container clusters delete <clustername>

Now you have learned how to use Jenkins X to create your cluster. This
knowledge has prepared you for Chapter 3, Building CI/CD Pipelines, where you
will continue to use the environment and learn to import an application as a
pipeline in Jenkins X.

Operating Applications on Kubernetes Chapter 2

[93]

See also
Introduction to Jenkins: https:/ /jenkins. io/blog/ 2018/ 03/ 19/ introducing-
jenkins- x/

Jenkins X repository and binaries: https:/ /github. com/ jenkins- x/jx

Jenkins X tutorials: https:/ /jenkins- x.io/ tutorials/

Jenkins X getting started instructions: https:/ /jenkins- x.io/ getting- started/
install- on- cluster/

Jenkins X CLI commands and an explanation of how to use them: https:/ /
jenkins- x.io/ commands/ jx/

Deploying and managing the life cycle of
GitLab
GitLab is a complete DevOps tool chain, delivered in a single application platform. GitLab
provides all the necessary tooling you need to manage, plan, create, verify, package,
release, configure, monitor, and secure your applications.

In this section, we will cover the deployment and life cycle management of GitLab using
Helm charts.

Getting ready
In the following recipe, you will learn how to install GitLab on an existing Kubernetes
cluster where you can manage the entire DevOps life cycle.

This recipe requires kubectl and Helm, as well as an existing Kubernetes cluster. For this
recipe, we will use the cluster we deployed on AWS in Chapter 1, Building Production-
Ready Kubernetes Clusters. You should be able to run the same recipe on any Kubernetes
cluster version 1.11 or higher with a minimum of 6vCPU and 16 GB of RAM.

How to do it...
 This section is further divided into the following subsections to ease the process:

Installing GitLab using Helm
Connecting to the GitLab dashboard

https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://jenkins.io/blog/2018/03/19/introducing-jenkins-x/
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://github.com/jenkins-x/jx
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/tutorials/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/getting-started/install-on-cluster/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/
https://jenkins-x.io/commands/jx/

Operating Applications on Kubernetes Chapter 2

[94]

Creating the first GitLab user
Upgrading GitLab
Deleting GitLab

Installing GitLab using Helm
For this recipe, we will use the Kubernetes cluster on Amazon EC2, which we deployed in
Chapter 1, Building Production-Ready Kubernetes Clusters under the Configuring a Kubernetes
cluster on Amazon Web Services section:

Add GitLab Helm chart repos to your local repository:1.

$ helm repo add gitlab https://charts.gitlab.io/
$ helm repo update

Replace the following externalUrl with your domain name and deploy GitLab2.
using Helm in the gitlab namespace:

$ helm upgrade --install gitlab gitlab/gitlab --namespace gitlab \
--timeout 600 \
--set global.edition=ce \
--set certmanager-issuer.email=youremail@domain.com \
--set global.hosts.domain=yourdomain.com

For simplicity, I would recommend using your own certificates following
the Using auto-generated self-signed certificates sections. Then you can map
your DNS name to the created ELB using a CNAME record.

The deployment may take around 10-15 minutes. Confirm the service status and3.
note the external IP of the gitlab-gitlab-ce service:

$ kubectl get svc -n gitlab

Operating Applications on Kubernetes Chapter 2

[95]

Connecting to the GitLab dashboard
Let's perform the following steps to get the GitLab service address to connect using your
web browser:

Get the external address of your GitLab service:1.

$ echo http://$(kubectl get svc --namespace gitlab \
gitlab-nginx-ingress-controller \
-o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

Open the address returned to the preceding command in a browser.2.
Get the default root password created by GitLab by running the3.
following command:

$ kubectl get secret gitlab-gitlab-initial-root-password \
-ojsonpath='{.data.password}' | base64 --decode ; echo

Set a new password and sign in using the root user and your new password.4.
To use a custom URL, create a CNAME record on your DNS with an alias to the5.
external URL used in step 1.

Creating the first GitLab user
By default, we use the root account to manage the GitLab Deployment. All new users need
to log in to GitLab using their own credentials.

Let's perform the following steps to create new users:

Log in as the root user.1.
After you log in to the GitLab dashboard, you will see a welcome screen similar2.
to the following. Click Add people on the Welcome to GitLab screen:

Operating Applications on Kubernetes Chapter 2

[96]

Under the New User menu, enter at least the name, username, and email fields,3.
and then click on Create User to save the changes.

Upgrading GitLab
GitLab frequently releases new versions with additional functionality. Once in a while, you
may also need to upgrade to get bug fixes. Upgrading can be done easily using the Helm
upgrade. Let's perform the following steps to upgrade GitLab to a new version:

First, export the currently used arguments into a YAML file using the helm get1.
values command as follows:

$ helm get values gitlab > gitlab.yaml

Upgrade the chart repositories to get new versions available from the remote2.
repository:

$ helm repo update

Operating Applications on Kubernetes Chapter 2

[97]

List the available chart versions:3.

$ helm search -l gitlab/gitlab
NAME CHART VERSION APP VERSION DESCRIPTION
gitlab/gitlab 2.1.7 12.1.6 Web-based Git-repository manager with
wiki and issue-trac...
gitlab/gitlab 2.1.6 12.1.4 Web-based Git-repository manager with
wiki and issue-trac...
...

Use the same arguments with the new version to upgrade:4.

$ helm upgrade gitlab gitlab/gitlab --version 2.1.7 -f gitlab.yaml

How it works...
The Installing GitLab using Helm recipe showed you how to provision GitLab with all built-
in components and external dependencies.

In the Installing GitLab using Helm recipe, in step 1, we made sure that official up-to-
date GitLab Helm chart repos were added into the local repository list. Otherwise, older
versions of the GitLab charts from the stable/gitlab repo would be used.

In the same recipe, in step 2, we deployed GitLab using Helm charts in the gitlab
namespace using the --namespace gitlab parameter. This command not only deployed
GitLab components but also Redis, PostgreSQL, Minio object storage for data persistence,
Cert Manager, a local container registry, and the nginx ingress controller.

To use existing Deployments of PostgreSQL, Redis, Gitaly, S3 Storage, and
the ingress controller, follow the advanced configuration instruction a
described here: https:/ /docs. gitlab.com/charts/advanced/.

By default, GitLab Helm charts deploy the enterprise version of GitLab. By using the --set
global.edition=ce parameter, we switched the Deployment to the free Community
Edition.

After we executed the command in the Installing GitLab using Helm recipe, in step 2, the
Helm chart assumes that we have an existing default storage class and it uses the default
one to create the PVCs and PVs for the stateful application.

https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/

Operating Applications on Kubernetes Chapter 2

[98]

There's more…
It is also useful to have knowledge of the following information:

Using your own wildcard certificate
Using autogenerated self-signed certificates
Enabling a GitLab Operator
Deleting GitLab

Using your own wildcard certificate
Helm chart installation of GitLab supports TLS termination using the nginx controller.
When you install GitLab, you have options. For improved security, you can use Cert
Manager and Let's Encrypt or choose to use your own wildcard certificate. In this recipe,
we will explain using your own wildcard certificates option, as follows:

Add your certificate and key to the cluster as a secret:1.

$ kubectl create secret tls mytls --cert=cert.crt --key=key.key

Deploy GitLab from the Helm chart using the following additional parameters:2.

$ helm upgrade --install gitlab gitlab/gitlab --namespace gitlab \
--timeout 600 \
--set global.edition=ce \
--version 2.1.6 \
--set certmanager.install=false \
--set global.ingress.configureCertmanager=false \
--set global.ingress.tls.secretName=mytls

Using autogenerated self-signed certificates
If you can't effo using your own wildcard certificate and still want to get GitLab quickly up
for testing or smaller use cases, you can also use autogenerated self-signed certificates. In
this recipe, we will explain using self-signed certificates, which can be useful in
environments where Let's Encrypt is not an option, but SSL security is still needed:

In cases where your domain is not reachable from the Let's Encrypt servers, you1.
can provide an autogenerated self-signed wildcard certificate:

$ helm upgrade --install gitlab gitlab/gitlab --namespace gitlab \
--timeout 600 \
--set global.edition=ce \

Operating Applications on Kubernetes Chapter 2

[99]

--version 2.1.6 \
--set certmanager.install=false \
--set global.ingress.configureCertmanager=false \
--set gitlab-runner.install=false

Retrieve the certificate, which can be imported into a web browser or system2.
store later:

$ kubectl get secret gitlab-wildcard-tls-ca -n gitlab \
-ojsonpath='{.data.cfssl_ca}' | base64 --decode >
gitlab.mydomain.com.ca.pem

Enabling the GitLab Operator
GitLab provides an experimental Operator. This Operator controls the upgrade process and
helps to perform rolling upgrades without downtime. Let's perform the following steps to
get the GitLab Operator running:

First, make sure CRD is in place by enabling the global Operator using the Helm1.
parameters as follows:

$ helm upgrade --install gitlab . --set
global.Operator.enabled=true \
--set global.Operator.bootstrap=true

Deploy the GitLab Operator using the Helm charts:2.

$ helm upgrade gitlab . --set global.Operator.enabled=true \
--set global.Operator.bootstrap=false

Deleting GitLab
Let's perform the following steps to completely remove the GitLab Deployment we created
in this section:

Delete the existing release of GitLab using Helm:1.

$ helm delete --purge gitlab

You may also want to remove the namespace to make sure there is nothing left2.
behind:

$ kubectl delete ns gitlab

Operating Applications on Kubernetes Chapter 2

[100]

Now you have learned how to get GitLab up and running on Kubernetes. This
knowledge will be required in Chapter 3, Building CI/CD Pipelines, in the GitLab
section, where you will learn how to import an application and create a pipeline
in GitLab.

See also
GitLab cloud-native Helm chart documentation: https:/ /docs. gitlab. com/
charts/

Advanced configuration options: https:/ /docs. gitlab. com/ charts/ advanced/

GitLab Operator: https:/ / docs.gitlab. com/ charts/ installation/ Operator.
html

Alternative ways to install GitLab Community Edition: https:/ /about. gitlab.
com/install/ ? version= ce/

https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/advanced/
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://docs.gitlab.com/charts/installation/operator.html
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/
https://about.gitlab.com/install/?version=ce/

3
Building CI/CD Pipelines

In this chapter, we will discuss the configuration of end-to-end Continuous
Integration/Continuous Delivery (CI/CD) pipelines using the most popular CI/CD tools on
both self-managed public clouds and SaaS solutions using Kubernetes. After following the
recipes in this chapter, you will have gained the skills needed to build, deploy, and
promote applications from development to a production environment. You will be able to
use the tools that we will implement in these recipes to detect bugs, anti-patterns, and
license concerns during the continuous integration process.

In this chapter, we will cover the following recipes:

Creating a CI/CD pipeline in Jenkins X
Creating a CI/CD pipeline in GitLab
Creating a CI/CD pipeline using CircleCI
Setting up a CI/CD pipeline using GitHub Actions
Setting up a CI/CD pipeline on Amazon Web Services
Setting up a CI/CD pipeline with Spinnaker on Google Cloud Build
Setting up a CI/CD pipeline on Azure DevOps

Technical requirements
The recipes in this section assume that you have a functional Kubernetes cluster deployed
after following one of the recommended methods described in Chapter 1, Building
Production-Ready Kubernetes Clusters.

Kubernetes' command-line interface, kubectl, will be used for the rest of the recipes in this
section since it's the main command-line interface for running commands against
Kubernetes clusters. If you are using a Red Hat OpenShift cluster, you can replace kubectl
with oc. All the commands are expected to function similarly.

The recipes in this section require a Git repository with a containerized project.

Building CI/CD Pipelines Chapter 3

[102]

Creating a CI/CD pipeline in Jenkins X
Jenkins X is a fairly new open source solution that extends the Jenkins ecosystem and solves
the problem of automating CI/CD in the cloud using Kubernetes.

In this section, we will learn how to get your application as a pipeline into Jenkins X, which
you will have deployed by following the Deploying and managing the life cycle of Jenkins X
recipe instructions in Chapter 2, Operating Applications on Kubernetes. With that, you will
learn how to create a CI/CD pipeline with automated GitOps and promote an application
from staging to production, all by using simple commands.

Getting ready
Make sure you have followed the instructions in Chapter 2, Operating Applications on
Kubernetes, in the Deploying and managing the life cycle of Jenkins X recipe and have a
functional Kubernetes cluster with a Jenkins X deployment ready. You can find the
instructions to install helm in that chapter as well.

In the following recipe, you will learn how to create a pipeline with GitOps promotion.

This recipe requires kubectl, helm, the Jenkins X CLI, jx, and your preferred cloud
provider CLI where you installed your Kubernetes cluster using Jenkins X.

Jenkins X supports Azure, AWS, GCP, IBM Cloud, Oracle Cloud, minikube, minishift, and
OpenShift as providers for the deployment process. You also need to have a GitHub
organization and GitHub account.

How to do it…
This section is further divided into the following subsections to make this process easier:

Connecting to the Jenkins pipeline console
Importing an application as a pipeline
Checking application status
Promoting an application to production
Creating a pipeline using a quick-start application

Building CI/CD Pipelines Chapter 3

[103]

Connecting to Jenkins Pipeline Console
Let's perform the following steps to access the Jenkins Pipeline Console web interface:

Switch to the jx namespace where Jenkins X is deployed:1.

$ jx ns
? Change namespace: [Use arrows to move, space to select, type to
filter]
 default
> jx
 jx-production
 jx-staging
 kube-public
 kube-system

Using the following command to get the Jenkins (Blue Ocean) console address2.
and open the link in your browser. In this recipe, the console address is the
output to the following jx console command, that is,
http://jenkins.jx.your_ip.nip.io/blue:

$ jx console
Jenkins Console: http://jenkins.jx.your_ip.nip.io/blue

After you've opened the Jenkins Console link from the output of step 2, click on3.
one of the pipelines from the list. As an example, you can see two pipelines in
our following demo environment:

Building CI/CD Pipelines Chapter 3

[104]

Select the last run and make sure both pipelines are healthy, meaning that your4.
environment works. Similar to the following screenshot, you should see green
check marks at the Validate Environment and Update Environment stages:

Now that we've validated that the environment is functional, we can start adding a new
pipeline for our own application.

Importing an application as a pipeline
Most of the time, you will be required to import a local project or Git repository into
Jenkins. Let's perform the following steps to create a local clone of an existing repository
and import it as a pipeline:

First, fork your copy of the example code to your account. Go to https:/ /1.
github.com/ k8sdevopscookbook/ python- flask- docker in your browser and
click on the Fork button in the upper-right corner.
Clone the repository to your local machine. Make sure that you replace2.
your_github_username with your GitHub username where you forked the
example:

$ git clone
https://github.com/your_github_username/python-flask-docker.git

Now, you should have a local copy of the python-flash-docker application.3.
Use the following commands to import the project:

$ cd python-flask-docker
$ jx import

Now, you can watch the pipeline activity either from the Jenkins Blue Ocean4.
view or the CLI. The following screenshot shows the pipeline activity on the
Jenkins Blue Ocean dashboard:

https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker
https://github.com/k8sdevopscookbook/python-flask-docker

Building CI/CD Pipelines Chapter 3

[105]

As an alternative, you can watch the activity on the CLI using the jx get5.
activity command:

$ jx get activity -f python-flask-docker -w
STEP STARTED AGO DURATION STATUS
muratkars/python-flask-docker/master #1 1m3s Running
 Checkout Source 22s 5s Succeeded
 CI Build and push snapshot 17s NotExecuted
 Build Release 17s Pending
...
 Promoted 2m5s 2m0s Succeeded Application is at:
http://python-flask-docker.jx-staging.35.188.140.152.nip.io
 Clean up 1s 0s Succeeded

Checking application status
After you've created the pipeline, you need to confirm its status. Let's perform the
following steps make sure the application has been deployed in staging before we move it
into production:

If the pipeline has been built successfully, you should have version 0.0.1 in your1.
staging environment. List the applications when the pipeline is complete:

$ jx get applications
APPLICATION STAGING PODS URL
python-flask-docker 0.0.1 1/1
http://python-flask-docker.jx-staging.35.188.140.152.nip.io

Building CI/CD Pipelines Chapter 3

[106]

Here, you can see that the application has been deployed. Visit the URL to see the2.
application:

Our pod is currently running in the jx-staging namespace. Confirm the pods3.
in the jx-staging and jx-production namespaces. The second namespace
shouldn't return anything until we promote our application to production:

$ kubectl get pods -n jx-staging
NAME READY STATUS RESTARTS AGE
jx-python-flask-docker-8564f5b4cb-ff97f 1/1 Running 0 21m
$ kubectl get pods -n jx-production
No resources found.

Promoting an application to production
Once an application has been deployed in staging, the next step is to promote it into the
production environment. Let's perform the following steps to promote an application from
staging to production:

After you've confirmed that an application is stable, the next step is to promote it1.
into production. Let's use the following command to push the current version
from staging to production:

$ jx promote python-flask-docker --version 0.0.1 --env production

For various reasons, mostly environmental limitations, the successful2.
deployment of an application into staging doesn't guarantee successful
deployment into production. After promoting the application, use the following
command to check the progress of the production deployment. You need to see a
Succeeded message after you run this command:

$ jx get activity -f python-flask-docker -w

Our pod has been promoted to the jx-production namespace. Confirm that the3.
pods are now running in the jx-production namespace as well:

$ kubectl get pods -n jx-production
NAME READY STATUS RESTARTS AGE
jx-python-flask-docker-8564f5b4cb-fhcpm 1/1 Running 0 104m

Building CI/CD Pipelines Chapter 3

[107]

List the applications. You will get both staging and production links for the same4.
application:

$ jx get applications
APPLICATION STAGING PODS URL
PRODUCTION PODS URL
python-flask-docker 0.0.1 1/1
http://python-flask-docker.jx-staging.35.188.140.152.nip.io 0.0.1
1/1 http://python-flask-docker.jx-production.35.188.140.152.nip.io

Creating a pipeline using a QuickStart application
If you don't have a project to import, then you can create a new app from QuickStart and
import the newly generated code into Git and Jenkins for CI/CD by performing the
following steps:

Create a build from a standardized template. This command will show you1.
application templates that you can use to create a new application:

$ jx create quickstart

Select your GitHub username and organization:2.

? Git user name?
? Which organisation do you want to use?

Enter a new repository name. In this recipe, this is chapter2-jx-tutorial :3.

Enter the new repository name: chapter2-jx-tutorial

Select the QuickStart example you wish to create. In our recipe, this is golang-4.
http.
Specify Yes to the following question:5.

Would you like to initialise git now? (Y/n) y

The pipelines will take some time to complete. List the available pipelines with6.
the following command:

$ jx get pipelines

Building CI/CD Pipelines Chapter 3

[108]

How it works...
The second recipe of this section, Importing an application as a pipeline, showed you how to
create a Jenkins pipeline using an existing project.

In step 3, the following happens when you import the application using the jx import
command:

First, the project source is checked out from the repository and a new semantic1.
version number is applied. Then, with the help of Skaffold, a command-line tool
that facilitates continuous development for Kubernetes applications, Git tag
v0.0.1 is created and unit tests are executed (in our example, there were no unit
tests).
After the unit tests have been executed, a Docker image is created and pushed to2.
the local Container Registry. You can see this process on the following code:

Starting build...
Building [devopscookbook/python-flask-docker]...
Sending build context to Docker daemon 127kB
Step 1/8 : FR
OM python:3.6
3.6: Pulling from library/python
4ae16bd47783: Pulling fs layer
bbab4ec87ac4: Pulling fs layer
...

After the container image has been pushed to the registry, you can find it in your3.
Docker Registry:

During the Promote to Environments stage, a Helm build will be executed. After4.
the charts have been pushed to the local chartmuseum repository, you can find
the Helm chart in the repository:

$ helm search python-flask-docker
NAME CHART VERSION APP VERSION DESCRIPTION
jenkins-x-chartmuseum/python-flask-docker 0.0.1 0.0.1 A Helm chart
for Kubernetes

Building CI/CD Pipelines Chapter 3

[109]

Finally, the staging pipeline runs from the master branch and deploys our pod5.
from the Helm repository into the jx-staging namespace. Both the staging and
application pipelines will be completed after this step.

Creating a CI/CD pipeline in GitLab
GitLab is a complete DevOps toolchain that's delivered in a single application platform.
GitLab provides all the necessary tooling you need to manage, plan, create, verify, package,
release, configure, monitor, and secure your applications.

In this section, we will focus on the CI/CD pipeline features of GitLab that can be consumed
as SaaS or self-hosted service. We will import an application and create a pipeline in
GitLab. You will learn how to create a CI/CD pipeline with Auto DevOps and promote an
application from staging into production.

Getting ready
In the following recipe, you will learn how to create a pipeline with Auto DevOps. This
recipe requires GitLab (self-managed or SaaS) and an account with your preferred cloud
vendor where you installed your Kubernetes cluster using GitLab.

The Community Edition of GitLab includes the Auto Build, Auto Test,
Auto Review Apps, Auto Deploy, and Auto Monitoring features. In
addition to these features, the subscription-based SaaS version of GitLab
also provides Auto Code Quality, Auto Static Application Security
Testing (SAST), Auto Dependency Scanning, Auto License Compliance,
Auto Container Scanning, Auto Dynamic Application Security Testing
(DAST), and Auto Browser Performance Testing functionalities,
depending on your subscription plan.

Make sure you have followed the instructions in Chapter 2, Operating Applications on
Kubernetes, in the Deploying and managing the life cycle of GitLab recipe and deployed a self-
hosted GitLab.

If you prefer, you can also use the SaaS offering hosted by GitLab. In that
case, visit the GitLab website at https:/ /about. gitlab. com/ free- trial/
and sign in to your account.

https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/
https://about.gitlab.com/free-trial/

Building CI/CD Pipelines Chapter 3

[110]

GitLab Auto DevOps supports GKE for creating new Kubernetes clusters, as well as
existing clusters, on any public or private clouds.

How to do it…
This section is further divided into the following subsections to make this process easier:

Creating a project using templates
Importing an existing project from GitHub
Enabling Auto DevOps
Enabling Kubernetes cluster integration
Creating a pipeline using Auto DevOps
Incrementally rolling out applications to production

Creating a project using templates
Most of the actions on GitLab are done on projects. When you start a project for the first
time, you have a couple of options. You can create a project using one of the project
templates, import an existing project, or start a blank project. In this recipe, you will learn
how to create a project using the project templates by performing the following steps:

Log in to GitLab with a non-root user account.1.
Click the Create a project button on the Welcome to GitLab screen:2.

Select the Create from template tab and choose one of the code templates listed3.
by clicking on the Use template button. For this example, we will use the
following Pages/GitBook template:

Building CI/CD Pipelines Chapter 3

[111]

GitLab projects can be either Private, Internal, or Public. This project access level4.
is determined by the visibility field in the project. Give your new project a name
and set the Visibility Level to Public:

Click on the Create project button.5.

Now, you will see that the template project has been successfully imported.

Building CI/CD Pipelines Chapter 3

[112]

Importing an existing project from GitHub
It is not always possible to start with clean project templates. Often, you will need to create
a pipeline for an existing project. Let's perform the following steps to add some existing
project source code into a GitLab environment:

Log in to GitLab with a non-root user account.1.
If you don't have a project yet, click the Create a project button on the Welcome2.
to GitLab screen. If you have created projects before, click the New project
button in the top right-hand corner of the following view:

GitLab can import projects from various Git repositories, including GitHub,3.
Bitbucket, Google Code, Fogbugz, Gitea, and GitLab itself. Here, select the
Import project tab and choose GitHub:

Building CI/CD Pipelines Chapter 3

[113]

Open https:/ /github. com/ settings/ tokens in a new window and go to your4.
GitHub account.
Click on Generate new Token on your GitHub account.5.
For GitLab to be able to access your GitHub account, an access token needs to be6.
created. On the New personal access token page, select the repo scope and click
on the Generate Token button. This page shows the permissions that you can
assign with the token:

https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens

Building CI/CD Pipelines Chapter 3

[114]

Copy the new personal access token created on GitHub, paste it into GitLab, and7.
click on the List your GitHub repositories button:

GitLab will access and discover projects in your GitHub repository location.8.
Import the repository that you want to use with this recipe. In this example, we
will use the project from the https:/ /github. com/k8sdevopscookbook/ auto-
devops-example repository. This is where all the examples in this book are
located:

https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example
https://github.com/k8sdevopscookbook/auto-devops-example

Building CI/CD Pipelines Chapter 3

[115]

When importing is complete, the status will show Done. Finally, click on the
Go to project button to see your project in GitLab.

Enabling Auto DevOps
GitLab's Auto DevOps functionality provides predefined CI/CD configuration that
automatically detects, builds, tests, deploys, and monitors your applications. Let's perform
the following steps to enable the Auto DevOps option for your existing project:

Log in with your project user account.1.
On the Welcome to GitLab screen, you will see links that will help you get2.
started. Here, click the Configure GitLab button to access the configuration
options:

Building CI/CD Pipelines Chapter 3

[116]

Only the project users with Maintainers and Admin permissions have access to3.
the project settings. From the Admin Area menu on the left-hand side of the
screen, select the Settings | CI/CD menu to access the CI/CD options. The
following screenshot shows where the CI/CD settings are located:

Under the following Continuous Integration and Deployment page, make sure4.
that the Default to Auto DevOps pipeline for all projects checkbox is checked.
Optionally, enter your base domain if you want to use the Auto Review Apps
and Auto Deploy features:

Building CI/CD Pipelines Chapter 3

[117]

Click on the Save changes button.5.

Enabling Kubernetes cluster integration
GitLab works with or within Kubernetes in multiple ways. Let's perform the following
steps and add Kubernetes automation so that we can share the cluster across multiple
projects:

Log in as root user.1.
Select a project under the Your Projects page.2.
From the project's Details page, click on the Add Kubernetes cluster button:3.

You can either Create a new cluster on GKE or Add an existing cluster.4.
Assuming that you have created a cluster by following the recipes in Chapter 1,
Building Production-Ready Kubernetes Clusters, we will add an existing cluster. On
the view shown in the following screenshot, select the Add existing cluster tab:

Enter a Kubernetes cluster name. In our example, this is AWSCluster.5.

From the command line where your kubectl instance has been configured so6.
that you can access your existing Kubernetes cluster, use the following command
to get the API URL:

$ kubectl cluster-info | grep 'Kubernetes master' | awk '/http/
{print $NF}'

Building CI/CD Pipelines Chapter 3

[118]

For GitLab to be able to access your cluster using APIs, an authentication token is7.
required. Kubernetes stores the default-token as a secret. To find that token,
list the secrets on your cluster using the following command:

$ kubectl get secrets | grep default-token
default-token-75958 kubernetes.io/service-account-token 3 4d12h

Use the token name that was returned by the preceding command and get the8.
CA certificate:

$ kubectl get secret <secret name> -o
jsonpath="{['data']['ca\.crt']}" | base64 --decode
-----BEGIN CERTIFICATE-----
MID...h5x
-----END CERTIFICATE-----

Create a GitLab admin called ServiceAccount on your cluster:9.

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: gitlab-admin
 namespace: kube-system
EOF

Create a GitLab admin called ClusterRoleBinding on your cluster:10.

cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: gitlab-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: gitlab-admin
 namespace: kube-system
EOF

Get the service account token. The following command will return your token in11.
the Token section:

$ kubectl -n kube-system describe secret $(kubectl -n kube-system
get secret | grep gitlab-admin | awk '{print $1}')

Building CI/CD Pipelines Chapter 3

[119]

Name: gitlab-admin-token-xkvss
...
Data
====
ca.crt: 1119 bytes
namespace: 11 bytes
token:
<your_token_here>

Once you've copied the token information from the output of step 11, click on the12.
Add Kubernetes cluster button on the same window. You should see something
similar to the following view, which is where we add our cluster into GitLab:

Building CI/CD Pipelines Chapter 3

[120]

Next, enter your Base domain name. In our example, we use the13.
k8s.containerized.me subdomain as our hosted zone, which we created in
Chapter 1, Building Production-Ready Kubernetes Clusters, in the Provisioning a
Kubernetes cluster on Amazon EC2 recipe.
Click on the Install button next to Helm Tiller. This option will deploy the Helm14.
server into your cluster:

Once Helm has been installed, install Ingress, Cert-Manager, Prometheus, and15.
GitLab Runner by clicking the Install buttons next to those options.
All GitLab managed applications are installed under the gitlab-managed-apps16.
namespace. Validate that they are in the Running state on your Kubernetes
cluster. You should see a list of pods similar to the following:

$ kubectl get pods -n gitlab-managed-apps
NAME READY STATUS
RESTARTS AGE
certmanager-cert-manager-574b6d6cdd-s87kn 1/1
Running 0 3m39s
ingress-nginx-ingress-controller-7d44688bf-8x7ld 1/1
Running 0 4m39s
ingress-nginx-ingress-default-backend-66645696bf-sz545 1/1
Running 0 4m39s
prometheus-kube-state-metrics-744949b679-2rwnh 1/1
Running 0 2m8s
prometheus-prometheus-server-646888949c-j4wn7 2/2
Running 0 2m8s
runner-gitlab-runner-84fc959dcf-4wxfc 1/1
Running 0 56s
tiller-deploy-5d76d4796c-fdtxz 1/1
Running 0 7m13s

Building CI/CD Pipelines Chapter 3

[121]

Creating a pipeline using Auto DevOps
Once it's enabled, Auto DevOps simplifies the setup and execution of the software
development life cycle. Let's perform the following steps to take advantage of Auto
DevOps and create our first automated pipeline:

If you have more than one project, you need to select the target project where1.
you would like to run your pipeline. First, select your project in the Your Projects
page.
Click on Pipelines under the CI/CD menu. This option will take you to the page2.
where existing pipelines can be viewed. On this page, click on the Run Pipeline
button. This option will help us manually run the pipeline:

Building CI/CD Pipelines Chapter 3

[122]

Here, you have the option to run the pipeline on different branches. For this3.
example, select the master branch to run the pipeline on. In the following
screenshot, you see the pipeline stages being completed:

When the pipeline is complete, you will see the results for every job that was
executed and your application should be accessible at
http://application_name.your_domain.com. In our case, this address is
http://murat-auto-devops.k8s.containerized.me.

Incrementally rolling out applications to production
By default, Auto DevOps uses a Continuous Deployment to production strategy. If you
would like to change that setting to perform incremental rollouts, perform the following
steps:

Select your project in the Your Projects page.1.
Click on CI/CD in the Settings menu.2.
Expand the Auto DevOps section by clicking on the Expand button.3.

Building CI/CD Pipelines Chapter 3

[123]

Change the Deployment strategy to Automatic deployment to staging, manual4.
deployment to production and click on the Save changes button. You will see
the other Auto DevOps options as well:

Click on Pipelines under the CI/CD menu. Click on the Run Pipeline button to5.
manually run the pipeline.
When the staging job is complete, the pipeline will be paused. You will see the6.
results for every job that has been executed and your application should be
accessible at http://application-name-staging.your_domain.com. In our
case, this address is
http://murat-auto-devops-staging.k8s.containerized.me

Now, click on Environments in the Operations menu.7.

Building CI/CD Pipelines Chapter 3

[124]

Once your application is in the staging environment, you can gradually move it8.
into production. To be able to do that while in the staging environment, click on
the Deploy to button (the one that looks like a play button) and choose a
percentage to roll out to, as shown in the following view. In the dropdown menu,
you will see options for 10%, 25%, 50%, and 100%:

How it works...
The preceding recipe, Creating a pipeline using Auto DevOps, showed you how to take
advantage of the functionality of Auto DevOps to simplify the creation of pipelines.

In step 2, after you run the pipeline, GitLab Auto DevOps saves you time and effort from
creating the stages and jobs manually when no .gitlab-ci.yml files are found in the
project. This file is created by GitLab and provides CI/CD configuration for all the projects
that don't have one.

If you like to use the .gitlab-ci.yaml file instead, disable Auto DevOps
and use the Set up CI/CD button on your project to create your GitLab
CI/CD YAML file from a template. Follow the link regarding the Creating a
simple .gitlab-ci.yaml file instructions in the See also section to learn more
about creating the YAML file.

During step 3, Auto DevOps uses Herokuish Buildpacks, a tool for emulating Heroku build
and runtime tasks in containers. By using Herokuish, GitLab detects the language your
project is written in and automatically creates the pipeline.

Building CI/CD Pipelines Chapter 3

[125]

There's more...
You will also benefit from learning about the following:

GitLab Web IDE
Monitoring environments

GitLab Web IDE
GitLab is not just a CI/CD solution, it has many other functionalities and provides you with
a private code repository similar to GitHub. You can use GitLab Web IDE to edit and
commit your changes and push them to production. To edit your code without cloning to
your own machine, perform the following steps:

Select your project on the Your Projects page.1.
Click on the Web IDE button.2.
Select a file from the repository to edit.3.
Edit the file and once done, click on the Commit... button, as shown in the4.
following screenshot:

Building CI/CD Pipelines Chapter 3

[126]

Create a commit message and click on the Stage & Commit button, as shown in5.
the following screenshot:

Your commit will trigger a new pipeline. As a result, GitLab will build, test, and
stage your changes.

Monitoring environments
Using GitLab, you can monitor Kubernetes cluster resource usage and application response
metrics. If you haven't enabled Prometheus on your Kubernetes cluster, follow the
instructions in the Enabling Kubernetes cluster integration recipe and then perform the
following steps:

Select your project on the Your Projects page.1.
Click on Metrics in the Operations menu.2.

Building CI/CD Pipelines Chapter 3

[127]

Select the Production environment from the drop-down menu. On the3.
dropdown menu, you will have production and staging environments:

GitLab will show a page similar to the following with the last 8 hours of your4.
application performance data and Kubernetes resource utilization metrics. In this
view, you will be able to see the historical average and total CPU and memory
utilization of the applications:

Building CI/CD Pipelines Chapter 3

[128]

Now, you know how to create projects on GitLab and use Auto DevOps
functionality to automate the creation of CI/CD pipelines.

See also
If you would like to learn more about GitLab, the Quick Start Guide by Adam
O'Grady is a great resource: https:/ /www. packtpub. com/virtualization- and-
cloud/gitlab- quick- start- guide

GitLab Training Tracks: https:/ /about. gitlab. com/ training/

GitLab Git cheat sheet: https:/ / about. gitlab. com/ images/ press/ git- cheat-
sheet.pdf

Learning GitLab: https:/ / www. packtpub. com/ application- development/
learning- gitlab- video

Hands-On Auto DevOps with the GitLab CI: https:/ / github. com/
PacktPublishing/ Hands- On- Auto- DevOps- with- GitLab- CI

Creating a simple .gitlab-ci.yaml file: https:/ /docs. gitlab. com/ ee/ci/
quick_start/ #creating- a- simple- gitlab- ciyml- file

Creating a CI/CD pipeline in CircleCI
In this section, we will cover the initial configuration and requirements to deploy and
manage Kubernetes services using CircleCI. You will learn how to create a pipeline so that
you can build container images and store them in a Container Registry.

Getting ready
This recipe requires an active GitHub account with a project to build. We will use AWS EKS
to demonstrate CI with CircleCI.

First, visit the following GitHub page of our demo application project and fork your copy
to your GitHub account:

$ git clone
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks.git

https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://www.packtpub.com/virtualization-and-cloud/gitlab-quick-start-guide
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/training/
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://www.packtpub.com/application-development/learning-gitlab-video
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://github.com/PacktPublishing/Hands-On-Auto-DevOps-with-GitLab-CI
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/quick_start/#creating-a-simple-gitlab-ciyml-file

Building CI/CD Pipelines Chapter 3

[129]

Clone the k8sdevopscookbook/circleci-demo-aws-eks repository to your
workstation in order to use the circleci-demo-aws-eks example at https:/ /github.
com/k8sdevopscookbook/ circleci- demo- aws-eks.

How to do it...
This section is further divided into the following subsections to make this process easier:

Getting started with CircleCI
Deploying changes to a Kubernetes cluster on Amazon EKS

Getting started with CircleCI
Circle CI is a continuous integration platform that automatically runs your build in a clean
container or virtual machine, allowing the code stored on your repository to be directly
tested for every commit. CircleCI can be used in the cloud as a SaaS solution or installed as
a self-hosted solution on your environment. Let's perform the following steps to get started
using the cloud version of CircleCI:

Sign up for CircleCI using your GitHub account by going to https:/ /circleci.1.
com/signup/ .
After you've signed up, click on the ADD PROJECTS button on the left-hand2.
side of the Dashboard view:

https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/
https://circleci.com/signup/

Building CI/CD Pipelines Chapter 3

[130]

From the upper-left drop-down menu, select the GitHub account where you3.
want to build your projects.

Deploying changes to a Kubernetes cluster on EKS
In this recipe, we will use Amazon EKS. Let's perform the following steps to get started:

Create a new AWS IAM user specifically for CircleCI and take note of your new1.
user's access key ID and secret access key.
Create a repository named eks_orb_demo_app on the AWS Elastic Container2.
Registry ECR. Take note of your ECR URL. It should look similar to
1234567890.dkr.ecr.us-east-2.amazonaws.com.
Make sure you are signed in to Circle CI. Click on the Add Projects button,3.
search for the demo-aws keyword, and click on the Set Up Project button next to
it:

Click on build. The build will fail since it is missing the environment variables to4.
access your AWS account.

Building CI/CD Pipelines Chapter 3

[131]

Click on Project Settings. Go to the Environmental Variables page under Build5.
Settings. Create the following four variables by clicking the Add Variable
button:

AWS_DEFAULT_REGION = us-east-2
AWS_ACCESS_KEY_ID = [Enter your Access key ID here]
AWS_SECRET_ACCESS_KEY = [Enter your Secret Access Key here]
AWS_ECR_URL = [Enter your ECR URL here]

The output of this can be seen in the following screenshot:

Setting environmental variables will allow your pipeline to access AWS6.
resources. After the cloud variables have been defined, click on the Build button
to start the build.
The build may fail if your AWS user does not have the required permissions;7.
otherwise, this should be completed successfully in 35-40 mins.

Building CI/CD Pipelines Chapter 3

[132]

How it works...
This recipe showed you how to quickly create a CI/CD pipeline using a demo application
running on a Kubernetes cluster.

In step 2 of the Deploying changes to a Kubernetes cluster on EKS recipe, we created a
repository on AWS ECR to push our container images that were built by CircleCI. After a
successful build, the images will be saved and accessible through the private registry
location.

In step 6, when we run the pipeline, CircleCI will execute six jobs in order. The first job
(build-and-push-image) will bring up a VM, check out our code, install any
prerequisites, and build the image from the code. The second job (aws-eks/create-
cluster) will create an EKS cluster using the CloudFormation stack and verify the cluster.
The third job (deploy-application) will roll out the application. The fourth job (test-
application) will get the external IP of the service using the kubectl get service
demoapp command and connect to the service to validate the return. The service will return
a page similar to the following:

Hello World! (Version info: 63d25fd14ef8dfb1c718cf81a815b36d80138d19, build
date: 20190820224253)

Finally, the fifth (undeploy-application) and sixth (aws-eks/delete-cluster) jobs
will remove the application and use CloudFormation again to destroy the EKS cluster,
respectively.

With that, you've learned how to easily build your application using predefined container
environments that have been deployed on CircleCI.

See also
Circle CI documentation: https:/ /circleci. com/docs/

Circle CI Hello World examples: https:/ /circleci. com/docs/ 2. 0/hello-
world/

Circle CI AWS EKS demo application: https:/ /github. com/
k8sdevopscookbook/ circleci- demo- aws-eks

Circle CI GCP demo application: https:/ /github. com/ k8sdevopscookbook/
circleci- demo- k8s- gcp- hello- app

https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://circleci.com/docs/2.0/hello-world/
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-aws-eks
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app
https://github.com/k8sdevopscookbook/circleci-demo-k8s-gcp-hello-app

Building CI/CD Pipelines Chapter 3

[133]

Setting up a CI/CD pipeline using GitHub
Actions
GitHub Actions enable you to create custom software development workflows directly in
your GitHub repository. If you are already using GitHub as your code repository, built-in
CI/CD capabilities make this option very compelling.

In this section, we will cover the GitHub Actions workflow configuration and built-in
CI/CD capabilities. You will learn how to manage workflows and create new GitHub
Actions.

Getting ready
In the following recipe, you will learn how to create a basic action example in a repository
you own by adding a Dockerfile. This recipe requires an active GitHub account with a
project to build. We will use AWS EKS to demonstrate CI with GitHub.

How to do it...
This section is further divided into the following subsections to make this process easier:

Creating a workflow file
Creating a basic Docker build workflow
Building and publishing images to Docker Registry
Adding a workflow status badge

Creating a workflow file
GitHub flow is a lightweight branch that was recently introduced by GitHub. Let's perform
the following steps to create our first workflow:

Sign in to your GitHub account at https:/ /github. com/ .1.
Select a repository where you have maintainer access. In our example, we are2.
using the fork of the k8sdevopscookbook/python-flask-docker project.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Building CI/CD Pipelines Chapter 3

[134]

Create a ci.yml file in the .github/workflows directory with the following3.
content:

name: My Application
on:
 pull_request:
 branches:
 - master
jobs:
 build:
 runs-on: ubuntu-16.04
 steps:
 - uses: actions/checkout@v1
 - name: Set up Python 3.7
 uses: actions/setup-python@v1
 with:
 python-version: 3.7

Add the following lines to install any dependencies:4.

 - name: Install dependencies
 run: |
 python -m pip install --upgrade pip
 pip install -r requirements.txt

When using computer programming languages, lint tools are used to perform5.
static analysis of source code to check for semantic discrepancies. In our example,
we will use flake8 to lint our Python code using the following command:

 - name: Lint with flake8
 run: |
 pip install flake8
 # stop the build if there are Python syntax errors or undefined
names
 flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
 # exit-zero treats all errors as warnings. The GitHub editor is
127 chars wide
 flake8 . --count --exit-zero --max-complexity=10 --max-line-
length=127 --statistics

If you have unit tests, add the following lines to test your application with6.
pytest, a framework that's used in Python programming to write small tests:

 - name: Test with pytest
 run: |
 pip install pytest
 pytest

Building CI/CD Pipelines Chapter 3

[135]

After the configuration is complete, send a pull request to your repository to7.
trigger the pipeline:

After the pipeline is complete, you will be able to see a green checkmark on your
Pull Request (PR). In the preceding screenshot, you can see that all the checks
have passed and that the pull request was successful.

Creating a basic Docker build workflow
Let's perform the following steps to automate the Docker image build directly from our
GitHub repository:

Sign in to your GitHub account.1.
Select a repository where you have maintainer access. In our example, we are2.
using the fork of the k8sdevopscookbook/python-flask-docker project.
Click the Actionstab.3.
From here, click on Add a new workflow.4.
Create a dockerimage.yml file under the .github/workflows directory with5.
the following content:

name: Docker Image CI
on: [push]
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v1
 - name: Build the Docker image
 run: docker build . --file Dockerfile --tag my-image-
name:$(date +%s)

Building CI/CD Pipelines Chapter 3

[136]

The workflow will create a new Docker image every time new code is pushed to
the repository.

Building and publishing images to Docker Registry
Instead of creating multiple actions to build, tag, login, and push to Docker Repository, you
can use one action to achieve all at once. Let's perform the following steps:

Sign in to your GitHub account.1.
Select a repository where you have maintainer access. In our example, we are 2.
using the fork of the k8sdevopscookbook/python-flask-docker project.
Click the Actionstab.3.
From here, click on Add a new workflow.4.
Create a dockerpush.yml file under the .github/workflows directory with5.
the following content. Make sure to change MyDockerRepo/repository so that
it uses the name of the image you would like to push:

name: Build and Push to DockerHub
on: [push]
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@master
 - name: Publish to Registry
 uses: elgohr/Publish-Docker-Github-Action@master
 with:
 name: MyDockerRepo/repository
 username: ${{ secrets.DOCKER_USERNAME }}
 password: ${{ secrets.DOCKER_PASSWORD }}

Click on the Settings tab and go to the Secrets menu.6.
Create a DOCKER_USERNAME secret with the value equals to the username you7.
used to log in to your Docker Registry.
Create DOCKER_PASSWORD secrets with a value equals to the password you used8.
to log in to your Docker Registry. After both secrets have been created, you
should be able to see them in the Secrets menu, as shown in the following
screenshot:

Building CI/CD Pipelines Chapter 3

[137]

Environmental variables stored as secrets will be encrypted and are only available
for selected actions.

Adding a workflow status badge
Many good source code repositories on GitHub use badges on their main page to display
the status of various tests that have been completed on the repositories. Similarly, in this
recipe, we will add an action status summary to our repository to inform our visitors and
users about the current workflow status:

Sign in to your GitHub account and select a repository where you have1.
maintainer access. In our example, we are using the fork of the
k8sdevopscookbook/python-flask-docker project.
Edit the README.md file in the top directory of your repository.2.
Add the link to the badge by following the format3.
https://github.com/{owner}/{repo}/workflows/{workflow_name}/bad

ge.svg, as shown in the following example:

[![Actions
Status](https://github.com/muratkars/python-flask-docker/workflows/
.github/workflows/dockerpush.yml/badge.svg)

Building CI/CD Pipelines Chapter 3

[138]

See also
GitHub Actions for interacting with Docker: https:/ /github. com/ docker-
actions

GitHub Actions for AWS: https:/ /github. com/ aws-actions

GitHub Actions for Azure: https:/ /github. com/Azure/ k8s-actions

GitHub Actions for GCP: https:/ /github. com/ GoogleCloudPlatform/ github-
actions

Setting up a CI/CD pipeline on Amazon Web
Services
In this section, we will cover the CI/CD pipeline construction workflow on AWS and built-
in CI/CD capabilities. You will learn how to manage pipelines, how to run build commands
during the pipeline steps, and how to store build result images on the Amazon Elastic
Container Registry (ECR).

Getting ready
In the following recipe, you will learn how to build, test, and deploy an example service
based on AWS services. All the operations mentioned here require an AWS account and an
AWS user with a policy that has permission to use the related services, have HTTPS Git
credentials for CodeCommit assigned, and a Kubernetes cluster deployed using AWS EKS.
If you don't have one, go to https:/ /aws. amazon. com/ account/ and create one.

How to do it...
This section is further divided into the following subsections to make this process easier:

Creating an AWS CodeCommit code repository
Building projects with AWS CodeBuild
Creating an AWS CodeDeploy deployment
Creating a pipeline with AWS CodePipeline

https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/docker-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/aws-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/Azure/k8s-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://github.com/GoogleCloudPlatform/github-actions
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/

Building CI/CD Pipelines Chapter 3

[139]

Creating an AWS CodeCommit code repository
The AWS CodeCommit service is a managed source control service that hosts secure Git-
based repositories on the AWS platform. In this recipe, we will learn how to create our first
repository on CodeCommit:

Sign in to your AWS account and open AWS Developer Tools at https:/ / us-1.
west-2. console. aws. amazon. com/codesuite.
From the Developer Tools menu, expand the Source menu and click on2.
Repositories. You can see the complete menu content in the following
screenshot:

On the Repositories page, click on the Create repository button to start your3.
code repository on CodeCommit.

https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite

Building CI/CD Pipelines Chapter 3

[140]

Enter a Repository name and click on the Create button. In this example, the4.
repository name is k8sdevopscookbook:

From the AWS Management Console, go to the IAM service.5.
From the list of existing users, select an IAM user that you would like to use.6.
On the user summary page, click on the Security credentials tab. The following7.
screenshot shows the location of the tab:

Building CI/CD Pipelines Chapter 3

[141]

Under HTTPS Git credentials for AWS CodeCommit, click on the Generate8.
button. This will create a username and password that we will use for
authentication later:

On the Git credentials generated window, click on the Download credentials9.
button to record your CodeCommit credentials. The following screenshot shows
the username and password that was created for me. This is the only chance you
will get to view or copy your credentials:

Building CI/CD Pipelines Chapter 3

[142]

From the AWS Management Console, go to the CodeCommit service.8.
Under the Clone URL column, select HTTPS. In this recipe, our example9.
repository is located at https:/ /git- codecommit. us- west- 2.amazonaws. com/ v1/
repos/k8sdevopscookbook.

On your Linux workstation, clone the empty repository:10.

$ git clone <your_new_repo>

Clone the repository using your CodeCommit credentials.11.
Download our example application and extract it:12.

$ wget
https://github.com/k8sdevopscookbook/python-flask-docker/archive/ma
ster.zip && unzip master.zip

Now, copy the example application to your clone of the repository:13.

$ cp -r python-flask-docker-master/. k8sdevopscookbook/.
$ cd k8sdevopscookbook

Stage all your files. The following command will find all the new and updated14.
files on the project directory and add them to the staging area before it is pushed
to the target repository:

$ git add -A

Commit the files with a message. The following command, when used with the -15.
m parameter, adds the commit:

$ git commit -m "Add example application files"

Push the files from your local repository folder to your CodeCommit repository:16.

$ git push

Now, you will be able to view files in your CodeCommit repository.

https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook
https://git-codecommit.us-west-2.amazonaws.com/v1/repos/k8sdevopscookbook

Building CI/CD Pipelines Chapter 3

[143]

Building projects with AWS CodeBuild
Let's perform the following steps to build a project from the CodeCommit repository that
we created in the previous recipe:

Sign in to your AWS account and open AWS Developer Tools at https:/ / us-1.
west-2. console. aws. amazon. com/codesuite.

From the Developer Tools menu, expand the Build menu and click on Build2.
Projects. The following screenshot shows the menu's location:

On the Build projects page, click on the Create build project button. The3.
following screenshot shows the other available menu options and the location of
the Create build project button:

https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite

Building CI/CD Pipelines Chapter 3

[144]

Enter a project name.4.
Now, we will set the primary source of the project. In the Source box, select AWS5.
CodeCommit as a source provider. Select the repository you created in the
Creating an AWS CodeCommit code repository recipe. Select the master branch. In
our example, the repository's name is k8sdevopscookbook:

Building CI/CD Pipelines Chapter 3

[145]

In the Environment box, select Managed image and Ubuntu as your OS.6.
Select New service role:7.

Building CI/CD Pipelines Chapter 3

[146]

Expand the additional configuration settings. Add the AWS_DEFAULT_REGION,8.
AWS_ACCOUNT_ID, IMAGE_TAG, and IMAGE_REPO_NAME environment variables,
as shown in the following screenshot:

Never store environmental variables in a repository location. Always use
environmental parameters to provide the values during the build process.

In the Buildspec box, select Use a buildspec file. Make sure the9.
buildspec.yaml file exists in the root of your code repository. This file should
look something like this:

version: 0.2
phases:
 install:
 runtime-versions:
 docker: 18
 pre_build:
 commands:
 - echo Logging in to Amazon ECR...
 - $(aws ecr get-login --no-include-email --region
$AWS_DEFAULT_REGION)
 build:
 commands:
 - echo Build started on `date`
 - echo Building the Docker image...
 - docker build -t $IMAGE_REPO_NAME:$IMAGE_TAG .
...

Building CI/CD Pipelines Chapter 3

[147]

Finally, click on Create build project.10.
Find the Service Role you created in step 7 in Identity and Access Management11.
(IAM) and add this statement to the policy attached to the CodeBuild service
role:

{
 "Version": "2012-10-17"
 "Statement": [### BEGIN ADDING STATEMENT HERE ### {
"Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:CompleteLayerUpload",
 "ecr:GetAuthorizationToken",
 "ecr:InitiateLayerUpload",
 "ecr:PutImage",
 "ecr:UploadLayerPart"],
 "Resource": "*",
 "Effect": "Allow"
 }, ### END ADDING STATEMENT HERE ### ...],
 }

Now that the project is ready, click on the Start build button on the upper right-12.
hand corner of the page. In the following screenshot, you can view its status
under the Build history tab, after it's been started. In our example, it shows that
the build Succeeded:

Building CI/CD Pipelines Chapter 3

[148]

If your builds fail, make sure that the
AmazonEC2ContainerRegistryPowerUser policy is assigned to your
IAM role.

Creating an AWS CodeDeploy deployment
Let's perform the following steps to create a deployment from the CodeBuild builds:

Sign in to your AWS account and open the AWS Developer Tools at https:/ /us-1.
west-2. console. aws. amazon. com/codesuite.
From the Developer Tools menu, expand the Deploy menu and click on2.
Applications.
Click on the Create application button:3.

Enter an application name.4.
Choose AWS Lambda as a compute platform.5.

Building a pipeline with AWS CodePipeline
Finally, we have reached the last stage of AWS Developer Tools. Let's perform the
following steps to build a pipeline using the AWS CodePipeline service:

Sign in to your AWS account and open the AWS Developer Tools at https:/ /us-1.
west-2. console. aws. amazon. com/codesuite.

From the Developer Tools menu, expand the Pipeline menu and click on2.
Pipelines.
Enter a pipeline name.3.
Select New service role and click on Next.4.

https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite
https://us-west-2.console.aws.amazon.com/codesuite

Building CI/CD Pipelines Chapter 3

[149]

Now, we will set the primary source of the pipeline. Select AWS CodeCommit as5.
a source provider. Select the repository you created in the Creating an AWS
CodeCommit code repository recipe. Click on the Next button to confirm these
changes. The following screenshot shows that, in our example, the source is
k8sdevopscookbook:

Building CI/CD Pipelines Chapter 3

[150]

Select AWS CodeBuild as the Build provider. Select the project name you6.
created in the Building projects with AWS CodeBuild recipe (or create a new
project). Click on Next to confirm these changes. The following screenshot shows
that, in our example, the region is US West and that the project name is
DevOpsCookbookExample:

Click on Skip deploy stage. As a deployment alternative, you can invoke a7.
Lambda function to call the CloudFormation template and deploy a Kubernetes
cluster. You can find the AWS CodeSuite example that shows how to do this in
the See also section.
Click on Create Pipeline.8.

Building CI/CD Pipelines Chapter 3

[151]

When the pipeline has been executed, you will see a build similar to the9.
following:

With that, you have successfully built a pipeline using the AWS CodePipeline
service.

How it works...
This recipe showed you how to quickly create a pipeline using AWS Developer Tools.

In the Building a pipeline with AWS CodePipeline recipe, after you create the pipeline, AWS
CodePipeline watches for changes in AWS CodeCommit. When a new PR is merged into
the master branch stored in your CodeCommit repository, CodePipeline automatically
detects the changes to the branch and triggers the pipeline.

During the build job, CodeBuild packages the code and any dependencies described in the
Docker file into a Docker image. This Docker image is pushed to the Amazon ECR
container registry you specified during the recipe.

This pipeline is also fully extensible. In fact, you have the option to also invoke a serverless
function through AWS Lambda to either create a Kubernetes cluster or deploy the code on
an existing Kubernetes cluster so that you can test it. You can find additional examples at
the AWS Blog link provided in the See also section.

Building CI/CD Pipelines Chapter 3

[152]

See also
AWS CodeCommit documentation: https:/ /docs. aws. amazon. com/
codecommit/ latest/ userguide/ welcome. html

AWS CodeBuild documentation: https:/ /docs. aws. amazon. com/codebuild/
latest/userguide/ welcome. html

AWS CodeDeploy documentation: https:/ /docs. aws. amazon. com/ codedeploy/
latest/userguide/ welcome. html

AWS CodePipeline documentation: https:/ /docs. aws. amazon. com/
codepipeline/ latest/ userguide/ welcome. html

AWS Blog on Continuous Deployment to Kubernetes using AWS Developer
Tools: https:/ /aws. amazon. com/ blogs/ devops/ continuous- deployment- to-
kubernetes- using- aws- codepipeline- aws- codecommit- aws- codebuild- amazon-
ecr-and- aws- lambda/

CodeSuite – Continuous Deployment Reference Architecture for Kubernetes:
https:// github. com/ aws- samples/ aws- kube- codesuite

A similar example of a Lambda function for EKS deployment: https:/ /github.
com/muratkars/ lambda- eks

Setting up a CI/CD pipeline with Spinnaker
on Google Cloud Build
Google Cloud Build is a managed CI/CD and deployment platform that lets you build, test,
and deploy in the cloud. In this section, we will cover the CI/CD pipeline with Google
Cloud Build configuration using Spinnaker capabilities, an open source, multi-cloud
continuous delivery platform.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files under the chapter3 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd /src/chapter3

Make sure you have the necessary credentials to use GCP services and have access to the
current project. If you don't have one already, go to https:/ /console. cloud. google. com
and create an account.

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/aws-samples/aws-kube-codesuite
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://github.com/muratkars/lambda-eks
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

Building CI/CD Pipelines Chapter 3

[153]

How to do it...
This section is further divided into the following subsections to make this process easier:

Installing and configuring the Spin CLI
Configuring a service account for the CI/CD
Configuring events to trigger the pipeline
Installing Spinnaker using Helm
Creating a Google Cloud Source code repository
Building projects with Google Cloud Build
Configuring a Spinnaker pipeline
Rolling out an application to production

Installing and configuring the Spin CLI
The operations mentioned in the following recipes require the spin CLI, gcloud, and a
GCP account with a project that has billing enabled. We will enable related APIs using the
gcloud CLI:

Run the following command to download the gcloud CLI. If you have the1.
gcloud CLI installed and a project already, skip to step 4:

$ curl https://sdk.cloud.google.com | bash

Initialize the SDK and follow the instructions given:2.

$ gcloud init

Select a project that you have permissions for or create a new one.3.
Enable the Kubernetes Engine API, the Cloud Build API, and the Cloud Source4.
Repositories API for the project:

$ gcloud services enable compute.googleapis.com
cloudapis.googleapis.com sourcerepo.googleapis.com
Operation "operations/acf.d1f2c714-9258-4784-a8a9-6648ab4c59fe"
finished successfully.

Building CI/CD Pipelines Chapter 3

[154]

Download and install the spin CLI:5.

$ curl -LO \
https://storage.googleapis.com/spinnaker-artifacts/spin/$(curl -s \
https://storage.googleapis.com/spinnaker-artifacts/spin/latest)/lin
ux/amd64/spin
$ chmod +x spin
$ sudo mv spin /usr/local/bin/spin

Now you have GCP services enabled and the spin CLI installed.

Configuring a service account for the CI/CD
To use CI/CD services on Google Cloud, your user needs to have the right permissions
assigned to them. Let's perform the following steps to configure a service account for the
CI/CD:

Follow the instructions in the Provisioning a managed Kubernetes cluster on the GKE1.
recipe of Chapter 1, Building Production-Ready Kubernetes Clusters, to deploy a
GKE cluster. If you already have one, skip to step 2 to create a service account
that will be used by the pipeline later:

$ gcloud iam service-accounts create cicd-account \
--display-name "My CICD Service Account"

Replace the following devopscookbook in both places with your project name2.
and add storage admin role binding to your service account:

$ gcloud projects \
 add-iam-policy-binding \
 devopscookbook --role \
 roles/storage.admin --member \
 serviceAccount:cicd-
account@devopscookbook.iam.gserviceaccount.com

Store your cicd-account key:3.

$ gcloud iam service-accounts keys \
 create cicd-key.json \
 --iam-account cicd-
account@devopscookbook.iam.gserviceaccount.com

Building CI/CD Pipelines Chapter 3

[155]

With that, you have assigned the permissions to your service account.

Configuring events to trigger a pipeline
Google Pub/Sub is a cloud service best described as a managed version of Kafka or Rabbit
MQ. We will use Google Pub/Sub to deliver notifications when a change is detected in our
container registry. Let's perform the following steps:

Use the following gcloud command to create a Cloud Pub/Sub topic:1.

$ gcloud pubsub topics create
projects/devopscookbook/topics/gcrgcloud pubsub topics create
projects/devopscookbook/topics/gcr
Created topic [projects/devopscookbook/topics/gcrgcloud].
Created topic [projects/devopscookbook/topics/pubsub].
Created topic [projects/devopscookbook/topics/topics].
Created topic [projects/devopscookbook/topics/create].
Created topic [projects/devopscookbook/topics/gcr].

Create a pubsub subscription. The following command should return a Created2.
subscription message, similar to the following:

$ gcloud pubsub subscriptions create gcr-triggers --topic
projects/devopscookbook/topics/gcr
Created subscription [projects/devopscookbook/subscriptions/gcr-
triggers].

Replace the following devopscookbook in both places with your project name3.
and add permission to your CI/CD service account, that is, cicd-account:

$ gcloud pubsub subscriptions add-iam-policy-binding \
 gcr-triggers --role roles/pubsub.subscriber \
 --member serviceAccount:cicd-
account@devopscookbook.iam.gserviceaccount.com

With that, you've learned how to configure events to trigger a pipeline.

Building CI/CD Pipelines Chapter 3

[156]

Deploying Spinnaker using Helm
Let's perform the following steps to deploy the Spinnaker tool using Helm charts:

Verify that helm is installed and initialized on your GKE cluster. If not, follow1.
the instructions in Chapter 2, Operating Applications on Kubernetes, in the
Deploying workloads using Helm charts recipe to install Helm. The following
command will return the client and server of Helm if it's installed on your
cluster:

$ helm version --short
Client: v2.14.3+g0e7f3b6
Server: v2.14.3+g0e7f3b6

Create clusterrolebinding for the ci-admin service account:2.

$ kubectl create clusterrolebinding \
 --clusterrole=cluster-admin \
 --serviceaccount=default:default \
 ci-admin

Create a pipeline configuration bucket using the following command. Make sure3.
to replace the devopscookbook-ci-config bucket name with a unique name.
This will create an object storage bucket on Google Cloud Storage:

$ gsutil mb -c regional -l us-central1 gs://devopscookbook-ci-
config

Create a variable with the content of the cicd-account key:4.

$ export CICDKEY_JSON=$(cat cicd-key.json)

Edit the spinnaker-config.yaml file in the cd /src/chapter3/gcp5.
directory and replace the following bucket name with the bucket name you used
in step 3:

gcs:
 enabled: true
 bucket: devopscookbook-ci-config
 project: devopscookbok
 jsonKey: '$CICDKEY_JSON'
...

Building CI/CD Pipelines Chapter 3

[157]

Deploy Spinnaker on your Kubernetes cluster using the custom spinnaker-6.
config.yaml file from step 5:

$ helm install -n cd stable/spinnaker -f \
 spinnaker-config.yaml --timeout 600 --wait

Create port forwarding tunnels to access the Spinnaker UI:7.

$ export DECK_POD=$(kubectl get pods --namespace default -l
"cluster=spin-deck" -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward --namespace default $DECK_POD 8080:9000 >>
/dev/null &
$ export GATE_POD=$(kubectl get pods --namespace default -l
"cluster=spin-gate" -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward --namespace default $GATE_POD 8084

To be able to access the Spinnaker UI, we created port forwarding tunnels for our
workstation. We could also create a cloud LoadBalancer to open ports to the internet,
but port forwarding is safer.

Creating a Google Cloud Source code repository
Let's perform the following steps to create a code repository on the Google Cloud Source
Code service:

Download our example application and extract it:1.

$ wget
https://github.com/k8sdevopscookbook/src/raw/master/chapter3/gcp/sa
mple-app-v2.tgz && tar xzfv sample-app-v2.tgz

After the example code has been extracted, change directories to our source code2.
directory:

$ cd sample-app

Make the initial commit to your repository using the following commands:3.

$ git init && git add . && git commit -m "Initial commit"

Building CI/CD Pipelines Chapter 3

[158]

Create a Google Cloud Code repository named sample-app:4.

$ gcloud source repos create sample-app

Set credential.helper for the Google Cloud repository:5.

$ git config credential.helper gcloud.sh

Replace devopscookbook with your project name. Add your new repository as6.
remote and push your code:

$ git remote add origin
https://source.developers.google.com/p/devopscookbook/r/sample-app
$ git push origin master

Now, you will be able to view the files in your Google Cloud Source Code7.
repository in the sample-app repository, as shown in the following screenshot:

With that, you've learned how to create a code repository on Google Cloud
Source. In the next recipe, we will use the Cloud Source repository location to
build our project.

Building CI/CD Pipelines Chapter 3

[159]

Building projects with Google Cloud Build
Let's perform the following steps to build the project from the Cloud Source repository that
we created in the previous recipe:

Here, we are going to use the Cloud Build product to build our project. First, log1.
in to your GCP account. From the main Products menu, click on Cloud Build. As
shown in the following screenshot, it is located under TOOLS:

In the Cloud Build menu, choose Triggers and click on the Create trigger button,2.
as shown in the following screenshot:

Building CI/CD Pipelines Chapter 3

[160]

Our code is in a Cloud Source repository, so select Cloud Source Repository and3.
click on the Continue button. As you can see, the other options are Bitbucket
and GitHub:

The repositories on your account will be detected automatically. Select the4.
sample-app repository and click on the Continue button:

Set the following settings and leave the others unchanged:5.

Name: devopscookbook-trigger-1
Trigger type: Tag
Tag (regex): v.*
Build configuration: Cloud Build configuration file (yaml or json)

Building CI/CD Pipelines Chapter 3

[161]

Click on the Create trigger button.6.
Switch back to the command line where kubectl has been configured to access7.
your Kubernetes cluster and create a bucket. Replace the devopscookbook-
kubernetes-manifests bucket name with a unique bucket name before you
create it:

$ gsutil mb -l us-central1 gs://devopscookbook-kubernetes-manifests

Enable bucket versioning on the bucket you created in step 6. This following8.
command will enable versioning on Cloud Storage and let the bucket keep old
versions of objects:

$ gsutil versioning set on gs://devopscookbook-kubernetes-manifests

If you are not already in the source code folder, change directories to our source9.
code:

$ cd sample-app

Change the project ID in our Kubernetes deployment manifest files to your10.
project:

$ sed -i s/PROJECT/devopscookbook/g k8s/deployments/*

Commit the changes with a meaningful commit message similar to the following:11.

$ git commit -a -m "Change placeholder project ID to
devopscookbook"

Create a Git tag for the release and push the tag:12.

$ git tag v1.0.0 && git push --tags

Switch back to the browser and click on History from the Cloud Code menu and13.
confirm that the build has been triggered and successful:

Building CI/CD Pipelines Chapter 3

[162]

With that, you've learned how to build a project using Google Cloud Build.

Configuring a Spinnaker pipeline
Let's perform the following steps to upload your configuration to Spinnaker:

Replace the following email in the owner-email section with yours and create1.
the provided application in Spinnaker using the following command:

$ spin application save \
--application-name sample \
--owner-email \
youremail@domain.com \
--cloud-providers kubernetes \
--gate-endpoint \
http://localhost:8080/gate

Upload the example pipeline to Spinnaker:2.

$ sed s/PROJECT/devopscookbook/g spinnaker/pipeline-deploy.json >
pipeline.json
$ spin pipeline save --gate-endpoint http://localhost:8080/gate -f
pipeline.json

The preceding command will export the configuration into a file called pipeline.json
and upload it to Spinnaker.

Rolling out an application to production
Once an application has been deployed to staging, the next step is to promote it into the
production environment. Let's perform the following steps to promote an application from
staging to production on Spinnaker:

On the Spinnaker UI, select the sample application that we created in the1.
Configuring a Spinnaker pipeline recipe:

Building CI/CD Pipelines Chapter 3

[163]

Click on the PIPELINES tab shown in the following screenshot:2.

Building CI/CD Pipelines Chapter 3

[164]

Hover your mouse over the orange box and click on the Continue button. As3.
shown in the following screenshot, the green boxes represent completed parts of
the pipeline, while the orange box shows where the pipeline has been paused:

Select LOAD BALANCERS under the INFRASTRUCTURE menu. The4.
following screenshot shows the INFRASTRUCTURE menu:

Click on the DEFAULT button under the service sample-frontend-production5.
load balancer:

On the right-hand side of the details pane, find the Ingress IP and copy it to the6.
clipboard by clicking the copy icon next to the IP address:

Building CI/CD Pipelines Chapter 3

[165]

Open the IP address in your browser to confirm that the production application7.
is accessible. You will see a screen similar to the following view showing the Pod
Name, Node Name, and its Version:

With that, you know how to use Google Cloud Platform services and Spinnaker
to create your CI/CD pipeline on GKE.

Building CI/CD Pipelines Chapter 3

[166]

See also
CI/CD on Google Cloud Quickstarts: https:/ /cloud. google. com/docs/ ci- cd/

Cloud Source Repositories documentation: https:/ / cloud. google. com/ source-
repositories/ docs/

Setting up a CI/CD pipeline on Azure
DevOps
Azure DevOps provides version control, reporting, automated builds, and
project/lab/testing and release management capabilities. Azure DevOps is available as a
SaaS or on-premises server product. In this section, we will cover the Azure DevOps
workflow configuration and built-in CI/CD capabilities using the SaaS product. You will
learn how to manage workflows and create Azure pipelines.

Getting ready
In the following recipe, you will learn how to create a pipeline example in a repository you
own by adding a YAML file. This recipe requires an active GitHub account with a project
ready to be built. We will use AKS to demonstrate continuous delivery with Azure
Pipelines.

All the operations mentioned here require an Azure DevOps account. If you don't have
one, go to https:/ /azure. microsoft. com/ services/ devops/ and create one. Deploying
the application on Azure Kubernetes Service also requires an active Azure Cloud
subscription.

How to do it...
This section is further divided into the following subsections to make this process easier:

Getting started with Azure DevOps
Configuring Azure Pipelines
Deploying changes to an AKS cluster

https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/docs/ci-cd/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://cloud.google.com/source-repositories/docs/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/

Building CI/CD Pipelines Chapter 3

[167]

Getting started with Azure DevOps
Azure DevOps is a set of DevOps tools provided by Microsoft that includes CI/CD and
project management services such as Azure Pipelines, Azure Boards, Azure Artifacts,
Azure Repos, and Azure Test Plans.

Let's perform the following steps to create our first project before we use Azure Pipelines:

Sign in to Azure DevOps at https:/ / azure. microsoft. com/ en-us/ services/1.
devops/.
Create a project name.2.
Choose Visibility. In our example, this is set to Public:3.

Click on the Create project button.4.

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

Building CI/CD Pipelines Chapter 3

[168]

Configuring Azure Pipelines
Azure Pipelines lets you build, test, and deploy with the CI/CD with any language,
platform, and cloud provider. Let's perform the following steps to configure Azure
Pipelines for the first time:

After you log in to your Azure DevOps account, you will see the links to the1.
main functionality on the left-hand Overview menu. From the Overview menu,
click on the Pipelines menu. The following screenshot shows the Welcome to the
project! page:

Building CI/CD Pipelines Chapter 3

[169]

Click on the Create Pipeline button.2.

As part of the pipeline creation process, you need to set your code repository3.
location. You can import a project from any Git repository. In our example, we
will use GitHub as our repository. The following screenshot shows all the other
available options:

Click on Authorize AzurePipelines:4.

Building CI/CD Pipelines Chapter 3

[170]

Select a repository and click on Approve & Install:5.

Now, select the repository you would like to configure a pipeline.6.
Choose Docker to build and push an image to Azure Container Registry. This7.
option will upload the container artifact to the Azure Container Registry service.
The following screenshot shows the Docker option that we will be using:

Building CI/CD Pipelines Chapter 3

[171]

Review your pipeline YAML and click Save and run to approve it.8.
You will see the pipeline. Click on the Build job to view its details:9.

With that, you've learned how to configure an Azure Pipeline.

Building CI/CD Pipelines Chapter 3

[172]

Deploying changes to an AKS cluster
Let's perform the following steps:

After you log in to your Azure DevOps account, you will see the links to the1.
main functionality on the left-hand Overview menu. This time, from the
Overview menu, choose the Pipelines option. As shown in the following
screenshot, it is the fourth option from the top:

Building CI/CD Pipelines Chapter 3

[173]

Next, you need to create a pipeline. The following screenshot shows the2.
Pipelines menu. Click on the New pipeline button located in the upper-right
corner of the page:

Choose GitHub as your repository. Again, all the other repository options are3.
visible in the following screenshot:

Building CI/CD Pipelines Chapter 3

[174]

Select a repository and click on Approve & Install. The following screenshot4.
shows that my own repository is selected. In your case, the repository name will
be different:

Now, select the repository you would like to configure a pipeline.5.
As shown in the following screenshot, you will be offered predefined alternatives6.
for configuring your pipelines. For this example, choose Deploy to Azure
Kubernetes Service to build and push an image to Azure Container Registry and
to deploy to AKS:

Building CI/CD Pipelines Chapter 3

[175]

Select your Azure Cloud subscription.7.
Select an existing AKS cluster.8.
Choose Existing and select default in the Namespace field.9.
Enter the name of your Container Registry. In the following screenshot, you can10.
see the options that I have selected. In your case, Container registry and Image
Name will be different:

Click on the Validate and configure button.11.
Review your pipeline YAML and click Save and run to approve it.12.

Building CI/CD Pipelines Chapter 3

[176]

You will see the pipeline. Click on the Build job to view its details:13.

As shown in the preceding screenshot, our simple pipeline only includes only two
stages. These will be explained in the How it works... section.

How it works...
This recipe showed you how to quickly create an Azure DevOps CI/CD pipeline using a
demo application running on an AKS cluster.

In the Deploying changes to an AKS cluster recipe, after step 9, while we build the job, Azure
Pipelines will create your pipeline. It will create the following two stages:

In stage 1, which is the Build Stage, it creates a Docker image and pushes images1.
into your Azure Container Registry. When it is successful, you can find the new
image stored in your existing registry in Azure portal. As an example, the
following screenshot shows the image that was created as a result of my pipeline
under the Azure Container Registry and its details:

Building CI/CD Pipelines Chapter 3

[177]

In stage 2, which is the Deploy stage, it creates the image pull secrets to access2.
your registry and rolls out your application as a deployment.

The application will be deployed into the namespace you specified during the pipeline
creation.

Later, you can create multiple environments that can be used for the different stages
(preview, staging, and production) of your application and change where your application
needs to be deployed in the pipelines.

See also
Azure DevOps documentation: https:/ /docs. microsoft. com/ en-us/ azure/
devops/? view= azure- devops

Azure Pipelines documentation: https:/ /docs. microsoft. com/ en-us/ azure/
devops/pipelines/ index? view= azure- devops

Canary deployment strategy for Kubernetes deployments: https:/ /docs.
microsoft. com/ en- us/ azure/ devops/ pipelines/ ecosystems/ kubernetes/
canary-demo? view= azure- devops

https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/index?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops

4
Automating Tests in DevOps

In this chapter, we will discuss automating tests in DevOps workflow to accelerate time to
production, reduce the loss of delivery risks, and detect service anomalies using known test
automation tools on Kubernetes. After following the recipes in this chapter, you will have
gained the skills to prevent known defects as well as quickly find new defects to reduce
service downtime.

In this chapter, we will cover the following recipes:

Building event-driven automation with StackStorm
Automating tests with the Litmus framework
Automating Chaos Engineering with Gremlin
Automating your code review with Codacy
Detecting bugs and anti-patterns with static code analysis with SonarQube
Detecting license compliance issues with Fossa

Technical requirements
The recipes in this section assume that you have a functional Kubernetes cluster deployed
by following one of the recommended methods described in Chapter 1, Building
Production-Ready Kubernetes Clusters.

Automating Tests in DevOps Chapter 4

[179]

The Kubernetes command-line tool, kubectl, will be used for the rest of the recipes in this
chapter, since it's the main command-line interface for running commands against
Kubernetes clusters. We will also use helm, where Helm charts are available to deploy
solutions.

Building event-driven automation with
StackStorm
StackStorm is an open source, event-driven automation platform. Using the GitOps
approach, it helps run workflows based on events. In this section, we will perform arbitrary
automation or remediation tasks using StackStorm on Kubernetes. You will learn how to
deploy StackStorm in a highly available configuration on Kubernetes using Helm charts
and get started by deploying examples of rules, custom sensors, actions, and workflows.

Getting ready
Make sure you have a Kubernetes cluster ready, as well as kubectl and helm configured
so that you can manage the cluster resources.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing StackStorm
Accessing the StackStorm UI
Using the st2 CLI
Defining a rule
Deploying a rule

Installing StackStorm
Although StackStorm can be distributed as a Red Hat Package
Manager/Debian (RPM/Deb) for Linux systems and as Docker images, if you plan to run
business-critical automation tasks, it is recommended to deploy StackStorm High
Availability (HA) cluster on Kubernetes.

Automating Tests in DevOps Chapter 4

[180]

In this recipe, we will learn how to deploy StackStorm on Kubernetes by following these
steps:

Add the Helm repository to your list of local charts:1.

$ helm repo add stackstorm https://helm.stackstorm.com/

Install the StackStorm HA cluster using the Helm chart. The following command2.
will deploy StackStorm and its dependencies, such as MongoDB and RabbitMQ:

$ helm install stackstorm/stackstorm-ha --name=st2 --
namespace=stackstorm

The installation process may take 2 to 3 minutes. Confirm that the release has3.
been deployed and running:

$ helm ls st2
NAME REVISION UPDATED STATUS CHART
APP VERSION NAMESPACE
st2 1 Wed Oct 30 23:06:34 2019 DEPLOYED stackstorm-
ha-0.22.0 3.2dev stackstorm

Now, you have StackStorm running in our cluster. Next, we will access the UI or
use the CLI to interact with StackStorm.

Accessing the StackStorm UI
The StackStorm Helm installation assumes you are running in a single-node Minikube
cluster and the instructions provided alongside it serve smaller deployments. We are
running StackStorm on a large cluster with multiple nodes. We will expose the web server
externally to access the StackStorm UI.

Let's perform the following steps to create a cloud load balancer so that we can access the
StackStorm web interface:

Create a load balancer. The following command will create a load balancer1.
through your cloud provider and expose the web service on port 80:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: st2-service
 namespace: stackstorm
spec:

Automating Tests in DevOps Chapter 4

[181]

 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 protocol: TCP
 selector:
 app: st2web
EOF

Find the external service IP. In the following example, we have used a2.
Kubernetes cluster deployed on AWS. Although the output might be different,
the following command should result in the same on other platforms:

$ kubectl get svc st2-service -nstackstorm
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
st2-service LoadBalancer 100.68.68.243
a022d6921df2411e9bd5e0a92289be87-2114318237.us-
east-1.elb.amazonaws.com 80:31874/TCP 6m38s

Open the external IP address from step 2 in a browser:3.

Log in with the necessary credentials, that is, username as st2admin and4.
password as Ch@ngeMe :

Automating Tests in DevOps Chapter 4

[182]

Now, you have access to the StackStorm interface. Now, we will click on the
menu items and explore the actions before we create our first rule in the Defining a
rule recipe.

Using the st2 CLI
The StackStorm web interface is useful if we want to get familiar with the product, but, if
you are going to use StackStorm in production, you need to learn the CLI commands. Now,
perform the following steps to access the st2 CLI from the pod:

Find the st2 client's pod name:1.

$ export ST2CLIENT=$(kubectl get --namespace stackstorm pod -l
app=st2client -o jsonpath="{.items[0].metadata.name}")

Execute the following commands via the st2 CLI. This command will execute the2.
st2 --version command from the pod:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 --version
st2 3.2dev (a643ba7), on Python 2.7.12

Automating Tests in DevOps Chapter 4

[183]

Authenticate to StackStorm using the following CLI command and save the3.
password using the -w parameter. If you don't want to save the password, then
you can remove the -w parameter at the end:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 login st2admin
-p 'Ch@ngeMe' -w
Logged in as st2admin

List the available actions from the core pack:4.

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 action list --
pack=core

List the actions from the core pack. You can also try the other pack options for5.
Linux, ChatOps, and packs:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 action list --
pack=core

All StackStorm CLI operations are available via REST API, Python, and JavaScript
bindings. You can find more information at the StackStorm CLI and Python Client
reference link in the See also section.

Defining a rule
StackStorm uses rules to run available actions when events occur. StackStorm comes with
default actions and the catalog of actions can be increased by adding new actions from the
community. Follow these steps to create your first rule:

Rules are created in a familiar YAML format and consist of three sections: trigger,1.
criteria, and action. Before we create the rule file, we will get familiar with the
available triggers we can use in our rule. Use the following command to list the
available triggers:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 trigger list

Check the details of the webhook trigger. The following command will return the2.
description, parameters, and payload schema for the trigger.
Review parameters_schema since we will use this in our example rule later:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 trigger get
core.st2.webhook
...
| parameters_schema | { |
| | "additionalProperties": false, |

Automating Tests in DevOps Chapter 4

[184]

	"type": "object",
	"properties": {
	"url": {
	"required": true,
	"type": "string"
...

Use the following command to list the available actions:3.

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 action list

Check the details of the core.local action. This action executes an arbitrary4.
Linux command on the localhost. The following command returns the
parameters it can take, as follows:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 action get
core.local
...
parameters	{
	"cmd": {
	"required": true,
	"type": "string",
	"description": "Arbitrary Linux command to
	be executed on the local host."
	},
	"sudo": {
	"immutable": true
	}
	}
metadata_file	actions/local.yaml
...

Let's use the preceding trigger and action in a rule, and set up a webhook to5.
listen to the URL at https://{host}/api/v1/webhooks/sample using
the following rule and create a first_rule.yaml file. Once you've done this,
copy the file into the container. The action will be triggered when a POST request
is made to this URL:

$ cat > first_rule.yaml <<EOF
 name: "sample_rule_with_webhook"
 pack: "examples"
 description: "Sample rule dumping webhook payload to a file."
 enabled: true
 trigger:
 type: "core.st2.webhook"
 parameters:
 url: "sample"

Automating Tests in DevOps Chapter 4

[185]

 criteria:
 trigger.body.name:
 pattern: "st2"
 type: "equals"
 action:
 ref: "core.local"
 parameters:
 cmd: "echo \"{{trigger.body}}\" >> ~/st2.webhook_sample.out ;
sync"
EOF

With that, you've learned how to find and use available actions and triggers to
construct a rule. Next, we will learn how to run it in StackStorm.

Deploying a rule
StackStorm rules can be deployed through its UI, a CLI, or APIs. In this recipe, we will use
the rule we defined previously and deploy it using the following steps:

Create the rule using the YAML file we created in the Defining a rule recipe:1.

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 rule create
first_rule.yaml

List the rules and confirm that the new rule has been created. You should see2.
the examples.sample_rule_with_webhook rule on the list, as follows:

$ kubectl exec -it ${ST2CLIENT} -n stackstorm -- st2 rule list
+------------------+----------+-------------------------+---------+
| ref | pack | description | enabled |
+------------------+----------+-------------------------+---------+
chatops.notify	chatops	Notification rule to	True
		send results of action	
		executions to stream	
		for chatops	
examples.sample	examples	Sample rule dumping	True
rule_with_webhook		webhook payload to a	
		file.	
+------------------+----------+-------------------------+---------+

Automating Tests in DevOps Chapter 4

[186]

With the new rule we created here, the webhook has started to listen on
https://{host}/api/v1/webhooks/sample.

See also
StackStorm documentation: https:/ /docs. stackstorm. com/ install/ k8s_ ha.
html

StackStorm CLI and Python client: https:/ /docs. stackstorm. com/ reference/
cli.html

StackStorm examples: https:/ /github. com/StackStorm/ st2/tree/ master/
contrib/ examples

Automating tests with the Litmus framework
Litmus is an open source toolset that's used to run chaos experiments in Kubernetes.
Litmus provides the Chaos Central Registration Depository (CRD) for cloud-native
developers and SREs to inject, orchestrate, and monitor chaos to find potential weaknesses
in Kubernetes deployments in real time in production. In this section, we will run some of
these chaos experiments to validate the resiliency of the systems. You will learn how to
build pipelines for CI and end-to-end testing in order to validate and certify the new
Kubernetes version.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to be able to use the
manifest files under the chapter4 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter4

Make sure you have a Kubernetes cluster ready and kubectl and helm configured so that
you can manage the cluster resources.

https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/install/k8s_ha.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://docs.stackstorm.com/reference/cli.html
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples
https://github.com/StackStorm/st2/tree/master/contrib/examples

Automating Tests in DevOps Chapter 4

[187]

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing the Litmus Operator
Using Chaos Charts for Kubernetes
Creating a container kill chaos experiment
Reviewing chaos experiment results
Viewing chaos experiment logs

Installing the Litmus Operator
The Litmus Chaos Engineering tool can be installed using the Helm chart. Books are
defined as Kubernetes jobs.

Let's perform the following steps to install Litmus in our cluster:

Install the Litmus Chaos Operator:1.

$ kubectl apply -f
https://litmuschaos.github.io/pages/litmus-operator-latest.yaml

Verify that the Litmus Chaos Operator pod is running:2.

$ kubectl get pods -n litmus
NAME READY STATUS RESTARTS AGE
chaos-operator-ce-554d6c8f9f-46kf6 1/1 Running 0 50s

Verify that the cluster role and cluster role bindings have been applied:3.

$ kubectl get clusterroles,clusterrolebinding,crds | grep
"litmus\|chaos"

Now, we have the Litmus Chaos Operator running in our cluster. Next, we need
to deploy chaos experiments to test the resiliency of our cluster resources.

Automating Tests in DevOps Chapter 4

[188]

Using Chaos Charts for Kubernetes
Similar to workload Helm charts, Litmus Chaos Charts are used to install chaos experiment
bundles. Chaos experiments contain the actual chaos details. In this recipe, we will learn
how to list chaos experiment bundles and download the Kubernetes chaos experiment
bundle. Let's perform the following steps to install Chaos Charts for the Litmus Operator:

Open the Chaos Charts for Kubernetes website at https:/ /hub. litmuschaos.1.
io on your browser and search for generic in the search field:

Click on the Generic Chaos chart:2.

https://hub.litmuschaos.io
https://hub.litmuschaos.io
https://hub.litmuschaos.io
https://hub.litmuschaos.io
https://hub.litmuschaos.io
https://hub.litmuschaos.io
https://hub.litmuschaos.io
https://hub.litmuschaos.io

Automating Tests in DevOps Chapter 4

[189]

Click on the Install All Experiments button:3.

Copy the chaos experiment manifest link:4.

Automating Tests in DevOps Chapter 4

[190]

Install the chaos experiment:5.

$ kubectl create -f
https://hub.litmuschaos.io/api/chaos?file=charts/generic/experiment
s.yaml

Get the list of chaos experiments that have been created:6.

$ kubectl get chaosexperiments
NAME AGE
container-kill 19s
pod-delete 19s
pod-network-latency 19s
pod-network-loss 19s

Chaos experiment scenarios such as pod delete, network latency, network loss,
and container kill are available under generic Chaos Chart. You can also install or
build your own application-specific Chaos Charts to run application-specific
Chaos.

Creating a pod deletion chaos experiment
Chaos experiments bundle the reproducible chaos situations in order to run them as a
Kubernetes job. In this recipe, we will deploy an example application and use a Kubernetes
chaos experiment on the application. Let's perform the following steps to test the impact of
pod deletion in our cluster:

Deploy a sample application:1.

$ kubectl apply -f litmus/nginx/nginx.yaml

List the pods and confirm they are running:2.

$ kubectl get pods |grep nginx
nginx-deployment-5c689d88bb-24n4m 1/1 Running 0 4m31s
nginx-deployment-5c689d88bb-qtvsx 1/1 Running 0 4m31s

Annotate the deployment for chaos using litmuschaos.io/chaos="true":3.

$ kubectl annotate deploy nginx-deployment
litmuschaos.io/chaos="true"
deployment.extensions/nginx-deployment annotated

Automating Tests in DevOps Chapter 4

[191]

Create a ServiceAccount for the chaos executor:4.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: nginx
 labels:
 app: nginx
EOF

Create a cluster role:5.

$ cat <<EOF | kubectl apply -f -
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nginx
rules:
- apiGroups: ["", "extensions", "apps", "batch", "litmuschaos.io"]
 resources: ["daemonsets", "deployments", "replicasets", "jobs",
"pods", "pods/exec", "events", "chaosengines", "chaosexperiments",
"chaosresults"]
 verbs: ["*"]
EOF

Create a ClusterRoleBinding:6.

$ cat <<EOF | kubectl apply -f -
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nginx
subjects:
- kind: ServiceAccount
 name: nginx
 namespace: default
roleRef:
 kind: ClusterRole
 name: nginx
 apiGroup: rbac.authorization.k8s.io
EOF

Automating Tests in DevOps Chapter 4

[192]

Review the experiment CRs to view the chaos parameters. In this case, let's7.
review the pod-delete and container-kill experiments:

$ kubectl get chaosexperiment pod-delete -o yaml
$ kubectl get chaosexperiment container-kill -o yaml

Create a Chaos Engine using the preceding two experiments you've reviewed:8.

cat <<EOF | kubectl apply -f -
apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
 name: engine-nginx
spec:
 appinfo:
 appns: default
 applabel: "app=nginx"
 appkind: deployment
 chaosServiceAccount: nginx
 experiments:
 - name: pod-delete
 spec:
 rank: 1
 - name: container-kill
 spec:
 components:
EOF

With that, you've learned how to create chaos experiments based on predefined
Chaos Charts.

Reviewing chaos experiment results
Chaos experiments are executed as Kubernetes jobs and affected pods will be taken down
by the chaos executor based on the experiment definition.

Let's perform the following steps to review the results of our chaos experiments:

Watch the experiment in progress:1.

$ watch kubectl get pods
Every 2.0s: kubectl get pods ip-172-20-50-43: Wed Sep 25 05:17:55
2019
NAME READY STATUS RESTARTS AGE
container-kill-klfr5-rgddd 0/1 Completed 0 2m39s
engine-nginx-runner 1/2 Running 0 4m53s

Automating Tests in DevOps Chapter 4

[193]

nginx-deployment-5c689d88bb-qtvsx 1/1 Terminating 1 23m
nginx-deployment-5c689d88bb-rwtk9 1/1 Running 0 3m12s
pod-delete-wzj6w-x6k5t 0/1 Completed 0 4m8s

Get the list of results:2.

$ kubectl get chaosresults
NAME AGE
engine-nginx-container-kill 9m
engine-nginx-pod-delete 10m

View the engine-nginx-container-kill experiment results:3.

$ kubectl describe chaosresults engine-nginx-container-kill
...
Spec:
 Experimentstatus:
 Phase: <nil>
 Verdict: pass
Events: <none>

View the engine-nginx-pod-delete experiment results:4.

$ kubectl describe chaosresults engine-nginx-pod-delete
...
Spec:
 Experimentstatus:
 Phase: <nil>
 Verdict: pass
Events: <none>

In this recipe, we have tested and reviewed a simple scenario. You can combine
existing Chaos Charts to create your experiments and write your application
chaos experiments using the Litmus framework.

Viewing chaos experiment logs
Logs are always collected and stored by the standard Kubernetes logging frameworks that
are used on your cluster. In cases where you need to review them quickly, you can use
access to the kubelet logs.

Automating Tests in DevOps Chapter 4

[194]

Let's perform the following steps to take a deeper look at the tasks that are executed during
the chaos experiments:

Get the list of pods that were created by the completed jobs:1.

$ kubectl get pods |grep Completed
container-kill-klfr5-rgddd 0/1 Completed 0 35m
pod-delete-wzj6w-x6k5t 0/1 Completed 0 37m

View the logs using the kubectl logs command:2.

$ kubectl logs container-kill-klfr5-rgddd
...
TASK [Force kill the application pod using pumba]

...
TASK [Verify restartCount]

...
PLAY RECAP

127.0.0.1 : ok=29 changed=18 unreachable=0 failed=0
2019-09-25T05:15:56.151497 (delta: 1.254396) elapsed: 35.944704

Inside the logs, you will be able to see the individual tasks that have been
executed and the summary of passed or failed tasks.

How it works...
This recipe showed you how to quickly run a predefined chaos experiment on your
applications running on Kubernetes.

Litmus experiments can be easily created from scratch and integrated into an application
developer's CI pipeline, post the build and unit/integration test phases, to test chaos
behavior on Kubernetes clusters.

In the Running a Litmus chaos experiment recipe, in step 8, we created a Chaos Engine to test a
pod delete experiment, followed by a container kill experiment. These two experiments use
Chaoskube, a tool that periodically kills random pods in your Kubernetes cluster, and
Pumba, a chaos testing and network emulation tool, as the end injectors of chaos.

Automating Tests in DevOps Chapter 4

[195]

See also
Litmus documentation: https:/ /docs. litmuschaos. io/

Chaos Charts for Kubernetes: https:/ / hub.litmuschaos. io/

Chaoskube project: https:/ /github. com/ linki/ chaoskube

Pumba project: https:/ /github. com/ alexei- led/ pumba

Automating Chaos Engineering with Gremlin
Gremlin is a Chaos Engineering service that prevents outages and builds more reliable
systems. In this section, we will run chaos attacks in production to validate the resiliency of
the systems using Gremlin. You will learn how to create CPU and node shutdown attacks
to test the resiliency of your infrastructure.

Getting ready
For this recipe, we need to have the Kubernetes command-line tool, kubectl, and helm
installed.

All the operations mentioned here require a Gremlin account. If you don't have one, go
to https://app.gremlin. com/ signup and create one.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Setting up Gremlin credentials
Installing Gremlin on Kubernetes
Creating a CPU attack against a Kubernetes worker
Creating a node shutdown attack against a Kubernetes worker
Running predefined scenario-based attacks
Deleting Gremlin from your cluster

https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://docs.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://hub.litmuschaos.io/
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/linki/chaoskube
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup
https://app.gremlin.com/signup

Automating Tests in DevOps Chapter 4

[196]

Setting up Gremlin credentials
To connect to Gremlin services from our Kubernetes cluster, we will need to store our
Gremlin credentials as a Kubernetes Secret.

Let's perform the following steps to configure our Gremlin credentials:

Log in to the Gremlin service at https:/ /app. gremlin. com/ .1.
From the account menu, click on Company Settings:2.

Click on the Teams tab and select your team:3.

https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/

Automating Tests in DevOps Chapter 4

[197]

Click on the Configuration tab and download your certificates:4.

Copy the certificates.zip file to your host where kubectl has been5.
configured.
Extract the files:6.

$ unzip certificate.zip

Rename the certificate files accordingly:7.

$ mv Me-client.pub_cert.pem gremlin.cert && mv Me-
client.priv_key.pem gremlin.key

Create a Secret resource in your cluster:8.

$ kubectl create secret generic gremlin-team-cert --from-
file=./gremlin.cert --from-file=./gremlin.key

With that, we have converted our credentials into secret resources in Kubernetes.
This secret will be used later to connect Gremlin to our cluster.

Installing Gremlin on Kubernetes
The easiest way to install Gremlin on Kubernetes is by using Helm charts. Make sure you
have created a gremlin team cert secret, as described in the Setting up Gremlin credentials
recipe, before you proceed.

Automating Tests in DevOps Chapter 4

[198]

Let's perform the following steps to install Gremlin using Helm charts:

Add the Gremlin Helm repository:1.

$ helm repo add gremlin https://helm.gremlin.com

Update the repositories:2.

$ helm repo update

Install the Gremlin client using your Team ID:3.

$ helm install --name gremlin --set gremlin.teamID=abc1234-
a12b-1234-1234-abcdefgh gremlin/gremlin

Gremlin will create a DaemonSet that will run on every node in your cluster.4.
Validate that the DESIRED and AVAILABLE pods are equal:

$ kubectl get daemonsets
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR
AGE
gremlin 3 3 3 3 3 <none>
11m

Gremlin is running in your cluster. Next, we need to trigger some chaos through
our Gremlin account.

Creating a CPU attack against a Kubernetes worker
Gremlin can generate various infrastructure attacks that impact cores, workers, and
memory.

Let's perform the following steps to attack the CPU:

Deploy a sample application:1.

$ kubectl apply -f ./src/chapter4/gremlin/nginx.yaml

Automating Tests in DevOps Chapter 4

[199]

List the pods and confirm they are running:2.

$ kubectl get pods |grep nginx
nginx-deployment-5c689d88bb-24n4m 1/1 Running 0 4m31s
nginx-deployment-5c689d88bb-rwtk9 1/1 Running 0 4m31s

Get the node name for one of the pods:3.

$ kubectl get pod nginx-deployment-5c689d88bb-rwtk9 -o
jsonpath="{.spec.nodeName}"
ip-172-20-50-43.ec2.internal

Watch the pods status:4.

$ watch kubectl get pods

Log in to your Gremlin account at https:/ /app. gremlin. com/.5.
From the Attacks menu, click on Infrastructure.6.
Click on the New Attack button:7.

https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/

Automating Tests in DevOps Chapter 4

[200]

Under the Choose Hosts to target tab, pick the node's local hostname from step 3:8.

Automating Tests in DevOps Chapter 4

[201]

Under the Choose a Gremlin tab, click on Resource, select CPU attack, set CPU9.
Capacity to 90, and consume all CPU cores:

Automating Tests in DevOps Chapter 4

[202]

Click on Unleash Gremlin to run the attack:10.

Now, the actions you triggered on your Gremlin account will be executed on your
cluster through the agent.

Creating a node shutdown attack against a Kubernetes
worker
Gremlin can generate various infrastructure attacks that impact cores, workers, and
memory.

Let's perform the following steps to attack the CPU:

Log in to your Gremlin account at https:/ /app. gremlin. com/.1.
From the Attacks menu, click on Infrastructure.2.

https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/

Automating Tests in DevOps Chapter 4

[203]

Click on the New Attack button:3.

Under the Choose Hosts to target tab, pick the node's local hostname:4.

Automating Tests in DevOps Chapter 4

[204]

Under the Choose a Gremlin tab, click on State and select Shutdown:5.

Click on Unleash Gremlin to run the attack:6.

Get the pods on the node we executed a Shutdown attack on:7.

$ kubectl get pod -owide |grep ip-172-20-50-43.ec2.internal
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
engine-nginx-runner 1/2 Running 1 24h 100.96.0.65
ip-172-20-50-43.ec2.internal <none>
gremlin-rpp22 1/1 Running 1 88m 100.96.0.60
ip-172-20-50-43.ec2.internal <none>
nginx-deployment-5c689d88bb-rwtk9 1/1 Running 1 24h 100.96.0.63
ip-172-20-50-43.ec2.internal <none>

Automating Tests in DevOps Chapter 4

[205]

You will notice that the pods are restarted.

Running predefined scenario-based attacks
Gremlin chaos scenarios help bundle attacks together to generate real-world outage
scenarios. In this recipe, we will learn about the predefined scenarios that we can use to
validate how our system responds to common failures.

Let's perform the following steps to validate autoscaling:

Log in to your Gremlin account at https:/ /app. gremlin. com/.1.
Click on the Scenarios menu and review the Recommended scenarios:2.

https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/
https://app.gremlin.com/

Automating Tests in DevOps Chapter 4

[206]

Make sure autoscaling is enabled on your Kubernetes cluster and select3.
the Validate Auto-Scaling scenario.
Click on the Add targets and run button:4.

Click on Run Scenario to execute the attack.5.

As a result, Gremlin will execute a CPU attack on the existing nodes to put
pressure on the cluster, which should ideally trigger the autoscaling feature of the
cluster to reduce CPU pressure.

Deleting Gremlin from your cluster
Let's perform the following steps to remove the components of Gremlin from your
Kubernetes cluster:

List the Gremlin Helm releases:1.

$ helm ls |grep gremlin
gremlin 1 Thu Sep 26 04:37:05 2019 DEPLOYED gremlin-0.1.3 2.11.8

Remove the Helm release using the release name:2.

$ helm delete gremlin --purge

Helm will remove the release from your cluster.

Automating Tests in DevOps Chapter 4

[207]

How it works...
This recipe showed you how to quickly run a predefined chaos attack on your worker
nodes where applications are scheduled to run by Kubernetes.

Keep in mind that, although we were looking for the impact on specific pods in the Creating
a CPU attack and Creating a node shutdown attack recipes, the whole node was under attack,
so the other pods on the node were also impacted.

Especially in small clusters, it is suggested to limit your blast radius and start targeting a
single container of a pod. This can be done using network latency attacks and by specifying
the ports that are relevant to the containers you wish to see the attack work on.

See also
Gremlin documentation: https:/ /www. gremlin. com/docs/

Automating your code review with Codacy
In this section, we will use Codacy to automate code reviews without having to make any
additional code changes to our repositories and generate notifications on code quality and
security issues. You will learn how to automate one of the most underestimated tasks when
it comes to the development of code reviews and checks.

Getting ready
All the operations mentioned here require a Codacy account. If you don't have one, go
to https://www.codacy. com/ pricing and create one.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Accessing the Project Dashboard
Reviewing commits and PRs

https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.gremlin.com/docs/
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing
https://www.codacy.com/pricing

Automating Tests in DevOps Chapter 4

[208]

Viewing issues by category
Adding a Codacy badge to your repository

Accessing the Project Dashboard
Let's perform the following steps to access the Codacy Project Dashboard:

Log in to Codacy at https:/ / app.codacy. com, which will bring you to your1.
Organization Dashboard.
Click on Projects on the left menu:2.

https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com

Automating Tests in DevOps Chapter 4

[209]

Click on a specific project to get to the project view:3.

Find the Project grading option on the Project Dashboard. In our example, the4.
following project has been graded A:

Find the Quality evolution graph and view the comparison of the number of5.
issues versus industry average. If your average is higher than the industry
standard, you need to review the commit and reduce the number of issues:

Automating Tests in DevOps Chapter 4

[210]

Reviewing commits and PRs
Let's perform the following steps to review code commits on the Codacy Dashboard:

On the Project Dashboard, click on the Commits menu.1.
Select the master branch from the drop-down menu:2.

Automating Tests in DevOps Chapter 4

[211]

On the commit list, find one of your commits with new issues marked in red:3.

Click on a Commit to view its details:4.

Automating Tests in DevOps Chapter 4

[212]

Implement the suggested fixes to clear the issues or open a GitHub issue for the5.
developer team to fix.
Now, click on the Open Pull Requests menu:6.

Repeat steps 3 to 5 to review the issues and recommended solutions to clear them7.
before the code is merged. This will improve code quality.

Viewing issues by category
Not all issues are the same and require the same amount of work to be fixed. Most of the
time, security issues should be the top concern and code styles should be an ongoing
engineering effort so that they're fixed with improving internal review processes.

Let's perform the following steps to see the issue breakdown:

Log in to https:/ /app. codacy. com, which will bring you to your Organization1.
Dashboard.
Click on Projects on the left menu.2.
Select a project to analyze.3.

https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com

Automating Tests in DevOps Chapter 4

[213]

Scroll down the Dashboard until you see the Issues breakdown chart:4.

Click on a category with issues and use the provided information on issues in5.
code reviews:

If you are peer-reviewing or checking your own code, you can filter issues from6.
an author by clicking on the All authors filter and changing it to a name.

Automating Tests in DevOps Chapter 4

[214]

Adding a Codacy badge to your repository
Badges are used to represent the high-level project status and its stability to the users
coming to your repository or website. Since Codacy can show the quality of your code, it is
definitely something you may want to display on your repository in the README.MD file.

Let's perform the following steps to add a Codacy badge to your GitHub repository:

Log in to https:/ /app. codacy. com, which will bring you to your Organization1.
Dashboard.
Click on Projects on the left menu.2.
Select a project to analyze.3.
Click on the Badge icon next to your project name:4.

Click on Add badge to repository to create a Pull Request (PR) to your5.
repository:

https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com
https://app.codacy.com

Automating Tests in DevOps Chapter 4

[215]

Review the content of the PR and merge it. Once it's been merged, you will see6.
the code quality score on your repository Overview page, similar to what's
shown in the following screenshot:

Badges are used to highlight important tests and information for your repository
visitors.

See also
Codacy documentation: https:/ /support. codacy. com/ hc/en- us

Detecting bugs and anti-patterns with
SonarQube
SonarQube is a popular development tool that is used in software development to catch
bugs and vulnerabilities in your applications. In this section, we will learn how to automate
static code analysis to detect bugs and anti-patterns that you can use in your CI/CD
pipelines.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation in order to use the
manifest files under the chapter4 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter4

https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us
https://support.codacy.com/hc/en-us

Automating Tests in DevOps Chapter 4

[216]

Make sure you have a Kubernetes cluster ready and kubectl and helm configured so that
you can manage the cluster resources.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing SonarQube using Helm
Accessing the SonarQube Dashboard
Creating a new user and tokens
Enabling Quality Profiles
Adding a project
Analyzing a project
Viewing issues by category
Adding a SonarQube badge to your repository
Adding marketplace plugins
Deleting SonarQube from your cluster

Installing SonarQube using Helm
SonarQube is a leading open source solution for code quality and security analysis for
adopting code quality in your CI/CD. It can be installed as a standalone solution from
binaries. In this recipe, we will install it on a Kubernetes cluster using Helm charts.

Let's perform the following steps to get SonarQube up and running:

Update your repositories:1.

$ helm repo update

Install SonarQube:2.

$ helm install stable/sonarqube --name sonar --namespace sonarqube

Validate that the PostgreSQL and SonarQube pods are ready:3.

$ kubectl get pods -n sonarqube
NAME READY STATUS RESTARTS AGE
sonar-postgresql-68b88ddc77-l46wc 1/1 Running 0 16m
sonar-sonarqube-995b9cc79-9vzjn 1/1 Running 1 16m

Automating Tests in DevOps Chapter 4

[217]

With that, you've learned how to get SonarQube deployed on the Kubernetes
cluster.

Accessing the SonarQube Dashboard
When installed using Helm charts, SonarQube creates a load balancer and exposes an
external IP to connect. We will discover the IP first and connect to the SonarQube
Dashboard using the service IP.

Let's perform the following steps to expose SonarQube through a cloud load balancer:

Get the SonarQube load balancer's external IP:1.

$ export SONAR_SVC=$(kubectl get svc --namespace sonarqube sonar-
sonarqube -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ echo http://$SONAR_SVC:9000

Open the address in your browser:2.

Automating Tests in DevOps Chapter 4

[218]

Click on Log in and use admin as both your username and password to log in to3.
the Dashboard:

Click on the account profile logo on the top right of the screen and select My4.
Account:

Select the Security tab:5.

Change the default admin password and save it by clicking the Change6.
password button:

Automating Tests in DevOps Chapter 4

[219]

Since the service port is accessible externally, it is important to change the default
credentials of SonarQube.

Creating a new user and tokens
Team members need to have their own user accounts to access the Dashboard. It is
recommended that you generate tokens in order to manage accounts. You can use them
to run analyses or invoke web services without needing to access the user's actual
credentials. This way, your analysis of the user's password does not go through the
network.

Let's perform the following steps to create new users that can access SonarQube:

From the top menu, click on Administration.1.
Click on the Security tab and select Users:2.

Click on the Create User button:3.

Automating Tests in DevOps Chapter 4

[220]

Enter the Name, Email, and Password of the user and click on Create:4.

On the Users table, click the Update Tokens button under the Tokens column:5.

Automating Tests in DevOps Chapter 4

[221]

Set a token name and click on the Generate button.6.
Make sure that you copy the token and take note of it for the upcoming recipes.7.

Enabling quality profiles
To be able to analyze a project, first, you need to install specific programming language
plugins. Let's perform the following steps to install Java plugins that we'll use in the next
recipe, Adding a project:

Click on Quality Profiles. If you see a message saying There are no languages1.
available, then you need to install the language plugins:

Click on the Administration menu and switch to the Marketplace tab:2.

Automating Tests in DevOps Chapter 4

[222]

On the Marketplace search field, search for the language you would like to3.
enable. For this recipe, this is java :

Automating Tests in DevOps Chapter 4

[223]

Add Adobe Experience Manager (AEM) rules for SonarQube, Checkstyle,4.
Findbugs, Java i18n rules, Programming Mistake Detector (PMD), and
SonarJava plugins by clicking on the Install button next to the respective plugins:

This action requires a restart. Click on Restart Server and log in to the Dashboard5.
after it's restarted:

Automating Tests in DevOps Chapter 4

[224]

Once you've logged back into the Dashboard, click on Quality Profiles. This6.
time, you should see Java profiles:

Repeat steps 1 to 5 for any other languages you want to install.

Adding a project
A project is created in SonarQube automatically on its first analysis. Before we can scan a
project, we need to choose an analysis method. In this recipe, we will launch a Gradle
analysis. The other available methods are listed in the See also section.

Let's perform the following steps to add a new project to SonarQube:

Clone an example repository to scan:1.

$ git clone https://github.com/javajon/code-analysis.git
$ cd code-analysis/microservice/

Automating Tests in DevOps Chapter 4

[225]

For this example, we also need Java 1.8 installed on our node. If you already have2.
it, skip to step 4:

$ sudo apt install openjdk-8-jre-headless default-jdk

Confirm the version of Java you're using:3.

$ java -version openjdk version "1.8.0_222"
OpenJDK Runtime Environment (build 1.8.0_222-8u222-b10-1~deb9u1-
b10)
OpenJDK 64-Bit Server VM (build 25.222-b10, mixed mode)

Get the SonarQube service's external IP:4.

$ export SONAR_SVC=$(kubectl get svc --namespace sonarqube sonar-
sonarqube -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

Run the analysis. The analysis will complete in a couple of minutes:5.

$./gradlew -Dsonar.host.url=http://$SONAR_SVC:9000 sonarqube
....
BUILD SUCCESSFUL in 13s
6 actionable tasks: 1 executed, 5 up-to-date

Switch back to the SonarQube portal to see the new project:6.

Now, you will be able to see your new project on the SonarQube portal.

Automating Tests in DevOps Chapter 4

[226]

Reviewing a project's quality
SonarQube's analysis varies, depending on the language that's scanned, but, in most cases,
it generates good-quality measures, issues reports, and finds where coding rules were
broken. In this recipe, you will learn where to find types of issues and look into issues by
severity.

Make sure that you added the sample project to SonarQube by following the Adding a
project recipe. Now, perform the following steps:

 Click on the Issues menu:1.

Known vulnerabilities are considered blockers and need to be addressed2.
immediately. Under Filters, expand Severity and select Blocker:

Automating Tests in DevOps Chapter 4

[227]

A hardcoded credential has been detected in the example code, which is a serious3.
vulnerability. To assign this issue to a team member, click on the Not assigned
dropdown and type in the person's name to assign it to them:

Eventually, all the issues need to be either confirmed and assigned or resolved as4.
fixed, false positive, or won't be fixed. The status can be set by clicking on
the Open dropdown and changing it to a new status value.

Adding marketplace plugins
Let's perform the following steps to add new plugins to SonarQube from the marketplace:

Click on the Administration menu and switch to the Marketplace tab:1.

On the Marketplace, in addition to code analyzers, you can find alternative2.
authentication methods, language packs, and other useful integrations. As an
example, let's search for GitHub authentication:

Automating Tests in DevOps Chapter 4

[228]

Click on the Install button next to the plugin.3.
Now, click on Restart Server and log in to the Dashboard after it's been restarted.4.
With SonarQube, go to Administration | Configuration | General Settings |5.
GitHub.
Set Enabled to true:6.

Set the client ID and client secret to the values provided by the GitHub7.
developer application. Register a new OAuth application with GitHub by going
to https:/ /github. com/ settings/ applications/ new.
Save the settings and log out from SonarQube:8.

New, users will be asked to log in with a GitHub user.

https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new

Automating Tests in DevOps Chapter 4

[229]

Deleting SonarQube from your cluster
Let's perform the following steps to remove SonarQube from your Kubernetes cluster:

List the SonarQube Helm releases:1.

$ helm ls |grep sonarqube
sonar 1 Thu Sep 26 22:01:24 2019 DEPLOYED sonarqube-2.3.0 7.9
sonarqube

Remove the Helm release using the release name:2.

$ helm delete sonar --purge

Helm will remove the SonarQube release and its components from your cluster.

How it works...
This recipe showed you how to quickly detect security vulnerabilities and bugs in your
project.

In the Adding a project recipe, in step 5, when we start analyzing our example, the files that
are provided to the analysis are analyzed on the server-side, and the result of the analysis is
sent back to the server as a report. This report is analyzed in an asynchronous way on the
server-side.

Reports are added to a queue and processed by the server in order. If multiple reports are
sent back to the server, the results may take some time to be displayed on the SonarQube
Dashboard.

By default, only the files that can be detected by the installed code analyzer are loaded into
the project. This means that if you only have SonarJava code written in C or Go and YAML
files that are very common in the Kubernetes world, they will be ignored.

See also
SonarQube Documentation: https:/ /docs. sonarqube. org/ latest/ setup/
overview/

Static code analysis example using SonarScanner for Gradle: https:/ /github.
com/javajon/ code- analysis

SonarScanner for Jenkins: https:/ / docs. sonarqube. org/latest/ analysis/
scan/sonarscanner- for- jenkins/

https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://docs.sonarqube.org/latest/setup/overview/
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://github.com/javajon/code-analysis
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-jenkins/

Automating Tests in DevOps Chapter 4

[230]

SonarQube extension for Azure DevOps: https:/ /docs. sonarqube. org/ latest/
analysis/ scan/ sonarscanner- for-azure- devops/

SonarQube Scanner for MSBuild: https:/ /docs. sonarqube. org/ display/ SCAN/
Analyzing+with+SonarQube+Scanner+for+MSBuild

SonarQube Scanner for Maven: https:/ /docs. sonarqube. org/ display/ SCAN/
Analyzing+with+SonarQube+Scanner+for+Maven

SonarQube Scanner for Ant: https:/ /docs. sonarqube. org/ display/ SCAN/
Analyzing+with+SonarQube+Scanner+for+Ant

SonarQube Scanner to launch analysis from the CLI: https:/ /docs. sonarqube.
org/display/ SCAN/ Analyzing+with+SonarQube+Scanner

Plugin Library: https:/ / docs. sonarqube. org/ display/ PLUG/ Plugin+Library

SonarQube Community: https:/ /community. sonarsource. com/

Detecting license compliance issues with
FOSSA
FOSSA is an open source software license compliance tool that allows modern teams to be
successful with open source software development. In this section, we will scan software
licenses with the FOSSA framework. You will learn how to automate license compliance
and vulnerability checks.

Getting ready
All the operations mentioned here require a FOSSA account. If you don't have one, go
to https://app.fossa. com/ account/ register and create one.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Adding projects to FOSSA
Triaging licensing issues
Adding a FOSSA badge to your project

https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-azure-devops/
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+MSBuild
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Ant
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://docs.sonarqube.org/display/PLUG/Plugin+Library
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://community.sonarsource.com/
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register
https://app.fossa.com/account/register

Automating Tests in DevOps Chapter 4

[231]

Adding projects to FOSSA
Let's perform the following steps to add projects to FOSSA:

Log in to FOSSA at https:/ / app. fossa. com/ projects.1.
Click on the ADD PROJECTS button:2.

Select QUICK IMPORT and then Continue:3.

https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects

Automating Tests in DevOps Chapter 4

[232]

Select your repository location. In this recipe, we will use Gitlab:4.

Click on the Connect with Service button.5.

Automating Tests in DevOps Chapter 4

[233]

Select the repositories you would like to scan and click on the IMPORT button:6.

FOSSA will import and automatically scan for license compliance issues.

Triaging licensing issues
FOSSA does not require any additional steps or code to scan your projects. It runs the
license scans as soon as you add your repositories to your FOSSA account. Let's take a look:

Log in to https:/ /app. fossa. com/ projects.1.
Select Projects.2.
The SUMMARY tab will display any Flagged Dependencies that have3.
been detected:

https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects

Automating Tests in DevOps Chapter 4

[234]

Click on the ISSUES tab:4.

Select an Issue Thread from the left menu.5.

Automating Tests in DevOps Chapter 4

[235]

Review the issue and the recommended resolution:6.

Based on the action that needs to be taken for the issue, you can either decide to
create a ticket, leave a comment for discussion with a team member, or resolve it
with an explanation.

Adding a FOSSA badge to your project
Let's perform the following steps to add a FOSSA license check badge to our GitHub
repository page:

Log in to FOSSA at https:/ / app. fossa. com/ projects.1.
Select Projects to generate a badge.2.
Switch to the SETTINGS tab.3.
Select SHEILD as the badge format:4.

https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects
https://app.fossa.com/projects

Automating Tests in DevOps Chapter 4

[236]

Copy the MARKDOWN content to the clipboard.5.
Edit the README.md file on the GitHub repository you scanned. Paste the6.
MARKDOWN badge code you copied in step 5 to the beginning of the file:

Once you've saved the file, the results of the FOSSA scan will be displayed in the7.
badge on your repository.

5
Preparing for Stateful

Workloads
In this chapter, we will discuss using popular open source storage solutions on Kubernetes
and how to protect the state of applications from node or application failures and share the
same data, or how to handle reattaching volumes when the pod is rescheduled on a
different node. After following the recipes in this chapter, you will have acquired the skills
to use both block and file storage options in self-managed infrastructure or private clouds.

In this chapter, we will be covering the following recipes:

Managing Amazon EBS volumes in Kubernetes
Managing GCE PD volumes in Kubernetes
Managing Azure Disk volumes in Kubernetes
Configuring and managing persistent storage using Rook
Configuring and managing persistent storage using OpenEBS
Setting up NFS for shared storage on Kubernetes
Troubleshooting storage issues

Technical requirements
Recipes in this section assume that you have a functional Kubernetes cluster deployed
according to one of the recommended methods described in Chapter 1, Building
Production-Ready Kubernetes Clusters.

Kubernetes' command-line tool, kubectl, will be used for the remainder of the recipes in
this section since it is the main command-line interface for running commands against
Kubernetes clusters. We will also use helm where helm charts are available to deploy
solutions.

Preparing for Stateful Workloads Chapter 5

[238]

Managing Amazon EBS volumes in
Kubernetes
Amazon Elastic Block Store (Amazon EBS) provides persistent block-level storage volumes
for Amazon EC2 instances used in both kops-created Kubernetes clusters and Amazon EKS
clusters in AWS. In this section, we will create storage classes for your applications in
Kubernetes running in AWS. You will learn how to create a StorageClass resource in
Kubernetes, you will learn about the parameters available with the variation in
performance of EBS volume types and also use the new Container Storage Interface (CSI)
to consume EBS volumes.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation in order to be able to
use manifest files under the chapter5 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd chapter5

Make sure that you have a Kubernetes cluster ready and kubectl configured to manage
the cluster resources.

How to do it…
This section is sub-divided further into the following subsections to facilitate the process:

Creating an EBS storage class
Changing the default storage class
Using EBS volumes for persistent storage
Using EBS storage classes to dynamically create persistent volumes
Deleting EBS persistent volumes
Installing the EBS CSI driver to manage EBS volumes

Preparing for Stateful Workloads Chapter 5

[239]

Creating an EBS storage class
Let's perform the following steps to learn the storage class parameters required to construct
an EBS storage class that we can use to dynamically request new persistent volumes from
AWS Cloud:

Create a basic storage class with the provisioner, kubernetes.io/aws-ebs, and1.
gp2 type specified:

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: aws-gp2
provisioner: kubernetes.io/aws-ebs
parameters:
 type: gp2
 fsType: ext4
reclaimPolicy: Retain
allowVolumeExpansion: true
mountOptions:
 - debug
volumeBindingMode: Immediate
EOF

Other type values accepted here include io1, sc1, and st1. You can find the
definition and use cases for different volume types on the AWS EBS volume types
link in the See also section.

On Amazon EKS clusters, the default EBS volume type is gp2. For
database workloads, such as MongoDB, Cassandra, and PostgreSQL,
io1-type, high-performance SSDs are recommended.

List the storage classes. Confirm that you have new aws-gp2 on the list.2.
Depending on the cloud provider or Kubernetes deployment tool, you may see
other storage classes on the list similar to the following:

$ kubectl get sc
NAME PROVISIONER AGE
aws-gp2 kubernetes.io/aws-ebs 8s
default kubernetes.io/aws-ebs 25h
gp2 (default) kubernetes.io/aws-ebs 25h
openebs-hostpath openebs.io/local 175m
openebs-jiva-default openebs.io/provisioner-iscsi 175m

Preparing for Stateful Workloads Chapter 5

[240]

Storage classes are the foundation of dynamic provisioning. As you can see in our example,
you may have more than one storage class in your cluster. Ideally, storage classes should be
created with an application's requirements in mind, since certain applications require faster
volumes, while others may take advantage of multi-availability zone replication provided
by solutions such as Rook and OpenEBS, which we will deploy later in this chapter.

Changing the default storage class
Dynamic storage provisioning is a key part of scaling applications. When a storage class is
not specified by a Persistent Volume Claim (PVC), Kubernetes uses the default option.
Let's perform the following steps to set our preferred storage class as the default:

Create a new storage class and define it as the default at the same time by setting1.
the is-default-class value to true. Our example here uses the io1 volume
type and limits iopsPerGB to 10. It also sets reclaimPolicy to Retain,
meaning that, if the user deletes the related PVC, the volume will be retained (the
other two retain policy options are Recycle and Delete):

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: aws-io1-slow
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1
 iopsPerGB: "10"
 fsType: ext4
reclaimPolicy: Retain
allowVolumeExpansion: true
EOF

To change the status of an existing storage class after it has been created, first2.
pick a storage class:

$ kubectl get sc
NAME PROVISIONER AGE
aws-gp2 kubernetes.io/aws-ebs 6m28s
aws-io1-slow (default) kubernetes.io/aws-ebs 4m29s

Preparing for Stateful Workloads Chapter 5

[241]

Let's set the existing storage class, aws-io1-slow, as the non-default option:3.

$ kubectl patch storageclass aws-io1-slow -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"false"}}}'

Now, define aws-gp2 as the default storage class again:4.

$ kubectl patch storageclass aws-gp2 -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"true"}}}'

Confirm the new default storage class:5.

$ kubectl get sc
NAME PROVISIONER AGE
aws-gp2 (default) kubernetes.io/aws-ebs 10m
aws-io1-slow kubernetes.io/aws-ebs 8m

Make sure that there is always one default storage class at a time, otherwise PVCs without
a storage class defined that are expecting a default storage class will fail.

Using EBS volumes for persistent storage
As an alternative to creating PVCs and dynamically creating volumes, you can also
manually create a volume and attach it to your application directly as a persistent volume
by carrying out the following steps:

Create an EBS volume in the same zone as your worker nodes by using the1.
following aws CLI:

$ aws ec2 create-volume --availability-zone=us-west-2a --size=10 --
volume-type=gp2

Deploy a test application using the EBS volumeID you created in Step 1:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: test-server
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:

Preparing for Stateful Workloads Chapter 5

[242]

 - mountPath: /test-ebs
 name: test-volume
 volumes:
 - name: test-volume
 awsElasticBlockStore:
 volumeID: vol-02f4bc9b938604f72
 fsType: ext4
EOF

Verify that your pod is in the Running state:3.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
test-server 1/1 Running 0 4m32s

The main advantage of manually created persistent volumes (PVs) is that PVs are not
attached to a single cluster or namespace. They exist as a resource on your AWS cloud
account and they can even be shared across clusters where dynamically created PVCs only
exist in the namespace created and can only be used by a pod within that same namespace.

Using EBS storage classes to dynamically create
persistent volumes
As part of a StatefulSet, volumeClaimTemplates can provide persistent storage using
PersistentVolumes provisioned by a PersistentVolume provisioner of your choice. In
this recipe, we will use StorageClass to dynamically create PVs for your application. Let's
begin with the following steps:

Add the aws-gp2 storage class line under the volumeClaimTemplates section1.
of your application deployment manifest, similar to the following example:

...
 volumeClaimTemplates:
 - metadata:
 name: datadir
 annotations:
 volume.beta.kubernetes.io/storage-class: aws-gp2
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1G
...

Preparing for Stateful Workloads Chapter 5

[243]

In this recipe, we will deploy the Redis StatefulSet using the aws-gp2 storage2.
class. Review the YAML manifest under the src/chapter5/aws directory in the
example repository before we execute it:

$ cat aws/redis-statefulset.yml

Create the Redis StatefulSet using the following example:3.

$ kubectl apply -f aws/redis-statefulset.yml

Verify that pods have been created. In this recipe, our example has StatefulSet4.
with three replicas. As a result, you should see three replicas running, similar to
the following output:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rd-0 1/1 Running 0 9m9s
rd-1 1/1 Running 0 7m56s
rd-2 1/1 Running 0 6m47s

List the PVC and PVs created. You should expect to see three PVCs and three5.
PVs created similar to our example output here:

$ kubectl get pvc,pv
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
datadir-rd-0 Bound pvc-8a538aa3-7382-4147-adde-1ea3dbaaafb4 1Gi RWO
aws-gp2 10m
datadir-rd-1 Bound pvc-171fbee3-39bf-4450-961f-6c1417ff3897 1Gi RWO
aws-gp2 9m1s
datadir-rd-2 Bound pvc-b40df89b-5349-4f02-8510-917012579746 1Gi RWO
aws-gp2 7m52s$
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-171fbee3-39bf-4450-961f-6c1417ff3897 1Gi RWO Retain Bound
default/datadir-rd-1 aws-gp2 9m18s
pvc-8a538aa3-7382-4147-adde-1ea3dbaaafb4 1Gi RWO Retain Bound
default/datadir-rd-0 aws-gp2 10m
pvc-b40df89b-5349-4f02-8510-917012579746 1Gi RWO Retain Bound
default/datadir-rd-2 aws-gp2 8m10s

Now, you know how to dynamically create persistent volumes as part of your deployment.

Preparing for Stateful Workloads Chapter 5

[244]

Deleting EBS persistent volumes
When the reclaim policy is set to retain the volumes, they need to be removed separately by
observing the following steps:

Remember that deleting your workload will not remove the PVCs and PVs,1.
unless the PVC manifest was included in the manifest:

$ kubectl delete -f redis-statefulset.yml

List the remaining PVs:2.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-171fbee3-39bf-4450-961f-6c1417ff3897 1Gi RWO Retain Bound
default/datadir-rd-1 aws-gp2 13m
pvc-8a538aa3-7382-4147-adde-1ea3dbaaafb4 1Gi RWO Retain Bound
default/datadir-rd-0 aws-gp2 15m
pvc-b40df89b-5349-4f02-8510-917012579746 1Gi RWO Retain Bound
default/datadir-rd-2 aws-gp2 12m

Delete the PVCs. You can delete multiple PVCs at once by adding their names in3.
a single command, similar to the following:

$ kubectl delete pvc datadir-rd-0 datadir-rd-1 datadir-rd-2

Delete the PVs. You can delete multiple PVs at once by adding their names in a4.
single command, similar to the following:

$ kubectl delete pv <pv-name-1> <pv-name-2> <pv-name-3>

Although we removed PVCs and PVs, our EBS volumes are still retained. Let's
now remove these as well:

Open your AWS Management Console and click on EC2 under the Compute5.
options:

Preparing for Stateful Workloads Chapter 5

[245]

Under the Resources section, click on Volumes:6.

Select the available and unused volumes. From the Using EBS storage classes to7.
create dynamic persistent volumes recipe, we have three unused volumes:

Preparing for Stateful Workloads Chapter 5

[246]

From the Actions drop-down menu, select Delete Volumes:8.

We have successfully removed all storage resources related to the application that was
created as part of the Redis StatefulSet resource.

Installing the EBS CSI driver to manage EBS volumes
The Amazon EBS CSI driver provides a Kubernetes CSI interface that allows Amazon EKS
clusters to simply manage the life cycle of Amazon EBS volumes for persistent volumes. In
this recipe, we will learn how to install the EBS CSI driver by observing the following steps:

EBS CSI communicates with your AWS volume to create volumes on demand.1.
Therefore, it requires access credentials. Replace the key_id and access_key
values here with your AWS credentials and configure CSI driver permission
using a secret resource:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: aws-secret
 namespace: kube-system
stringData:
 key_id: "YOUR_KEY_ID_HERE"
 access_key: "YOUR_ACCESS_KEY_HERE"
EOF

Preparing for Stateful Workloads Chapter 5

[247]

Deploy the AWS EBS CSI driver from its repository location. The following2.
command will create ClusterRoleBindings, CSI controller deployment, and an
ebs-csi-node DaemonSet that will run every worker node you have:

$ kubectl apply -k "github.com/kubernetes-sigs/aws-ebs-csi-
driver/deploy/kubernetes/overlays/stable/?ref=master"

Verify that the driver is running:3.

$ kubectl get pods -n kube-system | grep ebs-csi
ebs-csi-controller-8579f977f4-ljfhm 4/4 Running 0 2m37s
ebs-csi-controller-8579f977f4-qw6ld 4/4 Running 0 2m37s
ebs-csi-node-5x8nh 3/3 Running 0 2m37s
ebs-csi-node-cfghj 3/3 Running 0 2m37s
ebs-csi-node-xp569 3/3 Running 0 2m37s
ebs-csi-node-z45hn 3/3 Running 0 2m37s

Now, create a new storage class that will use ebs.csi.aws.com as the4.
provisioner:

$ cat <<EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: aws-csi-ebs
provisioner: ebs.csi.aws.com
volumeBindingMode: WaitForFirstConsumer
EOF

Create a PVC:5.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-ebs-pvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: aws-csi-ebs
 resources:
 requests:
 storage: 4Gi
EOF

Preparing for Stateful Workloads Chapter 5

[248]

Create a pod that will use the PVC and that writes to the /data/out.txt file:6.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: app
spec:
 containers:
 - name: app
 image: centos
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo $(date -u) >> /data/out.txt;
sleep 5; done"]
 volumeMounts:
 - name: persistent-storage
 mountPath: /data
 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: csi-ebs-pvc
EOF

Verify that our mytestapp pod writes data to the volume:7.

$ kubectl exec -it mytestapp cat /data/out.txt
Mon Sep 9 17:40:25 UTC 2019

Remove resources by deleting the pod and the PVC by using the following8.
command:

$ kubectl delete pod mytestapp && kubectl delete pvc csi-ebs-pvc

Now you know how to use CSI drivers to provision EBS volumes. A CSI driver provides a
unified interface to answer storage requests on Kubernetes. As long as the driver is
installed and has the functionality implemented by the driver, it can be consumed by the
user regardless of the underlying storage system.

See also
AWS EBS volume types: https:/ /docs. aws. amazon. com/ AWSEC2/ latest/
UserGuide/ EBSVolumeTypes. html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

Preparing for Stateful Workloads Chapter 5

[249]

AWS EBS CSI driver repository: https:/ /github. com/ kubernetes- sigs/ aws-
ebs-csi- driver

AWS EBS CSI driver documentation: https:/ / docs. aws.amazon. com/ eks/
latest/userguide/ ebs- csi. html

Managing GCE PD volumes in Kubernetes
Google Cloud Platform (GCP) provides persistent block-level storage volumes for use
with Google Kubernetes Engine (GKE) instances. In this section, we will create storage
classes for your applications in Kubernetes running in the GKE. You will learn to create a
StorageClass resource in Kubernetes, you will learn about the parameters available with the
variation in performance of GCP PD volume types, and also use the new CSI.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter5

Make sure that you have a regional GKE cluster ready and kubectl configured to manage
the cluster resources.

How to do it…
This section is sub-divided further into the following subsections to facilitate the process:

Creating a GCE persistent disk storage class
Changing the default storage class
Using GCE PD volumes for persistent storage
Using GCE PD storage classes to create dynamic persistent volumes
Deleting GCE PD persistent volumes
Installing the GCP Compute PD CSI driver to manage PD volumes

https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html

Preparing for Stateful Workloads Chapter 5

[250]

Creating a GCE persistent disk storage class
Let's perform the following steps to learn the storage class parameters to construct a GCE
PD storage class that we can use to dynamically request new persistent volumes:

GKE-based Kubernetes clusters are created with a default storage class. List the1.
storage classes as follows:

$ kubectl get sc
NAME PROVISIONER AGE
standard (default) kubernetes.io/gce-pd 81s

Describe the standard storage class:2.

$ kubectl describe sc standard
Name: standard
IsDefaultClass: Yes
Annotations: storageclass.beta.kubernetes.io/is-default-class=true
Provisioner: kubernetes.io/gce-pd
Parameters: type=pd-standard
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: Immediate
Events: <none>

Create a basic storage class with the provisioner, kubernetes.io/gce-pd, and3.
the pd-standard type specified:

$ cat <<EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gce-pd
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 values:
 - us-central1-a
 - us-central1-b
EOF

Preparing for Stateful Workloads Chapter 5

[251]

You can find the definition and use cases for different volume types on the GCE
PD volume types link in the See also section.

On GKE clusters, the default PD volume type is pd-standard. For
database workloads, such as MongoDB, Cassandra, and PostgreSQL, pd-
ssd-type, high-performance SSDs are recommended.

List the storage classes:4.

$ kubectl get sc
NAME PROVISIONER AGE
gce-pd kubernetes.io/gce-pd 3s
standard (default) kubernetes.io/gce-pd 17m

GKE comes with a default storage class called standard. You may have more than one
storage class in your cluster. Ideally, storage classes should be created with an application's
requirements in mind, since certain applications require faster volumes, while others may
take advantage of multi-availability zone replication provided by other solutions.

Changing the default storage class
Dynamic storage provisioning is a key part of scaling applications. When a storage class is
not specified by a PVC, Kubernetes uses the default option. Let's perform the following
steps to set our preferred storage class as the default:

Let's create a new storage class and define it as the default option at the same1.
time by setting is-default-class to true:

$ cat <<EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gce-pd-ssd
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-ssd
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
 - key: failure-domain.beta.kubernetes.io/zone

Preparing for Stateful Workloads Chapter 5

[252]

 values:
 - us-central1-a
 - us-central1-b
EOF

Having more than one default storage class will cause a problem. You need to2.
remove one. To change the status of an existing storage class after it has been
created, first pick a storage class:

$ kubectl get sc
NAME PROVISIONER AGE
gce-pd kubernetes.io/gce-pd 3m52s
gce-pd-ssd (default) kubernetes.io/gce-pd 4s
standard (default) kubernetes.io/gce-pd 21m

Let's set the standard and gce-pd-ssd storage classes as non-default:3.

$ kubectl patch storageclass standard -p '{"metadata":
{"annotations":{"storageclass.beta.kubernetes.io/is-default-
class":"false"}}}'
$ kubectl patch storageclass gce-pd-ssd -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"false"}}}'

Let's now define gce-pd as the default storage class again:4.

$ kubectl patch storageclass gce-pd -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"true"}}}'

Confirm the new default storage class:5.

$ kubectl get sc
NAME PROVISIONER AGE
gce-pd (default) kubernetes.io/gce-pd 8m25s
gce-pd-ssd kubernetes.io/gce-pd 4m37s
standard kubernetes.io/gce-pd 25m

Preparing for Stateful Workloads Chapter 5

[253]

Now you have learned how to replace the default storage class with a new storage class.
Make sure that there is always one default storage class at a time; otherwise PVCs without
a storage class defined that are expecting a default storage class will fail.

Using GCE PD volumes for persistent storage
As an alternative to creating PVCs and dynamically creating volumes, you can also create a
volume manually and attach it to your application directly as a persistent volume by
observing the following steps:

Create a GCE PD volume in the same zone as your worker nodes:1.

$ gcloud beta compute disks create gce-disk-1 --region us-central1 --
replica-zones us-central1-b,us-central1-c
Created
[https://www.googleapis.com/compute/beta/projects/devopscookbook/region
s/us-central1/disks/gce-disk-1].
NAME ZONE SIZE_GB TYPE STATUS
gce-disk-1 500 pd-standard READY

Create a PV using the existing volume name, gce-disk-1:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolume
metadata:
 name: gce-disk-1
spec:
 storageClassName: ""
 capacity:
 storage: 500G
 accessModes:
 - ReadWriteOnce
 gcePersistentDisk:
 pdName: gce-disk-1
 fsType: ext4
EOF

Create a PVC using the PV name, gce-disk-1:3.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-gcedisk1
spec:

Preparing for Stateful Workloads Chapter 5

[254]

 storageClassName: ""
 volumeName: gce-disk-1
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500G
EOF

Deploy a test application using the volumeMounts name, gce-disk-1, that you4.
have created in Step 1:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: test-server
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /test-ebs
 name: test-volume
 volumes:
 - name: test-volume
 persistentVolumeClaim:
 claimName: pvc-gcedisk1
EOF

Verify that your pod is in the Running state:5.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
test-server 1/1 Running 0 4m32s

The main advantage of manually created PVs is that PVs are not attached to a single cluster
or namespace. They exist as a resource on your GCP account and they can even be shared
across clusters. On the other hand, dynamically created PVCs only exist in the namespace
created and can only be used by a pod within that same namespace.

Preparing for Stateful Workloads Chapter 5

[255]

Using GCE PD storage classes to create dynamic
persistent volumes
As part of a StatefulSet, volumeClaimTemplates can provide persistent storage using
PersistentVolumes provisioned by a PersistentVolume provisioner of your choice. In
this recipe, we will use StorageClass to dynamically create PVs for your application:

Add the gce-pd storage class line under the volumeClaimTemplates section of1.
your application deployment manifest, similar to the following example:

...
 volumeClaimTemplates:
 - metadata:
 name: datadir
 annotations:
 volume.beta.kubernetes.io/storage-class: gce-pd
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1G
...

In this recipe, we will deploy the Redis Statefulset using the gce-pd storage2.
class. Review the YAML manifest under the src/chapter5/gcp directory in the
example repository before we execute it:

$ cat gcp/redis-statefulset.yml

Create the Redis StatefulSet:3.

$ kubectl apply -f redis-statefulset.yml

Verify that pods have been created:4.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rd-0 1/1 Running 0 2m27s
rd-1 1/1 Running 0 81s
rd-2 0/1 Running 0 19s

List the PVCs and PVs created:5.

$ kubectl get pvc, pv
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
datadir-rd-0 Bound pvc-3481b73c-d347-11e9-b514-42010a80005e 1Gi RWO

Preparing for Stateful Workloads Chapter 5

[256]

gce-pd 3m1s
datadir-rd-1 Bound pvc-5b8cc2d6-d347-11e9-b514-42010a80005e 1Gi RWO
gce-pd 115s
datadir-rd-2 Bound pvc-80d826b9-d347-11e9-b514-42010a80005e 1Gi RWO
gce-pd 53s
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-3481b73c-d347-11e9-b514-42010a80005e 1Gi RWO Delete Bound
default/datadir-rd-0 gce-pd 3m16s
pvc-5b8cc2d6-d347-11e9-b514-42010a80005e 1Gi RWO Delete Bound
default/datadir-rd-1 gce-pd 2m11s
pvc-80d826b9-d347-11e9-b514-42010a80005e 1Gi RWO Delete Bound
default/datadir-rd-2 gce-pd 68s

Now you know how to dynamically create GCE PD persistent volumes as part of your
application deployment.

Deleting GCE PD persistent volumes
When the reclaim policy is set to retain the volumes, they need to be removed separately by
observing the following steps:

Remember that deleting your workload will not remove the PVCs and PVs,1.
unless a PVC manifest was included in the manifest:

$ kubectl delete -f redis-statefulset.yml
statefulset.apps "rd" deleted
service "redis" deleted

List the remaining PVs:2.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-171fbee3-39bf-4450-961f-6c1417ff3897 1Gi RWO Retain Bound
default/datadir-rd-1 aws-gp2 13m
pvc-8a538aa3-7382-4147-adde-1ea3dbaaafb4 1Gi RWO Retain Bound
default/datadir-rd-0 aws-gp2 15m
pvc-b40df89b-5349-4f02-8510-917012579746 1Gi RWO Retain Bound
default/datadir-rd-2 aws-gp2 12m

Delete the PVCs. You can delete multiple PVCs at once by adding their names in3.
a single command, similar to the following:

$ kubectl delete pvc datadir-rd-0 datadir-rd-1 datadir-rd-2

Preparing for Stateful Workloads Chapter 5

[257]

We have successfully removed all storage resources related to the application that was
created as part of the Redis StatefulSet resource.

Installing the GCP Compute PD CSI driver to manage
PD volumes
The GCP Compute PD CSI driver provides a Kubernetes CSI interface that allows GKE
clusters to simply manage the life cycle of GKE volumes for persistent volumes. In this
recipe, we will learn the steps required to install the GCP Compute PD CSI driver by
observing the following steps:

Clone the GCP CSI driver project:1.

$ git clone
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driv
er.git
$ cd gcp-compute-persistent-disk-csi-driver/

Replace the PROJECT name with your GCP project name, GCE_PD_SA_DIR, in the2.
location where your service account private key file is stored and set the GCP
service account variables:

$ EXPORT PROJECT="DevOpsCookBook"
$ GCE_PD_SA_NAME=my-gce-pd-csi-sa
$ GCE_PD_SA_DIR=/my/safe/credentials/directory
$./deploy/setup-project.sh

Deploy the GCP Compute PD CSI driver:3.

$ GCE_PD_SA_DIR=/my/safe/credentials/directory
$ GCE_PD_DRIVER_VERSION=stable
$./deploy/kubernetes/deploy-driver.sh

Verify that the driver is running:4.

$ kubectl get pods -n kube-system | grep ebs-csi
csi-gce-pd-controller 4/4 Running 0 31s
csi-gce-pd-node-f8w8w 3/3 Running 0 31s
csi-gce-pd-node-g8qn5 3/3 Running 0 31s
csi-gce-pd-node-n2fhp 3/3 Running 0 31s

Preparing for Stateful Workloads Chapter 5

[258]

Now, create a new regional storage class using the5.
pd.csi.storage.gke.io provisioner:

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gcp-csi-pd
provisioner: pd.csi.storage.gke.io
parameters:
 type: pd-standard
 replication-type: regional-pd
volumeBindingMode: WaitForFirstConsumer
EOF

Create a PVC:6.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-gcp-pd-pvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: gcp-csi-pd
 resources:
 requests:
 storage: 4Gi
EOF

Create a pod that will use the PVC and that writes to the /data/out.txt file:7.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: mytestapp
spec:
 containers:
 - name: app
 image: centos
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo $(date -u) >> /data/out.txt; sleep
5; done"]
 volumeMounts:
 - name: persistent-storage
 mountPath: /data

Preparing for Stateful Workloads Chapter 5

[259]

 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: csi-gcp-pd-pvc
EOF

Verify that our mytestapp pod writes data to the volume:8.

$ kubectl exec -it mytestapp cat /data/out.txt
Mon Sep 9 18:20:38 UTC 2019

Remove the resources:9.

$ kubectl delete pod mytestapp && kubectl delete pvc csi-gcp-pd-pvc

Now you know how to utilize a CSI driver to deploy GCE PD volumes on GKE clusters.

How it works...
This recipe showed you how to quickly provision a dynamic persistent volume using
Kubernetes storage classes, and PVC and PV concepts.

In the Creating a GCP persistent disk storage class recipe, in Step 3, you created gce-pd storage
classes by using the allowedTopologies parameter and set two GKE zones, us-
central1-a and us-central1-b, under the values.

When allowedTopologies is defined in a storage class, GCP creates a regional persistent
disk and replicates the data between two zones in the same region for higher availability.

Volumes that are created with this option also get labeled in a similar manner to the label
here: failure-domain.beta.kubernetes.io/region : us-central1 and failure-
domain.beta.kubernetes.io/region : us-central1-a

Regional PDs help to survive a zonal outage. In that case, your Kubernetes cluster will
failover workloads using the volume to the other zone.

This option is recommended when building highly available stateful workloads on GKE
clusters.

Preparing for Stateful Workloads Chapter 5

[260]

See also
GCE PD types: https:/ /cloud. google. com/ persistent- disk/

GCE PD CSI driver repository: https:/ /github. com/ kubernetes- sigs/ gcp-
compute- persistent- disk- csi- driver

Managing Azure Disk volumes in
Kubernetes
Azure Cloud provides persistent block-level storage volumes for use with Azure
Kubernetes Engine (AKS). In this section, we will create storage classes for your
applications in Kubernetes running in the AKS. You will learn how to create a StorageClass
resource in Kubernetes, you will learn about the parameters available with the variation in
performance of Azure Disk volume types, and you will also learn how to use the new CSI.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation in order to use
manifest files under the chapter5 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter5

Make sure you have a regional GKE cluster ready and kubectl configured to manage the
cluster resources.

How to do it…
This section is sub-divided further into the following subsections to facilitate the process:

Creating an Azure Disk storage class
Changing the default storage class to ZRS
Using Azure Disk storage classes to create dynamic PVs
Deleting Azure Disk persistent volumes
Installing the Azure Disk CSI driver

https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://cloud.google.com/persistent-disk/
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver

Preparing for Stateful Workloads Chapter 5

[261]

Creating an Azure Disk storage class
Let's perform the following steps to learn the storage class parameters required to construct
an Azure Disk storage class that we can use to dynamically request new persistent volumes
from AKS:

AKS-based Kubernetes clusters are created with two locally redundant (LRS)1.
storage classes by default. Let's list the storage classes on your AKS cluster:

$ kubectl get sc
NAME PROVISIONER AGE
default (default) kubernetes.io/azure-disk 13m
managed-premium kubernetes.io/azure-disk 13m

Describe the default storage class:2.

$ kubectl describe sc default
Name: default
IsDefaultClass: Yes
...
Provisioner: kubernetes.io/azure-disk
Parameters:
cachingmode=ReadOnly,kind=Managed,storageaccounttype=Standard_LRS
AllowVolumeExpansion: <unset>
MountOptions: <none>
ReclaimPolicy: Delete
VolumeBindingMode: Immediate
Events: <none>

Create a zone-redundant storage class with the provisioner,3.
kubernetes.io/azure-disk, and the Standard_ZRS skuName specified:

$ cat <<EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azure-zrs
provisioner: kubernetes.io/azure-disk
parameters:
 storageaccounttype: Standard_ZRS
 kind: Shared
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: Immediate
EOF

Preparing for Stateful Workloads Chapter 5

[262]

You can find the definition and use cases for different volume types on the Azure
Disk volume types link in the See also section.

On Azure Cloud clusters, the default Azure Disk volume type is
Standard_LRS. For database workloads, such as MongoDB, Cassandra,
and PostgreSQL, Premium_LRS-type, high-performance SSDs are
recommended.

List the storage classes:4.

$ kubectl get sc
NAME PROVISIONER AGE
azure-zrs kubernetes.io/azure-disk 4s
default (default) kubernetes.io/azure-disk 18m
managed-premium kubernetes.io/azure-disk 18m

As you can see in our example, AKS clusters come with two predefined storage classes.

Changing the default storage class to ZRS
Dynamic storage provisioning is a key part of scaling applications. When a storage class is
not specified by a PVC, Kubernetes uses the default option. Let's perform the following
steps to set our preferred storage class as the default:

Let's set the existing default storage class as the non-default option:1.

$ kubectl patch storageclass default -p '{"metadata":
{"annotations":{"storageclass.beta.kubernetes.io/is-default-
class":"false"}}}'

Now, define azure-zrs as the default storage class again:2.

$ kubectl patch storageclass azure-zrs -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"true"}}}'

Confirm the new default storage class. You should see new azure-zrs as the3.
default, similar to the following output:

$ kubectl get sc
NAME PROVISIONER AGE
azure-zrs (default) kubernetes.io/azure-disk 4m38s
default kubernetes.io/azure-disk 23m
managed-premium kubernetes.io/azure-disk 23m

Preparing for Stateful Workloads Chapter 5

[263]

Now you know how to set your preferred storage class as the default on your AKS cluster.

Using Azure Disk storage classes to create dynamic
PVs
As part of a StatefulSet, volumeClaimTemplates can provide persistent storage using
PersistentVolumes provisioned by a PersistentVolume provisioner of your choice. In
this recipe, we will use the Azure storage class to dynamically create PVs for your
application:

Add the azure-zrs storage class line under1.
the volumeClaimTemplates section of your application deployment manifest,
similar to the following example:

...
 volumeClaimTemplates:
 - metadata:
 name: datadir
 annotations:
 volume.beta.kubernetes.io/storage-class: azure-zrs
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1G
...

In this recipe, we will deploy Redis Statefulset using the azure-zrs storage2.
class. Review the YAML manifest under the src/chapter5/azure directory in
the example repository before we execute it:

$ cat azure/redis-statefulset.yml

Create the Redis StatefulSet:3.

$ kubectl apply -f redis-statefulset.yml

Verify that pods have been created. In this recipe, our example has StatefulSet4.
with three replicas. As a result, you should see three replicas running, similar to
the following output:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rd-0 1/1 Running 0 6m24s

Preparing for Stateful Workloads Chapter 5

[264]

rd-1 1/1 Running 0 4m14s
rd-2 1/1 Running 0 2m13s

List the PVCs and PVs created. You should expect to see three PVCs and three5.
PVs created, similar to our example output here:

$ kubectl get pvc, pv
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
datadir-rd-0 Bound pvc-afaafb97-d376-11e9-88a2-a2c82783dcda 1Gi RWO
azure-zrs 4m31s
datadir-rd-1 Bound pvc-fc9f3a35-d376-11e9-88a2-a2c82783dcda 1Gi RWO
azure-zrs 2m22s
datadir-rd-2 Bound pvc-453d185d-d377-11e9-88a2-a2c82783dcda 1Gi RWO
azure-zrs 20s
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-453d185d-d377-11e9-88a2-a2c82783dcda 1Gi RWO Delete Bound
default/datadir-rd-2 azure-zrs 22s
pvc-afaafb97-d376-11e9-88a2-a2c82783dcda 1Gi RWO Delete Bound
default/datadir-rd-0 azure-zrs 4m42s
pvc-fc9f3a35-d376-11e9-88a2-a2c82783dcda 1Gi RWO Delete Bound
default/datadir-rd-1 azure-zrs 2m38s

Now you know how to dynamically create persistent volumes as part of your application
deployment on AKS clusters.

Deleting Azure Disk persistent volumes
When the reclaim policy is set to retain the volumes, they need to be removed separately by
observing the following steps:

Remember that deleting your workload will not remove the PVCs and PVs1.
unless the PVC manifest was included in the manifest:

$ kubectl delete -f redis-statefulset.yml
statefulset.apps "rd" deleted
service "redis" deleted

List the remaining PVs:2.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-171fbee3-39bf-4450-961f-6c1417ff3897 1Gi RWO Retain Bound
default/datadir-rd-1 aws-gp2 13m
pvc-8a538aa3-7382-4147-adde-1ea3dbaaafb4 1Gi RWO Retain Bound

Preparing for Stateful Workloads Chapter 5

[265]

default/datadir-rd-0 aws-gp2 15m
pvc-b40df89b-5349-4f02-8510-917012579746 1Gi RWO Retain Bound
default/datadir-rd-2 aws-gp2 12m

Delete the PVCs. You can delete multiple PVCs at once by adding their names in3.
a single command, similar to the following:

$ kubectl delete pvc datadir-rd-0 datadir-rd-1 datadir-rd-2

We have now successfully removed all storage resources related to the application that was
created as part of the Redis StatefulSet resource.

Installing the Azure Disk CSI driver
The Azure Disk CSI driver provides a Kubernetes CSI that allows AKS clusters to simply
manage the life cycle of Azure Disk volumes for persistent volumes. In this recipe, we will
learn the steps required to install the Azure Disk CSI driver by observing the following
steps:

Deploy the Azure Disk CSI driver:1.

$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes-sigs/azuredisk-csi-driver/
master/deploy/crd-csi-driver-registry.yaml
$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes-sigs/azuredisk-csi-driver/
master/deploy/crd-csi-node-info.yaml
$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes-sigs/azuredisk-csi-driver/
master/deploy/rbac-csi-azuredisk-controller.yaml
$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes-sigs/azuredisk-csi-driver/
master/deploy/csi-azuredisk-controller.yaml
$ kubectl apply -f
https://raw.githubusercontent.com/kubernetes-sigs/azuredisk-csi-driver/
master/deploy/csi-azuredisk-node.yaml

Verify that the driver is running that controller and that the azuredisk-node2.
DaemonSet is running:

$ kubectl get po -o wide -n kube-system | grep csi-azuredisk
csi-azuredisk-controller-9bc7f4d77-cbgxs 6/6 Running 0 5m31s 10.244.2.4
aks-agentpool-40109510-2 <none> <none>
csi-azuredisk-node-7kqzm 3/3 Running 0 5m27s 10.240.0.5 aks-
agentpool-40109510-1 <none> <none>
csi-azuredisk-node-gm6dr 3/3 Running 0 5m27s 10.240.0.4 aks-

Preparing for Stateful Workloads Chapter 5

[266]

agentpool-40109510-2 <none> <none>
csi-azuredisk-node-wqsls 3/3 Running 0 5m27s 10.240.0.6 aks-
agentpool-40109510-0 <none> <none>

Now, create a new storage class:3.

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: disk.csi.azure.com
provisioner: disk.csi.azure.com
parameters:
 skuname: Standard_LRS
 kind: managed
 cachingMode: ReadOnly
reclaimPolicy: Delete
volumeBindingMode: Immediate
EOF

Create a PVC using the storage class name, disk.csi.azure.com:4.

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-azure-pvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: disk.csi.azure.com
 resources:
 requests:
 storage: 4Gi
EOF

Create a pod that will use the csi-azure-pvc PVC and that writes to5.
the /data/out.txt file:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: mytestapp
spec:
 containers:
 - name: app
 image: centos

Preparing for Stateful Workloads Chapter 5

[267]

 command: ["/bin/sh"]
 args: ["-c", "while true; do echo $(date -u) >> /data/out.txt; sleep
5; done"]
 volumeMounts:
 - name: persistent-storage
 mountPath: /data
 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: csi-azure-pvc
EOF

Verify that our mytestapp pod writes data to the volume:6.

$ kubectl exec -it mytestapp cat /data/out.txt
Mon Sep 9 19:23:29 UTC 2019

Now you know how to use the Azure Disk CSI driver to provision persistent volumes on
your AKS clusters.

See also
Azure Disk volume types: https:/ /azure. microsoft. com/ en-us/ pricing/
details/ managed- disks/

AWS EBS CSI driver repository: https:/ /github. com/ kubernetes- sigs/
azuredisk- csi- driver

Configuring and managing persistent
storage using Rook
Rook is a cloud-native, open source storage orchestrator for Kubernetes. Rook provides
self-managing, self-scaling, and self-healing distributed storage systems in Kubernetes. In
this section, we will create multiple storage providers using the Rook storage orchestrator
for your applications in Kubernetes. You will learn to create a Ceph provider for your
stateful applications that require persistent storage.

https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://github.com/kubernetes-sigs/azuredisk-csi-driver

Preparing for Stateful Workloads Chapter 5

[268]

Getting ready
Make sure that you have a Kubernetes cluster ready and kubectl configured to manage
the cluster resources.

How to do it…
This section is sub-divided further into the following subsections to facilitate the process:

Installing a Ceph provider using Rook
Creating a Ceph cluster
Verifying a Ceph cluster's health
Create a Ceph block storage class
Using a Ceph block storage class to create dynamic PVs

Installing a Ceph provider using Rook
Let's perform the following steps to get a Ceph scale-out storage solution up and running
using the Rook project:

Clone the Rook repository:1.

$ git clone https://github.com/rook/rook.git
$ cd rook/cluster/examples/kubernetes/ceph/

Deploy the Rook Operator:2.

$ kubectl create -f common.yaml
$ kubectl create -f operator.yaml

Verify the Rook Operator:3.

$ kubectl get pod -n rook-ceph
NAME READY STATUS RESTARTS AGE
rook-ceph-operator-6b66859964-vnrfx 1/1 Running 0 2m12s
rook-discover-8snpm 1/1 Running 0 97s
rook-discover-mcx9q 1/1 Running 0 97s
rook-discover-mdg2s 1/1 Running 0 97s

Now you have learned how to deploy the Rook orchestration components for the Ceph
provider running on Kubernetes.

Preparing for Stateful Workloads Chapter 5

[269]

Creating a Ceph cluster
Let's perform the following steps to deploy a Ceph cluster using the Rook Operator:

Create a Ceph cluster:1.

$ cat <<EOF | kubectl apply -f -
apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v14.2.3-20190904
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 dashboard:
 enabled: true
 storage:
 useAllNodes: true
 useAllDevices: false
 directories:
 - path: /var/lib/rook
EOF

Verify that all pods are running:2.

$ kubectl get pod -n rook-ceph

Within a minute, a fully functional Ceph cluster will be deployed and ready to be used. You
can read more about Ceph in the Rook Ceph Storage Documentation link in the See also
section.

Verifying a Ceph cluster's health
The Rook toolbox is a container with common tools used for rook debugging and
testing. Let's perform the following steps to deploy the Rook toolbox to verify cluster
health:

Deploy the Rook toolbox:1.

$ kubectl apply -f toolbox.yaml

Preparing for Stateful Workloads Chapter 5

[270]

Verify that the toolbox is running:2.

$ kubectl -n rook-ceph get pod -l "app=rook-ceph-tools"
NAME READY STATUS RESTARTS AGE
rook-ceph-tools-6fdfc54b6d-4kdtm 1/1 Running 0 109s

Connect to the toolbox:3.

$ kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l
"app=rook-ceph-tools" -o jsonpath='{.items[0].metadata.name}') bash

Verify that the cluster is in a healthy state (HEALTH_OK):4.

ceph status
 cluster:
 id: 6b6e4bfb-bfef-46b7-94bd-9979e5e8bf04
 health: HEALTH_OK
 services:
 mon: 3 daemons, quorum a,b,c (age 12m)
 mgr: a(active, since 12m)
 osd: 3 osds: 3 up (since 11m), 3 in (since 11m)
 data:
 pools: 0 pools, 0 pgs
 objects: 0 objects, 0 B
 usage: 49 GiB used, 241 GiB / 291 GiB avail
 pgs:

When you are finished troubleshooting, remove the deployment using the5.
following command:

$ kubectl -n rook-ceph delete deployment rook-ceph-tools

Now you know how to deploy the Rook toolbox with its common tools that are used to
debug and test Rook.

Create a Ceph block storage class
Let's perform the following steps to create a storage class for Ceph storage.:

Create CephBlockPool:1.

$ cat <<EOF | kubectl apply -f -
apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:

Preparing for Stateful Workloads Chapter 5

[271]

 name: replicapool
 namespace: rook-ceph
spec:
 failureDomain: host
 replicated:
 size: 3
EOF

Create a Rook Ceph block storage class:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-block
provisioner: rook-ceph.rbd.csi.ceph.com
parameters:
 clusterID: rook-ceph
 pool: replicapool
 imageFormat: "2"
 imageFeatures: layering
 csi.storage.k8s.io/provisioner-secret-name: rook-ceph-csi
 csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph
 csi.storage.k8s.io/node-stage-secret-name: rook-ceph-csi
 csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph
 csi.storage.k8s.io/fstype: xfs
reclaimPolicy: Delete
EOF

Confirm that the storage class has been created:3.

$ kubectl get sc
NAME PROVISIONER AGE
default (default) kubernetes.io/azure-disk 6h27m
rook-ceph-block rook-ceph.rbd.csi.ceph.com 3s

As you can see from the preceding provisioner name, rook-ceph.rbd.csi.ceph.com,
Rook also uses CSI to interact with Kubernetes APIs. This driver is optimized for RWO pod
access where only one pod may access the storage.

Preparing for Stateful Workloads Chapter 5

[272]

Using a Ceph block storage class to create dynamic
PVs
In this recipe, we will deploy Wordpress using dynamic persistent volumes created by the
Rook Ceph block storage provider. Let's perform the following steps:

Clone the examples repository:1.

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter5/rook/

Review both mysql.yaml and wordpress.yaml. Note that PVCs are using the2.
rook-ceph-block storage class:

$ cat mysql.yaml && cat wordpress.yaml

Deploy MySQL and WordPress:3.

$ kubectl apply -f mysql.yaml
$ kubectl apply -f wordpress.yaml

Confirm the persistent volumes created:4.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-eb2d23b8-d38a-11e9-88a2-a2c82783dcda 20Gi RWO Delete Bound
default/mysql-pv-claim rook-ceph-block 38s
pvc-eeab1ebc-d38a-11e9-88a2-a2c82783dcda 20Gi RWO Delete Bound
default/wp-pv-claim rook-ceph-block 38s

Get the external IP of the WordPress service:5.

$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP
6h34m
wordpress LoadBalancer 10.0.102.14 13.64.96.240 80:30596/TCP
3m36s
wordpress-mysql ClusterIP None <none> 3306/TCP
3m42s

Open the external IP of the WordPress service in your browser to access your6.
Wordpress deployment:

Preparing for Stateful Workloads Chapter 5

[273]

Now you know how to get the popular WordPress service, with persistent storage stored
on Rook-based Ceph storage, up and running.

See also
Rook documentation: https:/ /rook. io/docs/ rook/ master/

Rook Ceph storage documentation: https:/ /rook. io/ docs/ rook/ master/ ceph-
storage. html

Rook community slack channel: https:/ /slack. rook. io/

Configuring and managing persistent
storage using OpenEBS
OpenEBS is a popular open source, cloud-native storage (CNS) project with a large
community. In this section, we will install an OpenEBS persistent storage provider. You
will learn how to create volumes using different types of storage engine options for stateful
workloads on Kubernetes.

https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://rook.io/docs/rook/master/ceph-storage.html
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/
https://slack.rook.io/

Preparing for Stateful Workloads Chapter 5

[274]

Getting ready
For this recipe, we need to have helm and kubectl installed. Make sure you have a
Kubernetes cluster ready and kubectl configured to manage the cluster resources.

How to do it…
This section is sub-divided further into the following subsections to facilitate the process:

Installing iSCSI client prerequisites
Installing OpenEBS
Using ephemeral storage to create persistent volumes
Creating storage pools
Creating OpenEBS storage classes
Using an OpenEBS storage class to create dynamic PVs

Installing iSCSI client prerequisites
The OpenEBS storage provider requires that the iSCSI client runs on all worker nodes:

On all your worker nodes, follow the steps to install and enable open-iscsi:1.

$ sudo apt-get update && sudo apt-get install open-iscsi && sudo
service open-iscsi restart

Validate that the iSCSI service is running:2.

$ systemctl status iscsid
● iscsid.service - iSCSI initiator daemon (iscsid)
 Loaded: loaded (/lib/systemd/system/iscsid.service; enabled; vendor
preset: enabled)
 Active: active (running) since Sun 2019-09-08 07:40:43 UTC; 7s ago
 Docs: man:iscsid(8)

If the service status is showing as inactive, then enable and start the iscsid3.
service:

$ sudo systemctl enable iscsid && sudo systemctl start iscsid

After installing the iSCSI service, you are ready to install OpenEBS on your cluster.

Preparing for Stateful Workloads Chapter 5

[275]

Installing OpenEBS
Let's perform the following steps to quickly get the OpenEBS control plane installed:

Install OpenEBS services by using the operator:1.

$ kubectl apply -f
https://openebs.github.io/charts/openebs-operator.yaml

Confirm that all OpenEBS pods are running:2.

$ kubectl get pods --namespace openebs
NAME READY STATUS RESTARTS AGE
maya-apiserver-dcbc87f7f-k99fz 0/1 Running 0 88s
openebs-admission-server-585c6588d-j29ng 1/1 Running 0 88s
openebs-localpv-provisioner-cfbd49877-jzjxl 1/1 Running 0 87s
openebs-ndm-fcss7 1/1 Running 0 88s
openebs-ndm-m4qm5 1/1 Running 0 88s
openebs-ndm-operator-bc76c6ddc-4kvxp 1/1 Running 0 88s
openebs-ndm-vt76c 1/1 Running 0 88s
openebs-provisioner-57bbbd888d-jb94v 1/1 Running 0 88s
openebs-snapshot-operator-7dd598c655-2ck74 2/2 Running 0 88s

OpenEBS consists of the core components listed here. Node Disk Manager (NDM) is one of
the important pieces of OpenEBS that is responsible for detecting disk changes and runs as
DaemonSet on your worker nodes.

Using ephemeral storage to create persistent volumes
OpenEBS currently provides three storage engine options (Jiva, cStor, and LocalPV). The
first storage engine option, Jiva, can create replicated storage on top of the ephemeral
storage. Let's perform the following steps to get storage using ephemeral storage
configured:

List the default storage classes:1.

$ kubectl get sc
NAME PROVISIONER
AGE
openebs-device openebs.io/local
25m
openebs-hostpath openebs.io/local
25m
openebs-jiva-default openebs.io/provisioner-iscsi
25m

Preparing for Stateful Workloads Chapter 5

[276]

openebs-snapshot-promoter volumesnapshot.external-
storage.k8s.io/snapshot-promoter 25m

Describe the openebs-jiva-default storage class:2.

$ kubectl describe sc openebs-jiva-default
Name: openebs-jiva-default
IsDefaultClass: No
Annotations: cas.openebs.io/config=- name: ReplicaCount
 value: "3"
- name: StoragePool
 value: default

Create a persistent volume claim using openebs-jiva-default:3.

$ cat <<EOF | kubectl apply -f -
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: demo-vol1-claim
spec:
 storageClassName: openebs-jiva-default
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5G
EOF

Confirm that the PVC status is BOUND:4.

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
demo-vol1-claim Bound pvc-cb7485bc-6d45-4814-adb1-e483c0ebbeb5 5G RWO
openebs-jiva-default 4s

Now, use the PVC to dynamically provision a persistent volume:5.

$ kubectl apply -f
https://raw.githubusercontent.com/openebs/openebs/master/k8s/demo/perco
na/percona-openebs-deployment.yaml

Now list the pods and make sure that your workload, OpenEBS controller, and6.
replicas are all in the running state:

$ kubectl get pods
NAME READY
STATUS RESTARTS AGE

Preparing for Stateful Workloads Chapter 5

[277]

percona-767db88d9d-2s8np 1/1
Running 0 75s
pvc-cb7485bc-6d45-4814-adb1-e483c0ebbeb5-ctrl-54d7fd794-s8svt 2/2
Running 0 2m23s
pvc-cb7485bc-6d45-4814-adb1-e483c0ebbeb5-rep-647458f56f-2b9q4 1/1
Running 1 2m18s
pvc-cb7485bc-6d45-4814-adb1-e483c0ebbeb5-rep-647458f56f-nkbfq 1/1
Running 0 2m18s
pvc-cb7485bc-6d45-4814-adb1-e483c0ebbeb5-rep-647458f56f-x7s9b 1/1
Running 0 2m18s

Now you know how to get highly available, cloud-native storage configured for your
stateful applications on Kubernetes.

Creating storage pools
In this recipe, we will use raw block devices attached to your nodes to create a storage pool.
These devices can be AWS EBS volumes, GCP PDs, Azure Disk, virtual disks, or vSAN
volumes. Devices can be attached to your worker node VMs, or basically physical disks if
you are using a bare-metal Kubernetes cluster. Let's perform the following steps to create a
storage pool out of raw block devices:

List unused and unclaimed block devices on your nodes:1.

$ kubectl get blockdevices -n openebs
NAME NODENAME SIZE CLAIMSTATE STATUS AGE
blockdevice-24d9b7652893384a36d0cc34a804c60c ip-172-23-1-176.us-
west-2.compute.internal 107374182400 Unclaimed Active 52s
blockdevice-8ef1fd7e30cf0667476dba97975d5ac9 ip-172-23-1-25.us-
west-2.compute.internal 107374182400 Unclaimed Active 51s
blockdevice-94e7c768ef098a74f3e2c7fed6d82a5f ip-172-23-1-253.us-
west-2.compute.internal 107374182400 Unclaimed Active 52s

In our example, we have a three-node Kubernetes cluster on AWS EC2 with one
additional EBS volume attached to each node.

Create a storage pool using the unclaimed devices from Step 1:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: openebs.io/v1alpha1
kind: StoragePoolClaim
metadata:
 name: cstor-disk-pool
 annotations:
 cas.openebs.io/config: |
 - name: PoolResourceRequests

Preparing for Stateful Workloads Chapter 5

[278]

 value: |-
 memory: 2Gi
 - name: PoolResourceLimits
 value: |-
 memory: 4Gi
spec:
 name: cstor-disk-pool
 type: disk
 poolSpec:
 poolType: striped
 blockDevices:
 blockDeviceList:
 - blockdevice-24d9b7652893384a36d0cc34a804c60c
 - blockdevice-8ef1fd7e30cf0667476dba97975d5ac9
 - blockdevice-94e7c768ef098a74f3e2c7fed6d82a5f
EOF

List the storage pool claims:3.

$ kubectl get spc
NAME AGE
cstor-disk-pool 29s

Verify that a cStor pool has been created and that its status is Healthy:4.

$ kubectl get csp
NAME ALLOCATED FREE CAPACITY STATUS TYPE AGE
cstor-disk-pool-8fnp 270K 99.5G 99.5G Healthy striped 3m9s
cstor-disk-pool-nsy6 270K 99.5G 99.5G Healthy striped 3m9s
cstor-disk-pool-v6ue 270K 99.5G 99.5G Healthy striped 3m10s

Now we can use the storage pool in storage classes to provision dynamic5.
volumes.

Creating OpenEBS storage classes
Let's perform the following steps to create a new storage class to consume StoragePool,
which we created previously in the Creating storage pools recipe:

Create an OpenEBS cStor storage class using the cStor1.
StoragePoolClaim name, cstor-disk-pool, with three replicas:

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

Preparing for Stateful Workloads Chapter 5

[279]

 name: openebs-cstor-default
 annotations:
 openebs.io/cas-type: cstor
 cas.openebs.io/config: |
 - name: StoragePoolClaim
 value: "cstor-disk-pool"
 - name: ReplicaCount
 value: "3"
provisioner: openebs.io/provisioner-iscsi
EOF

List the storage classes:2.

$ kubectl get sc
NAME PROVISIONER AGE
default kubernetes.io/aws-ebs 25m
gp2 (default) kubernetes.io/aws-ebs 25m
openebs-cstor-default openebs.io/provisioner-iscsi 6s
openebs-device openebs.io/local 20m
openebs-hostpath openebs.io/local 20m
openebs-jiva-default openebs.io/provisioner-iscsi 20m
openebs-snapshot-promoter volumesnapshot.external-
storage.k8s.io/snapshot-promoter 20m
ubun

Set the gp2 AWS EBS storage class as the non-default option:3.

$ kubectl patch storageclass gp2 -p '{"metadata":
{"annotations":{"storageclass.beta.kubernetes.io/is-default-
class":"false"}}}'

Define openebs-cstor-default as the default storage class:4.

$ kubectl patch storageclass openebs-cstor-default -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"true"}}}'

Make sure that the previous storage class is no longer set as the default and that you only
have one default storage class.

Preparing for Stateful Workloads Chapter 5

[280]

Using an OpenEBS storage class to create dynamic
PVs
Let's perform the following steps to deploy dynamically created persistent volumes using
the OpenEBS storage provider:

Clone the examples repository:1.

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter5/openebs/

Review minio.yaml and note that PVCs are using the openebs-stor-2.
default storage class.

Deploy Minio:3.

$ kubectl apply -f minio.yaml
deployment.apps/minio-deployment created
persistentvolumeclaim/minio-pv-claim created
service/minio-service created

Get the Minio service load balancer's external IP:4.

$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.3.0.1 <none> 443/TCP 54m
minio-service LoadBalancer 10.3.0.29
adb3bdaa893984515b9527ca8f2f8ca6-1957771474.us-west-2.elb.
amazonaws.com 9000:32701/TCP 3s

Add port 9000 to the end of the address and open the external IP of the Minio5.
service in your browser:
Use the username minio, and the password minio123 to log in to the Minio6.
deployment backed by persistent OpenEBS volumes:

Preparing for Stateful Workloads Chapter 5

[281]

You have now successfully deployed a stateful application that is deployed on the
OpenEBS cStor storage engine.

How it works...
This recipe showed you how to quickly provision a persistent storage provider using
OpenEBS.

In the Using ephemeral storage to create persistent volumes recipe, in Step 6, when we deployed
a workload using the openebs-jiva-default storage class, OpenEBS launched OpenEBS
volumes with three replicas.

To set one replica, as is the case with a single-node Kubernetes cluster, you can create a new
storage class (similar to the one we created in the Creating OpenEBS storage class recipe)
and set the ReplicaCount variable value to 1:

apiVersion: openebs.io/v1alpha1
kind: StoragePool
metadata:
 name: my-pool
 type: hostdir
spec:
 path: "/my/openebs/folder"

When ephemeral storage is used, the OpenEBS Jiva storage engine uses the /var/openebs
directory on every available node to create replica sparse files. If you would like to change
the default or create a new StoragePool resource, you can create a new storage pool and set
a custom path.

Preparing for Stateful Workloads Chapter 5

[282]

See also
OpenEBS documentation: https:/ /docs. openebs. io/

Beyond the basics: OpenEBS workshop: https:/ /github. com/ openebs/
community/ tree/ master/ workshop

OpenEBS Community Slack channel: https:/ /openebs. io/join- our- slack-
community

OpenEBS enterprise platform: https:/ /mayadata. io/product

OpenEBS director for managing stateful workloads: https:/ /account. mayadata.
io/login

Setting up NFS for shared storage on
Kubernetes
Although it's not the best-performing solution, NFS is still used with cloud-native
applications where multi-node write access is required. In this section, we will create an
NFS-based persistent storage for this type of application. You will learn how to use
OpenEBS and Rook to ReadWriteMany (RWX) accessible persistent volumes for stateful
workloads that require shared storage on Kubernetes.

Getting ready
For this recipe, we need to have either rook or openebs installed as an orchestrator. Make
sure that you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

How to do it…
There are two popular alternatives when it comes to providing an NFS service. This section
is sub-divided further into the following subsections to explain the process using Rook and
OpenEBS:

Installing NFS prerequisites
Installing an NFS provider using a Rook NFS operator
Using a Rook NFS operator storage class to create dynamic NFS PVs

https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://docs.openebs.io/
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://github.com/openebs/community/tree/master/workshop
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://openebs.io/join-our-slack-community
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://mayadata.io/product
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login
https://account.mayadata.io/login

Preparing for Stateful Workloads Chapter 5

[283]

Installing an NFS provider using OpenEBS
Using the OpenEBS operator storage class to create dynamic NFS PVs

Installing NFS prerequisites
To be able to mount NFS volumes, NFS client packages need to be preinstalled on all
worker nodes where you plan to have NFS-mounted pods:

If you are using Ubuntu, install nfs-common on all worker nodes:1.

$ sudo apt install -y nfs-common

If using CentOS, install nfs-common on all worker nodes:2.

$ yum install nfs-utils

Now we have nfs-utils installed on our worker nodes and are ready to get the NFS
server to deploy.

Installing an NFS provider using a Rook NFS operator
Let's perform the following steps to get an NFS provider functional using the Rook NFS
provider option:

Clone the Rook repository:1.

$ git clone https://github.com/rook/rook.git
$ cd rook/cluster/examples/kubernetes/nfs/

Deploy the Rook NFS operator:2.

$ kubectl create -f operator.yaml

Confirm that the operator is running:3.

$ kubectl get pods -n rook-nfs-system
NAME READY STATUS RESTARTS AGE
rook-nfs-operator-54cf68686c-f66f5 1/1 Running 0 51s
rook-nfs-provisioner-79fbdc79bb-hf9rn 1/1 Running 0 51s

Create a namespace, rook-nfs:4.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace

Preparing for Stateful Workloads Chapter 5

[284]

metadata:
 name: rook-nfs
EOF

Make sure that you have defined your preferred storage provider as the default5.
storage class. In this recipe, we are using openebs-cstor-default, defined in
persistent storage using the OpenEBS recipe.
Create a PVC:6.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-default-claim
 namespace: rook-nfs
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
EOF

Create the NFS instance:7.

$ cat <<EOF | kubectl apply -f -
apiVersion: nfs.rook.io/v1alpha1
kind: NFSServer
metadata:
 name: rook-nfs
 namespace: rook-nfs
spec:
 serviceAccountName: rook-nfs
 replicas: 1
 exports:
 - name: share1
 server:
 accessMode: ReadWrite
 squash: "none"
 persistentVolumeClaim:
 claimName: nfs-default-claim
 annotations:
 # key: value
EOF

Preparing for Stateful Workloads Chapter 5

[285]

Verify that the NFS pod is in the Running state:8.

$ kubectl get pod -l app=rook-nfs -n rook-nfs
NAME READY STATUS RESTARTS AGE
rook-nfs-0 1/1 Running 0 2m

By observing the preceding command, an NFS server instance type will be created.

Using a Rook NFS operator storage class to create
dynamic NFS PVs
NFS is used in the Kubernetes environment on account of its ReadWriteMany capabilities
for the application that requires access to the same data at the same time. In this recipe, we
will perform the following steps to dynamically create an NFS-based persistent volume:

Create Rook NFS storage classes using exportName, nfsServerName,1.
and nfsServerNamespace from the Installing an NFS provider using a Rook NFS
operator recipe:

$ cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 labels:
 app: rook-nfs
 name: rook-nfs-share1
parameters:
 exportName: share1
 nfsServerName: rook-nfs
 nfsServerNamespace: rook-nfs
provisioner: rook.io/nfs-provisioner
reclaimPolicy: Delete
volumeBindingMode: Immediate
EOF

Now, you can use the rook-nfs-share1 storage class to create PVCs for2.
applications that require ReadWriteMany access:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: rook-nfs-pv-claim
spec:
 storageClassName: "rook-nfs-share1"

Preparing for Stateful Workloads Chapter 5

[286]

 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi
EOF

By observing the preceding command, an NFS PV will be created.

Installing an NFS provisioner using OpenEBS
OpenEBS provides an NFS provisioner that is protected by the underlying storage engine
options of OpenEBS. Let's perform the following steps to get an NFS service with OpenEBS
up and running:

Clone the examples repository:1.

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter5/openebs

In this recipe, we are using the openebs-jiva-default storage class. Review2.
the directory content and apply the YAML file under the NFS directory:

$ kubectl apply -f nfs

List the PVCs and confirm that a PVC named openebspvc has been created:3.

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
openebspvc Bound pvc-9f70c0b4-efe9-4534-8748-95dba05a7327 110G RWO
openebs-jiva-default 13m

Using the OpenEBS NFS provisioner storage class to
create dynamic NFS PVs
Let's perform the following steps to dynamically deploy an NFS PV protected by the
OpenEBS storage provider:

List the storage classes, and confirm that openebs-nfs exists:1.

$ kubectl get sc
NAME PROVISIONER AGE
openebs-cstor-default (default) openebs.io/provisioner-iscsi 14h

Preparing for Stateful Workloads Chapter 5

[287]

openebs-device openebs.io/local 15h
openebs-hostpath openebs.io/local 15h
openebs-jiva-default openebs.io/provisioner-iscsi 15h
openebs-nfs openebs.io/nfs 5s
openebs-snapshot-promoter volumesnapshot.external-
storage.k8s.io/snapshot-promoter 15h

Now, you can use the openebs-nfs storage class to create PVCs for applications2.
that require ReadWriteMany access:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: openebs-nfs-pv-claim
spec:
 storageClassName: "openebs-nfs"
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi
EOF

See also
Rook NFS operator documentation: https:/ /github. com/ rook/ rook/ blob/
master/Documentation/ nfs. md

OpenEBS provisioning read-write-many PVCs: https:/ /docs. openebs. io/docs/
next/rwm. html

Troubleshooting storage issues
In this section, you will learn how to solve the most common storage issues associated with
Kubernetes. After following the recipes in this chapter, you will gain the basic skills
required to troubleshoot persistent volumes stuck in pending or termination states.

Getting ready
Make sure that you have a Kubernetes cluster ready and kubectl configured to manage
the cluster resources.

https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://github.com/rook/rook/blob/master/Documentation/nfs.md
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html
https://docs.openebs.io/docs/next/rwm.html

Preparing for Stateful Workloads Chapter 5

[288]

How to do it…
This section is sub-divided further into the following subsections to facilitate the process:

Persistent volumes in the pending state
A PV is stuck once a PVC has been deleted

Persistent volumes in the pending state
You have deployed an application, but both pods and persistent volume claims are stuck in
the pending state, similar to the following:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mysql-pv-claim Pending rook-ceph-block 28s

Let's perform the following steps to start troubleshooting:

First, describe the PVC to understand the root cause:1.

$ kubectl describe pvc mysql-pv-claim
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning ProvisioningFailed 3s (x16 over 3m42s) persistentvolume-
controller storageclass.storage.k8s.io "rook-ceph-block" not found

A PVC is stuck due to an incorrect or non-existing storage class. We need to2.
change the storage class with a valid resource. List the storage classes as follows:

$ kubectl get sc
NAME PROVISIONER
AGE
default kubernetes.io/aws-ebs
102m
gp2 kubernetes.io/aws-ebs
102m
openebs-cstor-default (default) openebs.io/provisioner-iscsi
77m
openebs-device openebs.io/local
97m
openebs-hostpath openebs.io/local
97m
openebs-jiva-default openebs.io/provisioner-iscsi
97m

Preparing for Stateful Workloads Chapter 5

[289]

openebs-snapshot-promoter volumesnapshot.external-
storage.k8s.io/snapshot-promoter 97m

Delete the deployment using kubectl delete -f <deployment.yaml>.3.
Edit the deployment and replace the storageClassName field with a valid4.
storage class from the output of the previous step, in our case, openebs-cstor-
default.
Redeploy the application using kubectl apply -f <deployment.yaml>.5.
Confirm that the PVC status is Bound:6.

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mysql-pv-claim Bound pvc-bbf2b01e-2a69-4c4c-b9c2-48921959c363 20Gi RWO
openebs-cstor-default 5s

Now you have successfully troubleshooted PVC issues caused by a missing StorageClass
resource.

A PV is stuck once a PVC has been deleted
You have deleted a PVC. However, either the PVC or PV deletion is stuck in the
terminating state, similar to the following:

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pvc-bbf2b01e-2a69-4c4c-b9c2-48921959c363 20Gi RWO Delete Terminating
default/mysql-pv-claim gp2 7m45s

Edit the stuck PVs or PVCs in the terminating state:

$ kubectl edit pv <PV_Name>

Remove finalizers similar to - kubernetes.io/pv-protection, and save the changes.

6
Disaster Recovery and Backup

In this chapter, we will focus on the backup and disaster recovery scenarios that keep
applications in production highly available and allow them to quickly recover services
during cloud provider or basic Kubernetes node failures. After following the recipes in this
chapter, you will have gained the skills to operate the tools that are used for disaster
recovery (DR) and be able to live-migrate applications across clusters and clouds.

In this chapter, we will cover the following recipes:

Configuring and managing S3 object storage using MinIO
Managing Kubernetes Volume Snapshots and restore
Application backup and recovery using Velero
Application backup and recovery using Kasten
Cross-cloud application migration

Technical requirements
The recipes in this chapter assume that you have a functional Kubernetes cluster deployed
by following one of the recommended methods described in Chapter 1, Building
Production-Ready Kubernetes Clusters.

The Kubernetes Operations tool kubectl will be used for the rest of the recipes in this
chapter since it's the main command-line interface for running commands against
Kubernetes clusters. If you are using a Red Hat OpenShift cluster, you can
replace kubectl with oc. All the commands are expected to function in a similar fashion.

Disaster Recovery and Backup Chapter 6

[291]

Configuring and managing S3 object
storage using MinIO
In this section, we will create an S3 object storage using MinIO to store artifacts or
configuration files created by your applications in Kubernetes. You will learn how to create
deployment manifest files, deploy an S3 service, and provide an external IP address for
other applications or users to consume the service.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use manifest files
under the chapter6 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter6

Make sure you have a Kubernetes cluster ready and kubectl configured so that you can
manage the cluster resources.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Creating a deployment YAML manifest
Creating a MinIO S3 service
Accessing the MinIO web user interface

Disaster Recovery and Backup Chapter 6

[292]

Creating a deployment YAML manifest
All Kubernetes resources are created in a declarative way by using YAML manifest files.
Let's perform the following steps to create an example file we will use later to deploy an
application in Kubernetes:

For this recipe, we will use MinIO to create a couple of resources that we can use1.
to understand the file format and later help us deploy the fully functional
application. Open the MinIO download website by going to https:/ /min. io/
download#/ kubernetes.
On the MinIO website from the list of available download options, click on2.
the Kubernetes button and select the Kubernetes CLI tab. This page will help us
generate the YAML content required for the MinIO application based on our
preferences:

https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes
https://min.io/download#/kubernetes

Disaster Recovery and Backup Chapter 6

[293]

Enter your access key and secret key pair. In our example, we used3.
minio/minio123. This will be used in place of a username and password when
you access your MinIO service. Select Distributed as the deployment model and
enter 4 for the number of nodes. This option will create a StatefulSet with four
replicas. Enter 10 GB as the size. In our example, we'll use the values shown on
the following configuration screen:

Click on the Generate button and examine the file's content. You will notice three4.
different resources stored in the YAML manifest, including service, StatefulSet,
and second service, which will create a cloud load balancer to expose the first
service ports to the external access.
Copy the content and save it as minio.yaml on your workstation.5.

Creating a MinIO S3 service
Let's perform the following steps to create the necessary resources to get a functional S3
service using MinIO:

Deploy MinIO using the YAML manifest you created in the Creating a deployment1.
YAML manifest recipe:

$ kubectl apply -f minio.yaml

Disaster Recovery and Backup Chapter 6

[294]

As an alternative method, you can use the sample YAML file saved under
the /src/chapter6/minio directory in the example repository using the
$ kubectl apply -f minio/minio.yaml command.

Verify StatefulSet. You should see 4 out of 4 replicas deployed, similar to the2.
following output. Note that if you deployed as standalone, you will not have
StatefulSets:

$ kubectl get statefulsets
NAME READY AGE
minio 4/4 2m17s

Now, you have a MinIO application that's been deployed. In the next recipe, we will learn
how to discover its external address to access the service.

Accessing the MinIO web user interface
As part of the deployment process, we have MinIO create a cloud load balancer to expose
the service to external access. In this recipe, we will learn how to access the MinIO interface
to upload and download files to the S3 backend. To do so, we will perform the following
steps:

Get the minio-service LoadBalancer's external IP using the following1.
command. You will see the exposed service address under the EXTERNAL-IP
column, similar to the following output:

$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
minio ClusterIP None <none>
9000/TCP 2m49s
minio-service LoadBalancer 10.3.0.4 abc.us-
west-2.elb.amazonaws.com 9000:30345/TCP 2m49s

As you can see, the output service is exposed via port 9000. To access the service,2.
we also need to add port 9000 to the end of the address
(http://[externalIP]:9000) and open the public address of the MinIO
service in our browser.

Disaster Recovery and Backup Chapter 6

[295]

You need to have permissions to access the Dashboard. Use the default username3.
of minio and the default password of minio123 we created earlier to log in to
the Minio deployment. After you've logged in, you will be able to access the
MinIO Browser, as shown in the following screenshot:

MinIO is compatible with the Amazon S3 cloud storage service and is best suited for
storing unstructured data such as photos, log files, and backups. Now that you have access
to the MinIO user interface, you can create bucks, upload your files, and access them
through S3 APIs, similar to how you would access a standard Amazon S3 service to store
your backups. You can learn more about MinIO by going to the MinIO Documentation link
in the See also section.

How it works...
This recipe showed you how to provision a completely Amazon S3 API-compatible service
using MinIO deployed on Kubernetes. This service will be used later for disaster recovery
and backing up applications running on Kubernetes.

In the Creating a MinIO S3 service recipe, in Step 1, when we deploy MinIO, it creates a
LoadBalancer service at port 9000. Since we set the number of nodes to 4, a StatefulSet will
be created with four replicas. Each will use the information set under
the volumeClaimTemplates section to create a PVC. If storageClassName is not defined
specifically, then the default storage class will be used. As a result, you will see four
instance of PersistentVolumesClaim (PVC) created on the cluster to provide a highly
available MinIO service.

Disaster Recovery and Backup Chapter 6

[296]

See also
The MinIO documentation,at: https:/ /docs. min. io/docs/ minio- quickstart-
guide.html

MinIO Operator for Kubernetes at: https:/ /github. com/minio/ minio- operator

The MinIO Erasure Code QuickStart Guide at: https:/ /docs. min. io/docs/
minio-erasure- code- quickstart- guide

Using MinIO Client, at: https:/ /docs. min. io/ docs/ minio- client- quickstart-
guide

Managing Kubernetes Volume Snapshots
and restore
In this section, we will create Volume Snapshots from our persistent volumes in
Kubernetes. By following this recipe, you will learn how to enable the Volume Snapshot
functionality, create snapshot storage classes, and restore from existing Volume Snapshots.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files under the chapter6 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter6

Make sure the Container Storage Interface (CSI) driver from your preferred storage
vendor is installed on your Kubernetes cluster and has implemented the snapshot
functionality. We covered the installation of the AWS EBS, GCP PD, Azure Disk, Rook, and
OpenEBS CSI drivers in Chapter 5, Preparing for Stateful Workloads.

The instructions in this section work similarly with other vendors that support snapshots
via CSI. You can find these additional drivers on the Kubernetes CSI documentation site
at: https://kubernetes- csi. github. io/ docs/ drivers. html.

https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://github.com/minio/minio-operator
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-erasure-code-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://docs.min.io/docs/minio-client-quickstart-guide
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html

Disaster Recovery and Backup Chapter 6

[297]

How to do it…
 This section is further divided into the following subsections to make this process easier:

Enabling feature gates
Creating a volume snapshot via CSI
Restoring a volume from a snapshot via CSI
Cloning a volume via CSI

Enabling feature gates
Some of the features that will be discussed here may be at different stages (alpha, beta, or
GA) at the moment. If you run into an issue, perform the following step:

Set the following feature-gates flags to true for both kube-apiserver1.
and kubelet:

- --feature-gates=VolumeSnapshotDataSource=true
- --feature-gates=KubeletPluginsWatcher=true
- --feature-gates=CSINodeInfo=true
- --feature-gates=CSIDriverRegistry=true
- --feature-gates=BlockVolume=true
- --feature-gates=CSIBlockVolume=true

You can find the latest statuses for features and their states by going to the Kubernetes
Feature Gates link in the See also section.

Creating a volume snapshot via CSI
A volume snapshot is a copy of the state taken from a PVC in the Kubernetes cluster. It is a
useful resource for bringing up a stateful application using existing data. Let's perform the
following steps to create a volume snapshot using CSI:

Create a PVC or select an existing one. In our recipe, we'll use the AWS EBS CSI1.
driver and the aws-csi-ebs storage class we created in Chapter 5, Preparing for
Stateful Workloads, in the Installing an EBS CSI driver to manage EBS volumes recipe:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-ebs-pvc
spec:

Disaster Recovery and Backup Chapter 6

[298]

 accessModes:
 - ReadWriteOnce
 storageClassName: aws-csi-ebs
 resources:
 requests:
 storage: 4Gi
EOF

Create a pod that will write to the /data/out.txt file inside the2.
PersistentVolume (PV):

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: app
spec:
 containers:
 - name: app
 image: centos
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo $(date -u) >> /data/out.txt;
sleep 5; done"]
 volumeMounts:
 - name: persistent-storage
 mountPath: /data
 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: csi-ebs-pvc
EOF

Create a VolumeSnapshotClass. Make sure that the snapshot provider is set to3.
your CSI driver name. In this recipe, this is ebs.csi.aws.com:

$ cat <<EOF | kubectl apply -f -
apiVersion: snapshot.storage.k8s.io/v1alpha1
kind: VolumeSnapshotClass
metadata:
 name: csi-ebs-vsc
snapshotter: ebs.csi.aws.com
EOF

Disaster Recovery and Backup Chapter 6

[299]

A PVC must be created using the CSI driver of a storage vendor. In our recipe,4.
we will use the PVC we created in the Installing EBS CSI driver to manage EBS
volumes recipe. Now, create a VolumeSnapshot using the PVC name (csi-ebs-
pvc) we set in Step 1:

$ cat <<EOF | kubectl apply -f -
apiVersion: snapshot.storage.k8s.io/v1alpha1
kind: VolumeSnapshot
metadata:
 name: ebs-volume-snapshot
spec:
 snapshotClassName: csi-ebs-vsc
 source:
 name: csi-ebs-pvc
 kind: PersistentVolumeClaim
EOF

List the Volume Snapshots:5.

$ kubectl get volumesnapshot
NAME AGE
ebs-volume-snapshot 18s

Validate that the status is Ready To Use: true when checking the output of6.
the following command:

$ kubectl describe volumesnapshot ebs-volume-snapshot

Restoring a volume from a snapshot via CSI
We can create snapshots in an attempt to restore other snapshots. Let's perform the
following steps to restore the snapshot we created in the previous recipe:

Restore the volume from the snapshot with a PVC using the following command.1.
As you can see, a new PVC named csi-ebs-pvc-restored will be created
based on the ebs-volume-snapshot snapshot:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-ebs-pvc-restored
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: aws-csi-ebs

Disaster Recovery and Backup Chapter 6

[300]

 resources:
 requests:
 storage: 4Gi
 dataSource:
 name: ebs-volume-snapshot
 kind: VolumeSnapshot
 apiGroup: snapshot.storage.k8s.io
EOF

Create another pod that will continue to write to the /data/out.txt file inside2.
the PV. This step will ensure that the volume is still accessible after it's been
created:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: newapp
spec:
 containers:
 - name: app
 image: centos
 command: ["/bin/sh"]
 args: ["-c", "while true; do echo $(date -u) >> /data/out.txt;
sleep 5; done"]
 volumeMounts:
 - name: persistent-storage
 mountPath: /data
 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: csi-ebs-pvc-restored
EOF

Confirm that the newapp pod contains the restored data and the timestamps3.
from the Creating a volume snapshot recipe:

$ kubectl exec -it newapp cat /data/out.txt

With this, you've learned how to provision persistent volumes from an existing snapshot.
This is a very useful step in a CI/CD pipeline so that you can save time troubleshooting
failed pipelines.

Disaster Recovery and Backup Chapter 6

[301]

Cloning a volume via CSI
While snapshots are a copy of a certain state of PVs, it is not the only way to create a copy
of data. CSI also allows new volumes to be created from existing volumes. In this recipe, we
will create a PVC using an existing PVC by performing the following steps:

Get the list of PVCs. You may have more than one PVC. In this example, we will1.
use the PVC we created in the Creating a volume snapshot recipe. You can use
another PVC as long as it has been created using the CSI driver that supports
VolumePVCDataSource APIs:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
csi-ebs-pvc Bound pvc-574ed379-71e1-4548-b736-7137ab9cfd9d 4Gi RWO
aws-csi-ebs 23h

Create a PVC using an existing PVC (in this recipe, this is csi-ebs-pvc) as the2.
dataSource. The data source can be either a VolumeSnapshot or PVC. In this
example, we used PersistentVolumeClaim to clone the data:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: clone-of-csi-ebs-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 4Gi
 dataSource:
 kind: PersistentVolumeClaim
 name: csi-ebs-pvc
EOF

With that, you've learned a simple way of cloning persistent data from an existing data
source.

How it works...
This recipe showed you how to create snapshots, bring data back from a snapshot, and how
to instantly clone persistent volumes on Kubernetes.

Disaster Recovery and Backup Chapter 6

[302]

In the Restoring a volume from a snapshot via CSI and Cloning a volume via CSI recipes, we
added a dataSource to our PVC that references an existing PVC so that a completely
independent, new PVC is created. The resulting PVC can be attached, cloned, snapshotted,
or deleted independently if the source is deleted. The main difference is that right after
provisioning the PVC, instead of an empty PV, the backend device provisions an exact
duplicate of the specified volume.

It's important to note that native cloning support is available for dynamic provisioners
using CSI drivers that have already implemented this feature. The CSI project is continuing
to evolve and mature, so not every storage vendor provides full CSI capabilities.

See also
List of Kubernetes CSI drivers, at https:/ /kubernetes- csi.github. io/docs/
drivers. html

Container Storage Interface (CSI) documentation , at https:/ /kubernetes- csi.
github.io

The CSI spec, at https:/ /github. com/ container- storage- interface/ spec

Kubernetes Feature Gates, at https:/ /kubernetes. io/ docs/ reference/
command- line- tools- reference/ feature- gates/

Kubernetes Volume Cloning documentation, at https:/ /kubernetes. io/ docs/
concepts/ storage/ volume- pvc- datasource/

Kubernetes Volume Snapshots documentation, at https:/ /kubernetes. io/docs/
concepts/ storage/ volume- snapshots/

Application backup and recovery using
Velero
In this section, we will create disaster recovery backups and migrate Kubernetes
applications and their persistent volumes in Kubernetes using VMware Velero (formerly
Heptio Ark).

You will learn how to install Velero, create standard and scheduled backups of applications
with an S3 target, and restore them back to the Kubernetes clusters.

https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://kubernetes-csi.github.io
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-pvc-datasource/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/

Disaster Recovery and Backup Chapter 6

[303]

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files under the chapter6 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter6

This recipe requires an existing stateful workload with presentable data so that we can
simulate a disaster and then restore the data. To do this, we will use
the mytestapp application we created during the Installing EBS CSI driver to manage EBS
volumes recipe in Chapter 5, Preparing for Stateful Workloads.

Velero also requires S3-compatible object storage to store the backups. In this recipe, we
will use the MinIO S3 target we deployed during the Configuring and managing S3 object
storage using MinIO recipe for storing our backups.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing Velero
Backing up an application
Restoring an application
Creating a scheduled backup
Taking a backup of an entire namespace
Viewing backups with MinIO
Deleting backups and schedules

Disaster Recovery and Backup Chapter 6

[304]

Installing Velero
Velero is an open source project that's used to make backups, perform disaster recovery,
restore, and migrate Kubernetes resources and persistent volumes. In this recipe, we will
learn how to deploy Velero in our Kubernetes cluster by following these steps:

Download the latest version of Velero:1.

$ wget
https://github.com/vmware-tanzu/velero/releases/download/v1.1.0/vel
ero-v1.1.0-linux-amd64.tar.gz

At the time of writing this book, the latest version of Velero was v1.1.0.
Check the Velero repository at https:/ /github. com/ vmware- tanzu/
velero/ releases and update the link with the latest download link if it's
changed since this book's release.

Extract the tarball:2.

$ tar -xvzf velero-v1.1.0-linux-amd64.tar.gz
$ sudo mv velero-v1.1.0-linux-amd64/velero /usr/local/bin/

Confirm that the velero command is executable:3.

$ velero version
Client:
 Version: v1.1.0
 Git commit: a357f21aec6b39a8244dd23e469cc4519f1fe608
<error getting server version: the server could not find the
requested resource (post serverstatusrequests.velero.io)>

Create the credentials-velero file with the access key and secret key you4.
used in the Configuring and managing S3 object storage using Minio recipe:

$ cat > credentials-velero <<EOF
[default]
aws_access_key_id = minio
aws_secret_access_key = minio123
EOF

Update the s3Url with the external IP of your MinIO service and install Velero5.
Server:

$ velero install \
 --provider aws \
 --bucket velero \

https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases
https://github.com/vmware-tanzu/velero/releases

Disaster Recovery and Backup Chapter 6

[305]

 --secret-file ./credentials-velero \
 --use-restic \
 --backup-location-config
region=minio,s3ForcePathStyle="true",s3Url=http://ac76d4a1ac72c4962
99b17573ac4cf2d-512600720.us-west-2.elb.amazonaws.com:9000

Confirm that the deployment was successful: 6.

$ kubectl get deployments -l component=velero --namespace=velero
NAME READY UP-TO-DATE AVAILABLE AGE
velero 1/1 1 1 62s

With that, Velero has been configured on your Kubernetes cluster using MinIO as the
backup target.

Backing up an application
Let's perform the following steps to take a backup of an application and its volumes using
Velero. All the YAML manifest files we create here can be found under the
/src/chapter6/velero directory:

If you have an application and volumes to back up labeled already, you can skip1.
to Step 5. Otherwise, create a namespace and a PVC with the following
commands:

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: backup-example
 labels:
 app: app2backup
EOF

Create a PVC in the backup-example namespace using your preferred2.
storageClass. In our example this is aws-csi-ebs:

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc2backup
 namespace: backup-example
 labels:
 app: app2backup
spec:

Disaster Recovery and Backup Chapter 6

[306]

 accessModes:
 - ReadWriteOnce
 storageClassName: aws-csi-ebs
 resources:
 requests:
 storage: 4Gi
EOF

Review the myapp.yaml file in the src/chapter6/velero directory and use it3.
to create a pod that will use the PVC and write to the /data/out.txt file inside
the pod:

$ kubectl apply -f myapp.yaml

Verify that our myapp pod writes data to the volume:4.

$ kubectl exec -it myapp cat /data/out.txt -nbackup-example
Thu Sep 12 23:18:08 UTC 2019

Create a backup for all the objects with the app=app2backup label:5.

$ velero backup create myapp-backup --selector app=app2backup

Confirm that the backup phase is completed:6.

$ velero backup describe myapp-backup
Name: myapp-backup
Namespace: velero
Labels: velero.io/storage-location=default
Annotations: <none>
Phase: Completed
...

List all the available backups:7.

$ velero backup get
NAME STATUS CREATED EXPIRES
STORAGE LOCATION SELECTOR
myapp-backup Completed 2019-09-13 05:55:08 +0000 UTC 29d
default app=app2backup

With that, you've learned how to create a backup of an application using labels.

Disaster Recovery and Backup Chapter 6

[307]

Restoring an application
Let's perform the following steps to restore the application from its backup:

Delete the application and its PVC to simulate a data loss scenario:1.

$ kubectl delete pvc pvc2backup -nbackup-example
$ kubectl delete pod myapp -nbackup-example

Restore your application from your previous backup called myapp-backup:2.

$ velero restore create --from-backup myapp-backup

Confirm your application is running:3.

$ kubectl get pod -nbackup-example
NAME READY STATUS RESTARTS AGE
myapp 1/1 Running 0 10m

Confirm that our myapp pod writes data to the volume:4.

$ kubectl exec -it myapp cat /data/out.txt -nbackup-example

With that, you've learned how to restore an application and its volumes from its backup
using Velero.

Creating a scheduled backup
Velero supports cron expressions to schedule backup tasks. Let's perform the following
steps to schedule backups for our application:

Create a scheduled daily backup:1.

$ velero schedule create myapp-daily --schedule="0 0 1 * * ?" --
selector app=app2backup

If you are not familiar with cron expressions, you can create a different schedule
using the Cron expression generator link in the See also section.

Note that the preceding schedule uses a cron expression. As an
alternative, you can use a shorthand expression such as --
schedule="@daily" or use an online cron maker to create a cron
expression.

Disaster Recovery and Backup Chapter 6

[308]

Get a list of the currently scheduled backup jobs:2.

$ velero schedule get
 NAME STATUS CREATED SCHEDULE
BACKUP TTL LAST BACKUP SELECTOR
 myapp-daily Enabled 2019-09-13 21:38:36 +0000 UTC 0 0 1 * * ?
720h0m0s 2m ago app=app2backup

Confirm that a backup has been created by the scheduled backup job:3.

$ velero backup get
NAME STATUS CREATED
EXPIRES STORAGE LOCATION SELECTOR
myapp-daily-20190913205123 Completed 2019-09-13 20:51:24 +0000 UTC
29d default app=app2backup

With that, you've learned how to create scheduled backups of an application using Velero.

Taking a backup of an entire namespace
When you take backups, you can use different types of selectors or even complete sources
in a selected namespace. In this recipe, we will include resources in a namespace by
performing the following steps:

Take a backup of the entire namespace using the following command. This1.
example includes the backup-example namespace. Replace this namespace if
needed. The namespace and resources should exist before you can execute the
following command:

$ velero backup create fullnamespace --include-namespaces backup-
example

If you need to exclude specific resources from the backup, add the backup:2.
"false" label to them and run the following command:

$ velero backup create fullnamespace --selector 'backup notin
(false)'

With that, you've learned how to create backups of resources in a given namespace using
Velero.

Disaster Recovery and Backup Chapter 6

[309]

Viewing backups with MinIO
Let's perform the following steps to view the content of the backups on the MinIO interface:

Follow the instructions in the Accessing a MinIO web user interface recipe and1.
access the MinIO Browser.
Click on the velero bucket:2.

Open the backups directory to find a list of your Velero backups:3.

Disaster Recovery and Backup Chapter 6

[310]

Click on a backup name to access the content of the backup:4.

With that, you've learned how to locate and review the content of Velero backups.

Deleting backups and schedules
Velero backups can quickly grow in size if they're not maintained correctly. Let's perform
the following steps to remove an existing backup resource and clean up scheduled backups:

Delete the existing backup named myapp-backup:1.

$ velero backup delete myapp-backup

Delete all existing backups:2.

$ velero backup delete --all

Delete the scheduled backup job named myapp-daily:3.

$ velero schedule delete myapp-daily

Disaster Recovery and Backup Chapter 6

[311]

How it works...
This recipe showed you how to create disaster recovery backups, restore your application
and its data back from an S3 target, and how to create scheduled backup jobs on
Kubernetes.

In the Backing up an application recipe, in Step 4, when you run velero backup create
myapp-backup --selector app=app2backup, the Velero client calls the Kubernetes API
server and creates a backup object.

You can get a list of Custom Resource Definitions (CRDs) that have been
created by Velero by running the kubectl get crds |grep
velero command.

Velero's BackupController watches for a new object and when detected, it performs
standard validation and processes the backup. Velero's BackupController collects the
information to back up by asking resources from the API server. Then, it makes a call to the
default storage provider and uploads the backup files.

See also
The Velero project repository, at https:/ / github. com/ vmware- tanzu/ velero/

The Velero documentation, at https:/ /velero. io/ docs/ master/ index. html

Velero support matrix, at https:/ /velero. io/ docs/ master/ supported-
providers/

Velero podcasts and community articles, at https:/ /velero. io/ resources/

Cron expression generator, at https:/ /www. freeformatter. com/ cron-
expression- generator- quartz. html

Application backup and recovery using
Kasten
In this section, we will create disaster recovery backups and migrate Kubernetes
applications and their persistent volumes in Kubernetes using Kasten (K10).

You will learn how to install and use K10, create standard and scheduled backups of
applications to an S3 target, and restore them back to the Kubernetes clusters.

https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://github.com/vmware-tanzu/velero/
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/index.html
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/docs/master/supported-providers/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://velero.io/resources/
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html
https://www.freeformatter.com/cron-expression-generator-quartz.html

Disaster Recovery and Backup Chapter 6

[312]

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured so that
you can manage the cluster resources. In this recipe, we will use a three-node Kubernetes
cluster on AWS.

This recipe requires an existing stateful workload with presentable data to simulate a
disaster. To restore the data, we will use the mytestapp application we created in
the Installing EBS CSI Driver to manage EBS volumes recipe in Chapter 5, Preparing for
Stateful Workloads.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files under the chapter6 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter6

K10, by default, comes with a Starter Edition license that allows you to use the software on
a cluster with three worker nodes (at most) at no charge. K10 requires a backup target to be
configured.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing Kasten
Accessing the Kasten dashboard
Backing up an application
Restoring an application

Installing Kasten
Let's perform the following steps to install Kasten as a backup solution in our Kubernetes
cluster:

Add the K10 helm repository:1.

$ helm repo add kasten https://charts.kasten.io/

Disaster Recovery and Backup Chapter 6

[313]

Before we start, let's validate the environment. The following script will execute2.
some pre-installation tests to verify your cluster:

$ curl https://docs.kasten.io/tools/k10_preflight.sh | bash
Checking for tools
 --> Found kubectl --> Found helm
Checking access to the Kubernetes context kubernetes-
admin@net39dvo58
 --> Able to access the default Kubernetes namespace
Checking for required Kubernetes version (>= v1.10.0)
 --> Kubernetes version (v1.15.3) meets minimum requirements
Checking if Kubernetes RBAC is enabled
 --> Kubernetes RBAC is enabled
Checking if the Aggregated Layer is enabled
 --> The Kubernetes Aggregated Layer is enabled
Checking if the Kasten Helm repo is present
 --> The Kasten Helm repo was found
Checking for required Helm Tiller version (>= v2.11.0)
 --> Tiller version (v2.14.3) meets minimum requirements
All pre-flight checks succeeded!

Make sure your preferred storage class is set as the default; otherwise, define it3.
by adding the -set persistence.storageClass parameters to the following
command. In our example, we are using the openebs-cstor-default storage
class. Also, add your AWS access key and secret and install K10:

$ helm install kasten/k10 --name=k10 --namespace=kasten-io \
 --set persistence.storageClass=openebs-cstor-default \
 --set persistence.size=20Gi \
 --set secrets.awsAccessKeyId="AWS_ACCESS_KEY_ID" \
 --set secrets.awsSecretAccessKey="AWS_SECRET_ACCESS_KEY"

Confirm that the deployment status is DEPLOYED using the following helm4.
command:

$ helm ls
NAME REVISION UPDATED STATUS CHART APP
VERSION NAMESPACE
k10 1 Tue Oct 29 07:36:19 2019 DEPLOYED k10-1.1.56 1.1.56
kasten-io

All the pods should be deployed in around a minute after this step as Kasten exposes an
API based on Kubernetes CRDs. You can either use kubectl with the new CRDs (refer to
the Kasten CLI commands link in the See also section) or use the Kasten Dashboard by
following the next recipe, that is, the Accessing the Kasten Dashboard recipe.

Disaster Recovery and Backup Chapter 6

[314]

Accessing the Kasten Dashboard
Let's perform the following steps to access the Kasten Dashboard. This is where we will be
taking application backups and restoring them:

Create port forwarding using the following command. This step will forward the1.
Kasten Dashboard service on port 8000 to your local workstation on port 8080:

$ export KASTENDASH_POD=$(kubectl get pods --namespace kasten-io -l
"service=gateway" -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward --namespace kasten-io $KASTENDASH_POD
8080:8000 >> /dev/null &

On your workstation, open http://127.0.0.1:8080/k10/# with your2.
browser:

$ firefox http://127.0.0.1:8080/k10/#

Read and accept the end user license agreement:3.

Disaster Recovery and Backup Chapter 6

[315]

With that, you have accessed the Kasten Dashboard. You can familiarize yourself with it by
clicking the main menus and referring to the Kasten documentation link in the See also section
for additional settings if needed.

Backing up an application
Let's perform the following steps to take a backup of our application:

If you have an application and persistent volumes associated with the backup1.
labeled already, you can skip to Step 5. Otherwise, create a namespace and a PVC
using the following example code:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: backup-example
 labels:
 app: app2backup
EOF

Create a PVC in the backup-example namespace:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc2backup
 namespace: backup-example
 labels:
 app: app2backup
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: openebs-cstor-default
 resources:
 requests:
 storage: 4Gi
EOF

Disaster Recovery and Backup Chapter 6

[316]

Create a pod that will use the PVC and write to the /data/out.txt file inside3.
the pod using the sample myapp.yaml manifest under the
src/chapter6/kasten directory:

$ kubectl apply -f - kasten/myapp.yaml

Verify that our myapp pod writes data to the volume:4.

$ kubectl exec -it myapp cat /data/out.txt -nbackup-example
Thu Sep 12 23:18:08 UTC 2019

On the Kasten Dashboard, click on Unmanaged applications:5.

Disaster Recovery and Backup Chapter 6

[317]

In the backup-example namespace, click on Create a policy:6.

Enter a name and select the Snapshot action:7.

Disaster Recovery and Backup Chapter 6

[318]

Select Daily as the Action Frequency:8.

Click on Create Policy:9.

By following these steps, you will have created your first backup using the policy, as well
as a schedule for the following backup jobs.

Disaster Recovery and Backup Chapter 6

[319]

Restoring an application
Let's perform the following steps to restore the application from an existing backup:

Under Applications, from the list of compliant applications, click the arrow icon1.
next to backup-example and select Restore Application. If the application was
deleted, then the Removed option needs to be selected:

Select a restore point to recover to:2.

Disaster Recovery and Backup Chapter 6

[320]

Select backup-example and click on Restore:3.

Confirm that you want this to be restored:4.

With that, you've learned how to restore an application and its volumes from its backup
using Kasten.

Disaster Recovery and Backup Chapter 6

[321]

How it works...
This recipe showed you how to create disaster recovery backups, restore your application
and its data back from an S3 target, and how to create scheduled backups on Kubernetes.

In the Backing up an application recipe, in Step 2, we created a pod that uses OpenEBS as a
storage vendor. In this case, Kasten uses a generic backup method that requires a sidecar to
your application that can mount the application data volume. The following is an example
that you can add to your pods and deployment when using non-standard storage options:

- name: kanister-sidecar
 image: kanisterio/kanister-tools:0.20.0
 command: ["bash", "-c"]
 args:
 - "tail -f /dev/null"
 volumeMounts:
 - name: data
 mountPath: /data

See also
The Kasten documentation , at https:/ /docs. kasten. io/

Kasten CLI commands, at https:/ / docs. kasten. io/ api/cli. html

More on generic backup and restore using Kanister, at https:/ /docs. kasten. io/
kanister/ generic. html#generic- kanister

Cross-cloud application migration
When running applications on the cloud, it is important to have a plan in case cloud vendor
service outages occur, as well as to avoid possible cloud lock-ins, by abstracting the storage
layer using a cloud-native storage solution similar to the OpenEBS management layer that
allows you to manage your exposure to each cloud or data center. In this section, we will
migrate a cloud-native application from one Kubernetes cluster to another cluster running
on a different cloud vendor to simulate a migration scenario. You will learn how to use
backups to migrate applications using Kasten and OpenEBS Director.

https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/api/cli.html
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister
https://docs.kasten.io/kanister/generic.html#generic-kanister

Disaster Recovery and Backup Chapter 6

[322]

Getting ready
Make sure you have two Kubernetes clusters ready and kubectl configured to manage the
cluster resources.

In this recipe, we will use a cluster on AWS that's been deployed and managed by
D2iQ Konvoy and a cluster that's been deployed using kops. As an example, we will
migrate an existing minio application.

The instructions provided here require an AWS account and an AWS user with a policy
that has permission to use the related services. If you don't have one, go to https:/ /aws.
amazon.com/account/ and create one.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Creating an export profile in Kasten
Exporting a restore point in Kasten
Creating an import profile in Kasten
Migrating an application in Kasten
Importing clusters in OpenEBS Director
Migrating an application in OpenEBS Director

Creating an export profile in Kasten
First, we will use Kasten and create an export profile to store a remote copy of an example
application to be used in the migration scenario. To do this, follow these steps:

Under Settings, select the Mobility tab and click on New Profile:1.

https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
https://aws.amazon.com/account/

Disaster Recovery and Backup Chapter 6

[323]

To create a destination profile, select Export, check the Enable data portability2.
box, select Amazon S3, and enter your user credentials.
Click on Validate and Save:3.

The export profile we created in this recipe will be used later to move data to another
cluster.

Exporting a restore point in Kasten
Let's perform the following steps to create an application restore point:

Under Applications, from the list of compliant applications, click the arrow icon1.
next to minio and select Export Application.
Select a restore point to export:2.

Disaster Recovery and Backup Chapter 6

[324]

Select your export profile and click on Export:3.

Confirm the restore.4.
Copy the text block to the clipboard:5.

Disaster Recovery and Backup Chapter 6

[325]

Creating an import profile in Kasten
Let's perform the following steps on our second cluster, which is where we want to migrate
our application:

Under Settings, select the Mobility tab and click on New Profile:1.

To create a destination profile, select Import, select Amazon S3, and enter your2.
user credentials.
Use the bucket name you created for the export profile on the source cluster.3.
Click on Validate and Save:4.

The import profile we created in this recipe will be used later to import data from another
cluster.

Migrating an application in Kasten
Finally, let's perform the following steps to use the import profile and migrate an
application from another cluster:

Disaster Recovery and Backup Chapter 6

[326]

Under Policies, click on new policies:1.

Select Import and check the Restore after import box.2.
Select Daily as Action Frequency and paste the Config Data text block from3.
the Exporting a restore point recipe.
Select the import profile you created in the Creating import profile recipe:4.

Disaster Recovery and Backup Chapter 6

[327]

Click the Create Policy button.5.

After this step, Kasten will recover the application and its data from the restore point into
the new cluster.

Importing clusters into OpenEBS Director
OpenEBS Director Online is a free-to-use SaaS (Software as a Service) solution (with the
OnPrem option available for Enterprise users) for managing stateful applications in
Kubernetes. In addition to its logging and monitoring capabilities, it provides Data
Migration as a Service (DMaaS). In this recipe, we will learn how to add our existing
clusters to the platform and then perform DMaaS in the following recipe:

Go to www.mayadata.io to sign in to your OpenEBS Enterprise Platform1.
at https:/ /portal. mayadata. io/home:

http://www.mayadata.io
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home

Disaster Recovery and Backup Chapter 6

[328]

Click on the Connect your Cluster button:2.

Name your project. Here, we used the name GKECluster:3.

Choose your Kubernetes cluster location. Here, we used a cluster on GKE:4.

Disaster Recovery and Backup Chapter 6

[329]

Copy and execute the command on your first cluster:5.

From the left-hand menu, click on Clusters:6.

Disaster Recovery and Backup Chapter 6

[330]

On the Clusters view, click on Connect a new Cluster and repeat Steps 4 and 57.
for the second cluster:

Once you are done, you will have both clusters visible on the platform.8.

Migrating an application in OpenEBS Director
Let's perform data migration (DMaaS) by following these steps:

On the Clusters view, click on Free under the Subscription column and start1.
your premium plan evaluation for both clusters:

Disaster Recovery and Backup Chapter 6

[331]

On your source cluster's Overview page, click on the workload you want to2.
migrate. In this recipe, we will migrate the MinIO workload:

On the Application view, select the DMaaS tab and click on the New schedule3.
button:

Disaster Recovery and Backup Chapter 6

[332]

On the New Schedule view, select AWS as an S3 provider and select your4.
credentials and region. Finally, select the backup interval as Daily and click on
the Schedule Now button to create a backup. As an alternative, you can also use
GCP or MinIO as an S3 target:

From the left-hand menu, select DMaaS and click on the Restore button next to5.
the schedule you created:

Disaster Recovery and Backup Chapter 6

[333]

Select your target cluster from the list of managed clusters and click on Start6.
Restore:

Your workload will be restored to the second cluster.

See also
OpenEBS Director documentation, at https:/ /help. mayadata. io/hc/ en-us

Using OpenEBS Director in Auto DevOps usecase, at https:/ /youtu. be/
AOSUZxUs5BE? t= 1210
Connecting to OpenEBS Director Online, at https:/ /docs. openebs. io/docs/
next/directoronline. html

https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://help.mayadata.io/hc/en-us
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://youtu.be/AOSUZxUs5BE?t=1210
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html
https://docs.openebs.io/docs/next/directoronline.html

7
Scaling and Upgrading

Applications
TERNAIn this chapter, we will discuss the methods and strategies that we can use to
dynamically scale containerized services running on Kubernetes to handle the changing
traffic needs of our service. After following the recipes in this chapter, you will have the
skills needed to create load balancers to distribute traffic to multiple workers and increase
bandwidth. You will also know how to handle upgrades in production with minimum
downtime.

In this chapter, we will cover the following recipes:

Scaling applications on Kubernetes
Assigning applications to nodes with priority
Creating an external load balancer
Creating an ingress service and service mesh using Istio
Creating an ingress service and service mesh using Linkerd
Auto-healing pods in Kubernetes
Managing upgrades through blue/green deployments

Technical requirements
The recipes in this chapter assume that you have a functional Kubernetes cluster deployed
by following one of the recommended methods described in Chapter 1, Building
Production-Ready Kubernetes Clusters.

The Kubernetes command-line tool, kubectl, will be used for the rest of the recipes in this
chapter since it's the main command-line interface for running commands against
Kubernetes clusters. We will also use helm where Helm charts are available to deploy
solutions.

Scaling and Upgrading Applications Chapter 7

[335]

Scaling applications on Kubernetes
In this section, we will perform application and cluster scaling tasks. You will learn how to
manually and also automatically scale your service capacity up or down in Kubernetes to
support dynamic traffic.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter7 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd /src/chapter7/

Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Validating the installation of Metrics Server
Manually scaling an application
Autoscaling applications using Horizontal Pod Autoscaler

Validating the installation of Metrics Server
The Autoscaling applications using the Horizontal Pod Autoscaler recipe in this section also
requires Metrics Server to be installed on your cluster. Metrics Server is a cluster-wide
aggregator for core resource usage data. Follow these steps to validate the installation of
Metrics Server:

Confirm if you need to install Metrics Server by running the following command:1.

$ kubectl top node
error: metrics not available yet

Scaling and Upgrading Applications Chapter 7

[336]

If it's been installed correctly, you should see the following node metrics:2.

$ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-172-20-32-169.ec2.internal 259m 12% 1492Mi 19%
ip-172-20-37-106.ec2.internal 190m 9% 1450Mi 18%
ip-172-20-48-49.ec2.internal 262m 13% 2166Mi 27%
ip-172-20-58-155.ec2.internal 745m 37% 1130Mi 14%

If you get an error message stating metrics not available yet, then you need to
follow the steps provided in the next chapter in the Adding metrics using the Kubernetes
Metrics Server recipe to install Metrics Server.

Manually scaling an application
When the usage of your application increases, it becomes necessary to scale the application
up. Kubernetes is built to handle the orchestration of high-scale workloads.

Let's perform the following steps to understand how to manually scale an application:

Change directories to /src/chapter7/charts/node, which is where the local1.
clone of the example repository that you created in the Getting ready section can
be found:

$ cd /charts/node/

Install the To-Do application example using the following command. This Helm2.
chart will deploy two pods, including a Node.js service and a MongoDB service:

$ helm install . --name my-ch7-app

Get the service IP of my-ch7-app-node to connect to the application. The3.
following command will return an external address for the application:

$ export SERVICE_IP=$(kubectl get svc --namespace default my-ch7-
app-node --template "{{ range (index .status.loadBalancer.ingress
0) }}{{.}}{{ end }}")
$ echo http://$SERVICE_IP/
http://mytodoapp.us-east-1.elb.amazonaws.com/

Scaling and Upgrading Applications Chapter 7

[337]

Open the address from Step 3 in a web browser. You will get a fully functional4.
To-Do application:

Check the status of the application using helm status. You will see the number5.
of pods that have been deployed as part of the deployment in the Available
column:

$ helm status my-ch7-app
LAST DEPLOYED: Thu Oct 3 00:13:10 2019
NAMESPACE: default
STATUS: DEPLOYED
RESOURCES:
==> v1/Deployment
NAME READY UP-TO-DATE AVAILABLE AGE
my-ch7-app-mongodb 1/1 1 1 9m9s
my-ch7-app-node 1/1 1 1 9m9s
...

Scale the node pod to 3 replicas from the current scale of a single replica:6.

$ kubectl scale --replicas 3 deployment/my-ch7-app-node
deployment.extensions/my-ch7-app-node scaled

Check the status of the application again and confirm that, this time, the number7.
of available replicas is 3 and that the number of my-ch7-app-node pods in
the v1/Pod section has increased to 3:

$ helm status my-ch7-app
...
RESOURCES:
==> v1/Deployment
NAME READY UP-TO-DATE AVAILABLE AGE
my-ch7-app-mongodb 1/1 1 1 26m
my-ch7-app-node 3/3 3 3 26m
...
==> v1/Pod(related)

Scaling and Upgrading Applications Chapter 7

[338]

NAME READY STATUS RESTARTS AGE
my-ch7-app-mongodb-5499c954b8-lcw27 1/1 Running 0 26m
my-ch7-app-node-d8b94964f-94dsb 1/1 Running 0 91s
my-ch7-app-node-d8b94964f-h9w4l 1/1 Running 3 26m
my-ch7-app-node-d8b94964f-qpm77 1/1 Running 0 91s

To scale down your application, repeat Step 5, but this time with 2 replicas:8.

$ kubectl scale --replicas 2 deployment/my-ch7-app-node
deployment.extensions/my-ch7-app-node scaled

With that, you've learned how to scale your application when needed. Of course, your
Kubernetes cluster resources should be able to support growing workload capacities as
well. You will use this knowledge to test the service healing functionality in the Auto-
healing pods in Kubernetes recipe.

The next recipe will show you how to autoscale workloads based on actual resource
consumption instead of manual steps.

Autoscaling applications using a Horizontal Pod
Autoscaler
In this recipe, you will learn how to create a Horizontal Pod Autoscaler (HPA) to automate
the process of scaling the application we created in the previous recipe. We will also test the
HPA with a load generator to simulate a scenario of increased traffic hitting our services.
Follow these steps:

First, make sure you have the sample To-Do application deployed from1.
the Manually scaling an application recipe. When you run the following command,
you should get both MongoDB and Node pods listed:

$ kubectl get pods | grep my-ch7-app
my-ch7-app-mongodb-5499c954b8-lcw27 1/1 Running 0 4h41m
my-ch7-app-node-d8b94964f-94dsb 1/1 Running 0 4h16m
my-ch7-app-node-d8b94964f-h9w4l 1/1 Running 3 4h41m

Create an HPA declaratively using the following command. This will automate2.
the process of scaling the application between 1 to 5 replicas when
the targetCPUUtilizationPercentage threshold is reached. In our example,
the mean of the pods' CPU utilization target is set to 50 percent usage. When the
utilization goes over this threshold, your replicas will be increased:

cat <<EOF | kubectl apply -f -
apiVersion: autoscaling/v1

Scaling and Upgrading Applications Chapter 7

[339]

kind: HorizontalPodAutoscaler
metadata:
 name: my-ch7-app-autoscaler
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: my-ch7-app-node
 minReplicas: 1
 maxReplicas: 5
 targetCPUUtilizationPercentage: 50
EOF

Although the results may be the same most of the time, a declarative
configuration requires an understanding of the Kubernetes object configuration
specs and file format. As an alternative, kubectl can be used for the imperative
management of Kubernetes objects.

Note that you must have a request set in your deployment to use
autoscaling. If you do not have a request for CPU in your deployment, the
HPA will deploy but will not work correctly.
You can also create the same HorizontalPodAutoscaler imperatively
by running the $ kubectl autoscale deployment my-ch7-app-
node --cpu-percent=50 --min=1 --max=5 command.

Confirm the number of current replicas and the status of the HPA. When you run3.
the following command, the number of replicas should be 1:

$ kubectl get hpa
NAME REFERENCE TARGETS
MINPODS MAXPODS REPLICAS AGE
my-ch7-app-autoscaler Deployment/my-ch7-app-node 0%/50% 1
5 1 40s

Get the service IP of my-ch7-app-node so that you can use it in the next step:4.

$ export SERVICE_IP=$(kubectl get svc --namespace default my-ch7-
app-node --template "{{ range (index .status.loadBalancer.ingress
0) }}{{.}}{{ end }}")
$ echo http://$SERVICE_IP/
http://mytodoapp.us-east-1.elb.amazonaws.com/

Scaling and Upgrading Applications Chapter 7

[340]

Start a new Terminal window and create a load generator to test the HPA. Make5.
sure that you replace YOUR_SERVICE_IP in the following code with the actual
service IP from the output of Step 4. This command will generate traffic to your
To-Do application:

$ kubectl run -i --tty load-generator --image=busybox /bin/sh

while true; do wget -q -O- YOUR_SERVICE_IP; done

Wait a few minutes for the Autoscaler to respond to increasing traffic. While the6.
load generator is running on one Terminal, run the following command on a
separate Terminal window to monitor the increased CPU utilization. In our
example, this is set to 210%:

$ kubectl get hpa
NAME REFERENCE TARGETS
MINPODS MAXPODS REPLICAS AGE
my-ch7-app-autoscaler Deployment/my-ch7-app-node 210%/50% 1
5 1 23m

Now, check the deployment size and confirm that the deployment has been7.
resized to 5 replicas as a result of the increased workload:

$ kubectl get deployment my-ch7-app-node
NAME READY UP-TO-DATE AVAILABLE AGE
my-ch7-app-node 5/5 5 5 5h23m

On the Terminal screen where you run the load generator, press Ctrl + C to8.
terminate the load generator. This will stop the traffic coming to your
application.
Wait a few minutes for the Autoscaler to adjust and then verify the HPA status9.
by running the following command. The current CPU utilization should be
lower. In our example, it shows that it went down to 0%:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS
MAXPODS REPLICAS AGE
my-ch7-app-autoscaler Deployment/my-ch7-app-node 0%/50% 1 5
1 34m

Check the deployment size and confirm that the deployment has been scaled10.
down to 1 replica as the result of stopping the traffic generator:

$ kubectl get deployment my-ch7-app-node
NAME READY UP-TO-DATE AVAILABLE AGE
my-ch7-app-node 1/1 1 1 5h35m

Scaling and Upgrading Applications Chapter 7

[341]

In this recipe, you learned how to automate how an application is scaled dynamically based
on changing metrics. When applications are scaled up, they are dynamically scheduled on
existing worker nodes.

How it works...
This recipe showed you how to manually and automatically scale the number of pods in a
deployment dynamically based on the Kubernetes metric.

In this recipe, in Step 2, we created an Autoscaler that adjusts the number of replicas
between the defined minimum using minReplicas: 1 and maxReplicas: 5. As shown
in the following example, the adjustment criteria are triggered by the
targetCPUUtilizationPercentage: 50 metric:

spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: my-ch7-app-node
 minReplicas: 1
 maxReplicas: 5
 targetCPUUtilizationPercentage: 50

targetCPUUtilizationPercentage was used with the autoscaling/v1 APIs. You will
soon see that targetCPUUtilizationPercentage will be replaced with an array called
metrics.

To understand the new metrics and custom metrics, run the following command. This will
return the manifest we created with V1 APIs into a new manifest using V2 APIs:

$ kubectl get hpa.v2beta2.autoscaling my-ch7-app-node -o yaml

This enables you to specify additional resource metrics. By default, CPU and memory are
the only supported resource metrics. In addition to these resource metrics, v2 APIs enable
two other types of metrics, both of which are considered custom metrics: per-pod custom
metrics and object metrics. You can read more about this by going to the Kubernetes HPA
documentation link mentioned in the See also section.

Scaling and Upgrading Applications Chapter 7

[342]

See also
Kubernetes pod Autoscaler using custom metrics: https:/ /sysdig. com/ blog/
kubernetes- autoscaler/

Kubernetes HPA documentation: https:/ /kubernetes. io/ docs/ tasks/ run-
application/ horizontal- pod- autoscale/

Declarative Management of Kubernetes Objects Using Configuration
Files: https:/ /kubernetes. io/ docs/ tasks/ manage- kubernetes- objects/
declarative- config/

Imperative Management of Kubernetes Objects Using Configuration
Files: https:/ /kubernetes. io/ docs/ tasks/ manage- kubernetes- objects/
imperative- config/

Assigning applications to nodes
In this section, we will make sure that pods are not scheduled onto inappropriate nodes.
You will learn how to schedule pods into Kubernetes nodes using node selectors, taints,
toleration and by setting priorities.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
This section is further divided into the following subsections to make this process easier:

Labeling nodes
Assigning pods to nodes using nodeSelector
Assigning pods to nodes using node and inter-pod affinity

https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://sysdig.com/blog/kubernetes-autoscaler/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-config/

Scaling and Upgrading Applications Chapter 7

[343]

Labeling nodes
Kubernetes labels are used for specifying the important attributes of resources that can be
used to apply organizational structures onto system objects. In this recipe, we will learn
about the common labels that are used for Kubernetes nodes and apply a custom label to be
used when scheduling pods into nodes.

Let's perform the following steps to list some of the default labels that have been assigned
to your nodes:

List the labels that have been assigned to your nodes. In our example, we will use1.
a kops cluster that's been deployed on AWS EC2, so you will also see the relevant
AWS labels, such as availability zones:

$ kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
ip-172-20-49-12.ec2.internal Ready node 23h v1.14.6
kubernetes.io/arch=amd64,kubernetes.io/instance-type=t3.large,
kubernetes.io/os=linux,failure-domain.beta.kubernetes.io/region=us-
east-1,
failure-domain.beta.kubernetes.io/zone=us-east-1a,
kops.k8s.io/instancegroup=nodes,kubernetes.io/hostname=ip-172-20-49
-12.ec2.internal,
kubernetes.io/role=node,node-role.kubernetes.io/node=
...

Get the list of the nodes in your cluster. We will use node names to assign labels2.
in the next step:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-172-20-49-12.ec2.internal Ready node 23h v1.14.6
ip-172-20-50-171.ec2.internal Ready node 23h v1.14.6
ip-172-20-58-83.ec2.internal Ready node 23h v1.14.6
ip-172-20-59-8.ec2.internal Ready master 23h v1.14.6

Label two nodes as production and development. Run the following3.
command using your worker node names from the output of Step 2:

$ kubectl label nodes ip-172-20-49-12.ec2.internal
environment=production
$ kubectl label nodes ip-172-20-50-171.ec2.internal
environment=production
$ kubectl label nodes ip-172-20-58-83.ec2.internal
environment=development

Scaling and Upgrading Applications Chapter 7

[344]

Verify that the new labels have been assigned to the nodes. This time, you should4.
see environment labels on all the nodes except the node labeled role=master:

$ kubectl get nodes --show-labels

It is recommended to document labels for other people who will use your clusters. While
they don't directly imply semantics to the core system, make sure they are still meaningful
and relevant to all users.

Assigning pods to nodes using nodeSelector
In this recipe, we will learn how to schedule a pod onto a selected node using the
nodeSelector primitive:

Create a copy of the Helm chart we used in the Manually scaling an application1.
recipe in a new directory called todo-dev. We will edit the templates later in
order to specify nodeSelector:

$ cd src/chapter7/charts
$ mkdir todo-dev
$ cp -a node/* todo-dev/
$ cd todo-dev

Edit the deployment.yaml file in the templates directory:2.

$ vi templates/deployment.yaml

Add nodeSelector: and environment: "{{ .Values.environment3.
}}" right before the containers: parameter. This should look as follows:

...
 mountPath: {{ .Values.persistence.path }}
 {{- end }}
Start of the addition
 nodeSelector:
 environment: "{{ .Values.environment }}"
End of the addition
 containers:
 - name: {{ template "node.fullname" . }}

...

Scaling and Upgrading Applications Chapter 7

[345]

The Helm installation uses templates to generate configuration files. As shown in
the preceding example, to simplify how you customize the provided values,
{{expr}} is used, and these values come from the values.yaml file names. The
values.yaml file contains the default values for a chart.

Although it may not be practical on large clusters, instead of using
nodeSelector and labels, you can also schedule a pod on one specific
node using the nodeName setting. In that case, instead of the
nodeSelector setting, you add nodeName: yournodename to your
deployment manifest.

Now that we've added the variable, edit the values.yaml file. This is where we4.
will set the environment to the development label:

$ vi values.yaml

Add the environment: development line to the end of the files. It should look5.
as follows:

...
Affinity for pod assignment
Ref:
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#
affinity-and-anti-affinity
##
affinity: {}
environment: development

Edit the Chart.yaml file and change the chart name to its folder name. In this6.
recipe, it's called todo-dev. After these changes, the first two lines should look
as follows:

apiVersion: v1
name: todo-dev
...

Update the Helm dependencies and build them. The following commands will7.
pull all the dependencies and build the Helm chart:

$ helm dep update & helm dep build

Scaling and Upgrading Applications Chapter 7

[346]

Examine the chart for issues. If there are any issues with the chart's files, the8.
linting process will bring them up; otherwise, no failures should be found:

$ helm lint .
==> Linting .
Lint OK
1 chart(s) linted, no failures

Install the To-Do application example using the following command. This Helm9.
chart will deploy two pods, including a Node.js service and a MongoDB service,
except this time the nodes are labeled as environment: development:

$ helm install . --name my-app7-dev --set serviceType=LoadBalancer

Check that all the pods have been scheduled on the development nodes using the10.
following command. You will find the my-app7-dev-todo-dev pod running on
the node labeled environment: development:

$ for n in $(kubectl get nodes -l environment=development --no-
headers | cut -d " " -f1); do kubectl get pods --all-namespaces --
no-headers --field-selector spec.nodeName=${n} ; done

With that, you've learned how to schedule workload pods onto selected nodes using the
nodeSelector primitive.

Assigning pods to nodes using node and inter-pod
Affinity
In this recipe, we will learn how to expand the constraints we expressed in the previous
recipe, Assigning pods to labeled nodes using nodeSelector, using the affinity and anti-affinity
features.

Let's use a scenario-based approach to simplify this recipe for different affinity selector
options. We will take the previous example, but this time with complicated requirements:

todo-prod must be scheduled on a node with the environment:production
label and should fail if it can't.
todo-prod should run on a node that is labeled with failure-
domain.beta.kubernetes.io/zone=us-east-1a or us-east-1b but can run
anywhere if the label requirement is not satisfied.
todo-prod must run on the same zone as mongodb, but should not run in the
zone where todo-dev is running.

Scaling and Upgrading Applications Chapter 7

[347]

The requirements listed here are only examples in order to represent the
use of some affinity definition functionality. This is not the ideal way to
configure this specific application. The labels may be completely different
in your environment.

The preceding scenario will cover both types of node affinity options
(requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution). You will see these options
later in our example. Let's get started:

Create a copy of the Helm chart we used in the Manually scaling an1.
application recipe to a new directory called todo-prod. We will edit the
templates later in order to specify nodeAffinity rules:

$ cd src/chapter7/charts
$ mkdir todo-prod
$ cp -a node/* todo-prod/
$ cd todo-prod

Edit the values.yaml file. To access it, use the following command:2.

$ vi values.yaml

Replace the last line, affinity: {}, with the following code. This change will3.
satisfy the first requirement we defined previously, meaning that a pod can only
be placed on a node with an environment label and whose value is
production:

Affinity for pod assignment
Ref:
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#
affinity-and-anti-affinity
affinity: {}
Start of the affinity addition #1
affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: environment
 operator: In
 values:
 - production
End of the affinity addition #1

Scaling and Upgrading Applications Chapter 7

[348]

You can also specify more than one matchExpressions under the
nodeSelectorTerms. In this case, the pod can only be scheduled onto a node
where all matchExpressions are satisfied, which may limit your successful
scheduling chances.

Although it may not be practical on large clusters, instead of using
nodeSelector and labels, you can also schedule a pod on a specific node
using the nodeName setting. In this case, instead of the nodeSelector
setting, add nodeName: yournodename to your deployment manifest.

Now, add the following lines right under the preceding code addition. This 4.
addition will satisfy the second requirement we defined, meaning that nodes
with a label of failure-domain.beta.kubernetes.io/zone and whose value
is us-east-1a or us-east-1b will be preferred:

 - production
End of the affinity addition #1
Start of the affinity addition #2
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 operator: In
 values:
 - us-east-1a
 - us-east-1b
End of the affinity addition #2

For the third requirement, we will use the inter-pod affinity and anti-affinity5.
functionalities. They allow us to limit which nodes our pod is eligible to be
scheduled based on the labels on pods that are already running on the node
instead of taking labels on nodes for scheduling. The following podAffinity
requiredDuringSchedulingIgnoredDuringExecution rule will look for
nodes where app: mongodb exist and use failure-
domain.beta.kubernetes.io/zone as a topology key to show us where the
pod is allowed to be scheduled:

 - us-east-1b
End of the affinity addition #2
Start of the affinity addition #3a
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:

Scaling and Upgrading Applications Chapter 7

[349]

 - key: app
 operator: In
 values:
 - mongodb
 topologyKey: failure-domain.beta.kubernetes.io/zone
End of the affinity addition #3a

Add the following lines to complete the requirements. This time, the6.
podAntiAffinity preferredDuringSchedulingIgnoredDuringExecution

rule will look for nodes where app: todo-dev exists and use failure-
domain.beta.kubernetes.io/zone as a topology key:

 topologyKey: failure-domain.beta.kubernetes.io/zone
End of the affinity addition #3a
Start of the affinity addition #3b
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - todo-dev
 topologyKey: failure-domain.beta.kubernetes.io/zone
End of the affinity addition #3b

Edit the Chart.yaml file and change the chart name to its folder name. In this7.
recipe, it's called todo-prod. After making these changes, the first two lines
should look as follows:

apiVersion: v1
name: todo-prod
...

Update the Helm dependencies and build them. The following commands will8.
pull all the dependencies and build the Helm chart:

$ helm dep update & helm dep build

Scaling and Upgrading Applications Chapter 7

[350]

Examine the chart for issues. If there are any issues with the chart files, the linting9.
process will bring them up; otherwise, no failures should be found:

$ helm lint .
==> Linting .
Lint OK
1 chart(s) linted, no failures

Install the To-Do application example using the following command. This Helm10.
chart will deploy two pods, including a Node.js service and a MongoDB service,
this time following the detailed requirements we defined at the beginning of this
recipe:

$ helm install . --name my-app7-prod --set serviceType=LoadBalancer

Check that all the pods that have been scheduled on the nodes are labeled as11.
environment: production using the following command. You will find
the my-app7-dev-todo-dev pod running on the nodes:

$ for n in $(kubectl get nodes -l environment=production --no-
headers | cut -d " " -f1); do kubectl get pods --all-namespaces --
no-headers --field-selector spec.nodeName=${n} ; done

In this recipe, you learned about advanced pod scheduling practices while using a number
of primitives in Kubernetes, including nodeSelector, node affinity, and inter-pod affinity.
Now, you will be able to configure a set of applications that are co-located in the same
defined topology or scheduled in different zones so that you have better service-level
agreement (SLA) times.

How it works...
The recipes in this section showed you how to schedule pods on preferred locations,
sometimes based on complex requirements.

In the Labeling nodes recipe, in Step 1, you can see that some standard labels have been
applied to your nodes already. Here is a short explanation of what they mean and where
they are used:

kubernetes.io/arch: This comes from the runtime.GOARCH parameter and is
applied to nodes to identify where to run different architecture container images,
such as x86, arm, arm64, ppc64le, and s390x, in a mixed architecture cluster.

Scaling and Upgrading Applications Chapter 7

[351]

kubernetes.io/instance-type: This is only useful if your cluster is deployed
on a cloud provider. Instance types tell us a lot about the platform, especially for
AI and machine learning workloads where you need to run some pods on
instances with GPUs or faster storage options.
kubernetes.io/os: This is applied to nodes and comes from runtime.GOOS. It
is probably less useful unless you have Linux and Windows nodes in the same
cluster.
failure-domain.beta.kubernetes.io/region and /zone: This is also more
useful if your cluster is deployed on a cloud provider or your infrastructure is
spread across a different failure-domain. In a data center, it can be used to define
a rack solution so that you can schedule pods on separate racks for higher
availability.
kops.k8s.io/instancegroup=nodes: This is the node label that's set to the
name of the instance group. It is only used with kops clusters.
kubernetes.io/hostname: Shows the hostname of the worker.
kubernetes.io/role: This shows the role of the worker in the cluster. Some
common values include node for representing worker nodes and master, which
shows the node is the master node and is tainted as not schedulable for
workloads by default.

In the Assigning pods to nodes using node and inter-pod affinity recipe, in Step 3, the node
affinity rule says that the pod can only be placed on a node with a label whose key is
environment and whose value is production.

In Step 4, the affinity key: value requirement is preferred
(preferredDuringSchedulingIgnoredDuringExecution). The weight field here can
be a value between 1 and 100. For every node that meets these requirements, a Kubernetes
scheduler computes a sum. The nodes with the highest total score are preferred.

Another detail that's used here is the In parameter. Node Affinity supports the following
operators: In, NotIn, Exists, DoesNotExist, Gt, and Lt. You can read more about the
operators by looking at the Scheduler affinities through examples link mentioned in the See
also section.

If selector and affinity rules are not well planned, they can easily block
pods getting scheduled on your nodes. Keep in mind that if you have
specified both nodeSelector and nodeAffinity rules, both
requirements must be met for the pod to be scheduled on the available
nodes.

Scaling and Upgrading Applications Chapter 7

[352]

In Step 5, inter-pod affinity is used (podAffinity) to satisfy the requirement in PodSpec. In
this recipe, podAffinity is requiredDuringSchedulingIgnoredDuringExecution.
Here, matchExpressions says that a pod can only run on nodes where failure-
domain.beta.kubernetes.io/zone matches the nodes where other pods with the app:
mongodb label are running.

In Step 6, the requirement is satisfied with podAntiAffinity using
preferredDuringSchedulingIgnoredDuringExecution.
Here, matchExpressions says that a pod can't run on nodes where failure-
domain.beta.kubernetes.io/zone matches the nodes where other pods with the app:
todo-dev label are running. The weight is increased by setting it to 100.

See also
List of known labels, annotations, and taints: https:/ /kubernetes. io/ docs/
reference/ kubernetes- api/ labels- annotations- taints/

Assigning Pods to Nodes in the Kubernetes documentation: https:/ /
kubernetes. io/ docs/ tasks/ configure- pod- container/ assign- pods- nodes/

More on labels and selectors in the Kubernetes documentation: https:/ /
kubernetes. io/ docs/ concepts/ overview/ working- with- objects/ labels/

Scheduler affinities through examples: https:/ /banzaicloud. com/blog/ k8s-
affinities/

Node affinity and NodeSelector design document: https:/ /github. com/
kubernetes/ community/ blob/ master/ contributors/ design- proposals/
scheduling/ nodeaffinity. md

Interpod topological affinity and anti-affinity design document: https:/ /
github.com/ kubernetes/ community/ blob/ master/ contributors/ design-
proposals/ scheduling/ podaffinity. md

Creating an external load balancer
The load balancer service type is a relatively simple service alternative to ingress that uses a
cloud-based external load balancer. The external load balancer service type's support is
limited to specific cloud providers but is supported by the most popular cloud providers,
including AWS, GCP, Azure, Alibaba Cloud, and OpenStack.

https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://banzaicloud.com/blog/k8s-affinities/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/nodeaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/podaffinity.md

Scaling and Upgrading Applications Chapter 7

[353]

In this section, we will expose our workload ports using a load balancer. We will learn how
to create an external GCE/AWS load balancer for clusters on public clouds, as well as for
your private cluster using inlet-operator.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources. In this recipe, we are using a cluster that's been deployed on
AWS using kops, as described in Chapter 1, Building Production-Ready Kubernetes Clusters,
in the Amazon Web Services recipe. The same instructions will work on all major cloud
providers.

To access the example files, clone the k8sdevopscookbook/src repository to your
workstation to use the configuration files in the src/chapter7/lb directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter7/lb/

After you've cloned the examples repository, you can move on to the recipes.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Creating an external cloud load balancer
Finding the external address of the service

Creating an external cloud load balancer
When you create an application and expose it as a Kubernetes service, you usually need the
service to be reachable externally via an IP address or URL. In this recipe, you will learn
how to create a load balancer, also referred to as a cloud load balancer.

In the previous chapters, we have seen a couple of examples that used the load balancer
service type to expose IP addresses, including the Configuring and managing S3 object storage
using MinIO and Application backup and recovery using Kasten recipes in the previous chapter,
as well as the To-Do application that was provided in this chapter in the Assigning
applications to nodes recipe.

Scaling and Upgrading Applications Chapter 7

[354]

Let's use the MinIO application to learn how to create a load balancer. Follow these steps to
create a service and expose it using an external load balancer service:

Review the content of the minio.yaml file in the examples directory1.
in src/chapter7/lb and deploy it using the following command. This will
create a StatefulSet and a service where the MinIO port is exposed internally to
the cluster via port number 9000. You can choose to apply the same steps and
create a load balancer for your own application. In that case, skip to Step 2:

$ kubectl apply -f minio.yaml

List the available services on Kubernetes. You will see that the MinIO service2.
shows ClusterIP as the service type and none under the EXTERNAL-IP field:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 100.64.0.1 <none> 443/TCP 5d
minio ClusterIP None <none> 9000/TCP 4m

Create a new service with the TYPE set to LoadBalancer. The following3.
command will expose port: 9000 of our MinIO application at targetPort:
9000 using the TCP protocol, as shown here:

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: minio-service
spec:
 type: LoadBalancer
 ports:
 - port: 9000
 targetPort: 9000
 protocol: TCP
 selector:
 app: minio
EOF

Scaling and Upgrading Applications Chapter 7

[355]

The preceding command will immediately create the Service object, but the actual load
balancer on the cloud provider side may take 30 seconds to a minute to be completely
initialized. Although the object will state that it's ready, it will not function until the load
balancer is initialized. This is one of the disadvantages of cloud load balancers compared to
ingress controllers, which we will look at in the next recipe, Creating an ingress service and
service mesh using Istio.

As an alternative to Step 3, you can also create the load balancer by using the following
command:

$ kubectl expose rc example --port=9000 --target-port=9000 --name=minio-
service --type=LoadBalancer

Finding the external address of the service
Let's perform the following steps to get the externally reachable address of the service:

List the services that use the LoadBalancer type. The EXTERNAL-IP column will1.
show you the cloud vendor-provided address:

$ kubectl get svc |grep LoadBalancer
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
minio-service LoadBalancer 100.69.15.120 containerized.me.us-
east-1.elb.amazonaws.com 9000:30705/TCP 4h39m

If you are running on a cloud provider service such as AWS, you can also use the2.
following command to get the exact address. You can copy and paste this into a
web browser:

$ SERVICE_IP=http://$(kubectl get svc minio-service \
-o
jsonpath='{.status.loadBalancer.ingress[0].hostname}:{.spec.ports[]
.targetPort}')
$ echo $SERVICE_IP

If you are running on a bare-metal server, then you probably won't have a3.
hostname entry. As an example, if you are running MetalLB (https:/ / metallb.
universe. tf/), a load balancer for bare-metal Kubernetes clusters, or SeeSaw
(https:/ / github. com/ google/ seesaw), a Linux Virtual Server (LVS)-based load
balancing platform, you need to look for the ip entry instead:

$ SERVICE_IP=http://$(kubectl get svc minio-service \
-o
jsonpath='{.status.loadBalancer.ingress[0].ip}:{.spec.ports[].targe

https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw
https://github.com/google/seesaw

Scaling and Upgrading Applications Chapter 7

[356]

tPort}')
$ echo $SERVICE_IP

The preceding command will return a link similar
to https://containerized.me.us-east-1.elb.amazonaws.com:9000.

How it works...
This recipe showed you how to quickly create a cloud load balancer to expose your services
with an external address.

In the Creating a cloud load balancer recipe, in Step 3, when a load balancer service is created
in Kubernetes, a cloud provider load balancer is created on your behalf without you having
to go through the cloud service provider APIs separately. This feature helps you easily
manage the creation of load balancers outside of your Kubernetes cluster, but at the same
takes a bit of time to complete and requires a separate load balancer for every service, so
this might be costly and not very flexible.

To give load balancers flexibility and add more application-level functionality, you can use
ingress controllers. Using ingress, traffic routing can be controlled by rules defined in the
ingress resource. You will learn more about popular ingress gateways in the next two
recipes, Creating an ingress service and service mesh using Istio and Creating an ingress service
and service mesh using Linkerd.

See also
Kubernetes documentation on the load balancer service type: https:/ /
kubernetes. io/ docs/ concepts/ services- networking/ service/ #loadbalancer

Using a load balancer on Amazon EKS: https:/ /docs. aws. amazon. com/eks/
latest/userguide/ load- balancing. html

Using a load balancer on AKS: https:/ / docs. microsoft. com/en- us/ azure/ aks/
load-balancer- standard

Using a load balancer on Alibaba Cloud: https:/ /www. alibabacloud. com/ help/
doc-detail/ 53759. htm

Load balancer for your private Kubernetes cluster: https:/ /blog. alexellis. io/
ingress- for- your- local- kubernetes- cluster/

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.aws.amazon.com/eks/latest/userguide/load-balancing.html
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://www.alibabacloud.com/help/doc-detail/53759.htm
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/
https://blog.alexellis.io/ingress-for-your-local-kubernetes-cluster/

Scaling and Upgrading Applications Chapter 7

[357]

Creating an ingress service and service
mesh using Istio
Istio is a popular open source service mesh. In this section, we will get basic Istio service
mesh functionality up and running. You will learn how to create a service mesh to secure,
connect, and monitor microservices.

Service mesh is a very detailed concept and we don't intend to explain any detailed use
cases. Instead, we will focus on getting our service up and running.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

Clone the https://github.com/istio/istio repository to your workstation, as
follows:

$ git clone https://github.com/istio/istio.git
$ cd istio

We will use the examples in the preceding repository to install Istio on our Kubernetes
cluster.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing Istio using Helm
Verifying the installation
Creating an ingress gateway

Scaling and Upgrading Applications Chapter 7

[358]

Installing Istio using Helm
Let's perform the following steps to install Istio:

Create the Istio CRDs that are required before we can deploy Istio:1.

$ helm install install/kubernetes/helm/istio-init --name istio-init
\
--namespace istio-system

Install Istio with the default configuration. This will deploy the Istio core2.
components, that is, istio-citadel, istio-galley, istio-
ingressgateway, istio-pilot, istio-policy, istio-sidecar-injector,
and istio-telemetry:

$ helm install install/kubernetes/helm/istio --name istio \
--namespace istio-system

Enable automatic sidecar injection by labeling the namespace where you will run3.
your applications. In this recipe, we will be using the default namespace:

$ kubectl label namespace default istio-injection=enabled

To be able to get Istio functionality for your application, the pods need to run an Istio
sidecar proxy. The preceding command will automatically inject the Istio sidecar. As an
alternative, you can find the instructions for manually adding Istio sidecars to your pods
using the istioctl command in the Installing the Istio sidecar instructions link provided in
the See also section.

Verifying the installation
Let's perform the following steps to confirm that Istio has been installed successfully:

Check the number of Istio CRDs that have been created. The following command1.
should return 23, which is the number of CRDs that have been created by Istio:

$ kubectl get crds | grep 'istio.io' | wc -l
23

Scaling and Upgrading Applications Chapter 7

[359]

Run the following command and confirm that the list of Istio core component2.
services have been created:

$ kubectl get svc -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
istio-citadel ClusterIP 100.66.235.211 <none>
8060/TCP,... 2m10s
istio-galley ClusterIP 100.69.206.64 <none>
443/TCP,... 2m11s
istio-ingressgateway LoadBalancer 100.67.29.143 domain.com
15020:31452/TCP,... 2m11s
istio-pilot ClusterIP 100.70.130.148 <none>
15010/TCP,... 2m11s
istio-policy ClusterIP 100.64.243.176 <none>
9091/TCP,... 2m11s
istio-sidecar-injector ClusterIP 100.69.244.156 <none>
443/TCP,... 2m10s
istio-telemetry ClusterIP 100.68.146.30 <none>
9091/TCP,... 2m11s
prometheus ClusterIP 100.71.172.191 <none>
9090/TCP 2m11s

Make sure that all the pods listed are in the Running state:3.

$ kubectl get pods -n istio-system

Confirm the Istio injection enabled namespaces. You should only see istio-4.
injection for the default namespace:

$ kubectl get namespace -L istio-injection
NAME STATUS AGE ISTIO-INJECTION
default Active 5d8h enabled
istio-system Active 40m
kube-node-lease Active 5d8h
kube-public Active 5d8h
kube-system Active 5d8h

You can always enable injection for the other namespaces by adding the istio-
injection=enabled label to a namespace.

Scaling and Upgrading Applications Chapter 7

[360]

Creating an ingress gateway
Instead of using a controller to load balance traffic, Istio uses a gateway. Let's perform the
following steps to create an Istio ingress gateway for our example application:

Review the content of the minio.yaml file in the examples directory1.
in src/chapter7/lb and deploy it using the following command. This will
create a StatefulSet and a service where the MinIO port is exposed internally to
the cluster via port number 9000. You can also choose to apply the same steps
and create an ingress gateway for your own application. In that case, skip to Step
2:

$ kubectl apply -f minio.yaml

Get the ingress IP and ports:2.

$ export INGRESS_HOST=$(kubectl -n istio-system get service istio-
ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ export INGRESS_PORT=$(kubectl -n istio-system get service istio-
ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}')
$ export SECURE_INGRESS_PORT=$(kubectl -n istio-system get service
istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="https")].port}')

Create a new Istio gateway:3.

$ cat <<EOF | kubectl apply -f -
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: minio-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"
EOF

Scaling and Upgrading Applications Chapter 7

[361]

Create a new VirtualService to forward requests to the MinIO instance via the4.
gateway. This helps specify routing for the gateway and binds the gateway to the
VirtualService:

$ cat <<EOF | kubectl apply -f -
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: minio
spec:
 hosts:
 - "*"
 gateways:
 - minio-gateway.default
 http:
 - match:
 - uri:
 prefix: /
 route:
 - destination:
 port:
 number: 9000
 host: minio
EOF

This configuration will expose your services to external access using Istio, and you will
have more control over rules.

How it works...
This recipe showed you how to quickly configure the Istio service mesh and use custom
Istio resources such as ingress gateway to open a service to external access.

For the service mesh to function correctly, each pod in the mesh needs to run an Envoy
sidecar. In the Installing Istio using Helm recipe, in Step 3, we enabled automatic injection for
pods in the default namespace so that the pods that are deployed in that namespace will
run the Envoy sidecar.

An ingress controller is a reverse-proxy that runs in the Kubernetes cluster and configures
routing rules. In the Creating an ingress gateway recipe, in Step 2, unlike traditional
Kubernetes ingress objects, we used Istio CRDs such as Gateway, VirtualService, and
DestinationRule to create the ingress.

Scaling and Upgrading Applications Chapter 7

[362]

We created a gateway rule for the ingress Gateway using the istio:
ingressgateway selector in order to accept HTTP traffic on port number 80.

In Step 4, we created a VirtualService for the MinIO services we wanted to expose. Since the
gateway may be in a different namespace, we used minio-gateway.default to set the
gateway name.

With this, we have exposed our service using HTTP. You can read more about exposing the
service using the HTTPS protocol by looking at the link in See also section.

There's more…
Although it is very popular, Istio is not the simplest ingress to deal with. We highly
recommend that you look at all the options that are available for your use case and consider
alternatives. Therefore, it is useful to know how to remove Istio.

Deleting Istio
You can delete Istio by using the following commands:

$ helm delete istio
$ helm delete istio-init

If you want to completely remove the deleted release records from the Helm records and
free the release name to be used later, add the --purge parameter to the preceding
commands.

See also
Istio documentation: https:/ /istio. io/docs/

Istio examples: https:/ /istio. io/docs/ examples/ bookinfo/

Installing the Istio sidecar: https:/ /istio. io/ docs/ setup/ additional- setup/
sidecar- injection/

Istio ingress tutorial from Kelsey
Hightower: https://github.com/kelseyhightower/istio-ingress-tutorial
Traffic management with Istio: https:/ / istio. io/docs/ tasks/ traffic-
management/

Security with Istio: https:/ /istio. io/docs/ tasks/ security/

https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://istio.io/docs/setup/additional-setup/sidecar-injection/
https://github.com/kelseyhightower/istio-ingress-tutorial
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/traffic-management/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/
https://istio.io/docs/tasks/security/

Scaling and Upgrading Applications Chapter 7

[363]

Policy enforcement with Istio: https:/ /istio. io/docs/ tasks/ policy-
enforcement/

Collecting telemetry information with Istio: https:/ /istio. io/ docs/ tasks/
telemetry/

Creating Kubernetes ingress with Cert-Manager: https:/ /istio. io/ docs/
tasks/traffic- management/ ingress/ ingress- certmgr/

Creating an ingress service and service
mesh using Linkerd
In this section, we will get basic Linkerd service mesh up and running. You will learn how
to create a service mesh to secure, connect, and monitor microservices.

Service mesh is a very detailed concept in itself and we don't intend to explain any detailed
use cases here. Instead, we will focus on getting our service up and running.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

To access the example files for this recipe, clone the k8sdevopscookbook/src repository
to your workstation to use the configuration files in the src/chapter7/linkerd directory,
as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter7/linkerd/

After you've cloned the preceding repository, you can get started with the recipes.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing the Linkerd CLI
Installing Linkerd
Verifying a Linkerd deployment
Viewing the Linkerd metrics

https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/policy-enforcement/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/telemetry/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/
https://istio.io/docs/tasks/traffic-management/ingress/ingress-certmgr/

Scaling and Upgrading Applications Chapter 7

[364]

Installing the Linkerd CLI
To interact with Linkerd, you need to install the linkerd CLI. Follow these
steps:

Install the linkerd CLI by running the following command:1.

$ curl -sL https://run.linkerd.io/install | sh

Add the linkerd CLI to your path:2.

$ export PATH=$PATH:$HOME/.linkerd2/bin

Verify that the linkerd CLI has been installed by running the following3.
command. It should show the server as unavailable since we haven't installed it
yet:

$ linkerd version
Client version: stable-2.5.0
Server version: unavailable

Validate that linkerd can be installed. This command will check the cluster and4.
point to issues if they exist:

$ linkerd check --pre
Status check results are √

If the status checks are looking good, you can move on to the next recipe.

Installing Linkerd
Compared to the alternatives, Linkerd is much easier to get started with and manage, so it
is my preferred service mesh.

Install the Linkerd control plane using the Linkerd CLI. This command will use the default
options and install the linkerd components in the linkerd namespace:

$ linkerd install | kubectl apply -f -

Pulling all the container images may take a minute or so. After that, you can verify the
health of the components by following the next recipe, Verifying a Linkerd deployment.

Scaling and Upgrading Applications Chapter 7

[365]

Verifying a Linkerd deployment
Verifying Linkerd's deployment is as easy as the installation process.

Run the following command to validate the installation. This will display a long summary
of control plane components and APIs and will make sure you are running the latest
version:

$ linkerd check
...

control-plane-version

√ control plane is up-to-date
√ control plane and cli versions match

Status check results are √

If the status checks are good, you are ready to test Linkerd with a sample application.

Adding Linkerd to a service
Follow these steps to add Linkerd to our demo application:

Change directories to the linkerd folder:1.

$ cd /src/chapter7/linkerd

Deploy the demo application, which uses a mix of gRPC and HTTP calls to2.
service a voting application to the user:

$ kubectl apply -f emojivoto.yml

Get the service IP of the demo application. This following command will return3.
the externally accessible address of your application:

$ SERVICE_IP=http://$(kubectl get svc web-svc -n emojivoto \
-o
jsonpath='{.status.loadBalancer.ingress[0].hostname}:{.spec.ports[]
.targetPort}')
$ echo $SERVICE_IP

Open the external address from Step 3 in a web browser and confirm that the4.
application is functional:

Scaling and Upgrading Applications Chapter 7

[366]

Enable automatic sidecar injection by labeling the namespace where you will run5.
your applications. In this recipe, we're using the emojivoto namespace:

$ kubectl label namespace emojivoto linkerd.io/inject=enabled

You can also manually inject a linkerd sidecar by patching the pods where you run your
applications using the
kubectl get -n emojivoto deploy -o yaml | linkerd inject - | kubectl

apply -f - command. In this recipe, the emojivoto namespace is used.

There's more…
 This section is further divided into the following subsections to make this process easier:

Accessing the dashboard
Deleting Linkerd

Accessing the dashboard
We can either use port forwarding or use ingress to access the dashboard. Let's start with
the simple way of doing things, that is, by port forwarding to your local system:

View the Linkerd dashboard by running the following command:1.

$ linkerd dashboard &

Scaling and Upgrading Applications Chapter 7

[367]

Visit the following link in your browser to view the dashboard:2.

http://127.0.0.1:50750

The preceding commands will set up a port forward from your local system to the
linkerd-web pod.

If you want to access the dashboard from an external IP, then follow these steps:

Download the sample ingress definition:1.

$ wget
https://raw.githubusercontent.com/k8sdevopscookbook/src/master/chap
ter7/linkerd/ingress-nginx.yaml

Edit the ingress configuration in the ingress-nginx.yaml file in the2.
src/chapter7/linkerd directory and change - host:
dashboard.example.com on line 27 to the URL where you want your
dashboard to be exposed. Apply the configuration using the following command:

$ kubectl apply -f ingress-nginx.yaml

The preceding example file uses linkerddashboard.containerized.me as the
dashboard address. It also protects access with basic auth using admin/admin credentials.
It is highly suggested that you use your own credentials by changing the base64-encoded
key pair defined in the auth section of the configuration using the username:password
format.

Deleting Linkerd
To remove the Linkerd control plane, run the following command:

$ linkerd install --ignore-cluster | kubectl delete -f -

This command will pull a list of all the configuration files for the Linkerd control plane,
including namespaces, service accounts, and CRDs, and remove them.

See also
Linkerd documentation: https:/ /linkerd. io/ 2/overview/

Common tasks with Linkerd: https:/ /linkerd. io/ 2/tasks/

Frequently asked Linkerd questions and answers: https:/ /linkerd. io/2/ faq/

https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/overview/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/tasks/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/
https://linkerd.io/2/faq/

Scaling and Upgrading Applications Chapter 7

[368]

Auto-healing pods in Kubernetes
Kubernetes has self-healing capabilities at the cluster level. It restarts containers that fail,
reschedules pods when nodes die, and even kills containers that don't respond to your
user-defined health checks.

In this section, we will perform application and cluster scaling tasks. You will learn how to
use liveness and readiness probes to monitor container health and trigger a restart action in
case of failures.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Testing self-healing pods
Adding liveness probes to pods

Testing self-healing pods
In this recipe, we will manually remove pods in our deployment to show how Kubernetes
replaces them. Later, we will learn how to automate this using a user-defined health check.
Now, let's test Kubernetes' self-healing for destroyed pods:

Create a deployment or StatefulSet with two or more replicas. As an example, we1.
will use the MinIO application we used in the previous chapter, in the
Configuring and managing S3 object storage using MinIO recipe. This example has
four replicas:

$ cd src/chapter7/autoheal/minio
$ kubectl apply -f minio.yaml

Scaling and Upgrading Applications Chapter 7

[369]

List the MinIO pods that were deployed as part of the StatefulSet. You will see2.
four pods:

$ kubectl get pods |grep minio
minio-0 1/1 Running 0 4m38ms
minio-1 1/1 Running 0 4m25s
minio-2 1/1 Running 0 4m12s
minio-3 1/1 Running 0 3m48s

Delete a pod to test Kubernetes' auto-healing functionality and immediately list3.
the pods again. You will see that the terminated pod will be quickly rescheduled
and deployed:

$ kubectl delete pod minio-0
pod "minio-0" deleted
$ kubectl get pods |grep miniominio-0
minio-0 0/1 ContainerCreating 0 2s
minio-1 1/1 Running 0 8m9s
minio-2 1/1 Running 0 7m56s
minio-3 1/1 Running 0 7m32s

With this, you have tested Kubernetes' self-healing after manually destroying a pod in
operation. Now, we will learn how to add a health status check to pods to let Kubernetes
automatically kill non-responsive pods so that they're restarted.

Adding liveness probes to pods
Kubernetes uses liveness probes to find out when to restart a container. Liveness can be
checked by running a liveness probe command inside the container and validating that it
returns 0 through TCP socket liveness probes or by sending an HTTP request to a specified
path. In that case, if the path returns a success code, then kubelet will consider the container
to be healthy. In this recipe, we will learn how to send an HTTP request method to the
example application. Let's perform the following steps to add liveness probes:

Edit the minio.yaml file in the src/chapter7/autoheal/minio directory and1.
add the following livenessProbe section right under the volumeMounts
section, before volumeClaimTemplates. Your YAML manifest should look
similar to the following. This will send an HTTP request to
the /minio/health/live location every 20 seconds to validate its health:

...
 volumeMounts:
 - name: data
 mountPath: /data

Scaling and Upgrading Applications Chapter 7

[370]

Starts here
 livenessProbe:
 httpGet:
 path: /minio/health/live
 port: 9000
 initialDelaySeconds: 120
 periodSeconds: 20
Ends here
 # These are converted to volume claims by the controller
 # and mounted at the paths mentioned above.
 volumeClaimTemplates:

For liveness probes that use HTTP requests to work, an application needs to
expose unauthenticated health check endpoints. In our example, MinIO
provides this through the /minio/health/live endpoint. If your workload
doesn't have a similar endpoint, you may want to use liveness commands
inside your pods to verify their health.

Deploy the application. It will create four pods:2.

$ kubectl apply -f minio.yaml

Confirm the liveness probe by describing one of the pods. You will see a3.
Liveness description similar to the following:

$ kubectl describe pod minio-0
...
 Liveness: http-get http://:9000/minio/health/live delay=120s
timeout=1s period=20s #success=1 #failure=3
...

To test the liveness probe, we need to edit the minio.yaml file again. This time,4.
set the livenessProbe port to 8000, which is where the application will not
able to respond to the HTTP request. Repeat Steps 2 and 3, redeploy the
application, and check the events in the pod description. You will see a minio
failed liveness probe, will be restarted message in the events:

$ kubectl describe pod minio-0

Scaling and Upgrading Applications Chapter 7

[371]

You can confirm the restarts by listing the pods. You will see that every MinIO5.
pod is restarted multiple times due to it having a failing liveness status:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
minio-0 1/1 Running 4 12m
minio-1 1/1 Running 4 12m
minio-2 1/1 Running 3 11m
minio-3 1/1 Running 3 11m

In this recipe, you learned how to implement the auto-healing functionality for applications
that are running in Kubernetes clusters.

How it works...
This recipe showed you how to use a liveness probe on your applications running on
Kubernetes.

In the Adding liveness probes to pods recipe, in Step 1, we added an HTTP request-based
health check.

By adding the StatefulSet path and port, we let kubelet probe the defined endpoints. Here,
the initialDelaySeconds field tells kubelet that it should wait 120 seconds before the
first probe. If your application takes a while to get the endpoints ready, then make sure that
you allow enough time before the first probe; otherwise, your pods will be restarted before
the endpoints can respond to requests.

In Step 3, the periodSeconds field specifies that kubelet should perform a liveness probe
every 20 seconds. Again, depending on the applications' expected availability, you should
set a period that is right for your application.

See also
Configuring liveness and readiness probes: https:/ /kubernetes. io/ docs/
tasks/configure- pod- container/ configure- liveness- readiness- startup-
probes/

Kubernetes Best Practices: Setting up health checks: https:/ /cloud. google.
com/blog/ products/ gcp/ kubernetes- best- practices- setting- up- health-
checks-with- readiness- and- liveness- probes

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes

Scaling and Upgrading Applications Chapter 7

[372]

Managing upgrades through blue/green
deployments
The blue-green deployment architecture is a method that's used to reduce downtime by
running two identical production environments that can be switched between when
needed. These two environments are identified as blue and green. In this section, we will
perform rollover application upgrades. You will learn how to roll over a new version of
your application with persistent storage by using blue/green deployment in Kubernetes.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

For this recipe, we will need a persistent storage provider to take snapshots from one
version of the application and use clones with the other version of the application to keep
the persistent volume content. We will use OpenEBS as a persistent storage provider, but
you can also use any CSI-compatible storage provider.

Make sure OpenEBS has been configured with the cStor storage engine by following the
instructions in Chapter 5, Preparing for Stateful Workloads, in the Persistent storage using
OpenEBS recipe.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Creating the blue deployment
Creating the green deployment
Switching traffic from blue to green

Scaling and Upgrading Applications Chapter 7

[373]

Creating the blue deployment
There are many traditional workloads that won't work with Kubernetes' way of rolling
updates. If your workload needs to deploy a new version and cut over to it immediately,
then you may need to perform blue/green deployment instead. Using the blue/green
deployment approach, we will label the current production blue. In the next recipe, we will
create an identical production environment called green before redirecting the services to
green.

Let's perform the following steps to create the first application, which we will call blue:

Change directory to where the examples for this recipe are located:1.

$ cd /src/chapter7/bluegreen

Review the content of the blue-percona.yaml file and use that to create the2.
blue version of your application:

$ kubectl create -f blue-percona.yaml
pod "blue" created
persistentvolumeclaim "demo-vol1-claim" created

Review the content of the percona-svc.yaml file and use that to create the3.
service. You will see that selector in the service is set to app: blue. This
service will forward all the MySQL traffic to the blue pod:

$ kubectl create -f percona-svc.yaml

Get the service IP for percona. In our example, the Cluster IP is 10.3.0.75:4.

$ kubectl get svc percona
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
percona ClusterIP 10.3.0.75 <none> 3306/TCP 1m

Edit the sql-loadgen.yaml file and replace the target IP address with your5.
percona service IP. In our example, it is 10.3.0.75:

 containers:
 - name: sql-loadgen
 image: openebs/tests-mysql-client
 command: ["/bin/bash"]
 args: ["-c", "timelimit -t 300 sh MySQLLoadGenerate.sh
10.3.0.75 > /dev/null 2>&1; exit 0"]
 tty: true

Scaling and Upgrading Applications Chapter 7

[374]

Start the load generator by running the sql-loadgen.yaml job:6.

$ kubectl create -f sql-loadgen.yaml

This job will generate a MySQL load targeting the IP of the service that was forwarded to
the Percona workload (currently blue).

Creating the green deployment
Let's perform the following steps to deploy the new version of the application as our green
deployment. We will switch the service to green, take a snapshot of blue's persistent
volume, and deploy the green workload in a new pod:

Let's create a snapshot of the data from the blue application's PVC and use it to1.
deploy the green application:

$ kubectl create -f snapshot.yaml
volumesnapshot.volumesnapshot.external-storage.k8s.io "snapshot-
blue" created

Review the content of the green-percona.yaml file and use that to create the2.
green version of your application:

$ kubectl create -f green-percona.yaml
pod "green" created
persistentvolumeclaim "demo-snap-vol-claim" created

This pod will use a snapshot of the PVC from the blue application as its original PVC.

Switching traffic from blue to green
Let's perform the following steps to switch traffic from blue to the new green deployment:

Edit the service using the following command and replace blue with green. Service traffic
will be forwarded to the pod that is labeled green:

$ kubectl edit svc percona

In this recipe, you have learned how to upgrade your application with a stateful workload
using the blue/green deployment strategy.

Scaling and Upgrading Applications Chapter 7

[375]

See also
Zero Downtime Deployments in Kubernetes with Jenkins: https:/ /kubernetes.
io/blog/ 2018/ 04/ 30/ zero- downtime- deployment- kubernetes- jenkins/

A Simple Guide to blue/green Deployment: https:/ / codefresh. io/kubernetes-
tutorial/ blue- green- deploy/

Kubernetes blue-green Deployment Examples: https:/ /github. com/
ContainerSolutions/ k8s- deployment- strategies/ tree/ master/ blue- green

https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://codefresh.io/kubernetes-tutorial/blue-green-deploy/
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green
https://github.com/ContainerSolutions/k8s-deployment-strategies/tree/master/blue-green

8
Observability and Monitoring on

Kubernetes
In this chapter, we will discuss the built-in Kubernetes tools and the popular third-party
monitoring options for your containerized DevOps environment. You will learn how to
monitor metrics for performance analysis, and also how to monitor and manage the real-
time cost of Kubernetes resources.

By the end of this chapter, you should have knowledge of the following:

Monitoring in Kubernetes
Inspecting containers
Monitoring using Amazon CloudWatch
Monitoring using Google Stackdriver
Monitoring using Azure Monitor
Monitoring Kubernetes using Prometheus and Grafana
Monitoring and performance analysis using Sysdig
Managing the cost of resources using Kubecost

Technical requirements
The recipes in this chapter assume that you have deployed a functional Kubernetes cluster
following one of the recommended methods described in Chapter 1, Building Production-
Ready Kubernetes Clusters.

Observability and Monitoring on Kubernetes Chapter 8

[377]

Kubernetes' command-line tool, kubectl, will be used for the rest of the recipes in this
chapter since it's the main command-line interface for running commands against
Kubernetes clusters. We will also use Helm where Helm charts are available to deploy
solutions.

Monitoring in Kubernetes
In this section, we will configure our Kubernetes cluster to get core metrics, such as CPU
and memory. You will learn how to monitor Kubernetes metrics using the built-in
Kubernetes tools both in the CLI and on the UI.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter8 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd /src/chapter8

The Monitoring metrics using Kubernetes Dashboard recipe requires Kubernetes Dashboard
v2.0.0 or later to function. If you want to add metric functionality to the dashboard, make
sure that you have Kubernetes Dashboard installed by following the instructions in
the Deploying Kubernetes Dashboard recipe in Chapter 1, Building Production-Ready Kubernetes
Clusters.

How to do it…
 This section is further divided into the following subsections to make the process easier:

Adding metrics using Kubernetes Metrics Server
Monitoring metrics using the CLI
Monitoring metrics using Kubernetes Dashboard
Monitoring Node Health

Observability and Monitoring on Kubernetes Chapter 8

[378]

Adding metrics using Kubernetes Metrics Server
Getting core system metrics such as CPU and memory not only provides useful
information, but is also required by extended Kubernetes functionality such as Horizontal
Pod Autoscaling, which we mentioned in Chapter 7, Scaling and Upgrading Applications:

Clone the Metrics Server repository to your client by running the following1.
command:

$ git clone https://github.com/kubernetes-incubator/metrics-
server.git

Deploy the Metrics Server by applying the manifest in the metrics-2.
server/deploy/1.8+ directory by running the following command:

$ kubectl apply -f metrics-server/deploy/1.8+

This command will create the resources required in the kube-space namespace.

Monitoring metrics using the CLI
As part of the Metrics Server, the Resource Metrics API provides access to CPU and
memory resource metrics for pods and nodes. Let's use the Resource Metrics API to access
the metrics data from the CLI:

First, let's display node resource utilization: 1.

$ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-172-20-32-169.ec2.internal 259m 12% 1492Mi 19%
ip-172-20-37-106.ec2.internal 190m 9% 1450Mi 18%
ip-172-20-48-49.ec2.internal 262m 13% 2166Mi 27%
ip-172-20-58-155.ec2.internal 745m 37% 1130Mi 14%

The command will return utilized CPU and memory on all your Kubernetes
nodes.

There are a couple of ways to use the metrics information. First of all, at
any given time, usage of both CPU and memory should be below your
desired threshold, otherwise new nodes need to be added to your cluster
to handle services smoothly. Balanced utilization is also important, which
means that if the percentage of memory usage is higher than the average
percentage of CPU usage, you may need to consider changing your cloud
instance type to use better-balanced VM instances.

Observability and Monitoring on Kubernetes Chapter 8

[379]

Display pod resource utilization in any namespace. In this example, we are 2.
listing the pods in the openebs namespace:

$ kubectl top pods -n openebs
NAME CPU(cores)
MEMORY(bytes)
maya-apiserver-6ff5bc7bdd-l5gmt 2m 10Mi
openebs-admission-server-76dbdf97d9-swjw9 0m 3Mi
openebs-localpv-provisioner-6777f78966-f6lzp 2m 8Mi
openebs-ndm-operator-797495544c-hblxv 5m 12Mi
openebs-ndm-prvcr 1m 6Mi
openebs-ndm-qmr66 1m 6Mi
openebs-ndm-xbc2q 1m 6Mi
openebs-provisioner-58bbbb8575-jzch2 3m 7Mi
openebs-snapshot-operator-6d7545dc69-b2zr7 4m 15Mi

The command should return the utilized CPU and memory on all your pods. Kubernetes
features such as Horizontal Pod Scaler can utilize this information to scale your pods.

Monitoring metrics using Kubernetes Dashboard
By default, Kubernetes Dashboard doesn't display detailed metrics unless Kubernetes
Metrics Server is installed and the kubernetes-metrics-scraper sidecar container is
running.

Let's first verify that all the necessary components are running, and then we will see how to
access the metrics data from Kubernetes Dashboard:

Verify that the kubernetes-metrics-scraper pod is running. If not, install1.
Kubernetes Dashboard by following the instructions in the Deploying the
Kubernetes Dashboard recipe in Chapter 1, Building Production-Ready Kubernetes
Clusters:

$ kubectl get pods -n kubernetes-dashboard
NAME READY STATUS RESTARTS
AGE
dashboard-metrics-scraper-69fcc6d9df-hhkkw 1/1 Running 0
177m
kubernetes-dashboard-566c79c67d-xqc6h 1/1 Running 0
177m

Observability and Monitoring on Kubernetes Chapter 8

[380]

On Kubernetes Dashboard, select Namespaces and click on the Overview menu.2.
This view shows pods in that namespace with their CPU and memory utilization:

On Kubernetes Dashboard, select a namespace and click on Pods in the3.
Overview menu. This view shows the overall CPU and memory utilization of the
workloads within the selected namespace:

Observability and Monitoring on Kubernetes Chapter 8

[381]

Select Nodes under the Cluster menu. This view shows nodes in the cluster with4.
CPU and memory utilization:

If the requests and limits are set very high, then they can take up more than their expected
share of the cluster.

Observability and Monitoring on Kubernetes Chapter 8

[382]

Monitoring node health
In this recipe, we will learn how to create a DaemonSet in the Kubernetes cluster to monitor
node health. The node problem detector will collect node problems from daemons and will
report them to the API server as NodeCondition and Event:

From the /src/chapter8 folder first, inspect the content of the node-problem-1.
detector.yaml file and create the DaemonSet to run the node problem detector:

$ cat debug/node-problem-detector.yaml
$ kubectl apply -f debug/node-problem-detector.yaml

Get a list of the nodes in the cluster. This command will return both worker and2.
master nodes:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-172-20-32-169.ec2.internal Ready node 6d23h v1.14.6
ip-172-20-37-106.ec2.internal Ready node 6d23h v1.14.6
ip-172-20-48-49.ec2.internal Ready master 6d23h v1.14.6
ip-172-20-58-155.ec2.internal Ready node 6d23h v1.14.6

Describe a node's status by replacing the node name in the following command3.
with one of your node names and running it. In the output, examine
the Conditions section for error messages. Here's an example of the output:

$ kubectl describe node ip-172-20-32-169.ec2.internal | grep -i
condition -A 20 | grep Ready -B 20
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime Reason Message
 ---- ------ ----------------- ------------------ ------ -------
 NetworkUnavailable False Sat, 12 Oct 2019 00:06:46 +0000 Sat, 12
Oct 2019 00:06:46 +0000 RouteCreated RouteController created a
route
 MemoryPressure False Fri, 18 Oct 2019 23:43:37 +0000 Sat, 12 Oct
2019 00:06:37 +0000 KubeletHasSufficientMemory kubelet has
sufficient memory available
 DiskPressure False Fri, 18 Oct 2019 23:43:37 +0000 Sat, 12 Oct
2019 00:06:37 +0000 KubeletHasNoDiskPressure kubelet has no disk
pressure
 PIDPressure False Fri, 18 Oct 2019 23:43:37 +0000 Sat, 12 Oct 2019
00:06:37 +0000 KubeletHasSufficientPID kubelet has sufficient PID
available
 Ready True Fri, 18 Oct 2019 23:43:37 +0000 Sat, 12 Oct 2019
00:06:37 +0000 KubeletReady kubelet is posting ready status

Observability and Monitoring on Kubernetes Chapter 8

[383]

Additionally, you can check for KernelDeadlock, MemoryPressure,4.
and DiskPressure conditions by replacing the last part of the command with
one of the conditions. Here is an example for KernelDeadlock:

$ kubectl get node ip-172-20-32-169.ec2.internal -o yaml | grep -B5
KernelDeadlock
 - lastHeartbeatTime: "2019-10-18T23:58:53Z"
 lastTransitionTime: "2019-10-18T23:49:46Z"
 message: kernel has no deadlock
 reason: KernelHasNoDeadlock
 status: "False"
 type: KernelDeadlock

The Node Problem Detector can detect unresponsive runtime daemons; hardware issues
such as bad CPU, memory, or disk; kernel issues including kernel deadlock conditions;
corrupted filesystems; unresponsive runtime daemons; and also infrastructure daemon
issues such as NTP service outages.

See also
Kubernetes Metrics Server Design Document: https:/ /github. com/ kubernetes/
community/ blob/ master/ contributors/ design- proposals/ instrumentation/
metrics- server. md

Configuring and using the monitoring stack in OpenShift Container
Platform: https:/ /access. redhat. com/ documentation/ en- us/ openshift_
container_ platform/ 4. 2/ html/ monitoring/ index

Krex, a Kubernetes Resource Explorer: https:/ /github. com/ kris- nova/ krex

Inspecting containers
In this section, we will troubleshoot problems related to pods stuck in Pending,
ImagePullBackOff, or CrashLoopBackOff states. You will learn how to inspect and debug
pods that are having deployment problems in Kubernetes.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/monitoring/index
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex
https://github.com/kris-nova/krex

Observability and Monitoring on Kubernetes Chapter 8

[384]

How to do it…
 This section is further divided into the following subsections to make the process easier:

Inspecting pods in Pending status
Inspecting pods in ImagePullBackOff status
Inspecting pods in CrashLoopBackOff status

Inspecting pods in Pending status
When you deploy applications on Kubernetes, it is inevitable that soon or later you will
need to get more information on your application. In this recipe, we will learn to inspect
common pods problem of pods stuck in Pending status:

In the /src/chapter8 folder, inspect the content of the mongo-sc.yaml file and1.
deploy it running the following command. The deployment manifest includes
MongoDB Statefulset with three replicas, Service and will get stuck in Pending
state due mistake with a parameter and we will inspect it to find the source:

$ cat debug/mongo-sc.yaml
$ kubectl apply -f debug/mongo-sc.yaml

List the pods by running the following command. You will notice that the status2.
is Pending for the mongo-0 pod:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongo-0 0/2 Pending 0 3m

Get additional information on the pods using the kubectl describe pod3.
command and look for the Events section. In this case, Warning is pointing to
an unbound PersistentVolumeClaim:

$ kubectl describe pod mongo-0
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 2m34s (x34 over 48m) default-scheduler
pod has unbound immediate PersistentVolumeClaims (repeated 3 times)

Observability and Monitoring on Kubernetes Chapter 8

[385]

Now that we know that we need to look at the PVC status, thanks to the results4.
of the previous step, let's get the list of PVCs in order to inspect the issue. You
will see that PVCs are also stuck in the Pending state:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
mongo-pvc-mongo-0 Pending storageclass
53m

Get additional information on the PVCs using the kubectl describe pvc5.
command, and look where the events are described. In this case, Warning is
pointing to a missing storage class named storageclass:

$ kubectl describe pvc mongo-pvc-mongo-0
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning ProvisioningFailed 70s (x33 over 58m) persistentvolume-
controller storageclass.storage.k8s.io "storageclass" not found

List the storage classes. You will notice that you don't have the storage class6.
named storageclass:

$ kubectl get sc
NAME PROVISIONER AGE
default kubernetes.io/aws-ebs 16d
gp2 kubernetes.io/aws-ebs 16d
openebs-cstor-default (default) openebs.io/provisioner-iscsi 8d
openebs-device openebs.io/local 15d
openebs-hostpath openebs.io/local 15d
openebs-jiva-default openebs.io/provisioner-iscsi 15d
openebs-snapshot-promoter volumesnapshot.external-
storage.k8s.io/snapshot-promoter 15d

Now we know that the manifest file we applied in step 1 used a storage class that7.
does not exist. In this case, you can either create the missing storage class or edit
the manifest to include an existing storage class to fix the issue.
Let's create the missing storage class from an existing default storage class like
shown in the example below gp2:

$ kubectl create -f sc-gp2.yaml

Observability and Monitoring on Kubernetes Chapter 8

[386]

List the pods by running the following command. You will notice that status is8.
now Running for all pods that were previously Pending in step 2:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongo-0 2/2 Running 0 2m18s
mongo-1 2/2 Running 0 88s
mongo-2 2/2 Running 0 50s

You have successfully learned how to inspect why a pod is pending and fix it.

Inspecting pods in ImagePullBackOff status
Sometimes your manifest files may have a typo in the image name, or the image location
may have changed. As a result, when you deploy the application, the container image will
not be found and the deployment will get stuck. In this recipe, we will learn how to inspect
the common problem of pods becoming stuck in ImagePullBackOff status:

In the /src/chapter8 folder, inspect the contents of the mongo-1.
image.yaml file and deploy it by running the following command. The
deployment manifest includes MongoDB Statefulset with three replicas, Service
and will get stuck in ImagePullBackOff state due to typo in the container image
name and we will inspect it to find the source:

$ cat debug/mongo-image.yaml
$ kubectl apply -f debug/mongo-image.yaml

List the pods by running the following command. You will notice that the status2.
of the mongo-0 pod is ImagePullBackOff:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongo-0 0/2 ImagePullBackOff 0 32s

Get additional information on the pods using the kubectl describe3.
pod command and look for the Events section. In this case, Warning is pointing
to a failure to pull the mongi image:

$ kubectl describe pod mongo-0
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning Failed 25s (x3 over 68s) kubelet,
ip-172-20-32-169.ec2.internal Error: ErrImagePull

Observability and Monitoring on Kubernetes Chapter 8

[387]

 Warning Failed 25s (x3 over 68s) kubelet,
ip-172-20-32-169.ec2.internal Failed to pull image "mongi": rpc
error: code = Unknown desc = Error response from daemon: pull
access denied for mongi, repository does not exist or may require
'docker login'
 Normal Pulling 25s (x3 over 68s) kubelet,
ip-172-20-32-169.ec2.internal Pulling image "mongi"
 Normal BackOff 14s (x4 over 67s) kubelet,
ip-172-20-32-169.ec2.internal Back-off pulling image "mongi"
 Warning Failed 14s (x4 over 67s) kubelet,
ip-172-20-32-169.ec2.internal Error: ImagePullBackOff

Now we know that we need to confirm the container image name. The correct4.
name is supposed to be mongo. Let's edit the manifest file, mongo-image.yaml,
and change the image name to mongo as follows:

...
spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: mongo
 image: mongo
 command:
...

Delete and redeploy the resource by running the following commands:5.

$ kubectl delete -f mongo-image.yaml
$ kubectl apply -f mongo-image.yaml

List the pods by running the following command. You will notice that the status6.
is now Running for all pods that were previously in ImagePullBackOff status
in step 2:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongo-0 2/2 Running 0 4m55s
mongo-1 2/2 Running 0 4m55s
mongo-2 2/2 Running 0 4m55s

You have successfully learned to inspect a pod with a status of ImagePullBackOff and
troubleshoot it.

Observability and Monitoring on Kubernetes Chapter 8

[388]

Inspecting pods in CrashLoopBackOff status
Inspecting pods in CrashLoopBackOff status is fundamentally similar to inspecting
Pending pods, but might also require a bit more knowledge of the container workload you
are creating. CrashLoopBackOff occurs when the application inside the container keeps
crashing, the parameters of the pod are configured incorrectly, a liveness probe failed, or an
error occurred when deploying on Kubernetes.

In this recipe, we will learn how to inspect the common problem of pods becoming stuck in
CrashLoopBackOff status:

In the /src/chapter8 folder, inspect the contents of the mongo-1.
config.yaml file and deploy it running the following command. The
deployment manifest includes a MongoDB statefulset with three replicas, Service
and will get stuck in CrashLoopBackOff state due mistake with a missing
configuration file and we will inspect it to find the source:

$ cat debug/mongo-config.yaml
$ kubectl apply -f debug/mongo-config.yaml

List the pods by running the following command. You will notice that the status2.
is CrashLoopBackOff or Error for the mongo-0 pod:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongo-0 1/2 CrashLoopBackOff 3 58s

Get additional information on the pods using the kubectl describe3.
pod command and look for the Events section. In this case, the Warning shows
that the container has restarted, but it is not pointing to any useful information:

$ kubectl describe pod mongo-0
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
...
 Normal Pulled 44s (x4 over 89s) kubelet,
ip-172-20-32-169.ec2.internal Successfully pulled image "mongo"
 Warning BackOff 43s (x5 over 87s) kubelet,
ip-172-20-32-169.ec2.internal Back-off restarting failed container

Observability and Monitoring on Kubernetes Chapter 8

[389]

When Events from the pods are not useful, you can use the kubectl logs4.
command to get additional information from the pod. Check the messages in the
pod's logs using the following command. The log message is pointing to a
missing file; further inspection of the manifest is needed:

$ kubectl logs mongo-0 mongo
/bin/sh: 1: cannot open : No such file

Inspect and have a closer look at the application manifest file, mongo-5.
config.yaml, and you will see that the environmental variable MYFILE is
missing in this case:

...
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: mongo
 image: mongo
 command: ["/bin/sh"]
 args: ["-c", "sed \"s/foo/bar/\" < $MYFILE"]
...

To fix this issue, you can add a ConfigMap to your deployment. Edit the mongo-6.
config.yaml file and add the missing file by adding the MYFILE parameter with
a ConfigMap resource to the beginning of the file similar to following:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ConfigMap
metadata:
 name: app-env
data:
 MYFILE: "/etc/profile"
EOF

Delete and redeploy the resource by running the following commands:7.

$ kubectl delete -f mongo-image.yaml
$ kubectl apply -f mongo-image.yaml

Observability and Monitoring on Kubernetes Chapter 8

[390]

List the pods by running the following command. You will notice that the status8.
is now Running for all pods that were previously in CrashLoopBackOff status
in step 2.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongo-0 2/2 Running 0 4m15s
mongo-1 2/2 Running 0 4m15s
mongo-2 2/2 Running 0 4m15s

You have successfully learned how to inspect a pod's CrashLoopBackOff issue and fix it.

See also
Debugging init containers: https:/ /kubernetes. io/ docs/ tasks/ debug-
application- cluster/ debug- init-containers/

Debugging pods and ReplicationControllers https:/ /kubernetes. io/ docs/
tasks/debug- application- cluster/ debug- pod- replication- controller/

Debugging a statefulset: https:/ /kubernetes. io/ docs/ tasks/ debug-
application- cluster/ debug- stateful- set/

Determining the reason for pod failure: https:/ /kubernetes. io/ docs/ tasks/
debug-application- cluster/ determine- reason- pod- failure/

Squash, a debugger for microservices: https:/ /github. com/ solo- io/squash

Monitoring using Amazon CloudWatch
In this section, we will use Amazon CloudWatch Container Insights to monitor, isolate, and
diagnose your containerized applications and microservices environments. As a DevOps or
Systems Engineer, you will learn how to use Amazon ECS CloudWatch metrics to monitor
service health status and current alarms using automated dashboards that summarize the
performance and health of your Amazon EKS clusters by pod, node, namespace, and
services.

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-init-containers/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-stateful-set/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash
https://github.com/solo-io/squash

Observability and Monitoring on Kubernetes Chapter 8

[391]

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use manifest files in
the chapter8 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter8/

Make sure you have an Amazon EKS Kubernetes cluster ready and kubectl configured to
manage the cluster resources. If you don't already have one you can follow the instructions
in Chapter 1, Building Production-Ready Kubernetes Clusters, in the Configuring a Kubernetes
cluster on Amazon Web Services section.

How to do it…
 This section is further divided into the following subsections to make the process easier:

Enabling Webhook authorization mode
Installing Container Insights Agents for Amazon EKS
Viewing Container Insights metrics

Enabling Webhook authorization mode
If you have a Kubernetes cluster deployed using the kops option running on AWS EC2
instances instead of using Amazon EKS, your kubelet needs to have Webhook
authorization mode enabled.

Let's follow these steps:

Enable webhook authorization mode using the two following flags. The first flag1.
allows a ServiceAccount token to be used to authenticate against the kubelet. The
second flag that allows the kubelet to perform an RBAC request and decide if the
requesting resource, Amazon CloudWatch in this case, is allowed to access a
resource endpoint:

--authentication-token-webhook=true
--authorization-mode=Webhook

You also need to add the necessary policy to the IAM role for your Kubernetes2.
worker nodes. Open the Amazon EC2 console at https:/ /console. aws. amazon.
com/ec2/ .

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Observability and Monitoring on Kubernetes Chapter 8

[392]

Under Resources, click on Running Instances:3.

 Select one of the worker node instances from the list of and choose the IAM role4.
on the Description tab. In our example, eksctl-adorable-rainbow-157155665-
NodeInstanceRole-MOT7WBCOOOHE is the IAM role:

Observability and Monitoring on Kubernetes Chapter 8

[393]

On the Permissions tab, click on the Attach policies button:5.

Inside the search box, type CloudWatchAgentServerPolicy and select the6.
policy:

Click on the Attach Policy button to attach the policy to your IAM role:7.

Now you have successfully enabled Webhook authorization mode and added the
required policies to the IAM role.

Observability and Monitoring on Kubernetes Chapter 8

[394]

Installing Container Insights Agents for Amazon EKS
In this recipe, we will enable CloudWatch agents to collect cluster metrics from our EKS
Kubernetes cluster:

Create a namespace called amazon-cloudwatch on your cluster using the1.
following command:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: amazon-cloudwatch
 labels:
 name: amazon-cloudwatch
EOF

Create a Service account for the CloudWatch agent in the namespace amazon-2.
cloudwatch you have created in step 1. The following command will also create
cloudwatch-agent-role ClusterRole and ClusterRoleBinding:

$ kubectl apply -f cloudwatch/cwagent-serviceaccount.yaml

Get the name of your EKS cluster using the eksctl command or from the3.
Amazon Container Services dashboard. Here, we will use eksctl to get the
cluster name. In our example, the cluster name is adorable-
rainbow-1571556654:

$ eksctl get cluster
NAME REGION
adorable-rainbow-1571556654 us-west-2

Create a ConfigMap for the CloudWatch agent. Before you run the following4.
command, replace "cluster_name": "adorable-rainbow-1571556654"
with the name of your cluster from step 3:

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ConfigMap
metadata:
 name: cwagentconfig
 namespace: amazon-cloudwatch
data:
 cwagentconfig.json: |
 {
 "logs": {

Observability and Monitoring on Kubernetes Chapter 8

[395]

 "metrics_collected": {
 "kubernetes": {
 "cluster_name": "{{cluster_name}}",
 "metrics_collection_interval": 60
 }
 },
 "force_flush_interval": 5
 }
 }
EOF

Deploy the CloudWatch agent as a DaemonSet. The preceding command will use5.
StatsD, a network daemon that listens for statistics, such as counters and timers,
sent over UDP or TCP and sends aggregates to CloudWatch, and also pluggable
backend services if they're available:

$ kubectl apply -f cloudwatch/cwagent.yaml

Verify that CloudWatch agent pods are created by running the following6.
command. Since agents run as DaemonSets, you should be able to see one pod
per worker node listed. In our example, we have two worker nodes and two
agent pods running:

$ kubectl get pods -n amazon-cloudwatch
NAME READY STATUS RESTARTS AGE
cloudwatch-agent-dtpxt 1/1 Running 0 67s
cloudwatch-agent-j7frt 1/1 Running 0 67s

When complete, the CloudWatch agent will start sending performance log events to the
CloudWatch Container Insights service.

Viewing Container Insights metrics
In this recipe, we will learn how to use CloudWatch to monitor node and pod metrics in
our Kubernetes cluster:

Open the CloudWatch console at https:/ /console. aws. amazon. com/1.
cloudwatch/ :

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Observability and Monitoring on Kubernetes Chapter 8

[396]

Click on the down arrow button next to the Overview option and choose2.
Container Insights from the list:

Observability and Monitoring on Kubernetes Chapter 8

[397]

To view the EKS node health and statistics, in the top-left corner, switch to EKS3.
nodes. Graphs on the new view will show resource utilization, cluster failures,
and the number of nodes in a historical view similar to the following screenshot:

Observability and Monitoring on Kubernetes Chapter 8

[398]

To view the container performance statistics, in the top-left corner, switch to EKS4.
pods. Graphs on the new view will show the total resource utilization of pods
and list of pods with their individual CPU and memory consumption
percentages similar to the following screenshot:

Observability and Monitoring on Kubernetes Chapter 8

[399]

To view the detailed logs or AWS X-Ray traces of any resource, select the5.
resource name from the list and click on the Actions button. From the drop-
down menu, you can choose logs that you would like to review. After you select,
logs will open in a new window:

Now you have learned how to monitor node and pod metrics in your Kubernetes cluster
using Container Insights.

See also
Using Container Insights https:/ /docs. aws. amazon. com/AmazonCloudWatch/
latest/monitoring/ ContainerInsights. html

Using CloudWatch Anomaly Detection https:/ /docs. aws. amazon. com/
AmazonCloudWatch/ latest/ monitoring/ CloudWatch_ Anomaly_ Detection. html

List of the metrics collected by Container Insights: https:/ /docs. aws. amazon.
com/AmazonCloudWatch/ latest/ monitoring/ Container- Insights- metrics- EKS.
html

Monitoring using Google Stackdriver
In this section, we will use Google Stackdriver Kubernetes Engine Monitoring to monitor,
isolate, and diagnose your containerized applications and microservices environments. You
will learn how to use Stackdriver Kubernetes Engine Monitoring to aggregate logs, events,
and metrics from your Kubernetes environment on Google Kubernetes Engine (GKE) to
help you understand your application's behavior in production.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-EKS.html

Observability and Monitoring on Kubernetes Chapter 8

[400]

Getting ready
Make sure you have a GKE cluster ready and kubectl configured to manage the cluster
resources. If you don't already have one, you can follow the instructions in Chapter
1, Building Production-Ready Kubernetes Clusters, in the Configuring a Kubernetes cluster on
Google Cloud Platform recipe.

How to do it…
 This section is further divided into the following subsections to make the process easier:

Installing Stackdriver Kubernetes Engine Monitoring support for GKE
Configuring a workspace on Stackdriver
Monitoring GKE metrics using Stackdriver

Installing Stackdriver Kubernetes Engine Monitoring
support for GKE
Installing Stackdriver monitoring support enables you to easily monitor GKE clusters,
debug logs, and analyze your cluster performance using advanced profiling and tracing
capabilities. In this recipe, we will enable Stackdriver Kubernetes Engine Monitoring
support to collect cluster metrics from our GKE cluster:

Open the Google Kubernetes Engine Console at https:/ /console. cloud.1.
google.com/ kubernetes. On this console, you will see the list of your GKE
clusters. In our example, we have only one cluster, and it is called k8s-devops-
cookbook-1:

https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes

Observability and Monitoring on Kubernetes Chapter 8

[401]

 Click on the little pen-shaped Edit icon next to your cluster:2.

On the cluster configuration page, make sure that Legacy Stackdriver Logging3.
and Legacy Stackdriver Monitoring are Disabled and the Stackdriver
Kubernetes Engine Monitoring option is set to Enabled:

Click on the Save button to apply changes to your cluster.4.

Observability and Monitoring on Kubernetes Chapter 8

[402]

Configuring a workspace on Stackdriver
Stackdriver Monitoring helps you to gain deeper insights into your public cloud.
Stackdriver's monitoring capabilities include monitoring, logging, tracing, error reporting,
and alerting to collect performance and diagnostics data of your public cloud service.
Kubernetes monitoring is a small part of the complete solution. In this recipe, you will learn
how to configure the Stackdriver workspace after you access it for the first time:

Open the Stackdriver Console at https:/ /app. google. stackdriver. com. The1.
first time you access the console, you need to add the workspace to the console,
otherwise you will see an empty dashboard similar to the following:

Click on the Add Workspace button to include your existing workspace. You2.
will be asked for your Google Cloud Platform project name. Click on the
empty Select project field and select your project from the list. In our example,
it's DevOpsCookBook. After you select the project, click on the Create
Workspace button:

https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com

Observability and Monitoring on Kubernetes Chapter 8

[403]

Stackdriver also allows you to monitor AWS accounts. For this recipe, we will3.
skip this option. Click Skip AWS Setup to move to the next step:

In the Install the Stackdriver Agents window, click on the Continue button.4.
In the Get Reports by Email window, select the frequency of reports to be5.
emailed. Select Weekly reports. Note that you can always select No reports and
enable this feature later:

Observability and Monitoring on Kubernetes Chapter 8

[404]

Finally, click on the Launch Monitoring button to access the Stackdriver console:6.

Now you have configured the Stackdriver workspace to collect diagnostics data from your
public cloud service.

Monitoring GKE metrics using Stackdriver
Installing Stackdriver monitoring support enables you to easily monitor GKE clusters,
debug logs, and analyze your cluster performance using advanced profiling and tracing
capabilities. In this recipe, we will enable Stackdriver Kubernetes Engine Monitoring
support to collect cluster metrics from our GKE cluster:

After following the Configuring a workspace on Stackdriver recipe, open the1.
Stackdriver console at https:/ / app. google. stackdriver. com:

https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com
https://app.google.stackdriver.com

Observability and Monitoring on Kubernetes Chapter 8

[405]

From the Resources menu, click on the Kubernetes Engine option:2.

The Kubernetes Engine view will show the list of clusters that are Stackdriver3.
Kubernetes Engine Monitoring-enabled. In our example, you can see that we
have one cluster available:

Observability and Monitoring on Kubernetes Chapter 8

[406]

On the Infrastructure tab, click on the expand icon next to the cluster name.4.
Stackdriver will expand the list with the individual worker nodes. In the Ready
column, you can see the number of pods deployed and in a ready state in each
node. In the CPU Utilization column, the value on the left-hand side shows the
total available CPUs and the right-hand value shows the current utilization
percentage. Similarly, in the Memory Utilization column, the value on the left-
hand side shows the total available memory (GiB), and the right-hand value
shows the current utilization percentage:

Click on the expand icon next to a node name, and the list will expand to display5.
the pods deployed on that specific node:

Observability and Monitoring on Kubernetes Chapter 8

[407]

Click on one of the pods on your cluster. Stackdriver will show a detailed view of6.
pod metrics, including pod restarts, CPU, memory, storage, and network
utilization for the pods. In our example, we can see metrics for the Prometheus
pod:

Observability and Monitoring on Kubernetes Chapter 8

[408]

Click on the Logs tab to switch to the log summary view. This view will only7.
show the most recent logs:

Observability and Monitoring on Kubernetes Chapter 8

[409]

Click on the Go to console button to open a detailed log view where you can see8.
older logs and use filters to create metrics:

Now you know how to use Stackdriver to monitor health, performance metrics, and logs
for GKE clusters and resources deployed on the GKE clusters.

See also
Google Stackdriver documentation: https:/ / cloud. google. com/ stackdriver/
docs/

Using Prometheus with Stackdriver Kubernetes Engine Monitoring: https:/ /
cloud.google. com/ monitoring/ kubernetes- engine/ prometheus

Stackdriver Prometheus sidecar: https:/ /github. com/Stackdriver/
stackdriver- prometheus- sidecar

A collection of technical articles published on Stackdriver by GCP
advocates: https:/ /medium. com/ google- cloud/ tagged/ stackdriver

https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/stackdriver/docs/
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://cloud.google.com/monitoring/kubernetes-engine/prometheus
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://github.com/Stackdriver/stackdriver-prometheus-sidecar
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver
https://medium.com/google-cloud/tagged/stackdriver

Observability and Monitoring on Kubernetes Chapter 8

[410]

Monitoring using Azure Monitor
In this section, we will use Azure Monitor to monitor, isolate, and diagnose your
containerized applications and microservices environments. You will learn how to
use Azure Monitor to aggregate logs, events, and metrics from your Kubernetes
environment on Azure Kubernetes Service (AKS) to help you understand your
application's behavior in production.

Getting ready
Make sure you have an AKS cluster ready and kubectl configured to manage the cluster
resources. If you don't already have one, you can follow the instructions in Chapter 1,
Building Production-Ready Kubernetes Clusters, in the Configuring a Kubernetes cluster on Google
Cloud Platform recipe.

How to do it…
 This section is further divided into the following subsections to make the process easier:

Enabling Azure Monitor support for AKS using the CLI
Monitoring AKS performance metrics using Azure Monitor
Viewing live logs using Azure Monitor

Enabling Azure Monitor support for AKS using the CLI
Enabling Azure Monitor for AKS clusters gives you performance visibility by collecting
memory and processor metrics from controllers, nodes, and containers that are available in
Kubernetes through the Kubernetes Metrics API.

Observability and Monitoring on Kubernetes Chapter 8

[411]

 In this recipe, we will enable monitoring from AKS Kubernetes clusters to collect metrics
and logs through a containerized version of the Log Analytics agent:

If you have deployed your AKS cluster following the Provisioning a managed1.
Kubernetes Cluster on AKS recipe in Chapter 1, Building Production-Ready
Kubernetes Clusters, you can use the following command to enable the Azure
Monitor for your cluster. Replace the name AKSCluster with your AKS cluster
name, and replace the resource group, k8sdevopscookbook, with the Azure
resource group name you used when you created your cluster before you run the
following command:

$ az aks enable-addons -a monitoring \
--name AKSCluster --resource-group k8sdevopscookbook

If you are deploying a new cluster, you can add the --enable-addons
monitoring parameter to the CLI command to enable Azure Monitor
functionality for your AKS cluster during the cluster creation as follows:

$ az aks create --resource-group k8sdevopscookbook \
--name AKSCluster \
--node-count 3 \
--service-principal <appId> \
--client-secret <password> \
--enable-addons monitoring \
--generate-ssh-keys

When completed, this command will enable Azure Monitor and logs for your AKS cluster.

Monitoring AKS performance metrics using Azure
Monitor
Performance metrics of an AKS cluster can be viewed both directly from the AKS cluster
management dashboard and also via the Azure Monitor dashboard. In this recipe, we will
monitor AKS performance metrics through Azure Monitor:

After following the Enabling Azure Monitor support for AKS using the CLI recipe,1.
open the Azure portal at https:/ /portal. azure. com and click
on the Kubernetes Service button to go to the AKS management dashboard:

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

Observability and Monitoring on Kubernetes Chapter 8

[412]

On the Kubernetes services view, click on your cluster name. In our example, it is2.
AKSCluster:

Observability and Monitoring on Kubernetes Chapter 8

[413]

Click on the Monitor Containers menu to open the Azure Monitor Insights view3.
for your AKS cluster:

Observability and Monitoring on Kubernetes Chapter 8

[414]

Monitoring information about your AKS cluster is organized into five categories:4.
Cluster, Nodes, Controllers, Containers, and Deployments. In this view, on the
Cluster tab you will be able to see node CPU and memory utilization, AKS node
count, and active pod count, like this:

Observability and Monitoring on Kubernetes Chapter 8

[415]

Click on the Nodes tab to switch to the node performance metrics view. By5.
default, CPU usage data is displayed for the last 6 hours for the 95th percentile.
These options can be adjusted using the drop-down menus on the page:

Observability and Monitoring on Kubernetes Chapter 8

[416]

Click on the expand icon next to a node name and a list will expand to display6.
the pods and containers inside deployed on that specific node. In this view, CPU
utilization of every resource and uptime can be viewed:

Now you know how to monitor AKS performance metrics through Azure Monitor insights.

Observability and Monitoring on Kubernetes Chapter 8

[417]

Viewing live logs using Azure Monitor
In addition to the performance metrics, Azure Monitor can also help to view logs from the
AKS cluster resources. In this recipe, we will learn how to access the events and logs using
Azure Monitor:

Before you can display pod events and live metrics from your cluster, you will1.
need to apply ClusterRoleBinding. Create a ClusterRole by running the
following command on your AKS cluster:

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: containerHealth-log-reader
rules:
 - apiGroups: [""]
 resources: ["pods/log", "events"]
 verbs: ["get", "list"]
EOF

Create a ClusterRoleBinding by running the following command on your2.
AKS cluster:

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: containerHealth-read-logs-global
roleRef:
 kind: ClusterRole
 name: containerHealth-log-reader
 apiGroup: rbac.authorization.k8s.io
subjects:
 - kind: User
 name: clusterUser
 apiGroup: rbac.authorization.k8s.io
EOF

Observability and Monitoring on Kubernetes Chapter 8

[418]

Click on the Monitor Containers menu to open the Azure Monitor insights view3.
for your AKS cluster.
Click on the expand icon next to a node name, and a list will expand displaying4.
the pods and containers deployed on that specific node:

Observability and Monitoring on Kubernetes Chapter 8

[419]

Click on one of the pods in your cluster. Insights will show a detailed view of5.
pods metrics on the right-hand panel:

Observability and Monitoring on Kubernetes Chapter 8

[420]

On the right-hand pane, click on the View live data button. This option will6.
expand the view with live events from the pods and live metrics, as shown in the
following screenshot. Events can be used to troubleshoot the pod problems that
we discussed in the Inspecting containers section of this chapter:

Observability and Monitoring on Kubernetes Chapter 8

[421]

The log and event messages you see depend on what resource type is selected in7.
the view. Click on the View in analytics button to switch to the Kubernetes
event logs:

In this view, you will be able to see and filter pod events:8.

Observability and Monitoring on Kubernetes Chapter 8

[422]

This time, click on one of the containers inside a pod. Insights will show a9.
detailed view of container information and performance metrics in the right-
hand panel:

Observability and Monitoring on Kubernetes Chapter 8

[423]

In the right-hand pane, click on the View in analytics button to switch to10.
the View container logs:

In this view, you will be able to see and filter container logs:11.

Now you know how to use Azure Monitor to monitor health, performance metrics and logs
for AKS clusters, and resources deployed on the AKS clusters.

See also
Azure Monitor for containers documentation: https:/ /docs. microsoft. com/ en-
us/azure/ azure- monitor/ insights/ container- insights- overview

Using Prometheus with Azure Monitor: https:/ / azure. microsoft. com/ en-us/
blog/azure- monitor- for- containers- with- prometheus- now- in- preview/

https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/
https://azure.microsoft.com/en-us/blog/azure-monitor-for-containers-with-prometheus-now-in-preview/

Observability and Monitoring on Kubernetes Chapter 8

[424]

Monitoring Kubernetes using Prometheus
and Grafana
In this section, we will deploy Prometheus and Grafana on our Kubernetes cluster. You will
learn how to monitor a Kubernetes service with Prometheus and use Grafana dashboards
to visualize cluster and application metrics.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use manifest files in
the chapter8 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd /src/chapter8

Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

How to do it…
 This section is further divided into the following subsections to make the process easier:

Deploying Prometheus Operator using Helm charts
Monitoring metrics using Grafana dashboards
Adding a Grafana dashboard to monitor applications

Deploying Prometheus using Helm charts
Prometheus is a popular open source solution for event monitoring and alerting.
Prometheus records real-time metrics in a time-series database, and it is one of the most
popular components of Kubernetes clusters for monitoring. Almost all new managed
Kubernetes solutions come with Prometheus installed in some way as part of the cluster
deployment. In this recipe, you will learn how to deploy Prometheus on a Kubernetes
cluster using Helm charts:

Update the Helm repository. This command will fetch up-to-date charts locally1.
from public chart repositories:

$ helm repo update

Observability and Monitoring on Kubernetes Chapter 8

[425]

Deploy Prometheus Operator in the monitoring namespace using the helm2.
install command. This command will deploy Prometheus along with the
Alertmanager, Grafana, the node-exporter and kube-state-metrics addon;
basically, a bundle of the components needed to use Prometheus on a Kubernetes
cluster:

$ helm install stable/prometheus-operator --name prometheus \
 --namespace monitoring

Verify the status of the pods deployed in the monitoring namespace:3.

$ kubectl get pods -n monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-prometheus-prometheus-oper-alertmanager-0 2/2 Running
0 88s
prometheus-grafana-6c6f7586b6-f9jbr 2/2 Running 0 98s
prometheus-kube-state-metrics-57d6c55b56-wf4mc 1/1 Running 0 98s
prometheus-prometheus-node-exporter-8drg7 1/1 Running 0 98s
prometheus-prometheus-node-exporter-lb7l5 1/1 Running 0 98s
prometheus-prometheus-node-exporter-vx7w2 1/1 Running 0 98s
prometheus-prometheus-oper-operator-86c9c956dd-88p82 2/2 Running 0
98s
prometheus-prometheus-prometheus-oper-prometheus-0 3/3 Running 1
78s

Now you have Prometheus installed with the bundle of components required to operate it
on a Kubernetes environment.

Monitoring metrics using Grafana dashboards
Grafana is an open source analytics and monitoring solution. By default, Grafana is used
for querying Prometheus. Follow these instructions to expose the included Grafana service
instance and access it through your web browser:

Get the list of services in the monitoring namespace:1.

$ kubectl get svc -n monitoring
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
alertmanager-operated ClusterIP None
<none> 9093/TCP,9094/TCP,9094/UDP 33m
prometheus-grafana ClusterIP 10.0.1.132
<none> 80/TCP 33m
prometheus-kube-state-metrics ClusterIP 10.0.69.144
<none> 8080/TCP 33m
prometheus-operated ClusterIP None

Observability and Monitoring on Kubernetes Chapter 8

[426]

<none> 9090/TCP 33m
prometheus-prometheus-node-exporter ClusterIP 10.0.100.183
<none> 9100/TCP 33m
prometheus-prometheus-oper-alertmanager ClusterIP 10.0.202.140
<none> 9093/TCP 33m
prometheus-prometheus-oper-operator ClusterIP 10.0.174.214
<none> 8080/TCP,443/TCP 33m
prometheus-prometheus-oper-prometheus ClusterIP 10.0.243.177
<none> 9090/TCP 33m

Create a port forwarding to access the Grafana UI using the kubectl port-2.
forward command. This command will forward the local port 8000 to port 3000
of a running Grafana pod:

$ kubectl port-forward -n monitoring prometheus-grafana 8000:80

As an alternative, you can patch the prometheus-grafana service using
the kubectl edit svc prometheus-grafana -n
monitoring command and change the service type, ClusterIP, to
LoadBalancer to expose the service externally using a cloud load
balancer.

Go to http://localhost:8000 (or the External IP, if using LoadBalancer) in3.
your web browser. You should see the Grafana login page:

Observability and Monitoring on Kubernetes Chapter 8

[427]

Log in using admin as the username and prom-operator as the password:4.

Observability and Monitoring on Kubernetes Chapter 8

[428]

Click on the Home button in the upper-left corner of the dashboard to list the5.
available built-in dashboards:

Observability and Monitoring on Kubernetes Chapter 8

[429]

As an example, select the Nodes dashboard from the list to show Kubernetes6.
nodes metrics. In this view, you will see the graphical representation of node
resources, including CPU, memory, disk, and network utilization:

Observability and Monitoring on Kubernetes Chapter 8

[430]

Now you know how to navigate through dashboards in Grafana. You can use Grafana to
visualize Kubernetes metrics and other workload metrics that provide metrics for
Prometheus by following the next recipe.

Adding a Grafana dashboard to monitor applications
Grafana is used to visualize the metrics stored on Prometheus. It offers dynamic and
reusable dashboards with template variables. In this recipe, we will learn how to add a new
dashboard from the library of pre-built dashboards to monitor an application deployed on
Kubernetes:

Every application has different metrics that are relevant to the continuity of the1.
application. First of all, an application needs to expose the metrics to Prometheus
(additional info on Writing Prometheus exporters is available in the See also
section), and Prometheus must be added as a data source to Grafana. For this
recipe, we will use the Jenkins we deployed in Chapter 3, Building CI/CD
Pipelines, in the Setting up a CI/CD pipeline in Jenkins X recipe.
Click on the Home button in the top-left corner of the dashboard and click on2.
Find dashboards on Grafana.com:

Observability and Monitoring on Kubernetes Chapter 8

[431]

In the search field, type Jenkins. You will see a couple of Jenkins-specific3.
dashboards:

Click on Jenkins: Performance and health overview and copy the ID to the4.
clipboard. At this point, dashboard ID 306 is all you need to add this pre-built
dashboard to your Grafana instance:

Observability and Monitoring on Kubernetes Chapter 8

[432]

If the Dashboard is not enabled, follow the instructions in the Overview section. 5.
In the Grafana interface, click on Import dashboard. Paste the dashboard ID 3066.
into the Grafana.com Dashboard field. Grafana will automatically detect the
dashboard and display the details:

Observability and Monitoring on Kubernetes Chapter 8

[433]

Select Prometheus as the data source name and click on Import:7.

Click on the Home button to list the dashboards again, and you will find your8.
new dashboard in the most recent dashboards list:

Observability and Monitoring on Kubernetes Chapter 8

[434]

Similarly, you can find a pre-built dashboard on Grafana for the applications we have used
in previous chapters such as cloud provider service monitoring (AWS, GCP, Azure,
Alibaba), GitLab CI, Minio, OpenEBS, and many additional Kubernetes cluster metrics.

See also
Prometheus documentation: https:/ /prometheus. io/docs/ introduction/
overview/

Writing Prometheus exporters: https:/ / prometheus. io/docs/ instrumenting/
writing_ exporters/

GitHub repository for Prometheus-Operator: https:/ /github. com/ coreos/
prometheus- operator

Grafana documentation: https:/ / grafana. com/ docs/

Grafana community dashboards: https:/ /grafana. com/ grafana/ dashboards

Grafana plugins: https:/ / grafana. com/ grafana/ plugins

Enabling the Jenkins Prometheus plugin: https:/ / wiki. jenkins. io/ display/
JENKINS/ Prometheus+Plugin

Adding Stackdriver as a data source: https:/ /grafana. com/grafana/ plugins/
stackdriver

Adding Azure Monitor as a data source: https:/ /grafana. com/ grafana/
plugins/ grafana- azure- monitor- datasource

Prometheus alternatives:
DataDog: https:/ /www. datadoghq. com

New Relic: https:/ /newrelic. com

Open Falcon: http:/ /open- falcon. org

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/docs/
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://grafana.com/grafana/plugins
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://wiki.jenkins.io/display/JENKINS/Prometheus+Plugin
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/stackdriver
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://grafana.com/grafana/plugins/grafana-azure-monitor-datasource
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://newrelic.com
https://newrelic.com
https://newrelic.com
https://newrelic.com
https://newrelic.com
https://newrelic.com
https://newrelic.com
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org
http://open-falcon.org

Observability and Monitoring on Kubernetes Chapter 8

[435]

Monitoring and performance analysis using
Sysdig
In this section, we will use Sysdig Monitor to monitor and simplify Kubernetes
troubleshooting. You will learn how to install Sysdig Monitor and extend Prometheus
functionality to meet more advanced enterprise needs.

Getting ready
All operations mentioned here require a Sysdig account. If you don't have one, go
to https://sysdig. com/ sign- up/ and create a trial or full account.

For this recipe, we need to have a Kubernetes cluster ready and the Kubernetes command-
line tools kubectl and helm installed to manage the cluster resources.

How to do it…
 This section is further divided into the following subsections to make the process easier:

Installing the Sysdig agent
Analyzing application performance

Installing the Sysdig agent
Sysdig Monitor is a tool for monitoring and troubleshooting applications available as part
of the Sysdig Cloud Native Visibility and Security Platform. In this recipe, you will learn to
deploy Sysdig Monitor and leverage Prometheus metrics:

If you don't have your Sysdig Monitor access key ready, go to your Account1.
Settings at https:/ / app. sysdigcloud. com/#/ settings/ agentInstallation and
retrieve your access key:

https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://sysdig.com/sign-up/
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation

Observability and Monitoring on Kubernetes Chapter 8

[436]

Install the Sysdig agent using the Helm chart after replacing YourAccessKey in2.
the following command with your Sysdig Monitor access key from step 1. This
command will install the Sysdig agent required for Sysdig Monitor and Sysdig
Secure onto all your Kubernetes worker nodes in your cluster as a DaemonSet:

$ helm install --name sysdig-agent --set
sysdig.accessKey=YourAccessKey, \
sysdig.settings.tags='linux:ubuntu, dept:dev,local:ca' \
--set sysdig.settings.k8s_cluster_name='my_cluster' stable/sysdig

Once the Sysdig agent is installed, the nodes will be detected by Sysdig Monitor.3.
In this view, all the nodes should be detected. In our example, we have four
nodes detected. Click on the Go to Next Step button to continue:

Observability and Monitoring on Kubernetes Chapter 8

[437]

Sysdig Monitor offers deep integration with AWS. If your Kubernetes cluster is4.
deployed on AWS, optionally, you can enable the integration by entering your
AWS Access Key ID and Secret here; otherwise, click on the Skip button to skip
the AWS integration:

Observability and Monitoring on Kubernetes Chapter 8

[438]

Click on Let's Get Started to explore Sysdig Monitor:5.

Now you know how to deploy Sysdig Monitor and leverage Prometheus metrics.

Analyzing application performance
Latency, traffic, errors, and saturation are considered Golden Signals by Google SRE teams.

Observability and Monitoring on Kubernetes Chapter 8

[439]

Let's follow these instructions to learn how to navigate through the Sysdig Monitor
interface to find the Golden Signals for your application on Kubernetes:

Log in to your Sysdig Cloud-Native Visibility and Security Platform dashboard1.
at https:/ /app. sysdigcloud. com:

https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com
https://app.sysdigcloud.com

Observability and Monitoring on Kubernetes Chapter 8

[440]

Resources are automatically grouped in the Hosts & Containers group. Click on2.
the groups dropdown and select Deployments and pods:

Click on the dashboard and metrics dropdown and select the HTTP dashboard3.
under Default Dashboards | Applications:

Observability and Monitoring on Kubernetes Chapter 8

[441]

Sysdig can identify and decode application protocols such as HTTP and give you4.
detailed metrics. In this view, you can see the number of requests, the most
requested URLs or endpoints, the slowest URLs, and the HTTP response codes
and request types for the entire infrastructure:

Observability and Monitoring on Kubernetes Chapter 8

[442]

As an example of performance troubleshooting, move your mouse over the5.
Slowest URLs graph to identify problems and applications with slow response
times. In our example, we see a slow response time of 48 ms from the Kubecost
Prometheus server we deployed earlier:

Now you have basic knowledge about how to navigate through Sysdig dashboards. Sysdig
provides deep tracing capabilities that can be used when monitoring more than one
container. We will learn more about Sysdig's security features and anomaly detection usage
in Chapter 9, Securing Applications and Clusters. You can find the additional use cases in the
Sysdig examples link in the See also section.

See also
Sysdig Falco – Behavioral activity monitoring tool: https:/ /github. com/ draios/
oss-falco

Sysdig Inspect – Container troubleshooting and security investigation
tool: https:/ / github. com/ draios/ sysdig- inspect

Monitoring distributed systems (Golden Signals): https:/ /landing. google. com/
sre/sre- book/ chapters/ monitoring- distributed- systems/

Sysdig examples: https:/ /github. com/ draios/ sysdig/ wiki/ sysdig- examples

Managing the cost of resources using
Kubecost
In this section, we will install and configure the open source Kubecost project, which gives
you cost-related visibility into your Kubernetes resources. You will learn how to monitor
resource costs to reduce spending and potentially prevent resource-based outages.

https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/oss-falco
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples
https://github.com/draios/sysdig/wiki/sysdig-examples

Observability and Monitoring on Kubernetes Chapter 8

[443]

Getting ready
This recipe requires a functional Kubernetes cluster deployed on AWS or GCP. Currently,
other cloud providers are not supported.

Before you can execute the commands in the following recipes, you need to have kubectl
and helm installed. You can find the instructions to install Helm in Chapter 2, Operating
Applications on Kubernetes, in the Deploying workloads using Helm charts section.

How to do it…
 This section is further divided into the following subsections to ease the process:

Installing Kubecost
Accessing Kubecost dashboard
Monitoring Kubernetes resource cost allocation

Installing Kubecost
Kubecost creates Kubernetes resource-granular models of current and historical Kubernetes
spending. These models can be used to provide monitoring of resource allocations and cost
transparency in Kubernetes environments that support multiple applications, teams, and
departments. In this recipe, we will take a look at the basic steps to get Kubecost up and
running:

Add the Kubecost chart repository to the local Helm repository list:1.

$ helm repo add kubecost https://kubecost.github.io/cost-analyzer/

Install Kubecost into the kubecost namespace using the Helm install2.
command:

$ helm install kubecost/cost-analyzer --namespace kubecost --name
kubecost --set kubecostToken="dGVzdEB0ZXN0LmNvbQ==xm343yadf98"

Verify that all pods are running. As you can see, this project also deploys its own3.
instances of Prometheus and Grafana:

$ kubectl get pods -nkubecost
NAME READY STATUS RESTARTS AGE
cost-analyzer-checks-1571781600-6mhwh 0/1 Completed 0 7m1s
kubecost-cost-analyzer-54bc969689-8rznl 3/3 Running 0 9m7s

Observability and Monitoring on Kubernetes Chapter 8

[444]

kubecost-grafana-844d4b9844-dkdvn 3/3 Running 0 9m7s
kubecost-prometheus-alertmanager-85bbbd6b7b-fpmqr 2/2 Running 0
9m7s
kubecost-prometheus-kube-state-metrics-857c5d4b4f-gxmgj 1/1 Running
0 9m7s
kubecost-prometheus-node-exporter-6bsp2 1/1 Running 0 9m7s
kubecost-prometheus-node-exporter-jtw2h 1/1 Running 0 9m7s
kubecost-prometheus-node-exporter-k69fh 1/1 Running 0 9m7s
kubecost-prometheus-pushgateway-7689458dc9-rx5jj 1/1 Running 0 9m7s
kubecost-prometheus-server-7b8b759d74-vww8c 2/2 Running 0 9m7s

If you have an existing Prometheus deployment, node-exporter pods
may get stuck in Pending mode. In that case, you need to use different
ports for Kubecost to be deployed; otherwise, pods will not be able to get
the requested pod ports.

Now you have the Kubecost cost analyzer installed with a bundle of components required
to operate it in a Kubernetes environment.

Accessing the Kubecost dashboard
Let's follow these instructions to access the Kubecost dashboard where you can monitor
your Kubernetes resources and their costs in real time:

Get the list of the services in the kubecost namespace: 1.

$ kubectl get svc -nkubecost
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubecost-cost-analyzer ClusterIP 100.65.53.41 <none>
9001/TCP,9003/TCP,9090/TCP 13m
kubecost-grafana ClusterIP 100.69.52.23 <none> 80/TCP 13m
kubecost-prometheus-alertmanager ClusterIP 100.71.217.248 <none>
80/TCP 13m
kubecost-prometheus-kube-state-metrics ClusterIP None <none> 80/TCP
13m
kubecost-prometheus-node-exporter ClusterIP None <none> 9100/TCP
13m
kubecost-prometheus-pushgateway ClusterIP 100.69.137.163 <none>
9091/TCP 13m
kubecost-prometheus-server ClusterIP 100.64.7.82 <none> 80/TCP 13m

Observability and Monitoring on Kubernetes Chapter 8

[445]

Create a port forwarding to access the Kubecost UI using the kubectl port-2.
forward command. This command will forward the local port 9090 to the
Kubecost cost analyzer pod:

$ kubectl port-forward --namespace kubecost deployment/kubecost-
cost-analyzer 9090

As an alternative, you can patch the kubecost-cost-analyzer service
using the kubectl edit svc kubecost-cost-analyzer -
nkubecost command and change the service
type ClusterIP to LoadBalancer to expose the service externally using
a cloud load balancer.

Open the address http://localhost:9090 (or the External IP, if using3.
LoadBalancer) in your web browser. You should see the Kubecost login page:

The dashboard can be expanded by adding additional Kubecost endpoints into4.
one and used to monitor multiple clusters from a single dashboard. If you have
more than one cluster, click on the add new cluster icon and add your endpoint
URLs from the other clusters:

Observability and Monitoring on Kubernetes Chapter 8

[446]

Monitoring Kubernetes resource cost allocation
Let's follow these instructions to learn how to monitor Kubernetes-related cloud spending
and find possible saving recommendations using Kubecost:

Access your Kubecost dashboard by following the previous recipe, Accessing the1.
Kubecost dashboard. Click on your cluster name on the dashboard to access the
detailed summary. This view will show the monthly cost and cluster efficiency in
terms of idle resources:

Observability and Monitoring on Kubernetes Chapter 8

[447]

Click on the Real-time assets button. This view shows the real-time costs2.
associated with the current cloud provider. In our example, it is one master, three
worker Kubernetes clusters deployed on an AWS cluster using kops, each
showing around $60 billed since they were created:

Click on the Allocations menu. This view shows cumulative costs in the current3.
namespaces. You can apply range filters to get the daily, weekly, monthly, or
custom-range cost of the resource in the selected namespace:

Observability and Monitoring on Kubernetes Chapter 8

[448]

Click on the Savings menu. Information in this menu is very important, and4.
points to possible optimization steps you can take. As an example, the following
view shows that we have two underutilized nodes (utilization is below 60%) that
can provide savings if we scale down our cluster. In this case, we can drain the
nodes and scale down the cluster. Click on each saving category to learn more
about the actions you can take to achieve the saving rate displayed here:

Observability and Monitoring on Kubernetes Chapter 8

[449]

Click on the Health menu. This view shows the assessment of reliability and5.
cluster health risks:

Disable the Show all option to list problems that require your attention. In our6.
example, we see one high priority pointing to Crash looping pods. You can
follow the instructions from the Inspecting containers section in this chapter to
further identify the issues:

Observability and Monitoring on Kubernetes Chapter 8

[450]

Click on the Notifications menu. From this menu, you can specify how to handle7.
notifications. If you have a Slack channel, you can click on the ADD button here
to forward notifications to it; otherwise, an email notification is available as an
option:

Now you have the knowledge to monitor project costs and a better understanding of what
actions to take to increase the return on the investment of your DevOps environment.

See also
Kubecost documentation: http:/ /docs. kubecost. com/

Deploying Kubecost as a pod only: https:/ / github. com/ kubecost/ cost- model/
blob/master/ deploying- as- a- pod.md

http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
http://docs.kubecost.com/
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md
https://github.com/kubecost/cost-model/blob/master/deploying-as-a-pod.md

9
Securing Applications and

Clusters
00000000000000In this chapter, we will discuss the fundamental steps of reducing the attack
surface and securing Kubernetes clusters before we go live from test to production. We will
talk about security auditing, building DevSecOps into CI/CD pipelines, detecting metrics
for performance analysis, and how to securely manage secrets and credentials.

In this chapter, we will cover the following recipes:

Using RBAC to harden cluster security
Configuring Pod Security Policies
Using Kubernetes CIS Benchmark for security auditing
Building DevSecOps into the pipeline using Aqua Security
Monitoring suspicious application activities using Falco
Securing credentials using HashiCorp Vault

Technical requirements
The recipes in this chapter require that you have a functional Kubernetes cluster deployed
by following one of the recommended methods described in Chapter 1, Building
Production-Ready Kubernetes Clusters.

The Kubernetes command-line tool, kubectl ,will be used for the rest of the recipes in this
chapter since it's the main command-line interface for running commands against
Kubernetes clusters. We will also use helm where Helm charts are available to deploy
solutions.

Securing Applications and Clusters Chapter 9

[452]

Using RBAC to harden cluster security
In a complex system such as Kubernetes, authorization mechanisms are used to set who is
allowed to make what changes to the cluster resources and manipulate them. Role-based
access control (RBAC) is a mechanism that's highly integrated into Kubernetes that grants
users and applications granular access to Kubernetes APIs.

As good practice, you should use the Node and RBAC authorizers together with the
NodeRestriction admission plugin.

In this section, we will cover getting RBAC enabled and creating Roles and RoleBindings to
grant applications and users access to the cluster resources.

Getting ready
Make sure you have an RBAC-enabled Kubernetes cluster ready (since Kubernetes 1.6,
RBAC is enabled by default) and that kubectl and helm have been configured so that you
can manage the cluster resources. Creating private keys will also require that you have
the openssl tool before you attempt to create keys for users.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files IN the chapter9 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter9/rbac

RBAC is enabled by default starting with Kubernetes 1.6. If it is disabled for any
reason, start the API server with --authorization-mode=RBAC to enable RBAC.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Viewing the default Roles
Creating user accounts
Creating Roles and RoleBindings
Testing the RBAC rules

Securing Applications and Clusters Chapter 9

[453]

Viewing the default Roles
RBAC is a core component of the Kubernetes cluster that allows us to create and grant roles
to objects and control access to resources within the cluster. This recipe will help you
understand the content of roles and role bindings.

Let's perform the following steps to view the default roles and role bindings in our cluster:

View the default cluster roles using the following command. You will see a long1.
mixed list of system:, system:controller:, and a few other prefixed
roles. system:* roles are used by the infrastructure, system:controller
roles are used by a Kubernetes controller manager, which is a control loop that
watches the shared state of the cluster. In general, they are both good to know
about when you need to troubleshoot permission issues, but they're not
something we will be using very often:

$ kubectl get clusterroles
$ kubectl get clusterrolebindings

View one of the system roles owned by Kubernetes to understand their purpose2.
and limits. In the following example, we're looking at system:node, which
defines the permission for kubelets. In the output in Rules, apiGroups: indicates
the core API group, resources indicates the Kubernetes resource type,
and verbs indicates the API actions allowed on the role:

$ kubectl get clusterroles system:node -oyaml

Let's view the default user-facing roles since they are the ones we are more3.
interested in. The roles that don't have the system: prefix are intended to be
user-facing roles. The following command will only list the non-system: prefix
roles. The main roles that are intended to be granted within a specific namespace
using RoleBindings are the admin, edit, and view roles:

$ kubectl get clusterroles | grep -v '^system'
NAME AGE
admin 8d #gives read-write access
 to all resources
cluster-admin 8d #super-user, gives read-write access
 to all resources
edit 8d #allows create/update/delete on resources except RBAC
permissions
kops:dns-controller 8d
kube-dns-autoscaler 8d
view 8d #read-only access to resources

Securing Applications and Clusters Chapter 9

[454]

Now, review the default cluster binding, that is, cluster-admin, using the4.
following command. You will see that this binding gives the system:masters
group cluster-wide superuser permissions with the cluster-admin role:

$ kubectl get clusterrolebindings/cluster-admin -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
...
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:masters

Since the Kubernetes 1.6 release, RBAC is enabled by default and new users can be created
and start with no permissions until permissions are assigned by an admin user to a specific
resource. Now, you know about the available default roles.

In the following recipes, you will learn how to create new Roles and RoleBindings and
grant accounts the permissions that they need.

Creating user accounts
As explained in the Kubernetes docs, Kubernetes doesn't have objects to represent normal
user accounts. Therefore, they need to be managed externally (check the Kubernetes
Authentication documentation in the See also section for more details). This recipe will show
you how to create and manage user accounts using private keys.

Let's perform the following steps to create a user account:

Create a private key for the example user. In our example, the key file is1.
user3445.key:

$ openssl genrsa -out user3445.key 2048

Securing Applications and Clusters Chapter 9

[455]

Create a certificate sign request (CSR) called user3445.csr using the private2.
key we created in Step 1. Set the username (/CN) and group name (/O) in the -
subj parameter. In the following example, the username is john.geek, while
the group is development:

$ openssl req -new -key user3445.key \
-out user3445.csr \
-subj "/CN=john.geek/O=development"

To use the built-in signer, you need to locate the cluster-signing certificates for3.
your cluster. By default, the ca.crt and ca.key files should be in the
/etc/kubernetes/pki/ directory.If you are using kops to deploy, your cluster
signing keys can be downloaded from
s3://$BUCKET_NAME/$KOPS_CLUSTER_NAME/pki/private/ca/*.key and
s3://$BUCKET_NAME/$KOPS_CLUSTER_NAME/pki/issued/ca/*.crt. Once
you've located the keys, change the CERT_LOCATION mentioned in the following
code to the current location of the files and generate the final signed certificate:

$ openssl x509 -req -in user3445.csr \
-CA CERT_LOCATION/ca.crt \
-CAkey CERT_LOCATION/ca.key \
-CAcreateserial -out user3445.crt \
-days 500

If all the files have been located, the command in Step 3 should return an output4.
similar to the following:

Signature ok
subject=CN = john.geek, O = development
Getting CA Private Key

Before we move on, make sure you store the signed keys in a safe directory. As an
industry best practice, using a secrets engine or Vault storage is recommended.
You will learn more about Vault storage later in this chapter IN the Securing
credentials using HashiCorp Vault recipe.

Create a new context using the new user credentials:5.

$ kubectl config set-credentials user3445 --client-
certificate=user3445.crt --client-key=user3445.key
$ kubectl config set-context user3445-context --cluster=local --
namespace=secureapp --user=user3445

Securing Applications and Clusters Chapter 9

[456]

List the existing context using the following comment. You will see that the new6.
user3445-context has been created:

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* service-account-context local kubecfg
 user3445-context local user3445 secureapp

Now, try to list the pods using the new user context. You will get an access7.
denied error since the new user doesn't have any roles and new users don't come
with any roles assigned to them by default:

$ kubectl --context=user3445-context get pods
Error from server (Forbidden): pods is forbidden: User "john.geek"
cannot list resource "pods" in API group "" in the namespace
"secureapps"

Optionally, you can base64 encode all three files (user3445.crt,8.
user3445.csr, and user3445.key) using the openssl base64 -in
<infile> -out <outfile> command and distribute the populated config-
user3445.yml file to your developers. An example file can be found in this
book's GitHub repository in the src/chapter9/rbac directory. There are many
ways to distribute user credentials. Review the example using your text editor:

$ cat config-user3445.yaml

With that, you've learned how to create new users. Next, you will create roles and assign
them to the user.

Creating Roles and RoleBindings
Roles and RolesBindings are always used in a defined namespace, meaning that the
permissions can only be granted for the resources that are in the same namespace as the
Roles and the RoleBindings themselves compared to the ClusterRoles and
ClusterRoleBindings that are used to grant permissions to cluster-wide resources such as
nodes.

Let's perform the following steps to create an example Role and RoleBinding in our cluster:

First, create a namespace where we will create the Role and RoleBinding. In our1.
example, the namespace is secureapp:

$ kubectl create ns secureapp

Securing Applications and Clusters Chapter 9

[457]

Create a role using the following rules. This role basically allows all operations to2.
be performed on deployments, replica sets, and pods for the deployer role in
the secureapp namespace we created in Step 1. Note that any permissions that
are granted are only additive and there are no deny rules:

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: secureapp
 name: deployer
rules:
- apiGroups: ["", "extensions", "apps"]
 resources: ["deployments", "replicasets", "pods"]
 verbs: ["get", "list", "watch", "create", "update", "patch",
"delete"]
EOF

Create a RoleBinding using the deployer role and for the username john.geek3.
in the secureapp namespace. We're doing this since a RoleBinding can only
reference a Role that exists in the same namespace:

$ cat <<EOF | kubectl apply -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: deployer-binding
 namespace: secureapp
subjects:
- kind: User
 name: john.geek
 apiGroup: ""
roleRef:
 kind: Role
 name: deployer
 apiGroup: ""
EOF

With that, you've learned how to create a new Role and grant permissions to a user using
RoleBindings.

Securing Applications and Clusters Chapter 9

[458]

Testing the RBAC rules
Let's perform the following steps to test the Role and RoleBinding we created earlier:

Deploy a test pod in the secureapp namespace where the user has access:1.

$ cat <<EOF | kubectl --context=user3445-context apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: busybox
 namespace: secureapp
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 imagePullPolicy: IfNotPresent
 name: busybox
 restartPolicy: Always
EOF

List the pods in the new user's context. The same command that failed in the
Creating user accounts recipe in Step 7 should now execute successfully:

$ kubectl --context=user3445-context get pods
NAME READY STATUS RESTARTS AGE
busybox 1/1 Running 1 2m

If you try to create the same pod in a different namespace, you will see that the command
will fail to execute.

How it works...
This recipe showed you how to create new users in Kubernetes and quickly create Roles
and RoleBindings to grant permission to user accounts on Kubernetes.

Kubernetes clusters have two types of users:

User accounts: User accounts are normal users that are managed externally.
Service accounts: Service accounts are the users who are associated with the
Kubernetes services and are managed by the Kubernetes API with its own
resources.

Securing Applications and Clusters Chapter 9

[459]

You can read more about service accounts by looking at the Managing service accounts link
in the See also section.

In the Creating Roles and RoleBindings recipe, in Step 1, we created a Role named deployer.
Then, in Step 2, we granted the rules associated with the deployer Role to the user account
john.geek.

RBAC uses the rbac.authorization.k8s.io API to make authorization decisions. This
allows admins to dynamically configure policies using the Kubernetes APIs. If you wanted
to use the existing Roles and give someone cluster-wide superuser permission, you could
use the cluster-admin ClusterRole with a ClusterRoleBinding instead. ClusterRoles don't
have namespace limits and can execute commands in any namespace with the granted
permissions. Overall, you should be careful while assigning the cluster-admin
ClusterRole to users. ClusterRoles can be also limited to namespaces, similar to Roles if
they are used with RoleBindings to grant permissions instead.

See also
RBAC Authorization in Kubernetes documentation: https:/ /kubernetes. io/
docs/reference/ access- authn- authz/ rbac/ #rolebinding- and-
clusterrolebinding

More on the default roles and role bindings: https:/ /kubernetes. io/docs/
reference/ access- authn- authz/ rbac/ #default- roles- and- role- bindings

Autogenerating RBAC policies based on Kubernetes audit logs: https:/ /github.
com/liggitt/ audit2rbac

Kubernetes Authentication: https:/ /kubernetes. io/ docs/ reference/ access-
authn-authz/ authentication/

Managing Service Accounts: https:/ /kubernetes. io/docs/ reference/ access-
authn-authz/ service- accounts- admin/

The kubectl-bindrole tool for finding Kubernetes Roles bound to a specified
ServiceAccount: https:/ /github. com/Ladicle/ kubectl- bindrole

Configuring Pod Security Policies
Pod Security Policies (PSP) are used on Kubernetes clusters to enable granular
authorization of pod creation and to control security aspects of pods. PodSecurityPolicy
objects define the conditions for a pod to be accepted into the cluster and run as expected.

In this section, we will cover the recreation and configuration of PSPs on Kubernetes.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole
https://github.com/Ladicle/kubectl-bindrole

Securing Applications and Clusters Chapter 9

[460]

Getting ready
Make sure you have an RBAC-enabled Kubernetes cluster ready (since Kubernetes 1.6,
RBAC is enabled by default) and kubectl and helm configured to manage the cluster
resources.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter9 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter9/psp

Verify if PodSecurityPolicy needs to be enabled on your cluster by running the kubectl
get psp command. If you get a message stating the server doesn't have a
resource type "podSecurityPolicies"., then PSP needs to be enabled on your
cluster.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Enabling PSPs on EKS
Enabling PSPs on GKE
Enabling PSPs on AKS
Creating a restricted PSPs

Enabling PSPs on EKS
As a best practice, PSPs should not be enabled before you create your own policies. This
recipe will take you through how to enable PSP on Amazon EKS and how to review default
policies.

Let's perform the following steps:

Deploy Kubernetes version 1.13 or higher. PSP will be enabled by default. The1.
default configuration comes with a non-disruptive policy named
eks.privileged that has no restrictions. View the default policy with the
following command:

$ kubectl get psp eks.privileged
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP

Securing Applications and Clusters Chapter 9

[461]

READONLYROOTFS VOLUMES
eks.privileged true * RunAsAny RunAsAny RunAsAny RunAsAny false
*

Describe the policy to see its full details, as follows:2.

$ kubectl describe psp eks.privileged

To review, restore, or delete the default PSP, use the YAML manifest in the3.
example repository in src/chapter9/psp named eks-privileged-psp.yaml.

Enabling PSPs on GKE
As a best practice, PSPs should not be enabled before you create your own policies. This
recipe will take you through how to enable PSP on Google Kubernetes Engine (GKE) and
how to review default policies.

Let's perform the following steps:

You can enable PSP on the cluster you deployed by following the instructions1.
given in Chapter 1, Building Production-Ready Kubernetes Clusters, in
the Provisioning a managed Kubernetes cluster on GKE recipe by running the
following command. Replace k8s-devops-cookbook-1 with your own cluster
name:

$ gcloud beta container clusters update k8s-devops-cookbook-1 --
enable-pod-security-policy

The default configuration comes with a non-disruptive policy named2.
gce.privileged that has no restrictions and couple of other policies. View the
default policies with the following command:

$ kubectl get psp
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP
SUPGROUP READONLYROOTFS VOLUMES
gce.event-exporter false RunAsAny RunAsAny RunAsAny
RunAsAny false hostPath,secret
gce.fluentd-gcp false RunAsAny RunAsAny RunAsAny
RunAsAny false configMap,hostPath,secret
gce.persistent-volume-binder false RunAsAny RunAsAny RunAsAny
RunAsAny false nfs,secret,projected
gce.privileged true * RunAsAny RunAsAny RunAsAny
RunAsAny false *
gce.unprivileged-addon false
SETPCAP,MKNOD,AUDIT_WRITE,CHOWN,NET_RAW,DAC_OVERRIDE,FOWNER,FSETID,

Securing Applications and Clusters Chapter 9

[462]

KILL,SETGID,SETUID,NET_BIND_SERVICE,SYS_CHROOT,SETFCAP RunAsAny
RunAsAny RunAsAny RunAsAny false
emptyDir,configMap,secret,projected

Describe the policy to see its full details, as follows:3.

$ kubectl describe psp gce.privileged

To review, restore, or delete the default PSP, use the YAML manifest in the4.
example repository in src/chapter9/psp named gce-privileged-psp.yaml.

Enabling PodSecurityPolicy on AKS
As a best practice, PodSecurityPolicy should not be enabled before you create your own
policies. This recipe will take you through how to enable PSP on Azure Kubernetes Service
(AKS) and how to review default policies.

Let's perform the following steps:

You can enable PSP on the cluster you have deployed by following the1.
instructions given in Chapter 1 Building Production-Ready Kubernetes Clusters, in
the Provisioning a managed Kubernetes cluster on AKS recipe by running the
following command. Replace k8sdevopscookbook with your own resource
group and AKSCluster with your cluster name:

$ az aks create --resource-group k8sdevopscookbook \
--name AKSCluster \
--enable-pod-security-policy

he default configuration comes with a non-disruptive policy named privileged2.
that has no restrictions. View the default policy with the following command:

$ kubectl get psp
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP READONLYROOTFS
VOLUMES
privileged true * RunAsAny RunAsAny RunAsAny RunAsAny false *
configMap,emptyDir,projected,secret,downwardAPI,persistentVolumeCla
im

Describe the policy to see its full details, as follows:3.

$ kubectl describe psp privileged

To review, restore, or delete the default PSP, use the YAML manifest in the4.
example repository in src/chapter9/psp named aks-privileged-psp.yaml.

Securing Applications and Clusters Chapter 9

[463]

Creating a restricted PSPs
As a security best practice, it is recommended to restrict containers in pods from running
with root user privileges to limit any possible risks. When running in privileged mode,
processes that run inside the container have the same privileges and access as the processes
outside the container, which can raise the risk of some management capabilities being
accessed by attackers.

Let's perform the following steps to create a root access restricted PodSecurityPolicy:

Deploy a new restricted PodSecurityPolicy: 1.

$ cat <<EOF | kubectl apply -f -
apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
 name: restricted-psp
spec:
 privileged: false
 runAsUser:
 rule: MustRunAsNonRoot
 seLinux:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 volumes:
 - '*'
EOF

Confirm that the policy has been created. You will notice that the RUNASUSER2.
column shows MustRunAsNonRoot, which indicates that using root privileges is
not allowed:

$ kubectl get psp restricted-psp
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP
SUPGROUP READONLYROOTFS VOLUMES
restricted-psp false RunAsAny MustRunAsNonRoot RunAsAny
RunAsAny false *

Securing Applications and Clusters Chapter 9

[464]

Verify the PSP by running a pod that requires root access. The deployment will3.
fail and show a message stating container has runAsNonRoot and image
will run as root, as shown in the following code:

$ kubectl run --image=mariadb:10.4.8 mariadb --port=3306 --
env="MYSQL_ROOT_PASSWORD=my-secret-pw"
$ kubectl get pods
NAME READY STATUS
RESTARTS AGE
mariadb-5584b4f9d8-q6whd 0/1 container has runAsNonRoot and image
will run as root 0 46s

With that, you've learned how to create a root access restricted PodSecurityPolicy.

There's more…
 This section is further divided into the following subsections to make this process easier:

Restricting pods to access certain volume types
Using Kubernetes PSPs advisor

Restricting pods to access certain volume types
As part of the PodSecurityPolicy rule, you may want to limit the use of a specific type of
volume. In this recipe, you will learn how to restricts containers to volume types.

Let's perform the following steps to create a PodSecurityPolicy:

Create a new restricted PodSecurityPolicy. This policy limits the type of1.
volume to nfs only:

$ cat <<EOF | kubectl apply -f -
kind: PodSecurityPolicy
metadata:
 name: restricted-vol-psp
spec:
 privileged: false
 runAsUser:
 rule: RunAsAny
 seLinux:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 supplementalGroups:

Securing Applications and Clusters Chapter 9

[465]

 rule: RunAsAny
 volumes:
 - 'nfs'
EOF

Verify the policy by deploying an application that requires persistent storage.2.
Here, we will use the MinIO example from previous chapters. The deployment
should fail with a message stating persistentVolumeClaim volumes are
not allowed to be used:

$ kubectl create -f \
https://raw.githubusercontent.com/k8sdevopscookbook/src/master/chap
ter6/minio/minio.yaml

Delete both the PSPs and the deployment:3.

$ kubectl delete psp restricted-vol-psp
$ kubectl delete -f \
https://raw.githubusercontent.com/k8sdevopscookbook/src/master/chap
ter6/minio/minio.yaml

The recommended set of allowed volumes for new PSPs are configMap,4.
downwardAPI, emptyDir, persistentVolumeClaim, secret, and projected.
You can find the complete list of volume types by going to the Type of volumes
supported link in the See also section. Create a new restricted PodSecurityPolicy
using the following content. This policy limits the type of volume to
persistentVolumeClaim only:

$ cat <<EOF | kubectl apply -f -
kind: PodSecurityPolicy
metadata:
 name: permit-pvc-psp
spec:
 privileged: false
 runAsUser:
 rule: RunAsAny
 seLinux:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 volumes:
 - 'persistentVolumeClaim'
EOF

Securing Applications and Clusters Chapter 9

[466]

Repeat Step 2 to deploy the application. This time, persistentVolumeClaim5.
creation will be allowed and the PVC that was requested by the pod will be
created.

Using Kubernetes PodSecurityPolicy advisor
Kubernetes PodSecurityPolicy Advisor is a simple tool from Sysdig that's used to enforce
best security practices in Kubernetes. kube-psp-advisor scans the existing security
context of Kubernetes resources and generates the PSPs for the resources in the cluster to
remove unnecessary privileges.

Let's perform the following steps to enable kube-psp-advisor on our cluster:

Clone the repository and build the project using the following command:1.

$ git clone https://github.com/sysdiglabs/kube-psp-advisor
$ cd kube-psp-advisor && make build

Run the scan process by executing the binary. If you want to limit the scan to a2.
namespace, you can specify it by adding the --namespace= parameter to the
command, similar to what can be seen in the following code. If you don't do this,
it will scan the whole cluster. After doing this, a PodSecurityPolicy will be
generated:

$./kube-psp-advisor --namespace=secureapp > psp-advisor.yaml

Review the content of the psp-advisor.yaml file and apply the generated PSP:3.

$ cat psp-advisor.yaml
$ kubectl apply -f psp-advisor.yaml

With that, you've learned how to generate a PSP in a simpler way to reduce the
unnecessary permissions that may increase the attack surface.

See also
Kubernetes documentation – PodSecurityPolicy: https:/ / kubernetes. io/docs/
concepts/ policy/ pod- security- policy/

Type of volumes supported: https:/ /kubernetes. io/ docs/ concepts/ storage/
volumes/ #types- of- volumes

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes

Securing Applications and Clusters Chapter 9

[467]

Using Kubernetes CIS Benchmark for
security auditing
Kubernetes CIS Benchmarks are the security configuration best practices that are accepted
by industry experts. The CIS Benchmark guide can be download as a PDF file from the
Center for Internet Security (CIS) website at https:/ /www. cisecurity. org/ . kube-bench
is an application that automates documented checks.

In this section, we will cover the installation and use of the open source kube-bench tool to
run Kubernetes CIS Benchmarks for security auditing of Kubernetes clusters.

Getting ready
For this recipe, we need to have a Kubernetes cluster ready and the Kubernetes command-
line tool kubectl installed.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter9 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter9/cis

Some of the tests target Kubernetes nodes and can only be executed on fully self-managed
clusters where you have control over the master nodes. Therefore, managed clusters such
as EKS, GKE, AKS, and so on will not be able to execute all the tests and require different
job descriptions or parameters to execute the tests. These will be mentioned when
necessary.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Running kube-bench on Kubernetes
Running kube-bench on managed Kubernetes services
Running kube-bench on OpenShift
Running kube-hunter

https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/
https://www.cisecurity.org/

Securing Applications and Clusters Chapter 9

[468]

Running kube-bench on Kubernetes
The CIS Benchmark has tests for both master and worker nodes. Therefore, the full scope of
the test can only be completed on self-managed clusters where you have control over the
master nodes. In this recipe, you will learn how to run kube-bench directly on the master
and worker nodes.

Let's perform the following steps to run the CIS recommended tests:

Download and install the kube-bench command-line interface on one of your1.
master nodes and one of your worker nodes:

$ curl --silent --location
"https://github.com/aquasecurity/kube-bench/releases/download/v0.1.
0/kube-bench_0.1.0_linux_amd64.tar.gz" | tar xz -C /tmp
$ sudo mv /tmp/kube-bench /usr/local/bin

SSH into your Kubernetes master node and run the following command. It will2.
quickly return the result of the test with an explanation and a list of additional
manual tests that are recommended to be run after. Here, you can see that 31
checks passed and 36 tests failed:

$ kube-bench master
...
== Summary ==
31 checks PASS
36 checks FAIL
24 checks WARN
1 checks INFO

To save the results, use the following command. After the test is complete, move3.
the kube-bench-master.txt file to your localhost for further review:

$ kube-bench master > kube-bench-master.txt

Review the content of the kube-bench-master.txt file. You will see the status4.
of the checks from the CIS Benchmark for the Kubernetes guide, similar to the
following:

[INFO] 1 Master Node Security Configuration
[INFO] 1.1 API Server
[PASS] 1.1.1 Ensure that the --anonymous-auth argument is set to
false (Not Scored)
[FAIL] 1.1.2 Ensure that the --basic-auth-file argument is not set
(Scored)
[PASS] 1.1.3 Ensure that the --insecure-allow-any-token argument is

Securing Applications and Clusters Chapter 9

[469]

not set (Not Scored)
[PASS] 1.1.4 Ensure that the --kubelet-https argument is set to
true (Scored)
[FAIL] 1.1.5 Ensure that the --insecure-bind-address argument is
not set (Scored)
[FAIL] 1.1.6 Ensure that the --insecure-port argument is set to 0
(Scored)
[PASS] 1.1.7 Ensure that the --secure-port argument is not set to 0
(Scored)
[FAIL] 1.1.8 Ensure that the --profiling argument is set to false
(Scored)
[FAIL] 1.1.9 Ensure that the --repair-malformed-updates argument is
set to false (Scored)
[PASS] 1.1.10 Ensure that the admission control plugin AlwaysAdmit
is not set (Scored)
...

Tests are split into categories that have been suggested in the CIS Benchmark
guidelines, such as API Server, Scheduler, Controller Manager, Configuration
Manager, etcd, General Security Primitives, and PodSecurityPolicies.

Follow the methods suggested in the Remediations section of the report to fix the5.
failed issues and rerun the test to confirm that the correction has been made. You
can see some of the remediations that were suggested by the preceding report
here:

== Remediations ==
1.1.2 Follow the documentation and configure alternate mechanisms
for authentication. Then,
edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.manifest
on the master node and remove the --basic-auth-file=<filename>
parameter.

1.1.5 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.manife$
on the master node and remove the --insecure-bind-address
parameter.

1.1.6 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.manife$
apiserver.yaml on the master node and set the below parameter.
--insecure-port=0

1.1.8 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.manife$
on the master node and set the below parameter.

Securing Applications and Clusters Chapter 9

[470]

--profiling=false

1.2.1 Edit the Scheduler pod specification file
/etc/kubernetes/manifests/kube-scheduler.manifest
file on the master node and set the below parameter.
--profiling=false
...

Let's take one of the issues from the preceding list. 1.2.1 suggests that we 6.
disable the profiling API endpoint. The reason for this is that highly
sensitive system information can be uncovered by profiling data and the amount
of data and load that's created by profiling your cluster could be put out of
service (denial-of-service attack) by this feature. Edit the kube-
scheduler.manifest file and add --profiling=false right after the kube-
schedule command, as shown in the following code:

...
spec:
 containers:
 - command:
 - /bin/sh
 - -c
 - mkfifo /tmp/pipe; (tee -a /var/log/kube-scheduler.log <
/tmp/pipe &) ; exec
 /usr/local/bin/kube-scheduler --profiling=False --
kubeconfig=/var/lib/kube-scheduler/kubeconfig
 --leader-elect=true --v=2 > /tmp/pipe 2>&1
...

Run the test again and confirm that the issue on 1.2.1 has been corrected. Here,7.
you can see that the number of passed tests has increased from 31 to 32. One
more check has been cleared:

$ kube-bench master
...
== Summary ==
32 checks PASS
35 checks FAIL
24 checks WARN
1 checks INFO

Run the test on the worker nodes by using the following command:8.

$ kube-bench node
...
== Summary ==
9 checks PASS

Securing Applications and Clusters Chapter 9

[471]

12 checks FAIL
2 checks WARN
1 checks INFO

To save the results, use the following command. After the test has9.
completed, move the kube-bench-worker.txt file to your localhost for further
review:

$ kube-bench node > kube-bench-worker.txt

Review the content of the kube-bench-worker.txt file. You will see the status10.
of the checks from the CIS Benchmark for the Kubernetes guide, similar to the
following:

[INFO] 2 Worker Node Security Configuration
[INFO] 2.1 Kubelet
[PASS] 2.1.1 Ensure that the --anonymous-auth argument is set to
false (Scored)
[FAIL] 2.1.2 Ensure that the --authorization-mode argument is not
set to AlwaysAllow (Scored)
[PASS] 2.1.3 Ensure that the --client-ca-file argument is set as
appropriate (Scored)
...

Similarly, follow all the remediations until you've cleared all the failed tests on the master
and worker nodes.

Running kube-bench on managed Kubernetes services
The difference between managed Kubernetes services such as EKS, GKE, AKS, and so on is
that you can't run the checks on the master. Instead, you have to either only follow the
worker checks from the previous recipe or run a Kubernetes job to validate your
environment. In this recipe, you will learn how to run kube-bench on managed Kubernetes
service-based nodes and also in cases where you don't have direct SSH access to the nodes.

Let's perform the following steps to run the CIS recommended tests:

For this recipe, we will use EKS as our Kubernetes service, but you can change1.
the Kubernetes and container registry services to other cloud providers if you
wish. First, create an ECR repository where we will host the kube-bench image:

$ aws ecr create-repository --repository-name
k8sdevopscookbook/kube-bench --image-tag-mutability MUTABLE

Securing Applications and Clusters Chapter 9

[472]

Clone the kube-bench repository to your localhost:2.

$ git clone https://github.com/aquasecurity/kube-bench.git

Log in to your Elastic Container Registry (ECR) account. You need to be3.
authenticated before you can push images to the registry:

$ $(aws ecr get-login --no-include-email --region us-west-2)

Build the kube-bench image by running the following command:4.

$ docker build -t k8sdevopscookbook/kube-bench

Replace <AWS_ACCT_NUMBER> with your AWS account number and execute it to5.
push it to the ECR repository. The first command will create a tag, while the
second command will push the image:

$ docker tag k8sdevopscookbook/kube-bench:latest
<AWS_ACCT_NUMBER>.dkr.ecr.us-west-2.amazonaws.com/k8s/kube-
bench:latest
docker push <AWS_ACCT_NUMBER>.dkr.ecr.us-
west-2.amazonaws.com/k8s/kube-bench:latest

Edit the job-eks.yaml file and replace the image name on line 12 with the URI6.
of the image you pushed in Step 5. It should look similar to the following, except
you should use your AWS account number in the image URI:

apiVersion: batch/v1
kind: Job
metadata:
 name: kube-bench
spec:
 template:
 spec:
 hostPID: true
 containers:
 - name: kube-bench
 # Push the image to your ECR and then refer to it here
 image: 316621595343.dkr.ecr.us-
west-2.amazonaws.com/k8sdevopscookbook/kube-bench:latest
...

Run the job using the following command. It will be executed and completed7.
shortly:

$ kubectl apply -f job-eks.yaml

Securing Applications and Clusters Chapter 9

[473]

List the kube-bench pods that were created in your cluster. It should show8.
Completed as the status, similar to the following example:

$ kubectl get pods |grep kube-bench
kube-bench-7lxzn 0/1 Completed 0 5m

Replace the pod name with the output of the previous command and view the9.
pod logs to retrieve the kube-bench results. In our example, the pod name is
kube-bench-7lxzn:

$ kubectl logs kube-bench-7lxzn

Now, you can run kube-bench on any managed Kubernetes cluster. After you get the logs,
follow all the remediation suggestions until you clear the failed tests on the worker nodes.

Running kube-bench on OpenShift
OpenShift has different command-line tools, so if we run the default test jobs, we won't be
able to gather the required information on our cluster unless specified. In this recipe, you
will learn how to run kube-bench on OpenShift.

Let's perform the following steps to run the CIS recommended tests:

SSH into your OpenShift master node and run the following command using --1.
version ocp-3.10 or ocp-3.11 based on your OpenShift version. Currently,
only 3.10 and 3.11 are supported:

$ kube-bench master --version ocp-3.11

To save the results, use the following command. After the test has been2.
completed, move the kube-bench-master.txt file to your localhost for further
review:

$ kube-bench master --version ocp-3.11 > kube-bench-master.txt

SSH into your OpenShift worker node and repeat the first two steps of this3.
recipe, but this time using the node parameter for the OpenShift version you are
running. In our example, this is OCP 3.11:

$ kube-bench node --version ocp-3.11 > kube-bench-node.txt

Follow the Running kube-bench on Kubernetes recipe's instructions to patch security issues
with the suggested remediations.

Securing Applications and Clusters Chapter 9

[474]

How it works...
This recipe showed you how to quickly run CIS Kubernetes Benchmarks on your cluster
using kube-bench.

In the Running kube-bench on Kubernetes recipe, in step 1, after you executed the checks,
kube-bench accessed the configuration files that were kept in the following directories:
/var/lib/etcd, /var/lib/kubelet, /etc/systemd, /etc/kubernetes, and
/usr/bin. Therefore, the user who runs the checks needs to provide root/sudo access to all
the config files.

If the configuration files can't be found in their default directories, the checks will fail. The
most common issue is the missing kubectl binary in the /usr/bin directory. kubectl is
used to detect the Kubernetes version. You can skip this directory by specifying the
Kubernetes version using --version as part of the command, similar to the following:

$ kube-bench master --version 1.14

Step 1 will return four different states. The PASS and FAIL states are self-explanatory as
they indicate whether the tests were run successfully or failed. WARN indicates that the test
requires manual validation, which means it requires attention. Finally, INFO means that no
further action is required.

See also
CIS Kubernetes Benchmarks: https:/ /www. cisecurity. org/ benchmark/
kubernetes/

kube-bench repository: https:/ /github. com/ aquasecurity/ kube- bench

How to customize the default configuration: https:/ /github. com/
aquasecurity/ kube- bench/ blob/ master/ docs/ README. md#configuration- and-
variables

Automating compliance checking for Kubernetes-based applications: https:/ /
github.com/ cds- snc/ security- goals

Hardening Kubernetes from Scratch: https:/ /github. com/hardening-
kubernetes/ from- scratch

CNCF Blog on 9 Kubernetes Security Best Practices Everyone Must Follow:
https:// www. cncf. io/ blog/ 2019/ 01/ 14/9- kubernetes- security- best-
practices- everyone- must- follow/

Hardening Guide for Rancher https:/ /rancher. com/ docs/ rancher/ v2. x/en/
security/ hardening- 2. 2/

https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/aquasecurity/kube-bench/blob/master/docs/README.md#configuration-and-variables
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/cds-snc/security-goals
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://github.com/hardening-kubernetes/from-scratch
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.2/

Securing Applications and Clusters Chapter 9

[475]

Must-have Kubernetes security audit tools:
Kube-bench: https:/ /github. com/aquasecurity/ kube- bench

Kube-hunter: https:/ /kube- hunter. aquasec. com/

Kubeaudit: https:/ /github. com/Shopify/ kubeaudit

Kubesec:https:/ /github. com/controlplaneio/ kubesec

Open Policy Agent:https:/ /www. openpolicyagent. org/

K8Guard: https:/ /k8guard. github. io/

Building DevSecOps into the pipeline using
Aqua Security
The Shift Left approach to DevOps Security is becoming increasingly popular, which
means that security must be built into the process and pipeline. One of the biggest
problems with shortened pipelines is that they often leave little room for proper security
checks. Due to this, another approach called deploy changes as quickly as possible was
introduced, which is key to the success of DevOps.

In this section, we will cover automating vulnerability checks in container images using
Aqua Security to reduce the application attack surface.

Getting ready
Make sure you have an existing CI/CD pipeline configured using your preferred CI/CD
tool. If not, follow the instructions in Chapter 3, Building CI/CD Pipelines, to configure
GitLab or CircleCI.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter9 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter9

Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://kube-hunter.aquasec.com/
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/Shopify/kubeaudit
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://github.com/controlplaneio/kubesec
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/
https://k8guard.github.io/

Securing Applications and Clusters Chapter 9

[476]

How to do it…
This section will show you how to integrate Aqua with your CI/CD platform. This section is
further divided into the following subsections to make this process easier:

Scanning images using Aqua Security Trivy
Building vulnerability scanning into GitLab
Building vulnerability scanning into CircleCI

Scanning images using Trivy
Trivy is an open source container scanning tool that's used to identify container
vulnerabilities. It is one of the simplest and most accurate scanning tools in the market. In
this recipe, we will learn how to install and scan container images using Trivy.

Let's perform the following steps to run Trivy:

Get the latest Trivy release number and keep it in a variable:1.

$ VERSION=$(curl --silent
"https://api.github.com/repos/aquasecurity/trivy/releases/latest" |
\
grep '"tag_name":' | \
sed -E 's/.*"v([^"]+)".*/\1/')

Download and install the trivy command-line interface:

$ curl --silent --location
"https://github.com/aquasecurity/trivy/releases/download/v${VERSION
}/trivy_${VERSION}_Linux-64bit.tar.gz" | tar xz -C /tmp
$ sudo mv /trivy /usr/local/bin

Verify that trivy is functional by running the following command. It will return3.
its current version:

$ trivy --version
trivy version 0.1.7

Execute trivy checks by replacing the container image name with your target4.
image. In our example, we scanned the postgres:12.0 image from the Docker
Hub repository:

$ trivy postgres:12.0
2019-11-12T04:08:02.013Z INFO Updating vulnerability database...
2019-11-12T04:08:07.088Z INFO Detecting Debian vulnerabilities...

Securing Applications and Clusters Chapter 9

[477]

postgres:12.0 (debian 10.1)
===========================
Total: 164 (UNKNOWN: 1, LOW: 26, MEDIUM: 122, HIGH: 14, CRITICAL:
1)
...

The test summary will show the number of vulnerabilities that have been5.
detected and will include a detailed list of vulnerabilities, along with their IDs
and an explanation of each of them:

+-----------+---------------+----------+----------+-----------+----
--+
| LIBRARY | V ID | SEVERITY | INST VER | FIXED VER |
TITLE|
+-----------+------------------+-------+----------+-----------+----
--+
| apt | CVE-2011-3374 | LOW | 1.8.2 | |
|
+-----------+---------------+ +----------+-----------+----
--+
| bash | TEMP-0841856 | | 5.0-4 | |
|
+-----------+---------------+ +----------+-----------+----
--+
| coreutils | CVE-2016-2781 | | 8.30-3 | |
|
+ +---------------+ + +-----------+----
--+
| | CVE-2017-18018| | | |
|
+-----------+---------------+----------+----------+-----------+----
--+
| file | CVE-2019-18218| HIGH | 1:5.35-4 | 1:5.35-4+d|
file:|
...

With that, you've learned how to quickly scan your container images. Trivy supports a
variety of container base images (CentOS, Ubuntu, Alpine, Distorless, and so on) and
natively supports container registries such as Docker Hub, Amazon ECR, and Google
Container Registry GCR. Trivy is completely suitable for CI. In the next two recipes, you
will learn how you can add Trivy into CI pipelines.

Securing Applications and Clusters Chapter 9

[478]

Building vulnerability scanning into GitLab
With GitLab Auto DevOps, the container scanning job uses CoreOS Clair to analyze Docker
images for vulnerabilities. However, it is not a complete database of all security issues for
Alpine-based images. Aqua Trivy has nearly double the number of vulnerabilities and is
more suitable for CI. For a detailed comparison, please refer to the Trivy Comparison link in
the See also section. This recipe will take you through adding a test stage to a GitLab CI
pipeline.

Let's perform the following steps to add Trivy vulnerability checks in GitLab:

Edit the CI/CD pipeline configuration .gitlab-ci.yml file in your project:1.

$ vim .gitlab-ci.yml

Add a new stage to your pipeline and define the stage. You can find an example2.
in the src/chapter9/devsecops directory. In our example, we're using
the vulTest stage name:

stages:
 - build
 - vulTest
 - staging
 - production
#Add the Step 3 here

Add the new stage, that is, vulTest. When you define a new stage, you specify a3.
stage name parent key. In our example, the parent key is trivy. The commands
in the before_script section will download the trivy binaries:

trivy:
 stage: vulTest
 image: docker:stable-git
 before_script:
 - docker build -t trivy-ci-test:${CI_COMMIT_REF_NAME} .
 - export VERSION=$(curl --silent
"https://api.github.com/repos/aquasecurity/trivy/releases/latest" |
grep '"tag_name":' | sed -E 's/.*"v([^"]+)".*/\1/')
 - wget
https://github.com/aquasecurity/trivy/releases/download/v${VERSION}
/trivy_${VERSION}_Linux-64bit.tar.gz
 - tar zxvf trivy_${VERSION}_Linux-64bit.tar.gz
 variables:
 DOCKER_DRIVER: overlay2
 allow_failure: true
 services:

Securing Applications and Clusters Chapter 9

[479]

 - docker:stable-dind
#Add the Step 4 here

Finally, review and add the Trivy scan script and complete the vulTest stage.4.
The following script will return --exit-code 1 for the critical severity
vulnerabilities, as shown here:

 script:
 - ./trivy --exit-code 0 --severity HIGH --no-progress --auto-
refresh trivy-ci-test:${CI_COMMIT_REF_NAME}
 - ./trivy --exit-code 1 --severity CRITICAL --no-progress --
auto-refresh trivy-ci-test:${CI_COMMIT_REF_NAME}
 cache:
 directories:
 - $HOME/.cache/trivy

Now, you can run your pipeline and the new stage will be included in your pipeline. The
pipeline will fail if a critical vulnerability is detected. If you don't want the stage to fail your
pipeline, you can also specify --exit-code 0 for critical vulnerabilities.

Building vulnerability scanning into CircleCI
CircleCI uses Orbs to wrap predefined examples to speed up your project configurations.
Currently, Trivy doesn't have a CircleCI Orb, but it is still easy to configure Trivy with
CircleCI. This recipe will take you through adding a test stage to the CircleCI pipeline.

Let's perform the following steps to add Trivy vulnerability checks in CircleCI:

Edit the CircleCI configuration file located in our project repository in1.
.circleci/config.yml. You can find our example in the
src/chapter9/devsecops directory:

$ vim .circleci/config.yml

Start by adding the job and the image. In this recipe, the job name is build:2.

jobs:
 build:
 docker:
 - image: docker:18.09-git
#Add the Step 3 here

Securing Applications and Clusters Chapter 9

[480]

Start adding the steps to build your image. The checkout step will checkout the3.
project from its code repository. Since our job will require docker commands,
add setup_remote_docker. When this step is executed, a remote environment
will be created and your current primary container will be configured
appropriately:

 steps:
 - checkout
 - setup_remote_docker
 - restore_cache:
 key: vulnerability-db
 - run:
 name: Build image
 command: docker build -t trivy-ci-test:${CIRCLE_SHA1} .
#Add the Step 4 here

Add the necessary step to install Trivy:4.

 - run:
 name: Install trivy
 command: |
 apk add --update curl
 VERSION=$(
 curl --silent
"https://api.github.com/repos/aquasecurity/trivy/releases/latest" |
\
 grep '"tag_name":' | \
 sed -E 's/.*"v([^"]+)".*/\1/'
)

 wget
https://github.com/aquasecurity/trivy/releases/download/v${VERSION}
/trivy_${VERSION}_Linux-64bit.tar.gz
 tar zxvf trivy_${VERSION}_Linux-64bit.tar.gz
 mv trivy /usr/local/bin
#Add the Step 5 here

Add the step that will scan a local image with Trivy. Modify the trivy5.
parameters and preferred exit codes as needed. Here, trivy only checks for
critical vulnerabilities (--severity CRITICAL) and fails if a vulnerability is
found (--exit-code 1). It suppresses the progress bar (--no-progress) and
refreshes the database automatically when updating its version (--auto-
refresh):

 - run:
 name: Scan the local image with trivy

Securing Applications and Clusters Chapter 9

[481]

 command: trivy --exit-code 1 --severity CRITICAL --no-
progress --auto-refresh trivy-ci-test:${CIRCLE_SHA1}
 - save_cache:
 key: vulnerability-db
 paths:
 - $HOME/.cache/trivy
#Add the Step 6 here

Finally, update the workflows to trigger the vulnerability scan:6.

workflows:
 version: 2
 release:
 jobs:
 - build

Now, you can run your pipeline in CircleCI and the new stage will be included in your
pipeline.

See also
Aqua Security Trivy Comparison: https:/ / github. com/ aquasecurity/
trivy#comparison- with- other- scanners

Aqua Security Trivy CI examples: https:/ /github. com/aquasecurity/
trivy#comparison- with- other- scanners

Aqua Security Trivy Alternatives for image vulnerability testing:
Aqua Security Microscanner: https:/ /github. com/ aquasecurity/
microscanner

Clair: https:/ /github. com/ coreos/ clair

Docker Hub: https:/ /beta. docs. docker. com/ v17.12/ docker-
cloud/ builds/ image- scan/

GCR: https:/ / cloud. google. com/ container- registry/ docs/
container- analysis

Layered Insight: https://layeredinsight.com/
NeuVector: https:/ /neuvector. com/ vulnerability- scanning/

Sysdig Secure: https:/ / sysdig. com/ products/ secure/

Quay: https:/ / coreos. com/ quay- enterprise/ docs/ latest/
security- scanning. html

Twistlock: https:/ /www. twistlock. com/ platform/
vulnerability- management- tools/

https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/trivy#comparison-with-other-scanners
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://beta.docs.docker.com/v17.12/docker-cloud/builds/image-scan/
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://cloud.google.com/container-registry/docs/container-analysis
https://layeredinsight.com/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://neuvector.com/vulnerability-scanning/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://sysdig.com/products/secure/
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://coreos.com/quay-enterprise/docs/latest/security-scanning.html
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/
https://www.twistlock.com/platform/vulnerability-management-tools/

Securing Applications and Clusters Chapter 9

[482]

Monitoring suspicious application activities
using Falco
Falco is a cloud-native runtime security toolset. Falco gains deep insight into system
behavior through its runtime rule engine. It is used to detect intrusions and abnormalities
in applications, containers, hosts, and the Kubernetes orchestrator.

In this section, we will cover the installation and basic usage of Falco on Kubernetes.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter9 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter9

Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
This section will show you how to configure and run Falco. This section is further divided
into the following subsections to make this process easier:

Installing Falco on Kubernetes
Detecting anomalies using Falco
Defining custom rules

Installing Falco on Kubernetes
Falco can be installed in various ways, including directly on Linux hosts by deploying Falco
as a DaemonSet or by using Helm. This recipe will show you how to install Falco as a
DaemonSet.

Securing Applications and Clusters Chapter 9

[483]

Let's perform the following steps to get Falco deployed on our cluster:

Clone the Falco repository into your current working directory:1.

$ git clone https://github.com/falcosecurity/falco.git
$ cd falco/integrations/k8s-using-daemonset/k8s-with-rbac

Create a Service Account for Falco. The following command will also create the2.
ClusterRole and ClusterRoleBinding for it:

$ kubectl create -f falco-account.yaml

Create a service using the following command from the cloned repository3.
location:

$ kubectl create -f falco-service.yaml

Create a config directory and copy the deployment configuration file and rule4.
files in the config directory. We will need to edit these later:

$ mkdir config
$ cp ../../../falco.yaml config/
$ cp ../../../rules/falco_rules.* config/
$ cp ../../../rules/k8s_audit_rules.yaml config/

Create a ConfigMap using the config files in the config/ directory.5.
Later, the DaemonSet will make the configuration available to Falco
pods using the ConfigMap:

$ kubectl create configmap falco-config --from-file=config

Finally, deploy Falco using the following command:6.

$ kubectl create -f falco-daemonset-configmap.yaml

Verify that the DaemonSet pods have been successfully created. You should see7.
one pod per schedulable worker node on the cluster. In our example, we used a
Kubernetes cluster with four worker nodes:

$ kubectl get pods | grep falco-daemonset
falco-daemonset-94p8w 1/1 Running 0 2m34s
falco-daemonset-c49v5 1/1 Running 0 2m34s
falco-daemonset-htrxw 1/1 Running 0 2m34s
falco-daemonset-kwms5 1/1 Running 0 2m34s

With that, Falco has been deployed and started monitoring behavioral activity to
detect anomalous activities in our applications on our nodes.

Securing Applications and Clusters Chapter 9

[484]

Detecting anomalies using Falco
Falco detects a variety of suspicious behavior. In this recipe, we will produce some
activities that would be suspicious on a normal production cluster.

Let's perform the following steps to produce activities that would trigger a syscall event
drop:

First, we need to review the full rules before we test some of the behaviors. Falco1.
has two rules files. The default rules are located at
/etc/falco/falco_rules.yaml, while the local rules file is located at
/etc/falco/falco_rules.local.yaml. Your custom rules and modifications
should be in the falco_rules.local.yaml file:

$ cat config/falco_rules.yaml
$ cat config/falco_rules.local.yaml

You will see a long list of default rules and macros. Some of them are as follows:2.

- rule: Disallowed SSH Connection
- rule: Launch Disallowed Container
- rule: Contact K8S API Server From Container
- rule: Unexpected K8s NodePort Connection
- rule: Launch Suspicious Network Tool in Container
- rule: Create Symlink Over Sensitive Files
- rule: Detect crypto miners using the Stratum protocol

Let's test that Falco is working by getting a bash shell into one of the Falco pods3.
and view the logs afterward. List the Falco pods:

$ kubectl get pods | grep falco-daemonset
falco-daemonset-94p8w 1/1 Running 0 2m34s
falco-daemonset-c49v5 1/1 Running 0 2m34s
falco-daemonset-htrxw 1/1 Running 0 2m34s
falco-daemonset-kwms5 1/1 Running 0 2m34s

Get bash shell access to one of the Falco pods from the output of the preceding4.
command and view the logs:

$ kubectl exec -it falco-daemonset-94p8w bash
$ kubectl logs falco-daemonset-94p8w

Securing Applications and Clusters Chapter 9

[485]

In the logs, you will see that Falco detects our shell access to the pods:5.

{"output":"00:58:23.798345403: Notice A shell was spawned in a
container with an attached terminal (user=root k8s.ns=default
k8s.pod=falco-daemonset-94p8w container=0fcbc74d1b4c shell=bash
parent=docker-runc cmdline=bash terminal=34816
container_id=0fcbc74d1b4c image=falcosecurity/falco) k8s.ns=default
k8s.pod=falco-daemonset-94p8w container=0fcbc74d1b4c k8s.ns=default
k8s.pod=falco-daemonset-94p8w
container=0fcbc74d1b4c","priority":"Notice","rule":"Terminal shell
in container","time":"2019-11-13T00:58:23.798345403Z",
"output_fields":
{"container.id":"0fcbc74d1b4c","container.image.repository":"falcos
ecurity/falco","evt.time":1573606703798345403,"k8s.ns.name":"defaul
t","k8s.pod.name":"falco-
daemonset-94p8w","proc.cmdline":"bash","proc.name":"bash","proc.pna
me":"docker-runc","proc.tty":34816,"user.name":"root"}}

With that, you've learned how to use Falco to detect anomalies and suspicious behavior.

Defining custom rules
Falco rules can be extended by adding our own rules. In this recipe, we will deploy a
simple application and create a new rule to detect a malicious application accessing our
database.

Perform the following steps to create an application and define custom rules for Falco:

Change to the src/chapter9/falco directory, which is where our examples are1.
located:

$ cd src/chapter9/falco

Create a new falcotest namespace:2.

$ kubectl create ns falcotest

Review the YAML manifest and deploy them using the following commands.3.
These commands will create a MySQL pod, web application, a client that we will
use to ping the application, and its services:

$ kubectl create -f mysql.yaml
$ kubectl create -f ping.yaml
$ kubectl create -f client.yaml

Securing Applications and Clusters Chapter 9

[486]

Now, use the client pod with the default credentials of bob/foobar to send a4.
ping to our application. As expected, we will be able to authenticate and
complete the task successfully:

$ kubectl exec client -n falcotest -- curl -F "s=OK" -F "user=bob"
-F "passwd=foobar" -F "ipaddr=localhost" -X POST
http://ping/ping.php

Edit the falco_rules.local.yaml file:5.

$ vim config/falco_rules.local.yaml

Add the following rule to the end of the file and save it:6.

 - rule: Unauthorized process
 desc: There is a running process not described in the base
template
 condition: spawned_process and container and
k8s.ns.name=falcotest and k8s.deployment.name=ping and not
proc.name in (apache2, sh, ping)
 output: Unauthorized process (%proc.cmdline) running in
(%container.id)
 priority: ERROR
 tags: [process]

Update the ConfigMap that's being used for the DaemonSet and delete the pods7.
to get a new configuration by running the following command:

$ kubectl delete -f falco-daemonset-configmap.yaml
$ kubectl create configmap falco-config --from-file=config --dry-
run --save-config -o yaml | kubectl apply -f -
$ kubectl apply -f falco-daemonset-configmap.yaml

We will execute a SQL injection attack and access the file where our MySQL8.
credentials are stored. Our new custom rule should be able to detect it:

$ kubectl exec client -n falcotest -- curl -F "s=OK" -F "user=bad"
-F "passwd=wrongpasswd' OR 'a'='a" -F "ipaddr=localhost; cat
/var/www/html/ping.php" -X POST http://ping/ping.php

The preceding command will return the content of the PHP file. You will be able9.
to find the MySQL credentials there:

3 packets transmitted, 3 received, 0% packet loss, time 2044ms
rtt min/avg/max/mdev = 0.028/0.035/0.045/0.007 ms
<?php
$link = mysqli_connect("mysql", "root", "foobar", "employees");
?>

Securing Applications and Clusters Chapter 9

[487]

List the Falco pods:10.

$ kubectl get pods | grep falco-daemonset
falco-daemonset-5785b 1/1 Running 0 9m52s
falco-daemonset-brjs7 1/1 Running 0 9m52s
falco-daemonset-mqcjq 1/1 Running 0 9m52s
falco-daemonset-pdx45 1/1 Running 0 9m52s

View the logs from a Falco pod:11.

$ kubectl exec -it falco-daemonset-94p8w bash
$ kubectl logs falco-daemonset-94p8w

In the logs, you will see that Falco detects our shell access to the pods:12.

05:41:59.9275580001: Error Unauthorized process (cat
/var/www/html/ping.php) running in (5f1b6d304f99) k8s.ns=falcotest
k8s.pod=ping-74dbb488b6-6hwp6 container=5f1b6d304f99

With that, you know how to add custom rules using Kubernetes metadata such
as k8s.ns.name and k8s.deployment.name. You can also use other filters. This is
described in more detail in the Supported filters link in See also section.

How it works...
This recipe showed you how to detect anomalies based on the predefined and custom rules
of your applications when they're running on Kubernetes.

In the Installing Falco on Kubernetes recipe, in Step 5, we created a ConfigMap to be used by
the Falco pods. Falco has two types of rules files.

In Step 6, when we created the DaemonSet, all the default rules are provided through the
falco_rules.yaml file in the ConfigMap.These are placed in
/etc/falco/falco_rules.yaml inside the pods, while the local rules file
, falco_rules.local.yaml, can be found at /etc/falco/falco_rules.local.yaml.

The default rules file contains rules for many common anomalies and threats. All pieces of
customization must be added to the falco_rules.local.yaml file, which we did in the
Defining custom rules recipe.

In the Defining custom rules recipe, in Step 6, we created a custom rule file containing the
rules element. The Falco rule file is a YAML file that uses three kinds of elements: rules,
macros, and lists.

Securing Applications and Clusters Chapter 9

[488]

The rules define certain conditions to send alerts about them. A rule is a file that contains at
least the following keys:

rule: The name of the rule
condition: An expression that's applied to events to check if they match the rule
desc: Detailed description of what the rule is used for
output: The message that is displayed to the user
priority: Either emergency, alert, critical, error, warning, notice, informational,
or debug

You can find out more about these rules by going to the Understanding Falco Rules link that's
provided in the See also section.

See also
Falco documentation: https:/ / falco. org/docs/

Falco repository and integration examples: https:/ / github. com/
falcosecurity/ falco

Understanding Falco
Rules: https://falco.org/dochttps://falco.org/docs/rules/s/rules/
Comparing Falco with other tools: https:/ /sysdig. com/ blog/ selinux- seccomp-
falco-technical- discussion/

Supported filters: https:/ / github. com/draios/ sysdig/ wiki/ Sysdig- User-
Guide#all- supported- filters

Securing credentials using HashiCorp Vault
HashiCorp Vault is a popular tool for securely storing and accessing secrets such as
credentials, API keys, and certificates. Vault provides secure secret storage, on-demand
dynamic secrets, data encryption, and support for secret revocation.

In this section, we will cover the installation and basic use case of accessing and storing
secrets for Kubernetes.

https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://falco.org/docs/
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://falco.org/dochttps://falco.org/docs/rules/s/rules/
https://falco.org/dochttps://falco.org/docs/rules/s/rules/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://sysdig.com/blog/selinux-seccomp-falco-technical-discussion/
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#all-supported-filters

Securing Applications and Clusters Chapter 9

[489]

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter9 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter9

Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
This section is further divided into the following subsections to make this process easier:

Installing Vault on Kubernetes
Accessing the Vault UI
Storing credentials on Vault

Installing Vault on Kubernetes
This recipe will show you how to get a Vault service on Kubernetes. Let's perform the
following steps to get Vault installed using Helm charts:

Clone the chart repository:1.

$ git clone https://github.com/hashicorp/vault-helm.git
$ cd vault-helm

Check out the latest stable release: 2.

$ git checkout v$(curl --silent
"https://api.github.com/repos/hashicorp/vault-helm/releases/latest"
| \
grep '"tag_name":' | \
sed -E 's/.*"v([^"]+)".*/\1/')

If you would like to install a highly available Vault, skip to Step 4; otherwise,3.
install the standalone version using the Helm chart parameters shown here:

$ helm install --name vault --namespace vault ./

Securing Applications and Clusters Chapter 9

[490]

To deploy a highly available version that uses an HA storage backend such as4.
Consul, use the following Helm chart parameters. This will deploy Vault using a
StatefulSet with three replicas:

$ helm install --name vault --namespace vault --
set='server.ha.enabled=true' ./

Verify the status of the pods. You will notice that the pods aren't ready since the5.
readiness probe requires Vault to be initialized first:

$ $ kubectl get pods -nvault
NAME READY STATUS RESTARTS AGE
vault-0 0/1 Running 0 83s
vault-agent-injector-5fb898d6cd-rct82 1/1 Running 0 84s

Check the initialization status. It should be false:6.

$ kubectl exec -it vault-0 -nvault -- vault status
Key Value
--- -----
Seal Type shamir
Initialized false
Sealed true
Total Shares 0
Threshold 0
Unseal Progress 0/0
Unseal Nonce n/a
Version n/a
HA Enabled false

Initialize the Vault instance. The following command will return an unseal key7.
and root token:

$ kubectl exec -it vault-0 -nvault -- vault operator init -n 1 -t 1

Unseal Key 1: lhLeU6SRdUNQgfpWAqWknwSxns1tfWP57iZQbbYtFSE=
Initial Root Token: s.CzcefEkOYmCt70fGSbHgSZl4
Vault initialized with 1 key shares and a key threshold of 1.
Please securely
distribute the key shares printed above. When the Vault is re-
sealed,
restarted, or stopped, you must supply at least 1 of these keys to
unseal it
before it can start servicing requests.

Securing Applications and Clusters Chapter 9

[491]

Unseal Vault using the unseal key from the output of the following command:8.

$ kubectl exec -it vault-0 -nvault -- vault operator unseal
lhLeU6SRdUNQgfpWAqWknwSxns1tfWP57iZQbbYtFSE=
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed false
Total Shares 1
Threshold 1
Version 1.3.1
Cluster Name vault-cluster-6970c528
Cluster ID dd88cca8-20bb-326c-acb3-2d924bb1805c
HA Enabled false

Verify the pod's status. You will see that the readiness probe has been validated9.
and that the pod is ready:

$ kubectl get pods -nvault
NAME READY STATUS RESTARTS AGE
vault-0 1/1 Running 0 6m29s
vault-agent-injector-5fb898d6cd-rct82 1/1 Running 0 6m30s

Vault is ready to be used after it is initialized. Now, you know how to get Vault running on
Kubernetes.

Accessing the Vault UI
By default, the Vault UI is enabled when using a Helm chart installation. Let's perform the
following steps to access the Vault UI:

Since access to Vault is a security concern, it is not recommended to expose it1.
with a service. Use port-forwarding to access the Vault UI using the following
command:

$ kubectl port-forward vault-0 -nvault 8200:8200

Securing Applications and Clusters Chapter 9

[492]

Once forwarding is complete, you can access the UI2.
at http://localhost:8200:

Now, you have access to the web UI. Take the Vault Web UI tour to familiarize yourself
with its functionality.

Securing Applications and Clusters Chapter 9

[493]

Storing credentials on Vault
This recipe will show you how to use Vault in Kubernetes and retrieve secrets from Vault.

Let's perform the following steps to enable the Kubernetes authentication method in Vault:

Log in to Vault using your token:1.

$ vault login <root-token-here>

Write a secret to Vault:2.

$ vault write secret/foo value=bar
Success! Data written to: secret/foo
$ vault read secret/foo
Key Value
--- -----
refresh_interval 768h
value bar

Let's configure Vault's Kubernetes authentication backend. First, create a3.
ServiceAccount:

$ kubectl -n vault create serviceaccount vault-k8s

Create a RoleBinding for the vault-k8s ServiceAccount:4.

$ cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: role-tokenreview-binding
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:auth-delegator
subjects:
- kind: ServiceAccount
 name: vault-k8s
 namespace: default
EOF

Securing Applications and Clusters Chapter 9

[494]

Get the token:5.

$ SECRET_NAME=$(kubectl -n vault get serviceaccount vault-k8s -o
jsonpath={.secrets[0].name})
$ ACCOUNT_TOKEN=$(kubectl -n vault get secret ${SECRET_NAME} -o
jsonpath={.data.token} | base64 --decode; echo)
$ export VAULT_SA_NAME=$(kubectl get sa -n vault vault-k8s -o
jsonpath=”{.secrets[*].name}”)
$ export SA_CA_CRT=$(kubectl get secret $VAULT_SA_NAME -n vault -o
jsonpath={.data.'ca\.crt'} | base64 --decode; echo)

Enable the Kubernetes auth backend in the vault:6.

$ vault auth enable kubernetes
$ vault write auth/kubernetes/config
kubernetes_host=”https://MASTER_IP:6443"
kubernetes_ca_cert=”$SA_CA_CRT”
token_reviewer_jwt=$TR_ACCOUNT_TOKEN

Create a new policy called vault-policy from the example repository using7.
the policy.hcl: file:

$ vault write sys/policy/vault-policy policy=@policy.hcl

Next, create a Role for the ServiceAccount:8.

$ vault write auth/kubernetes/role/demo-role \
 bound_service_account_names=vault-coreos-test \
 bound_service_account_namespaces=default \
 policies=demo-policy \
 ttl=1h

Authenticate with the Role by running the following command:9.

$ DEFAULT_ACCOUNT_TOKEN=$(kubectl get secret $VAULT_SA_NAME -n
vault -o jsonpath={.data.token} | base64 — decode; echo)

Log in to the Vault with the token by running the following command:10.

$ vault write auth/kubernetes/login role=demo-role
jwt=${DEFAULT_ACCOUNT_TOKEN}

Create a secret at the secret/demo path:11.

$ vault write secret/demo/foo value=bar

With that, you've learned how to create a Kubernetes auth backend with Vault and use
Vault to store Kubernetes secrets.

Securing Applications and Clusters Chapter 9

[495]

See also
Hashicorp Vault documentation: https:/ /www. vaultproject. io/docs/

Hashicorp Vault repository: https:/ /github. com/hashicorp/ vault- helm

Hands-on with Vault on Kubernetes: https:/ /github. com/hashicorp/ hands-
on-with- vault- on- kubernetes

https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://www.vaultproject.io/docs/
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/vault-helm
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes
https://github.com/hashicorp/hands-on-with-vault-on-kubernetes

10
Logging with Kubernetes

In this chapter, we will discuss cluster logging for Kubernetes clusters. We will talk about
setting up a cluster to ingest logs, as well as how to view them using both self-managed
and hosted solutions.

In this chapter, we will cover the following recipes:

Accessing Kubernetes logs locally
Accessing application-specific logs
Building centralized logging in Kubernetes using the EFK stack
Logging with Kubernetes using Google Stackdriver
Using a managed Kubernetes logging service
Logging for your Jenkins CI/CD environment

Technical requirements
The recipes in this chapter expect you to have a functional Kubernetes cluster deployed by
following one of the recommended methods described in Chapter 1, Building Production-
Ready Kubernetes Clusters.

The Logging for your Jenkins CI/CD environment recipe in this chapter expects you to have a
functional Jenkins server with an existing CI pipeline created by following one of the
recommended methods described in Chapter 3, Building CI/CD Pipelines.

The Kubernetes command-line tool kubectl will be used for the rest of the recipes in this
chapter since it's the main command-line interface for running commands against
Kubernetes clusters. We will also use helm where Helm charts are available in order to
deploy solutions.

Logging with Kubernetes Chapter 10

[497]

Accessing Kubernetes logs locally
In Kubernetes, logs can be used for debugging and monitoring activities to a certain level.
Basic logging can be used to detect configuration problems, but for cluster-level logging, an
external backend is required to store and query logs. Cluster-level logging will be covered
in the Building centralized logging in Kubernetes using the EFK stack and Logging Kubernetes
using Google Stackdriver recipes.

In this section, we will learn how to access basic logs based on the options that are available
in Kubernetes.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter10 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter10

Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
This section is further divided into the following subsections to make this process easier:

Accessing logs through Kubernetes
Debugging services locally using Telepresence

Accessing logs through Kubernetes
This recipe will take you through how to access Kubernetes logs and debug services locally.

Logging with Kubernetes Chapter 10

[498]

Let's perform the following steps to view logs by using the various options that are
available in Kubernetes:

Get the list of pods running in the kube-system namespace. The pods running1.
in this namespace, especially kube-apiserver, kube-controller-manager,
kube-dns, and kube-scheduler, play a critical role in the Kubernetes control
plane:

$ kubectl get pods -n kube-system
NAME READY STATUS RST
AGE
dns-controller-6577fb57f7-hx9wz 1/1 Running 0
16d
etcd-manager-events-ip-172-20-8-2.ec2.internal 1/1 Running 0
16d
etcd-manager-main-ip-172-20-8-2.ec2.internal 1/1 Running 0
16d
kube-apiserver-ip-172-20-8-2.ec2.internal 1/1 Running 2
16d
kube-controller-manager-ip-172-20-8-2.ec2.int... 1/1 Running 0
16d
kube-dns-66d58c65d5-mw6n5 3/3 Running 0
16d
kube-dns-66d58c65d5-rntmj 3/3 Running 0
16d
kube-dns-autoscaler-6567f59ccb-c9rmv 1/1 Running 0
16d
kube-proxy-ip-172-20-32-123.ec2.internal 1/1 Running 0
16d
kube-proxy-ip-172-20-38-218.ec2.internal 1/1 Running 1
16d
kube-proxy-ip-172-20-45-93.ec2.internal 1/1 Running 0
16d
kube-scheduler-ip-172-20-58-244.ec2.internal 1/1 Running 0
3d6h

View the logs from a pod with a single container in the kube-system2.
namespace. In this example, this pod is kube-apiserver. Replace the pod's
name and repeat this for the other pods as needed:

$ kubectl logs kube-apiserver-ip-172-20-58-244.ec2.internal -n
kube-system
...
E1112 08:11:05.662027 1 authentication.go:65] Unable to
authenticate the request due to an error: [invalid bearer token,
Token has been invalidated]
I1112 09:09:39.448428 1 log.go:172] http: TLS handshake error from

Logging with Kubernetes Chapter 10

[499]

124.84.242.10:49016: tls: first record does not look like a TLS
handshake
I1112 09:30:00.726871 1 trace.go:81] Trace[76921086]:
"GuaranteedUpdate etcd3: *coordination.Lease" (started: 2019-11-12
09:30:00.177607414 +0000 UTC m=+1250671.527180434) (total time:
549.223921ms):

As shown in the preceding output, you can find the time, source, and a short
explanation of the event in the logs.

The output of the logs can become long, though most of the time all you
need is the last few events in the logs. If you don't want to get all the logs
since you only need the last few events in the log, you can add -tail to
the end of the command, along with the number of lines you want to look
at. For example, kubectl logs <podname> -n <namespace> -tail
10 would return the last 10 lines. Change the number as needed to limit
the output.

Pods can contain multiple containers. When you list the pods, the numbers under3.
the Ready column show the number of containers inside the pod. Let's view a
specific container log from a pod with multiple containers in the kube-system
namespace. Here, the pod we're looking at is called kube-dns. Replace the pod's
name and repeat this for any other pods with multiple containers:

$ kubectl -n kube-system logs kube-dns-66d58c65d5-mw6n5
Error from server (BadRequest): a container name must be specified
for pod kube-dns-66d58c65d5-mw6n5, choose one of: [kubedns dnsmasq
sidecar]
$ kubectl -n kube-system logs kube-dns-66d58c65d5-mw6n5 kubedns

To view the logs after a specific time, use the --since-time parameter with a4.
date, similar to what can be seen in the following code. You can either use an
absolute time or request a duration. Only the logs after the specified time or
within the duration will be displayed:

$ kubectl -n kube-system logs kube-dns-66d58c65d5-mw6n5 kubedns --
since-time="2019-11-14T04:59:40.417Z"
...
I1114 05:09:13.309614 1 dns.go:601] Could not find endpoints for
service "minio" in namespace "default". DNS records will be created
once endpoints show up.

Logging with Kubernetes Chapter 10

[500]

Instead of pod names, you can also view logs by label. Here, we're listing pods5.
using the k8s-app=kube-dns label. Since the pod contains multiple containers,
we can use the -c kubedns parameter to set the target container:

$ kubectl -n kube-system logs -l k8s-app=kube-dns -c kubedns

If the container has crashed or restarted, we can use the -p flag to retrieve logs6.
from a previous instantiation of a container, as follows:

$ kubectl -n kube-system logs -l k8s-app=kube-dns -c kubedns -p

Now you know how to access pod logs through Kubernetes.

Debugging services locally using Telepresence
When a build fails in your CI pipeline or a service running in a staging cluster contains a
bug, you may need to run the service locally to troubleshoot it properly. However,
applications depend on other applications and services on the cluster; for example, a
database. Telepresence helps you run your code locally, as a normal local process, and then
forwards requests to the Kubernetes cluster. This recipe will show you how to debug
services locally while running a local Kubernetes cluster.

Let's perform the following steps to view logs through the various options that are
available in Kubernetes:

On OSX, install the Telepresence binary using the following command:1.

$ brew cask install osxfuse
$ brew install datawire/blackbird/telepresence

On Windows, use Ubuntu on the Windows Subsystem for Linux (WSL). Then,
on Ubuntu, download and install the Telepresence binary using the following
command:

$ curl -s
https://packagecloud.io/install/repositories/datawireio/tel
epresence/script.deb.sh | sudo bash
$ sudo apt install --no-install-recommends telepresence

Now, create a deployment of your application. Here, we're using a hello-world2.
example:

$ kubectl run hello-world --image=datawire/hello-world --port=8000

Logging with Kubernetes Chapter 10

[501]

Expose the service using an external LoadBalancer and get the service IP:3.

$ kubectl expose deployment hello-world --type=LoadBalancer --
name=hello-world
$ kubectl get service hello-world
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
hello-world LoadBalancer 100.71.246.234 a643ea7bc0f0311ea.us-
east-1.elb.amazonaws.com 8000:30744/TCP 8s

To be able to query the address, store the address in a variable using the4.
following command:

$ export HELLOWORLD=http://$(kubectl get svc hello-world -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}'):8000

Send a query to the service. This will return a Hello, world! message similar5.
to the following:

$ curl $HELLOWORLD/
Hello, world!

Next, we will create a local web service and replace the Kubernetes service6.
hello-world message with the local web server service. First, create a directory
and a file to be shared using the HTTP server:

$ mkdir /tmp/local-test && cd /tmp/local-test
$ echo "hello this server runs locally on my laptop" > index.html

Create a web server and expose the service through port 8000 using the7.
following command:

$ telepresence --swap-deployment hello-world --expose 8000 \
--run python3 -m http.server 8000 &

...
T: Forwarding remote port 8000 to local port 8000.
T: Guessing that Services IP range is 100.64.0.0/13. Services
started after this point will be inaccessible if are outside
T: this range; restart telepresence if you can't access a new
Service.
T: Setup complete. Launching your command.
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Logging with Kubernetes Chapter 10

[502]

The preceding command will start a proxy using the vpn-tcp method. Other
methods can be found in the Full list of Telepresence methods link in the See also
section.

When a service is exposed over the network, remember that your
computer is exposed to all the risks of running a web server. When you
expose a web service using the commands described here, make sure that
you don't have any important files in the /tmp/local-test directory
that you don't want to expose externally.

Send a query to the service. You will see that queries to the hello-world Service8.
will be forwarded to your local web server:

$ curl $HELLOWORLD/
hello this server runs locally on my laptop

To end the local service, use the fg command to bring the background9.
Telepresence job in the current shell environment into the foreground. Then, use
the Ctrl + C keys to exit it.

How it works...
In this recipe, you learned how to access logs and debug service problems locally.

In the Debugging services locally using Telepresence recipe, in Step 7, we ran
the telepresence --swap-deployment command to replace the service with a local web
service.

Telepresence functions by building a two-way network proxy. The --swap-deployment
flag is used to define the pod that will be replaced with a proxy pod on the cluster.
Telepresence starts a vpn-tcp process to send all requests to the locally exposed port, that
is, 8000. The --run python3 -m http.server 8000 & flag tells Telepresence to run
an http.server using Python 3 in the background via port 8000.

In the same recipe, in Step 9, the fg command is used to move the background service to
the foreground. When you exit the service, the old pod will be restored. You can learn
about how Telepresence functions by looking at the How Telepresence works link in the See
also section.

Logging with Kubernetes Chapter 10

[503]

See also
kubectl log commands: https:/ /kubernetes. io/ docs/ reference/ generated/
kubectl/ kubectl- commands#logs

Telepresence source code repository: https:/ /github. com/ telepresenceio/
telepresence

Full list of Telepresence methods: https:/ /telepresence. io/ reference/
methods. html

How Telepresence works: https:/ /www. telepresence. io/discussion/ how-it-
works

How to use volume access support with Telepresence: https:/ /telepresence.
io/howto/ volumes. html

Accessing application-specific logs
In Kubernetes, pod and deployment logs that are related to how pods and containers are
scheduled can be accessed through the kubectl logs command, but not all application
logs and commands are exposed through Kubernetes APIs. Getting access to these logs and
shell commands inside a container may be required.

In this section, we will learn how to access a container shell, extract logs, and update
binaries for troubleshooting.

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files under the chapter10 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter10

Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#logs
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://github.com/telepresenceio/telepresence
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://telepresence.io/reference/methods.html
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://www.telepresence.io/discussion/how-it-works
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html
https://telepresence.io/howto/volumes.html

Logging with Kubernetes Chapter 10

[504]

How to do it…
This section is further divided into the following subsections to make this process easier:

Getting shell access in a container
Accessing PostgreSQL logs inside a container

Getting shell access in a container
Let's perform the following steps to create a deployment with multiple containers and get a
shell into running containers:

In this recipe, we will deploy PostgreSQL on OpenEBS persistent volumes to1.
demonstrate shell access. Change the directory to the example files directory
in src/chapter10/postgres, which is where all the YAML manifest for this
recipe are stored. Create a ConfigMap with a database name and credentials
similar to the following or review them and use the cm-postgres.yaml file:

$ cd postgres
$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ConfigMap
metadata:
 name: postgres-config
 labels:
 app: postgres
data:
 POSTGRES_DB: postgresdb
 POSTGRES_USER: testuser
 POSTGRES_PASSWORD: testpassword123
EOF

Create the service for postgres:2.

$ cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: postgres
 labels:
 app: postgres
spec:
 type: NodePort
 ports:
 - port: 5432

Logging with Kubernetes Chapter 10

[505]

 selector:
 app: postgres
EOF

Review the postgres.yaml file and apply it to create the PostgreSQL3.
StatefulSet. We can use this to deploy the pods and to auto-create the PV/PVC:

$ kubectl apply -f postgres.yaml

Get the pods with the postgres label:4.

$ kubectl get pods -l app=postgres
NAME READY STATUS RESTARTS AGE
postgres-0 1/1 Running 0 7m5s
postgres-1 1/1 Running 0 6m58s

Get a shell into the postgres-0 container:5.

$ kubectl exec -it postgres-0 -- /bin/bash

The preceding command will get you shell access to the running container.

Accessing PostgreSQL logs inside a container
Let's perform the following steps to get the logs from the application running inside a
container:

While you are in a shell, connect to the PostgreSQL database named postgresdb1.
using the username testuser. You will see the PostgreSQL prompt, as follows:

$ psql --username testuser postgresdb
psql (12.1 (Debian 12.1-1.pgdg100+1))
Type "help" for help.

While on the PostgreSQL prompt, use the following command to create a table2.
and add some data to it:

CREATE TABLE test (
 id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 a int NOT NULL,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP
);
INSERT INTO test (a) SELECT * FROM generate_series(-1, -1000, -1);

Logging with Kubernetes Chapter 10

[506]

Get the log's configuration details frompostgresql.conf. You will see that the3.
logs are stored in the /var/log/postgresql directory:

$ cat /var/lib/postgresql/data/postgresql.conf |grep log

List and access the logs in the /var/log/postgresql directory:4.

$ ls /var/log/postgresql

Optionally, while you're inside the container, you can create a backup of our5.
example postgresdb database in the tmp directory using the following
command:

$ pg_dump --username testuser postgresdb > /tmp/backup.sql

With that, you have learned how to get shell access into a container and how to access the
locally stored logs and files inside the container.

Building centralized logging in Kubernetes
using the EFK stack
As described in the the Accessing Kubernetes logs locally section, basic logging can be used to
detect configuration problems, but for cluster-level logging, an external backend is required
to store and query logs. A cluster-level logging stack can help you quickly sort through and
analyze the high volume of production log data that's produced by your application in the
Kubernetes cluster. One of the most popular centralized logging solutions in the
Kubernetes ecosystem is the Elasticsearch, Logstash, and Kibana (ELK) stack.

In the ELK stack, Logstash is used as the log collector. Logstash uses slightly more memory
than Fluent Bit, which is a low-footprint version of Fluentd. Therefore, in this recipe, we
will use the Elasticsearch, Fluent-bit, and Kibana (EFK) stack. If you have an application
that has Logstash dependencies, you can always replace Fluentd/Fluent Bit with Logstash.

In this section, we will learn how to build a cluster-level logging system using the EFK
stack to manage Kubernetes logs.

Logging with Kubernetes Chapter 10

[507]

Getting ready
Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter10 directory, as follows:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter10

Make sure you have a Kubernetes cluster ready and kubectl and helm configured to
manage the cluster resources.

How to do it…
This section will show you how to configure an EFK stack on your Kubernetes cluster. This
section is further divided into the following subsections to make this process easier:

Deploying Elasticsearch Operator
Requesting an Elasticsearch endpoint
Deploying Kibana
Aggregating logs with Fluent Bit
Accessing Kubernetes logs on Kibana

Deploying Elasticsearch Operator
Elasticsearch is a highly scalable open source full-text search and analytics engine.
Elasticsearch allows you to store, search, and analyze big volumes of data quickly. In this
recipe, we will use it to store Kubernetes logs.

Let's perform the following steps to get Elastic Cloud on Kubernetes (ECK) deployed:

Deploy Elasticsearch Operator and its CRDs using the following command:1.

$ kubectl apply -f
https://download.elastic.co/downloads/eck/1.0.0/all-in-one.yaml

Logging with Kubernetes Chapter 10

[508]

Elasticsearch Operator will create its own CustomResourceDefinition (CRD).2.
We will use this CRD later to deploy and manage Elasticsearch instances on
Kubernetes. List the new CRDs using the following command:

$ kubectl get crds |grep elastic.co
apmservers.apm.k8s.elastic.co 2019-11-25T07:52:16Z
elasticsearches.elasticsearch.k8s.elastic.co 2019-11-25T07:52:17Z
kibanas.kibana.k8s.elastic.co 2019-11-25T07:52:17Z

Create a new namespace called logging:3.

$ kubectl create ns logging

Create Elasticsearch using the default parameters in the logging namespace4.
using the following command:

$ cat <<EOF | kubectl apply -f -
apiVersion: elasticsearch.k8s.elastic.co/v1beta1
kind: Elasticsearch
metadata:
 name: elasticsearch
 namespace: logging
spec:
 version: 7.4.2
 nodeSets:
 - name: default
 count: 3
 config:
 node.master: true
 node.data: true
 node.ingest: true
 node.store.allow_mmap: false
EOF

Get the status of the Elasticsearch nodes:5.

$ kubectl get elasticsearch -n logging
NAME HEALTH NODES VERSION PHASE AGE
elasticsearch green 3 7.4.2 Ready 86s

You can also confirm the pod's status in the logging namespace using the6.
following command:

$ kubectl get pods -n logging
NAME READY STATUS RESTARTS AGE
elasticsearch-es-default-0 1/1 Running 0 2m24s
elasticsearch-es-default-1 1/1 Running 0 2m24s
elasticsearch-es-default-2 1/1 Running 0 2m24s

Logging with Kubernetes Chapter 10

[509]

A three-node Elasticsearch cluster will be created. By default, the nodes we created here are
all of the following types: master-eligible, data, and ingest. As your Elasticsearch cluster
grows, it is recommended to create dedicated master-eligible, data, and ingest nodes.

Requesting the Elasticsearch endpoint
When an Elasticsearch cluster is created, a default user password is generated and stored in
a Kubernetes secret. You will need the full credentials to request the Elasticsearch endpoint.

Let's perform the following steps to request Elasticsearch access:

Get the password that was generated for the default elastic user:1.

$ PASSWORD=$(kubectl get secret elasticsearch-es-elastic-user \
-n logging -o=jsonpath='{.data.elastic}' | base64 --decode)

Request the Elasticsearch endpoint address:2.

$ curl -u "elastic:$PASSWORD" -k
"https://elasticsearch-es-http:9200"
{
 "name" : "elasticsearch-es-default-2",
 "cluster_name" : "elasticsearch",
 "cluster_uuid" : "E_ATzAz8Th6oMvd4D_QocA",
 "version" : {...},
 "tagline" : "You Know, for Search"
}

If you are accessing the Kubernetes cluster remotely, you can create a port-forwarding
service and use localhost, similar to what can be seen in the following code:

$ kubectl port-forward service/quickstart-es-http 9200
$ curl -u "elastic:$PASSWORD" -k "https://localhost:9200"

Now, we have access to our three-node small Elasticsearch cluster that we deployed on
Kubernetes. Next, we need to deploy Kibana to complete the stack.

Deploying Kibana
Kibana is an open source data visualization dashboard that lets you visualize your
Elasticsearch data.

Logging with Kubernetes Chapter 10

[510]

Let's perform the following steps to get Kibana deployed:

Create a Kibana instance associated with the Elasticsearch cluster we created1.
previously:

$ cat <<EOF | kubectl apply -f -
apiVersion: kibana.k8s.elastic.co/v1beta1
kind: Kibana
metadata:
 name: mykibana
 namespace: logging
spec:
 version: 7.4.2
 count: 1
 elasticsearchRef:
 name: elasticsearch
EOF

Get the status of the Kibana node:2.

$ kubectl get elasticsearch -n logging
NAME HEALTH NODES VERSION AGE
mykibana green 1 7.4.2 2m27s

You can also confirm the pod's status in the logging namespace using the3.
following command:

$ kubectl get pods -n logging
NAME READY STATUS RESTARTS AGE
elasticsearch-es-default-0 1/1 Running 0 37m
elasticsearch-es-default-1 1/1 Running 0 37m
elasticsearch-es-default-2 1/1 Running 0 37m
mykibana-kb-7864bfdb45-26lpq 1/1 Running 0 3m36s

With that, you have both Elasticsearch and Kibana nodes deployed. Next, we will deploy
fluent-bit to forward container logs to our Elasticsearch deployment.

Aggregating logs with Fluent Bit
Let's perform the following steps to get fluent-bit deployed:

Get the password for the default elastic user:1.

$ kubectl get secret elasticsearch-es-elastic-user \
-n logging -o=jsonpath='{.data.elastic}' | base64 --decode; echo

Logging with Kubernetes Chapter 10

[511]

Copy the output of Step 1 and edit the fluent-bit-values.yaml file in the2.
/src/chapter10/efk directory. Replace the http_passwd value with the
output of Step 1 and save the file:

backend:
 type: es
 es:
 host: elasticsearch-es-http
 port: 9200
 http_user: elastic
 http_passwd: m2zr9fz49zqbkbpksprf4r76
 # Optional TLS encryption to ElasticSearch instance
 tls: "on"
 tls_verify: "off"

Deploy fluent-bit using the Helm chart:3.

$ helm install stable/fluent-bit --name=fluent-bit --
namespace=logging -f fluent-bit-values.yaml

Confirm the pod's status in the logging namespace using the following4.
command:

$ kubectl get pods -n logging
NAME READY STATUS RESTARTS AGE
elasticsearch-es-default-0 1/1 Running 0 158m
elasticsearch-es-default-1 1/1 Running 0 158m
elasticsearch-es-default-2 1/1 Running 0 158m
fluent-bit-249ct 1/1 Running 0 2m11s
fluent-bit-4nb9k 1/1 Running 0 2m11s
fluent-bit-fqtz9 1/1 Running 0 2m11s
fluent-bit-lg9hn 1/1 Running 0 2m11s
mykibana-kb-5596b888b5-qv8wn 1/1 Running 0 115m

With that, you have deployed all the components of the EFK stack. Next, we will connect to
the Kibana dashboard.

Accessing Kubernetes logs on Kibana
Let's perform the following steps to connect to the Kibana dashboard:

Confirm that the Kibana service has been created. By default, a ClusterIP1.
service will be created:

$ kubectl get service mykibana-kb-http -n logging

Logging with Kubernetes Chapter 10

[512]

Before we connect to the dashboard, get the password for the default elastic2.
user:

$ kubectl get secret elasticsearch-es-elastic-user \
-n logging -o=jsonpath='{.data.elastic}' | base64 --decode; echo

Create a port-forwarding service to access the Kibana dashboard from your3.
workstation:

$ kubectl port-forward service/mykibana-kb-http 5601

Open the Kibana dashboard at https://localhost:5601 in your browser.4.
Enter elastic as the username and the password from the output of Step 2:

Logging with Kubernetes Chapter 10

[513]

On the home page, click on the Connect to your Elasticsarch index button, as 5.
shown in the following screenshot:

Logging with Kubernetes Chapter 10

[514]

Kibana will search for Elasticsearch index patterns. Define the index pattern that6.
matches your results. In our example, we used kubernetes_cluster-*. Click
on Next step to continue:

Logging with Kubernetes Chapter 10

[515]

Specify Time Filter field name as @timestamp and click on the Create index7.
pattern button, as shown in the following screenshot:

Click on the Discover menu. It is the first icon from the top:8.

Logging with Kubernetes Chapter 10

[516]

On the Discover page, use the search field to look for keywords and filters:9.

Logging with Kubernetes Chapter 10

[517]

If the keyword you are looking for can't be found in the current time frame, you10.
need to change the date range by clicking on the calendar icon next to the search
field and clicking on the Apply button after the new range has been selected:

With that, you've learned how to configure an EFK stack on your Kubernetes cluster in
order to manage and visualize cluster-wide logs.

See also
Elastic Cloud on Kubernetes (ECK): https:/ /github. com/ elastic/ cloud- on-
k8s

Deployment instructions on Red Hat OpenShift: https:/ /www. elastic. co/
guide/en/ cloud- on- k8s/ 0. 9/ k8s-openshift. html

https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://github.com/elastic/cloud-on-k8s
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html
https://www.elastic.co/guide/en/cloud-on-k8s/0.9/k8s-openshift.html

Logging with Kubernetes Chapter 10

[518]

Elasticsearch Service documentation: https:/ /www. elastic. co/ guide/ en/
cloud/current/ index. html

Introduction to Kibana: https:/ /www.elastic. co/ guide/ en/kibana/ 7.4/
introduction. html#introduction

Fluentd documentation: https:/ /docs. fluentd. org/

Fluent Bit documentation: https:/ /docs. fluentbit. io/ manual/

Rancher Elastic Stack Kubernetes Helm Charts: https:/ /github. com/rancher/
charts/tree/ master/ charts/ efk/v7. 3.0
Kudo Elastic Operator: https:/ /github. com/kudobuilder/ operators/ tree/
master/repository/ elastic

Logging Kubernetes using Google
Stackdriver
In this section, we will use Google Stackdriver Kubernetes Engine Monitoring to monitor,
isolate, and diagnose our containerized applications and microservices environments. You
will learn how to use Stackdriver Kubernetes Engine Monitoring to aggregate logs, events,
and metrics from your Kubernetes environment on GKE to help you understand your
application's behavior in production.

Getting ready
Make sure you have a Google Kubernetes Engine (GKE) cluster ready
and kubectl configured to manage the cluster resources. If you don't have one, you can
follow the instructions in Chapter 1, Building Production-Ready Kubernetes Clusters,
in the Configuring a Kubernetes cluster on Google Cloud Platform recipe.

How to do it…
 This section is further divided into the following subsections to make this process easier:

Installing Stackdriver Kubernetes Engine Monitoring support for GKE
Configuring a workspace on Stackdriver
Viewing GKE logs using Stackdriver

https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/cloud/current/index.html
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://www.elastic.co/guide/en/kibana/7.4/introduction.html#introduction
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentd.org/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://docs.fluentbit.io/manual/
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/rancher/charts/tree/master/charts/efk/v7.3.0
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic
https://github.com/kudobuilder/operators/tree/master/repository/elastic

Logging with Kubernetes Chapter 10

[519]

Installing Stackdriver Kubernetes Engine Monitoring
support for GKE
Installing Stackdriver Monitoring support allows you to easily monitor GKE clusters,
debug logs, and analyze your cluster's performance using advanced profiling and tracing
capabilities. In this recipe, we will enable Stackdriver Kubernetes Engine Monitoring
support to collect cluster metrics from our GKE cluster. Follow these steps:

Open the Google Kubernetes Engine Console at https:/ /console. cloud.1.
google.com/ kubernetes. On this console, you will see a list of your GKE clusters.
Here, we have one cluster called k8s-devops-cookbook-1:

 Click on the little pen-shaped Edit icon next to your cluster:2.

On the cluster configuration page, make sure that Legacy Stackdriver3.
Logging and Legacy Stackdriver Monitoring are Disabled and that
the Stackdriver Kubernetes Engine Monitoring option is set to Enabled:

https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes
https://console.cloud.google.com/kubernetes

Logging with Kubernetes Chapter 10

[520]

Click on the Save button to apply these changes to your cluster.4.

Logging with Kubernetes Chapter 10

[521]

Viewing GKE logs using Stackdriver
Enabling Stackdriver Monitoring support allows you to easily monitor GKE clusters, debug
logs, and analyze your cluster performance using advanced profiling and tracing
capabilities. In this recipe, we will learn how to access the logs of our Kubernetes cluster on
GKE. Follow these steps:

From the Google Cloud Console, open the Stackdriver Logs Viewer by going1.
to https:/ /console. cloud. google. com/ logs/ viewer:

https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer
https://console.cloud.google.com/logs/viewer

Logging with Kubernetes Chapter 10

[522]

From the Resources menu, click on the Kubernetes Container option:2.

Logging with Kubernetes Chapter 10

[523]

The Stackdriver Logging view will show a list of logs for your container in the3.
selected GKE cluster. Here, you can see the container logs for the last 7 days
being displayed:

Filter the log level to Critical and set the time frame to the Last 24 hours to view4.
the most recent critical container logs. An example result can be seen in the
following screenshot:

Logging with Kubernetes Chapter 10

[524]

With that, you know how to use Stackdriver to view logs for GKE clusters and resources,
such as containers that have been deployed on the GKE clusters.

See also
Google Stackdriver Logging documentation: https:/ /cloud. google. com/
logging/ docs

Basic query example for Stackdriver: https:/ /cloud. google. com/ logging/ docs/
view/basic- queries

QuickStart using logging tools: https:/ /cloud. google. com/ logging/ docs/
quickstart- sdk

Stackdriver Logs Router Overview: https:/ /cloud. google. com/logging/ docs/
routing/ overview

https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/view/basic-queries
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/quickstart-sdk
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview
https://cloud.google.com/logging/docs/routing/overview

Logging with Kubernetes Chapter 10

[525]

Using a managed Kubernetes logging
service
Running an EFK stack to store and maintain Kubernetes logs in your cluster is useful until
something goes wrong with your cluster. It is recommended that you keep your log
management system and production cluster separate so that you have access in case of
cluster failure.

In this section, we will learn how to use some of the freely available SaaS solutions to keep
your cluster logs accessible, even if your cluster is not available.

Getting ready
Make sure you have a Kubernetes cluster ready and kubectl configured to manage the
cluster resources.

How to do it…
This section is further divided into the following subsections to make this process easier:

Adding clusters to Director Online
Accessing logs using Director Online

Connecting clusters to Director Online
OpenEBS Director provides a freely managed EFK stack as a SaaS solution so that you can
store and manage your Kubernetes cluster logs. In this recipe, we will add our Kubernetes
cluster to the Director SaaS platform to store our logs in the cloud:

Go to www.mayadata.io to sign in to your OpenEBS Enterprise Platform1.
at https:/ /portal. mayadata. io/home:

http://www.mayadata.io
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home

Logging with Kubernetes Chapter 10

[526]

Click on the Connect your Cluster button:2.

Logging with Kubernetes Chapter 10

[527]

From the main menu, select Clusters and click on the Connect a new Cluster3.
button.
Choose your Kubernetes cluster location and name your project. Here, we've4.
used an AWS cluster and set AWSCluster as our cluster name:

Logging with Kubernetes Chapter 10

[528]

Copy and execute the command on your first cluster:5.

Shortly after doing this, Director Online will deploy a fluentd forwarder and aggregator on
your cluster to collect logs on its platform.

Logging with Kubernetes Chapter 10

[529]

Accessing logs using Director Online
OpenEBS Director's free plan stores cluster logs for up to 1 week. Additional storage is
provided with the premium plan. In this recipe, we will learn how to access logs using the
managed EFK stack provided by Director Online:

Go to www.mayadata.io to sign in to your OpenEBS Enterprise Platform1.
at https:/ /portal. mayadata. io/home.
From the home menu, select Clusters and select your active cluster.2.
From the left-hand menu, click on Logs:3.

A Logs view will open on the Kibana Discover dashboard. Here, you can use4.
search for and filter the functionalities of Elasticsearch and Kibana to manage
your Kubernetes logs:

http://www.mayadata.io
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home
https://portal.mayadata.io/home

Logging with Kubernetes Chapter 10

[530]

With that, you've learned how to simply keep logs accessible using managed Kubernetes
logging solutions. You can use Director Online on multiple clusters and manage logs from a
single interface.

Logging for your Jenkins CI/CD environment
CI/CD pipelines can generate a great amount of metadata every day in busy build
environments. Elasticsearch is the perfect platform for feeding this kind of data from
Jenkins.

In this section, we will learn how to enable and access the logs of our Jenkins instance and
analyze team efficiency.

Logging with Kubernetes Chapter 10

[531]

Getting ready
All the operations mentioned in this recipe require a fully functional Jenkins deployment,
as described in Chapter 3, Building CI/CD Pipelines, in the Setting up a CI/CD pipeline in
Jenkins X section.

Clone the k8sdevopscookbook/src repository to your workstation to use the manifest
files in the chapter10 directory:

$ git clone https://github.com/k8sdevopscookbook/src.git
$ cd src/chapter10

Make sure you have a Kubernetes cluster, Jenkins X, and an EFK stack ready
and that kubectl has been configured so that you can manage the cluster resources.

How to do it…
This section will show you how to feed Jenkins logs to Elasticsearch. This section is further
divided into the following subsections to make this process easier:

Installing the Fluentd plugin
Streaming Jenkins logs to Elasticsearch using Fluentd

Installing the Fluentd plugin
Fluentd is part of the EFK Stack, along with Elasticsearch and Kibana. It is an open source
data collector for building a unified logging layer. This recipe will show you how to install
the Fluentd plugin for Jenkins, which will forward the Jenkins logs to your Fluentd logger.

Let's perform the following steps to install the Fluentd plugin on Jenkins:

Access your Jenkins service dashboard and click on the Manage Jenkins menu:1.

Logging with Kubernetes Chapter 10

[532]

In the Manage Jenkins menu, click on the Manage Plugins button:2.

Logging with Kubernetes Chapter 10

[533]

Click on the Available tab and search for fluentd in the Filter field. The result3.
should look similar to the following. Click on the Install without restart button
to install the Fluentd plugin:

The Fluentd plugin will be installed without the need to restart the Jenkins instance.

Streaming Jenkins logs to Elasticsearch using Fluentd
In this recipe, we will learn how to configure the Fluentd plugin that we installed on
Jenkins.

Let's perform the following steps to feed Jenkins logs to Elasticsearch:

In the Manage Jenkins menu, click on the Configure System button.1.
Scroll through the settings. Under the Logger for Fluentd settings, enter a logger2.
name. The logger name is used as a prefix for Fluentd. In the Host field, enter the
Service name of your Fluentd service and the exposed port number. In our
example, in our Kubernetes cluster, we used the stable/fluentd Helm chart to
install Fluentd. The service name is fluentd. This is exposed via port 24220.
Save the changes:

Logging with Kubernetes Chapter 10

[534]

Select a job under the pipeline configuration.3.
Click on the Add post-build action button and select the Send to Fluentd option4.
from the drop-down menu.

Now, the Fluentd plugin will push the logs to Elasticsearch through the log collector.

There's more…
If you are using the ELK stack instead of Fluentd in the EFK stack, then follow the recipes
given here. This section is further divided into the following subsections to make this
process easier:

Installing the Logstash plugin
Streaming Jenkins logs to Elasticsearch using Logstash

Installing the Logstash plugin
Logstash is part of the Elastic Stack, along with Beats, Elasticsearch, and Kibana. It is an
open source data collection engine with real-time pipelining capabilities. In this recipe, you
will learn how to install the Logstash plugin for Jenkins.

Logging with Kubernetes Chapter 10

[535]

Let's perform the following steps to install the Logstash plugin for Jenkins:

Access your Jenkins service dashboard and click on the Manage Jenkins menu:1.

In the Manage Jenkins menu, click on the Manage Plugins button:2.

Logging with Kubernetes Chapter 10

[536]

Click on the Available tab and search for logstash in the Filter field. The result3.
should look similar to the following. Click on the Install without restart button
to install the Logstash plugin:

The Logstash plugin will be installed without you needing to restart your Jenkins instance.

Streaming Jenkins logs to Elasticsearch using
Logstash
In this recipe, we will show you how to configure the Logstash plugin that you installed on
Jenkins previously.

Let's perform the following steps to feed Jenkins logs to Elasticsearch:

In the Manage Jenkins menu, click on the Configure System button.1.
Scroll through the settings. Under the Logstash settings, check the Enable2.
sending logs to an Indexer checkbox. When this setting is enabled, it will open
four new fields.

Logging with Kubernetes Chapter 10

[537]

In the URI field, enter the service name, followed by the indexer name; for3.
example, http://elasticsearch-es-http:9200/logstash/jenkins. Enter
your elastic username and password and save the changes:

Now, the Logstash plugin will push the logs to Elasticsearch through the log collector.

See also
Jenkins Logstash plugin documentation: https:/ /wiki. jenkins. io/ display/
JENKINS/ Logstash+Plugin

Jenkins FluentD plugin documentation: https:/ / github. com/ jenkinsci/
fluentd- plugin

Debug logging in
Jenkins: https://wiki.jenkins.io/display/JENKINS/Logging

https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://wiki.jenkins.io/display/JENKINS/Logstash+Plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://github.com/jenkinsci/fluentd-plugin
https://wiki.jenkins.io/display/JENKINS/Logging

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Microservices with Kubernetes
Gigi Sayfan

ISBN: 978-1-78980-546-8

Understand the synergy between Kubernetes and microservices
Create a complete CI/CD pipeline for your microservices on Kubernetes
Develop microservices on Kubernetes with the Go kit framework using best
practices
Manage and monitor your system using Kubernetes and open source tools
Expose your services through REST and gRPC APIs
Implement and deploy serverless functions as a service
Externalize authentication, authorization, and traffic shaping using a service
mesh
Run a Kubernetes cluster in the cloud on Google Kubernetes Engine

https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes

Other Books You May Enjoy

[539]

Hands-On Kubernetes on Azure
Shivakumar Gopalakrishnan, Gunther Lenz

ISBN: 978-1-78953-610-2

Use the Kubernetes dashboard to review clusters and deployed
applications
Find out the benefits and limitations, and how to avoid potential
problems while using AKS
Understand the implementation of Microsoft toolchains such as
Visual Studio Code and Git
Implement simple and advanced AKS solutions
Ensure automated scalability and high reliability of your
applications with Microsoft AKS
Apply kubectl commands to monitor applications

https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-azure

Other Books You May Enjoy

[540]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Adobe Experience Manager (AEM) 223
AKS clusters
 accessing 27
 changes, deploying 172, 174, 176
AKS performance metrics
 monitoring, with Azure Monitor 411, 414, 416
AKS, on GitHub
 reference link 29
Alibaba Cloud account
 reference link 30
Alibaba Cloud
 highly available Kubernetes cluster, provisioning

on 32
 Kubernetes cluster, configuring on 30, 35
Alibaba Container Service clusters
 accessing 34, 35
Aliyun 30
Aliyun Web Console
 URL 33
Amazon CloudWatch
 using, for monitoring 390
Amazon EBS volumes
 managing, in Kubernetes 238
Amazon EKS FAQ
 reference link 19
Amazon EKS Management Console
 used, for provisioning EKS Cluster 16
Amazon Elastic Compute Cloud (Amazon EC2)
 about 8
 Kubernetes cluster. provisioning on 10, 12
Amazon Elastic Container Service for Kubernetes

(Amazon EKS)
 about 8
 Container Insights Agents, installing for 394, 395
 managed Kubernetes cluster, provisioning on 12

Amazon Web Services (AWS)
 CI/CD pipeline, setting up 138, 151
 Kubernetes cluster, configuring on 8, 13
 reference link 152
anomalies
 detecting, Falco used 484, 485
Ansible module, for working with Kubernetes
 reference link 52
Ansible playbook
 used, for provisioning Kubernetes cluster 50
Ansible
 installing 50
 used, for configuring Kubernetes cluster 49, 50
anti-patterns
 detecting, with SonarQube 215, 216, 229
Apache Kafka Operator
 installing, KUDO used 82
 installing, KUDU used 82
application status
 checking 105
application-specific logs
 accessing 503, 504
application
 backing up 305, 306, 315, 316, 317, 318
 backing up, Kasten used 311, 312, 321
 backing up, Velero used 302, 303, 311
 deleting, with Helm 76
 deploying, Kubernetes operators used 80, 81
 importing 91
 importing, as pipeline 104, 105
 incremental rollouts, to production 122, 124
 installing, Helm charts used 72, 73
 migrating, in Kasten 325, 326, 327
 migrating, in OpenEBS Director 330, 331, 332,

333

 operating, Kubernetes operators used 80, 81
 promoting, to production 106

[542]

 recovering, Kasten used 311, 312, 321
 recovering, Velero used 302, 303, 311
 restoring 307, 319, 320
 rolling back, Helm used 75
 rollout, to production 162, 164
 searching, in Helm repositories 73, 74
 upgrading, with Helm 74, 75
applications, scaling on Kubernetes
 about 335
 HPA, using 338, 340, 341
 manually 336, 337
 Metrics Server installation, validating 335
Aqua Security Trivy CI
 examples, reference link 481
Aqua Security Trivy Comparison
 reference link 481
Aqua Security
 used, for building DevSecOps into pipeline 475,

476

Auto DevOps
 enabling 115, 116
 used, for creating pipeline 121, 122
auto-healing pods
 in Kubernetes 368
 liveness probes, adding to pods 369, 371
autogenerated self-signed certificates
 using 98
AWS account
 reference link 8
AWS CodeBuild
 used, for building project 143, 146, 147
AWS CodeCommit code repository
 creating 139, 140, 142
AWS CodeDeploy deployment
 creating 148
AWS CodePipeline
 used, for building pipeline 148, 150
AWS Command Line Interface (CLI) 9
AWS Command Reference S3 Create Bucket API
 reference link 19
AWS EBS CSI driver documentation
 reference link 249
AWS EBS CSI driver repository
 reference link 249, 267
AWS EBS volume types

 reference link 248
AWS Fargate product
 reference link 19
AWS Global Infrastructure Map
 reference link 19
AWS Shell
 using 14
Azure DevOps documentation
 reference link 177
Azure DevOps
 about 167
 CI/CD pipeline, setting up 166, 176
 reference link 166
Azure Disk CSI driver
 installing 265, 266, 267
Azure Disk persistent volumes
 deleting 264
Azure Disk storage classes
 creating 261, 262
 used, for creating dynamic PVs 263, 264
Azure Disk volume types
 managing, in Kubernetes 260
 reference link 267
Azure Kubernetes Service (AKS)
 about 260, 410, 462
 managed Kubernetes cluster, provisioning on 27
 PodSecurityPolicy, enabling on 462
Azure Monitor for containers documentation
 reference link 423
Azure Monitor support, for AKS
 enabling, with CLI 410
Azure Monitor, as datasource
 reference link 434
Azure Monitor
 used, for monitoring AKS performance metrics

411, 414, 416
 used, for viewing live logs 417, 420, 423
 using, for monitoring 410
Azure Pipelines documentation
 reference link 177
Azure Pipelines
 configuring 168, 169, 171

[543]

B
backups and schedules
 deleting 310
Blue deployment
 creating 373, 374
 traffic, switching to Green deployment 374
 upgrades, managing through 372
bugs
 detecting, with SonarQube 215, 216, 229

C
canary deployment strategy, for Kubernetes

deployments
 reference link 177
Center for Internet Security (CIS)
 about 467
 URL 467
Central Registration Depository (CRD) 186
centralized logging
 building, in Kubernetes with EFK stack 506
Ceph block storage class
 creating 270
 used, for creating dynamic PVs 272
Ceph cluster's health
 verifying 269, 270
Ceph cluster
 creating 269
Ceph provider
 installing, with Rook 268
certificate sign request (CSR) 455
Chaos Charts, for Kubernetes
 reference link 195
Chaos Charts
 using, for Kubernetes 188, 189, 190
Chaos Engineering
 automating, with Gremlin 195
chaos experiment logs
 viewing 193, 194
chaos experiment results
 reviewing 192, 193
Chaoskube project
 reference link 195
chart template
 reference link 80

Chart.yaml file
 reference link 80
ChartMuseum 78
CI/CD pipeline
 creating, in CircleCI 128, 129, 132
 creating, in GitLab 109, 110, 124
 creating, in Jenkins X 102, 108
 setting up, on Amazon Web Services 138, 151
 setting up, on Azure DevOps 166, 176
 setting up, with GitHub Actions 133
 setting up, with Spinnaker on Google Cloud Build

152, 153
CI/CD services
 service account, configuring 154
CI/CD, on Google Cloud Quickstarts
 reference link 166
CircleCI
 CI/CD pipeline, creating 128, 129, 132
 overview 129
 reference link 132
 URL 129
 vulnerability scanning, building into 479, 480,

481

CIS Kubernetes Benchmarks
 reference link 474
CLI
 used, for enabling Azure Monitor support for AKS

411

 used, for monitoring metrics 378, 379
Cloud Source Repositories
 reference link 166
CloudWatch Anomaly Detection
 reference link 399
cluster configuration
 editing 16
cluster conformance
 validating 90
clusters
 connecting, to Director Online 525
 deleting 16, 25, 29, 49
 deploying, with custom network configuration 24
 importing 40, 41
CNCF certified Kubernetes installers
 reference link 20
Codacy badge

[544]

 adding, to repository 214, 215
Codacy
 documentation, reference link 215
 URL 208
code review, with Codacy
 automating 207
command-line tools
 installing, to configure Alibaba cloud services 31,

32

 installing, to configure AWS services 9
 installing, to configure Azure services 26
 installing, to configure GCP services 21
commits and PRs
 reviewing 210, 211, 212
compliance checking, for Kubernetes-based

applications
 reference link 474
configuration options
 reference link 100
Container Insights Agents
 installing, for Amazon EKS 394, 395
Container Insights metrics
 reference link 399
 viewing 395, 397, 398, 399
Container Insights
 reference link 399
Container Storage Interface (CSI)
 about 238, 296
 reference link 302
 volume snapshot, creating through 297, 298,

299

 volume, restoring from snapshot via 299, 300
containers
 inspecting 383
 PostgreSQL logs, accessing 505, 506
 shell access, obtaining 504, 505
CPU attack
 creating, against Kubernetes worker 198, 200,

201, 202
CrashLoopBackOff status
 pods, inspecting in 388, 389, 390
credentials, on Vault
 storing 493, 494
credentials
 securing, HashiCorp Vault used 488, 489

cross-cloud application
 migrating 321, 322
Crunchy Data PostgreSQL Operator
 reference link 85
CSI spec
 reference link 302
custom metrics
 reference link 342
custom network configuration
 used, for deploying cluster 24
Custom Resource Definitions (CRDs) 311, 508
custom rules
 defining 485, 486, 487

D
Data Migration as a Service (DMaaS) 327
DataDog
 reference link 434
default Roles
 viewing 453, 454
default storage class
 changing 240, 241, 251, 252, 253
 changing, to ZRS 262
deploy changes as quickly as possible approach

475

deployment YAML manifest
 creating 292, 293
Deployment
 creating 57, 58
 deleting 62
 editing 59, 60
 rolling back 61
 verifying 58, 59
development
 base, creating for 66, 69
DevSecOps
 building, into pipeline Aqua Security used 475,

476

Director Online
 clusters, connecting to 525
 used, for accessing 529
disaster recovery (DR) 290
Docker build workflow
 creating 135
Docker Registry

[545]

 images, building 136
 images, publishing 136
Dynamic Application Security Testing (DAST) 109
dynamic NFS PVs
 creating, with OpenEBS NFS provisioner storage

class 286
 creating, with Rook NFS operator storage class

285, 286
dynamic persistent volumes
 creating, with GCE PD storage classes 255
dynamic PVs
 creating, with Ceph block storage class 272
 creating, with OpenEBS storage class 280

E
EBS CSI driver
 installing, to manage EBS volumes 246, 247,

248

EBS persistent volumes
 deleting 244, 245
EBS storage classes
 creating 239, 240
 used, for creating persistent volumes 242, 243
EBS volumes
 managing, to install EBS CSI driver 246, 247,

248

 used, for persistent storage 241
EKS Cluster
 provisioning, with Amazon EKS Management

Console 16
Elastic Cloud on Kubernetes (ECK)
 about 507
 reference link 517
Elastic Container Registry (ECR) 138, 472
Elastichsearh, Fluent-bit, and Kibana (EFK) stack
 about 506
 used, for building centralized logging in

Kubernetes 506
Elasticsearch endpoint
 requesting 509
Elasticsearch Operator
 deploying 507, 509
Elasticsearch, Logstash, and Kibana (ELK) stack

506

ephemeral storage

 used, for creating persistent volumes 275, 276
event-driven automation
 building, with StackStorm 179
events
 configuring, to trigger pipeline 155
export profile
 creating, in Kasten 322, 323
external load balancer
 creating 352, 356
 external address of service, finding 355
 external cloud load balancer, creating 353, 355

F
Falco
 installing, on Kubernetes 482, 483
 used, for detecting anomalies 484, 485
 used, for monitoring suspicious application

activities 482
feature gates
 enabling 297
Fluent Bit
 used, for aggregating logs 510
Fluentd
 used, for streaming Jenkins logs to Elasticsearch

533

FOSSA badge
 adding, to project 235, 236
FOSSA
 projects, adding 231, 232, 233
 used, for detecting license compliance issues

230

G
GCE PD CSI driver repository
 reference link 260
GCE PD persistent volumes
 deleting 256
GCE PD storage classes
 used, for creating dynamic persistent volumes

255

GCE PD types
 reference link 260
GCE PD volumes
 managing, in Kubernetes 249, 259
 used, for persistent storage 253, 254

[546]

GCE persistent disk storage class
 creating 250, 251
GCP account
 reference link 20
GCP Compute PD CSI driver
 installing, to manage PD volumes 257, 258
GCP documentation
 reference link 25
GitHub Actions
 reference link 138
 used, for setting up CI/CD pipeline 133
GitHub repository, for Prometheus-Operator
 reference link 434
GitHub
 project, importing 112, 114
GitLab cloud-native Helm chart documentation
 URL 100
GitLab Community Edition
 installation link 100
GitLab dashboard
 connecting 95
GitLab Operator
 enabling 99
 reference link 100
GitLab user
 creating 95, 96
GitLab Web IDE 125
GitLab
 CI/CD pipeline, creating 109, 110, 124
 deleting 99
 installing, Helm used 94
 life cycle, deploying 93, 97
 life cycle, managing 93, 97
 reference link 128
 upgrading 96, 97
 using, for monitoring environments 126, 127
 vulnerability scanning, building into 478, 479
GKE clusters
 accessing 22
GKE logs
 viewing, with Stackdriver 521, 523
GKE metrics
 monitoring, with Stackdriver 404, 408
GKE on-prem installation
 reference link 25

Google Cloud Build
 CI/CD pipeline, setting up with Spinnaker 152,

153

 project, building 159, 160, 161
Google Cloud Platform (GCP)
 about 20, 86, 249
 Kubernetes cluster, configuring on 20, 23
Google Cloud Shell
 using 23
Google Cloud Source code repository
 creating 157, 158
Google Compute Engine (GCE) 20
Google Kubernetes Engine (GKE)
 about 20, 249, 461
 managed Kubernetes cluster, provisioning on 22
 PodSecurityPolicy, enabling on 461, 462
 Stackdriver Kubernetes Engine Monitoring

support, installing 519, 520
 Stackdriver Kubernetes Engine Monitoring

support, installing for 400, 401
Google Stackdriver
 used, for logging Kubernetes 518
 using, for monitoring 399
gossip-based cluster
 using 15
Grafana community dashboards
 reference link 434
Grafana dashboards
 adding, to monitor applications 430, 432, 434
 used, for monitoring metrics 425, 428, 429
Grafana plugins
 reference link 434
Grafana
 reference link 434
 used, for monitoring Kubernetes 424
Green deployment
 creating 374
 upgrades, managing through 372
Gremlin credentials
 setting up 196, 197
Gremlin
 Chaos Engineering, automating with 195
 deleting, from cluster 206, 207
 documentation, reference link 207
 installing, on Kubernetes 197

[547]

 reference link 195
 URL 199

H
Hashicorp Vault documentation
 URL 495
Hashicorp Vault repository
 URL 495
HashiCorp Vault
 used, for securing credentials 488, 489
Helm 2.x
 installing 71, 72
Helm chart
 building 78, 79
Helm charts
 hosting methods, reference link 80
 used, for deploying Prometheus 424
 used, for deploying Spinnaker 156, 157
 used, for deploying workloads 70, 71, 79
 used, for installing application 72, 73
Helm repositories
 adding 76, 77, 78
 application, searching in 73, 74
Helm
 documentation, reference link 80
 used, for deleting application 76
 used, for installing GitLab 94
 used, for installing SonarQube 216
 used, for Istio installation 358
 used, for rolling back application 75
 used, for upgrading application 74, 75
High Availability (HA) 179
highly available Kubernetes cluster
 provisioning, on Alibaba Cloud 32
Horizontal Pod Autoscaler (HPA)
 used, for autoscaling applications 338, 340, 341
host volume
 bind mounting 43

I
Identity and Access Management (IAM) 147
ImagePullBackOff status
 pods, inspecting in 386, 387
images
 building, to Docker Registry 136

 publishing, to Docker Registry 136
import profile
 creating, in Kasten 325
ingress service
 creating, Linkerd used 363
 creating, with Istio 357
init containers, debugging
 reference link 390
installation issues
 troubleshooting 52, 53
iSCSI client prerequisites
 installing 274
issues
 viewing, by category 212, 213
Istio Operator
 reference link 85
Istio
 deleting 362
 ingress gateway, creating 360, 361, 362
 installation, verifying 358, 359
 installing, Helm used 358
 reference link 362
 used, for creating ingress service 357
 used, for creating service mesh 357

J
Jenkins CI/CD environment
 Fluentd plugin, installing 531, 533
 Jenkins logs, streaming to Elasticsearch with

Fluentd 533
 Jenkins logs, streaming to to Elasticsearch with

Logstash 536
 logging for 530
 Logstash plugin, installing 534, 536
Jenkins Pipeline Console
 connecting 103, 104
Jenkins Prometheus plugin
 reference link 434
Jenkins X application
 upgrading 92
Jenkins X CLI
 commands and explanation, reference link 93
 installing 86
Jenkins X components
 verifying 88, 89

[548]

Jenkins X Kubernetes cluster
 creating 87, 88
 deleting 92
Jenkins X tutorials
 URL 93
Jenkins X
 CI/CD pipeline, creating 102, 108
 life cycle, deploying 85, 86, 90
 life cycle, managing 85, 86, 90
 reference link 93
 repository and binaries, reference link 93
Jenkins
 reference link 93
JX release site
 URL 86

K
K3s
 reference link 45
K9s
 reference link 55
Kafka Operators
 reference link 85
Kasten CLI commands
 reference link 321
Kasten Dashboard
 accessing 314, 315
Kasten
 application, migrating in 325, 326, 327
 documentation, reference link 321
 export profile, creating in 322, 323
 import profile, creating in 325
 installing 312, 313
 restore point, exporting in 323, 324
 used, for backing up application 311, 312, 321
 used, for recovering application 311, 312, 321
Kibana
 deploying 509, 510
 Kubernetes logs, accessing 511, 513, 515, 517
Konvoy
 reference link 20
kops
 installing, to provision Kubernetes cluster 10
 reference link 19
Krex

 reference link 383
kube-bench
 reference link 474
 running, on Kubernetes 468, 470, 471
 running, on managed Kubernetes services 471,

472, 473
 running, on OpenShift 473
KubeAdm
 reference link 20
Kubecost dashboard
 accessing 444, 445
Kubecost
 installing 443
 reference link 450
 used, for managing resource cost 442
kubectl cheat sheet
 reference link 55
kubectl command
 reference link 55
KubeOne
 reference link 20
Kubernetes Authentication
 reference link 459
Kubernetes CIS Benchmark
 using, for security auditing 467, 474
Kubernetes cluster integration
 enabling 117, 118, 119, 120
Kubernetes clusters
 accessing 51
 changes, deploying on EKS 130, 131
 configuring, on Alibaba Cloud 30, 36
 configuring, on Amazon Web Services 8, 13
 configuring, on Google Cloud Platform 20, 23
 configuring, on Microsoft Azure 25, 28
 configuring, with Ansible 49, 50
 configuring, with Rancher 37
 deploying 39, 40
 managing, with Rancher 37
 provisioning, on Amazon EC2 10, 12
 provisioning, with Ansible playbook 50
 switching 89
 users, types 458
 version, validating 64
Kubernetes CSI
 reference link 296

[549]

Kubernetes CSI drivers
 list, reference link 302
Kubernetes Dashboard
 deploying 17, 19
 used, for monitoring metrics 379, 380, 381
 viewing 29
Kubernetes Feature Gates
 reference link 302
Kubernetes logging conventions
 reference link 54
Kubernetes logs
 accessing 497, 502
 accessing, on Kibana 511, 513, 515, 517
Kubernetes manifests guide
 authoring, reference link 63
Kubernetes Metrics Server Design Document
 reference link 383
Kubernetes Metrics Server
 used, for adding metrics 378
Kubernetes nodes
 Rancher, running on 44
Kubernetes objects, declarative management
 reference link 63
Kubernetes operators
 examples, reference link 52
 list, reference link 84
 reference link 84
 used, for deploying application 80, 81
 used, for operating application 80, 81
Kubernetes PodSecurityPolicy advisor
 using 466
Kubernetes resource cost allocation
 monitoring 446, 447, 449
Kubernetes resources
 generating, from YAML files 64, 65
Kubernetes restore
 managing 296, 297, 301
Kubernetes Universal Declarative Operator (KUDO)
 about 81
 installing 81, 82
 reference link 84
 used, for installing Apache Kafka Operator 82
Kubernetes Volume Cloning
 documentation, reference link 302
Kubernetes Volume Snapshots

 documentation, reference link 302
 managing 296, 297
Kubernetes volume snapshots
 managing 301
Kubernetes worker
 CPU attack, creating against 198, 200, 201,

202

 node shutdown attack, creating against 202,
203, 204

Kubernetes YAML validator
 reference link 63
Kubernetes
 about 30
 Amazon EBS volumes, managing 238
 applications, scaling 335
 auto-healing pods 368
 Azure Disk volumes, managing 260
 centralized logging, building with EFK stack 506
 Chaos Charts, using 188, 189, 190
 Falco, installing on 482, 483
 GCE PD volumes, managing 249, 259
 Gremlin, installing on 197
 kube-bench, running on 468, 470, 471
 logging, with Google Stackdriver 518
 logs, accessing through 497, 498, 499
 monitoring 377
 monitoring, with Grafana 424
 monitoring, with Prometheus 424
 NFS for shared storage, setting up 282
 Vault, installing on 489, 490, 491
KubeSpray
 reference link 20
KUDO kubectl plugin
 installing 81, 82
Kustomize concepts
 reference link 70
Kustomize
 examples, reference link 70
 used, for deploying workloads 63, 70

L
Lambda function, example for EKS deployment
 reference link 152
license compliance issues
 detecting, with FOSSA 230

[550]

licensing issues
 triaging 233, 235
Linkerd
 adding, to service 365, 366
 CLI, installing 364
 dashboard, accessing 366
 deleting 367
 deployment, verifying 365
 installing 364
 reference link 367
 used, for creating ingress service 363
 used, for creating service mesh 363
linter, for YAML files
 reference link 63
Linux Virtual Server (LVS) 355
Litmus documentation
 reference link 195
Litmus framework
 used, for automating tests 186, 187
Litmus Operator
 installing 187
live logs
 viewing, with Azure Monitor 417, 420, 423
log levels
 setting 54
logs
 accessing, through Kubernetes 497, 498, 499
 accessing, with Director Online 529
 aggregating, with Fluent Bit 510
Logstash
 used, for streaming Jenkins logs 536

M
Managed Kubernetes 30
managed Kubernetes cluster
 provisioning, on AKS 27
 provisioning, on Amazon EKS 12
 provisioning, on GKE 22
managed Kubernetes logging service
 using 525
marketplace plugins
 adding 227, 228
MetalLB
 reference link 355
metrics

 adding, with Kubernetes Metrics Server 378
 monitoring, with CLI 378, 379
 monitoring, with Grafana dashboards 425, 427,

429

 monitoring, with Kubernetes Dashboard 379,
380, 381

Microsoft AKS FAQ
 reference link 29
Microsoft Azure
 Kubernetes cluster, configuring on 25, 28
MinIO documentation
 reference link 296
MinIO Erasure Code QuickStart Guide
 reference link 296
MinIO Operator, for Kubernetes
 reference link 296
MinIO S3 service
 creating 293, 294
MinIO web user interface
 accessing 294, 295
MinIO
 used, for configuring object storage 291, 295
 used, for managing object storage 291, 295
 used, for viewing backups 309, 310
monitoring stack, OpenShift Container Platform
 reference link 383
monitoring
 in Kubernetes 377
 with Amazon CloudWatch 390
 with Azure Monitor 410
 with Google Stackdriver 399
 with Sysdig 435
Multi-AZ Kubernetes 30

N
namespace
 backup, creating 308
New Relic
 reference link 434
Nexus 90
NFS for shared storage
 setting up, on Kubernetes 282
NFS prerequisites
 installing 283
NFS provider

[551]

 installing, with Rook NFS operator 283, 285
NFS provisioner
 installing, with OpenEBS 286
Node and InterPod Affinity
 used, for assigning pods to nodes 346, 349, 350
 working 350, 352
node health
 monitoring 382, 383
node shutdown attack
 creating, against Kubernetes worker 202, 203,

204

nodes
 applications, assigning 342
 labeling 343
 pods, assigning with Node and InterPod Affinity

346, 348, 350
 pods, assigning with nodeSelector 344, 345,

346

nodeSelector
 used, for assigning pods to nodes 344, 346

O
object storage
 configuring, MinIO used 291, 295
 managing, MinIO used 291, 295
Open Falcon
 reference link 434
OpenEBS Director Online
 connecting, reference link 333
OpenEBS Director, using in Auto DevOps usecase
 reference link 333
OpenEBS Director
 application, migrating in 330, 331, 332, 333
 clusters, importing into 327, 328, 329, 330
 reference link 333
OpenEBS NFS provisioner storage class
 used, for creating dynamic NFS PVs 286
OpenEBS provisioning, read-write-many PVCs
 reference link 287
OpenEBS storage class
 creating 278, 279
 used, for creating dynamic PVs 280
OpenEBS
 installing 275
 reference link 282

 used, for configuring persistent storage 273, 281
 used, for installing NFS provisioner 286
 used, for managing persistent storage 273, 281
OpenShift binaries
 downloading 46
OpenShift cluster
 accessing 47
 provisioning 46, 47
OpenShift Container Platform 4.3 Documentation
 reference link 49
OpenShift
 kube-bench, running on 473
Operator Lifecycle Manager (OLM)
 installing 83

P
Pending status
 pods, inspecting in 384, 385, 386
performance analysis
 with Sysdig 435
persistent storage
 configuring, with OpenEBS 273, 281
 configuring, with Rook 267
 EBS volumes, using 241
 managing, with OpenEBS 273, 281
 managing, with Rook 267
Persistent Volume Claim (PVC) 240, 295
persistent volumes
 creating, with EBS storage classes 242, 243
 creating, with ephemeral storage 275, 276
 in pending state 288, 289
pipeline
 building, with AWS CodePipeline 148, 150
 creating, with Auto DevOps 121, 122
 creating, with QuickStart application 107
pod deletion chaos experiment
 creating 190, 191, 192
pod failure, reason
 reference link 390
Pod Security Policies (PSP)
 configuring 459, 460
 enabling, on AKS 462
 enabling, on EKS 460
 enabling, on GKE 461, 462
 reference link 466

[552]

pods and ReplicationControllers, debugging
 reference link 390
pods
 inspecting, in CrashLoopBackOff status 388,

389, 390
 inspecting, in ImagePullBackOff status 386, 387
 inspecting, in Pending status 384, 385, 386
 restricting, to access certain volume types 464,

466

PostgreSQL logs
 accessing, inside container 505, 506
production Deployment
 base, creating for 66, 69
Programming Mistake Detector (PMD) 223
Project Dashboard
 accessing 208, 209
project
 adding 224, 225
 building, with AWS CodeBuild 143, 146, 147
 building, with Google Cloud Build 159, 160, 161
 creating, with templates 110, 111
 importing, from GitHub 112, 114
 quality, reviewing 226, 227
Prometheus exporters
 reference link 434
Prometheus, with Azure Monitor
 reference link 423
Prometheus, with Stackdriver Kubernetes Engine

Monitoring
 reference link 409
Prometheus
 deploying, with Helm charts 424
 reference link 434
 used, for monitoring Kubernetes 424
Pull Request (PR) 90, 214
Pumba project
 reference link 195
PV deletion
 terminating 289
PVC deletion
 terminating 289
Python client
 reference link 186

Q
quality profiles
 enabling 221, 223, 224
QuickStart application
 used, for creating pipeline 107

R
Rancher 2.x Documentation
 reference link 45
Rancher Kubernetes Engine (RKE) 37
Rancher server
 installing 38
Rancher
 about 37
 clusters, using 42
 Kubernetes clusters, configuring 37, 43
 Kubernetes clusters, managing 37, 43
 node providers, enabling 42
 running, on Kubernetes nodes 44
RBAC Authorization, in Kubernetes Documentation
 reference link 459
RBAC policies
 autogenerating, reference link 459
RBAC rules
 testing 458
ReadWriteMany (RWX) 282
Red Hat OpenShift
 configuring 45, 48
Red Hat Operator SDK, used for building

Kubernetes Operators
 list, reference link 84
Red Hat Package Manager/Debian (RPM/Deb)

179

Resource Orchestration Service (ROS) 32
restricted PSP
 creating 463, 464
Rio
 reference link 45
Role-based access control (RBAC)
 using, to harden cluster security 452, 459
Roles and RoleBindings
 creating 456, 457
Rook documentation
 reference link 273

[553]

Rook NFS operator documentation
 reference link 287
Rook NFS operator storage class
 used, for creating dynamic NFS PVs 285, 286
Rook NFS operator
 used, for installing NFS provider 283, 285
Rook
 Ceph provider, installing 268
 used, for configuring persistent storage 267
 used, for managing persistent storage 267

S
S3 bucket
 regions, using for 15
scenario-based attacks
 running 205, 206
scheduled backup
 creating 307, 308
SeeSaw
 reference link 355
self-healing pods
 testing 368, 369
Serverless Kubernetes 30
service account
 configuring, for CI/CD services 154
service mesh
 creating, Linkerd used 363
 creating, with Istio 357
service-level agreement (SLA) 350
services
 debugging, with Telepresence 500, 502
shell access
 obtaining, in container 504, 505
SonarQube Community
 reference link 230
SonarQube Dashboard
 accessing 217, 218, 219
SonarQube extension, for Azure DevOps
 reference link 230
SonarQube Scanner, for Ant
 reference link 230
SonarQube Scanner, for Maven
 reference link 230
SonarQube Scanner, for MSBuild
 reference link 230

SonarQube
 deleting, from cluster 229
 documentation, reference link 229
 installing, Helm used 216
 used, for detecting anti-patterns 215, 216, 229
 used, for detecting bugs 215, 216, 229
SonarScanner, for Jenkins
 reference link 229
Spin CLI
 configuring 153
 installing 153
Spinnaker pipeline
 configuring 162
Spinnaker
 deploying, with Helm charts 156, 157
 used, for setting up CI/CD pipeline on Google

Cloud Build 152, 153
Squash
 reference link 390
st2 CLI
 using 182, 183
Stackdriver Kubernetes Engine Monitoring support
 installing, for GKE 400, 401, 519, 520
Stackdriver Prometheus sidecar
 reference link 409
Stackdriver, as data source
 reference link 434
Stackdriver
 reference link 409
 used, for monitoring GKE metrics 404, 408
 used, for viewing GKE logs 521, 523
 workspace, configuring on 402, 404
StackStorm CLI
 reference link 186
StackStorm documentation
 reference link 186
StackStorm rule
 defining 183, 184, 185
 deploying 185, 186
StackStorm UI
 accessing 180, 181, 182
StackStorm
 event-driven automation, building with 179
 examples, reference link 186
 installing 179, 180

[554]

statefulset, debugging
 reference link 390
Static Application Security Testing (SAST) 109
storage issues
 troubleshooting 287
storage pools
 creating 277, 278
suspicious application activities
 monitoring, Falco used 482
Sysdig agent
 installing 435, 437
Sysdig examples
 reference link 442
Sysdig Falco
 reference link 442
Sysdig Inspect
 reference link 442
Sysdig Monitor 435
Sysdig
 application performance, analyzing 439, 440,

441, 442
 using, for monitoring 435
 using, for performance analysis 435

T
Telepresence
 used, for debugging services 500, 502
templates
 used, for creating project 110, 111
tests
 automating, with Litmus framework 186, 187
Trivy
 used, for scanning image 476, 477

U
user accounts
 creating 454, 455, 456
user and tokens
 creating 219, 220, 221
user volumes
 keeping persistent 44

V
Vault UI
 accessing 491, 492

Vault
 installing, on Kubernetes 489, 490, 491
Velero project repository
 reference link 311
Velero
 installing 304, 305
 used, for backing up application 302, 303, 311
 used, for recovering application 302, 303
 used, for restoring application 311
visual guide, on troubleshooting Kubernetes

deployments
 reference link 55
volume snapshot
 creating, through CSI 297, 298, 299
volume, via CSI
 cloning 301
volumes
 restoring, from snapshot via CSI 299, 300
 types, reference link 466
vulnerability scanning
 building, into CircleCI 479, 480, 481
 building, into GitLab 478, 479

W
Webhook authorization mode
 enabling 391, 392, 393
wildcard certificate
 using 98
Windows Subsystem for Linux (WSL) 500
workflow file
 creating 133, 134
workflow status badge
 adding 137
Workloads Dashboard
 viewing 25
workloads
 deploying, Helm charts used 70, 71, 79
 deploying, Kustomize used 63, 70
 deploying, YAML files used 57, 62
workspace
 configuring, on Stackdriver 402, 403

Y
YAML files
 Kubernetes resources, generating from 64, 65

Yet Another Markup Language (YAML) files
 about 57
 used, for deploying workloads 57, 62

Z
Zalando PostgreSQL Operator
 installing 83, 84
 reference link 85

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Building Production-Ready Kubernetes Clusters
	Technical requirements
	Configuring a Kubernetes cluster on Amazon Web Services
	Getting ready
	How to do it…
	Installing the command-line tools to configure AWS services
	Installing kops to provision a Kubernetes cluster
	Provisioning a Kubernetes cluster on Amazon EC2
	Provisioning a managed Kubernetes cluster on Amazon EKS

	How it works...
	There's more…
	Using the AWS Shell
	Using a gossip-based cluster
	Using different regions for an S3 bucket
	Editing the cluster configuration
	Deleting your cluster
	Provisioning an EKS cluster using the Amazon EKS Management Console
	Deploying Kubernetes Dashboard

	See also

	Configuring a Kubernetes cluster on Google Cloud Platform
	Getting ready
	How to do it…
	Installing the command-line tools to configure GCP services
	Provisioning a managed Kubernetes cluster on GKE
	Connecting to Google Kubernetes Engine (GKE) clusters

	How it works…
	There's more…
	Using Google Cloud Shell
	Deploying with a custom network configuration
	Deleting your cluster
	Viewing the Workloads dashboard

	See also

	Configuring a Kubernetes cluster on Microsoft Azure
	Getting ready
	How to do it…
	Installing the command-line tools to configure Azure services
	Provisioning a managed Kubernetes cluster on AKS
	Connecting to AKS clusters

	How it works…
	There's more…
	Deleting your cluster
	Viewing Kubernetes Dashboard

	See also

	Configuring a Kubernetes cluster on Alibaba Cloud
	Getting ready
	How to do it…
	Installing the command-line tools to configure Alibaba Cloud services
	Provisioning a highly available Kubernetes cluster on Alibaba Cloud
	Connecting to Alibaba Container Service clusters

	How it works…
	There's more…

	Configuring and managing Kubernetes clusters with Rancher
	Getting ready
	How to do it…
	Installing Rancher Server
	Deploying a Kubernetes cluster
	Importing an existing cluster
	Enabling cluster and node providers

	How it works…
	There's more…
	Bind mounting a host volume to keep data
	Keeping user volumes persistent
	Running Rancher on the same Kubernetes nodes

	See also

	Configuring Red Hat OpenShift
	Getting ready
	How to do it…
	Downloading OpenShift binaries
	Provisioning an OpenShift cluster
	Connecting to OpenShift clusters

	How it works…
	There's more…
	Deleting your cluster

	See also

	Configuring a Kubernetes cluster using Ansible
	Getting ready
	How to do it…
	Installing Ansible
	Provisioning a Kubernetes cluster using an Ansible playbook
	Connecting to the Kubernetes cluster

	See also

	Troubleshooting installation issues
	How to do it…
	How it works…
	There's more…
	Setting log levels

	See also

	Chapter 2: Operating Applications on Kubernetes
	Technical requirements
	Deploying workloads using YAML files
	Getting ready
	How to do it…
	Creating a Deployment
	Verifying a Deployment
	Editing a Deployment
	Rolling back a deployment
	Deleting a Deployment

	How it works...
	See also

	Deploying workloads using Kustomize
	Getting ready
	How to do it…
	Validating the Kubernetes cluster version
	Generating Kubernetes resources from files
	Creating a base for a development and production Deployment

	How it works...
	See also

	Deploying workloads using Helm charts
	Getting ready
	How to do it…
	Installing Helm 2.x
	Installing an application using Helm charts
	Searching for an application in Helm repositories
	Upgrading an application using Helm
	Rolling back an application using Helm
	Deleting an application using Helm
	Adding new Helm repositories
	Building a Helm chart

	How it works...
	See also

	Deploying and operating applications using Kubernetes operators
	Getting ready
	How to do it…
	Installing KUDO and the KUDO kubectl plugin
	Installing the Apache Kafka Operator using KUDO
	Installing Operator Lifecycle Manager
	Installing the Zalando PostgreSQL Operator

	See also

	Deploying and managing the life cycle of Jenkins X
	Getting ready
	How to do it...
	Installing the Jenkins X CLI
	Creating a Jenkins X Kubernetes cluster
	Verifying Jenkins X components
	Switching Kubernetes clusters
	Validating cluster conformance

	How it works...
	There's more…
	Importing an application
	Upgrading a Jenkins X application
	Deleting a Jenkins X Kubernetes cluster

	See also

	Deploying and managing the life cycle of GitLab
	Getting ready
	How to do it...
	Installing GitLab using Helm
	Connecting to the GitLab dashboard
	Creating the first GitLab user
	Upgrading GitLab

	How it works...
	There's more…
	Using your own wildcard certificate
	Using autogenerated self-signed certificates
	Enabling the GitLab Operator
	Deleting GitLab

	See also

	Chapter 3: Building CI/CD Pipelines
	Technical requirements
	Creating a CI/CD pipeline in Jenkins X
	Getting ready
	How to do it…
	Connecting to Jenkins Pipeline Console
	Importing an application as a pipeline
	Checking application status
	Promoting an application to production
	Creating a pipeline using a QuickStart application

	How it works...

	Creating a CI/CD pipeline in GitLab
	Getting ready
	How to do it…
	Creating a project using templates
	Importing an existing project from GitHub
	Enabling Auto DevOps
	Enabling Kubernetes cluster integration
	Creating a pipeline using Auto DevOps
	Incrementally rolling out applications to production

	How it works...
	There's more...
	GitLab Web IDE
	Monitoring environments

	See also

	Creating a CI/CD pipeline in CircleCI
	Getting ready
	How to do it...
	Getting started with CircleCI
	Deploying changes to a Kubernetes cluster on EKS

	How it works...
	See also

	Setting up a CI/CD pipeline using GitHub Actions
	Getting ready
	How to do it...
	Creating a workflow file
	Creating a basic Docker build workflow
	Building and publishing images to Docker Registry
	Adding a workflow status badge

	See also

	Setting up a CI/CD pipeline on Amazon Web Services
	Getting ready
	How to do it...
	Creating an AWS CodeCommit code repository
	Building projects with AWS CodeBuild
	Creating an AWS CodeDeploy deployment
	Building a pipeline with AWS CodePipeline

	How it works...
	See also

	Setting up a CI/CD pipeline with Spinnaker on Google Cloud Build
	Getting ready
	How to do it...
	Installing and configuring the Spin CLI
	Configuring a service account for the CI/CD
	Configuring events to trigger a pipeline
	Deploying Spinnaker using Helm
	Creating a Google Cloud Source code repository
	Building projects with Google Cloud Build
	Configuring a Spinnaker pipeline
	Rolling out an application to production

	See also

	Setting up a CI/CD pipeline on Azure DevOps
	Getting ready
	How to do it...
	Getting started with Azure DevOps
	Configuring Azure Pipelines
	Deploying changes to an AKS cluster

	How it works...
	See also

	Chapter 4: Automating Tests in DevOps
	Technical requirements
	Building event-driven automation with StackStorm
	Getting ready
	How to do it…
	Installing StackStorm
	Accessing the StackStorm UI
	Using the st2 CLI
	Defining a rule
	Deploying a rule

	See also

	Automating tests with the Litmus framework
	Getting ready
	How to do it…
	Installing the Litmus Operator
	Using Chaos Charts for Kubernetes
	Creating a pod deletion chaos experiment
	Reviewing chaos experiment results
	Viewing chaos experiment logs

	How it works...
	See also

	Automating Chaos Engineering with Gremlin
	Getting ready
	How to do it…
	Setting up Gremlin credentials
	Installing Gremlin on Kubernetes
	Creating a CPU attack against a Kubernetes worker
	Creating a node shutdown attack against a Kubernetes worker
	Running predefined scenario-based attacks
	Deleting Gremlin from your cluster

	How it works...
	See also

	Automating your code review with Codacy
	Getting ready
	How to do it…
	Accessing the Project Dashboard
	Reviewing commits and PRs
	Viewing issues by category
	Adding a Codacy badge to your repository

	See also

	Detecting bugs and anti-patterns with SonarQube
	Getting ready
	How to do it…
	Installing SonarQube using Helm
	Accessing the SonarQube Dashboard
	Creating a new user and tokens
	Enabling quality profiles
	Adding a project
	Reviewing a project's quality
	Adding marketplace plugins
	Deleting SonarQube from your cluster

	How it works...
	See also

	Detecting license compliance issues with FOSSA
	Getting ready
	How to do it…
	Adding projects to FOSSA
	Triaging licensing issues
	Adding a FOSSA badge to your project

	Chapter 5: Preparing for Stateful Workloads
	Technical requirements
	Managing Amazon EBS volumes in Kubernetes
	Getting ready
	How to do it…
	Creating an EBS storage class
	Changing the default storage class
	Using EBS volumes for persistent storage
	Using EBS storage classes to dynamically create persistent volumes
	Deleting EBS persistent volumes
	Installing the EBS CSI driver to manage EBS volumes

	See also

	Managing GCE PD volumes in Kubernetes
	Getting ready
	How to do it…
	Creating a GCE persistent disk storage class
	Changing the default storage class
	Using GCE PD volumes for persistent storage
	Using GCE PD storage classes to create dynamic persistent volumes
	Deleting GCE PD persistent volumes
	Installing the GCP Compute PD CSI driver to manage PD volumes

	How it works...
	See also

	Managing Azure Disk volumes in Kubernetes
	Getting ready
	How to do it…
	Creating an Azure Disk storage class
	Changing the default storage class to ZRS
	Using Azure Disk storage classes to create dynamic PVs
	Deleting Azure Disk persistent volumes
	Installing the Azure Disk CSI driver

	See also

	Configuring and managing persistent storage using Rook
	Getting ready
	How to do it…
	Installing a Ceph provider using Rook
	Creating a Ceph cluster
	Verifying a Ceph cluster's health
	Create a Ceph block storage class
	Using a Ceph block storage class to create dynamic PVs

	See also

	Configuring and managing persistent storage using OpenEBS
	Getting ready
	How to do it…
	Installing iSCSI client prerequisites
	Installing OpenEBS
	Using ephemeral storage to create persistent volumes
	Creating storage pools
	Creating OpenEBS storage classes
	Using an OpenEBS storage class to create dynamic PVs

	How it works...
	See also

	Setting up NFS for shared storage on Kubernetes
	Getting ready
	How to do it…
	Installing NFS prerequisites
	Installing an NFS provider using a Rook NFS operator
	Using a Rook NFS operator storage class to create dynamic NFS PVs
	Installing an NFS provisioner using OpenEBS
	Using the OpenEBS NFS provisioner storage class to create dynamic NFS PVs

	See also

	Troubleshooting storage issues
	Getting ready
	How to do it…
	Persistent volumes in the pending state
	A PV is stuck once a PVC has been deleted

	Chapter 6: Disaster Recovery and Backup
	Technical requirements
	Configuring and managing S3 object storage using MinIO
	Getting ready
	How to do it…
	Creating a deployment YAML manifest
	Creating a MinIO S3 service
	Accessing the MinIO web user interface

	How it works...
	See also

	Managing Kubernetes Volume Snapshots and restore
	Getting ready
	How to do it…
	Enabling feature gates
	Creating a volume snapshot via CSI
	Restoring a volume from a snapshot via CSI
	Cloning a volume via CSI

	How it works...
	See also

	Application backup and recovery using Velero
	Getting ready
	How to do it…
	Installing Velero
	Backing up an application
	Restoring an application
	Creating a scheduled backup
	Taking a backup of an entire namespace
	Viewing backups with MinIO
	Deleting backups and schedules

	How it works...
	See also

	Application backup and recovery using Kasten
	Getting ready
	How to do it…
	Installing Kasten
	Accessing the Kasten Dashboard
	Backing up an application
	Restoring an application

	How it works...
	See also

	Cross-cloud application migration
	Getting ready
	How to do it…
	Creating an export profile in Kasten
	Exporting a restore point in Kasten
	Creating an import profile in Kasten
	Migrating an application in Kasten
	Importing clusters into OpenEBS Director
	Migrating an application in OpenEBS Director

	See also

	Chapter 7: Scaling and Upgrading Applications
	Technical requirements
	Scaling applications on Kubernetes
	Getting ready
	How to do it…
	Validating the installation of Metrics Server
	Manually scaling an application
	Autoscaling applications using a Horizontal Pod Autoscaler

	How it works...
	See also

	Assigning applications to nodes
	Getting ready
	How to do it…
	Labeling nodes
	Assigning pods to nodes using nodeSelector
	Assigning pods to nodes using node and inter-pod Affinity

	How it works...
	See also

	Creating an external load balancer
	Getting ready
	How to do it…
	Creating an external cloud load balancer
	Finding the external address of the service

	How it works...
	See also

	Creating an ingress service and service mesh using Istio
	Getting ready
	How to do it…
	Installing Istio using Helm
	Verifying the installation
	Creating an ingress gateway

	How it works...
	There's more…
	Deleting Istio

	See also

	Creating an ingress service and service mesh using Linkerd
	Getting ready
	How to do it…
	Installing the Linkerd CLI
	Installing Linkerd
	Verifying a Linkerd deployment
	Adding Linkerd to a service

	There's more…
	Accessing the dashboard
	Deleting Linkerd

	See also

	Auto-healing pods in Kubernetes
	Getting ready
	How to do it…
	Testing self-healing pods
	Adding liveness probes to pods

	How it works...
	See also

	Managing upgrades through blue/green deployments
	Getting ready
	How to do it…
	Creating the blue deployment
	Creating the green deployment
	Switching traffic from blue to green

	See also

	Chapter 8: Observability and Monitoring on Kubernetes
	Technical requirements
	Monitoring in Kubernetes
	Getting ready
	How to do it…
	Adding metrics using Kubernetes Metrics Server
	Monitoring metrics using the CLI
	Monitoring metrics using Kubernetes Dashboard
	Monitoring node health

	See also

	Inspecting containers
	Getting ready
	How to do it…
	Inspecting pods in Pending status
	Inspecting pods in ImagePullBackOff status
	Inspecting pods in CrashLoopBackOff status

	See also

	Monitoring using Amazon CloudWatch
	Getting ready
	How to do it…
	Enabling Webhook authorization mode
	Installing Container Insights Agents for Amazon EKS
	Viewing Container Insights metrics

	See also

	Monitoring using Google Stackdriver
	Getting ready
	How to do it…
	Installing Stackdriver Kubernetes Engine Monitoring support for GKE
	Configuring a workspace on Stackdriver
	Monitoring GKE metrics using Stackdriver

	See also

	Monitoring using Azure Monitor
	Getting ready
	How to do it…
	Enabling Azure Monitor support for AKS using the CLI
	Monitoring AKS performance metrics using Azure Monitor
	Viewing live logs using Azure Monitor

	See also

	Monitoring Kubernetes using Prometheus and Grafana
	Getting ready
	How to do it…
	Deploying Prometheus using Helm charts
	Monitoring metrics using Grafana dashboards
	Adding a Grafana dashboard to monitor applications

	See also

	Monitoring and performance analysis using Sysdig
	Getting ready
	How to do it…
	Installing the Sysdig agent
	Analyzing application performance

	See also

	Managing the cost of resources using Kubecost
	Getting ready
	How to do it…
	Installing Kubecost
	Accessing the Kubecost dashboard
	Monitoring Kubernetes resource cost allocation

	See also

	Chapter 9: Securing Applications and Clusters
	Technical requirements
	Using RBAC to harden cluster security
	Getting ready
	How to do it…
	Viewing the default Roles
	Creating user accounts
	Creating Roles and RoleBindings
	Testing the RBAC rules

	How it works...
	See also

	Configuring Pod Security Policies
	Getting ready
	How to do it…
	Enabling PSPs on EKS
	Enabling PSPs on GKE
	Enabling PodSecurityPolicy on AKS
	Creating a restricted PSPs

	There's more…
	Restricting pods to access certain volume types
	Using Kubernetes PodSecurityPolicy advisor

	See also

	Using Kubernetes CIS Benchmark for security auditing
	Getting ready
	How to do it…
	Running kube-bench on Kubernetes
	Running kube-bench on managed Kubernetes services
	Running kube-bench on OpenShift

	How it works...
	See also

	Building DevSecOps into the pipeline using Aqua Security
	Getting ready
	How to do it…
	Scanning images using Trivy
	Building vulnerability scanning into GitLab
	Building vulnerability scanning into CircleCI

	See also

	Monitoring suspicious application activities using Falco
	Getting ready
	How to do it…
	Installing Falco on Kubernetes
	Detecting anomalies using Falco
	Defining custom rules

	How it works...
	See also

	Securing credentials using HashiCorp Vault
	Getting ready
	How to do it…
	Installing Vault on Kubernetes
	Accessing the Vault UI
	Storing credentials on Vault

	See also

	Chapter 10: Logging with Kubernetes
	Technical requirements
	Accessing Kubernetes logs locally
	Getting ready
	How to do it…
	Accessing logs through Kubernetes
	Debugging services locally using Telepresence

	How it works...
	See also

	Accessing application-specific logs
	Getting ready
	How to do it…
	Getting shell access in a container
	Accessing PostgreSQL logs inside a container

	Building centralized logging in Kubernetes using the EFK stack
	Getting ready
	How to do it…
	Deploying Elasticsearch Operator
	Requesting the Elasticsearch endpoint
	Deploying Kibana
	Aggregating logs with Fluent Bit
	Accessing Kubernetes logs on Kibana

	See also

	Logging Kubernetes using Google Stackdriver
	Getting ready
	How to do it…
	Installing Stackdriver Kubernetes Engine Monitoring support for GKE
	Viewing GKE logs using Stackdriver

	See also

	Using a managed Kubernetes logging service
	Getting ready
	How to do it…
	Connecting clusters to Director Online
	Accessing logs using Director Online

	Logging for your Jenkins CI/CD environment
	Getting ready
	How to do it…
	Installing the Fluentd plugin
	Streaming Jenkins logs to Elasticsearch using Fluentd

	There's more…
	Installing the Logstash plugin
	Streaming Jenkins logs to Elasticsearch using Logstash

	See also

	Other Books You May Enjoy
	Index

