

kubectl: Command-
Line Kubernetes in
a Nutshell

Deploy, manage, and debug container workloads
using the Kubernetes CLI

Rimantas Mocevicius

BIRMINGHAM—MUMBAI

kubectl: Command-Line Kubernetes
in a Nutshell
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Mohd Riyan Khan

Acquisition Editor: Savia Lobo

Senior Editor: Arun Nadar

Content Development Editor: Romy Dias

Technical Editor: Soham Amburle

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Vijay Kamble

First published: October 2020

Production reference: 1221020

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-187-8

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Rimantas Mocevicius is an IT professional with over 25 years' experience in DevOps,
which includes Linux, containers, Kubernetes, and cloud-native technologies. He is also
co-founded Helm – the Kubernetes package manager.

Since 2018 he has worked at JFrog Ltd (Nasdaq: FROG) as a senior software engineer in
the Community Engineering team, which supports community-related centers such as
GoCenter, ConanCenter, and ChartCenter. The centers help the open source community
to adopt Go packages, C/C++ packages, and Helm charts.

He is a big fan and supporter of open source software. His passion for new technologies
drives him forward, and he never wants to stop learning about them.

Twitter: Rimusz

LinkedIn: Rimantas Mocevicius

I would like to say very huge thank you my wife Vilma for all her support
while I was writing the book, and for giving me the space and time to

complete it on time.

Also, I would like to say a big thank you to the technical reviewer, Eldad
Assis, for his invaluable recommendations. He is also an amazing colleague

of mine at JFrog.

Lots of thanks to the Packt Publishing editing team for all the help they
provided while I was writing the book, and especially to Romy Dias for

pushing me to the last mile to make it better.

About the reviewer
Eldad Assis is an experienced developer who turned into an infrastructure geek about
20 years ago. Linux, automation, CI/CD, cloud-native, and DevOps principles have been
key parts of his professional life. He takes applications to the public cloud, from simple
virtual machines all the way to containerized microservices in Kubernetes.

He advocates DevOps practices and implements cloud-native principles for a living.

Today, he's a DevOps architect at JFrog, mostly working on leading the journey to
cloud-native microservices in Kubernetes in public clouds as part of JFrog's SaaS offering.

Twitter: eldadak

LinkedIn: Eldad Assis

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Section 1:
Getting Started with kubectl

1
Introducing and Installing kubectl

Technical requirements 12
Introducing kubectl 13
Installing kubectl 13
Installing on macOS 13
Installing on Windows 14
Installing on Linux 14

kubectl commands 15
Basic commands 15

Deploy commands 15
Cluster management commands 16
Troubleshooting and debugging
commands 16
Advanced commands 16
Settings commands 17
Other commands 17

Summary 17

Section 2:
Kubernetes Cluster and Node Management

2
Getting Information about a Cluster

Cluster information 21
Cluster API versions 23

Cluster resources list 24
Summary 24

Table of Contents

ii Table of Contents

3
Working with Nodes

Getting a list of nodes 26
Describing nodes 27
Displaying node resource usage 29
Cordoning nodes 29

Draining nodes 31
Removing nodes 32
Introduction to node pools 33
Summary 34

Section 3:
Application Management

4
Creating and Deploying Applications

Introduction to pods 38
Creating a deployment 38
Creating a service 42

Scaling up an application 46
Summary 47

5
Updating and Deleting Applications

Deploying a new application
version 50
Rolling back an application
release 52
Assigning an application to a
specific node (node affinity) 53

Scheduling application replicas
to different nodes (pod affinity) 55
Exposing an application to the
internet 57
Deleting an application 58
Summary 61

6
Debugging an Application

Describing a pod 64
Checking pod logs 66

Executing a command in a
running container 70
Summary 71

Table of Contents iii

Section 4:
Extending kubectl

7
Working with kubectl Plugins

Installing plugins 75
Using plugins 78

Creating a basic plugin 79
Summary 80

8
Introducing Kustomize for Kubernetes

Introduction to Kustomize 81
Patching a Kubernetes
application 82

Kustomize overlays 87

Summary 92

9
Introducing Helm for Kubernetes

Introduction to Helm 94
The Helm CLI 95
Helm charts 96
Chart templating 97
Repositories 98
Releases 98

Installing applications using
Helm charts 99
Upgrading Helm releases 103

Rolling back to a previous Helm
release 105
Using Helm's template
command 106
Creating a Helm chart 108
Using Helm's linting feature 112
Extending Helm with plugins 112
Summary 116

10
kubectl Best Practices and Docker Commands

Using shell aliases for kubectl
commands 118

Similar Docker commands in
kubectl 123
Summary 124

iv Table of Contents

Other Books You May Enjoy
Index

Preface
This book is a comprehensive introduction for those who are new to Kubernetes
management via the command line that will get you up to speed in no time.

Kubernetes is an open source container orchestration system for automating application
deployment, scaling, and management, and kubectl is a command-line tool that helps
to manage it.

Who this book is for
This book is for DevOps, developers, system administrators, and all the people in between
who wish to use the kubectl command line to perform Kubernetes functionalities,
who maybe know Docker but haven't mastered using kubectl to deploy containers to
Kubernetes.

What this book covers
Chapter 1, Introducing and Installing kubectl, provides a brief overview of kubectl and
how to install and set it up.

Chapter 2, Getting Information about a Cluster, teaches the reader how to get info about
a cluster and the available API list.

Chapter 3, Working with Nodes, teaches the reader how to get info about the cluster nodes.

Chapter 4, Creating and Deploying Applications, explains how to create and install
Kubernetes applications.

Chapter 5, Updating and Deleting Applications, explains how to update Kubernetes
applications.

Chapter 6, Debugging an Application, explains how to view application logs, exec to
container

Chapter 7, Working with kubectl Plugins, explains how to install kubectl plugins.

vi Preface

Chapter 8, Introducing Kustomize for kubectl, discusses Kustomize.

Chapter 9, Introducing Helm for Kubernetes, discusses Helm, the Kubernetes package
manager.

Chapter 10, kubectl Best Practices and Docker Commands, covers kubectl best practices
and Docker equivalents in kubectl.

To get the most out of this book

We recommend accessing the code via the GitHub repository (link available in the
next section). Doing so will help you avoid any potential errors related to the copying
and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/kubectl-Command-Line-Kubernetes-in-
a-Nutshell. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800561878_ColorImages.pdf.

https://github.com/PacktPublishing/kubectl-Command-Line-Kubernetes-in-a-Nutshell
https://github.com/PacktPublishing/kubectl-Command-Line-Kubernetes-in-a-Nutshell
https://github.com/PacktPublishing/kubectl-Command-Line-Kubernetes-in-a-Nutshell
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800561878_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800561878_ColorImages.pdf

Preface vii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Create the .kube directory in your home directory."

A block of code is set as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgresql

 labels:

 app: postgresql

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

spec:

 replicas: 1

 selector:

 matchLabels:

 app: postgresql

Any command-line input or output is written as follows:

$ kubectl version –client --short

Client Version: v1.18.1

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We assigned Labels and Annotations to the node, and there are no Roles or Taints set."

Tips or important notes
Appear like this.

viii Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Getting Started with

kubectl

In this section, you will learn what kubectl is and how to install it.

This section contains the following chapter:

• Chapter 1, Introducing and Installing kubectl

1
Introducing and

Installing kubectl
Kubernetes is an open source container orchestration system for managing containerized
applications across multiple hosts in a cluster.

Kubernetes provides mechanisms for application deployment, scheduling, updating,
maintenance, and scaling. A key feature of Kubernetes is that it actively manages
containers to ensure that the state of the cluster always matches the user's expectations.

Kubernetes enables you to respond quickly to customer demand by scaling or rolling out
new features. It also allows you to make full use of your hardware.

Kubernetes is the following:

• Lean: Lightweight, simple, and accessible

• Portable: Public, private, hybrid, and multi-cloud

• Extensible: Modular, pluggable, hookable, composable, and toolable

• Self-healing: Auto-placement, auto-restart, and auto-replication

12 Introducing and Installing kubectl

Kubernetes builds on a decade and a half of experience at Google running production
workloads at scale, combined with best-of-breed ideas and best practices from the
community:

Figure 1.1 – A 10,000-foot view of Kubernetes' architecture

One of the ways to manage Kubernetes clusters is kubectl—Kubernetes' command-line
tool for management, it is a tool for accessing a Kubernetes cluster that allows you to
run different commands against Kubernetes clusters to deploy apps, manage nodes,
troubleshoot deployments, and more.

In this chapter, we're going to cover the following main topics:

• Introducing kubectl

• Installing kubectl

• kubectl commands

Technical requirements
To learn kubectl, you will need access to a Kubernetes cluster; it can be one of these
cloud ones:

• Google Cloud GKE: https://cloud.google.com/kubernetes-engine

• Azure AKS EKS: https://azure.microsoft.com/en-us/free/
kubernetes-service

• AWS EKS: https://aws.amazon.com/eks/

• DigitalOcean DOKS: https://www.digitalocean.com/docs/
kubernetes/

https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/free/kubernetes-service
https://azure.microsoft.com/en-us/free/kubernetes-service
https://aws.amazon.com/eks/
https://www.digitalocean.com/docs/kubernetes/
https://www.digitalocean.com/docs/kubernetes/

Introducing kubectl 13

Alternatively, it can be a local one:

• KIND: https://kind.sigs.k8s.io/docs/user/quick-start/

• Minikube: https://kubernetes.io/docs/setup/learning-
environment/minikube/

• Docker Desktop: https://www.docker.com/products/docker-desktop

In this book, we are going to use Google Cloud's GKE Kubernetes cluster.

Introducing kubectl
You can use kubectl to deploy applications, inspect and manage them, check cluster
resources, view logs, and more.

kubectl is a command-line tool that can run from your computer, in CI/CD pipelines,
as part of the operating system, or as a Docker image. It is a very automation-friendly tool.

kubectl looks for a configuration file named .kube in the $HOME folder. In the .kube
file, kubectl stores the cluster configurations needed to access a Kubernetes cluster. You
can also set the KUBECONFIG environment variable or use the --kubeconfig flag to
point to the kubeconfig file.

Installing kubectl
Let's take a look at how you can install kubectl on macOS, on Windows, and in CI/CD
pipelines.

Installing on macOS
The easiest way to install kubectl on macOS is using the Homebrew package manager
(https://brew.sh/):

1. To install, run this:

$ brew install kubectl

2. To see the version you have installed, use this:

$ kubectl version –client --short
Client Version: v1.18.1

https://kind.sigs.k8s.io/docs/user/quick-start/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://www.docker.com/products/docker-desktop
https://brew.sh/

14 Introducing and Installing kubectl

Installing on Windows
To install kubectl on Windows, you could use the simple command-line installer Scoop
(https://scoop.sh/):

1. To install, run this:

$ scoop install kubectl

2. To see the version you have installed, use this:

$ kubectl version –client --short
Client Version: v1.18.1

3. Create the .kube directory in your home directory:

$ mkdir %USERPROFILE%\.kube

4. Navigate to the .kube directory:

$ cd %USERPROFILE%\.kube

5. Configure kubectl to use a remote Kubernetes cluster:

$ New-Item config -type file

Installing on Linux
When you want to use kubectl on Linux, you have two options:

• Use curl:

$ curl -LO https://storage.googleapis.com/kubernetes-
release/release/`curl -s https://storage.googleapis.com/
kubernetes-release/release/stable.txt`/bin/linux/amd64/
kubectl

• If your Linux system supports Docker images, use https://hub.docker.
com/r/bitnami/kubectl/.

Note
Linux is a very common environment for CI/CD pipelines.

https://scoop.sh/
https://hub.docker.com/r/bitnami/kubectl/
https://hub.docker.com/r/bitnami/kubectl/

kubectl commands 15

kubectl commands
To get a list of supported kubectl commands, run this:

$ kubectl --help

kubectl commands are grouped by category. Let's look at each category.

Basic commands
The following are basic kubectl commands:

• create: Create a resource from a file or from stdin; for example, create
a Kubernetes deployment from the file.

• expose: Take a service, deployment, or pod and expose it as a new Kubernetes
Service.

• run: Run a particular image on the cluster.

• set: Set specific features on objects—for example, set environment variables,
update a Docker image in a pod template, and so on.

• explain: Get the documentation of resources—for example, the documentation
on deployments.

• get: Display one or many resources. For example, you can get a list of running pods
or the YAML output of a pod.

• edit: Edit a resource—for example, edit a deployment.

• delete: Delete resources by filenames, stdin, resources, and names, or by
resources and label selectors.

Deploy commands
The following are kubectl deploy commands:

• rollout: Manage the rollout of a resource.

• scale: Set a new size for a deployment, ReplicaSet, or StatefulSet.

• autoscale: Auto-scale a deployment, ReplicaSet, or StatefulSet.

16 Introducing and Installing kubectl

Cluster management commands
The following are the kubectl cluster management commands:

• certificate: Modify certificate resources.

• cluster-info: Display cluster information.

• top: Display resource (CPU/memory/storage) usage.

• cordon: Mark a node as unschedulable.

• uncordon: Mark a node as schedulable.

• drain: Drain a node in preparation for maintenance.

• taint: Update the taints on one or more nodes.

Troubleshooting and debugging commands
The following are the kubectl troubleshooting and debugging commands:

• describe: Show the details of a specific resource or group of resources.

• logs: Print the logs for a container in a pod.

• attach: Attach to a running container.

• exec: Execute a command in a container.

• port-forward: Forward one or more local ports to a pod.

• proxy: Run a proxy to the Kubernetes API server.

• cp: Copy files and directories to and from containers.

• auth: Inspect authorization.

Advanced commands
The following are the kubectl advanced commands:

• diff: Show difference of live version against a would-be applied version.

• apply: Apply a configuration to a resource by filename or stdin.

• patch: Update the field(s) of a resource using a strategic merge patch.

• replace: Replace a resource by filename or stdin.

• wait: Wait for a specific condition on one or many resources.

Summary 17

• convert: Convert config files between different API versions.

• kustomize: Build a kustomization target from a directory or a remote URL.

Settings commands
The following are the settings commands in kubectl:

• label: Update the labels on a resource.

• annotate: Update the annotations on a resource.

Other commands
The following are several other commands used in kubectl:

• alpha: Commands for features in alpha.

• api-resources: Print the supported API resources on the server.

• api-versions: Print the supported API versions on the server, in the form of
group/version.

• config: Modify kube-config files.

• plugin: Provide utilities for interacting with plugins.

• version: Print the client and server version information.

As you can see from the lists, commands are divided into different groups. We are going to
learn about most but not all of these commands in the coming chapters.

At the time of writing, the kubectl version is 1.18; with more recent versions, the
commands might have changed.

Summary
In this chapter, we have learned what kubectl is and how to install it on macOS,
Windows, and CI/CD pipelines. We also checked out the different commands supported
by kubectl and what they do.

In the next chapter, we will learn how to get information about Kubernetes clusters using
kubectl.

Section 2:
Kubernetes

Cluster and Node
Management

This section explains how to manage Kubernetes clusters, how to get information about
clusters and nodes, and how to work with nodes.

This section contains the following chapters:

• Chapter 2, Getting Information about a Cluster

• Chapter 3, Working with Nodes

2
Getting Information

about a Cluster
When you are managing a Kubernetes cluster, it is necessary to know what Kubernetes
version it is running on, the details about the master (also called the control plane),
any addons installed on the cluster, and the available APIs and resources. As different
Kubernetes versions support different API versions for resources, not setting the right/
unsupported API version for your, for example, Ingress, will cause the deployment to fail.

In this chapter, we're going to cover the following topics:

• Cluster information

• Cluster API versions

• Cluster API resources

Cluster information
It is always good to know which version of the Kubernetes server (API) is installed for
a Kubernetes cluster as you might want to use particular features available in that version.
To check the server version, run the following:

$ kubectl version --short

Client Version: v1.18.1

Server Version: v1.17.5-gke.9

22 Getting Information about a Cluster

The server version is v1.17.5 and the kubectl version is v1.18.1. Note that the
-gke.9 bit of the server version is the internal GKE revision; as we mentioned earlier, for
the book's purposes, a GKE cluster is used.

Important note
The kubectl version can be a more recent one; it does not really have to
match the server version, as the latest version is usually backward compatible.
However, it is not recommended to use an older kubectl version with a
more recent server version.

Next, let's check the cluster server information by running the following command:

$ kubectl cluster-info

Kubernetes master is running at https://35.223.200.75

GLBCDefaultBackend is running at https://35.223.200.75/api/v1/
namespaces/kube-system/services/default-http-backend:http/proxy

KubeDNS is running at https://35.223.200.75/api/v1/namespaces/
kube-system/services/kube-dns:dns/proxy

Metrics-server is running at https://35.223.200.75/api/v1/
namespaces/kube-system/services/https:metrics-server:/proxy

In the preceding output log, we see the following:

• The master endpoint IP (35.223.200.75), where your kubectl connects to the
Kubernetes API.

• A list of installed addons, which in this setup are more GKE cluster-specific:

a. GLBDefaultBackend

b. KubeDNS

c. Metrics-server
The addons list will vary between cloud-based and on-premises installations.

Finally, let's check cluster node information using the following command:

$ kubectl get nodes

The output of the preceding command is as shown in the following screenshot:

Figure 2.1 – Output showing node information

Cluster API versions 23

The preceding command shows a list of the nodes available in the cluster with their status
and Kubernetes version.

Cluster API versions
It is good practice to check the available cluster API versions because each new
Kubernetes version usually brings with it new API versions and deprecates/removes some
old ones.

To get an API list, run the following command:

$ kubectl api-versions

The output for the preceding command gives us a list of APIs, as shown in the following
screenshot:

Figure 2.2 – API list

You need to know which APIs can be used in your application, as otherwise, the
deployment could fail if the API version you use is not supported anymore.

24 Getting Information about a Cluster

Cluster resources list
Another handy list is the resources list, which shows the available resources, their short
names (to use with kubectl), the API group a resource belongs to, whether a resource
is namespaced or not, and the KIND type.

To get the resources list, run the following command:

$ kubectl api-resources

The preceding command gives us the following list of resources:

Figure 2.3 – List of resources

As the list is quite long, we are only showing part of it in the preceding screenshot.

Getting a list of resources will help you to run kubectl commands using short resource
names and to know which API group a resource belongs to.

Summary
In this chapter, we have learned how to use kubectl to get information about
a Kubernetes cluster, the available APIs, and the API resources in a cluster.

In the next chapter, we are going to look at how to get information about the nodes
present in a Kubernetes cluster.

3
Working with Nodes

Everyone familiar with Kubernetes knows that the cluster workload runs in nodes, where
all Kubernetes pods get scheduled, deployed, redeployed, and destroyed.

Kubernetes runs the workload by placing containers into pods and then schedules them
to run on nodes. A node might be a virtual or physical machine, depending on the cluster
setup. Each node has the services necessary to run pods, managed by the Kubernetes
control plane.

The main components of the node are as follows:

• kubelet: An agent that registers/deregisters the node with the Kubernetes API.

• Container runtime: This runs containers.

• kube-proxy: Network proxy.

If the Kubernetes cluster supports nodes autoscaling, then nodes can come and go as
specified by the autoscaling rules: by setting min and max node counts. If there is not
much load running in the cluster, unnecessary nodes will be removed down to the
minimum nodes set by the autoscaling rules. And when the load increases, the required
amount of nodes will be deployed to accommodate the newly scheduled pods.

There are times when you need to troubleshoot, get information about the nodes in the
cluster, find out which pods they are running, see how much CPU and memory they are
consuming, and so on.

https://kubernetes.io/docs/concepts/workloads/pods/

26 Working with Nodes

There are always going to be cases when you need to stop scheduling pods on some nodes,
or rescheduling pods to different nodes, or temporally disabling the scheduling of any
pods to some nodes, removing nodes, or any other reasons.

In this chapter, we're going to cover the following main topics:

• Getting a list of nodes

• Describing nodes

• Displaying node resource usage

• Cordoning nodes

• Draining nodes

• Removing nodes

• Introduction to node pools

Getting a list of nodes
To start working with nodes, you need to get a list of them first. To get the nodes list, run
the following command:

$ kubectl get nodes

We get the following list of nodes using the preceding command:

Figure 3.1 – Nodes list

The preceding list shows we have three nodes in our Kubernetes cluster with a Ready
status and Kubernetes version 1.17.5-gke.9. However, if you have cloud-supported
node pools with autoscaling, your nodes list could be different because nodes will be
added/removed depending on the number of applications running in your cluster.

Describing nodes 27

Describing nodes
The kubectl describe command allows us to get the state, metadata, and events of
an object in a Kubernetes cluster. In this section, we will use it to describe the node.

We have got a list of nodes, so let's check out one of them:

1. To describe a node, run the following command:

$ kubectl describe node gke-kubectl-lab-default-pool-
b3c7050d-6s1l

As the command's output is quite big, we are going to show only some parts of it.
You can check out the full output yourself.

2. In the following screenshot, we see the assigned Labels (which can be used to
organize and select subsets of objects) and Annotations (extra information about
the node is stored there) for the node, and Unschedulable: false means that
the node accepts pods to be scheduled on to it. For example, Labels can be used
for Node Affinity (which allows us to constrain which nodes the pod is eligible
to be scheduled on, based on the labels on the node) to schedule pods on particular
nodes:

Figure 3.2 – Node describe – check labels and annotations

28 Working with Nodes

3. In the following screenshot, we see the assigned internal and external IPs, the
internal DNS name, and the hostname:

Figure 3.3 – Node describe – assigned internal and external IPs

4. The following screenshot shows the running pods on the node with CPU/memory
requests and limits per pod:

Figure 3.4 – Node describe – CPU/memory requests and limits per pod

5. The following screenshot shows the allocated resources for the node:

Figure 3.5 – Node describe – allocated resources for the node

As you can see, the $ kubectl describe node command allows you to get various
information about the node.

Displaying node resource usage 29

Displaying node resource usage
It is handy to know what resources are consumed by nodes. To display the resources used
by nodes, run the following command:

$ kubectl top nodes

We get the following list of nodes using the preceding command:

Figure 3.6 – Top nodes list with resources used

The previous command shows node metrics such as CPU cores, memory (in bytes), and
CPU and memory percentage usage.

Also, by using $ watch kubectl top nodes, you can watch and monitor nodes in
real time when, for example, load testing your application or doing other node operations.

Note
The watch command might not be present in your computer, you might need
to install it. The watch command will run the specified command and refresh
the screen every few seconds.

Cordoning nodes
Let's suppose we are going to run an app's load test and we want to keep a node away from
the load test. In the node list that we saw in the Getting a list of nodes section, we have
three nodes, and they are all in the Ready state. Let's pick one node, gke-kubectl-
lab-default-pool-b3c7050d-8jhj, which we do not want new pods to be
scheduled on.

kubectl has a command called cordon, which allows us to make a node unschedulable:

$ kubectl cordon -h

Mark node as unschedulable.

Examples:

 # Mark node "foo" as unschedulable.

 kubectl cordon foo

Options:

 --dry-run='none': Must be "none", "server", or "client".

30 Working with Nodes

If client strategy, only print the object that would be

sent, without sending it. If server strategy, submit server-
side request without persisting the resource.

 -l, --selector='': Selector (label query) to filter on

Usage:

 kubectl cordon NODE [options]

Let's cordon the gke-kubectl-lab-default-pool-b3c7050d-8jhj node and
then print a nodes list. To cordon the node, run the following:

$ kubectl cordon gke-kubectl-lab-default-pool-b3c7050d-8jhj

We get the following output after running the preceding command:

Figure 3.8 – Cordoning nodes

We have cordoned the gke-kubectl-lab-default-pool-b3c7050d-8jhj node
so from now on, no new pods will be scheduled onto that node, but whatever pods are
running there will stay running on that node.

Important note
If the cordoned node gets rebooted then all pods that were scheduled on it
will get rescheduled to different nodes, as even when rebooting the node its
readiness status doesn't change.

If we want the node to be scheduled on again, you just use uncordon command. To
uncordon the node, run the following command:

$ kubectl uncordon gke-kubectl-lab-default-pool-b3c7050d-8jhj

We get the following output after running the preceding command:

Figure 3.9 – Uncordoning nodes

Draining nodes 31

As you can see from the preceding screenshot, the gke-kubectl-lab-default-
pool-b3c7050d-8jhj node is in the Ready state again and new pods will be
scheduled on it from now on.

Draining nodes
You might want to remove/evict all pods from a node that is going to be deleted,
upgraded, or rebooted, for example. There is a command, drain, for that. Its output is
quite long, so only some of the output will be shown:

$ kubectl drain –help

We get the following output from the preceding command:

Figure 3.10 – Partial kubectl drain – help output

As you can see from the output, there are a few flags you need to pass to properly drain
the node: --ignore-daemonsets and –force.

Note
A DaemonSet ensures that all specified Kubernetes nodes run a copy of the
same pod specified in the DaemonSet. A DaemonSet cannot be deleted from
the Kubernetes node, so the --ignore-daemonsets flag must be used to
force draining the node.

Let's drain the gke-kubectl-lab-default-pool-b3c7050d-8jhj node using
the following command:

$ kubectl drain gke-kubectl-lab-default-pool-b3c7050d-8jhj
--ignore-daemonsets –force

32 Working with Nodes

We drain the node using the preceding command. The output of this command is as
shown in the following screenshot:

Figure 3.11 – Drain node

Important note
We have passed the --ignore-daemonsets flag so that if there are any
DaemonSets running on the node the drain command will not fail.

So, we have drained the node. What else does drain do? It cordons the node as well, so
no more pods can be scheduled on to the node.

Now we are ready to delete the node.

Removing nodes
The gke-kubectl-lab-default-pool-b3c7050d-8jhj node got drained and
is not running any deployments, pods, or StatefulSets, so it can be easily deleted now.

We do it using the delete node command:

$ kubectl delete node gke-kubectl-lab-default-pool-b3c7050d-
8jhj

We delete the node using the preceding command. The output of this command is as
shown in the following screenshot:

Figure 3.12 – Delete node

Introduction to node pools 33

As you can see from the kubectl get nodes output, the node was unregistered from
the Kubernetes API and got deleted.

Important note
Actual node deletion depends on your Kubernetes setup. In cloud-hosted
clusters, the node gets unregistered and deleted, but if you are running an
on-premise self-hosted Kubernetes cluster, the actual node will not be deleted
but only deregistered from the Kubernetes API.

Also, when you specify the cluster size in the cloud setup, the new node will
replace the deleted one after some time.

Let's run kubectl get nodes to check the nodes:

Figure 3.13 – Nodes list

A few minutes later, we see the third node is back, even with the same name.

Introduction to node pools
Cloud providers that have Kubernetes as a managed service support node pools.
Let's learn what they are.

A node pool is just a group of Kubernetes nodes that have the same compute spec and the
same Kubernetes node labels, nothing else too fancy.

For example, we have two node pools:

• The default pool with the node-pool: default-pool node label

• The web app pool with the node-pool: web-app node label

Kubernetes node labels can be used in node selectors and Node Affinity to control how
workloads are scheduled to your nodes.

We are going to learn how to use Kubernetes node pools with Node Affinity in Chapter 5,
Updating and Deleting Applications.

34 Working with Nodes

Summary
In this chapter, we have learned how to use kubectl to list nodes running in the cluster,
get information about the nodes and their resources usage; we've seen how to cordon,
drain, and remove nodes; and we had an introduction to node pools.

We have learned new skills that can be applied in real-world scenarios to conduct
maintenance on Kubernetes nodes.

In the next chapter, we're going to learn how to create and deploy applications to
a Kubernetes cluster using kubectl.

Section 3:
Application

Management

This section explains how to manage Kubernetes applications, including creating,
updating, deleting, viewing, and debugging applications.

This section contains the following chapters:

• Chapter 4, Creating and Deploying Applications

• Chapter 5, Updating and Deleting Applications

• Chapter 6, Debugging an Application

4
Creating and

Deploying
Applications

In the previous chapters, we have learned about Kubernetes nodes. Let's finally deploy an
application using a Kubernetes deployment, scale the application up, and create a service
for it.

A Kubernetes deployment is one way to deploy applications from Docker images, and
we are going to use it for our example applications.

Kubernetes supports a few container runtimes, all of which can run Docker images:

• Docker

• CRI-O

• Containerd

In this chapter, we're going to cover the following topics:

• Introduction to pods

• Creating a deployment

38 Creating and Deploying Applications

• Creating a service

• Scaling up an application

Introduction to pods
A pod is a collocated group of application containers with shared volumes.

The applications in a pod all use the same network namespace, IP address, and port space.
They can find and communicate with each other using localhost. Each pod has an IP
address in a flat shared networking namespace that has full communication with other
physical computers and containers across the network.

Pods are the smallest deployable units that can be created, scheduled, and managed with
Kubernetes. Pods also can be created individually. As pods do not have a managed life
cycle, if they die, they will not be recreated. For that reason, it is recommended that you
use a deployment even if you are creating a single pod.

Pods are also used in DaemonSets, StatefulSets, Jobs, and CronJobs:

Figure 4.1 – Pod with two containers

The preceding diagram shows a pod with two containers. Containers in a pod share the
same Linux network namespace as well as the following:

• IP address

• Localhost

• IPC (inter-process communication)

Let's move on to deployments, which are more suited to real-world application
deployments.

Creating a deployment
The Kubernetes deployment provides updates for ReplicaSets, which ensures that
a specified amount of pods (replicas) are running all the time:

Creating a deployment 39

Figure 4.2 – Deployment with three pods

The preceding diagram shows a deployment with three pods; the ReplicaSet will try
to keep three pods running all the time. Of course, if there are no free resources in the
Kubernetes cluster, the running pod replicas might not match the required replica count.

There are a few ways to create a Kubernetes deployment – let's explore them. The easiest
way is using $ kubectl create deployment.

Let's create an nginx deployment:

$ kubectl create deployment

deployment.apps/nginx created

Let's check the created nginx deployment:

$ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 1/1 1 1 19d

Let's check the created nginx pod:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-86c57db685-c9s49 1/1 Running 0 10d

The preceding command created an nginx deployment with one nginx-86c57db685-
c9s49 pod.

40 Creating and Deploying Applications

It looks almost too easy, right? One command and boom: your deployment is running.

Important note
The kubectl create deployment command is only recommended
for testing images, as there you do not specify the deployment template and
you do not have much control over any additional settings you might want to
set for the deployment.

Let's deploy from the file using the $ kubectl apply command:

1. We have a file called deployment.yaml with the following contents:

$ cat deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 labels:

 app: nginx

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - image: nginx:1.18.0

 imagePullPolicy: IfNotPresent

 name: nginx

When using the preceding file with kubectl, it will deploy the same nginx
deployment as we did using the $ kubectl create deployment command,
but in this case, later on, we can update the file according to our needs and upgrade
the deployment.

Creating a deployment 41

2. Let's delete the previously installed deployment:

$ kubectl delete deployment nginx

deployment.apps "nginx" deleted

3. Let's redeploy using the deployment.yaml file this time:

$ kubectl apply –f deployment.yaml

deployment.apps/nginx created

$ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 1/1 1 1 17s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-7df9c6ff5-pnnr6 1/1 Running 0 25s

As you can see from the preceding commands, we have the deployment with one
pod (replica) installed, but this time we used the template from the file.

The following diagram shows a deployment with three pods; the ReplicaSet will try
to keep three pods uprunning at all times Again, if there are no free resources in the
Kubernetes cluster, the running pod replicas might not match the required replica count:

Figure 4.3 – Kubernetes node

Let's take a look at how to create a service.

42 Creating and Deploying Applications

Creating a service
Kubernetes services provide a single stable name and address for a set of pods. They act as
basic in-cluster load balancers.

Most pods are designed to be long-running, but when a single process dies, the pod
dies with it. If it dies, the Deployment replaces it with a new pod. Every pod gets its own
dedicated IP address, which allows containers to have the same port (the exception is
when NodePort is used), even if they're sharing the same host. But when a pod is started
by the Deployment, the pod gets a new IP address.

This is where services really help. A service is attached to the deployment. Each service
gets assigned a virtual IP address that remains constant until the service dies. As long as
we know the service IP address, the service itself will keep track of the pods created by the
deployment and will distribute requests to the deployment pods.

By setting the service, we get an internal Kubernetes DNS name. Also, the service acts
as an in-cluster load balancer when you have more than one ReplicaSet. With a service,
you can also expose your application to the internet when the service type is set to
LoadBalancer:

Figure 4.4 – Kubernetes node

The preceding diagram explains how a service works.

Creating a service 43

As we have our application up and running, let's create a Kubernetes service for it:

1. Let's start by running the following command:

$ kubectl expose deployment nginx --port=80 --target-
port=80

service/nginx exposed

We used port 80, and on that port, the nginx service was exposed to other
Kubernetes applications; target-port=80 is our nginx container port.
We are using the port=80 container because the official nginx Docker image
(https://hub.docker.com/_/nginx) we deployed in Chapter 3, Working
with Nodes, uses port 80.

2. Let's check the created nginx service:

$ kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S)

kubernetes ClusterIP 10.16.0.1 <none> 443/
TCP

nginx ClusterIP 10.16.12.233 <none> 80/
TCP

$ kubectl describe service nginx

Name: nginx

Namespace: default

Labels: app=nginx

Annotations: cloud.google.com/neg: {"ingress":true}

Selector: app=nginx

Type: ClusterIP

IP: 10.16.12.233

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.8.0.133:80

Session Affinity: None

Events: <none>

The preceding kubectl get service command shows the services list and
kubectl describe service nginx describes the service.

https://hub.docker.com/_/nginx

44 Creating and Deploying Applications

We can see a few things there:

• The service got the same name, nginx, as the deployment we exposed.

• Selector: app=nginx is the same as matchLabels in the nginx
deployment; this is how the service knows how to connect to the right deployment.

• Type: ClusterIP is the default service type when no –type flag is provided.

Important note
Using the kubectl expose command looks like an easy way to set up a
service for the application. But again, we cannot put that command under Git
control, nor can we change the service settings. For testing purposes, this is
fine, but not for running a real-world application.

Let's deploy from the file using the $ kubectl apply command.

We have a file called service.yaml that we are going to use to update the service:

$ cat service.yaml

apiVersion: v1

kind: Service

metadata:

 name: nginx

 labels:

 app: nginx

spec:

 type: ClusterIP

 ports:

 - port: 80

 protocol: TCP

 targetPort: 80

 selector:

 app: nginx

This time, let's keep the service we created with kubectl expose and see whether
we can apply changes from the service.yaml file to the service we have created.

Creating a service 45

To deploy the service, we run the following command:

$ kubectl apply –f service.yaml

Warning: kubectl apply should be used on resource created by
ether kubectl create –save-config or kubetl apply

service/nginx configured

We got a warning (as first we used the kubectl expose command, and then we tried to
update the service from the file), but our changes were applied to the service successfully,
and from now on we can use service.yaml to make changes to the nginx service.

Tip
When you create a service with kubectl expose, you can export its
template to the YAML file with the kubectl get service nginx -o
yaml > service.yaml command and reuse the file for future changes
that you might need to make.

To export the nginx service, run the following command:

$ kubectl get service nginx -o yaml

The output for the preceding command is as shown in the following screenshot:

Figure 4.5 – Exporting the nginx service

46 Creating and Deploying Applications

Copy its contents to a file, and there you should remove the following parts, which were
generated by kubectl and aren't needed there:

• annotations

• creationTimestamp

• resourceVersion:

• selfLink

• uid

• Status

Important note
You can also export a deployment's template to a YAML file using the
kubectl get deployment nginx -o yaml > deployment.
yaml command.

Scaling up an application
In the previous section, we deployed an application with one replica; let's scale its
deployment to two replicas.

The use case of running multiple replicas is to enable high availability for an application.
To scale our deployment, run the following commands:

$ kubectl scale deployment nginx –replicas=2

deployment.apps/nginx scaled

$ kubectl get deployment nginx

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 2/2 2 2 5d17h

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-7df9c6ff5-chnrk 1/1 Running 0 29s

nginx-7df9c6ff5-s65dq 1/1 Running 0 5d17h

From the preceding output, we see can that the $ kubectl get deployment
nginx command shows that the nginx deployment has two replicas. With $ kubectl
get pods, we see two pods; one is just less than a minute old.

Summary 47

That's a neat command to scale deployments and is handy for testing purposes. Let's try to
scale the deployment using the deployment.yaml file.

This time, let's scale to three replicas but using the deployment.yaml file:

1. Update deployment.yaml with three replicas:

...

spec:

 replicas: 3

...

2. Run the same command as before:

$ kubectl apply –f deployment.yaml

deployment.apps/nginx configured

$ kubectl get deployment nginx

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 5d17h

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-7df9c6ff5-chnrk 1/1 Running 0 21m

nginx-7df9c6ff5-s65dq 1/1 Running 0
5d17h

nginx-7df9c6ff5-tk7g4 1/1 Running 0 22s

Nice: we have updated the nginx deployment with three replicas from the
deployment.yaml file.

The service will distribute all incoming requests between the three pods in a round-robin
manner.

Summary
In this chapter, we have learned how to create, deploy, and scale up applications with
kubectl. The new skills we have learned in this chapter can now be used to deploy
real-world applications.

In the next chapter, we going to learn how to do more advanced updates to deployed
applications.

5
Updating

and Deleting
Applications

In the previous chapter, we learned how to deploy an application and its service and
how to scale deployment replicas up. Let's now learn about some more advanced ways to
update your application.

In this chapter, we're going to learn how to update applications to new versions and, if
the release was a bad one, how to roll it back. We will see how to assign an application
to a particular node, running applications in high-availability mode, how to make
applications available over the internet, and in cases where there is a need, how to delete
an application.

We're going to cover the following main topics in this chapter:

• Releasing a new application version

• Rolling back an application release

• Assigning an application to a specific node (node affinity)

• Scheduling application replicas to different nodes (pod affinity)

50 Updating and Deleting Applications

• Exposing an application to the internet

• Deleting an application

Deploying a new application version
In the previous chapter, we deployed an application using the nginx v1.18.0 Docker
image. In this section, let's update it to nginx v1.19.0:

To update the nginx Docker image tag, run the following command:

$ kubectl set image deployment nginx nginx=nginx:1.19.0 \

 --record

deployment.apps/nginx image updated

$ kubectl rollout status deployment nginx

deployment "nginx" successfully rolled out

$ kubectl get deployment nginx

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 5d19h

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6fd8f555b-2mktp 1/1 Running 0 60s

nginx-6fd8f555b-458cl 1/1 Running 0 62s

nginx-6fd8f555b-g728z 1/1 Running 0 66s

The $ kubectl rollout status deployment nginx command will show the
rollout status as a success, failed, or waiting:

deployment "nginx" successfully rolled out

This is a handy way to check the deployment's rollout status.

Let's ensure that the deployment is updated to nginx v1.19.0 by running the following
command:

$ kubectl describe deployment nginx

Deploying a new application version 51

The output for the preceding command can be seen in the following screenshot:

Figure 5.1 – Output for describe deployment

Yup, it was updated to v1.19.0, as we can see in the Pod Template part. Now, let's
update the Docker image using the deployment.yaml file.

Update the deployment.yaml file with the new Docker image tag:

...

spec:

 containers:
 -image: nginx:1.19.0

...

Run the $ kubectl apply -f deployment.yaml command:

$ kubectl apply -f deployment.yaml

deployment.apps/nginx configured

$ kubectl rollout status deployment nginx

deployment "nginx" successfully rolled out

$ kubectl get deployment nginx

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 5d19h

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-6fd8f555b-2mktp 1/1 Running 0 12m

nginx-6fd8f555b-458cl 1/1 Running 0 12m

nginx-6fd8f555b-g728z 1/1 Running 0 12m

52 Updating and Deleting Applications

Running the $ kubectl get pods command shows that the pods haven't changed
as we applied the same Docker image tag as before, so Kubernetes is clever enough not to
make any unnecessary changes to the nginx deployment.

Rolling back an application release
There are always cases (such as bugs in the code, the wrong Docker tag supplied for the
latest release, and more) when you need to roll back an application release to a previous
version.

This can be done using the $ kubectl rollout undo deployment nginx
command followed by the get and describe commands:

Figure 5.2 – Deployment release rollback

The preceding output shows the version as Image: nginx:1.18.0, so the rollback was
successful.

We can also check the deployment rollout history:

$ kubectl rollout history deployment nginx

deployment.apps/nginx

REVISION CHANGE-CAUSE

1 <none>

2 <none>

Assigning an application to a specific node (node affinity) 53

We can also roll back to a specific revision:

$ kubectl rollout undo deployment nginx –to-revision=1

deployment.apps/nginx rolled back

Nice, we have learned how to roll back a deployment's release.

Assigning an application to a specific node
(node affinity)
There are some use cases where Kubernetes clusters have different node pools with
different specs, such as the following:

• Stateful applications

• Backend applications

• Frontend applications

Let's reschedule the nginx deployment to a dedicated node pool:

1. To get the nodes list, run the following command:

$ kubectl get nodes

The preceding command gives the following output:

Figure 5.3 – Node pools list

2. Next, let's check a node under the gke-kubectl-lab-we-app-pool name.
Run the following command:

$ kubectl describe node gke-kubectl-lab-we-app-pool-
1302ab74-pg34

54 Updating and Deleting Applications

The output of the preceding command is as shown in the following screenshot:

Figure 5.4 – Node labels

3. There, we have a node-pool=web-app label, which is the same for all nodes of
the gke-kubectl-lab-we-app-pool pool.

4. Let's update the deployment.yaml file with the nodeAffinity rule, so the
nginx application only gets scheduled to gke-kubectl-lab-we-app-pool:

...
spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: node-pool

 operator: In

 values:

 - "web-app"

containers:

...

Scheduling application replicas to different nodes (pod affinity) 55

5. To deploy the changes, run the $ kubectl apply -f deployment.yaml
command followed by the get command as shown in the following screenshot:

Figure 5.5 – Node affinity
Nice, the pods were scheduled onto gke-kubectl-lab-we-app-pool.

Tip
We have used the –o wide flag, which allows us to show more information
about a pod, such as its IP and the node it's scheduled on.

6. Let's delete one pod to verify that it gets scheduled onto gke-kubectl-lab-we-
app-pool:

$ kubectl delete pod nginx-55b7cd4f4b-tnmpx

Let's get the pods list again:

Figure 5.6 – Pods list with nodes

The preceding screenshot shows the pods list with the nodes the pods were scheduled on.
Good, the new pod was scheduled onto the right node pool.

Scheduling application replicas to different
nodes (pod affinity)
Using nodeAffinity does not ensure that pods will next time be scheduled onto
separate nodes, and for real application high availability, the best practice is to ensure that
application pods are scheduled onto separate nodes. If one of the nodes is down/rebooted/
replaced, having all the pods running on that node will cause the application to go down
and its services to be unavailable.

56 Updating and Deleting Applications

Let's update the deployment.yaml file with the podAntiAffinity rule so that the
nginx application is only scheduled to gke-kubectl-lab-we-app-pool and onto
separate nodes:

...
spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: node-pool

 operator: In

 values:

 - "web-app"

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - nginx

 topologyKey: "kubernetes.io/hostname"

containers:

...

To deploy the new changes, run the $ kubectl apply -f deployment.yaml
command followed by the get command as shown in the following screenshot:

Figure 5.7 – Node affinity

Exposing an application to the internet 57

As you can see, the pods are rescheduled again as we added the podAntiAffinity rule:

Figure 5.8 – Node affinity pods are rescheduled

As you can see, the pods are running on separate nodes, and the podAntiAffinity
rule will ensure that pods will not be scheduled onto the same node.

Exposing an application to the internet
Awesome job so far, so to finish this chapter, let's make our application available over the
internet.

We need to update service.yaml with type: LoadBalancer, which will create
a LoadBalancer with an external IP.

Note
The LoadBalancer capability is dependent on the vendor integration because
an external LoadBalancer is created by the vendor. So, if you run locally with
Minikube or Kind, you will never really get an external IP.

Update the service.yaml file with the following content:

...

spec:

 type: LoadBalancer

...

To deploy the new changes, run the $ kubectl apply -f service.yaml
command followed by the get command as shown in the following screenshot:

 Figure 5.9 – Service with pending LoadBalancer

58 Updating and Deleting Applications

We are seeing pending as the status depends on the cloud provider, and it can take up to
5 minutes for the LoadBalancer to be provisioned. Running the get command again after
some time, you can see that the IP is assigned, as shown in the following screenshot:

Figure 5.10 – The service with LoadBalancer

To be sure that the application is working, let's open IP 104.197.177.53 in the
browser:

Figure 5.11 – Application in the browser

Voila! Our application is accessible from the internet.

Important note
The preceding example showing how to expose the application to the internet
is not secure, as it is using HTTP. To keep the example simple, we used HTTP,
but real-world applications should use HTTPS only.

Deleting an application
Sometimes, you need to delete an application, so let's go over a few options for how
to do that.

In the previous sections, we deployed the deployment and service. Let's refresh our
memory on what we deployed.

Deleting an application 59

To check the deployments, run the following command:

$ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 6d17h

To check the active services, run the following command:

$ kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kubernetes ClusterIP 10.16.0.1 <none> 443/TCP

nginx LoadBalancer 10.16.12.134 104.197.177.53
80:30295/TCP

We have a deployment called nginx and a service called nginx.

First, let's delete the nginx service using the following command:

$ kubectl delete service nginx

service "nginx" deleted

$ kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kubernetes ClusterIP 10.16.0.1 <none> 443/TCP

As you can see in the preceding screenshot, the nginx service was deleted, and the
application is not exposed to the internet anymore and is safe to be deleted as well. To
delete the nginx deployment, run the following command:

$ kubectl delete deployment nginx

deployment.apps "nginx" deleted

$ kubectl get deployment

No resources found in default namespace.

It is so easy to delete an application's deployed resources with a few commands.

But if you have an image where you have more than just two resources installed, would
you run a deletion command for each resource? Of course not, there is an easier way
to do that.

As we have deleted the deployment and service, let's deploy them again so that we have
something to delete again. You need to put deployment.yaml and service.yaml
into some folder – for example, code.

60 Updating and Deleting Applications

This will allow you to manage multiple resources together as multiple files in a directory.

Note
You can also have multiple YAML entries in a single YAML file (with the ---
divider).

To install the deployment and service with the same command, run the following
command:

$ kubectl apply –f code/

deployment.apps/nginx created

service/nginx created

To check the deployment and service, run the following commands:

$ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 3/3 3 3 13s

$ kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kubernetes ClusterIP 10.16.0.1 <none> 443/TCP

nginx LoadBalancer 10.16.4.143 pending
80:32517/TCP

This time, we used one command to install the application, and in the same way, you can
apply changes to the application as well, as Kubernetes is clever enough that it will only
update the resource that was changed.

Note
You can also use one command to show a service and deployment:
kubectl get deployment/service.

We can also use the same approach to delete the application. To delete the deployment
and service with one command, run the following:

$ kubectl delete –f code/

deployment.apps/nginx deleted

service/nginx deleted

$ kubectl get deployment

Summary 61

No resources found in default namespace.

$ kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kubernetes ClusterIP 10.16.0.1 <none> 443/TCP

As you can see, we used just one command to clean up all of the application's installed
resources.

Summary
In this chapter, we learned how to release a new application version, roll back an
application version, assign an application to a particular node, schedule application
replicas between different nodes, and expose an application to the internet. We also
learned how to delete an application in a few different ways.

In the next chapter, we are going to learn how to debug an application, which is really
important to know as it is not always the case that an application's releases go well.

6
Debugging an

Application
There are times when you need to debug an application to troubleshoot production-related
issues. So far in this book, we have learned how to install, update, and delete an application.

In this chapter, we are going to cover application debugging by using kubectl
describe to show the resolved object configuration and desired state before the actual
events in the pod. Then we are going to check pod logs for errors, and finally, executing
in a container (executing into a container means getting shell access in the running
container) and running a command there.

In this chapter, we're going to cover the following main topics:

• Describing a pod

• Checking pod logs

• Executing a command in a running container

64 Debugging an Application

Describing a pod
In the previous chapter, we deleted a running application. For this chapter, then, let's
install another one. For the purpose of debugging an application, we are going to use the
bitnami/postgresql Docker image from Docker Hub (https://hub.docker.
com/r/bitnami/postgresql) and we are going to install an application using the
deployment-postgresql.yaml file:

$ cat deployment-postgresql.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgresql

 labels:

 app: postgresql

spec:

 replicas: 1

 selector:

 matchLabels:

 app: postgresql

 template:

 metadata:

 labels:

 app: postgresql

 spec:

 containers:

 - image: bitnami/postgresql:10.12.10

 imagePullPolicy: IfNotPresent

 name: postgresql

To install the PostgreSQL deployment, run the following commands:

$ kubectl apply –f deployment-postgresql.yaml

Deployment.apps/postgresql created

$ kubectl get pods

NAME READY STATUS RESTARTS
AGE

postgresql-867df7d69-r84nl 0/1 ErrImagePull 0 9s

https://hub.docker.com/r/bitnami/postgresql
https://hub.docker.com/r/bitnami/postgresql

Describing a pod 65

Oops, what happened there? By running the $ kubectl get pods command we are
seeing an ErrImagePull error. Let's look into it. In Chapter 1, Introducing and Installing
kubectl, we learned about the kubectl describe command; let's use it to check the
pod status. To describe the PostgreSQL pod, run the following command:

$ kubectl describe pod postgresql-8675df7d69-r84nl

We get the following output of Events after running the preceding command:

Figure 6.1 – The output for the describe command

In the preceding screenshot, as the output of kubectl pod describe is quite big,
we are only showing the Events part, which we need to check to troubleshoot the issue.

Right here, we see why it fails to pull the image:

Failed to pull image "bitnami/postgresql:10.12.10": rpc error:
code = Unknown desc = Error response from daemon: manifest
for bitnami/postgresql:10.12.10 not found: manifest unknown:
manifest unknown

Looking at the preceding error, we can see that we have referenced the wrong tag for
the postgresql Docker image. Let's change it to 10.13.0 in the deployment-
postgresql.yaml file and run kubectl apply again. To update the postgresql
deployment, run the following commands:

$ kubectl apply –f deployment-postgresql.yaml

Deployment.apps/postgresql configured

$ kubectl get pods

66 Debugging an Application

NAME READY STATUS RESTARTS
AGE

postgresql-56dcb95567-8rdmd 0/1 CrashLoopBackOff 0
36s

postgresql-8675df7d69-r84nl 0/1 ImagePullBackOff 0
35m

We are seeing a new pod, postgresql-56dcb95567-8rdmd, which is crashing too.
To check this postgresql pod, run the following command:

$ kubectl describe pod postgresql-56dcb95567-8rdmd

We get the following output after running the preceding command:

Figure 6.2 – Checking the postgresql pod with fixed Docker tag

Hmm, this time, Events does not list much information as to why the postgresql
pod is in the CrashLoopBackOff state, as the bitnami/postgresql:10.13.0
image was pulled successfully.

Let's learn what to do about this issue in the next section by checking the pod's logs.

Checking pod logs
When kubectl describe pod does not show any information about an error, we can
use another kubectl command, that is, logs. The kubectl logs command allows us
to print container logs, and we can also view them in real time as well.

Checking pod logs 67

Tip
You can use kubectl logs with a flag to print the logs for the previous
instance of the container in a pod if it exists:

$ kubectl logs -p some_pod

Now, let's check out this command on the crashing postgresql pod and try to find out
what is going on with it – why it is failing. To get the pods list and check the pod logs, run
the following commands:

$ kubectl get pods

$ kubectl logs postgresql-56dcb95567-njsp6

The output for the preceding commands is shown in the following screenshot:

Figure 6.3 – Getting error logs for the postgresql pod

Aha! As you can see from the preceding screenshot, the postgresql pod is failing as it
needs the POSTGRESQL_PASSWORD environment variable to be set with some password,
or the ALLOW_EMPTY_PASSWORD environment variable set to yes, which will allow the
container to be started with the blank password.

Let's update the deployment-postgresql.yaml file with the POSTGRESQL_
PASSWORD environment variable set with some password:

$ cat deployment-postgresql.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgresql

68 Debugging an Application

 labels:

 app: postgresql

spec:

 replicas: 1

 selector:

 matchLabels:

 app: postgresql

 template:

 metadata:

 labels:

 app: postgresql

 spec:

 containers:

 - image: bitnami/postgresql:10.13.0

 imagePullPolicy: IfNotPresent

 name: postgresql

 env:

 - name: POSTGRESQL_PASSWORD

 value: "VerySecurePassword:-)"

To update the postgresql deployment, run the following commands:

$ kubectl apply –f deployment-postgresql.yaml

Deployment.apps/postgresql configured

$ kubectl get pods

NAME READY STATUS RESTARTS
AGE

postgresql-56dcb95567-njsp6 0/1 CrashLoopBackOff 11
36m

postgresql-57578b68d9-b6lkv 0/1 ContainerCreating 0
1s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

postgresql-57578b68d9-b6lkv 1/1 Running 0 21s

Checking pod logs 69

As you can see in the preceding code block, the postgresql deployment was updated,
a new pod was created successfully, and the pod that was crashing has been terminated.

Important note
Best practices do not recommend storing passwords directly in deployments
and other Kubernetes templates, but storing them in Kubernetes Secrets instead.

Now let's see what the postgresql pod logs show in real time. To check the pod logs in
real time, run the following command:

$ kubectl logs postgresql-57578b68d9-b6lkv -f

The output of the preceding command is shown in the following screenshot:

Figure 6.4 – Reviewing the logs for postgresql

Nice, the PostgreSQL deployment is up and running and is ready to accept connections.
By leaving that command running, we can review the logs in real time when we need to
see what is going on in the PostgreSQL container.

70 Debugging an Application

Executing a command in a running container
So, we have learned how to troubleshoot pods with pod describe and logs, but there
might be some cases when you want to do even more advanced troubleshooting, such as
checking some config files or running some commands in the container. These things can
be done using the kubectl exec command, which will allow exec into the container
and have an interactive session in the container or run your commands as well.

Let's see how to get the postgresql.conf file content using the kubectl exec
command:

$ kubectl exec postgresql-57578b68d9-6wvpw cat \ /opt/bitnami/
postgresql/conf/postgresql.conf

PostgreSQL configuration file

#

This file consists of lines of the form:

#

name = value

#

(The "=" is optional.) Whitespace may be used. Comments are
introduced with

"#" anywhere on a line. The complete list of parameter names
and allowed

values can be found in the PostgreSQL documentation.

…

The preceding command will show the postgresql.conf file content so you can check
the PostgreSQL settings, which in this case, are set by default.

Next, let's exec into the postgresql pod, open a shell, and then run the psql
command to check for available databases.

To execute into the postgresql pod please run the following command:

$ kubectl exec –it postgresql-57578b68d9-6wvpw – bash

Summary 71

The output for the preceding command is shown in the following screenshot:

Figure 6.5 – Execute into the postgresql pod

As you see in the preceding screenshot, we used exec to get into the postgresql pod
using the bash shell, then we ran psql –Upostgres to log in to the postgresql
instance, before checking for available databases with \l. This is a nice example of how to
use the interactive exec command and run different commands inside of a container.

Summary
In this chapter, we learned how to describe the pod, check logs, and troubleshoot
issues, and also covered how to create a Kubernetes deployment from scratch for the
postgresql Docker image.

The troubleshooting skills of using kubectl describe, logs, and exec are very
useful and allow you to know what is happening in an application pod. These techniques
can be used to help you to fix any issues you encounter.

In the next chapter, we're going to learn how to extend kubectl with plugins.

Section 4:
Extending kubectl

This section explains how to manage Kubernetes plugins, shows how to use Kustomize
and Helm, and covers commands for Docker users.

This section contains the following chapters:

• Chapter 7, Working with kubectl Plugins

• Chapter 8, Introducing Kustomize for Kubernetes

• Chapter 9, Introducing Helm for Kubernetes

• Chapter 10, kubectl Best Practices and Docker Commands

7
Working with

kubectl Plugins
In the previous chapter, we learned how to do various operations with kubectl, such
as listing nodes and pods and checking logs. In this chapter, let's learn how to extend the
kubectl command base with plugins. kubectl has many commands but might not
always have the ones you want, and, in such instances, we need to use plugins. We will learn
how to install kubectl plugins in order to have more features with extra sub-commands.
We will see how to use those plugins, and finally, we will see how we can create a basic
plugin for kubectl.

In this chapter, we're going to cover the following main topics:

• Installing plugins

• Using plugins

• Creating basic plugin

Installing plugins
A plugin in kubectl is just an executable file (it could be a complied Go program
or a Bash shell script, among other things) the name of which begins with kubectl-,
and to install the plugin you just have to put its executable file in a directory that's in
your PATH variable.

76 Working with kubectl Plugins

The easiest way to find and install plugins is by using Krew (https://krew.sigs.k8s.
io/), the Kubernetes plugin manager. Krew is available for macOS, Linux, and Windows.

Krew is a Kubernetes plugin, so let's go ahead and install it. For this example, we are going
to use macOS:

1. To install Krew on macOS, run the $ brew install krew command as shown
in the following screenshot:

Figure 7.1 – krew install with brew on macOS

2. Next, we need to download the plugin list:

$ kubectl krew update

3. When we have a locally cached list of all the plugins, let's check for available
plugins by running the $ kubectl krew search command as shown in the
following screenshot:

Figure 7.2 – List of available plugins

https://krew.sigs.k8s.io/
https://krew.sigs.k8s.io/

Installing plugins 77

As the list has more than 90 plugins, in the preceding screenshot we are just
showing only part of the list.

4. Let's install a few handy plugins to expand the kubectl command base by running
the $ kubectl krew install ctx ns view-allocations command as
shown in the following screenshot:

Figure 7.3 – Installing plugins using Krew

As you can see, installing kubectl plugins is so easy.

78 Working with kubectl Plugins

Using plugins
So, we have installed a few very useful plugins. Let's check out how to use them.

We have installed three plugins:

• kubectl ctx: This plugin allows us to easily to switch between Kubernetes
clusters, which is very useful when you have more than one cluster set in your
kubeconfig.

Lets' check for available cluster by running the $ kubectl ctx command:

Figure 7.4 – The ctx plugin

• kubectl ns: This plugin allows us to switch between namespaces. Let's check for
available namespaces in the cluster by running the $ kubectl ns command:

Figure 7.5 – The ns plugin

• kubectl view-allocations: This plugin lists resource allocations of
a namespace, such as CPU, memory, storage, and so on.

Let's check for resources allocations in the cluster by running the $ kubectl
view-allocations command:

Creating a basic plugin 79

Figure 7.6 – The view-allocations plugin

You can see in the preceding list that using plugins looks as though these sub-commands
are a part of kubectl tool itself.

Creating a basic plugin
In this section, let's create a simple plugin called toppods to show Kubernetes cluster
nodes. It is just a very simple example of how to create the plugin:

1. We are going to create a simple bash-based plugin named kubectl-toppods:

$ cat kubectl-toppods

#!/bin/bash

kubectl top pods

2. Let's copy the kubectl-toppods file to the ~/bin path:

$ cp kubectl-toppods ~/bin

80 Working with kubectl Plugins

3. Make sure it is executable:

$ chmod +x ~/bin/ kubectl-toppods

4. Now let's try to run it:

$ kubectl toppods

NAME CPU(cores) MEMORY(bytes)

postgresql-57578b68d9-6rpt8 1m 22Mi

Nice! You can see that the plugin is working, and it is not very difficult to create
a kubectl plugin.

Summary
In this chapter, we have learned how to install, use, and create kubectl plugins. It is useful
to know how to expand kubectl with existing plugins, and how to create your ones.

We have learned about a few very handy and useful kubectl plugins:

• ctx: Allows us to switch between Kubernetes clusters very easily

• ns: Allows us to switch between namespaces

• view-allocations: Shows a list of allocations for resources in the cluster

When you work daily with multiple Kubernetes clusters and namespaces, using the ctx
and ns plugins will save a lot of time.

In the next chapter, we going to learn how to deploy applications using Kustomize.

8
Introducing

Kustomize for
Kubernetes

In the previous chapter, we learned how to install, use, and create kubectl plugins.

In this chapter, let's learn how to use Kustomize for Kubernetes. Kustomize allows us to
patch Kubernetes templates without changing the application's original templates. We are
going to learn about Kustomize and how to patch Kubernetes deployments with its help.

In this chapter, we're going to cover the following main topics:

• Introduction to Kustomize

• Patching Kubernetes deployment

Introduction to Kustomize
Kustomize uses overlays for Kubernetes manifests to add, remove, or update configuration
options without forking. What Kustomize does is take a Kubernetes template, patch it with
specified changes in kustomization.yaml, and then deploy it to Kubernetes.

82 Introducing Kustomize for Kubernetes

It is a handy tool for patching non-complex applications, for example, with changes
needed for different environments or resource namespacing.

Kustomize is available as a standalone binary and as a native command in kubectl
since v.1.14.

Let's look at a couple of Kustomize commands, use the following command:

• To show the generated modified templates on the terminal, use the
following command:

$ kubectl kustomize base

• To deploy generated modified templates on Kubernetes:

$ kubectl apply –k base

In the preceding examples, base is the folder that has the application files and
kustomization.yaml.

Note
The preceding commands will fail as there is no base folder. This is just an
example of the commands.

Patching a Kubernetes application
In this section, let's try to patch an application with Kustomize. For this example, we have
a kustomize folder with the following files:

Figure 8.1 – Kustomize examples

Patching a Kubernetes application 83

The base folder has three files—deployment.yaml, service.yaml, and
kustomization.yaml.

Let's check the deployment.yaml file by running the $ cat base/deployment.
yaml command:

Figure 8.2 – The deployment.yaml file

84 Introducing Kustomize for Kubernetes

In the preceding screenshot, we have the nginx deployment template, which we are going
to use with Kustomize.

Let's get the service.yaml file's content by running the $ cat base/service.
yaml command:

Figure 8.3 – The service.yaml file

In the preceding screenshot, we have the nginx service template that we are going to use
with Kustomize.

As you can see, we are using the nginx deployment and service template again so it will
be easier for you to understand what Kustomize does.

Let's get the kustomization.yaml.yaml file's content by running the $ cat
base/kustomization.yaml command:

Patching a Kubernetes application 85

Figure 8.4 – The kustomization.yaml file

As we are already familiar with the nginx deployment and service, let's take a look into
the kustomization.yaml file.

With the following code from kustomization.yaml, we set a new tag for the
nginx image:

```

images:

- name: nginx

  newTag: 1.19.1

```

The following code sets which resources to apply the settings to. As service does not
have images, Kustomize will only apply to the deployment, but we will need service
in the later steps, so we are setting it anyway:

```

resources:

- deployment.yaml

- service.yaml

```


86 Introducing Kustomize for Kubernetes

Now, let's check how Kustomize will change the deployment by running the $kubectl
kustomize base command:

Figure 8.5 – kubectl kustomize base output

From the preceding output, you can see that Kustomize generated service and
deployment content. The contents of service did not change, but let's take a look
at deployment. Comparing the original file, base/deployment.yaml, with the
preceding output, we see that - image: nginx:1.18.0 got changed to - image:
nginx:1.19.1, as was specified in the kustomization.yaml file.

Patching a Kubernetes application 87

It's a nice and easy image tag change without modifying the original deployment.yaml
file.

Note
Such tricks come handy, especially in real-world application deployments,
where different environments might use different Docker image tags.

Kustomize overlays
As a sysadmin, I want to be able to deploy different environments (development and
production) of my web service with dedicated custom configurations, such as the number
of replicas, allocated resources, security rules, or other configurations. I would like to do
this without maintaining duplications of my core application configurations.

In this section, let's learn more advanced customizations using Kustomize to deploy to
development and production environments and using different namespaces and NGINX
Docker tags for each environment.

In the overlays folder, we have the development/kustomization.yaml
and production/kustomization.yaml files; let's check them. In the following
screenshot, we have the kustomization.yaml file, which will be applied to the
development environment.

Let's get the overlays/development/kustomization.yaml file's content by
running the $ cat overlays/development/kustomization.yaml command:

Figure 8.6 – The development/kustomization.yaml content

88 Introducing Kustomize for Kubernetes

In the preceding screenshot, we have the kustomization.yaml file, which will be
applied to the development environment.

Let's get the overlays/production/kustomization.yaml file's content by
running the $ cat overlays/development/kustomization.yaml command:

Figure 8.7 – The production/kustomization.yaml content

In the preceding screenshot, we have the kustomization.yaml file, which will be
applied to the production environment.

OK, let's check the changes we are getting in the development/kustomization.
yaml file:

resources:

- ../../base # setting where the main templates are stored

nameSuffix: -development # updating service/deployment name

commonLabels:

 environment: development # add new label

namespace: nginx-dev # setting namespace

Patching a Kubernetes application 89

Let's see how these changes will be applied to the development deployment and service
by running the $ kubectl kustomize overlays/development command:

Figure 8.8 – The kubectl kustomize overlays/development output

90 Introducing Kustomize for Kubernetes

As we can see, the deployment and service names were changed, a namespace was
added, and the nginx image tag was changed as per the kustomization.yaml file in
the base folder specification. Great job so far!

Now let's check the production/kustomization.yaml file:

resources:

- ../../base # setting where the main templates are stored

nameSuffix: -production # updating service/deployment name

commonLabels:

 environment: production # add new label

namespace: nginx-prod # setting namespace

images:

- name: nginx

 newTag: 1.19.2 # tag gets changed

The changes we want to apply are very similar to the ones made for development,
but we also want a different Docker image tag to be set.

Let's see how it is going to work out by running the $ kubectl kustomize
overlays/production command:

Patching a Kubernetes application 91

Figure 8.9 – The kubectl kustomize overlays/production output

As you can see, all the required changes were applied.

92 Introducing Kustomize for Kubernetes

Note
Kustomize merges all found kustomization.yaml files, and files from
the base folder get applied first, then the files from the overlay folder.
You can choose how to name your folders.

Now, it is time to actually perform an installation using Kustomize:

$ kubectl create ns nginx-prod

namespace/nginx-prod created

$ kubectl apply –k overlays/production/

service/nginx-prod created

deployment.apps/nginx-production created

$ kubectl get pods –n nginx-prod

NAME READY STATUS RESTARTS AGE

nginx-production-dc9cbdb6-j4ws4 1/1 Running 0
17s

With the preceding commands, we have created the nginx-prod namespace and
installed the nginx application with the help of the Kustomize-applied changes, which
you can see it running.

We have learned only some basic functionalities of Kustomize, as it is out of scope
to cover everything about Kustomize in this book, so please refer to the following link
for more information: https://kustomize.io/.

Summary
In this chapter, we have learned how to install applications using Kustomize.

We have learned how to apply Kustomize to nginx deployments and services, changing
their names, adding namespace, and changing the image tag in the deployment.
All that was done without changing the application's original templates by using
kustomization.yaml files with Kustomize to make the required changes.

In the next chapter, we are going to learn how to use Helm—the Kubernetes package
manager.

https://kustomize.io/

9
Introducing Helm

for Kubernetes
In the previous chapter, we learned how to install and use Kustomize. In this chapter,
let's learn about Helm (https://helm.sh).

Helm is the de facto Kubernetes package manager, and one of the best and easiest ways
to install any kind of complex application on Kubernetes.

Helm is not part of kubectl, nor does it have a kubectl plugin, but it plays a big role
in the Kubernetes space and is a must-know tool.

In this chapter, we are going to learn about Helm v3, in particular, how to install
applications, upgrade and roll back application releases, create and lint Helm charts,
and extend Helm with plugins.

Note
We are going to use Helm v3 as it was the latest version of Helm at the time
of writing.

https://helm.sh

94 Introducing Helm for Kubernetes

We're going to cover the following main topics in this chapter:

• Introduction to Helm

• Installing applications using Helm charts

• Upgrading Helm releases

• Rolling back to a previous Helm release

• Using Helm's template command

• Creating a Helm chart

• Using Helm's linting feature

• Extending Helm with plugins

Introduction to Helm
Helm is a Kubernetes package manager that allows developers and users an easy way to
package, configure, share, and deploy Kubernetes applications onto Kubernetes clusters.

You can think of Helm as the same as the Homebrew/APT/Yum package managers, but
for Kubernetes.

Helm v3 is based on a client-only architecture. It connects to the Kubernetes API the same
way as kubectl does, by using a kubeconfig file containing the Kubernetes cluster
connection settings. So where kubectl works, the Helm CLI will work too, using the
same kubectl capabilities and permissions.

To better understand Helm, you should get familiar with the following concepts:

• The Helm CLI: A command-line tool that interacts with the Kubernetes API and
does various functions, such as installing, upgrading, and deleting Helm releases.

• A chart: This is a collection of template files that describe Kubernetes resources.

• Chart templating: Helm chart templating language used in the charts.

• A repository: A Helm repository is a location where packaged charts are stored
and shared.

• A release: A specific instance of a chart deployed to a Kubernetes cluster.

Let's take a look at each one of them in detail in the following sections.

Introduction to Helm 95

The Helm CLI
The Helm CLI can be installed on different operating systems using the
following commands:

• Installing on macOS is done as follows:

$ brew install helm

• Installing on Windows is done with the following command:

$ choco install kubernetes-helm

• Installing on Linux is done as follows:

$ https://raw.githubusercontent.com/helm/helm/master/
scripts/get-helm-3 | bash

You can get all available Helm CLI commands with helm –h. Let's list the most used
ones, along with their descriptions:

• helm repo add: Adds a Helm chart repository to the local cache list, after which
we can reference it to pull charts from the repository.

• helm repo update: Gets the latest information about chart repositories; the
information is stored locally.

• helm search repo: Searches for charts in the given repositories.

• helm pull: Downloads a given chart from the chart repository.

• helm upgrade -i: If there is no release then install it, otherwise upgrade
the release.

• helm ls: Lists releases in the current namespace. If the -A flag is provided, it will
list all the namespaces.

• helm history: Prints historical revisions for a given release.

• helm rollback: Rolls back a release to a previous revision.

• helm template: Renders chart templates locally and displays the output.

• helm create: Creates a chart.

• helm lint: Lints a chart.

• helm plugin: Installs, lists, updates, and uninstalls Helm plugins.

Let's learn each one of these in more detail in the following sections.

96 Introducing Helm for Kubernetes

Helm charts
A chart is a Helm package. It is a collection of template files that describe Kubernetes
resources. It uses templating to create Kubernetes manifests.

An example Helm chart structure is shown as follows:

Figure 9.1 – Chart folders layout

Let's discuss some of the preceding contents in detail:

• Chart.yaml: The file that contains information about the chart's metadata.

• charts: The folder where sub-charts get stored.

• templates: The folder where template files get stored.

• values.yaml: A YAML-formatted file with configuration values used by the chart
templates. These values can be resources, replica counts, or an image repository and
tag, among other things.

Tip
To change values, it is recommended to use the override-values.
yaml file, in which you just enter the values you want to change. Changing the
default values.yaml file that comes with the chart is not recommended, as
you might lose track of changes in the newer versions of the file.

Now that we have learned some of the basics of the Helm chart structure, let's dive into
chart templating.

Introduction to Helm 97

Chart templating
The strongest feature of Helm is chart templating. The Helm template language is based
on the Go language package text/template syntax. Values used with templating
syntax can be employed to customize Kubernetes resource manifests. Before chart
installation, Helm renders the chart's templates by injecting specified values and then
does the chart install.

Values are read from the default values.yaml file that comes with the chart,
or a user-provided file, for example, named override-values.yaml. Both files'
values will be combined and then applied to the chart.

Let's take a look at the following chart template example:

Figure 9.2 – Chart template example

The preceding code snippet of the Helm template, which is a Kubernetes service
resource, allows us to set the service type and port. If the default values do not suit your
requirements, you can change the default values by providing new ones using a custom
override-values.yaml file.

98 Introducing Helm for Kubernetes

Other values such as name, labels, and selector get injected from the _helpers.
tpl file, which is the default location for template partials:

Figure 9.3 – A partial example of _helpers.tpl

The preceding code snippet is of a _helpers.tpl file that defines labels and the selector
to be injected into the chart's templates.

Repositories
A repository is a location where packaged charts are stored and shared. It can be any web
server capable of serving files. Charts in a repository are stored in the compressed .tgz
format.

Releases
A release is a specific instance of a chart deployed to a Kubernetes cluster. One Helm chart
can be installed many times using the same release name, and each time a new release
version will be created.

The release information for a particular release is stored in the same namespace as the
release itself.

You can install the same Helm chart using the same release name but a different
namespace an infinite number of times.

Installing applications using Helm charts 99

Now that we have learned some of the basics of Helm, let's dive into installing applications
using charts.

Installing applications using Helm charts
There are many Helm chart repositories, and it is way too much hassle to set them all up
one by one.

Instead, we are going to use as our central Helm chart repository https://
chartcenter.io, which has over 300 Helm repositories and can be our single source
of truth to install all the charts from one location. It also has a nice UI where you can
search for charts and get very informative details about them:

Figure 9.4 – ChartCenter UI

The preceding screenshot shows the ChartCenter UI.

It is also very easy to set ChartCenter as your central Helm repository, as follows:

$ helm repo add center https://repo.chartcenter.io
"center" has been added to your repositories

$ helm repo update

Hang tight while we grab the latest from your chart

https://chartcenter.io
https://chartcenter.io
https://repo.chartcenter.io

100 Introducing Helm for Kubernetes

repositories...

...Successfully got an update from the "center" chart
repository

Update Complete. Happy Helming!

The preceding commands added the center chart repository and updated the Helm
local cache with its content.

Now we can try searching for the postgresql chart by running the $ helm search
repo center/bitnami/postgresql -l | head -n 5 command:

Figure 9.5 – Searching for the PostgreSQL chart

In the preceding screenshot, we can see that we got the latest five versions of the Bitnami
PostgreSQL chart.

Before installing the PostgreSQL chart, we should set a password, as it is a good practice
to set your own password instead of using one generated by Helm charts.

By reading the chart's README at https://chartcenter.io/bitnami/
postgresql, we can find the value name we need to use:

Figure 9.6 – PostgreSQL chart password

The preceding screenshot shows us that the postgresqlPassword variable in the
values.yaml file is needed to set the password for the PostgreSQL chart.

First, let's create a password-values.yaml file to store the PostgreSQL password:

$ echo "postgresqlPassword: SomeVerySecurePassword" > password-
values.yaml

https://chartcenter.io/bitnami/postgresql
https://chartcenter.io/bitnami/postgresql

Installing applications using Helm charts 101

And let's install it using the following command:

$ helm upgrade –i postgresql center/bitnami/postgresql
--version=9.2.1 -f password-values.yaml

The output for the preceding command is shown in the following screenshot:

Figure 9.7 – Helm installing the PostgreSQL chart

The preceding command installed the PostgreSQL chart with the name postgresql
into the current namespace.

Tip
The preceding helm upgrade command has an –i flag (with the long
name of --install), which allows us to use the same command for both
the first install and the following upgrades afterward.

Let's check what was installed with the chart using the following command:

$ kubectl get all

102 Introducing Helm for Kubernetes

The output of the preceding command is shown in the following screenshot:

Figure 9.8 – Listing all installed resources

In the preceding screenshot, we can see the postgresql pod, two postgresql-
related services, and statefulset. Looking at service/postgresql, we can
see that postgresql can be accessed by other Kubernetes applications on
postgresql:5432.

Let's check that all secrets were properly created by running the following command:

$ kubectl get secret

The output of the preceding command is shown in the following screenshot:

Figure 9.9 – Listing all installed secrets

In the preceding screenshot, we see the postgresql secret where the PostgreSQL
password is stored, and sh.helm.release.v1.postgresql.v1, where the Helm
release information is stored.

Upgrading Helm releases 103

Now, let's check for Helm releases in the current namespace by running the following
command:

$ helm ls

The output of the preceding command is shown in the following screenshot:

Figure 9.10 – Listing Helm releases

In the preceding screenshot, we see a successfully deployed Helm release of
postgresql, where we have a list of the following:

• STATUS: Shows the release status as deployed

• CHART: Shows the chart name and version as postgresql-9.2.1

• APP VERSION: Shows the PostgreSQL version; in this case, 11.9.0

This was easy to install – we just had to provide the password, and boom, we have a fully
installed PostgreSQL instance, and its password is even stored in the secret.

Upgrading Helm releases
In the previous section, we installed PostgreSQL, so now let's try and upgrade it. We need
to know how to do this because it will have to be upgraded from time to time.

For the upgrade, we are going to use the latest available PostgreSQL chart version,
that is, 9.3.2.

Let's get and run the upgrade with the following command:

$ helm upgrade –i postgresql center/bitnami/postgresql
--version=9.3.2 -f password-values.yaml

104 Introducing Helm for Kubernetes

The output of the preceding command is shown in the following screenshot:

Figure 9.11 – Listing Helm releases

We ran the preceding helm upgrade command to change the postgresql chart
version to 9.3.2, but we see the PostgreSQL version is still the same as it was, that is,
11.9.0, so that means the chart itself received some changes, but the application version
was kept the same.

Running helm ls shows REVISION 2, which means the second release for the
PostgreSQL chart.

Let's check the secrets one more time by running the following command:

$ kubectl get secrets

Rolling back to a previous Helm release 105

The output of the preceding command is shown in the following screenshot:

Figure 9.12 – Listing Helm releases

From the preceding screenshot, we can see a new secret, sh.helm.release.
v1.postgresql.v2, which is where the PostgreSQL upgrade release was stored.

It's nice to see how Helm keeps track of all releases and allows easy application upgrades
with a single helm upgrade command.

Note
A Helm release contains all Kubernetes templates from the chart, which make
it much easier to track them (from the perspective of releases) as one single
unit.

Let's learn how to do a release rollback. We'll do this because, from time to time, releases
can go bad and need to be rolled back.

Rolling back to a previous Helm release
In this section, let's see how to roll back to a previous version using the helm rollback
command.

The helm rollback command is unique to Helm, and it allows us to roll back the
whole application, so you do not have to worry about which Kubernetes resources need
to be rolled back specifically.

Of course, when dealing with the release IDs of real-world applications, database schemas
get changed as well, so to roll back the frontend application, you have to roll back the
database schema changes too. This means that things aren't always so straightforward as
they may seem here, but using Helm still simplifies some parts of the application release
rollback process.

To run the helm rollback command, we first need to know the release revision
we want to roll back to, which we can find with the following command:

$ helm history postgresql

106 Introducing Helm for Kubernetes

The output of the preceding command is shown in the following screenshot:

Figure 9.13 – Listing Helm release revisions

In the preceding helm history postgresql command, we got a list of release
revisions.

So, we want to roll back postgresql to revision 1:

$ helm rollback postgresql 1

The output of the preceding command is shown in the following screenshot:

Figure 9.14 – Helm rollback release

In the preceding screenshot, we see that the rollback was done with the helm rollback
postgresql 1 command and now we see three revisions, as even when doing a
rollback, a new release gets created.

As you can see, rolling back to the previous release is quite easy.

Using Helm's template command
With Helm's helm template command, you can check the output of the chart in fully
rendered Kubernetes resource templates. This is a very handy command to check the
templates' outputs, especially when you are developing a new chart, making changes to the
chart, debugging, and so on.

Using Helm's template command 107

So, let's check it out by running the following command:

$ helm template postgresql center/bitnami/postgresql
--version=9.3.2 -f password-values.yaml

The preceding command will print all templates on the screen. Of course, you can pipe
it out to the file as well.

As the output is very long, we aren't going to print all of it, but only parts of the
Kubernetes manifest:

Source: postgresql/templates/secrets.yaml

apiVersion: v1

kind: Secret

metadata:

 name: postgresql

...

Source: postgresql/templates/svc-headless.yaml

apiVersion: v1

kind: Service

metadata:

 name: postgresql-headless

...

Source: postgresql/templates/svc.yaml

apiVersion: v1

kind: Service

metadata:

 name: postgresql

...

Source: postgresql/templates/statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: postgresql-postgresql

...

108 Introducing Helm for Kubernetes

The preceding output shows all of the resources that are part of the postgresql chart.
The resources are divided with ---.

helm template is a powerful command for checking a chart's templates and printing
the output so you read it through. helm template doesn't connect to the Kubernetes
cluster, it only fills the templates with values and prints the output.

You can achieve the same thing by adding --dry-run --debug flags to the helm
upgrade command. With this, Helm will validate the templates against the Kubernetes
cluster.

An example of the full command would look as follows:

$ helm template postgresql center/bitnami/postgresql
--version=9.3.2 -f password-values.yaml --dry-run --debug

We have learned a few handy Helm commands to be used before installing or upgrading
our Helm release.

Another strong use case for using helm template is to render templates to a file
and then compare them. This is useful for comparing chart versions or the impact of
customized parameters on the final output.

Creating a Helm chart
We have learned many cool tricks we can do with Helm! Let's now learn how to create
a Helm chart.

The helm create command creates an example chart for you, so you can use it as
a base and update it with the required Kubernetes resources, values, and so on. It creates
a fully working nginx chart, so we are going to name the chart by that name.

Let's now check how easy it is to create a chart by running the following command:

$ helm create nginx

The output of the preceding command is shown in the following screenshot:

Creating a Helm chart 109

Figure 9.15 – The helm create command

In the preceding screenshot, we ran the helm create nginx command, where nginx
is our chart name. The name is also used to create a new folder where the chart content
will be stored. The folder structure is shown using the tree nginx command.

As you can see in the screenshot, the deployment.yaml file, Horizontal Pod
Autoscaler (HPA), ingress, service, and serviceaccount resource templates
have been created, all of which provide a good base to start from.

The preceding command also created the test-connection.yaml file so we can run
a test with helm test against the installed nginx chart.

Now let's install the chart by running the following command:

$ helm install nginx nginx

110 Introducing Helm for Kubernetes

The output of the preceding command is shown in the following screenshot:

Figure 9.16 – Installing the nginx chart

In the preceding screenshot, we ran helm install nginx nginx. This command
uses the following basic syntax:

helm install <RELEASE NAME> <CHART NAME>

Here, <CHART NAME> is the local folder, so note that you can install the chart from
remote Helm repositories and also from local folders, both with the same command.

The next command we used is as follows:

kubectl get all -l "app.kubernetes.io/name=nginx"

This command helped us to show the resources deployed by default by the chart.

As we already mentioned the helm test command, let's check out how that command
functions:

$ helm test nginx

The output of the preceding command is shown in the following screenshot:

Creating a Helm chart 111

Figure 9.17 – Testing the nginx chart

The preceding helm test nginx command runs the test against the Helm release
named nginx. The output of the kubectl get pods command shows the nginx-
test-connection pod that was used to run the chart test and was then stopped.

Next, let's check the contents of the test-connection.yaml file:

$ cat nginx/templates/tests/test-connection.yaml

The output of the preceding command is shown in the following screenshot:

Figure 9.18 – test-connection.yaml content

112 Introducing Helm for Kubernetes

In the preceding screenshot, you can see a simple pod template that runs the curl
command against the nginx service resource.

This args: ['{{ include "nginx.fullname" . }}:{{ .Values.
service.port }}'] line of template code gets converted to nginx:80 when the
actual Kubernetes resource gets created.

Simple and easy, right? As we can see, the helm create command creates a working
chart with the example resource templates, and even with the test template.

Using Helm's linting feature
So far, we've learned how to create a Helm chart. However, we also need to know how
to check the chart for possible issues and errors. For that, we can use the helm lint
<CHART NAME> command, which will check the Helm chart content by running a series
of tests to verify the chart integrity.

Let's lint the nginx chart we have created:

$ helm lint nginx

The output of the preceding command is shown in the following screenshot:

Figure 9.19 – Linting the nginx chart

As you can see in the preceding screenshot, our chart has no issues and can be installed
safely. The [INFO] message is just the warning that the chart's icon is missing, which can
be safely ignored.

It is really recommend to have it if you want to host your charts for example in https://
chartcenter.io where it gets shown in its UI.

Extending Helm with plugins
Helm can be extended with plugins as well. Plugins are useful to extend Helm features that
are not part of the Helm CLI, as Helm might not have everything that you need.

There is no central Helm plugins repository yet, where you would be able to see a list of all
available plugins, nor is there a Helm plugin manager.

https://chartcenter.io
https://chartcenter.io

Extending Helm with plugins 113

As most of the plugins are stored in GitHub repositories, and it is recommended to use
the GitHub topic helm-plugin to label the plugin, you can easily search for available
plugins there:

Figure 9.20 – Helm plugins search on GitHub

In the preceding screenshot https://github.com/search?q=helm-plugin was
used to search for Helm plugins in GitHub.

Let's see how easy it is to install a Helm plugin:

$ helm plugin list

https://github.com/search?q=helm-plugin
https://github.com/search?q=helm-plugin
https://github.com/search?q=helm-plugin

114 Introducing Helm for Kubernetes

The output of the preceding command is shown in the following screenshot:

Figure 9.21 – Helm plugin helm-diff being installed

In the preceding command, helm plugin list, we checked for installed plugins, then
we used helm plugin install https://github.com/databus23/helm-diff
to install the helm-diff plugin. The preceding plugin installation output was cut as the
installed plugin prints a lot of information.

Let's check the plugins list:

$ helm plugin list

https://github.com/databus23/helm-diff

Extending Helm with plugins 115

The output of the preceding command is shown in the following screenshot:

Figure 9.22 – Helm plugin list

We see that the diff plugin is installed, which is basically a new Helm command: helm
diff.

We are not going to check how helm diff works, but it is a very handy one as you can
check the differences between the installed and new chart versions.

Let's install one more:

$ helm plugin install https://github.com/instrumenta/helm-
kubeval

The output of the preceding command is shown in the following screenshot:

Figure 9.23 – helm plugin install helm-kubeval

The preceding command, helm plugin install https://github.com/
instrumenta/helm-kubeval, installed the kubeval plugin, which validates Helm
charts against Kubernetes schemas.

https://github.com/instrumenta/helm-kubeval
https://github.com/instrumenta/helm-kubeval

116 Introducing Helm for Kubernetes

Let's validate the nginx chart that we created with helm create before:

$ helm kubeval nginx

The output of the preceding command is shown in the following screenshot:

Figure 9.24 – Validating the nginx chart with the kubeval plugin

The preceding helm kubeval nginx command validated the nginx chart – as
we can see, it's all green, so no issues there. This plugin is a good addition to the helm
lint command, and the combination of both gives you nice tooling to check charts with.

Now, we know how to extend Helm with extra features, as one tool cannot have
everything. Plugins are easy to write as well, and you can learn that in your own time,
of course.

Summary
In this chapter, we have learned how to use Helm for installing, upgrading, rolling back
releases, checking chart templates' output, creating a chart, linting a chart, and extending
Helm with plugins.

Helm is a powerful tool with which you can deploy both simple and complex Kubernetes
applications. It will help you to deploy real-world applications, especially as there are so
many different charts ready to use from many Helm repositories.

In the last chapter of this book, we're going to learn kubectl best practices and
kubectl commands for Docker users.

10
kubectl Best

Practices and
Docker Commands

In the previous chapter, we learned about Helm, which is a Kubernetes package manager.
In this last chapter of our book, we are going to learn about a few kubectl best practices.

In this chapter, we will learn how to use shell aliases to shorten kubectl commands, and
other handy tips for using kubectl commands, as well.

We will also check some equivalent commands in Docker for some kubectl commands,
especially the ones that are handy to know for new Kubernetes users who are familiar with
Docker commands and want to know about similar commands in kubectl.

In this chapter, we're going to cover the following main topics:

• Using shell aliases for kubectl commands

• Similar Docker commands in kubectl

118 kubectl Best Practices and Docker Commands

Using shell aliases for kubectl commands
Typing kubectl with a command every time is both boring and time-consuming.
You can use kubectl command completion in the Bash and Zsh shells, which helps
of course, but it is still not as quick as using aliases.

Let's overview a list of some handy kubectl commands and use them with aliases that
you can put in the zsh_aliases or bash_aliases files, depending on which shell
you are using:

• k for kubectl—this speaks for itself.

• kg for kubectl get—this is useful to get a list of pods, deployments, statefulsets,
services, nodes, and other details, as shown in the following example command:

$ kg nodes

The output of the preceding command is shown in the following screenshot:

Figure 10.1 – kg nodes output
The preceding screenshot shows a list of available Kubernetes nodes in the cluster
by running the $ kg nodes command.

• kd for kubectl describe—this is useful to describe pods, deployments,
statefulsets, services, nodes, and so on.

• kga for kubectl get all—this shows a list of pods, deployments, statefulsets,
services, and resources in the currently set namespace. You can also provide the -n
flag to specify the namespace or -A to show resources in all namespaces:

$ kga

The output of the preceding command is shown in the following screenshot:

Figure 10.2 – kga output

Using shell aliases for kubectl commands 119

The preceding screenshot shows the output of the kga alias with the resources
found in the current namespace.

• krga for kubectl really get all—this shows the list of all resources
including secrets, events, and more in the currently set namespace. You can also
provide the -n flag to specify the namespace or -A to show all resources from all
namespaces.

• kp for kubectl get pods -o wide—this shows the list of pods in the current
namespace. The -o wide flag shows a given pod's assigned IP and the node it has
been scheduled to:

$ k get pods

$ kp

The output of the preceding command is shown in the following screenshot:

Figure 10.3 – kgak get pods output
The preceding screenshot shows the output of the k get pods and kp aliases.

• kap for kubectl get pods -A -o wide—this is a similar alias to kp, but
shows the pods in all namespaces.

• ka for kubectl apply -f—you can use this to create/update a deployment:

$ ka nginx.yaml

• kei for kubectl exec -it—this executes into the running pod's shell:

$ kei nginx-fcb5d6b64-x4kwg – bash

The output of the preceding command is shown in the following screenshot:

Figure 10.4 – kei output
The preceding screenshot shows the output of kei nginx-fcb5d6b64-x4kwg
bash – bash.

120 kubectl Best Practices and Docker Commands

• ke for kubectl exec—this executes a command in the running pod:

$ ke nginx-fcb5d6b64-x4kwg -- ls -alh

The output of the preceding command is shown in the following screenshot:

Figure 10.5 – ke output
The preceding screenshot shows the output of ke nginx-fcb5d6b64-x4kwg
bash – ls -alh.

• ktn for watch kubectl top nodes—use this to watch a node's resource
consumption:

$ ktn

The output of the preceding command is shown in the following screenshot:

Figure 10.6 – ktn output
The preceding screenshot shows the output of ktn with the list of nodes and their
respective resource usages.

Using shell aliases for kubectl commands 121

• ktp for watch kubectl top pods—use this to watch a pod's resources
consumption:

$ ktp

The output of the preceding command is shown in the following screenshot:

Figure 10.7 – ktp output
The preceding screenshot shows the output of ktp with the list of pods and their
resource usages.

• kpf for kubectl port-forward—use this to do a port forward for the pod
so we can access the pod from localhost:

$ kpf nginx-fcb5d6b64-x4kwg 8080

The output of the preceding command is shown in the following screenshot:

Figure 10.8 – kpf output
The preceding screenshot shows the output of kpf with port forwarding set
to port 8080.

• kl for kubectl logs—this shows the logs of a pod or deployment:

$ kl deploy/nginx --tail 10

The output of the preceding command is shown in the following screenshot:

Figure 10.9 – kl output

122 kubectl Best Practices and Docker Commands

The preceding screenshot shows the output of kl with the logs for the nginx
deployment.

Also, you can add the following to your list:

• d: docker

• kz: kustomize

• h: helm

An example snippet of .zsh_aliases is shown in the following code block:

$ cat .zsh_aliases

aliases

alias a="atom ."

alias c="code ."

alias d="docker"

alias h="helm"

alias k="kubectl"

alias ke="kubectl exec -it"

alias kc="kubectl create -f"

alias ka="kubectl apply -f"

alias kd="kubectl describe"

alias kl="kubectl logs"

alias kg="kubectl get"

alias kp="kubectl get pods -o wide"

alias kap="kubectl get pods --all-namespaces -o wide"

alias ktn="watch kubectl top nodes"

alias ktp="watch kubectl top pods"

alias ktc="watch kubectl top pods --containers"

alias kpf="kubectl port-forward"

alias kcx="kubectx"

alias kns="kubectl-ns"

Using aliases will help you to be more productive by typing a few letters instead
of a few words. Also, not all commands are easy to remember, so using aliases will help
to overcome that too.

Similar Docker commands in kubectl 123

Similar Docker commands in kubectl
The following is a list of the most useful Docker commands, followed by their equivalents
in kubectl.

Getting information is done with the following commands:

• docker info

• kubectl cluster-info

Getting version information is done with the following commands:

• docker version

• kubectl version

Running a container and exposing its port is done with the following commands:

• docker run -d --restart=always --name nginx -p 80:80 nginx

• kubectl create deployment --image=nginx nginx

• kubectl expose deployment nginx --port=80 --name=nginx

Getting container logs is done with the following commands:

• docker logs --f <container name>

• kubectl logs --f <pod name>

Executing into a running container/pod shell is done with the following commands:

• docker exec –it <container name> /bin/bash

• kubectl exec –it <pod name>

Getting a list of containers/pods is done with the following commands:

• docker ps –a

• kubectl get pods

Stopping and removing a container/pod is done with the following commands:

• docker stop <container name> && docker rm <container name>

• kubectl delete deployment <deployment name>

• kubectl delete pod <pod name>

124 kubectl Best Practices and Docker Commands

We have now learned the most useful kubectl commands for Docker users, which
should speed up your learning curve with kubectl and will become useful commands
in your daily work.

Summary
In this final chapter, we learned some kubectl best practices by examining how to use
aliases to run various commands with kubectl, and then saw some equivalents for
Docker commands in kubectl.

Using aliases shortens the time required for typing, and of course, aliases are easier to
remember instead of some long commands.

Throughout this book, we have learned a lot of useful information, such as how to
install kubectl; getting information about the cluster and nodes; installing, updating,
and debugging an application; working with kubectl plugins; and also learned about
Kustomize and Helm.

I hope the book will help you to master Kubernetes, kubectl, and Helm.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Kubernetes Security

Kaizhe Huang and Pranjal Jumde

ISBN: 978-1-83921-650-3

• Understand the basics of Kubernetes architecture and networking

• Gain insights into different security integrations provided by the Kubernetes
platform

• Delve into Kubernetes' threat modeling and security domains

• Explore different security configurations from a variety of practical examples

• Get to grips with using and deploying open source tools to protect your
deployments

• Discover techniques to mitigate or prevent known Kubernetes hacks

https://www.packtpub.com/product/learn-kubernetes-security/9781839216503

126 Other Books You May Enjoy

Learn Helm

Andrew Block and Austin Dewey

ISBN: 978-1-83921-429-5

• Develop an enterprise automation strategy on Kubernetes using Helm

• Create easily consumable and configurable Helm charts

• Use Helm in orchestration tooling and Kubernetes operators

• Explore best practices for application delivery and life cycle management

• Leverage Helm in a secure and stable manner that is fit for your enterprise

• Discover the ins and outs of automation with Helm

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

https://www.packtpub.com/product/learn-helm/9781839214295

Index

A
application

assigning, to specific node 53, 55
deleting 58-60
exposing, to internet 57, 58
scaling up 46, 47

application release
rolling back 52, 53

application replicas
scheduling, to different nodes 55-57

application version
deploying 50-52

B
basic kubectl commands 15
basic plugin

creating 79, 80

C
cluster

resources list 24
cluster API versions 23
cluster information 21-23
cordon command 29

D
Docker commands

in kubectl 123

H
Helm

about 94
chart 94-96
chart templating 94-98
extending, with plugins 112-116
linting feature, using 112
release 94, 98
repositories 98
repository 94
template command, using 106-108

Helm charts
about 96
creating 108-112
repository, URL 99
used, for installing applications 99-103

Helm CLI
about 94
commands 95
installing 95

128 Index

Helm releases
about 98
rolling back, to previous

version 105, 106
updating 103-105

Homebrew package manager
URL 13

Horizontal Pod Autoscaler (HPA) 109

I
inter-process communication (IPC) 38

K
Krew

about 76
URL 76

kubectl
about 13
commands 15
Docker commands 123
installing 13
installing, on Linux 14
installing, on macOS 13
installing, on Windows 14

kubectl advanced commands 16
kubectl cluster management

commands 16
kubectl commands

about 15
advanced commands 16
basic commands 15
cluster management commands 16
deploy commands 15
other commands 17
settings commands 17
shell aliases, using for 118-122

troubleshooting and debugging
commands 16

kubectl ctx plugin 78
kubectl deploy commands 15
kubectl ns plugin 78
kubectl setting commands 17
kubectl troubleshooting and

debugging commands 16
kubectl view-allocations plugin 78
Kubernetes

features 11
Kubernetes application

patching with Kustomize 82-87
Kubernetes deployment

creating 38-41
Kubernetes services

creating 42-46
Kustomize

about 81, 82
Kubernetes application,

patching with 82-87
using, for advanced

customizations 87-92

L
linting feature, Helm

using 112
Linux

kubectl, installing 14

M
macOS

kubectl, installing 13

Index 129

N
node pools

about 33
example 33

nodes
cordoning 29, 30
describing 27, 28
draining 31, 32
list 26
removing 32, 33
resource usage, displaying 29

P
plugins

installing 75-77
used, for extending Helm 112-116
using 78

pod
about 38
describing 64-66
logs, checking 66-69

PostgreSQL container
command, executing 70, 71

S
Scoop

URL 14
shell aliases

using, for kubectl commands 118-122

W
Windows

kubectl, installing 14

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Getting Started with kubectl
	Chapter 1: Introducing and Installing kubectl
	Technical requirements
	Introducing kubectl
	Installing kubectl
	Installing on macOS
	Installing on Windows
	Installing on Linux

	kubectl commands
	Basic commands
	Deploy commands
	Cluster management commands
	Troubleshooting and debugging commands
	Advanced commands
	Settings commands
	Other commands

	Summary

	Section 2:
Kubernetes Cluster and Node Management
	Chapter 2: Getting Information about a Cluster
	Cluster information
	Cluster API versions
	Cluster resources list
	Summary

	Chapter 3: Working with Nodes
	Getting a list of nodes
	Describing nodes
	Displaying node resource usage
	Cordoning nodes
	Draining nodes
	Removing nodes
	Introduction to node pools
	Summary

	Section 3:
Application Management
	Chapter 4: Creating and Deploying Applications
	Introduction to pods
	Creating a deployment
	Creating a service
	Scaling up an application
	Summary

	Chapter 5: Updating and Deleting Applications
	Deploying a new application version
	Rolling back an application release
	Assigning an application to a specific node (node affinity)
	Scheduling application replicas to different nodes (pod affinity)
	Exposing an application to the internet
	Deleting an application
	Summary

	Chapter 6: Debugging an Application
	Describing a pod
	Checking pod logs
	Executing a command in a running container
	Summary

	Section 4:
Extending kubectl
	Chapter 7: Working with kubectl Plugins
	Installing plugins
	Using plugins
	Creating a basic plugin
	Summary

	Chapter 8: Introducing Kustomize for Kubernetes
	Introduction to Kustomize
	Patching a Kubernetes application
	Kustomize overlays

	Summary

	Chapter 9: Introducing Helm for Kubernetes
	Introduction to Helm
	The Helm CLI
	Helm charts
	Chart templating
	Repositories
	Releases

	Installing applications using Helm charts
	Upgrading Helm releases
	Rolling back to a previous Helm release
	Using Helm's template command
	Creating a Helm chart
	Using Helm's linting feature
	Extending Helm with plugins
	Summary

	Chapter 10: kubectl Best Practices and Docker Commands
	Using shell aliases for kubectl commands
	Similar Docker commands in kubectl
	Summary

	Other Books You May Enjoy
	Index

